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CLASSIFICATION BETWEEN NORMAL AND ABNORMAL RESPIRATORY SOUNDS 
BASED ON MAXIMUM LIKELIHOOD APPROACH 

Shoichi Matsunaga, Katsuya Yamauchi, Masaru Yamashita and Sueharu Miyahara 

Department of Computer and Information Sciences, Nagasaki University, JAPAN 

ABSTRACT

In this paper, we have proposed a novel classification procedure 
for distinguishing between normal respiratory and abnormal 
respiratory sounds based on a maximum likelihood approach using 
hidden Markov models. We have assumed that each 
inspiratory/expiratory period consists of a time sequence of 
characteristic acoustic segments. The classification procedure 
detects the segment sequence with the highest likelihood and 
yields the classification result. We have proposed two elaborate 
acoustic modeling methods: one method is individual modeling for 
adventitious sound periods and for breath sound periods for the 
detection of abnormal respiratory sounds, and the other is a 
microphone-dependent modeling method for the detection of 
normal respiratory sounds. Classification experiments conducted 
using the former method revealed that this method demonstrated 
an increase of 19.1% in its recall rate of abnormal respiratory 
sounds as compared with the recall rate of a baseline method. It 
has also been revealed that the latter modeling method 
demonstrates an increase in its recall rate for the detection of not 
only normal respiratory sounds but also for abnormal respiratory 
sounds. These experimental results have confirmed the validity of 
our proposed classification procedure. 

Index Terms— acoustic signal detection, biomedical 
acoustics, pattern classification, lung sounds 

1. INTRODUCTION 

The auscultation of lung sounds is one of the most popular medical 
examination methods used for diagnosing many types of disorders. 
The auscultation of lung sounds is useful also because it does not 
cause any physical strain to patients. To detect abnormalities 
(adventitious sounds such as wheeze) in lung sounds, however, 
much experience and knowledge as a doctor is required. Children 
occasionally hesitate to reveal their illness or to visit hospitals 
when ill. Further, there are a number of people who find it difficult 
to visit hospitals frequently due to their unsuitable living 
conditions. They eventually visit the hospital after developing 
serious diseases such as heavy pneumonia, etc.  In these cases, the 
automated detection of abnormal respiratory sounds using a 
stethoscope at home can alleviate the unpleasant conditions, and 
appropriate medical treatment can be administered to these patients 
at an early stage. 

A number of studies have been conducted on the acoustic 
analysis of breath sounds from the view point of the detection of 
specific adventitious lung sounds [1-4]. In these studies, large-
scale lung-sound database were needed to derive reliable 
experimental results. The Marburug respiratory sound (MARS) 

database is a typical set of lung sounds collected from more than 
300 patients [5]. However, these studies have not been aimed at 
developing devices for the detection of abnormal respiratory 
sounds at home but in hospitals to help doctors with performing 
diagnoses.

Since our purpose was to develop a technology for the 
detection of abnormal respiratory sounds for use at home, we 
acquired lung sound data from patients and able-bodied subjects, 
and we developed a classification procedure for distinguishing 
between normal respiratory sounds and abnormal respiratory 
sounds that included the adventitious sounds [6]. Preliminary 
classification results indicated that the stochastic method is 
promising, but precise modeling for abnormal respiratory sounds 
was required to achieve a higher classification performance.  

To address this problem, we have proposed a new 
classification procedure to distinguish between normal and 
abnormal respiratory sounds based on a maximum likelihood 
approach using hidden Markov models (HMMs). For calculating 
the likelihood, we assumed that one section of each 
inspiratory/expiratory period consisted of a time series of acoustic 
segments that express specific acoustic features such as 
adventitious sounds. We hand labeled our recorded data and 
created a transcription corpus using segment symbols. The 
classification procedure comprises a training process and a test 
process. In the training process, acoustic models for the normal 
and abnormal respiratory sounds are trained using this transcribed 
database. In the test process, the classification procedure detects 
the segment sequence with the highest likelihood and yields the 
classification results. For the precise acoustic modeling in this 
procedure, each acoustic model for adventitious sounds and breath 
sounds are used to express abnormal respiratory sounds. 
Experimental results revealed that this modeling demonstrated a 
drastic increase in its recall rate for the detection of abnormal 
respiratory sounds as compared with that of a baseline method that 
uses a single model for the detection of abnormal respiratory 
sounds.  Furthermore, we also developed different acoustic models 
depending on the type of microphone used for recording in order 
to express normal respiratory sounds. It was experimentally 
confirmed that this modeling method demonstrated an increase in 
the recall rate for the detection of not only normal respiratory 
sounds but also abnormal respiratory sounds. 

2. LUNG SOUND DATABASE 

Lung sounds from 109 patients with emphysema pulmonum and 
53 able-bodied subjects were recorded in three hospitals.  These 
sounds were divided into two sets, according to the type of 
recording instruments (stethoscope) used. In one of the sets, a 
condenser microphone was attached to the subjects’ chest and back 
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by using a rubber coupler. In the other set, an electronic 
stethoscope incorporating a piezoelectric microphone was used. 
The acoustic characteristics of these two sets were different. The 
number of recording positions was six: two positions on the front 
and four positions on the back of each subject. In this paper, 
sounds recorded from the anterior portion on the right side of the 
second intercostal space were used for the experiments.  

Each lung sound was divided into several respiratory phase 
segments, and these segments were labeled according to the 
respiratory phase (inspiratory or expiratory) and diagnostic state 
(normal or abnormal). Each segment was tested using our 
proposed classification procedure for distinguishing between 
abnormal and normal respiratory sounds. 

2.1. Hand labeling of acoustic segment 

We considered an abnormal inspiratory/expiratory sound to be 
composed of segments with acoustic characteristics. In order to 
recognize the diagnostic state using a statistical method, we 
defined the segments according to their acoustic features and 
assigned a symbol to each segment. The respiratory data was hand 
labeled using the symbols. Suppose an inspiratory/expiratory 
sound w comprises N segments, and let the i-th segment be si

)1( Ni , then 

Ni ssssw 21 ,                                      (1) 
where the start time of segment si+1 is the end time of segment si.
In our database, one abnormal respiratory sound comprised 
several segments, and one normal respiratory sound comprised 
one normal breath segment ( 1N .)

In order to examine how detailed segmentation should be 
carried out in order to capture the acoustic features of the 
abnormal respiratory sounds appropriately, we prepared three 
types of segmentations: Labels 1, 2, and 3.  The relation among 
these labels is indicated in Figure 1 where [_] indicates the 
acoustic symbols. Label 1 comprises only adventitious sound 
segments (A) and breath sound segments (BA) that did not include 
adventitious sounds. Under Label 2, the adventitious sound 
segments were classified into three groups: continuous sound 
segments (CA), discontinuous sound segments (DA), and 
unclassifiable sound segments (UA) that were difficult to be 
classified into the discontinuous or continuous sound segments. 
Under Label-3, the discontinuous segments were classified into 

four groups: coarse crackle segments, fine crackle segments (C), 
pleural friction rub segments, and unclassifiable sound segments 
(UD). The continuous sound segment under Label 3 was also 
classified into three subgroups: rhonchus segments, wheeze 
segments, and unclassifiable sound segments (UC).  This 
hierarchy of labels was designed on the basis of the classification 
by the American Thoracic Society (ATS), and we introduced the 
three types of unclassifiable labels (UA, UD, and UC) to handle 
ambiguous data. The segmentation of each label is presented in 
Figure 2. 

2.2. Amount ratio of adventitious sounds 

The hand labeling of the respiratory sounds was performed by two 
experts and one doctor. Extremely noisy respiratory segments 
were excluded from our database. The number of inspiratory 
sounds was 740; expiratory sounds, 804; normal respiratory, 990 
(64%); and abnormal respiratory sounds, 554 (36%). The number 
of respiratory segments recorded using the condenser 
microphones was 885 (57%) and that recorded using the 
piezoelectric microphones was 659 (43%). The amount ratio of 
pulmonary adventitious sounds for each acoustic label is also 
indicated in Figure 1. The amount ratio of continuous sounds 
among the adventitious sounds was 11% and that of the 
discontinuous sounds was 87%. However, the intelligibility of 
each adventitious sound was very low, and a considerable number 
of data belonged to the group of unclassifiable sound clusters (UD, 
UC) under Label 3. This indicated the difficulty in improving the 
performance of the classification procedure by using the detailed 
acoustic labels.

3. DIAGNOSTIC STATE DETECTION PROCEDURE 

The architecture of the proposed classification procedure is shown 
in Figure 3. The system comprised the training process and the test 
process. The acoustic feature parameters were extracted in the 
feature extraction module. In the training process, acoustic models 
for each segment were generated for each respiratory phase. With 
regard to normal respiratory sounds, individual acoustic models for 
each type of a stethoscope (with a condenser or a piezoelectric 
microphone) were generated. Specifically, we developed two 
microphone-dependent models for the inspiratory and expiratory 
sounds. With regard to abnormal respiratory sounds, acoustic 

Figure 2: Segmentation of each label Figure 1: Hierarchical structure of the segment labels 
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models corresponding to each acoustic segment were generated for 
the inspiratory/expiratory sounds. Rules concerning the occurrence 
sequences of the acoustic segments in the abnormal respiratory 
sounds were also generated using the three labels. The Backus–
Naur Form (BNF) was adopted to express these rules.  In the test 
process, the acoustic likelihood of an input respiratory sound was 
calculated using the trained acoustic models under the constraints 
of the segment occurrence rules, and the diagnostic state that 
yielded the segment (sequence) with the highest likelihood was 
defined as the classification result.

4. EVALUATION EXPERIMENTS 

Classification experiments were conducted using the all (1544) the 
data described in Sec. 2.2. We performed a leave-one-out cross 
validation on these data. In addition, data recorded from the same 
subject to the test sample were excluded in the training process to 
perform subject-independent experiments. The respiratory data 
were sampled at 10 kHz. Every 10 ms, a vector of 5 mel-warped 
cepstral coefficients and power was computed using a 25-ms 
Hamming window. The acoustic models for the normal respiratory 
sounds were generated using the normal breath sounds (BN in 
Figure 1). In our experiments, we presupposed that the respiratory 
phase is known. Subsequently, if the test data was an expiratory 
sound, the acoustic models generated with the expiratory sounds 
were used for classification. On the other hand, we presupposed 
that the recording condition for the test data is unknown. 
Subsequently, two types of respiratory models (corresponding to 
the condenser and the piezoelectric microphone) for normal 
respiratory sounds were used simultaneously.  

4.1. Performance of baseline method 

A preliminary classification experiment was performed to evaluate 
the performance of a baseline method based on a maximum 
likelihood approach. This method was realized using a diagnostic-
state tag for each respiratory sound. The acoustic parameters for 
the entire abnormal inspiratory/expiratory durations (RS in Figures 
2) were used to generate abnormal acoustic models. In the test 
process, HMMs with three states and two Gaussian probability 
density functions (2-mixture pdfs) were used [7]. The classification 
result is shown in Table 1. The recall rate of the baseline method 
for the detection of abnormal respiratory sounds was 72.8% and 
that of the normal respiratory sounds was 67.9%. The average 
recall rate weighted with the data amount for each diagnosis phase 

is indicated as “Average.” This result indicated that the maximum 
likelihood approach using the HMMs is promising for the 
classification procedure. 

4.2. Use of modeling for adventitious sound periods 

One of the characteristics of our proposed procedure was the use of 
HMMs for both adventitious sounds and breath sounds in the 
modeling of abnormal respiratory sounds. To evaluate the 
proposed modeling method, a classification experiment was 
performed wherein the adventitious-sound models and the breath-
sound models for the detection of abnormal respiratory sounds, 
which were generated using the transcription of Label 1, were used. 
This classification result is also shown in Table 1. On comparing 
the performance of the proposed modeling method with that of the 
baseline method, the recall rate of the modeling method for the 
detection of normal respiratory sounds was found to decrease by 
1.7%. However, the recall rate of the modeling method for the 
detection of abnormal respiratory sounds was increased by 19.1%. 
This great improvement confirmed the validity of our proposed 
modeling method for the detection of abnormal respiratory sounds.  

4.3. Effect of further detailed segmentation 

We used the two sets of acoustic models based on Labels 2 and 3. 
The Label 2 set comprised continuous sound models, 
discontinuous sound models, and breath models for abnormal 
sound periods. The Label 3 set included six types of specific 
adventitious sounds, two types of unclassifiable models, and breath 
models, as shown in Figure 1. These classification results are also 
shown in Table 1. 

With regard to the detection of abnormal respiratory sounds, 
the detailed modeling method (using Labels 2 and 3) as compared 
to that using Label 1 demonstrated a slight increase in its recall 
rates. However, the recall rates of the detailed modeling method 
for the detection of normal respiratory sounds decreased. The 
acoustic feature of the surrounding noises included in the breath 
sounds was similar to that of the discontinuous adventitious sounds. 
Consequently, we considered that detailed modeling for 
adventitious sounds with a small amount of data resulted in the 
lack of the robustness for the detection of normal respiratory sound 
and decreased the recall rate of the detailed modeling method for 
the detection of normal respiratory sounds.   

Figure 3: Architecture of classification system between normal and abnormal respiratory 
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4.4. Use of microphone-dependent modeling 

In all the previous experiments, two types of normal breath models 
(using the condenser and piezoelectric microphones and referred to 
as “mic-dependent” models in this paper) were used to achieve a 
better performance with regard to the detection of normal 
respiratory sounds. To evaluate the performance of the mic-
dependent models, we performed a classification experiment using 
a unified model (referred as “mic-closed” model) for breath sounds 
in normal respiratory periods. This model was generated using 
inspiratory or expiratory sounds of the normal respiratory period. 
The experimental results are shown in Table 2, where the mixture 
number of pdfs is one or two for the mic-closed models and the 
mic-dependent models uses a 1-mixture model.  The number of 
acoustic parameters for the 2-mixture mic-closed models was 
equal to that for the two mic-dependent 1-mixture models. Table 2 
indicates that the use of the mic-dependent model enabled the 
detection of the normal respiratory sounds (67.9%), and also 
increased the detection rate of the abnormal respiratory sounds by 
3.2%, revealing the effectiveness of our modeling method for the 
detection of normal respiratory sounds. 

4.5. Effect of mixture number of Gaussian pdfs

We conducted additional experiments to evaluate the effect of the 
mixture number of Gaussian pdfs in HMMs. When this number 
was increased, further detailed modeling could be easily performed. 
Classification experiments were performed with the mixture 
number ranging from 1 to 3 using the acoustic models generated 
with Label 2. The experimental results are shown in Table 3. An 

increase in the mixture number improved the recall rate of the 
modeling method for the detection of abnormal respiratory sounds. 
However, the recall rate in the case of normal respiratory sounds 
decreased. This implied the difficulty in distinguishing between 
normal and abnormal respiratory sounds. 

5. CONCLUSIONS 

In this paper, we have proposed a classification procedure for 
distinguishing between normal and abnormal respiratory sounds 
based on a maximum likelihood approach. The acoustic likelihood 
of an input inspiratory or expiratory lung sound phase was 
calculated using HMMs that were generated for each diagnostic 
state, and the diagnostic state that yielded the state with the highest 
likelihood was defined as a classification result. In our procedure, 
the acoustic HMMs for abnormal sounds were generated 
separately for adventitious sounds and breath sounds. These 
models demonstrated a drastic increase in their recall rate for the 
detection of abnormal respiratory sounds. The acoustic models for 
normal respiratory sounds were generated separately according to 
the data recorded by using microphones. These models 
demonstrated an increase in their recall rates for the detection of 
both the normal and the abnormal respiratory sounds. These results 
conformed the validity of the proposed procedure.  

In our experiments, noises included in the normal respiratory 
sounds prevented the improvement in the recall rate of the 
proposed procedure for the detection of normal respiratory sounds. 
This was because the noises were acoustically similar to the 
adventitious sounds. Lung sounds recorded at a specific position 
were used in this paper. Our database consisted of lung sound data 
recorded at six points on the subjects’ chest and back. In a future 
study, s robust classification method for noises will be developed 
by using the data recorded at different positions. 
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Table 1: Recall rates for detection of abnormal and normal  
respiratory sounds for each segmentation  (2-mixture) [%] 

Diagnosis
Label Abnormal Normal Average 

Baseline (Sec 4.1) 72.8 67.9 71.0 

Label 1 (Sec 4.2) 91.9 66.2 82.7 

Label 2 (Sec 4.3) 93.2 64.8 83.0 

Label 3 (Sec 4.3) 93.1 60.1 81.3 

Table 2: Recall rates using mic-closed and mic-dependent models   
(Label 3) [%] 

Acoustic model 
Condition

(microphone)
Mixture
number

Abnormal Normal Average 

1 81.0 46.6 68.7 
Closed

2 85.7 35.6 67.7 

Dependent 1 88.9 67.9 81.3 

Table 3: Recall rates depending on the mixture number 
(Label 2) [%] 

Mixture no. Abnormal Normal Average 

1 90.0 70.8 82.8 

2 93.2 64.8 83.0 

3 93.9 64.6 83.4 
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