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INTRODUCTION

Approximately one-third of the CO2 that has entered
the atmosphere over the past 100 yr has been absorbed
into ocean surface waters and has resulted in the eleva-
tion of partial pressure of CO2 (pCO2) in seawater and
reduction of seawater pH (Caldeira & Wickett 2003,
Royal Society 2005, German Advisory Council on
Global Change 2006, Denman et al. 2007). One bio-
logical impact of ocean acidification is its effect on
calcifiers, because seawater acidification results in a
decrease of [CO3

2–], thereby reducing the calcium car-
bonate (CaCO3) saturation state, which is determined
by [CO3

2–][Ca2+] / Ksp (Ksp is the stoichiometric solubil-
ity of CaCO3; Kleypas et al. 2006). Of the 2 major bio-

logically secreted forms of CaCO3 in modern calcifiers,
aragonite is more soluble than calcite (Zeebe & Wolf-
Gladrow 2001). Orr et al. (2005) reported that high-
latitude surface oceans will become undersaturated
with respect to aragonite by the year 2050, and lead to
aragonite shell dissolution (Feely et al. 2004, Orr et al.
2005). Recent studies have shown that the calcification
rate of calcifiers, such as corals, coccolithophores, fora-
miniferans and bivalves, decreases with increasing
pCO2, even in seawater supersaturated with respect to
CaCO3 (Gattuso et al. 1998, Riebesell et al. 2000, Bijma
et al. 2002, Kleypas et al. 2006, Gazeau et al. 2007). Ad-
ditionally, increased pCO2 may also have complex
effects on the physiology, growth and reproductive suc-
cess of marine calcifiers. Indeed, recent studies have
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demonstrated that adult calcifiers exposed to hyper-
capnia suffer from physiological stress in addition to
reduced calcification (Pörtner et al. 2004, Michaelidis et
al. 2005, Miles et al. 2007, Spicer et al. 2007). To under-
stand the effect of ocean acidification at a population
level, however, it is important to focus on the most
sensitive life cycle stages to environmental change.
Usually these are early developmental and reproduc-
tive stages, during which environmental requirements
are often more specific and acute than at other stages
(Thorson 1950). Indeed mortality of marine inverte-
brates, including benthic calcifiers, exceeded 90%
during early life stages in their natural habitat according
to Gosselin & Qian (1997).

There are a number of different life cycle stages of
benthic calcifiers, such as fertilization, cleavage,
planktonic larva, settlement, metamorphosis, juvenile,
adult and reproductive stages, which are possibly
affected differently by high pCO2 (Fig. 1). The first
deposition of CaCO3 is known to occur during the
larval stage, as in echinoderms and bivalves, or during
the settlement stage, as in corals and barnacles.
Hence, these stages are highly susceptible to the
potential effects of ocean acidification. Beckerman et
al. (2002) suggested that environmental conditions
experienced during early development can have pro-
found effects on the subsequent performance of
individuals and cohorts. Indeed, Green et al. (2004)
showed that the low CaCO3 saturation state may
explain the exponential losses of juvenile bivalves and
the low recruitment transition from the pelagic larval
phase to the benthic juvenile phase. Therefore, effects
of ocean acidification on larval survival rate, as well as
reproduction rate, will directly influence the popula-
tion abundance, distribution and community structure.
To evaluate the impact of ocean acidification on cal-
careous organisms at a community level, the present

paper focuses on the effects of high pCO2 on early
developmental stages including fertilization, cleavage,
hatching, larva, settlement and reproductive stages of
calcifiers.

EFFECTS ON FERTILIZATION, CLEAVAGE AND
HATCHING STAGE

The fertilization rate of sea urchins decreased with
increasing pCO2 concentration (360 to 10 360 µatm, pH
8.1 to 6.8) in eggs of both Hemicentrotus pulcherrimus
(Fig. 2; rs = 0.74, p < 0.001) and Echinometra mathaei
(Fig. 2; rs = 0.88, p < 0.001; Kurihara & Shirayama
2004a,b). However, the impact of increasing pCO2 on
fertilization differed between females, as revealed by
the large SDs (Fig. 2), possibly reflecting a degree of
genetic variation for CO2 tolerance within populations.
Additionally, in contrast with the linear decrease of fer-
tilization rate in high pCO2 seawater, the fertilization
rate decreased at pH levels only <7.0 when seawater
was acidified with HCl (Fig. 2; Kurihara & Shirayama
2004a,b). Effects of low pH using mineral acids on
sperm motility have been well studied for sea urchins.
Christen et al. (1983) demonstrated that sperm motility
was suppressed at pH < 7.0. Polyspermic fertilization
was also reported in Anthocidaris crassispina sea
urchin eggs fertilized at pH 7.0 (Kobayashi 1971).
Recently, Havenhand et al. (2008) found that sperm
swimming speed and percent sperm motility of the
sea urchin Heliocidaris erythrogramma exposed to
1000 µatm pCO2 (pH 7.7) seawater decreased com-
pared to controls. These results suggest again that high
pCO2 may affect egg fertilization more strongly than
mineral acids. One of the reasons for this difference is
likely to be the diffusion capability of CO2 and protons.
Ion transport is an energy (ATP)-consuming process

(Heisler 1993), whereas molecular CO2

directly diffuses across the biological
cell membrane far faster than protons
(Gutknecht et al. 1977), and hence CO2

can readily enter into eggs or sperm
and decrease the intracellular pH.
Since the intracellular pH of sea urchin
eggs is known to rise after insemination
(Lopo & Vacquier 1977) and trigger the
initiation of embryonic development
(Johnson et al. 1976), in addition to the
impact on sperm motility, the low intra-
cellular egg pH may prevent fertiliza-
tion and subsequent development.

The fertilization rates of marine
bivalves, the oyster Crassostrea gigas
and the mussel Mytilus galloprovin-
cialis were unaffected in 2000 µatm
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Fig. 1. Different life-cycle stages of benthic calcifiers, including reproduction,
fertilization, planktonic larva, settlement, metamorphosis, juvenile and benthic
adult stages, that are potentially affected in different manners by ocean 

acidification
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pCO2 (pH 7.4) seawater (Kurihara et al. 2007, Kurihara
et al. unpubl. data), whereas Desrosiers et al. (1996)
reported that polyspermic fertilization in the giant
scallop Placopecten magellanicus increased at seawa-
ter pH < 7.5. Additionally, during the scallop embry-
onic stage, the time to complete the first cleavage was
shortest at pH 8.2 and increased with decreasing pH.
Similarly, the cleavage speed of sea urchin embryos
Hemicentrotus pulcherrimus and Echinometra math-
aei slowed with decreasing pH (Kurihara & Shirayama
2004a,b). When embryos of the sea urchin Sphaerech-
inus granularis were reared in seawater acidified with
HCl or H2SO4, mitotic abnormalities were induced at
pH < 6.5 (Pagano et al. 1985a,b, Cipollaro et al. 1986).
Incubating zygotes in seawater acidified by mineral
acids reduces protein synthesis (Grainger et al. 1979).
Such impacts on protein synthesis and mitotic activity
probably decrease growth and cleavage rates.

Both hatching and nauplius survival decrease with
increasing pCO2 in the copepods Acartia erythraea,
even though negative impacts were significant only at

pCO2 levels higher than those projected
to occur in the future ocean (Kurihara et
al. 2004a,b). Similarly, Mayor et al. (2007)
also demonstrated a decrease of hatching
success in the copepod Calanus fin-
marchicus only at 8000 µatm pCO2

(pH 6.9). When A. tsuensis eggs were
reared under 2000 µatm pCO2 (pH 7.3)
until they developed into adults, survival,
growth and morphology were unaffected
at all stages (Kurihara & Ishimatsu 2008).
Additionally, the hatching rate was un-
affected during ensuing generations (0 to
2 generations).

EFFECTS ON LARVAL DEVELOPMENT

The larval development of several calci-
fiers is affected by elevations of seawater
pCO2. When Hemicentrotus pulcherrimus
and Echinometra mathaei embryos were
reared under 6 different CO2 concentra-
tions until they developed to the pluteus
larval stage, larval and arm sizes were
significantly smaller with increasing
pCO2 and their morphology, principally
the larval skeletogenesis, tended to be
abnormal (Fig. 3a to f; Kurihara & Shi-
rayama 2004a,b). Similarly, the larval
shells of Crassostrea gigas and Mytilus
galloprovincialis were strongly affected
by high pCO2 conditions (Fig. 3g to k).
When oyster eggs were reared under

1000 µatm pCO2 (pH 7.8), though CO2-treated larvae
were completely shelled, they showed malformations
such as convex hinges (Fig. 3h), which are typical cri-
teria to identify abnormal development of veliger lar-
vae in embryotoxicology bioassays (His et al. 1997).
When oyster eggs were reared under 2000 µatm pCO2

(pH 7.4), >70% of the CO2-treated larvae were either
completely non-shelled, or only partially shelled
(Fig. 3i), and only 4% of CO2-treated embryos devel-
oped into normal ‘D-shaped’ veliger larvae by 48 h
after fertilization, in contrast to about 70% successful
development in control embryos (Fig. 3g; Kurihara
et al. 2007). A negative impact of 2000 µatm pCO2

(pH 7.4) was also observed in M. galloprovincialis lar-
vae. Though all CO2-treated mussel larvae were com-
pletely shelled in contrast with oyster larvae, larval
size was about 20% smaller than that of larvae from
the control conditions and showed morphological
abnormalities such as convex hinges, protrusion of
mantle and malformed shells (Fig. 3i,k; Kurihara et
al. in press).
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Fig. 2. Hemicentrotus pulcherrimus and Echinometra mathaei. Fertilization
rate of eggs fertilized under 6 different pH conditions. Seawater was acidi-
fied with CO2 or HCl; 6 and 3 batches were used for H. pulcherrimus and for
E. mathaei, respectively. Error bar: SD; rs: Spearman’s rank correlation coef-
ficient; *: significant difference compared to control (Tukey-Kramer, p < 0.05)
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All these results suggest that high pCO2 affected
larval skeleton and shell synthesis. To evaluate the
mechanism of this effect, I have recently examined the
effect of high CO2 (1000 and 2000 µatm pCO2 / pH 7.7
and 7.45) on the expression of the gene related to
spicule elongation (SM50) (Peled-Kamar et al. 2002),
and of the gene that regulates the direction of crystal
growth (SM30) in embryos of the sea urchin Hemicen-
trotus pulcherrimus. No effect was observed on the
expression of these genes, even though spicule size
and morphology of larvae were affected (Kurihara et
al. unpubl. data). Further experiments evaluating
effects on other proteins such as msp130, known to be
related to Ca2+ transportation (Farach-Carson et al.
1989), will help clarify effects on calcification.

Encounter and clearance rates of food particles
depend on larval body size, and, therefore, smaller lar-
vae are more prone to starvation (Anger 1987, Strath-
mann 1987, Hart & Strathmann 1995). Simkiss &
Wilbur (1989) pointed out that the CaCO3 structures
have vital functions for calcified larvae, such as
defense against predation, as well as roles in feeding,
buoyancy control and pH regulation. Predation is
generally considered to be the most important cause of
larval mortality (Morgan 1995). Research to date on

ocean acidification strongly suggests that it will lead to
a reduction in fitness and survivorship of sea urchin
and bivalve larvae due to both size reduction and
disruption of CaCO3 skeletogenesis.

EFFECTS ON LARVAL SETTLEMENT

Mortality and shell dissolution rates of the bivalve
Mercenaria mercenaria juveniles were significantly
higher in CaCO3-undersaturated conditions at the sed-
iment–seawater interface than in supersaturated con-
ditions (Green et al. 2004). They also demonstrated
that the mortality rates were higher for small size
classes (0.2 and 0.3 mm) than for larger individuals (1.0
and 2.0 mm). To examine the effect of ocean acidifica-
tion on the settlement and the subsequent growth of
coral polyps, eggs of the coral Acropora tenuis were
reared under control and 1000 µatm pCO2 (pH 7.6)
conditions for 2 wk. In contrast with sea urchin and
bivalve larvae, coral was unaffected by high pCO2

until the larval stage. An impact of CO2, however, was
observed after settlement, while they developed into
the polyp stage. The morphology of the CO2-treated
polyp endoskeleton was disturbed and malformed
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Fig. 3. Larval or polyp morphology of sea urchins Hemicentrotus pulcherrimus (a to c) and Echinometra mathaei (d to f), bivalves
Crassostrea gigas (g to i) and Mytilus galloprovincialis (j,k), and the coral Acropora tenuis (l,m) incubated in the control (a,d,g,j,l),
1000 µatm pCO2 (b,e,h,m) and 2000 µatm pCO2, (c,f,i,k). Scale bars = 50 µm (a to j), 500 µm (l,m); the bars in (a,d,g,j,l)

apply to the panels of the whole column
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compared to the radial pattern of control polyps
(Fig. 3l,m). When hatched embryos of the marine
shrimp Palaemon pacificus were cultured until settle-
ment stage under 2000 µatm pCO2 seawater (pH 7.6),
no significant effect was observed on planktonic larval
stages; however, CO2-treated metamorphosing and
settling juveniles were significantly smaller than in the
control (2-way repeated-measures ANOVA; Fig. 4).
Relatively small perturbations in initial populations of
settling marine bivalves have been shown to induce
large alterations in adult populations (Gosselin & Qian
1997, Hunt & Scheibling 1997). Hence, the impact of
ocean acidification on settlement stages may well have
profound ecological implications for their populations.

EFFECTS ON REPRODUCTION

While effects of hypercapnia on fish reproduction
have been studied to some extent (Ishimatsu et al.
2005), less is known for invertebrates. Some recent
studies suggest that ocean acidification exerts nega-
tive impacts on invertebrate reproduction. Siikavuopio
et al. (2007) reported that gonad growth was reduced
by 67% when the green sea urchin Strongylocentrotus
droebachiensis was exposed to high pCO2 (pH 6.98) for
56 d. When the sea urchin Hemicentrotus pulcher-

rimus was reared under 1000 µatm pCO2 (pH 7.8) for
10 mo, gonad development was delayed, and the
spawning period was shortened to almost half that of
the control (Kurihara et al. unpubl. data). The marine
shrimp Palaemon pacificus cultured under 1000 µatm
pCO2 (pH 7.9) seawater for 30 wk showed reduced
reproduction compared to the control (Kurihara et al.
2008). On the other hand, egg production of all cope-
pods studied (e.g. Acropora steueri, A. erythraea and
A. tsuensis) was not affected when reared under the
high pCO2 projected to occur in the future ocean
(>2000 µatm pCO2; Kurihara et al. 2004a,b, Kurihara &
Ishimatsu 2008). Consequently, although some organ-
isms appear less sensitive to elevated pCO2, ocean
acidification would directly affect the population size
of several calcifiers.

ONTOGENIC IMPACTS OF HIGH CO2

Table 1 lists the effects of low pH condition (by addi-
tion of CO2 or mineral acids) on the early developmen-
tal stages of marine calcifiers and their adult stages.
The data indicate that ocean acidification has negative
impacts on both larval and adult stages of corals, mol-
lusks, echinoderms and crustaceans. Although data
are limited for direct comparison of CO2 tolerance
between larval and adult stages, larvae appear to be
more sensitive than adults. For example, whereas cal-
cification of oyster adults reared under 2000 µatm
pCO2 (pH 7.4) decreased by about 50%, approxi-
mately half of the oyster larvae completely lacked a
shell when cultured under the same pCO2 concentra-
tion (Table 1; Gazeau et al. 2007, Kurihara et al. 2007).
Although adult oyster shells are mainly composed of
calcite (Stenzel 1964), oyster larval shell is completely
formed of aragonite. Since the solubility of aragonite is
higher than that of calcite, the CaCO3 shells of bivalve
larvae are probably affected more severely than those
of adults. Additionally, although the growth and size of
the adult sea urchin Hemicentrotus pulcherrimus was
not affected when cultured for 10 mo under 1000 µatm
pCO2 (pH 7.8), the larval size of H. pulcherrimus was
significantly reduced compared to the control when
reared under 860 µatm pCO2 (pH 7.8) for 3 d. Larvae of
bivalves such as Crassostrea gigas and Mercenaria
merceneria and also sea urchins such as Paracentrotus
lividus and Strongylocentrotus purpuratus are known
to initially deposit amorphous calcium carbonate
(ACC), with a solubility 30 times larger than that of
aragonite (Breãeviç & Nielsen 1989, Weiss et al. 2002,
Addadi et al. 2003, Politi et al. 2004). For larval shells
of bivalves, the ACC transformed into aragonite, and
then to calcite in adult oysters, or into a mixture of
aragonite and calcite in adult mussels (Hubbard et al.
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1981). Similarly, ACC in sea urchin larvae transformed
into high magnesium calcite (Mg-calcite, >4 mol%
Mg2+ substituting for Ca2+) over a period of hours to
days (Addadi et al. 2003, Politi et al. 2004). A recent
study predicts that the stoichiometric solubility of Mg-
calcite can exceed that of aragonite (Morse et al. 2006).
Studies evaluating whether or not other calcifiers also
use ACC as a transient precursor phase in their larval
stages are very limited (Addadi et al. 2003). However,
since research shows that both mollusks and echino-
derms, on 2 separate phylogenetic branches, initially
precipitate ACC before less soluble forms during later
life stages, it is highly probable that this strategy is
widespread among marine calcifiers. Further studies
evaluating the ontogenic impacts of high pCO2 con-
centration on calcifiers are anticipated.

CONCLUSIONS AND PERSPECTIVES

As discussed above, CO2 is expected to impact the
life cycles of benthic calcifiers in different ways under
increasing levels (380~2000 µatm pCO2/ pH 8.2~7.3).
The effects of high pCO2 in seawater are anticipated to
occur in several different life stages, including egg,
cleavage, larva, settlement, juvenile and adult stages,
which are consequently likely to impact the dis-
tribution and abundance of benthic calcifiers (Fig. 5).
Impacts on fertilization and reproduction can directly
affect population size, and decreased calcification at
larval and settlement stages is considered to affect
their fitness and increase mortality. Cumulative
effects across different life stages may lead to species
extinctions.

CO2 tolerance seems to differ between
life stages (e.g. larva and adult). Addi-
tionally, the vulnerable stages can also
differ between species. For example, al-
though the larval stage of sea urchins
and bivalves seemed to be most vulnera-
ble to high pCO2, the settlement stage
was the most severely affected in corals
and marine shrimps. This can be par-
tially explained by the fact that most
echinoderms and mollusks start shell
and skeleton synthesis at their larval
stage, whereas corals start at the settle-
ment stage. The present study also
demonstrates that there are significant
differences in the tolerance within and
between different species (Table 1). Al-
though most calcifiers were affected at
pCO2 values >1000 µatm (pH 7.9~7.7),
copepods appear less sensitive to ele-
vated pCO2 conditions. The fertilization

rate of Echinometra mathaei was observed to be more
affected than that of Hemicentrotus pulcherrimus at the
same pCO2 level (Fig. 2). Therefore, it is possible that
the community structure of calcifiers will change in the
future ocean. Additionally, the impact of ocean acidifi-
cation may also differ between organisms that live at
different latitudes. Adding studies of Antarctic and
Arctic species will be important given that the satura-
tion states of aragonite and calcite decrease faster at
high versus low latitudes (Orr et al. 2005).

Most calcifiers, such as corals, echinoderms, bivalves
and crustaceans, play important roles in coastal eco-
systems as keystone species, bioturbators and ecosys-
tem engineers (Suchanek 1985, Gutiérrez et al. 2003).
They are also socio-economically important as food
sources and for industries such as tourism. On a global
scale, CaCO3 plays a role in regulating the oceanic
carbon cycle (Feely et al. 2004). For example, marine
mollusks are estimated to produce about 50 to 1000 g
CaCO3 m–2 yr–1 (Beukema 1982, Gutiérrez et al. 2003).
For coral reef, the rate of calcification is approximately
10 kg CaCO3 m–2 yr–1 (Chave et al. 1975). Given the
importance of marine calcifiers to these processes,
influences on their population size and composition
will potentially cause negative impacts to coastal
ecosystems, which, consequently, may even affect the
whole oceanic ecosystem.

In contrast with marine calcifiers, effects of ocean
acidification on non-calcifiers are poorly described.
The present study reveals that elevated atmospheric
CO2 not only affects calcification, but also several other
biological processes, such as fertilization, reproduction
and physiology. There is a critical need for information
on the effect of ocean acidification on non-calcifiers.
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Adult

Reproduction

Egg

Cleavage

Larvae

Settlement

Growth, calcification decrease

Life cycle of
benthic calcifiers Fertilization decrease

Cleavage delay

Skeletogenesis malformation 
Size reduction

Metamorphosis

Juvenile
Reproduction decrease,

Reproduction delay

Skeletogenesis
malformation

Size reduction

Fig. 5. Summary of CO2 effects at different life cycle stages of benthic calcifiers
under CO2 concentrations that are expected to occur in the future ocean
(380~2000 µatm pCO2 / pH 8.2~7.3). Although the magnitude of CO2 tolerance
may differ between species and life stages, effects of high CO2 are proposed for
several different life stages, including reproduction, egg, cleavage, larva, 

settlement and adult stages
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Additionally, in order to accurately assess the ecologi-
cal impact of atmospheric CO2, studies evaluating the
synergetic impacts of ocean acidification and global
warming on the early life and reproductive stages
should be emphasized due to the vulnerability of these
stages to environmental change. Impacts of global
warming on the early life and reproductive stages have
been studied to some extent. Foster (1971) mentions
that larvae generally require a narrower temperature
range for development compared to adults. O’Connor
et al. (2007) demonstrated that temperature affects
larval dispersal distance, with the implication that a
warming ocean may influence population connectivity
and structure. Svensson et al. (2005) demonstrated that
unpredictable spring temperatures could lead to the
mismatching of larval release with spring phytoplank-
ton blooming, and reduce their recruitment. Thus, the
interactive effect of CO2 and temperature on early
development and reproductive stages is a high priority
for future studies.

Finally, a better understanding of the mechanisms
behind CO2 impacts on organisms and processes of
biological adaptation and evolution is very important
for any attempt to accurately forecast how marine
organisms and the ecosystem will respond to ocean
acidification. Most of the data gathered on the effects
of ocean acidification (e.g. Table 1) highlight the
impact of high pCO2 (low [CO3

2–] and CaCO3 satura-
tion state) on both internal and external CaCO3

skeletogenesis, even in seawater supersaturated with
CaCO3. Nevertheless, the mechanism behind this phe-
nomenon is still obscure, because several studies have
suggested that the major source of dissolved inorganic
carbon for calcification is HCO3

– derived from the sur-
rounding seawater or converted by metabolic CO2

rather than CO3
2– (Tanaka et al. 1986, Furla et al. 2000,

McConnaughey & Gillikin 2008). This may be partially
explained by the indirect effect of decreased metabolic
rate due to high pCO2, since the respiration rate of
several marine animals is observed to decrease under
high pCO2 (Langenbuch & Pörtner 2004, Michaelidis
et al. 2005). Another possible explanation is that the
extracellular fluid (where calcification takes place) of
calcifiers becomes undersaturated for CaCO3 even in
CaCO3 supersaturated seawater. The extracellular
pH of most marine organisms is generally lower than
that in the surrounding seawater (e.g. bivalve mantle
hemolymph, pH 7.4~7.6), whereas [Ca2+] is similar to
that of seawater (9 to 10 mM; Omori et al. 1988). When
invertebrate calcifiers, such as bivalves and sea urchins,
are exposed to high pCO2 conditions, the hemolymph
pH shows a permanent reduction (Michaelidis et al.
2005, Miles et al. 2007), suggesting that extracellular
pH can become undersaturated even with a slight
increase in seawater pCO2.

On the basis of future climate scenarios, it is pre-
dicted that 15 to 37% of species and taxa will become
extinct by 2050 (Thomas et al. 2004). However, it
remains to be determined whether marine organisms
will be able to adapt to a rapidly changing ocean envi-
ronment. Recent research has revealed that organisms
could evolve within decades in response to strong
pressures, which Stockwell et al. (2003) termed ‘con-
temporary evolution’. However, the capacity of marine
organisms to adapt to increased seawater pCO2 is
unclear. Collins & Bell (2004) have performed the
only study to examine the possible adaptation to an
increased CO2 concentration by an organism, the
green alga Chlamydomonas reinhardtii. However, the
relatively long generation length of marine calcifiers,
such as echinoderms, bivalves and corals, which is an
important factor for the evolutionary potential of a spe-
cies, makes ‘rapid evolution’ of most calcifiers unlikely
in response to the changes in the ocean environment
(Berteaux et al. 2004).

Meanwhile, recent palaeontological studies have
demonstrated that during the Paleocene-Eocene ther-
mal maximum (PETM), when atmospheric CO2

increased at the rate of 0.2 GtC yr–1 within <10 000 yr,
catastrophic extinctions of 35 to 50% of benthic foram-
iniferan species occurred (Thomas 1998, Gibbs et al.
2006). It is also worth mentioning that the present
anthropogenic rate of CO2 emission is 8 GtC yr–1,
which is 16 times the rate during the PETM interval
(Gibbs et al. 2006). Though further information is
urgently needed on genetic variation, genetic re-
sponse and adaptation of marine organisms in a high
CO2 world, the present data suggest that deleterious
impacts on marine calcifier populations are very likely
to occur in the future ocean.
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