
Efficient Representation Learning With
Graph Neural Networks

YONGCHENG JING

Supervisor: Prof. Dacheng Tao

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Computer Science
Faculty of Engineering

The University of Sydney
Australia

August 2023

ii

iii

To my parents and grandparents.

iv

Statement of Originality

This is to certify that to the best of my knowledge, the content of this thesis is my own

work. This thesis has not been submitted for any degree or other purposes.

I certify that the intellectual content of this thesis is the product of my own work and that

all the assistance received in preparing this thesis and sources have been acknowledged.

Yongcheng Jing

School of Computer Science

Faculty of Engineering

The University of Sydney

v

Authorship Attribution Statement

This thesis was conducted at the University of Sydney, under the supervision of Prof. Dacheng

Tao, between 2020 and 2023. This thesis contains several chapters that were previously

published by Yongcheng Jing as the first author in the following publications:

(1) Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng

Tao. Deep Graph Reprogramming. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2023, pp. 24345–24354.

Presented in Chapter 3. I designed the research, implemented the systems, conducted

the experiments, and wrote the draft of the paper.

(2) Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao.

Amalgamating Knowledge from Heterogeneous Graph Neural Networks. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2021, pp. 15709–15718. Presented in Chapter 4. I designed the research,

implemented the systems, conducted the experiments, and wrote the draft of the

paper.

(3) Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao.

Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).

2021, pp. 5301–5310. Presented in Chapter 5. I designed the research, implemented

the systems, conducted the experiments, and wrote the draft of the paper.

(4) Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao

Wang, and Dacheng Tao. Learning Graph Neural Networks for Image Style Transfer.

In: Proceedings of the European Conference on Computer Vision (ECCV). 2022, pp.

111–128. Presented in Chapter 6. I designed the research, implemented the systems,

conducted the experiments, and wrote the draft of the paper.
vi

AUTHORSHIP ATTRIBUTION STATEMENT vii

In addition to the statements above, in cases where I am not the corresponding author of

a published item, permission to include the published material has been granted by the

corresponding author.

Yongcheng Jing Date

As supervisor for the candidature upon which this thesis is based, I can confirm that the

authorship attribution statements above are correct.

Dacheng Tao Date

Acknowledgements

I am immensely grateful to Prof. Dacheng Tao, my supervisor, for guiding me from being

a junior student to becoming a researcher. I feel incredibly fortunate to have had Prof. Tao by

my side throughout this PhD journey, providing invaluable support and patient supervision.

Prof. Tao is not only as my mentor but has also been an endless source of inspiration to me,

with his profound research passion and unwavering commitment to academic excellence. I

am truly honored to learn from him and will cherish his teachings as a priceless treasure

throughout my life.

I am also filled with profound gratitude to express my deepest appreciation for my co-

supervisor, Prof. Xinchao Wang, whose exceptional kindness, unwavering support, and

enlightening discussions have been an invaluable asset throughout my academic journey. The

profound impact that Prof. Wang has had on me, particularly in the realms of academic

writing and cultivating innovative research ideas, cannot be overstated. The guidance and

unwavering backing provided by Prof. Wang have played an indispensable role in shaping

my scholarly path, and for that, I am forever grateful.

I also want to express my heartfelt gratitude to my colleagues and friends, Dr. Yiding

Yang, Zhihao Cheng, Yajing Kong, Dr. Zhen Wang, Dr. Fengxiang He, Dr. Yu Cao, Dr. Sen

Zhang, Dr. Hao Guan, Dr. Jiayan Qiu, Chongbin Yuan, Li Ju, Yining Mao, Shiye Lei, Xiaofei

Liu, Haibo Qiu, Dr. Zhi Hou, Xu Zhang, Yufei Xu, Qiming Zhang, Wen Wang, Dr. Wei Zhai,

Dr. Shanshan Zhao, Dr. Chaoyue Wang, Dr. Jing Zhang, Dr. Liang Ding, Dr. Baosheng Yu,

Qi Zheng, Dr. Yibing Zhan, Haimei Zhao, Yang Qian, Xingyi Yang, Songhua Liu, Jingwen

Ye, Gongfan Fang, Erdun Gao, Dr. Jie Song, Dr. Zunlei Feng, Cheng Wen, Sihan Ma, and

Greg Ryan. Throughout my PhD journey, the unwavering assistance and encouragement I

have received from them has been an invaluable asset, benefiting both my research endeavors

and daily life in immeasurable ways.

viii

Abstract

Graph neural networks (GNNs) have emerged as the dominant paradigm for graph rep-

resentation learning, igniting widespread interest in utilizing sophisticated GNNs for diverse

computer vision tasks in various domains, including visual SLAM, 3D object recognition and

segmentation, as well as visual perception with event cameras. However, the applications

of these GNNs often rely on cumbersome GNN architectures for favorable performance,

posing challenges for real-time interaction, particularly in edge computing scenarios. This is

particularly relevant in cases such as autonomous driving, where timely responses are crucial

for handling complex traffic conditions. The objective of this thesis is to contribute to the

advancement of learning efficient representations using lightweight GNNs, enabling their

effective deployment in resource-constrained environments. To achieve this goal, the thesis

explores various efficient learning schemes, focusing on four key aspects: the data side, the

model side, the data-model side, and the application side. In terms of data-driven efficient

learning, the thesis proposes an adaptive data modification scheme that allows a pre-trained

model to be repurposed for multiple designated downstream tasks in a resource-efficient man-

ner, without the need for re-training or fine-tuning. For model-centric efficiency, the thesis

introduces a multi-talented and lightweight architecture, without accessing human annotations,

that can integrate the expertise of the pre-trained complex GNNs specializing in different

tasks. Furthermore, the thesis explores a dedicated binarization scheme on the data-model

side that converts both input data and model parameters into 1-bit representations, resulting in

lightweight 1-bit architectures. Finally, the thesis investigates an application-specific efficient

learning scheme that models the style transfer process as message passing in GNNs, enabling

efficient semi-parametric stylization.

ix

Contents

Statement of Originality v

Authorship Attribution Statement vi

Acknowledgements viii

Abstract ix

Contents x

List of Abbreviations xv

List of Figures xvi

List of Tables xxii

Chapter 1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 3

1.3 Contributions. 4

1.4 Thesis Outline . 5

Chapter 2 Literature Review 8

2.1 Graph Neural Network . 8

2.2 Model Reusing . 10

2.3 Multi-task Learning . 11

2.4 Network Binarization . 12

2.5 Neural Style Transfer . 13

Chapter 3 Data-Driven Efficient Learning with Deep Graph Reprogramming 15

3.1 Introduction . 15
x

CONTENTS xi

3.2 Motivation and Pre-analysis . 18

3.2.1 Task Motivation and Definition . 19

3.2.2 Challenges Towards GARE . 20

3.2.3 Reprogramming Paradigms for GARE . 21

3.2.3.1 Data Reprogramming (DARE) . 21

3.2.3.2 Model Reprogramming (MERE). 22

3.3 Proposed Methods: Implementing DARE and MERE Paradigms 24

3.3.1 Overview and Case Discussions . 24

3.3.2 Universal Meta-FeatPadding for Heter-DARE . 26

3.3.3 Transductive Edge-Slimming for Homo-DARE . 27

3.3.4 Inductive Meta-GraPadding for Homo-DARE . 28

3.3.5 Reprogrammable Aggregating for MERE . 29

3.4 Experiments . 30

3.4.1 Experimental Settings . 31

3.4.2 Reprogramming in Heterogeneous Domains . 32

3.4.3 Reprogramming in Homogenous Domains . 33

3.5 Additional Details and Results . 35

3.5.1 More Details of Method Pre-analysis . 35

3.5.1.1 Adversarial Reprogramming Attacks on Graph Data 36

3.5.1.2 Aggregation Matters for Reusing . 37

3.5.2 Dataset Statistics and Descriptions . 38

3.5.3 Additional Results on Heterogeneous Node Property Prediction 39

3.5.4 Additional Results on Heterogeneous Graph Classification and Regression 42

3.5.5 Additional Results on Homogenous Node Property Prediction. 43

3.5.6 Additional Results on Homogenous Graph Classification and Regression . 44

3.5.7 Additional Results on 3D Object Recognition . 47

3.6 Summary . 47

Chapter 4 Model-Driven Efficient Learning with Knowledge Amalgamation 49

4.1 Introduction . 49

4.2 Problem Definition . 52

xii CONTENTS

4.3 Proposed Method . 53

4.3.1 Overview . 53

4.3.2 Slimmable Graph Convolution . 54

4.3.3 Topological Semantics Alignment . 56

4.3.4 Loss Function and Training Strategy . 59

4.4 Experiments . 60

4.4.1 Experimental Settings . 61

4.4.2 Results . 64

4.5 Additional Details and Results . 65

4.5.1 Amalgamating Graph Regression Models . 65

4.5.2 Amalgamating Node Classification Models . 67

4.5.2.1 Multi-label Node Classification . 67

4.5.2.2 Single-label Node Classification . 69

4.5.3 Amalgamating Point Cloud Classification and Segmentation Models 72

4.6 Summary . 74

Chapter 5 Data-Model-Driven Efficient Learning with Meta-Aggregator 77

5.1 Introduction . 78

5.2 Vanilla Binary GNN and Pre-analysis . 80

5.3 Meta Neighborhood Aggregation . 85

5.3.1 Overview . 85

5.3.2 Greedy Gumbel Aggregator . 86

5.3.3 Adaptable Hybrid Aggregator . 88

5.3.4 Training Strategy . 89

5.4 Experiments . 90

5.4.1 Experimental Settings . 90

5.4.2 Results . 91

5.4.3 Discussions . 93

5.5 Theoretical Analysis . 94

5.6 Additional Results . 97

5.6.1 Additional Results on Graph Regression Task . 97

CONTENTS xiii

5.6.2 Additional Results on Multi-label Node Classification Task 99

5.6.3 Additional Results on 3D Object Recognition Task . 100

5.7 Summary . 102

Chapter 6 Application-Driven Efficient Learning with Semi-parametric Style

Transfer 104

6.1 Introduction . 104

6.2 Proposed Method . 107

6.2.1 Network Overview . 108

6.2.2 Stylization Graph Construction . 110

6.2.3 Deformable Graph Convolution . 112

6.2.4 Loss Function and Training Strategy . 115

6.3 Experiments . 116

6.3.1 Experimental Settings . 116

6.3.2 Results . 116

6.3.3 Ablation Studies . 118

6.3.4 Diversified Stylization Control . 120

6.4 Additional Details and Results . 120

6.4.1 Architecture Details . 121

6.4.2 More Illustrations of Heterogeneous Style-Content and Content-Content

Message Passing . 123

6.4.3 Newly-Added Ablation Studies . 123

6.4.3.1 Stylization w/ and w/o Local Patch-based Manipulation Module 124

6.4.3.2 Ours vs AdaIN+Style-Swap vs AdaIN+Style-Decorator 125

6.4.4 Additional Results of Ablation Studies . 126

6.4.4.1 Heterogeneous Aggregation Schemes . 126

6.4.4.2 Distinct Patch Division Schemes . 127

6.4.4.3 NST Graph w/ and w/o Intra-domain Edges . 129

6.4.4.4 Euclidean Distance vs. Normalized Cross-correlation 129

6.4.4.5 Various Patch Sizes . 130

6.4.5 Additional Results of User Controls . 131

xiv CONTENTS

6.4.5.1 Diversified Stylization Control . 131

6.4.5.2 Multi-style Amalgamation . 131

6.5 Summary . 133

Chapter 7 Conclusions 134

7.1 Summary of Contributions . 134

7.2 Future Research . 135

Bibliography 138

List of Abbreviations

SLAM Simultaneous Localization and Mapping . 1

CNNs Convolutional Neural Networks .1

GNNs Graph Neural Networks . 1

RNNs Recurrent Neural Networks . 8

DNNs Deep Neural Networks . 8

GCN Graph Convolutional Network . 9

GAT Graph Attention Network . 9

GIN Graph Isomorphism Network . 9

GatedGCN Gated Graph Convolutional Network . 9

GARE Deep Graph Reprogramming . 17

DARE Data Reprogramming . 17

MERE Model Reprogramming . 17

MetaFP Meta-FeatPadding . 17

EdgSlim Edge-Slimming . 18

MetaGP Meta-GraPadding . 18

KD Knowledge Distillation . 19

TAM Topological Attribution Map . 49

GNA Greedy Gumbel Neighborhood Aggregator . 77

ANA Adaptable Hybrid Neighborhood Aggregator . 77

xv

List of Figures

3.1 Illustrations of the proposed task of deep graph reprogramming (GARE) that aims

to reuse pre-trained GNNs to handle plenty of cross-level tasks with heterogeneous

graph feature dimensions, without changing model architectures nor parameters. 16

3.2 Reusing with various aggregators. 24

3.3 Illustration of the proposed approaches of MetaFP, EdgSlim, and MetaGP for

transductive and inductive DARE with heterogeneous and homogenous input

dimensions. 25

3.4 Feature/t-SNE visualizations of (a, c) before padding and (b, d) after padding, with

the yellow frame indicating the paddings. 32

3.5 Convergence speed of the proposed method. 33

3.6 Visualization results of feature space structures, depicted as the distance between

the red point and the rest of the others. 35

3.7 Illustrations of adversarial reprogramming attacks on graph data. 36

3.8 Visualization results of the structures of the feature space, depicted as the distance

between the red point and the rest of the others. The visualized features are

extracted from the intermediate layer of the models. 46

4.1 Illustrations of amalgamating knowledge from heterogeneous teacher GNN models.

“Teacher GNN (Segmentation)” and “Teacher GNN (Classification)” are pre-trained

point cloud part segmentation and classification models, respectively. Knowledge

amalgamation aims to learn a multi-talented and lightweight student GNN from

teacher GNNs without human annotations. 51

4.2 The overall framework of the proposed knowledge amalgamation method

tailored for GNNs. For illustration, we take two pre-trained teacher GCNs as an

example. On the input side, the dimensions of input node features would vary

with different graph samples. GCN_T1, GCN_S and GCN_T2 represent the

xvi

LIST OF FIGURES xvii

graph convolutional layers from pre-trained teacher #1, lightweight student, and

pre-trained teacher #2, respectively. TSA and STL denote the proposed topological

semantics alignment module and the soft target learning module, respectively. The

topological attribution map is obtained by computing the edge gradients of the

constructed unary edge features, as explained in Sect. 4.3.3. 52

4.3 Illustrations of the proposed slimmable graph convolutional operation, where X

and Y denote graph nodes. The neurons in multi-layer perceptrons (MLPs) of

GNN are adaptively activated or deactivated based on the feature dimensions of the

input graph data. 54

4.4 Visualizations of the scaled topological attribution map (TAM) of two teacher

GNNs given the same input graph data. As an example, two teachers here are

pre-trained multi-label node classification models that handle a different set of

classes. Colors encode the importance of each connection for the corresponding

task of each teacher. 55

4.5 Visualization results of joint part segmentation (Seg) and classification (Cls).

From left to right: the results of the learned student GNN without the proposed

topological semantics alignment (TSA) module, those of the student with TSA, and

the results of the two teacher GNNs. We use red texts to highlight the misclassified

outputs. For some cases, our student GNN even achieves results superior to those

of the teachers, as shown in the classification result of Knife and the segmentation

results of Ear Phone. 60

4.6 Visualizations of the scaled topological attribution map (TAM) of two teacher

GNNs and the learned student GNN, corresponding to Tab. 4.1. The two teachers

here are pre-trained multi-label node classification models that handle a different

set of classes (i.e., {PPI_Set1} and {PPI_Set2}). Colors encode the importance of

each connection for the corresponding task of each teacher. 69

4.7 A t-SNE plot of the features from the first hidden layer of the teachers and the

student on Amazon Computers and Amazon Photo dataset. 73

4.8 Visualization results of joint part segmentation (Seg) and classification (Cls).

From left to right: the results of the learned student GNN without the proposed

xviii LIST OF FIGURES

topological semantics alignment (TSA) module, those of the student with TSA, and

the results of the two teacher GNNs. We use red texts to highlight the misclassified

outputs. 75

5.1 Illustrations of the computational workflow in (a) conventional full-precision GNNs

and (b) the proposed 1-bit GNNs. In particular, we devise two meta aggregators

for the proposed model, termed as Greedy Gumbel Aggregator (GNA) and

Adaptable Hybrid Aggregator (ANA), that learn to perform adaptive aggregation in

a graph-aware and layer-aware manner. 79

5.2 Example aggregation results of the two graphs with different topological structures

for (a) the conventional pre-defined and fixed aggregator, (b) the proposed exclusive

form of meta aggregators GNA, and (c) the proposed diffused form of meta

aggregators ANA. 79

5.3 Illustrations of the computational workflow at an example binarized GNN layer.

Despite the efficient 1-bit operations, the output features are less distinguishable

between each other, leading to the challenge in the aggregation step shown in

Fig. 5.4. 83

5.4 Example aggregation results of (a) conventional 32-bit GNN layer and (b) binarized

GNN layer, corresponding to Fig. 5.3. For (a), both mean and max aggregators can

distinguish the two graph structures; however, for binarized GNN (b), max and

mean aggregators fail to differentiate between two topologies. 84

5.5 The overall framework of the proposed meta neighborhood aggregation methods.

The upper row illustrates the workflow of the exclusive meta aggregator GNA,

which receives the encoded graph features from the binarized graph auto-encoder

A (i.e., the pink trapezoid) and exclusively determines a single optimal layer-wise

and node-wise aggregator from a candidate aggregator pool. The lower row, on the

other hand, demonstrates the diffused meta aggregator ANA, which amalgamates

various aggregation behaviors. 85

5.6 Visualization results of the learned feature space, depicted as the distance between

the red point and the rest of the others. The visualized features are extracted from

LIST OF FIGURES xix

the intermediate layer of the models. More results can be found in the next section

of additional results and details. 92

5.7 Comparative visualization results. Node color encodes the distance between the

red dot and node of interest. All the visualized features are extracted from the

intermediate layer of the models. 101

6.1 Existing parametric (b,c,d) and non-parametric (f,g) NST methods either barely

transfer the global style appearance to the target (f), or produce distorted local style

patterns (b,c,d) and undesired artifacts (g). By contrast, the proposed GNN-based

approach (h) achieves superior stylization performance in the transfers of both

global stroke arrangement and local fine-grained patterns. 106

6.2 Network architecture of the proposed semi-parametric style transfer network

with GNNs. From left to right, the corresponding stylization pipeline comprises

four subprocesses, i.e., image encoding with the encoder, local patch-based

manipulation based on heterogeneous GNNs, global feature refinement, and the

feature decoding procedure. The symbols of scissors represent the process to

divide the feature maps into feature patches. HeteroGraph denotes the established

heterogeneous stylization graph with two types of content-style inter-domain

connections and content-content intra-domain connections. 108

6.3 Qualitative results of our proposed GNN-based semi-parametric stylization

algorithm and other parametric [96, 59, 1] and non-parametric [19, 147] methods. 117

6.4 Comparative results of using various aggregation mechanisms for heterogeneous

message passing, including graph attention network (GAT) [153], graph

convolutional network (GCN) [82], graph isomorphism network (GIN) [180],

dynamic graph convolution (EdgeConv) [167], and GraphSAGE [48]. The

GAT mechanism generally yields superior stylization results, thanks to its

attention-based aggregation scheme in Eq. 6.2. 118

6.5 Results of the equal-size patch division method and the proposed deformable one

with a learnable scale predictor. Our deformable scheme allows for cross-scale

style-content matching, thereby leading to spatially-adaptive multi-stroke

xx LIST OF FIGURES

stylization with an enhanced semantic saliency (e.g., the foreground regions of the

horse and squirrel). 119

6.6 Results of removing the content-to-content intra-domain edges (w/o Intra) and

those with the intra-domain ones (w/ Intra). The devised intra-domain connections

incorporate the inter-relationship between the stylized patches at different locations,

thereby maintaining the global stylization coherence (e.g., the eye regions in the

figure). 119

6.7 Results obtained using Euclidean distance and normalized cross-correlation (NCC)

for similarity measurement during the construction of heterogeneous edges. 120

6.8 Results obtained using various patch sizes for constructing content and style

vertices in the local patch-based manipulation module. By using a larger patch size,

the stylized results can maintain an overall larger stroke size. 120

6.9 Flexible control of diversified patch-based arbitrary style transfer during inference.

The proposed GNN-based semi-parametric stylization scheme makes it possible to

generate heterogeneous style patterns with only a single trained model. 121

6.10 Illustrations of the dedicated two-stage heterogeneous aggregation process,

including style-to-content message passing stage (i.e., the left red block in the

figure) and content-to-content messing passing stage (i.e., the right red block in the

figure). 123

6.11 Comparative results without the local patch-based manipulation (LPM) module and

those with the LPM module. 124

6.12 Comparative results of the proposed GNN-based method with two possible

semi-parametric solutions of AdaIN+Style-Swap and AdaIN+Style-Decorator. 125

6.13 Comparative results of using various aggregation mechanisms for heterogeneous

message passing, including graph attention network (GAT) [153], graph

convolutional network (GCN) [82], graph isomorphism network (GIN) [180],

dynamic graph convolution (EdgeConv) [167], and GraphSAGE [48]. 126

6.14 Additional results of the equal-size patch division method and the proposed

deformable module with a learnable scale predictor. 128

LIST OF FIGURES xxi

6.15 Stylization results of removing the content-to-content intra-domain edges and those

with the intra-domain edges. 128

6.16 Results obtained using Euclidean distance and normalized cross-correlation

(NCC) for similarity measurement during the construction of heterogeneous

content-to-style and content-to-content edges. 129

6.17 Results obtained using various patch sizes for constructing content and style

vertices in local patch-based manipulation module. 130

6.18 Additional results of diversified patch-based arbitrary style transfer with solely a

single model, corresponding to Fig. 6.6. We zoom in on the same regions (i.e., the

red frames) to observe the details. 131

6.19 Multi-style transfer within a single image, by performing style interpolation among

various artistic styles. 132

List of Tables

3.1 Results of adversarial reprogramming attacks on graphs. 22

3.2 Results of reusing a pre-trained model on Citeseer to simultaneously handle four

unseen tasks with heterogeneous dimensions and objectives, averaged with 20

independent runs. “Re-training” indicates whether the pre-trained parameters

are changed. Notably, the 8th line shows that ReAgg is more competent for the

large-domain-gap scenarios (2.3% improvement averagely), but slightly falls behind

for similar-domain tasks, such as {Cora, Citeseer}, both of which classify computer

science papers. Also, our MetaFP yields stable results that only slightly vary with

padding initializations, with standard deviations of {0.0030, 0.0023, 0.0006, 0.0008} for

the four downstream tasks. 29

3.3 Ablation studies of diverse padding sizes/positions and various pre-

trained/downstream tasks. Notably, our MetaFP is effective even with tiny

sizes and random positions. 31

3.4 Results of reusing a single model of a node-level task to directly tackle graph

regression and graph classification tasks. 32

3.5 Results of Homo-DARE that adapts a pre-trained node property prediction model

(ogbn-arxiv-s1) to handle 20 unseen homogenous categories (ogbn-arxiv-s2) in

ogbn-arxiv dataset [56]. 33

3.6 Results of homogenous cross-domain graph-level tasks. 34

3.7 Results of 3D object recognition tasks with DGCNN [167]. 34

3.8 Results of distributed action recognition with incremental time-series data streams

and categories as downstream tasks. 35
xxii

LIST OF TABLES xxiii

3.9 Results of adversarial reprogramming attacks on graph data, where the adversary

repurposes a node classification model from the model provider to perform the

adversary’s designated shape recognition task. 36

3.10 Detailed architectures used in Tab. 3.9. 37

3.11 Detailed architectures used in the section of “Rationale Behind MERE”. 37

3.12 Vanilla GNN reusing results on the Cora-subset dataset with various aggregation

behaviors. The detailed network architecture for producing the results can be found

in Tab. 3.11. 38

3.13 Summary of the fourteen datasets. Additional dataset statistics for point cloud

classification are shown in Tab. 3.14. 38

3.14 Detailed dataset statistics of the ShapeNet part dataset [197]. 39

3.15 Detailed network architectures for producing the results in Tab. 3.2 and also those in

Tabs. 3.16 and 3.17. 41

3.16 Ablation studies of using different pre-trained GNNs, corresponding to Tab. 3.2.

Here, we reuse a pre-trained node classification model on Cora to handle the tasks

of Amazon Computers and Amazon Computers with heterogeneous feature

dimensions. 41

3.17 Ablation studies of using a pre-trained computer-product category prediction

model to tackle Amazon Computers and Pubmed with various input dimensions,

corresponding to Tab. 3.2. 41

3.18 Network architectures for heterogeneous downstream graph classification and

regression tasks, corresponding to Tab. 3.4 and also Tabs. 3.19 and 3.20. 42

3.19 Ablation studies of reusing various pre-trained GNNs, corresponding to Tab. 3.4.

Here, we pre-train a model on Amazon Computers and then reuse it to tackle the

graph regression task of QM7b as well as the graph classification task of PROTEINS. 43

3.20 Ablation studies of reusing a pre-trained node classification model on Amazon

Photo to handle the unseen graph-level regression and classification tasks of QM7b

and PROTEINS, corresponding to Tab. 3.4. 43

xxiv LIST OF TABLES

3.21 Network architectures used in Tab. 3.5 and Tab. 3.22. 43

3.22 Ablation studies of reusing the pre-trained node classification models on

ogbn-arxiv with various network architectures elaborated in Tab. 3.21. 44

3.23 Network architectures for producing the results in Tab. 3.6 and also those in

Tab. 3.24. 45

3.24 Ablation studies of reusing different pre-trained GNNs, corresponding to

Tab. 3.6. Here, the pre-trained model is designated for ogbg-molbbbp, whereas

ogbg-molbace and ogbg-molesol are considered as the two target downstream

tasks. 45

3.25 Detailed network architectures for the task of 3D object recognition on

ModelNet40 and ShapeNet. 45

4.1 Results of amalgamating knowledge from multi-label node classifications GAT

models, in terms of micro-averaged F1 score. The obtained student achieves

competitive performance compared with the teachers, yet with a moderately compact

size. 61

4.2 Results of amalgamating teachers with heterogeneous GNN architectures, in terms of

micro-averaged F1 score. 62

4.3 Results of amalgamating knowledge from point cloud classification and part

segmentation models. The learned student GNN is even more compact than each of

the teacher GNNs, yet competent to simultaneously handle all the tasks of teachers. 63

4.4 Results of amalgamating single-label node classification models, in terms of average

classification accuracies (%). 63

4.5 Teacher and student network architectures for graph regressions on QM7b dataset. 66

4.6 Results of amalgamating knowledge from two graph regression models in terms of

the mean absolute error (MAE). Each teacher model handles regressions of 7 different

properties. Our lightweight student is able to simultaneously deal with regressions of

14 properties. 66

LIST OF TABLES xxv

4.7 Summary of the teacher and student network architectures for amalgamating

knowledge from multi-label node classification models, corresponding to Tab. 4.1

and Tab. 4.2. 67

4.8 Ablation studies of amalgamating knowledge from multi-label node classifications

models, in terms of F1 score. 68

4.9 Summary of teacher and student network architectures for the task of node

classification on Amazon Computers and Amazon Photo datasets. 70

4.10 Summary of teacher and student network architectures for the task of single-label

node classification on Cora, Citeseer, and Pubmed datasets. 71

4.11 Results of amalgamating single-label node classification models on Amazon

Computers and Amazon Photo dataset, in terms of average classification accuracies

(%). 71

4.12 Results of amalgamating node classification models on Amazon Computers and

Amazon Photo with various dataset splittings. 72

4.13 Results of amalgamating single-label node classification models on Cora, Citeseer,

and Pubmed datasets, in terms of average classification accuracies (%). We show the

knowledge amalgamation results of all the combinations of the three teachers. 72

4.14 Summary of teacher and student network architectures for the task of point cloud

classification and part segmentation. 73

4.15 Ablation studies on the task of amalgamating knowledge from point cloud

classification and part segmentation models. 74

5.1 Results on the ZINC dataset with different architectures, in terms of the mean

absolute error (MAE). From left to right: the results of the full-precision GNNs

(Full), those of the 1-bit GNNs without the proposed meta aggregators (Vanilla), and

the results of the 1-bit GNNs with GNA and ANA. We also provide the p-value of

the paired t-test to demonstrate the statistically meaningful improvements by the

proposed GNA and ANA. 87

xxvi LIST OF TABLES

5.2 Results of the proposed meta aggregation methods and other approaches for 32-bit

full-precision models on the ZINC dataset, in terms of MAE. The results are averaged

over 25 independent runs with 25 different random seeds. 90

5.3 Results on the PPI dataset for the task of node classification, in terms of

micro-averaged F1 score. Detailed network architectures can be found in the next

section of additional results and details. 91

5.4 Results on the ModelNet40 dataset for 3D object recognition, in terms of the overall

accuracy (Acc) and the mean class accuracy (mAcc). 93

5.5 Detailed network architectures for the task of graph regression on the ZINC

dataset, where Architecture-ZINC-Main-GAT and Architecture-ZINC-Main-GCN

represent the architectures of the two models shown in Tab. 5.1 and Tab. 5.2.

Architecture-ZINC-Supp denotes the architectures that will be used for ablation

studies in this section. 98

5.6 Results on the ZINC dataset for the task of graph-property regression, in

terms of the mean absolute error (MAE). The detailed network architectures of

Architecture-ZINC-Supp-V1 and Architecture-ZINC-Supp-V2 are shown in Tab. 5.5. 98

5.7 Results of the proposed GNA and ANA as well as other methods for 32-bit

full-precision models on the ZINC dataset, in terms of MAE. The detailed network

architectures of the proposed methods are shown as Architecture-ZINC-Supp-V3 in

Tab. 5.5. For the architectures of the comparison methods [7, 47, 180, 118, 82, 153],

we follow the network architecture designs in [32]. 99

5.8 Summary of the detailed network architectures for the task of multi-label node

classification on the PPI dataset. 99

5.9 Results on the PPI dataset for the task of node classification, in terms of

micro-averaged F1 score. Detailed network architectures of Architecture-PPI-Main as

well as Architecture-PPI-Supp-V1, V2, and V3 can be found in Tab. 5.8. 100

5.10 Summary of the detailed network architectures for the task of 3D object recognition

on ModelNet40. 102

LIST OF TABLES xxvii

5.11 Results on the ModelNet40 dataset for the task of 3D object recognition, in terms

of the overall accuracy (Acc) and the mean class accuracy (mAcc). The details of

Architecture-ModelNet40-Supp-V1 and Architecture-ModelNet40-Supp-V2 are

shown in Tab. 5.10. 102

6.1 Average speed comparison in terms of seconds per image. 118

6.2 Detailed architectures of the image encoding module, deformable module,

GNN-based local patch-based manipulation module, and feature decoding module in

the proposed semi-parametric style transfer network, respectively. 122

CHAPTER 1

Introduction

1.1 Background and Motivation

In recent years, there has been a remarkable progress in the field of computer vision, marked by

an increasing number of diverse tasks and their inspiring applications. One prominent example

is the application of computer vision in autonomous driving, which involves tasks such as

visual Simultaneous Localization and Mapping (SLAM) for simultaneous pose estimation

and map generation in unknown environments [151], visual perception using novel sensors

like event cameras [38], and 3D object recognition and segmentation using different 3D data

representations [45]. Convolutional Neural Networks (CNNs) have played a pivotal role in

achieving success in these applications.

More recently, there has been a growing interest in leveraging the merits of Graph Neural Net-

works (GNNs) to further enhance computer vision tasks, including visual SLAM [139], point

cloud processing [167, 88, 129, 127], object detection [55, 43], multi-person pose estimation

and tracking [190], image classification [49] and super-resolution [223], as well as visual

perception based on event cameras [140]. Notably, in the domain of visual SLAM, Sarlin et

al. [139] introduced an attention-based GNN that addresses the optimal transport problem in

local feature matching, achieving state-of-the-art performance in indoor and outdoor pose

estimation. Similarly, Wang et al. [167] investigated a dynamic graph convolutional model

for point cloud classification and semantic segmentation, combining the strengths of PointNet

[126] and GNNs [82].
1

2 1 INTRODUCTION

However, the favorable performance achieved by these applications is often attributed to

cumbersome GNN architectures, which comes at the cost of significant computational require-

ments and high memory loads. For example, SuperGlue [139], a GNN-based local feature

matching architecture in visual SLAM, necessitates 12 million network parameters to achieve

leading performance. DeepGCNs, developed by Li et al. [90], leverage a 56-layer GCN

architecture to alleviate the over-smoothing issue and achieve state-of-the-art performance in

point cloud semantic segmentation.

The resulting computational burden stemming from these cumbersome architectures gives

rise to three major challenges:

(1) Challenge of deployment in resource-constrained environments: The computa-

tional burden imposed by cumbersome architectures presents a significant challenge

for the deployment of GNNs in resource-constrained environments, such as edge

computing, where only limited computational resources are available;

(2) Infeasibility for time-sensitive applications: The complex and cumbersome nature

of these architectures hinders their deployment in time-sensitive applications that

require strict real-time interaction. For instance, in autonomous driving, GNN-based

visual SLAM algorithms must maintain fast and timely responses to effectively

handle sophisticated traffic conditions;

(3) Scalability issues with large-scale graphs: Existing cumbersome GNNs face chal-

lenges in processing increasingly large-scale graphs encountered in real-world scen-

arios, often involving millions of nodes and edges. The computational and memory

resources required to handle such large-scale graphs are tremendous, making it a

significant challenge for current complex GNN architectures.

Motivated by the challenges outlined above, this thesis aims to contribute to the field of ultra

lightweight graph inference under limited memory and computational resources, achieved by

developing a series of techniques for enhanced efficiency of graph representation learning

with GNNs.

1.2 PROBLEM STATEMENT 3

1.2 Problem Statement

To tackle the challenges posed by existing cumbersome GNN architectures, the thesis starts

by subdividing the task of learning efficient representations with GNNs into four specific

learning subproblems:

(1) Data-driven efficient learning: This subproblem focuses on adaptively modifying

the input graph data while keeping the model parameters unchanged, enabling a

single pre-trained model to be seamlessly adapted to various downstream tasks across

different task levels and domains. For example, the pre-trained model can be initially

trained for node classification, and then easily applied to graph classification and

regression tasks without requiring re-training or fine-tuning;

(2) Model-driven efficient learning: In this subproblem, the goal is to extract know-

ledge from multiple pre-trained models with diverse architectures and train a multi-

talented yet lightweight network that can effectively leverage the expertise of these

pre-trained models, without accessing labels. The resulting architecture should in-

tegrate the capabilities of different pre-trained models, allowing it to simultaneously

handle diverse tasks, such as point cloud segmentation and classification;

(3) Data-model-driven efficient learning: The aim of this subproblem is to explore a

universal scheme that considers both data and model efficiency. The focus is not only

on developing lightweight models but also on lightweight input data representations,

thereby contributing to overall efficiency gains by jointly considering both aspects in

graph inference tasks;

(4) Application-driven efficient learning: This subproblem investigates the feasibility

of customized application-specific efficiency. It involves incorporating the principles

of general efficient learning schemes while explicitly considering the specific charac-

teristics of the designated task through customized algorithmic design. The objective

is to enhance efficiency in a targeted application by tailoring the representation

learning process to its unique requirements.

4 1 INTRODUCTION

To address these four subproblems pertaining to data-driven, model-driven, data-model-

driven, and application-driven efficiencies, this thesis discusses four complementary works.

Each work effectively tackles one of the four perspectives, collectively contributing to the

advancement of efficient representation learning with GNNs.

1.3 Contributions

The contributions of this thesis can be summarized as follows:

• Thoroughly examining the challenges associated with efficient representation

learning using GNNs and identifying four crucial problems, including data-

driven efficient learning, model-driven efficient learning, joint data-model-driven

efficient learning, and application-driven efficient learning;

• Development of an elaborate deep graph reprogramming scheme to tackle the

problem of data-driven efficiency. This scheme keeps the pre-trained model para-

meters unchanged while modifying input graphs through feature padding, edge

slimming, and graph padding. It enables the adaptation of the pre-trained model to

multiple downstream tasks without re-training or fine-tuning any part of the model;

• Introduction of an innovative knowledge amalgamation scheme tailored for

GNNs to address the issue of model-driven efficiency. This scheme amalgamates

knowledge from multiple pre-trained teacher models with heterogeneous architec-

tures and expertise in different tasks, without requiring human-labeled annotations.

The resulting student model maintains a compact architecture while integrating the

expertise of the teachers, achieved by utilizing a slimmable graph convolutional op-

eration to accommodate varying-dimensional features from the pre-trained teachers,

as well as a topological attribution map scheme for learning the teachers’ topological

semantics;

• Investigation of a novel binarization framework to simultaneously consider

data- and model-side efficiency. This framework adaptively binarizes both the

full-precision 32-bit input graph data and the model parameters into more compact

1.4 THESIS OUTLINE 5

1-bit representations for lightweight graph inference, while retaining competitive

performance. It leverages two elaborated meta neighborhood aggregators to enhance

the topological discriminative ability of the 1-bit GNNs;

• Exploration of a customized efficient learning scheme specific to the applica-

tion of neural style transfer. This scheme models the style transfer procedure as

attention-based heterogeneous message passing between style and content patches

in a learnable manner, improving the efficiency of previous non-parametric neural

style transfer methods that depend on greedy one-to-one patch matching.

1.4 Thesis Outline

The remainder of this thesis is organized into six chapters, with the main content of each

chapter summarized as follows:

Chapter 2: Literature Review

This chapter presents an overview of the relevant literature pertaining to this thesis. It covers

various aspects such as different architectures of GNNs and their applications, model reusing

techniques, universal models, adversarial reprogramming approaches, CNN-based network

binarization techniques, multi-task learning methods, and neural style transfer techniques.

Chapter 3: Data-Driven Efficient Learning with Deep Graph Reprogramming

In this chapter, a novel deep graph reprogramming paradigm is introduced for data-driven

efficient learning. This paradigm enables the adaptation of a pre-trained GNN to multiple

cross-level downstream tasks without the need for re-training or fine-tuning, only through

the modification of the input data. The proposed approach combines three complement-

ary techniques, namely Meta-FeatPadding, Edge-Slimming, and Meta-GraPadding, which

effectively handle graphs with varying dimensions in transductive and inductive scenarios.

Additionally, an elaborated Reprogrammable Aggregating method is employed to enhance

the model capacity. The experimental results on fourteen benchmarks across node and graph

classification, graph regression, point cloud classification, and action recognition, demonstrate

6 1 INTRODUCTION

the competence of the pre-trained GNN with deep graph reprogramming in handling a wide

range of downstream tasks.

Chapter 4: Model-Driven Efficient Learning with Knowledge Amalgamation

In the pursuit of model-driven efficient learning, this chapter presents a novel approach that

leverages GNN-based knowledge amalgamation to train a versatile student model capable of

encompassing the expertise of heterogeneous-task teachers, all without the need for human

annotations. The proposed method employs a slimmable graph convolutional operation to

accommodate varying-dimension features from the teachers. Additionally, a topological

attribution map scheme is introduced to capture the topological semantics of the teachers.

The effectiveness of this approach is evaluated on diverse tasks spanning different domains,

including single- and multi-label node classifications, 3D object recognition, and part seg-

mentation. The experimental results demonstrate that the learned student GNN model excels

in handling these various tasks, sometimes even surpassing the performance of the individual

teachers, while significantly reducing computational costs.

Chapter 5: Data-Model-Driven Efficient Learning with Meta-Aggregator

In this chapter, a novel GNN-customized binarization framework is investigated, aiming to

achieve joint data and model efficiency. The framework enables the generation of a lightweight

1-bit GNN model while maintaining competitive performance, thus enabling its applicability

in resource-constrained scenarios like edge computing. The framework leverages an adaptive

meta aggregation scheme to effectively handle the challenges associated with quantized graph

features. Extensive evaluations are conducted on multiple large-scale benchmarks across

diverse domains and graph tasks, including graph regression, node classification, and 3D

object recognition. The experimental results demonstrate the superiority of the proposed meta

aggregators compared to state-of-the-art methods, showcasing their ability to outperform

both the devised 1-bit binarized GNN models and general full-precision models. These

findings highlight the effectiveness of the proposed framework in achieving efficient and

high-performing GNN models, further validating its potential for various applications.

Chapter 6: Application-Driven Efficient Learning with Semi-parametric Style Transfer

1.4 THESIS OUTLINE 7

This chapter focuses on application-driven efficient learning, presenting an efficient semi-

parametric arbitrary stylization scheme designed specifically for image style transfer. The

scheme enables the efficient generation of both global and local style patterns. This is specific-

ally achieved by modeling the neural style transfer process as the information propagation

between the content and style nodes in a stylization graph. As such, by formulating the

style transfer procedure within the GNN framework, the proposed method achieves efficient

arbitrary style transfer while taking advantage of the inherent structural information present

in the images. Extensive comparative results involving six methods demonstrate that the

proposed method efficiently produces high-quality stylized images, showcasing its efficiency

and effectiveness in the field of image style transfer.

Chapter 7: Conclusions

This chapter concludes the thesis, summarizing the contributions and implications of the

research conducted as well as the future directions.

CHAPTER 2

Literature Review

This chapter briefly reviews here several topics that are related to this thesis, including

graph neural network (GNN) with its applications, model reusing, multi-task learning, prior

CNN-based network binarization techniques, as well as neural style transfer methods.

2.1 Graph Neural Network

Deep Neural Networks (DNNs) have achieved remarkable success in handling regular data in

the Euclidean space, including images, audios, and videos, across various domains spanning

from image and video processing to natural language understanding. However, an increasing

number of applications involve data samples that exhibit irregular graph structures in the

non-Euclidean domain [177, 221]. For instance, in social networks, individual entities

are represented as nodes, while the relationships between them are depicted as edges in a

graph. Similarly, in chemical analysis, molecules can be represented as graphs, where nodes

correspond to atoms and edges symbolize chemical bonds.

In comparison to Euclidean data, non-Euclidean graph samples are characterized by their

irregularity, with variable structures and unordered nodes. Moreover, graph analysis encom-

passes a broader range of task levels and settings, including graph-, node-, and edge-level

learning, as well as transductive and inductive scenarios. These topological diversities in the

non-Euclidean domain present significant challenges for existing end-to-end DNN paradigms,

such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs),

when applied to graph-related applications.
8

2.1 GRAPH NEURAL NETWORK 9

Consequently, there has been a wealth of research dedicated to extending DNNs for analyzing

topological graph data, leading to the development of GNNs [82, 32, 177, 221]. GNNs

explicitly incorporate topological information within graphs for feature aggregation and have

demonstrated promising performance in various graph-related tasks.

In recent years, GNNs have made significant advancements [82, 68, 221, 32, 189, 183, 92,

107, 158, 58, 91, 189, 119, 99, 177] and have emerged as the dominant learning paradigm for

dealing with non-Euclidean graph data, which contains rich topological relational information.

The literature has seen the introduction of numerous advanced and effective GNN architectures,

including Graph Convolutional Network (GCN) [82], Graph Attention Network (GAT) [153],

Graph Isomorphism Network (GIN) [180], Gated Graph Convolutional Network (GatedGCN)

[7], and GraphSAGE [47].

In particular, the seminal work of Kipf and Welling [82] proposes GCNs, which successfully

generalizes CNNs to deal with graph-structured data, by utilizing neighborhood aggregation

functions to recursively capture high-level features from both the node and its neighbors.

Also, GAT [153] introduces a novel attention mechanism for efficient graph processing.

GraphSAGE [47], on the other hand, addresses the scalability issues on large-scale graphs by

sampling and aggregating feature representations from local neighborhoods. Also, Huang

et al. [58] propose an adaptive sampling strategy to improve the efficiency in training.

Wang et al. [167] further devise a dynamic graph convolutional model where the topological

connections among different nodes are adaptively changed in a learnable manner. Furthermore,

to alleviate the oversmoothing problem in GCN [91, 119], Zhao et al. [219] and Rong et al.

[136] propose a novel PairNorm layer and a DropEdge strategy, respectively. Moreover, the

emerging transformers can also be treated as generalizations of GNNs with a fully connected

structure [133, 203, 213, 214, 182].

The research on GNNs leads to increasing interest in deploying GNN models in various graph-

based tasks, where the input data can be naturally represented as graphs [221]. For example,

in social networks, the mutual relations among different individuals can be modeled as edges

in a graph [125]. In biological domains, graphs can be readily used to represent molecule

10 2 LITERATURE REVIEW

structures [40, 67]. For the applications in recommendation systems, user interactions can

also be easily modeled as the graph topological connections [172, 199].

Furthermore, the success of GNNs has also boosted the applications of graph networks in a

wider range of problem domains, extending beyond traditional graph analysis [221], including

semantic segmentation [167, 88, 129, 127], object detection [55, 43], pose estimation [190],

interaction detection [128, 64], image classification [49] and super-resolution [223], visual

perception with event cameras [140], and visual SLAM [139], etc. Specifically, Wang et

al. [167] propose a dynamic graph convolutional model for point cloud classification and

semantic segmentation, which combines the advantages of the PointNet [126] and graph

convolutional network [82]. For the task of visual SLAM, Sarlin et al. [139] introduce an

attention-based GNN to solve the optimal transport problem in local feature matching, which

achieves the state-of-the-art performance on the tasks of indoor and outdoor pose estimation.

Despite the encouraging performance, there is a lack of research on compressing cumbersome

GNN models, which is critical for deployment in resource-constrained environments like on

the mobile-terminal side.

2.2 Model Reusing

Reusing pre-trained models has become increasingly prevalent in recent years. The seminal

work of Hinton et al. [53] proposes the concept of knowledge distillation, where the soft labels

obtained from a cumbersome teacher model are used for training a compact student model.

Following this pioneering teacher-student framework, plenty of algorithms are proposed to

fully utilize the knowledge concealed in the pre-trained teachers [138, 135, 205, 37, 225, 124,

144]. In particular, Rusu et al. [138] propose a novel progressive neural network to learn

useful features from multiple teachers. Parisotto et al. [124], on the other hand, propose an

Actor-Mimic scheme to reuse several teacher models specializing in diversified tasks. Also, a

series of works in the literature propose to reuse multiple trained teacher CNNs [142, 143,

106, 196], working on different tasks, to learn a versatile student model, but built upon a

strong assumption that the teacher models share the same CNN architecture.

2.3 MULTI-TASK LEARNING 11

Previously, reusing pre-trained models for downstream tasks was typically studied in the

domain of convolutional neural networks (CNNs) [53, 138, 135, 205, 37, 225, 124]. In

recent years, with the increasing number of pre-trained GNNs that have been generously

released online for reproducibility, the vision community [16, 208, 164, 209, 185, 207] has

witnessed a growing interest in reusing GNNs to enhance performance, alleviate training

efforts, and improve inference speed [36, 76, 101, 102, 35, 165, 202, 163]. The seminal work

is performed by Yang et al. [188], where a dedicated knowledge distillation (KD) method,

tailored for GNNs, is proposed to obtain a lightweight GNN from a teacher. Deng et al. [26]

further polish the work of Yang et al. [188] with a more challenging setting of graph-free

KD. Moreover, Joshi et al. [76] improve the method of Yang et al. [188] with the prevalent

contrastive learning scheme.

Model reusing is also related to adversarial reprogramming. Unlike previous adversarial

attacks that aim to degrade the model performance, adversarial reprogramming seeks to utilize

a class-agnostic perturbation to reuse and repurpose a target pre-trained model to perform the

specific different task designated by the attacker. Adversarial reprogramming has recently

been studied in various areas, including image classification [33, 34, 220, 84, 18] , text

classification [120, 121], and language understanding [46].

However, the existence of adversarial reprogramming has not yet been validated in the non-

Euclidean graph domain. This thesis is the first work that explores adversarial reprogramming

in GNNs, and further innovatively turns such adversarial manner into guards to derive a novel

task for resource-efficient model reusing.

2.3 Multi-task Learning

The proposed task of graph knowledge amalgamation in this thesis is also related to multi-task

learning. Multi-task learning aims to leverage task relatedness to jointly learn a group of

tasks with shared architectures [2, 23, 31, 42, 85, 216]. The setting of multi-task learning

is similar to that of transfer learning, yet with a significant difference in objectives [216].

Specifically, in multi-task learning, the goal is to improve the performance of all the given

12 2 LITERATURE REVIEW

tasks equally. By contrast, transfer learning only focuses on the target task, with assistance

from the source ones. In the past few years, multi-task learning has been widely studied

in various areas, such as bioinformatics [51, 93], ubiquitous computing [178, 179], natural

language processing [23, 176] and computer vision [105, 222, 74, 69]. Specifically, He et

al. [52] develop a multi-task framework that combines object detection and segmentation.

Also, Zhang et al. [217] devise a convolutional neural network architecture for joint face

detection, pose estimation, and landmark localization. Chu et al. [22] construct a multi-task

recurrent neural network, of which the output layer has multiple units to simultaneously

estimate the relative distance, interactions, and standing orientations. A more recent work

of Luo et al. [105] further proposes a multi-task collaborative network that achieves joint

learning of referring expression comprehension and segmentation.

Multi-task learning is also related to the problem of deriving a universal model that is

applicable to various-domain tasks. Such universal models have been previously studied in

the image and language domains [5, 148, 132, 201, 113], such as the recently emerged BERT

[27], GPT-3 [8], GPT-4 [123], and Segment Anything (SA) model [83].

While substantial advancements have been made in visual foundation models within the

Euclidean domain, there remains a dearth of research focusing on universal models in the

non-Euclidean graph domain, leaving an untapped area of investigation [73]. This thesis

performs a pilot study on developing universal models in the non-Euclidean domain, thereby

making one step further towards artificial general intelligence (AGI) [114].

2.4 Network Binarization

In the field of model compression [204, 142, 145, 15, 143], network binarization techniques

aim to save memory occupancy and accelerate the network inference by binarizing network

parameters and then utilizing bitwise operations [61, 60, 9]. In recent years, various CNN

binarization methods have been proposed, which can be categorized into direct binarization

[25, 61, 60, 79] and optimization-based binarization [131, 9, 111]. Specifically, direct

binarization quantizes the weights and activations to 1 bit with a pre-defined binarization

2.5 NEURAL STYLE TRANSFER 13

function. In contrast, optimization-based binarization introduces scaling factors for the

binarized parameters to improve the representation ability, but inevitably leading to inferior

efficiency.

Driven by the success of the aforementioned binarization techniques in the CNN domain,

in this chapter, we propose a GNN-specific binarization method. Specifically, we primarily

focus on GNN-based direct binarization, since our goal is to develop super lightweight GNN

models. We also notice three concurrent works [157, 159, 3] that also aim to accelerate

the forward process for GNN models. However, two of them directly apply CNN-based

binarization techniques without considering the characteristics of GNNs, which in fact will

serve as the baseline method in our experiments [157, 159]. The other work only focuses on

improving the efficiency of dynamic graph convolutional model [167], by speeding up the

dynamic construction of k-nearest-neighbor graphs in the Hamming space [3].

Unlike the existing works [157, 159, 3], this thesis aims to devise a more general GNN-specific

binarization framework that is applicable to most existing GNN models.

2.5 Neural Style Transfer

Driven by the power of convolutional neural networks (CNNs) [210, 218, 211, 87], Gatys

et al. propose to leverage CNNs to capture and recombine the content of a given photo

and the style of an artwork [39]. Following the CNN-based paradigm introduced by Gatys

et al. [39], numerous subsequent studies have been conducted, giving rise to an emerging

field known as neural style transfer (NST) within the computer vision community [210, 211,

218, 87]. The objective of the NST task is to automatically transfer the artistic style from a

source style image to a given content image. To achieve this goal, existing NST approaches

can be broadly divided into parametric and non-parametric NST methods, according to the

way to capture the style information. Specifically, parametric NST approaches leverage the

global representations to transfer the target artistic style, which are obtained by computing

the summary statistics in either an image-optimization-based online manner [39, 94, 134,

104], or model-optimization-based offline manner [75, 212, 95, 162, 1, 100, 13, 96, 59, 12,

14 2 LITERATURE REVIEW

69]. On the other hand, non-parametric methods exploit the local feature patches to represent

the image style [89, 147, 11, 19, 115, 97], inspired by the conventional patch-based texture

modeling approaches with Markov random fields. The idea is to search the most similar

neural patches from the style image that match the semantic local structure of the content

one [89, 147, 11, 19, 115, 97]. For instance, Chen and Schmidt [19] introduced a style swap

algorithm that associates each content patch with its most similar style patch and performs a

swap operation between them. In a different approach, Sheng et al. [147] proposed a method

to whiten the textures of feature patches before conducting the patch matching process. In

summary, parametric neural style transfer methods excel in preserving global style patterns,

whereas non-parametric neural methods demonstrate greater effectiveness when the content

and style images possess similar structures.

This thesis aims to seek a balance between parametric and non-parametric NST methods and

improve the efficiency of non-parametric ones by incorporating the use of GNNs.

CHAPTER 3

Data-Driven Efficient Learning with Deep Graph

Reprogramming

This chapter investigates a novel deep graph reprogramming scheme for data-driven efficient

learning with GNNs. The goal of deep graph reprogramming is to reprogram a pre-trained

GNN, without amending raw node features nor model parameters, to handle a bunch of

cross-level downstream tasks in various domains. To this end, this chapter proposes an

innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.

The former one aims to address the challenge of diversified graph feature dimensions for

various tasks on the input side, while the latter alleviates the dilemma of fixed per-task-

per-model behavior on the model side. For data reprogramming, we specifically devise an

elaborated Meta-FeatPadding method to deal with heterogeneous input dimensions, and also

develop a transductive Edge-Slimming as well as an inductive Meta-GraPadding approach

for diverse homogenous samples. Meanwhile, for model reprogramming, we propose a

novel task-adaptive Reprogrammable-Aggregator, to endow the frozen model with larger

expressive capacities in handling cross-domain tasks. Experiments on fourteen datasets

across node/graph classification/regression, 3D object recognition, and distributed action

recognition, demonstrate that the proposed methods yield gratifying results, on par with those

by re-training from scratch.

3.1 Introduction

With the explosive growth of graph data, graph neural networks (GNNs) have been deployed

across increasingly wider areas [191, 189, 71, 70, 190], such as recommendation system
15

16 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

Pre-trained Task
Node

Classification
Results

Graph Neural
Network

Downstream Task #1

Graph Neural
Network

10 32)(

Node Classification Results

D
ee

p
G

ra
ph

R

ep
ro

gr
am

m
in

g

10 2)(

⋯
⋮

⋮
⋯

Downstream Task #2 Downstream Task #3

Graph Neural
Network

Graph Classification Results

Bacteria

Graph Neural
Network

[2.262,
-1.354]

Graph Regression Results

⋮

FIGURE 3.1: Illustrations of the proposed task of deep graph reprogramming
(GARE) that aims to reuse pre-trained GNNs to handle plenty of cross-level
tasks with heterogeneous graph feature dimensions, without changing model
architectures nor parameters.

[172] and autonomous driving [139, 166, 171]. However, the favorable performance for such

applications generally comes at the expense of tremendous training efforts and high memory

loads, precluding the deployment of GNNs on the edge side. As such, reusing pre-trained

GNNs to alleviate training costs has recently emerged as a trending research topic [36, 188,

187, 154, 186, 26, 68, 224, 76].

Pioneered by the work of [188] that generalize knowledge distillation [53, 192, 135, 194,

149, 195] to the non-Euclidean domain, almost all existing approaches on reusing GNNs are

achieved by following the distillation pipeline in [188]. Despite the encouraging results, the

distilling-based scheme is limited to the per-task-per-distillation setting, where a distilled

model can only tackle the same task as the teacher can, leading to considerable storage and

computation burdens, especially for the deployment of multiple tasks.

Meanwhile, the distillation mechanism rests upon the hypothesis that abundant pre-trained

models are available in the target domains, which indeed holds for image-based areas that

always take data in the regular RGB form, thereby readily allowing for per-model-multiple-

dataset reusing. However, such an assumption is typically not satisfied in the non-Euclidean

3.1 INTRODUCTION 17

domain: on the input side, irregular graph samples have heterogeneous feature dimensions,

as shown with the color bars in Fig. 3.1; on the task side, graph analysis takes various task

levels and settings, such as graph-, node-, and edge-level learning, as well as transductive and

inductive scenarios. Such nature of topological diversities leads to inadequate pre-trained

GNNs that fit the target downstream tasks.

In this chapter, we strive to take one step towards generalized and resource-efficient GNN

reusing, by studying a novel Deep Graph Reprogramming (GARE) task. Our goal is to reuse

a single pre-trained GNN across multiple task levels and domains, for example the pre-trained

one working on node classification and the downstream ones on graph classification and

regression, as shown in Fig. 3.1. We further impose two constraints to both data and model,

where raw features and parameters are frozen in handling downstream tasks. As such, unlike

distillation that essentially leverages a pre-trained teacher to guide the re-training of a student,

the proposed task of GARE, without re-training nor fine-tuning, can thereby be considered to

reprogram a pre-trained GNN to perform formerly unseen tasks.

Nonetheless, such an ambitious goal is accomplished with challenges: diversified graph

feature dimensions and limited model capacities with a single frozen GNN. Driven by this

observation, we accordingly reformulate GARE into two dedicated paradigms on data and

model sides, respectively, termed as Data Reprogramming (DARE) and Model Reprogram-

ming (MERE). The goal of DARE is to handle downstream graph samples with both the

heterogeneous and homogenous dimensions, without amending pre-trained architectures.

Meanwhile, MERE aims to strengthen the expressive power of frozen GNNs by dynamically

changing model behaviors depending on various tasks.

Towards this end, we propose a universal Meta-FeatPadding (MetaFP) approach for het-

erogeneous DARE that allows the pre-trained GNN to manipulate heterogeneous-dimension

graphs, by accommodating pre-trained feature dimensions via adaptive feature padding in

a task-aware manner. The rationale behind the proposed MetaFP, paradoxically, is derived

from adversarial reprogramming examples [33] that are conventionally treated as attacks

to learning systems, where attackers secretly repurpose the use of a target model without

informing model providers, by inserting perturbations to input images. Here we turn the role

18 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

of the adversarial reprogramming example on its head, by padding around graph perturbations

for generalized cross-task model reusing.

Complementary to the dedicated MetaFP that is tailored for heterogeneous-DARE, we also de-

vise a transductive Edge-Slimming (EdgSlim) and an inductive Meta-GraPadding (MetaGP)

methods for homogenous-DARE, that handle the downstream graphs with homogenous dimen-

sions under transductive and inductive task settings, respectively, by adaptively eliminating

node connections or inserting a tiny task-specific graph, with only, for example, ten vertices,

to the raw input sample. Furthermore, we perform a pilot study on MERE, exploring the pre-

trained model capacity for various downstream tasks, by only reprogramming the pre-trained

aggregation behavior (ReAgg) upon the well-established Gumbel-Max trick.

In sum, our contribution is a novel GNN-based model reusing paradigm that allows for the

adaption of a pre-trained GNN to multiple cross-level downstream tasks, and meanwhile

requires no re-training nor fine-tuning. This is typically achieved through a series of comple-

mentary approaches entitled MetaFP, EdgSlim, and MetaGP, that tackle the heterogeneous-

and homogenous-dimension graphs within the transductive and inductive scenarios, respect-

ively, together with an elaborated ReAgg method to enhance the model capacity. Experimental

results on fourteen benchmarks demonstrate that a pre-trained GNN with GARE is competent

to handle all sorts of downstream tasks.

3.2 Motivation and Pre-analysis

In this section, we start by giving a detailed analysis on the dilemma of the prevalent reusing

scheme of knowledge distillation, and accordingly propose the novel task of deep graph

reprogramming (GARE), which leads to resource-efficient and generalized GNN reusing.

Then, we uncover the two key challenges of GARE and introduce the proposed paradigms of

DARE and MERE with the elaborated rationales on how to address the two challenges.

3.2 MOTIVATION AND PRE-ANALYSIS 19

3.2.1 Task Motivation and Definition

Prevalent Distillation-based Reusing. In the literature, almost all existing methods for

reusing GNNs are achieved by Knowledge Distillation (KD) elaborated in Task 3.2.1.

Task 3.2.1 (Reusing GNNs via Knowledge Distillation). The goal of knowledge distil-

lation is to re-train a compact student model from scratch, that masters the expertise of

the pre-trained teacher, via extracting and transferring the knowledge from the pre-trained

cumbersome teacher model.

Such a KD manner is inevitably limited by two issues:

- 1. KD is built upon an ideal condition that for any downstream task, sufficient pre-trained

teacher models are always available for reusing. Such an assumption indeed holds for most

cases of image analysis, where the input data is always RGB-pattern. As such, the publicly

available model trained on large-scale datasets, such as ImageNet, is readily reusable for

downstream classification tasks. However, graph data instead has highly diversified input

dimensions, feature types (e.g., node and edge features), as well as various task levels (e.g.,

node- and graph-level analysis), making it challenging to reuse online-released GNNs, as

image-domain does, for such diversified graph scenarios;

- 2. KD is resource-inefficient. The distilled model from KD only handles exactly the same

task as the teacher does. In other words, every student is always unique to a single task,

leading to model redundancy for multi-task scenarios.

Proposed Novel Deep Graph Reprogramming (GARE). Driven by the challenges of the

KD-based model reusing scheme, we develop in this chapter a novel paradigm of deep graph

reprogramming (GARE) for more generalized and resource-efficient model reusing, that

explicitly considers the topological uniqueness of graph data:

Task 3.2.2 (Reusing GNNs via Deep Graph Reprogramming). Deep graph reprogram-

ming aims to reuse a pre-trained model, without changing any architecture nor parameter, for

20 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

a bunch of various-domain and cross-level downstream tasks, via reprogramming graph data

or model behaviors.

As such, the proposed GARE is ideally superior to the ubiquitous KD with the following

merits:

+ 1. GARE allows for the reuse of a single pre-trained GNN for multiple cross-level/domain

downstream tasks and datasets, as shown in Fig. 3.1, thereby getting rid of the KD restriction

on well-provided pertinent pre-trained models;

+ 2. GARE is free of re-training or fine-tuning, unlike KD that substantially re-trains a student

model from scratch, thereby making it possible for deployment in resource-constrained

environments such as edge computing;

+ 3. GARE is memory-efficient, where a pre-trained model with GARE is anticipated to be

versatile and multi-talented that integrates the expertise of multiple tasks.

3.2.2 Challenges Towards GARE

The ambitious goal of GARE in Task 3.2.2 is primarily accomplished with the two key chal-

lenges:

> Data Side: The first issue to be tackled regards handling various-dimension downstream

features, considering that the pre-trained GNN in GARE is frozen without auxiliary transform-

ing layers nor fine-tuning. For example, every node in the Cora citation network has 1433

input features, whereas that in Amazon Co-purchase graphs has 767 ones;

> Model Side: The second challenge towards GARE lies in the insufficient model capacity

under the per-GNN-multiple-task scenario of GARE, especially for cross-domain downstream

tasks as shown in Fig. 3.1.

To tackle the data and model dilemmas of GARE, we devise a couple of data and model

reprogramming paradigms, respectively, as will be elaborated in the following sections.

3.2 MOTIVATION AND PRE-ANALYSIS 21

3.2.3 Reprogramming Paradigms for GARE

3.2.3.1 Data Reprogramming (DARE)

Rationale Behind DARE. To tackle the problem of diversified features on the input side,

a naïve idea is rearranging graph representations to adapt varying-dimension downstream

features to accommodate to the pre-trained GNN. As such, the challenge instead comes to be

how to adapt the target downstream features.

To address this challenge of feature adaption, we paradoxically resort to a special type of

adversarial attack [66, 215, 108, 110, 168, 169], termed as adversarial reprogramming attack

[33]. In essence, the adversarial reprogramming attack demonstrates a security vulnerability

of CNNs, where an attacker can easily redirect a model with perturbations to perform the

selected task without letting the model providers know, thereby leading to ethical concerns,

such as repurposing housekeeping robots to criminal activities.

Our idea here is to flip the role of adversarial reprogramming attacks, by turning the attackers

that mean to perturb the model usage, into guards that aim to repurpose a pre-trained GNN to

perform the intended downstream tasks.

However, adversarial reprogramming attack is formerly merely studied in the CNN domain.

As such, it remains unknown in the machine learning community whether GNNs are also

vulnerable to adversarial reprogramming attacks, which is a prerequisite for the success in

applying the idea of adversarial reprogramming to DARE.

To this end, we as attackers perform in Tab. 3.1 an evasion attack on graph data, that tries

to repurpose a pre-trained GNN designated for product category prediction to the new tasks

of molecule classification and molecule property regression, through simply adding the

generated adversarial perturbations to the raw node features [150]. We employ here the

datasets of AmazonCoBuy [112, 161], ogbg-molbbbp [174], and ogbg-molesol [174] as

examples. Surprisingly, with such a vanilla manner, the attacked pre-trained GNNs are

extraordinarily competent to handle the unseen tasks, which have a significant domain gap

with the former ones, leading to the observation as follows:

22 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

TABLE 3.1: Results of adversarial reprogramming attacks on graphs.

Roles Model Provider Adversarial Attacker Model Provider Adversarial Attacker
Datasets Computers ogbg-molbbbp Photo ogbg-molesol

Task Types Computer-Category Prediction Molecule Classification Photo-Category Prediction Molecule Regression

Before Attack Accuary: 0.9485 – Accuary: 0.9561 –
After Attack – ROC-AUC: 0.6132 – RMSE: 2.7479
Re-training – ROC-AUC: 0.6709 – RMSE: 1.3000

Remark 3.2.1 (Adversarial Reprogramming Attacks on Graph Data). Graph neural

networks are susceptible to adversarial reprogramming attacks, where an adversarial per-

turbation on graph data can readily repurpose a graph neural network to perform a task

chosen by the adversary, without notifying the model provider.

Motivations of Heter-DARE-MetaFP and Homo-DARE-EdgSlim+MetaGP Methods. We

turn our role back from attackers to reputable citizens that would like to reuse a pre-trained

GNN to alleviate the training efforts for downstream tasks. Remark 3.2.1 thereby illustrates

that:

I 1. It is technically feasible to convert adversarial reprogramming attack to effective DARE

on graph data, which motivates us to devise a universal Meta-FeatPadding (MetaFP) ap-

proach, upon adversarial node feature perturbations, for heterogeneous-DARE (Sect. 3.3.2);

I 2. Except for node-level perturbations, other adversarial example types tailored for graph

data should also be effective for DARE, such as edge-level perturbations and structure-level

perturbations [150], motivating us to develop a transductive Edge-Slimming (EdgSlim)

(Sect. 3.3.3) and an inductive Meta-GraPadding (MetaGP) (Sect. 3.3.4) approaches, respect-

ively, for homogenous-DARE.

3.2.3.2 Model Reprogramming (MERE)

Rationale Behind MERE. Backed by the theory of adversarial reprogramming attacks

(Remark 3.2.1), in most cases, a pre-trained model equipped with DARE in Sect. 3.2.3.1

can already achieve encouraging results in tackling various downstream tasks. Despite its

gratifying performance, we empirically observe that the downstream performance by only

using DARE is prone to a bottleneck especially for some tasks that have considerable domain

3.2 MOTIVATION AND PRE-ANALYSIS 23

gaps with the pre-trained one, for example the pre-trained task on paper analysis and the other

one on e-commerce prediction.

We conjecture that such a bottleneck is due to the frozen GNN parameters and architectures,

leading to insufficient expressive capabilities in modeling cross-domain topological properties.

Motivated by the above observation, we further develop a MERE paradigm to strengthen

the model capacities, acting as a complement to DARE under the scenarios of tremendous-

domain-gap GNN reusing.

To this end, a vanilla possible solution for model enhancement will be resorting to dynamic

networks [50] that are well-studied in the CNN domain. Plenty of dynamic inference schemes

that are designated for CNNs, in fact, are equally feasible to the non-Euclidean domain of

GNNs, such as early exiting, layer skipping, and dynamic routing. Moreover, almost all these

dynamic strategies require no changes to original model parameters, thus readily acting as a

specific implementation of MERE.

Nevertheless, instead of simply using CNN-based dynamic network schemes, we perform in

this chapter a pilot study of MERE by explicitly considering the most critical characteristic

that is unique to GNNs, namely message aggregation, and leaving the explorations of other

dynamic paradigms in MERE for future works.

In the literature, message aggregation schemes have already been identified as one of the most

crucial components in graph analysis, both empirically and theoretically [24]. However, the

significance of aggregation behaviors in model reusing has not yet been explored, which is a

precondition for the success of aggregation-based MERE.

To this end, we explore the MERE paradigm by firstly performing a prior study with Cora

dataset in Fig. 3.2, that attempts to observe the diverse performance of reusing a fixed GNN pre-

trained for classifying the node categories of {Case-Based, Genetic-Algorithm, Neural-Network,

Probabilistic-Method}, to directly handle the separate downstream classes of {Reinforcement-

Learning, Rule-Learning, Theory}, by only replacing the pre-trained aggregator with other

aggregation methods. Remarkably, different aggregators in Fig. 3.2 lead to distinct down-

stream performance, which can be summarized as:

24 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

FIGURE 3.2: Reusing with various aggregators.

Remark 3.2.2 (Aggregation Matters for Reusing). Various aggregators lead to diversified

downstream task performance with the same model. There exists an optimal aggregation

method tailored for each pair of downstream tasks and pre-trained models.

I Motivated by Remark 3.2.2, we accordingly derive a reprogrammable aggregating (ReAgg)

method as a specific implementation of the MERE paradigm, that aims to dynamically change

the aggregation behaviors under various downstream scenarios, which will be elaborated in

Sect. 3.3.5.

3.3 Proposed Methods: Implementing DARE and MERE

Paradigms

In this section, we instantiate the proposed paradigms of DARE (Sect. 3.2.3.1) and MERE

(Sect. 3.2.3.2), by elaborating three DARE methods and one MERE approach, tailored for

various scenarios of the GARE-based model reusing.

3.3.1 Overview and Case Discussions

As analyzed in Sect. 3.2.3, a vanilla method to achieve DARE is generating an adversarial

feature perturbation as an addition to raw features. However, such a naïve addition manner is

prone to a heavy computational burden, especially for high-dimensional-feature scenarios,

where we have to optimize an equally high-dimensional perturbation for downstream tasks.

3.3 PROPOSED METHODS: IMPLEMENTING DARE AND MERE PARADIGMS 25

Node Classification Graph Regression
Transductive

Node Classification
Inductive

Graph Classification
Pre-trained Task Downstream Tasks

GNN Pre-trained
GNN

10 32)(

!"

!# !"

MetaFP

[1.482,
-0.960,
3.452]

!"

Pre-trained
GNN

Classes:

EdgSlim

10 2)(Classes:

Homo-DARE-EdgSlim

!"

MetaGP

Pre-trained
GNN

Phosvitin

Homo-DARE-MetaGPHeter-DARE-MetaFPPre-trained Model

FIGURE 3.3: Illustration of the proposed approaches of MetaFP, EdgSlim,
and MetaGP for transductive and inductive DARE with heterogeneous and
homogenous input dimensions.

Also, such perturbation addition manner completely changes all raw inputs, thereby intrinsic-

ally can be interpreted as transforming downstream data to pre-trained one for model reusing,

leading to performance bottleneck when the data gap is too significant for transformation.

Motivated by this observation, we resort to generating lower-dimensional perturbations as

paddings around raw features, never amending any raw input feature. As such, the issues of

both computational costs and troublesome transformation are simultaneously alleviated.

Despite its merits, such a perturbation padding manner can only be applicable to the scenario

where pre-trained and downstream features have heterogeneous dimensions. Driven by this

consideration, we propose to divide the GARE scenarios into three cases, and explore them

separately to devise the corresponding best-suited methods for more resource-efficient model

reusing:

• Case #1. Universal-Heter-DARE: Heterogeneous dimensions between pre-trained and

downstream features under both transductive and inductive settings, addressed by Meta-

FeatPadding in Sect. 3.3.2;

26 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

• Case #2. Transductive-Homo-DARE: Homogenous pre-trained and downstream dimen-

sions for transductive tasks, solved by Edge-Slimming in Sect. 3.3.3;

• Case #3. Inductive-Homo-DARE: Homogenous input dimensions for inductive tasks,

tackled by Meta-GraPadding in Sect. 3.3.4.

Furthermore, we provide in Sect. 3.3.5 an examplar implementation of the MERE paradigm,

by proposing reprogrammable aggregation (ReAgg) that aims to complement DARE on the

model side for challenging downstream tasks.

3.3.2 Universal Meta-FeatPadding for Heter-DARE

The proposed Meta-FeatPadding (MetaFP) aims to accommodate the diverse downstream

feature dimensions, by padding around the raw features, supported by the theory of node-level

adversarial perturbations [150].

Given a pre-trained model termed GNNpre-trained, the process of generating the padded features

for downstream tasks with MetaFP can be formulated as follows:

min
�padding

E(x,y)⇠D [Ldownstream (GNNpre-trained[x||�padding], y)] , (3.1)

where D is the downstream data distribution, with (x, y) denoting the downstream graph

features and the associated labels, respectively. Also, we use || to represent the concatenation

operation, which, in fact, performs feature padding that combines the optimized padding

features �padding with the raw input features x.

As such, the task-specific �padding not only accommodates the feature dimensions of the

downstream tasks to those of the pre-trained one with the frozen model of GNNpre-trained, but

also benefits the downstream performance by reducing the loss derived from the downstream

loss function of Ldownstream. Although �padding needs to be learned through gradient descent,

the optimization process of �padding is empirically very fast for most cases, where only one or

several epochs are typically sufficient for converged results, which is much faster than model

re-training.

3.3 PROPOSED METHODS: IMPLEMENTING DARE AND MERE PARADIGMS 27

During inference, the optimized universal �padding on training downstream data is padded

around all the testing downstream samples to obtain the prediction results. Furthermore, for

the case where the output downstream dimensions are not aligned with the pre-trained ones,

we simply use the corresponding part of the pre-trained neurons at the final linear layer, which

is a common avenue in dynamic networks.

3.3.3 Transductive Edge-Slimming for Homo-DARE

The devised MetaFP in Sect. 3.3.2 is competent to tackle the heterogeneous-dimension case

of GARE-based model reusing. Despite its encouraging performance, MetaFP is not effective

in handling the downstream graph samples that have homogenous feature dimensions to

the pre-trained ones, since it is no longer necessary to conduct meta padding for dimension

accommodation. As such, it remains challenging in such homogenous-dimension cases, on

performing DARE to adapt the pre-trained model to new tasks.

Driven by this challenge, we turn from node-level perturbations to another type of adversarial

graph examples, namely adversarial edge-level perturbations [150], that aim to attack the

model by manipulating edges. Here, we flip again the attacker role of adversarial edge-level

perturbations to achieve resource-efficient model reusing, by modifying the node connections

in the downstream graph data, meanwhile without changing raw node features, leading to the

proposed Edge-Slimming (EdgSlim) DARE approach.

To this end, we formulate the algorithmic process of EdgSlim as a combinatorial optimization

problem:

min
{ui,vi}mi=1

mX

i=1

����
@Ldownstream

@↵ui,vi

����

s.t. G̃ = Modify
�
G, {↵ui,vi}

m
i=1

�

= (G \ {ui, vi}) , if
@Ldownstream

@↵ui,vi

> 0,

(3.2)

where {u, v} denotes the connection between the node u and v, with m representing the total

number of edges in the input graph G. Ldownstream is the loss function for the downstream

task. ↵ui,vi is our constructed unary edge feature, such that we can compute the derivative of

28 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

Ldownstream with respect to the adjacency matrix of G, with ↵u,v = I(u 2 N (v)) where N (v)

denotes the set of neighbors for the node v. \ represents the edge deletion operation.

As such, Eq. 3.2 indicates that the proposed EdgSlim sequentially slims the connections in the

downstream graph of which the corresponding edge gradients are greater than 0, starting from

the edge with the largest gradients. The downstream loss can thereby be reduced by simply

optimizing the connections. Notably, similar to MetaFP, the optimization with EdgSlim

converges very fast, typically with only several epochs, and meanwhile occupies limited

resources.

3.3.4 Inductive Meta-GraPadding for Homo-DARE

In spite of the gratifying results of EdgSlim, Eq. 3.2 is not applicable to the inductive task

setting, where plenty of graphs are received as inputs. In this case, the edge slimming

operation can only be performed on training graphs, not capable of transferring to the testing

ones. To alleviate this dilemma, we propose a Meta-GraPadding (MetaGP) method to tackle

the inductive GARE scenarios, where the downstream features have the same dimensions as

the pre-trained ones, as illustrated in Fig. 3.3.

Our design of MetaGP is driven by the structure-level perturbation in adversarial examples

[150]. In particular, instead of padding the generated perturbations around raw node features,

the proposed MetaGP yields a tiny subgraph, with only, for example, ten nodes, which is then

padded around every downstream graph, of which each meta node connects the downstream

graph nodes in a fully-connected manner. The features in the introduced meta graph are

generated in the same way as that of yielding padded features in Eq. 3.1. At the inference

stage, the learned meta-graph is padded around all the testing graphs, leading the pre-trained

GNN to perform the target downstream inductive task.

The process of generating the meta-graph in MetaGP is computation-efficient, where a

meta-graph with only ten nodes is typically sufficient for most tasks. Moreover, the feature

generation procedure is also lightweight, given the property of inductive graph learning tasks

where the input features are generally low-dimension, e.g., the QM7b dataset having only

3.3 PROPOSED METHODS: IMPLEMENTING DARE AND MERE PARADIGMS 29

TABLE 3.2: Results of reusing a pre-trained model on Citeseer to simultan-
eously handle four unseen tasks with heterogeneous dimensions and objectives,
averaged with 20 independent runs. “Re-training” indicates whether the pre-
trained parameters are changed. Notably, the 8th line shows that ReAgg is more
competent for the large-domain-gap scenarios (2.3% improvement averagely),
but slightly falls behind for similar-domain tasks, such as {Cora, Citeseer},
both of which classify computer science papers. Also, our MetaFP yields
stable results that only slightly vary with padding initializations, with standard
deviations of {0.0030, 0.0023, 0.0006, 0.0008} for the four downstream tasks.

Methods Model Model Parameter Sizes Pre-trained Task Downstream Heterogeneous Tasks
Re-training? Citeseer Cora Pubmed Computers Photo

Pre-trained Model [153] ⇥ 474.89K 0.7950 N/A N/A N/A N/A
Training from Scratch [153]

p
919.10K 0.7950 0.9144 0.8530 0.9475 0.9555

Reusing via Fine-tuning [57]
p

474.89K 0.7950 0.8710 0.8860 0.9542 0.9555
Multi-task Learning [10] + SlimGNN [68]

p
477.62K 0.7880 0.8780 0.8450 0.9108 0.9317

Vanilla Reusing [153] + SlimGNN [68] ⇥ 474.89K 0.7950 0.1571 0.3250 0.5037 0.2183
Ours (MetaFP) ⇥ 474.89K 0.7950 0.8335 0.7790 0.9085 0.8909
Ours (MetaFP + ReAgg) ⇥ 474.89K 0.7950 0.8312 0.8030 0.9229 0.9213

1-dimension features, as well as the ogbg-molbace, ogbg-molbbbp, and ogbg-molesol datasets

with an input feature dimension of nine.

3.3.5 Reprogrammable Aggregating for MERE

With the three elaborated DARE methods demonstrated in the preceding sections, a pre-trained

GNN can already achieve empirically encouraging results in various downstream tasks and

settings. To further improve the reusing performance especially under the large-domain-gap

scenarios, we propose here a reprogrammable aggregating (ReAgg) method as a pilot study

of the MERE paradigm.

Driven by Remark 3.2.2, the goal of the proposed ReAgg is to adaptively determine the

optimal aggregation behaviors conditioned on different downstream tasks, without changing

model parameters, thereby strengthening the model capacities. However, such an ambitious

goal comes with the challenge of the undifferentiable discrete decisions of aggregators. To

address this challenge, one possible solution is resorting to reinforcement learning (RL).

However, it is a known issue that RL is prone to a high computation burden, due to its Monte

Carlo search process. Another solution is to use the improved SemHash technique [77] for

30 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

discrete optimization. However, we empirically observe that improved SemHash for MERE is

likely to cause the collapse issue, where a specific aggregator is always or never picked up.

Motivated by the above analysis, we propose to leverage Gumbel-Max trick [152] for ReAgg,

which is a more prevalent strategy for optimizing discrete variables than improved SemHash

in dynamic neural networks [50]. In particular, to alleviate the dilemma of model collapse, we

propose incorporating stochasticity into the aggregator decision process with the well-studied

Gumbel sampling [109, 152]. We then propagate the gradients via the continuous form of

the Gumbel-Max trick [65]. Specifically, despite the capability in parameterizing discrete

distributions, the Gumbel-Max trick is, in fact, dependent on the argmax operation, which is

non-differentiable. To address this issue, we thereby employ its continuous relaxation form of

the Gumbel-softmax estimator that replaces argmax with a softmax function.

The detailed process of determining the optimal aggregation manner for each downstream

task can be formulated as: Aggregatork = softmax
�
(F(G) + G)/⌧

�
, where k denotes the

k-th downstream task. Also, G denotes the sampled Gumbel random noise, which introduces

stochasticity to avoid the collapse problem. F represents the intermediate features with G

as inputs. ⌧ is a constant denoting the softmax temperature. We clarify that for superior

performance, F can be generated by feeding G into a transformation layer, which lies out

of the pre-trained model and does not directly participate in the inference process as a part

of the Gumbel-softmax estimator. In this way, the proposed ReAgg adaptively determines

the optimal aggregator conditioned on each task, also without changing any pre-trained

parameters, thereby enhancing the model capability.

3.4 Experiments

We evaluate the performance of a series of DARE and MERE approaches on fourteen publicly

available benchmarks. Here we clarify that our goal in the experiments is not to achieve the

state-of-the-art performance, but rather reusing a pre-trained GNN to yield favorable results

for as many downstream tasks as possible under limited computational resources.

3.4 EXPERIMENTS 31

TABLE 3.3: Ablation studies of diverse padding sizes/positions and various
pre-trained/downstream tasks. Notably, our MetaFP is effective even with tiny
sizes and random positions.

Set of Heterogeneous Tasks Padding Padding Positions
{Pre-trained, Downstream} Size Front Center End Random
{Computers, Photo} 22 0.9183 0.9161 0.9212 0.9165
{Photo, Pubmed} 245 0.8420 0.8430 0.8420 0.8440
{Computers, Pubmed} 267 0.8300 0.8320 0.8370 0.8330
{Cora, Computers} 666 0.8585 0.8792 0.8561 0.8910
{Cora, Photo} 688 0.8337 0.8785 0.8402 0.8915
{Cora, Pubmed} 933 0.8180 0.8210 0.8200 0.8240
{Citeseer, Cora} 2270 0.8370 0.8335 0.8417 0.8535
{Citeseer, Pubmed} 3203 0.7790 0.7750 0.7740 0.8010

3.4.1 Experimental Settings

Implementation Details. Detailed dataset statistics can be found in the next section of

additional results and details. In particular, we follow [56, 68] to split Amazon Computers,

Amazon Photo, and the OGB datasets, whereas for Cora, Citeseer, and Pubmed datasets, we

use the splitting protocol in the supervised scenario for more stable results, as also done in

[17]. Task-by-task architectures and hyperparameter settings can be found in the next section

of additional results and details. All the experiments are performed using a single NVIDIA

GeForce RTX 2080 Ti GPU.

Comparison Methods. Given our novel GARE setting, there are few existing methods in the

literature for a fair comparison, either with distinct task settings or inconsistent objectives.

As such, we derive two possible solutions that partly match our task. Specifically, we derive

a reusing via fine-tuning approach that reuses a GNN via fine-tuning the parameters for

downstream tasks. Moreover, a multi-task-learning+SlimGNN pipeline is also developed,

that trains a slimmable graph convolution [68] from scratch to accommodate the pre-trained

and downstream feature dimensions.

32 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

(a) (b) (c) (d)

FIGURE 3.4: Feature/t-SNE visualizations of (a, c) before padding and (b, d)
after padding, with the yellow frame indicating the paddings.

3.4.2 Reprogramming in Heterogeneous Domains

Heterogeneous Node Property Prediction. We show in Tab. 3.2 the results of reprogram-

ming a pre-trained GNN for a bunch of cross-domain node classification tasks, and further

give in Tab. 3.3 the ablation studies of diverse padding sizes and positions as well as different

pre-trained and downstream tasks. The 6th line of Tab. 3.2 shows that MetaFP makes it pos-

sible for cross-domain GNN reusing. Also, the proposed ReAgg for MERE further improves

the downstream performance by about 2.3% on average (the 7th line of Tab. 3.2). Moreover,

the visualization results before and after applying MetaFP are demonstrated in Fig. 3.4.

TABLE 3.4: Results of reusing a single model of a node-level task to directly
tackle graph regression and graph classification tasks.

Pre-trained Task Photo

Heterogeneous Task Type Product Category Prediction
Pre-trained Results Acc: 0.9561
Downstream Tasks QM7b PROTEINS

Heterogeneous Task Types Molecule Regression Protein Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 24.18 MAE: 2.3093 Acc: 0.3304 Acc: 0.6071
Re-training from Scratch MAE: 0.7264 Acc: 0.6964
Pre-trained Task Cora

Heterogeneous Task Type Publication Classification
Pre-trained Results Acc: 0.9121
Downstream Tasks QM7b PROTEINS

Heterogeneous Task Types Molecule Regression Protein Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 13.04 MAE: 0.8889 Acc: 0.4018 Acc: 0.5893
Re-training from Scratch MAE: 0.7264 Acc: 0.6964

3.4 EXPERIMENTS 33

FIGURE 3.5: Convergence speed of the proposed method.

TABLE 3.5: Results of Homo-DARE that adapts a pre-trained node property
prediction model (ogbn-arxiv-s1) to handle 20 unseen homogenous categories
(ogbn-arxiv-s2) in ogbn-arxiv dataset [56].

Homogenous Multi-class Re-
train?Params Pre-trained Task Downstream Task

ogbn-arxiv-s1ogbn-arxiv-s2

Number of Classes - - 20 20
Pre-trained Model [153] ⇥ 35.75K 0.7884 N/A
Training from Scratch [153]

p
35.75K N/A 0.8115

Reusing via Fine-tuning [57]
p

35.75K N/A 0.8112
Multi-task Learning [10]

p
38.35K 0.6387 0.6776

Vanilla Reusing [153] ⇥ 35.75K N/A 0.2334
Ours (EdgSlim) ⇥ 35.75K 0.7884 0.6034

Furthermore, we’d also like to highlight in Fig. 3.5 that our method reaches convergence with

only a few epochs, making it possible for deployment in resource-constrained environments.

Heterogeneous Graph Classification and Regression. Tab. 3.4 shows the results of reusing

a GNN for the more challenging cross-level tasks, indicating our proficiency in such cross-

level scenarios.

3.4.3 Reprogramming in Homogenous Domains

Homogenous Node Property Prediction. We perform in Tab. 3.5 extensive experiments of

reusing a GNN for homogenous downstream tasks in a class-incremental setting. The proposed

EdgSlim, as shown in Tab. 3.5, achieves competitive performance at a low computational cost

(Fig. 3.5).

34 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

TABLE 3.6: Results of homogenous cross-domain graph-level tasks.

Pre-trained Task ogbg-molbace

Homogenous Task Type Molecular Classification
Pre-trained Results ROC-AUC: 0.7734
Downstream Tasks ogbg-molbbbp ogbg-molesol

Homogenous Task Types Molecular Classification Molecular Regression
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results ROC-AUC: 0.5136 ROC-AUC: 0.6691 RMSE: 6.950 RMSE: 2.050
Re-training from Scratch ROC-AUC: 0.6709 RMSE: 1.300

Homogenous Graph Classification and Regression. We show in Tab. 3.6 the cross-domain

results for homogenous graph-level tasks, where our MetaGP is proficient in reusing a graph

classification model for the task of graph regression.

3D Object Recognition. Tab. 3.7 shows the results of reusing a pre-trained DGCNN tailored

for ModelNet40 [175], to tackle distinct downstream classes in ShapeNet [197]. Remark-

ably, the proposed MetaGP makes it possible for such cross-domain model reusing with

large-scale 3D datasets. We also illustrate in Fig. 3.6 the structure of the feature space at

the intermediate layer, showing that ours leads to semantically similar structures to those of

re-training from scratch.

Distributed Action Recognition. We construct temporally growing graphs from WARD

[184, 155] and convert the problem of distributed action recognition into that of subgraph

classification, as is also done in [156]. The results are shown in Tab. 3.8, demonstrating the

effectiveness of our method.

TABLE 3.7: Results of 3D object recognition tasks with DGCNN [167].

Types Tasks # Classes Pre-trained Reusing Performance
Performance Vanilla Ours

Pre-trained Acc ModelNet40 40 0.9327 N/A N/A
Downstream Acc ShapeNet 16 N/A 0.1545 0.6090

3.5 ADDITIONAL DETAILS AND RESULTS 35

Near Far
Vanilla Ours Re-train Vanilla Ours Re-train

FIGURE 3.6: Visualization results of feature space structures, depicted as the
distance between the red point and the rest of the others.

TABLE 3.8: Results of distributed action recognition with incremental time-
series data streams and categories as downstream tasks.

Tasks Pre-trained Action Categories
Up ReLi WaLe TuLe Down Jog Push ReSt Acc

Pre-trained Acc 0.9721 0.8563 0.9704 0.9731 0.9265 0.9875 0.9522 0.9229 0.9366

Tasks Downstream Action Categories
ReSi WaFo TuRi WaRi Jump Acc

Downstream Acc 0.7337 0.9574 0.6419 0.6893 0.8081 0.7871

3.5 Additional Details and Results

This section provides more details of the method pre-analysis, more implementation details

of the proposed approaches, and various ablation studies for the experiments.

3.5.1 More Details of Method Pre-analysis

This chapter provides here more details and discussions on the method pre-analysis section,

including the validation of adversarial reprogramming attacks on graph data, and the rationale

of using task-adaptive aggregators in model reusing.

36 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

Model Provider
Machine-Learning

Paper Classification

Graph Neural
Network

10 32)(

Attacker

Graph Neural
Network

Shape
Recognition

Reprogramming Attack

User Input Attacker Input

Wheel

FIGURE 3.7: Illustrations of adversarial reprogramming attacks on graph data.

3.5.1.1 Adversarial Reprogramming Attacks on Graph Data

In this section, we further explain and validate Remark 3.2.1, which indicates the existence of

adversarial reprogramming attacks on topological graphs:

To further illustrate Remark 3.2.1, we demonstrate in Fig. 3.7 an example adversarial repro-

gramming attack with graph data as inputs, where an attack redirects a machine-learning

paper classification model to handle the intended topological shape recognition task, without

informing the model provider.

Here, in Tab. 3.9, we show the results of the example attack in Fig. 3.7 with detailed explana-

tions in the captions. Specifically, to obtain the pre-trained node property prediction model in

Tab. 3.9, we use the Cora dataset [141] in training, with the detailed architectures provided

in Tab. 3.10. For the attacker’s designated task of topological shape recognition, we instead

use a generated MiniGC-Dataset provided in the deep graph library [161]. The method

of generating adversarial examples here is the node-level perturbation mentioned in [150],

where we specifically add the generated adversarial perturbations to the raw node features.

From Tab. 3.9, it is noticeable that the original model provided by the model provider is easily

repurposed to tackle the unseen graph-level task of shape recognition, whereas the original

model function is to handle a node-level classification task. The results on shape recognition

TABLE 3.9: Results of adversarial reprogramming attacks on graph data,
where the adversary repurposes a node classification model from the model
provider to perform the adversary’s designated shape recognition task.

Designated Tasks Before Attack After Attack Re-train from Scratch
Node Property Prediction (Model Provider) Acc: 87.69% - Acc: 87.69%
Shape Recognition (Adversarial Attacker) - Acc: 80.00% Acc: 87.00%

3.5 ADDITIONAL DETAILS AND RESULTS 37

TABLE 3.10: Detailed architectures used in Tab. 3.9.

Architecture Layers Attention Heads Input Hidden Output
Pre-trained Model {Cora} 2 {8, 1} 1433 8 7

TABLE 3.11: Detailed architectures used in the section of “Rationale Behind MERE”.

Architecture Layers Attention Heads Input Hidden Output
Pre-trained Model {Cora-subset} 2 {8, 1} 1433 8 4

are also promising, with an accuracy of 80%, which is on par with that of re-training from

scratch shown in the last column of Tab. 3.9. We also perform the experiment of directly

feeding the raw data of shape recognition, without adding adversarial perturbation, to the

pre-trained model. Expectedly, the accuracy of such a vanilla manner is only 0.16%, which

demonstrates the effectiveness of the adversarial perturbations.

In aggregate, the observation in Tab. 3.9 validates that adversarial reprogramming attacks not

only exist in the Euclidean image domain, but are also effective in the non-Euclidean graph

domain. This motivates our idea that flips the role of adversarial reprogramming attack on its

head, by paradoxically converting their function as threats to machine learning systems to

resource-efficient model reusing where only limited pre-trained models are available.

3.5.1.2 Aggregation Matters for Reusing

We provide in this section more explanations and discussions on Remark 3.2.2, which suggest

the importance of adaptive aggregation methods in reusing GNNs.

To validate Remark 3.2.2, we perform a pilot experiment, by dividing the Cora dataset into

two subsets, with the first subset containing four classes and the second one including three

node categories. We pre-train a model on the first Cora subset and obtain a frozen GNN that

can predict the first four classes in Cora. Then, we aim to reuse this pre-trained model to

handle the task of node classification with the last three separate and unseen categories. The

network architecture of the pre-trained model on the first subset of Cora is demonstrated in

Tab. 3.11.

38 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

TABLE 3.12: Vanilla GNN reusing results on the Cora-subset dataset
with various aggregation behaviors. The detailed network architecture for
producing the results can be found in Tab. 3.11.

Various Aggregation Methods Mean Max Min Std Var Skewness Kurtosis Hyperskewness
Downstream Performance (Acc) 0.4420 0.4203 0.5000 0.2536 0.2826 0.4022 0.2572 0.3696

TABLE 3.13: Summary of the fourteen datasets. Additional dataset statistics
for point cloud classification are shown in Tab. 3.14.

Names Task Descriptions Feature Dimensions Nodes Edges # Graphs
1. Cora [141] Machine-Learning Paper Classification 1,433 2,708 5,429 1
2. Citeseer [141] Computer-Science Paper Classification 3,703 3,327 4,732 1
3. Pubmed [141] Diabete-related Publication Classification 500 19,717 44,338 1
4. ogbn-arxiv [160, 56] Subject Area Prediction of arXiv Papers 128 169,343 1,166,243 1
5. Amazon Computers [112] Computer-Product Category Prediction 767 13,752 574,418 1
6. Amazon Photo [112] Photo-Product Category Prediction 745 7,650 287,326 1
7. QM7b [117] Molecule Property Regression 1 111,180 1,766,366 7,211
8. ogbg-molesol [174, 56] Molecule Property Regression 9 14,991 30,856 1,128
9. PROTEINS [6] Protein Property Prediction 3 43,471 205,559 1,113
10. ogbg-molbace [174, 56] Molecule Property Classification 9 51,577 111,539 1,513
11. ogbg-molbbbp [174, 56] Molecule Property Classification 9 49,068 105,842 2,039
12. WARD [184, 155] Distributed Human Action Recognition 125 3,521,550 15,846,975 35,2155
13. ModelNet40 [175] 3D Object Recognition 3 12,603,392 252,067,840 12,311
14. ShapeNet [197] 3D Object Recognition 3 17,286,144 345,722,880 16,881

Here, our goal is to validate the influence of aggregators in model reusing. As such, we

adopt the simplest vanilla reusing method, by just using the pre-trained model to directly

handle the novel three downstream categories, but changing the aggregation behaviors. The

corresponding results of various aggregation methods are shown in Tab. 3.12, where we

specifically use eight prevalent aggregation methods as examples as mentioned in [24].

Notably, the results in Tab. 3.12 show that various aggregation manners can lead to totally

distinct model reusing results, where the min aggregation method is optimal for our task of

Cora-subset. Such observation leads to our idea of using the task-adaptive aggregation

method to enhance the model capability in different downstream tasks.

3.5.2 Dataset Statistics and Descriptions

We provide in Tab. 3.13 the statistics of several graph benchmarks.

Specifically, the first three datasets, i.e., Cora, Citeseer and Pubmed [141], are all citation

network datasets, for the purpose of single-label node classification. Besides, Amazon

3.5 ADDITIONAL DETAILS AND RESULTS 39

TABLE 3.14: Detailed dataset statistics of the ShapeNet part dataset [197].

Total Aero Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skateboard Table
shapes 16,881 2,690 76 55 898 3,758 69 787 392 1,547 451 202 184 283 66 152 5,271
shape labels 16 – – – – – – – – – – – – – – – –

Computers and Amazon Photo datasets are, in fact, the segments of the Amazon co-purchase

graphs introduced in [112]. Moreover, ogbn-arxiv [160, 56] contains a single directed

graph that represents the citation network among all the computer science papers posted in

arXiv. Furthermore, the adopted ogbg-molesol, ogbg-molbace, and ogbg-molbbbp [174, 56]

are molecular property prediction datasets. Also, QM7b [117] aims at molecular property

regression, containing 7,211 molecules with totally 14 regression targets. The PROTEINS

dataset [6], on the other hand, focuses on protein classification, such as enzymes or non-

enzymes.

We also adopt a distributed human action recognition dataset with wearable motion sensor

networks, termed as WARD [184, 155], to validate the proposed methods. There are five

sensors that are exploited to capture the data in WARD. Every sensor specifically yields 5

data streams and in total 5⇥ 5 data streams are generated.

For the task of point cloud classification, we leverage the ModelNet40 dataset [175] as well

as the ShapeNet part dataset [197]. Specifically, ModelNet40 has 12,311 CAD models with

40 man-made object categories, of which 9,843 CAD models are used for training and 2,468

models are for testing. For each CAD model, we specifically sample 1,024 3D points, as

also done in [167]. Also, the ShapeNet part dataset involves 16,881 3D shapes from 16

categories. For each 3D shape, we also sample 1,024 points. Detailed class-by-class statistics

of ShapeNet part dataset are provided in Tab. 3.14.

3.5.3 Additional Results on Heterogeneous Node Property Prediction

In this section, we provide additional results of using heterogeneous data reprogramming to

tackle heterogeneous node property prediction.

Implementation Details. In total, we use five datasets, Citeseer, Cora, Pubmed,

Amazon Computers, and Amazon Photo as examples to validate the effectiveness

40 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

of the proposed approaches. In particular, we’d like to clarify that the different pre-trained

models on various datasets have a maximum number of output dimensions, meaning that

the number of classes in the downstream datasets cannot exceed that of the pre-trained one.

So, since we use Citeseer with six categories as the pre-trained task, we have to use the

corresponding six categories for Cora, Amazon Computers, and Amazon Photo.

For the sake of the consistency, when we use the datasets of Cora, Amazon Computers,

and Amazon Photo everywhere in this work, we consistently only use the first six target

classes of the corresponding datasets, as shown in Tab. 3.15. For the task of Pubmedwith only

three classes, we predict the full target three classes, by simply using the corresponding three

output neurons in the pre-trained Citeseer model for the final prediction. Nevertheless,

it is indeed possible to leverage the technique of adaptive prototype learning to alleviate the

dilemma of such output limits. However, due to the page limit, we have to elaborate on this

part in our future work.

For the dataset splittings of Citeseer, Cora, Pubmed, we use the splitting protocol in [17].

Specifically, for Cora, we use 1208 samples for training, 500 samples for validation, and 1000

samples for testing; for Citeseer, we use 1827 samples for training, 500 samples for validation,

and 1000 samples for testing; for Pubmed, 18217 samples are used for training, 500 samples

are used for validation, and 1000 samples are used for testing. For Amazon Computers

and Amazon Photo, since there is no standard splitting protocol, in our experiment, we

randomly split these two datasets with the ratio of TrainingSet : ValidationSet : TestingSet =

6 : 2 : 2.

At the pre-training stage, the learning rate is set to 0.005. At the reusing stage, the ascent step

size for optimizing the padded features is set to 0.0001 with a weight decay of 5⇥ 10�4 by

default. We use the Adam optimizer for both stages. The results are obtained by computing the

average of 20 independent runs. The network architectures are given in Tab. 3.15, which follow

the official architecture design in deep graph library [161] without specific modifications.

Ablation Studies. In Tab. 3.16 and Tab. 3.17, we demonstrate the results of the ablation

studies with various pre-trained GNNs, corresponding to Tab. 3.2. In particular, we use Cora

3.5 ADDITIONAL DETAILS AND RESULTS 41

TABLE 3.15: Detailed network architectures for producing the results in
Tab. 3.2 and also those in Tabs. 3.16 and 3.17.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Citeseer 2 {8, 1} 3703 8 6 474,892
Cora 2 {8, 1} 1433 8 6 184,332
Amazon Computers 2 {8, 1} 767 8 6 99,084
Amazon Photo 2 {8, 1} 745 8 6 96,268

TABLE 3.16: Ablation studies of using different pre-trained GNNs, cor-
responding to Tab. 3.2. Here, we reuse a pre-trained node classification
model on Cora to handle the tasks of Amazon Computers and Amazon
Computers with heterogeneous feature dimensions.

Pre-trained Task Cora

Heterogeneous Task Type Machine-Learning Paper Classification
Pre-trained Results Accuray: 0.9121
Downstream Tasks Amazon Computers Amazon Photo

Heterogeneous Task Types Computer-Product Category Prediction Photo-Product Category Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results Accuray: 0.1497 Accuray : 0.8792 Accuray: 0.1354 Accuray: 0.8785
Re-training from Scratch Accuray: 0.9485 Accuray: 0.9561

and Amazon Computers as the pre-trained tasks for Tab. 3.16 and Tab. 3.17, respectively.

It is noticeable that the proposed method still achieves promising results with different

pre-trained models. For example, the three results of the downstream Amazon Photo

task with the pre-trained models Citeseer (Tab. 3.2), Cora (Tab. 3.16), and Amazon

Computers (Tab. 3.17) are all equally encouraging, showing that the proposed MetaFP and

ReAgg methods make it possible for resource-efficient model reusing under the scenarios of

having only a limited number of pre-trained models.

TABLE 3.17: Ablation studies of using a pre-trained computer-product
category prediction model to tackle Amazon Computers and Pubmed

with various input dimensions, corresponding to Tab. 3.2.

Pre-trained Task Amazon Computers

Heterogeneous Task Type Computer-Product Category Prediction
Pre-trained Results Accuray: 0.9485
Downstream Tasks Amazon Photo Pubmed

Heterogeneous Task Types Photo-Product Category Prediction Diabete-Publication Classification
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results Accuray: 0.2012 Accuray: 0.9161 Accuray: 0.4270 Accuray : 0.8320
Re-training from Scratch Accuray: 0.9561 Accuray: 0.8840

42 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

TABLE 3.18: Network architectures for heterogeneous downstream graph
classification and regression tasks, corresponding to Tab. 3.4 and also
Tabs. 3.19 and 3.20.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Cora 2 {8, 1} 1433 8 6 184,332
Amazon Computers 2 {8, 1} 767 8 6 99,084
Amazon Photo 2 {8, 1} 745 8 6 96,268

3.5.4 Additional Results on Heterogeneous Graph Classification and

Regression

In this section, we demonstrate more results of exploiting the heterogeneous data reprogram-

ming method of MetaFP to handle the heterogeneous cross-level graph classification and

regression tasks.

Implementation Details. To demonstrate the effectiveness of the proposed methods for

heterogeneous cross-level graph analysis, here we use node classification models as the

pre-trained ones, and reuse them to handle the task of heterogeneous graph classification and

regression. The network architectures of the pre-trained node property prediction models

in Tab. 3.4 and Tabs. 3.19 and 3.20 are provided in Tab. 3.18. Also, to address the issue

of different output dimensions of node-level and graph-level tasks, we adopt the slimmable

strategy in dynamic networks, i.e., simply using the part of the output neurons to generate the

prediction results, and ignoring the other extra unaligned output dimensions.

The detailed dataset statistics of the various datasets used in this section can be found in

Sect. 3.5.2. In the pre-training phase, the experimental settings are the same as those in

Sect. 3.5.3, i.e., with a learning rate of 0.005 and the Adam optimizer. During model reusing,

we set the ascent step size as 0.0001 with a weight decay of 5⇥ 10�4.

Ablation Studies. We show in Tab. 3.19 and Tab. 3.20 the ablation study results of various

pre-trained models for heterogeneous downstream graph classification and regression tasks,

corresponding to Tab. 3.4. As can be observed from Tabs. 3.19, 3.20 and Tab. 3.4, the

proposed MetaFP approach delivers gratifying results with all these three different pre-trained

tasks of Amazon Computers, Amazon Photo, and Cora. Such observation validates

3.5 ADDITIONAL DETAILS AND RESULTS 43

TABLE 3.19: Ablation studies of reusing various pre-trained GNNs, corres-
ponding to Tab. 3.4. Here, we pre-train a model on Amazon Computers

and then reuse it to tackle the graph regression task of QM7b as well as the
graph classification task of PROTEINS.

Pre-trained Task Amazon Computers

Heterogeneous Task Type Computer-Product Category Prediction
Pre-trained Results Accuray: 0.9485
Downstream Tasks QM7b PROTEINS

Heterogeneous Task Types Molecule Property Regression Protein Property Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 13.1409 MAE : 2.4634 Accuray: 0.5268 Accuray: 0.6250
Re-training from Scratch MAE: 0.7264 Accuray: 0.6964

TABLE 3.20: Ablation studies of reusing a pre-trained node classification
model on Amazon Photo to handle the unseen graph-level regression and
classification tasks of QM7b and PROTEINS, corresponding to Tab. 3.4.

Pre-trained Task Amazon Photo

Heterogeneous Task Type Photo-Product Category Prediction
Pre-trained Results Accuray: 0.9561
Downstream Tasks QM7b PROTEINS

Heterogeneous Task Types Molecule Property Regression Protein Property Prediction
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results MAE: 24.1829 MAE : 2.3093 Accuray: 0.3304 Accuray: 0.6071
Re-training from Scratch MAE: 0.7264 Accuray: 0.6964

the resource-efficient property of the proposed method in Sect. 3.5.3 again: getting rid of the

restriction on well-provided pertinent pre-trained models.

3.5.5 Additional Results on Homogenous Node Property Prediction

In this section, we illustrate additional results of leveraging the homogenous data reprogram-

ming method of EdgSlim to deal with the task of homogenous node property prediction.

Implementation Details. The architecture details for Tab. 3.5 and Tab. 3.22 are provided

in Tab. 3.21. In particular, Architecture-ogbn-arxiv-V1 and Architecture-ogbn-arxiv-V2

represent the two distinct pre-trained architectures used in the ablation studies in Tab. 3.22.

TABLE 3.21: Network architectures used in Tab. 3.5 and Tab. 3.22.

Pre-trained Architectures Layers Attention Heads Input Hidden Output Parameter Sizes
Architecture-ogbn-arxiv-V1 4 {8, 8, 8, 1} 128 8 20 35.75K
Architecture-ogbn-arxiv-V2 3 {8, 8, 1} 128 8 20 27.43K

44 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

TABLE 3.22: Ablation studies of reusing the pre-trained node classification
models on ogbn-arxiv with various network architectures elaborated in
Tab. 3.21.

Architectures Types Model Parameter Sizes Pre-trained Reusing Performance
Performance Vanilla Ours

Architecture-ogbn-arxiv-V1 Pre-trained Acc 35.75K 0.7884 N/A N/A
Architecture-ogbn-arxiv-V1 Downstream Acc 35.75K N/A 0.2334 0.6034
Architecture-ogbn-arxiv-V2 Pre-trained Acc 27.43K 0.7849 N/A N/A
Architecture-ogbn-arxiv-V2 Downstream Acc 27.43K N/A 0.2191 0.5507

The dataset details can be found in Tab. 3.13. Here, we divide the ogbn-arxiv dataset

into two subsets, termed as ogbn-arxiv-s1 and ogbn-arxiv-s2, where each subset

contains 20 separate categories in the full ogbn-arxiv dataset. The pre-trained task is to

predict the 20 classes in ogbn-arxiv-s1, whereas the downstream task is to classify the

distinct 20 categories in ogbn-arxiv-s2. During pre-training, we use the Adam optimizer,

with a learning rate of 0.005 and a weight decay of 5 ⇥ 10�4, which are the same as other

datasets without specific modifications or hyperparameter tuning.

Ablation Studies. Tab. 3.22 demonstrates the results of the ablation studies of different

pre-trained architectures. As can be observed from the last column of Tab. 3.22, the proposed

EdgSlim leads to promising downstream performance without re-training or fine-tuning and

outperforms the results of vanilla reusing by at least 30%. Also, the results are obtained at a

low computational cost, with only three epochs. The physical edge elimination time is even

less than one second for both architectures on a single NVIDIA GeForce RTX 2080 Ti GPU.

3.5.6 Additional Results on Homogenous Graph Classification and

Regression

In this section, we give more results of applying the proposed homogenous data reprogram-

ming approach of MetaGP to tackle the downstream tasks of homogenous node property

prediction.

Implementation Details. To demonstrate the effectiveness of the proposed MetaGP method

under the scenarios of homogenous graph classification and regression with homogenous input

dimensions, we specifically use the three datasets of ogbg-molbace, ogbg-molbbbp,

3.5 ADDITIONAL DETAILS AND RESULTS 45

TABLE 3.23: Network architectures for producing the results in Tab. 3.6 and
also those in Tab. 3.24.

Pre-trained Architectures Layers Attention Heads Output Layer Input Hidden Output Parameter Sizes
ogbg-molbace 4 {1, 1, 1} Linear 9 256 1 69.63K
ogbg-molbbbp 4 {1, 1, 1} Linear 9 256 1 69.63K

TABLE 3.24: Ablation studies of reusing different pre-trained GNNs,
corresponding to Tab. 3.6. Here, the pre-trained model is designated for
ogbg-molbbbp, whereas ogbg-molbace and ogbg-molesol are con-
sidered as the two target downstream tasks.

Pre-trained Task ogbg-molbbbp

Homogenous Task Type Graph Classification
Pre-trained Results ROC-AUC: 0.6709
Downstream Tasks ogbg-molbace ogbg-molesol

Homogenous Task Types Graph Classification Graph Regression
Reusing Methods Vanilla Ours Vanilla Ours
Downstream Results ROC-AUC: 0.4330 ROC-AUC: 0.5903 RMSE: 7.979 RMSE: 2.8183
Re-training from Scratch ROC-AUC: 0.7734 RMSE: 1.300

and ogbg-molesol that aim to classify or regress the graph properties, with more detailed

statistics and descriptions in Sect. 3.5.2. The architecture details are provided in Tab. 3.23. In

particular, different from the node classification task, the output layer of the graph-level tasks

are linear layers. The learning rate setting is set to 0.005, with a weight decay of 5⇥ 10�4,

which is the same as other experiments. We use the Adam optimizer for pre-training.

Ablation Studies. We show in Tab. 3.24 the ablation studies of varying pre-trained models.

In particular, instead of using ogbg-molbace as the pre-trained task as Tab. 3.6 does,

here we perform extensive ablation studies by pre-training a GNN on ogbg-molbbbp and

considering ogbg-molbace as the downstream tasks. The results in Tab. 3.24 demonstrate

that the proposed MetaGP is competent for various-domain downstream tasks even with

different pre-trained models. As such, our method is readily applicable to scenarios where

there is a limited number of pre-trained GNNs.

TABLE 3.25: Detailed network architectures for the task of 3D object
recognition on ModelNet40 and ShapeNet.

Pre-trained Models Layers GNN Type Feature Map Channels MLPs
Architecture-ModelNet40 8 EdgeConv [64, 64, 128, 256, 1024] [512, 256, 40]

46 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

Near Far

Vanilla Ours Re-train Vanilla Ours Re-train Vanilla Ours Re-train

FIGURE 3.8: Visualization results of the structures of the feature space, de-
picted as the distance between the red point and the rest of the others. The
visualized features are extracted from the intermediate layer of the models.

3.6 SUMMARY 47

3.5.7 Additional Results on 3D Object Recognition

Implementation Details. In addition to node classification, graph classification, and graph

regression tasks with citation networks and molecular graphs, we also conduct extensive

experiments by reusing a GNN for 3D object recognition tasks. Here, we adopt two prevalent

point cloud classification datasets, entitled ModelNet40 and ShapeNet, of which the

detailed statistics can be found in Tab. 3.13. We follow the official dataset splitting protocol

in [175, 167], where 9,843 CAD models are used for training and 2,468 CAD models are

for testing in pre-training. For each CAD model in both ModelNet40 and ShapeNet,

we sample 1,024 3D points from the mesh surfaces. We also rescale the associated point

coordinates, as also done in [167]. The learning rate is set as 0.001 and the batch size is set to

16. We adopt the Adam optimizer [80]. The detailed architecture designs are summarized

in Tab. 3.25. During the reusing stage, since ModelNet40 contains 40 categories whereas

ShapeNet has 16 classes, we simply use the first 16 output channels of the pre-trained

ModelNet40 as the output predictions for ShapeNet.

More Visualization Results. In Fig. 3.8, we show more qualitative results of reusing GNNs

for point cloud classification, by visualizing the structures of the feature spaces, corresponding

to Fig. 3.6. The column termed “Vanilla” in Fig. 3.8 contains the results of vanilla model

reusing, corresponding to “Vanilla” in Tab. 3.7. Meanwhile, the columns termed “Ours” and

“Re-train” in Fig. 3.8 indicate the results with the proposed MetaGP and those of re-training

from scratch, respectively. It can be observed that the proposed method yields results that have

a very similar feature structure to those of the cumbersome re-training ones, demonstrating

the superiority of our approach.

3.6 Summary

This chapter introduces a novel GARE task for resource-efficient and generalized model

reusing, tailored for GNNs. Our objective is to reuse a pre-trained GNN for diverse cross-

level/domain downstream tasks, being rid of re-training or fine-tuning. To this end, we

identified two key challenges on the data and model sides, respectively, and propose a suit

48 3 DATA-DRIVEN EFFICIENT LEARNING WITH DEEP GRAPH REPROGRAMMING

of three data reprogramming (DARE) and one model reprogramming (MERE) approaches

to resolve the dilemma. Experiments on fourteen benchmarks across various domains,

including node and graph classification, graph property regression, 3D object recognition, and

distributed action recognition, demonstrate that the proposed methods lead to encouraging

downstream performance, and meanwhile enjoy a low computational cost. In our future work,

we will strive to generalize GARE to other domains.

CHAPTER 4

Model-Driven Efficient Learning with Knowledge

Amalgamation

In continuation with the previous chapter’s investigation on data-driven efficiency, this chapter

delves into the problem of model-driven efficient learning by exploring a novel knowledge

amalgamation paradigm specifically designed for GNNs. The objective of the proposed

knowledge amalgamation is to train a multi-talented student GNN, without accessing human

annotations, that “amalgamates” knowledge from a couple of teacher GNNs with heterogen-

eous architectures and handling distinct tasks. The student derived in this way is expected

to integrate the expertise from both teachers while maintaining a compact architecture. To

this end, this chapter proposes an innovative approach to train a slimmable GNN that enables

learning from teachers with varying feature dimensions. Meanwhile, to explicitly align

topological semantics between the student and teachers, this chapter introduces a Topological

Attribution Map (TAM) to highlight the structural saliency in a graph, based on which the stu-

dent imitates the teachers’ ways of aggregating information from neighbors. Experiments on

seven datasets across various tasks, including multi-label classification and joint segmentation-

classification, demonstrate that the learned student, with a lightweight architecture, achieves

gratifying results on par with and sometimes even superior to those of the teachers in their

specializations.

4.1 Introduction

An increasing number of pre-trained deep neural networks (DNNs) have been generously

released online for the sake of handy reproducibility [206]. As such, reusing these pre-trained
49

50 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

models to alleviate training effort or to enhance performance, has emerged as a trending

research topic in recent years. The seminal work of Hinton et al. [53], for instance, first

raises Knowledge Distillation, where a pre-trained teacher model is utilized to generate soft

labels so as to learn a lightweight student model with competent performance. Following

this student-teacher paradigm, many other distillation-based approaches have been applied to

various domains and have demonstrated promising results [37, 138, 198, 205, 225].

Almost all existing approaches on knowledge transfer from pre-trained models have been

focused on convolutional neural networks (CNNs), which take data in regular domains, like

images, as input. Nevertheless, many other data samples take irregular forms and thereby

resort to graph representations, calling for graph neural networks (GNNs). The work of [188],

as the first attempt, generalizes knowledge distillation to GNNs, and introduces a customized

approach tailored for irregular data. In spite of the improved performance, this approach is

limited to the scenario where the student learns from a single teacher, and meanwhile holds a

homogeneous architecture and tackles the same task as the teacher does.

In this chapter, we strive to make one step further towards knowledge transfer from pre-trained

GNNs, by studying a novel knowledge amalgamation task. Our goal is to train a multi-talented

student GNN, from a couple of pre-trained teacher GNNs with heterogeneous architectures

and specializes in different tasks, for example one working on point cloud segmentation and

the other on classification, as shown in Fig. 4.1. We further assume that, in the knowledge

amalgamation process, no human annotations are available. The student learned in this way

is anticipated to integrate both teachers’ expertise yet comes with a compact size, making it

competent for resource-constrained applications such as edge computing.

Nevertheless, such an ambitious goal is accompanied with challenges. The first challenge

regards handling graph features with varying dimensions. Unlike CNNs that take as input

grid-structured data with fixed channel numbers, such as RGB images, in our scenario,

GNNs pre-trained on different datasets work with distinct feature dimensions. For example,

nodes in the citation network dataset Cora have 1433 features, while those in Citeseer have

3703 features. The student GNN would therefore have to accommodate the diverse feature

dimensions. The second challenge lies in encoding topological semantics of graphs. As

4.1 INTRODUCTION 51

Unlabeled Point Cloud

Teacher GNN (Classification)

Airplane

Teacher GNN (Segmentation)

Versatile & Compact
Student GNN

Pool of Pre-trained Teacher Models

Knowledge
Amalgamation

FIGURE 4.1: Illustrations of amalgamating knowledge from heterogeneous
teacher GNN models. “Teacher GNN (Segmentation)” and “Teacher GNN
(Classification)” are pre-trained point cloud part segmentation and classific-
ation models, respectively. Knowledge amalgamation aims to learn a multi-
talented and lightweight student GNN from teacher GNNs without human
annotations.

GNNs are designed to explicitly account for the topological information concealed in the

graph data, aligning the topological semantics between teachers and the student emerges as a

critical issue to be addressed in GNN knowledge amalgamation.

Towards this end, we propose a slimmable graph convolutional operation that enables adaptive

activation or deactivation of layer channels; graph data of different input channels can therefore

be simultaneously accounted for under one student model. Furthermore, we introduce

topological attribution map (TAM), a general graph representation scheme to highlight

structural saliency in terms of information propagation from neighbors. The derived student

model is enforced to produce a TAM that resembles those from the teachers, in which way

the student imitates the teachers’ fashions of aggregating features to the center node. Notably,

TAM is free of data labels and readily applied to heterogeneous GNN architectures.

Our contribution is therefore a novel GNN-based knowledge amalgamation approach to

train a versatile student model that covers the specialties from heterogeneous-task teachers,

without human annotations. This is typically accomplished through a slimmable graph

convolutional operation to accommodate varying-dimension features from teachers, together

with a TAM scheme for learning the teachers’ topological semantics. We evaluate the

proposed method on four different tasks across various domains, including single- and multi-

label node classifications, 3D object recognition, and part segmentation. Experimental results

52 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

Graphs Node Features

GCN_T1

GCN_T2

GCN_S

Deactivate

Deactivate
Slimmable
GCN

⋯
⋯

T
S
A

GCN_T1

GCN_T2

(Input) (Knowledge Amalgamation) (Output)

⋯

⋯

R
eadO

ut
R

eadO
ut

R
eadO

ut

Soft Labels

Soft Labels

Predictions

Predictions

Intermediate Layers Final LayerTopological Attribution Map

T
S
A

STL

STL

Derivative

Derivative

FIGURE 4.2: The overall framework of the proposed knowledge amalgam-
ation method tailored for GNNs. For illustration, we take two pre-trained
teacher GCNs as an example. On the input side, the dimensions of input node
features would vary with different graph samples. GCN_T1, GCN_S and
GCN_T2 represent the graph convolutional layers from pre-trained teacher
#1, lightweight student, and pre-trained teacher #2, respectively. TSA and
STL denote the proposed topological semantics alignment module and the
soft target learning module, respectively. The topological attribution map
is obtained by computing the edge gradients of the constructed unary edge
features, as explained in Sect. 4.3.3.

demonstrate that, the learned student GNN model is competent to handle all different tasks

of the heterogeneous teachers, sometimes with a performance even superior to those of the

teachers, and meanwhile comes at a significant reduction in computational cost.

4.2 Problem Definition

The problem we aim to address here is to learn a versatile and lightweight student GNN model,

with only unlabeled graph data, that amalgamates topology-aware knowledge from multiple

task-wise heterogeneous teachers. Specifically, assume that we are given N pre-trained

GNN models G = {g1, g2, · · · , gN}, each of which specializes in different tasks, such as

paper classifications on specific topics [141] or predictions of various protein functions [226].

We use T (gi) to represent the specific task handled by teacher gi. The goal of knowledge

amalgamation is then formulated as learning a student GNN model gs that has the following

three properties:

4.3 PROPOSED METHOD 53

• The student gs covers the expertise of all heterogeneous teachers.

• The model size of the student is smaller than the sum of teachers, preferably even

smaller than a single teacher.

• Learning of gs requires only raw graph data without human-labeled annotations.

The target student GNN model is therefore expected to be capable of simultaneously handling

heterogeneous tasks, and meanwhile more portable for deployment on the mobile-terminal

side.

Also, for different pre-trained teachers gi, we impose no constraints on gi’s architectures being

the same, meaning that gi can have diversified layer numbers, different feature dimensions, or

even distinct layer mechanisms, such as graph convolutional layers by Kipf et al. [82] and

graph attention layers by Veličković et al. [153].

4.3 Proposed Method

Towards addressing the proposed problem of knowledge amalgamation, we introduce the

proposed dedicated approach tailored for GNN models. In what follows, we start by giving

an overview of the proposed method, and then detail the key modules. Finally, we propose a

dedicated training strategy that trains the student GNN intertwined with teacher GNNs.

4.3.1 Overview

The overall workflow of the proposed method is shown in Fig. 4.2. The task of knowledge

amalgamation imposes three major challenges, respectively on input data, intermediate

features, and output labels. The challenge on the input side concerns handling multiple

teacher GNNs with different feature dimensions. This dilemma is solved by equipping the

student with the proposed slimmable graph convolutions (Fig. 4.2 (Input)).

The second challenge lies in the effective extraction and transfer of topological information

from teachers. In our proposed approach, this issue is tackled by the proposed topological

semantics alignment module (Fig. 4.2 (TSA)).

54 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

!"

!#

!$
!%

Neurons
Node Features

Channels

A
ctivate

&"
&#
&%
&'
&$

(a) Input Graph #1

("

(%
($

D
eactivate

A
ctivate

Node Features
NeuronsChannels

(b) Input Graph #2

&"
&#
&%

!) !'

!*
(# ('

()

FIGURE 4.3: Illustrations of the proposed slimmable graph convolutional
operation, where X and Y denote graph nodes. The neurons in multi-layer
perceptrons (MLPs) of GNN are adaptively activated or deactivated based on
the feature dimensions of the input graph data.

The last challenge relates to the lack of human-labeled annotations: how to obtain supervision

information from unlabeled graph data. We address this issue by explicitly imitating the soft

predictions of heterogeneous teachers (Fig. 4.2 (STL)), as is also done in CNN-based model

reusing technique [53].

Therefore, in what follows, we put our emphasis upon the slimmable graph convolutional

modules and the topological semantics alignment module, both of which are specific to the

task of GNN model reusing.

4.3.2 Slimmable Graph Convolution

On the input side, unlike CNNs that always receive grid-like RGB images with constant

channel numbers, GNN models, depending on the handled tasks, vary in the feature dimen-

sions of input nodes. Taking the three popular paper-citation datasets, Cora, Citeseer and

Pubmed as examples [141], all of these three datasets contain publications as graph nodes.

Nevertheless, they contain distinct channel numbers for each node: 1433 for Cora, 3703 for

Citeseer, and 500 for Pubmed. This challenge of diversified feature dimensions makes it

infeasible to simply use a naive GNN architecture for the target multi-talented student model.

To solve this dilemma, we devise a dedicated slimmable graph convolutional layer, where

the layer channels can be adaptively activated or deactivated depending on different input

4.3 PROPOSED METHOD 55

(a) TAM of Teacher GNN #1 (b) TAM of Teacher GNN #2

FIGURE 4.4: Visualizations of the scaled topological attribution map (TAM)
of two teacher GNNs given the same input graph data. As an example, two
teachers here are pre-trained multi-label node classification models that handle
a different set of classes. Colors encode the importance of each connection for
the corresponding task of each teacher.

feature dimensions, as shown in Fig 4.3. To further illustrate the proposed slimmable graph

convolutional layer, we take the task of node classification as an example.

Assume that we have separate input graph nodes Xi and Yj from different graphs with Ci and

Cj feature dimensions (Ci 6= Cj) to concurrently account for. Firstly, before training, we set

a maximum channel number Cmax for the proposed slimmable graph convolutions, so as to

define the shape of weights in GNN layers. Then, given input nodes Xi with the node feature

dimension of Ci, the slimmable graph convolution adaptively deactivates the |Cmax � Ci|

neurons and uses only the Ci-channel filter to deal with Xi. For the processing of the node

Yj with Cj feature channels, a similar scheme is also applied, where the slimmable graph

convolution dynamically switches to Cj-channel filter to manage the corresponding input

node of Yj .

In knowledge amalgamation, by replacing the first layer with slimmable graph convolutional

layer, the student GNN can simultaneously handle graph samples with varying input feature

dimensions; while also equipped with slimmable graph convolutions in the intermediate

layers, the student GNN model can also trade off between accuracy and latency at runtime, by

switching between models with different numbers of active layer channels, thus making it

possible to adapt the learned student model across different devices with limited response

time budgets.

56 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

4.3.3 Topological Semantics Alignment

Unlike conventional convolutional layers that only receive grid-structured data as input and

generate high-level semantic representations, graph convolutional layers are designed to

process the graph data, either in the form of grid or non-grid structures. To this end, the

intrinsical mechanism of graph convolutions is to generate representations for each node by

collectively aggregating its own features and its neighboring nodes’ features. As a result,

the generated feature maps from graph convolutional layers contain both the topological

properties of the input graph and also the high-level node content information. Simply

applying prior CNN-based model reusing techniques, regardless of topological connections

among different nodes, for GNN-based knowledge amalgamation, will inevitably lead to lossy

knowledge transfer [177].

Towards addressing this challenge, the key issue to be considered is: how to derive a structure-

aware graphical representation, tailored for aligning the concealed topological information

between teachers and the student. One possible solution to this issue could be using the

pairwise feature distance between every two connected nodes as the potential structure-aware

representation to perform alignment between the student and teacher, as is done in [188]. This

solution might be feasible for topology-aware knowledge transfer from a single teacher.

However, this possible graphical representation does not fit our case of amalgamating multiple

streams of knowledge from heterogeneous teachers. Take the amalgamation of multi-label

node classification models as an example, where each teacher handles a separate set of classes.

The goal of the student GNN is to concurrently deal with all the classes covered by the

teachers. In this case, given the same graph as input, different teachers would have distinct

aforementioned possible representations, whereas the student would derive only one single

representation. As a result, simultaneously aligning these multiple distinct representations of

teachers with a single student GNN will make the learning of different knowledge compete

with each other, which will be validated in the experiments. This competitive situation is

contradictory to our goal, where we expect that the learning of different teachers’ knowledge

could potentially benefit and cooperate with each other for improved performance.

4.3 PROPOSED METHOD 57

Motivated by this observation, we propose a novel topological representation, termed as

topological attribution map (TAM), for the structural semantics alignment in knowledge

amalgamation from heterogeneous teacher GNNs. Specifically, the proposed TAM is derived

by computing the gradients of the given GNN’s output class scores with respect to the

adjacency matrix, as shown in Fig. 4.4. As a result, the obtained TAM contains the structural

saliency in propagating information from neighbor nodes, indicating the importance of each

individual connection on the final GNN predictions. Compared with the aforementioned

possible representation, the design of the proposed TAM offers two benefits in knowledge

amalgamation:

• The proposed TAM can be readily applied to heterogeneous GNN architectures,

including the models with distinct aggregating mechanisms like graph convolutional

network (GCN) [82] and graph attention network (GAT) [153], and also those with

different layer numbers and channels.

• The proposed TAM can be extracted in a teacher-aware manner, meaning that a

student GNN can derive multiple TAMs, which correspond to different teachers that

handle separate classes. Specifically, this is achieved by using the specific subset

of class scores, corresponding to the task of each teacher, to compute the teacher-

specific TAMs. This manner alleviates the aforementioned competitive dilemma in

amalgamating multiple teacher GNNs.

The workflow of computing the proposed TAM is given as follows. Consider a graph

represented by a tuple G = {V , E}, where V is the set of unordered vertices and E represents

the set of edges connecting different vertices v 2 V . Let A 2 Rn⇥n denote the adjacency

matrix, where n is the number of graph nodes. Given an input graph G0 and a GNN model g,

the proposed TAM representation F can be generally computed as:

F =
@P
@A

����
G0

2 Rn⇥n, P = g(G0), (4.1)

where P is the predicted class scores with the input G0.

58 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

Algorithm 1 GNN-based Knowledge Amalgamation from Heterogeneous Teachers

Input: T = {Ti}Mi=1: M trained teacher GNNs; G = {Gk}Kk=1: unlabeled graph samples.
Output: S: Target versatile and lightweight student GNN.

1: Set Cmax as the maximum feature dimension in G;
2: Initilize student model S;
3: for m = 1 to M do
4: // Obtain topological representation and soft labels from Teacher Tm

5: Feed G with matched input dimensions into Tm;
6: Compute topological representation FTm by Eq. 4.1;
7: Compute the soft labels PTm from the output layer of teacher Tm;
8: // Obtain topological representation and output predictions from Student S
9: Feed the same G into S and process G with slimmable graph convolutions in S;

10: Compute topological representation FS by Eq. 4.1;
11: Compute soft labels PS from the output layer of S;
12: // Compute two losses
13: Compute LTm

topology from FTm and FS by Eq. 4.2;
14: Compute LTm

soft from PTm and PS ;
15: end for
16: Compute total loss over {Ti}Mi=1 by Eq. 4.3;
17: Optimize S with Adam for epochs.

Based on Eq. 4.1, given a set of pre-trained teacher GNNs {T }, we propose a topological

semantics alignment loss for knowledge amalgamation:

LTi
topology = k

@PS
dS\dTi
@A �

@PTi
dTi

@A k, (4.2)

where dS and dTi represent the set of classes handled by the student S and the i-th teacher Ti,

respectively. PS
dS\dTi

represents a subset of the student’s predicted class scores corresponding

to those of the teacher Ti, thus leading to a teacher-aware topological representation for

knowledge amalgamation. The total topological alignment loss can then be computed as the

sum of Eq. 4.2 over multiple teachers: Ltopology =
P

i L
Ti
topology.

For implementations, there are two specific issues to be considered when using the naive

computation method in Eq. 4.1 to obtain TAM. Firstly, there is a lack of a unified approach

for computing the derivative of network outputs with respect to the adjacency matrix for

heterogeneous GNN architectures like GCN and GAT. Different types of GNNs have different

ways to incorporate the adjacency matrix in information aggregations, leading to inconsistent

ways to obtain TAM.

4.3 PROPOSED METHOD 59

Thus, we devise here a unified implementation method to compute TAM across various GNN

architectures. Our idea is to first construct unary edges within the network based on the

adjacency matrix, where the corresponding edge features are all equal to 1. The constructed

unary edges are then involved in the graph computations by multiplying with the node features

in aggregating features from neighbors. In this way, the proposed TAM in Eq. 4.1 can be

equally obtained by directly computing the edge gradients of the constructed unary edges, of

which the computation flow is shown as the red arrows in Fig. 4.2.

The other issue in implementations is related to the scale of the computed unary edge gradients.

We experimentally observe that for some teacher GNNs, the obtained gradients could be large

in magnitude, leading to a relatively large topological semantics alignment loss that would

dominate other loss terms at the initial stage of training. As a result, the convergence speed

of the student GNN would be slowed down. To address this issue, we propose to perform

topological-aware edge gradient normalization before computing the topological semantics

alignment loss. Specifically, we firstly compute the mean µi({F}) and the standard deviation

�i({F}) of the unary edge gradients around each center node vi. The normalized unary edge

gradients around vi can then be obtained by computing {F}�µi

�i+✏ , where ✏ is a constant that

avoids zero denominator.

4.3.4 Loss Function and Training Strategy

The total loss function for amalgamating knowledge from heterogeneous teachers can be

formulated as:

Ltotal = Lsoft + �Ltopology, (4.3)

where Lsoft is the soft target loss computed as the mean squared error among the soft

predictions from the student and the heterogeneous teachers, which is shown as the soft target

learning (STL) module in Fig. 4.2. The definition of Ltopology can be found in Sect. 4.3.3.

We also propose a training strategy, tailored for the proposed approach. As a whole, the de-

tailed process of training a student GNN model from multiple heterogeneous teacher GNNs is

60 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

Student w/o TSA Student w/ TSA Student w/o TSA Student w/ TSA

Seg:

Cls: Guitar Knife Guitar Lamp Lamp Lamp

Table Ear Phone Ear Phone Aero Aero Aero

Table Table Table Chair Chair Chair

Ear Phone Ear Phone Ear Phone Lamp Lamp Lamp

Seg:

Cls:

Seg:

Cls:

Seg:

Cls:

{Teacher_Seg,
Teacher_Cls}

{Teacher_Seg,
Teacher_Cls}

FIGURE 4.5: Visualization results of joint part segmentation (Seg) and clas-
sification (Cls). From left to right: the results of the learned student GNN
without the proposed topological semantics alignment (TSA) module, those
of the student with TSA, and the results of the two teacher GNNs. We use
red texts to highlight the misclassified outputs. For some cases, our student
GNN even achieves results superior to those of the teachers, as shown in the
classification result of Knife and the segmentation results of Ear Phone.

concluded in Alg. 1. For each iteration, we accumulate the loss from all heterogeneous teach-

ers and jointly optimize the student model, so as to make sure that the student simultaneously

learns from all the teachers.

4.4 Experiments

To evaluate the performance of the proposed approach, we conduct experiments on seven

publicly available benchmarks across various tasks, including node classifications, point cloud

classifications and part segmentation. Here, we clarify that in the experiments, our goal is

not to achieve the state-of-the-art performance on each benchmark, but rather transferring as

much as knowledge from heterogeneous teachers.

4.4 EXPERIMENTS 61

4.4.1 Experimental Settings

Datasets and Implementation Details. We evaluate the proposed knowledge amalgamate

method on seven datasets across various tasks. Specifically, for multi-label node classification,

we use protein-protein interaction (PPI) dataset [226], containing biological graphs with

nodes labeled with various protein functions. Each node can concurrently have several labels.

We further divide PPI into two subsets, termed as PPI_Set1 and PPI_Set2 with 60 and 61

biological labels, respectively, which are used to train two corresponding teachers. The

student GNN aims to amalgamate the knowledge from the two teachers, capable of predicting

all 121 labels.

For the amalgamation of single-label node classification models, we adopt Amazon Computers

(10 classes) and Amazon Photo (8 classes) datasets [112], where the nodes represent various

goods, labeled by the corresponding product categories. We randomly split the dataset with

a ratio of 2:2:6 for training, validation and testing, respectively. We also use three citation

network datasets for single-label node classification, i.e., Cora (7 classes), Citeseer (6 classes)

and Pubmed (3 classes) [141]. The papers involved in these three datasets are all scientific

publications, but with different subjects. We adjust the training/validation/testing split for the

training of teachers in the supervised scenario, as is also done in [17].

TABLE 4.1: Results of amalgamating knowledge from multi-label node clas-
sifications GAT models, in terms of micro-averaged F1 score. The obtained
student achieves competitive performance compared with the teachers, yet
with a moderately compact size.

Methods Model Size PPI_Set1 PPI_Set2
Teacher 1 11.61M 98.73 N/A
Teacher 2 11.56M N/A 98.62
Student_{MTL+AT} [205] 14.57M 97.03 96.99
Student_{MTL+LSP} [188] 14.57M 97.27 97.22
Student_Ours (w/o TSA) 14.57M 97.95 97.98
Student_Ours (w/ TSA) 14.57M 98.44 98.42

62 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.2: Results of amalgamating teachers with heterogeneous GNN
architectures, in terms of micro-averaged F1 score.

Type Teacher 1 (GAT) Teacher 2 (GAT) Student (GAT)
Task {PPI_1} {PPI_2} {PPI_1, PPI_2}
F1 Score 98.73 98.62 98.44 / 98.42
Type Teacher 1 (GCN) Teacher 2 (GAT) Student (GAT)
Task {PPI_1} {PPI_2} {PPI_1, PPI_2}
F1 Score 69.48 98.62 70.01 / 98.01
Type Teacher 1 (GAT) Teacher 2 (GCN) Student (GAT)
Task {PPI_1} {PPI_2} {PPI_1, PPI_2}
F1 Score 98.73 63.62 98.05 / 62.96
Type Teacher 1 (GCN) Teacher 2 (GCN) Student (GAT)
Task {PPI_1} {PPI_2} {PPI_1, PPI_2}
F1 Score 69.48 63.62 69.64 / 62.51

For knowledge amalgamation from point cloud classification and part segmentation models,

we use the ShapeNet part dataset [197], containing 16, 881 shapes from 16 categories, annot-

ated with 50 parts in total. The labeled categories and annotated parts are used to pre-train the

teacher classification model and segmentation model.

For the unlabeled data sampling for the student GNN, we clarify that for a fair comparison

with the pre-trained teacher GNNs, the training of the student in our experiments still uses the

same training samples as those of the teachers, but without accessing ground truth labels, as

explained in Sect. 4.2. Sampling more unlabeled graph samples from external datasets for

training could further improve the performance of the learned student GNN.

We use heterogeneous architectures for the teachers and students in the task of node classi-

fications, such as GCN [82] and GAT [153]. In particular, all the student GNNs are built

with the proposed slimmable graph convolutional layer, so as to support graph inputs of

varying feature dimensions. For the task of point cloud classification and part segmentation,

we adopt the architecture of PointNet++ [127] for both the teachers and the student. The

hyperparameter ✏ is set to 10�5.

Comparison Methods. Since there are few existing knowledge amalgamation methods

tailored for GNNs in the literature, we derive two possible solutions based on [205, 188]

4.4 EXPERIMENTS 63

TABLE 4.3: Results of amalgamating knowledge from point cloud classifica-
tion and part segmentation models. The learned student GNN is even more
compact than each of the teacher GNNs, yet competent to simultaneously
handle all the tasks of teachers.

Method Model mAcc mIoU Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
Size (Cls) (Seg) Phone Board

shapes – – – 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Teacher_Cls 17.69M 97.83 N/A – – – – – – – – – – – – – – – –
Teacher_PartSeg 17.01M N/A 81.72 82.34 81.92 86.12 78.33 90.54 72.18 91.25 86.09 83.57 95.48 70.63 94.98 81.98 55.99 73.73 82.34
Student_{MTL+AT} 6.37M 97.06 77.58 80.40 72.50 81.84 75.58 89.66 64.24 89.92 85.02 82.29 95.39 55.94 93.20 78.20 44.13 70.48 82.52
Student_{MTL+LSP} 6.37M 97.30 77.79 81.04 74.07 79.21 75.97 89.32 59.89 90.15 86.73 82.61 95.40 55.97 93.29 78.80 47.04 72.67 82.52
Student_Ours (w/o TSA) 6.37M 97.23 77.76 80.62 73.08 83.41 76.07 89.54 60.37 90.37 85.19 81.74 95.17 55.32 91.82 79.50 46.94 72.44 82.57
Student_Ours (w/ TSA) 6.37M 97.67 78.96 81.82 76.07 81.17 76.91 89.59 70.56 90.17 85.69 82.95 94.92 57.06 94.02 79.24 48.05 72.67 82.50

and the multi-task learning (MTL) scheme for comparisons. Specifically, upon the idea

of attention transfer method [205] and MLT scheme, we devise a “Student_{MTL+AT}”

method that amalgamates knowledge by matching the attention maps with heterogeneous

teacher GNNs. Furthermore, we take the local structure preserving (LSP) module from [188]

and develop a “Student_{MTL+LSP}” knowledge amalgamation approach by replacing our

topological semantics alignment module with LSP. Specifically, “Student_{MTL+LSP}” uses

the pairwise feature distance between every two connected nodes as the structure-aware

representation to perform topological alignment, as mentioned as the possible solution in

Sect. 4.3.3.

TABLE 4.4: Results of amalgamating single-label node classification models,
in terms of average classification accuracies (%).

Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5
Type GCN GCN GAT GAT GAT
Task {Computers} {Photo} {Cora} {Citeseer} {Pubmed}
Model Size 25.84K 25.06K 739.6K 1.901M 259.8K
Accuracy 89.36 92.48 87.90 79.00 85.70

Student 1 Student 2
Type GCN GAT
Task {Computers, Photo} {Cora, Citeseer, Pubmed}
Model Size 20.29K 1.450M
Accuracy 88.81 / 91.79 87.10 / 77.30 / 83.20

64 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

4.4.2 Results

Amalgamating Node Classification Models. Tab. 4.1 shows the results of amalgamating two

pre-trained multi-label node classification model. In particular, to validate the effectiveness of

the proposed TSA module, we conduct the ablation study by only using soft target learning for

amalgamation, i.e., setting � = 0 in Eq. 4.3, which is termed as the method of “Student_Ours

(w/o TSA)” in the table.

The student model learned with the proposed method, as shown in Tab. 4.1 (Student_Ours

(w/ TSA)), achieves gratifying performance on par with that of the two teacher models,

and meanwhile maintains a compact model size. Also, the results in the last two lines

of Tab. 4.1 validate the effectiveness of the proposed TAM-based topological semantics

alignment module, where Student_Ours (w/ TSA) outperforms Student_Ours (w/o TSA) by

about 0.5 in F1 score. The proposed knowledge amalgamation method also achieves favorable

performance compared with the two derived comparison methods.

In Tab. 4.2, we also show the corresponding multi-label classification results by amalgamating

knowledge from various types of GNN models. The notation “{PPI_1}” means that the

teacher can only handle the task of PPI_Set1, while “{PPI_1, PPI_2}” indicates the capability

of simultaneously handling the two tasks. Despite the heterogeneous types of trained teachers,

the obtained student model still achieves encouraging results, sometimes even superior to

those of the teacher, as shown in the sixth and the last rows of Tab. 4.2 for the specific task of

PPI_1.

Tab. 4.4 shows the knowledge amalgamation results from pre-trained single-label node

classification teacher GNNs. The first student model, Student 1 in Tab. 4.4, is obtained by

amalgamating two teachers that handle the classification tasks of Computers and Photos,

respectively. With a lightweight architecture which is even smaller than every single teacher,

the obtained Student 1 still yields competitive results compared with those of the teachers.

We also perform knowledge amalgamation on three teachers that deal with Cora, Citeseer,

and Pubmed, respectively. The obtained Student 2 also delivers comparable results with those

of teachers, yet maintaining a more compact size.

4.5 ADDITIONAL DETAILS AND RESULTS 65

Amalgamating Point Cloud Classification and Segmentation Models. The results of

amalgamating pre-trained classification and part segmentation teacher models are shown

in Tab. 4.3. We also demonstrate in Fig. 4.5 the corresponding visualization results of the

teachers and student. With the proposed TSA module, the learned versatile student gains

boost by at least 0.4 in mean class accuracy and 1.2 in mean class IoU. as shown in the

last two lines of Tab. 4.3. Also, as can be observed in Fig. 4.5, the learned lightweight and

multi-talented student can sometimes achieve even superior performance to those of the

cumbersome teachers, demonstrating that the knowledge from one teacher can potentially

benefit the task of the other.

4.5 Additional Details and Results

This section presents additional results obtained from the amalgamation of heterogeneous

graph neural networks. Firstly, it showcases the outcomes of amalgamating graph regression

models. Subsequently, it provides further results from the amalgamation of node classification

models, as well as point cloud classification and part segmentation models. Furthermore,

this section conducts thorough ablation studies to validate the effectiveness of the proposed

knowledge amalgamation method. These studies encompass different dataset splitting proto-

cols, diverse network architectures, various combinations of teacher models, and a range of

heterogeneous types of graph neural networks (GNNs).

4.5.1 Amalgamating Graph Regression Models

To evaluate the performance of the proposed method beyond classifications, in this section,

we perform extended experiments on the task of graph-property regression.

Implementation Details. To pre-train two teacher models, we split the QM7b dataset with a

ratio of 3 : 1 : 6 for training, validation, and testing, respectively. Also, following [41], each

target is normalized to have mean 0 and variance 1. Furthermore, we divide the 14 regression

tasks in QM7b into two subsets. Each teacher is trained to predict 7 target properties, and the

66 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.5: Teacher and student network architectures for graph regressions
on QM7b dataset.

Models Layers Attention Heads Hidden Output
Teacher 1 {QM7b_Set1} 3 {1, 1, 1} 256 7
Teacher 2 {QM7b_Set2} 3 {1, 1, 1} 256 7
Student {QM7b_Set1, QM7b_Set2} 3 {1, 1, 1} 128 14

TABLE 4.6: Results of amalgamating knowledge from two graph regression
models in terms of the mean absolute error (MAE). Each teacher model
handles regressions of 7 different properties. Our lightweight student is able
to simultaneously deal with regressions of 14 properties.

Properties Teacher 1 Student Properties Teacher 2 Student
E (PBE0) 0.195 0.193 LUMO (PBE0) 0.798 0.804
↵ (PBE0) 0.919 0.890 LUMO (ZINDO) 0.761 0.863
↵ (SCS) 0.662 0.729 IP (ZINDO) 0.618 0.594
HOMO (GW) 0.814 0.836 EA (ZINDO) 0.763 0.875
HOMO (PBE0) 0.724 0.728 E⇤

1st (ZINDO) 0.630 0.603
HOMO (ZINDO) 0.660 0.666 E⇤

max (ZINDO) 0.599 0.685
LUMO (GW) 0.804 0.856 Imax (ZINDO) 0.486 0.580

Model Size: 291K 92K Model Size: 291K 92K

student model is therefore expected to handle all 14 targets without ground-truth labels. The

network architectures of the teachers and student are shown in Tab. 4.5.

Results. Tab. 4.6 shows the experimental results of knowledge amalgamation from two regres-

sion teacher models. The obtained student model, as can be observed, achieves competitive

performance in almost all target properties, as compared to the results of the teachers. Also,

our student model is trained without any human annotation, yet with a more lightweight

architecture than any of the teachers.

4.5 ADDITIONAL DETAILS AND RESULTS 67

TABLE 4.7: Summary of the teacher and student network architectures for
amalgamating knowledge from multi-label node classification models, corres-
ponding to Tab. 4.1 and Tab. 4.2.

Models Layers Attention Heads Input Hidden Output
Teacher 1 (GAT) {PPI_Set1} 3 {4, 4, 6} 50 256 61
Teacher 2 (GAT) {PPI_Set2} 3 {4, 4, 6} 50 256 60
Teacher 1 (GCN) {PPI_Set1} 3 – 50 256 61
Teacher 2 (GCN) {PPI_Set2} 3 – 50 256 60

Student V1 {PPI_Set1, PPI_Set2} 3 {4, 4, 6} [1, 50] 256 121
Student V2 {PPI_Set1, PPI_Set2} 5 {2, 2, 2, 2, 2} [1, 50] 68 121
Student V3 {PPI_Set1, PPI_Set2} 3 {2, 2, 2} [1, 50] 68 121

4.5.2 Amalgamating Node Classification Models

4.5.2.1 Multi-label Node Classification

Implementation Details. We first randomly split all the labels of PPI into two sets, termed

as PPI_Set1 (containing 61 labels) and PPI_Set2 (containing 60 labels). Then we pre-train

two teacher GNNs on PPI_Set1 and PPI_Set2, respectively. The goal of our student model

is to concurrently recognize all 121 labels covered by the two teachers. Tab. 4.7 shows

the architecture details of the student and teacher models for the task of multi-label node

classification on the PPI dataset. The architecture of Student V1 is used in Tab. 4.1 and

Tab. 4.2. We also perform extensive ablation studies by designing additional two student

architectures, termed as Student V2 and Student V3. In training, the batch size is set to 2. For

Student V1, the learning rate is set to 1⇥ 10�4; for Student V2 and V3, the learning rate is

set to 0.005. All the student models are trained for 1500 epochs.

Ablation Studies. We show in Tab. 4.8 the results of using different student architectures and

also different types of teacher GNNs, including GCN and GAT. In general, the performance

of Student V1 is superior to that of Student V2 and Student V3, which is not unexpected since

the model size of Student V1 is much larger than the other two architectures. By comparing

the results of Student V2 and Student V3, we can observe that in the case of fewer hidden

features and attention heads, the student can boost performance by a large margin through

68 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.8: Ablation studies of amalgamating knowledge from multi-label
node classifications models, in terms of F1 score.

Methods Model Size PPI_Set1 PPI_Set2 Methods Model Size PPI_Set1 PPI_Set2
Teacher 1 (GAT) 11.61M 98.73 N/A Teacher 1 (GCN) 379.3K 69.48 N/A
Teacher 2 (GAT) 11.56M N/A 98.62 Teacher 2 (GCN) 378.3K N/A 63.62
Student_V1 14.57M 98.44 98.42 Student_V1 14.57M 69.64 62.51
Student_V2 744.6K 96.16 96.17 Student_V2 744.6K 69.65 63.15
Student_V3 445.0K 90.73 90.46 Student_V3 445.0K 69.14 61.93
Teacher 1 (GAT) 11.61M 98.73 N/A Teacher 1 (GCN) 379.3K 69.48 N/A
Teacher 2 (GCN) 378.3K N/A 63.62 Teacher 2 (GAT) 11.56M N/A 98.62
Student_V1 14.57M 98.05 62.96 Student_V1 14.57M 70.01 98.01
Student_V2 744.6K 94.81 65.80 Student_V2 744.6K 70.09 95.35
Student_V3 445.0K 90.06 63.32 Student_V3 445.0K 70.24 89.65

using more layers in the corresponding architecture. Also, from the results of amalgamating

heterogeneous types of teacher GNNs, it can be observed that different student architectures

achieve similar performance for amalgamating GCN models.

Visualizations. Fig. 4.6 shows the visualization results of the proposed topological attribute

maps (TAM) for both the teacher GNNs and the student GNN, which are used in the topolo-

gical semantics alignment module in knowledge amalgamation. The proposed TAM can be

extracted in a teacher-aware manner, which is demonstrated as “Student {PPI_Set1}” and

“Student {PPI_Set2}” in Fig. 4.6. Specifically, the TAM “Student {PPI_Set1}” is derived by

only using a subset of the output class scores, corresponding to {PPI_Set1}. A similar strategy

is also used to compute the TAM “Student {PPI_Set2}”. The TAMs of the learned student

GNN, as can be observed in the second and fourth columns of Fig. 4.6, are similar to those of

the corresponding teacher GNNs, meaning that the student GNN has learned the importance of

each connection for the corresponding task of the teacher GNNs. The visualizations shown in

Fig. 4.6 can partially explain the results in Tab. 4.1, where the proposed topological semantics

alignment module can boost the performance of the learned student model in knowledge

amalgamation.

4.5 ADDITIONAL DETAILS AND RESULTS 69

Teacher 1 {PPI_Set1} Student {PPI_Set1} Teacher 2 {PPI_Set2} Student {PPI_Set2}

FIGURE 4.6: Visualizations of the scaled topological attribution map (TAM)
of two teacher GNNs and the learned student GNN, corresponding to Tab. 4.1.
The two teachers here are pre-trained multi-label node classification models
that handle a different set of classes (i.e., {PPI_Set1} and {PPI_Set2}). Colors
encode the importance of each connection for the corresponding task of each
teacher.

4.5.2.2 Single-label Node Classification

Implementation Details. For the task of amalgamating single-label node classification

models, we primarily use five datasets, including Amazon Computers, Amazon Photo, Cora,

Citeseer, and Pubmed datasets. For the dataset splittings, since there is no standard splitting

protocol for Amazon Computers and Amazon Photo datasets, in our experiment, we design

three dataset splitting methods: 1) Training Set : Validation Set : Testing Set = 2 : 2 : 6;

2) Training Set : Validation Set : Testing Set = 5 : 2 : 3; 3) Training Set : Validation Set :

Testing Set = 6 : 2 : 2. For the dataset splittings of the Cora, Citeseer, and Pubmed datasets,

70 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.9: Summary of teacher and student network architectures for the
task of node classification on Amazon Computers and Amazon Photo datasets.

Models Layers Input Hidden Output
Teacher 1 {Amazon Computers} 2 767 8 10
Teacher 2 {Amazon Photo} 2 745 8 8
Student {Amazon Computers, Amazon Photo} 3 [1, 767] 6 18

we use the splitting protocol in [17]. Specifically, for Cora, we use 1208 samples for training,

500 samples for validation, and 1000 samples for testing; for Citeseer, we use 1827 samples

for training, 500 samples for validation, and 1000 samples for testing; for Pubmed, 18217

samples are used for training, 500 samples are used for validation, and 1000 samples are

used for testing. The network architectures of the student and teacher models on Amazon

Computers and Amazon Photo are shown in Tab. 4.9, while those on Cora, Citeseer, and

Pubmed are provided in Tab. 4.10.

More Results. Tab. 4.11 shows the quantitative results of different methods, including

MTL+AT [205], MLT+LSP [188], the proposed method without the topological semantics

alignment module, and the proposed approach with the proposed topological semantics

alignment module. Also, to evaluate the performance of the proposed slimmable graph

convolutional layer, we devise a possible solution to the challenge of varying input dimensions

of graph data. Specifically, we first use principal components analysis (PCA) to conduct

feature dimension reductions. As a result, a naive GNN architecture can simultaneously

process the data with distinct feature dimensions in different datasets. However, this possible

solution is prone to information loss due to feature reductions, especially for the input graphs

with a large difference in feature dimensions. Thus, the obtained student model is limited in

performance, which is demonstrated in the seventh row of Tab. 4.11.

Also, we show in Tab. 4.12 more results with different dataset splitting protocols. The student

models learned with the proposed knowledge amalgamation method, as can be observed from

Tab. 4.12, achieves gratifying results on par with those of the teachers with all three different

dataset splittings. The versatile student model can sometimes even achieve performance

superior to that of the teachers. For example, Student 2 and Student 3 outperform the

corresponding teachers on the classification of the category set Computers.

4.5 ADDITIONAL DETAILS AND RESULTS 71

TABLE 4.10: Summary of teacher and student network architectures for the
task of single-label node classification on Cora, Citeseer, and Pubmed datasets.

Models Layers Attention Heads Input Hidden Output
Teacher 1 {Cora} 2 {8, 1} 1433 8 7
Teacher 2 {Citeseer} 2 {8, 1} 3703 8 6
Teacher 3 {Pubmed} 2 {8, 1} 500 8 3
Student {Cora, Citeseer} 3 {8, 1} [1, 3703] 6 13
Student {Cora, Pubmed} 3 {8, 1} [1, 1433] 6 10
Student {Citeseer, Pubmed} 3 {8, 1} [1, 3703] 6 9
Student {Cora, Citeseer, Pubmed} 3 {8, 1} [1, 3703] 6 16

Tab. 4.13 shows the results of amalgamating knowledge from the teacher GNNs trained on

Cora, Citeseer, and Pubmed datasets. For a more comprehensive evaluation, we show the

knowledge amalgamation results of all the combinations of the three teacher GNNs, i.e.,

{Cora, Citeseer}, {Cora, Pubmed}, {Citeseer, Pubmed}, and also {Cora, Citeseer, Pubmed}.

The corresponding learned student models, as shown in the sixth row of Tab. 4.13, competent

to handle all different tasks of the heterogeneous teachers.

Visualizations. In Fig. 4.7, we also visualize the features from the intermediate layers

of the teachers and the student using t-SNE. The representations of the obtained student

model exhibit discernible clusterings, yet with a more compact and lightweight architecture

compared with the teachers.

TABLE 4.11: Results of amalgamating single-label node classification mod-
els on Amazon Computers and Amazon Photo dataset, in terms of average
classification accuracies (%).

Methods Amazon-Computers Amazon-Photo
Teacher 1 89.36 N/A
Teacher 2 N/A 92.48
Student_{MTL+AT} [205] 88.44 89.85
Student_{MTL+LSP} [188] 87.99 91.37
Student_Ours (w/o TSA, w/ Slimmable GraphConv) 88.06 91.22
Student_Ours (w/ TSA, w/ PCA) 88.04 89.56
Student_Ours (w/ TSA, w/ Slimmable GraphConv) 88.81 91.79

72 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.12: Results of amalgamating node classification models on
Amazon Computers and Amazon Photo with various dataset splittings.

Splitting Train : Val : Test = 2 : 2 : 6 Train : Val : Test = 5 : 2 : 3 Train : Val : Test = 6 : 2 : 2

Type Teacher 1 Teacher 2 Teacher 3 Teacher 4 Teacher 5 Teacher 6
Task {Computers} {Photo} {Computers} {Photo} {Computers} {Photo}
Accuracy 89.36 92.48 89.70 93.99 89.60 94.18
Type Student 1 Student 2 Student 3
Task {Computers, Photo} {Computers, Photo} {Computers, Photo}
Accuracy 88.81 / 91.79 89.84 / 92.81 90.22 / 92.35

4.5.3 Amalgamating Point Cloud Classification and Segmentation

Models

Implementation Details. In additional to amalgamating graph regression models and node

classification models, we also conduct extensive experiments by amalgamating knowledge

from point cloud classification model and part segmentation model. The dataset we used

here is ShapeNet part dataset, where each 3D shape has the labels of both the category

and the segmentation parts. For the network architecture, we exploit PointNet++ [127],

specifically with single-scale grouping at each level as our backbone. In particular, based

on the Euclidean distance among different points [167], the used architecture of PointNet++

starts by establishing graphs from 3D shapes. Then, PointNet++ employs graph coarsening

at each layer. Notably, the graphs in PointNet++ are constructed with point coordinates. As

such, the established graphs are, in fact, fixed during training. The aggregation method in

PointNet++ is a max operation. Tab. 4.14 shows the detailed architectures of the teachers and

TABLE 4.13: Results of amalgamating single-label node classification mod-
els on Cora, Citeseer, and Pubmed datasets, in terms of average classification
accuracies (%). We show the knowledge amalgamation results of all the
combinations of the three teachers.

Type Teacher 1 Teacher 2 Teacher 1 Teacher 3 Teacher 2 Teacher 3 Teacher 1 Teacher 2 Teacher 3
Task {Cora} {Citeseer} {Cora} {Pubmed} {Citeseer} {Pubmed} {Cora} {Citeseer} {Pubmed}
Accuracy 87.90 79.00 87.90 85.70 79.00 85.70 87.90 79.00 85.70
Type Student 1 Student 2 Student 3 Student 4
Task {Cora, Citeseer} {Cora, Pubmed} {Citeseer, Pubmed} {Cora, Citeseer, Pubmed}
Accuracy 87.20 / 77.30 86.90 / 83.40 77.00 / 83.60 87.10 / 77.30 / 83.20

4.5 ADDITIONAL DETAILS AND RESULTS 73

(a) Teacher {Amazon Computers} (b) Teacher {Amazon Photo}

(c) Student {Amazon Computers, Amazon Photo}

FIGURE 4.7: A t-SNE plot of the features from the first hidden layer of the
teachers and the student on Amazon Computers and Amazon Photo dataset.

TABLE 4.14: Summary of teacher and student network architectures for the
task of point cloud classification and part segmentation.

Models Layers MLPs K
Teacher 1 {Classification} 6 {[64, 64, 128], [128, 128, 256], [256, 512, 1024]} [32, 64, 1]
Teacher 2 {Segmentation} 8 {[64, 64, 128], [128, 128, 256], [256, 512, 1024]} [32, 64, 1]
Student {Classification, Segmentation} 11 {[32, 32, 64], [64, 64, 128], [128, 256, 512]} [32, 64, 1]

the student. For the sake of clarity, we only show the MLPs in the set abstraction layers. K

represents the number of points that belong to the neighborhood of each central point.

Ablation Studies. We perform extensive ablation studies on the architectures of the learned

student GNN. The corresponding results are shown in Tab. 4.15. Specifically, we report

the results of the learned student model with more channels, more layers, and more MLPs,

respectively. It can be observed that the student GNN with more channels delivers gratifying

results compared with other architectures. However, the corresponding student model has a

much larger size than the others, almost four times larger than the baseline model shown in the

fourth row of Tab. 4.15. By contrast, adding more layers or more MLPs may not enlarge the

74 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

TABLE 4.15: Ablation studies on the task of amalgamating knowledge from
point cloud classification and part segmentation models.

Method Model mAcc mIoU Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
Size (Cls) (Seg) Phone Board

Teacher_Cls 17.69M 97.83 N/A – – – – – – – – – – – – – – – –
Teacher_PartSeg 17.01M N/A 81.72 82.34 81.92 86.12 78.33 90.54 72.18 91.25 86.09 83.57 95.48 70.63 94.98 81.98 55.99 73.73 82.34
Student 6.37M 97.67 78.96 81.82 76.07 81.17 76.91 89.59 70.56 90.17 85.69 82.95 94.92 57.06 94.02 79.24 48.05 72.67 82.50
Student (w/ more Channels) 24.96M 97.61 81.12 82.02 82.46 8712 78.23 90.18 67.67 90.92 86.36 83.42 94.99 68.08 94.43 81.02 53.19 74.72 83.14
Student (w/ more Layers) 9.34M 97.33 76.99 79.99 73.43 78.84 74.28 89.05 65.00 89.38 84.32 81.61 95.16 56.80 91.79 76.26 42.37 71.45 82.07
Student (w/ more MLPs) 7.14M 97.39 78.41 80.78 76.78 79.21 76.33 89.61 69.72 90.32 85.82 83.01 95.33 570.8 93.91 77.94 44.29 71.89 82.57

model too much. However, we can observe that more layers or more MLPs do not necessarily

contribute to improved classification and segmentation performance.

More Qualitative Results. In Fig. 4.8, we show more qualitative results of joint classification

and part segmentation, in correspondence to Fig. 4.5. The corresponding quantitative results

are shown in Tab. 4.3. We use red texts in Fig. 4.8 to highlight the misclassified results. The

learned student models can sometimes achieve results superior to those of the teachers, as

can be observed from the first three rows of Fig. 4.8 where the teacher model misclassifies

the input point clouds of class aero, pistol, and mug while the learned student generates the

correct labels. Also, in the fifth, sixth, and seventh rows, the learned student outperforms the

corresponding teacher in the part segmentation results. These observations demonstrate that

the knowledge from one teacher can potentially benefit the task of the other.

To validate the effectiveness of the proposed topological semantics alignment (TSA) module,

in Fig. 4.8, we also demonstrate the results of the student with TSA and those of the student

without TSA. As shown in Fig. 4.8, the proposed TSA module can boost the performance

of both the point cloud classification and part segmentation. For example, in the third row

of Fig. 4.8, “Student w/o TSA” misclassifies “Mug” into “Lamp”, whereas the student with

TSA generates the correct prediction. Moreover, for most cases in Fig. 4.8, “Student w/ TSA”

delivers superior results in part segmentation, compared with “Student w/o TSA”.

4.6 Summary

This chapter introduces a novel model reusing task tailored for heterogeneous GNNs. Our

goal is to learn a versatile and lightweight student GNN that masters the complete set

4.6 SUMMARY 75

Pistol Pistol Lamp Aero Aero Aero

Seg:

Cls:

Lamp Mug Lamp Lamp Lamp Lamp

Seg:

Cls:

Aero Aero Table Aero Aero SkateboardCls:

Ear Phone Ear Phone Ear Phone

Seg:

Cls:

Cap Cap Cap Aero Aero Aero

Seg:

Cls:

Seg:

Chair Chair Chair

Ear Phone Ear Phone Ear Phone Table Table Table

Seg:

Cls:

Table Table Table Skateboard Skateboard Skateboard

Seg:

Cls:

Knife Knife Knife Lamp Lamp Lamp

Seg:

Cls:

Student w/o TSA Student w/ TSA Student w/o TSA Student w/ TSA{Teacher_Seg,
Teacher_Cls}

{Teacher_Seg,
Teacher_Cls}

FIGURE 4.8: Visualization results of joint part segmentation (Seg) and clas-
sification (Cls). From left to right: the results of the learned student GNN
without the proposed topological semantics alignment (TSA) module, those of
the student with TSA, and the results of the two teacher GNNs. We use red
texts to highlight the misclassified outputs.

76 4 MODEL-DRIVEN EFFICIENT LEARNING WITH KNOWLEDGE AMALGAMATION

of expertise of multiple heterogeneous teachers, yet without human-labeled annotations.

Towards this end, we identified two key challenges, and propose a dedicated slimmable graph

convolutional operation as well as a novel topological attribution map (TAM) to solve the

dilemma. Experiments on single- and multi-label classification and point cloud segmentation-

classification demonstrate that, the obtained student GNN, with a moderately compact size,

achieves performances on par with or even superior to those of the individual teachers on

their specialized tasks. In our future work, we will further explore knowledge amalgamation

from heterogeneous teachers specializing in cross-domain tasks, like semantic segmentation

and object tracking. We will also strive to generalize the proposed TAM to other tasks beyond

knowledge amalgamation.

CHAPTER 5

Data-Model-Driven Efficient Learning with

Meta-Aggregator

The previous two chapters delved into the realms of data-driven and model-driven efficient

learning, examining them individually. In this chapter, the focus shifts towards the pursuit

of joint data-model-driven efficient representation learning. To accomplish this, this chapter

presents a tailored binarization framework designed specifically for GNNs. The proposed

framework aims to enable the simultaneous binarization of input graph data and model

parameters, facilitating lightweight inference. To achieve this goal, this chapter begins by

developing a vanilla 1-bit GNN framework that binarizes both the GNN parameters and

the graph features. Despite the lightweight architecture, it was observed that this vanilla

framework suffered from insufficient discriminative power in distinguishing graph topologies,

leading to a dramatic drop in performance. This discovery motivates us to devise meta aggreg-

ators to improve the expressive power of vanilla binarized GNNs, of which the aggregation

schemes can be adaptively changed in a learnable manner based on the binarized features. To-

wards this end, this chapter proposes two dedicated forms of meta neighborhood aggregators,

an exclusive meta aggregator termed as Greedy Gumbel Neighborhood Aggregator (GNA),

and a diffused meta aggregator termed as Adaptable Hybrid Neighborhood Aggregator (ANA).

GNA learns to exclusively pick one single optimal aggregator from a pool of candidates,

while ANA learns a hybrid aggregation behavior to simultaneously retain the benefits of

several individual aggregators. Furthermore, the proposed meta aggregators may readily serve

as a generic plugin module into existing full-precision GNNs. Experiments across various

domains demonstrate that the proposed method yields results superior to the state of the art.

77

78 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

5.1 Introduction

Graph neural networks (GNNs) have recently emerged as the dominant paradigm for learning

and analyzing non-Euclidean data, which contain rich node content information as well

as topological relational information [32, 56, 177]. As such, a massive number of GNN

architectures have been developed [82, 153, 180, 191, 221]. The success of GNNs also triggers

a great surge of interest in applying elaborated graph networks to various tasks across many

domains, such as object detection [55, 43], pose estimation [190], point cloud processing

[88, 167, 129], and visual SLAM [139]. These GNN-based applications, in general, rely

on cumbersome graph architectures to deliver gratifying results. For example, SuperGlue,

a GNN-based feature matching approach, requires 12M network parameters to achieve the

state-of-the-art performance [139].

In practice, however, such applications typically require a compact and lightweight architec-

ture for real-time interaction, especially in resource-constrained environments. In the case of

autonomous driving [116], for example, it is critical to maintain fast and timely responses for

GNN-based SLAM algorithms to handle complex traffic conditions, thereby leading to the

urgent need of compressing cumbersome GNN models. The work of [188], as the first attempt,

leverages knowledge distillation to learn a compact student GNN with fewer parameters. In

spite of the improved efficiency, this approach still relies on the expensive floating-point

operations, let alone a well-performed teacher model pre-trained in the first place.

In this chapter, we strive to make one step further towards ultra lightweight GNNs. Our goal

is to train a customized 1-bit GNN, as shown in Fig. 5.1, that allows for favorable memory

efficiency and meanwhile enjoys competitive performance. We start with developing a naïve

GNN binarization framework, achieved through converting 32-bit features and parameters

into 1-bit ones, followed by leveraging straight-through estimator to optimize the binarized

model. The derived vanilla binarized GNN enjoys favorable memory efficiency; however,

its performance is not encouraging as expected. Through parsing its underlying process, we

identified that the binarization yields limited expressive power, making the model incapable

to distinguish different graph topologies. An illustrating example is shown in Fig. 5.2(a),

5.1 INTRODUCTION 79

(a)

(b)

−3.13
32-bit Feature

0.09
32-bit Weight

−0.15
Pre-defined
Aggregation

Graph

1-bit Feature

1-bit Weight

− + +
+ − +

Floating-Point
Operations

1-bit
Operations

Meta
Aggregation

⋯

⋯

0.24 5.11

0.35

FIGURE 5.1: Illustrations of the computational workflow in (a) conventional
full-precision GNNs and (b) the proposed 1-bit GNNs. In particular, we devise
two meta aggregators for the proposed model, termed as Greedy Gumbel
Aggregator (GNA) and Adaptable Hybrid Aggregator (ANA), that learn to
perform adaptive aggregation in a graph-aware and layer-aware manner.

where a mean aggregator, which is commonly adopted by full-precision GNNs, produce

identical aggregation results for two diversified graph topologies with binarized features,

thereby leading to inferior performances.

Inspired by this discovery, we introduce to the proposed GNN binarization framework a learn-

able and adaptive neighborhood aggregator, so as to alleviate the aforementioned dilemma and

enhance the distinguishability of 1-bit graphs. Unlike existing GNNs that rely on a pre-defined

and fixed aggregator, our elaborate meta neighborhood aggregators enables dynamically select-

ing (Fig. 5.2(b)) or generating (Fig. 5.2(c)) customized input- and layer-specific aggregation

−3

1

−21

−1

1−3

−3

1

0

−1

1−3

−2−1

−1

−3 1

−3

1

−1

−1
+1
+1

+1
−1
+1

∗

−1

Feature Weight

−1

−3 1

+1
−1
−1

−1
+1
+1

∗
FeatureWeight

−3

1

−1

∗: 1-bit Operation : Mean Aggregation

+1
−1
−1

−1
+1
+1

∗
FeatureWeight

: Mean Aggregation : Max Aggregation
: Sum Aggregation

: Diffused Aggregation 1
: Diffused Aggregation 2

(a) (b) (c)

FIGURE 5.2: Example aggregation results of the two graphs with different
topological structures for (a) the conventional pre-defined and fixed aggregator,
(b) the proposed exclusive form of meta aggregators GNA, and (c) the proposed
diffused form of meta aggregators ANA.

80 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

schemes. As such, we explicitly account for the customized characteristics of binarized graph

features, and further strengthen the discriminative power for handling topological structures.

Towards this end, we propose two variants of meta aggregators: an exclusive meta aggregator,

termed as Greedy Gumbel Neighborhood Aggregator (GNA), that adaptively selects an optimal

aggregator in a learnable manner, as well as a diffused meta aggregator, termed as Adaptable

Hybrid Neighborhood Aggregator (ANA), that either approximates a single aggregator or

dynamically generates a hybrid aggregation behavior. Specifically, GNA incorporates the

discrete decisions from the candidate aggregators, conditioned on the individual graph features,

into the gradient descent process by leveraging Greedy Gumbel Sampling. Inevitably, the

performance of GNA is bottlenecked by the individual aggregators in the candidate pool.

Thus, we further devise ANA that enables generating a hybrid aggregator dynamically based

on the input 1-bit graphs. ANA simultaneously preserves the strengths of multiple individual

aggregators, leading to favorable competence to handle the challenging 1-bit graph features.

Moreover, the proposed GNA and ANA can be readily extended as portable modules into the

general full-precision GNN models to enhance the expressive capability.

In sum, our contribution is a novel GNN-customized binarization framework that generates

a 1-bit lightweight GNN model with competitive performance, making it competent for

resource-constrained applications such as edge computing. This is specifically achieved

through an adaptive meta aggregation scheme to accommodate the challenging quantized

graph features. We evaluate the proposed customized framework on several large-scale

benchmarks across different domains and graph tasks. Experimental results demonstrate that

the proposed meta aggregators achieve results superior to the state-of-the-art, not only on the

devised 1-bit binarized GNN models, but also on the general full-precision models.

5.2 Vanilla Binary GNN and Pre-analysis

In this section, we first develop a vanilla binary GNN framework by simply binarizing model

parameters and activations. We then show the limitations of this vanilla binary GNN by

looking into the internal message aggregation process and accordingly develop two possible

5.2 VANILLA BINARY GNN AND PRE-ANALYSIS 81

solutions to address these limitations. Eventually, built upon the possible solutions, we

introduce the idea of the proposed customized GNN binarization framework with the meta

aggregators.

Let G = {V , E} denote a directed/undirected graph with nodes vi 2 V and edges (vi, vj) 2 E ,

where {vj} is the set of neighboring nodes of vi. Each node has an associated node feature

X = [x1 x2 ... xn]. For example, in the task of 3D object classification, x can be set as the 3D

coordinates.

Existing GNNs follow an iterative neighborhood aggregation scheme at each GNN layer,

where each node vi iteratively gathers features from its neighboring nodes {vj} to capture the

structural information [90, 180]. Let X `
i denote the feature vector of the node vi at layer `.

The corresponding updated feature vector X `+1
i in a GNN can then be formulated as:

X `+1
i = f

�
X `

i , {X `
j : (j, i) 2 E}

�
, (5.1)

where X `
j represents the feature associated with the neighboring nodes. f is a mapping

function that takes X `
i as well as X `

j as inputs. The choice of the mapping f corresponds to

different architectures of GNNs.

For the sake of simplicity, we take here graph convolutional network (GCN) proposed by

Kipf and Welling [82] as an example GNN architecture for the following discussions. We

denote Mean as the mean aggregator that computes an average of the incoming messages

and W as the learnable weight matrix for feature transformation. The general GNN form in

Eq. 5.1 can then be instantiated for GCN as: X `+1
i = ReLU

�
W l Mean(j,i)2EX `

j

�
or X `+1

i =

ReLU
�
Mean(j,i)2EW lX `

j

�
, which respectively correspond to the case where aggregation

comes first or comes after the feature transformation step [161].

Vanilla 1-bit GNN Models. We develop a naïve binarized GNN framework to compress

cumbersome GNN models, by directly binarizing 32-bit input features and learnable weights

in the feature transformation step into 1-bit ones.

82 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

Specifically, for the case of vanilla binary GCN, the forward propagation process can be

modeled as:

Net Forward: wb = sign(w) =

8
<

:

+1, w � 0

�1, w < 0
, (5.2)

where w represents the element in the learnable weight matrix W . We also binarize the graph

features X in the same manner, by replacing w in Eq. 5.2 with the feature element x.

During the backward propagation, it is not feasible to simply exploit Backward Propagation

(BP) algorithm [137], as most full-precision models do, to optimize binarized graph networks,

due to the undifferentiable binarization function, i.e., sign in Eq. 5.2. The derivative part of

the sign function will lead to 0 gradients almost everywhere, thereby resulting in the vanishing

gradient problem. To alleviate this dilemma, we leverage the Straight-through Estimator

(STE) [4] for the backward propagation process in the binarized graph nets, formulated as:

Net Backward:
@L
@w

=

8
><

>:

@L
@wb

, w 2 (�1, 1)

0, otherwise
, (5.3)

where L represents the loss function. Essentially, Eq. 5.3 can be considered as propogagting

the gradient through hard tanh function, defined as: Htanh(x) = Clip(x,�1, 1).

We illustrate in Fig. 5.3 the computational workflow at an example binarized GCN layer for

the case where the aggregation comes after the feature transformation. A similar scheme

can be observed for the GCN model where the aggregation happens first. With compact

node features and net weights, binarized GCN only relies on 1-bit XNOR and bit-count

operations for graph-based processing, leading to an efficient and lightweight graph model

that is competent for edge computing.

Despite the compact binarized parameters and features, we empirically observed that the

results of the developed vanilla GNN were not promising as expected. Specifically, we

conduct a preliminary experiment on the ZINC dataset [63] with the GCN architecture in [32].

Averaged over 25 independent runs, the full-precision GCN model achieves the performance

of 0.407±0.018 in terms of the mean absolute error (MAE), whereas the vanilla binarized

5.2 VANILLA BINARY GNN AND PRE-ANALYSIS 83

Aggregate

Binarization

One-bit Node Feature
−1 −1 1 −1 1

1 1 −1 1 1

One-bit Operation
Bit-

count

One-bit Net Weight

−1

−1
−1

−1

1

−3
⋮

⋮

−3

2

⋮

FIGURE 5.3: Illustrations of the computational workflow at an example bin-
arized GNN layer. Despite the efficient 1-bit operations, the output features
are less distinguishable between each other, leading to the challenge in the
aggregation step shown in Fig. 5.4.

GCN yields the result of 0.669±0.070 in MAE, which is far behind that of the full-precision

one.

We explore the reason behind this challenge of implausible performance, by looking into the

internal computational process in binarized GNNs. Specifically, we look back on Fig. 5.3,

which shows the example workflow at a binarized GCN layer where the feature transformation

is performed before the aggregation step. It is noticeable that the result of 1-bit operations lies

in the discrete integer domain. The resulted feature space is thereby much smaller than that of

the 32-bit floating-point operations. In other words, the outputs of 1-bit operations are less

distinguishable from each other. This property, when appearing in the graph domain, leads

to difficulties to extract and discriminate graph topologies in the neighborhood aggregation

process, which in fact is the key to the success of graph networks.

To further illustrate this dilemma, we demonstrate a couple of examples in Fig. 5.4, including

both max and mean aggregation schemes that are commonly leveraged in GNNs. Fig. 5.4(a)

shows the aggregation results of the 32-bit GNN layer, where both of max and mean aggregat-

ors successfully distinguish the two different topological structures, respectively. However,

for the aggregation results of discrete integer features in binarized GNNs (Fig. 5.4(b)), neither

max nor mean aggregators can discriminate the corresponding two graph structures. Moreover,

the situation will be more challenging for the case where the aggregation happens before the

transformation, since the features fed into the aggregator are limited to only 1 or �1.

84 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

0.6 0.6 0.6
0.24 5.11−3.13 −0.80 − + + −

1-bit Node Feature
0.350.09 −0.04−0.15 + − + −

3

Neighbor Node Center Node 2 Neighbor Node Feature

2

−3 1

3

3 1

Max Aggregation

5

−2

−1

3

2

−2

23

1

3.8
2.4

−3.2 1.8

3.1

3.8 1.1

5.6

−2.3

−1.6

3.1

2.7

−2.5

2.73.7

1.3

Mean Aggregation

1 Aggregated Node Feature

(a)

(b)

FIGURE 5.4: Example aggregation results of (a) conventional 32-bit GNN
layer and (b) binarized GNN layer, corresponding to Fig. 5.3. For (a), both
mean and max aggregators can distinguish the two graph structures; however,
for binarized GNN (b), max and mean aggregators fail to differentiate between
two topologies.

Nevertheless, from Fig. 5.4(b), we also found that, by combining different aggregation

schemes, various graph topologies could in fact become distinguishable. This observa-

tion motivates us to develop possible solutions to alleviate the aforementioned dilemma in

vanilla binarized GNNs. Specifically, we propose a couple of straightforward mixed multi-

aggregators that combine the benefits of various aggregation schemes in two different ways.

The first one conducts multiple times of message aggregation with several different aggreg-

ators and then computes the sum over the aggregation results, leading to the performance

of 0.599±0.017 in MAE with five standard aggregators. The second one, on the other hand,

concatenates the results from several independent aggregators, achieving the average result of

0.614±0.045 over 25 runs.

In spite of the improved performance, the devised possible solutions need to perform multiple

times of feature aggregations at each GNN layer, resulting in heavy computational burdens.

Motivated by this limitation, we introduce the proposed meta neighborhood aggregators,

which aim to enhance the discriminative capability of topological structures and meanwhile

enjoy efficient computations.

5.3 META NEIGHBORHOOD AGGREGATION 85

1-bit Graph
Auto-Encoder %

softmax((% . + /)/2)
Greedy Gumbel AggregatorGraph Sample .

MinMean MaxStd VarSum

MaxStandard Aggregator Pool
−1 2

−32

Encoded Graph
Features % .

Adaptable Hybrid Aggregator
3

% . log[
3
789∑(;,=)∈ℇ @

(% . AB)] Std ⋯Max Mean

Diffused Aggregator Pool −1 2

−30

FIGURE 5.5: The overall framework of the proposed meta neighborhood
aggregation methods. The upper row illustrates the workflow of the exclusive
meta aggregator GNA, which receives the encoded graph features from the
binarized graph auto-encoder A (i.e., the pink trapezoid) and exclusively
determines a single optimal layer-wise and node-wise aggregator from a
candidate aggregator pool. The lower row, on the other hand, demonstrates
the diffused meta aggregator ANA, which amalgamates various aggregation
behaviors.

5.3 Meta Neighborhood Aggregation

5.3.1 Overview

Towards addressing the aforementioned limitations of the devised mixed multi-aggregators,

we introduce in this section the proposed concept of the Meta Aggregator, which aims

to adaptively and efficiently adjust the way to aggregate information in a learnable manner.

Towards this end, we propose a couple of specific forms of meta aggregators, i.e., the exclusive

meta aggregation method and the diffused meta aggregation method, as illustrated in Fig. 5.5.

The exclusive form, termed as Greedy Gumbel Neighborhood Aggregator (GNA), learns

to determine a single optimal aggregation scheme from a pool of candidate aggregators,

according to the individual characteristics of the quantized graph features, as shown in the

upper part of Fig. 5.5. The diffused meta form, on the other hand, adaptively learns a

customized aggregation formulation that can potentially incorporate the properties of several

independent aggregators, thereby termed as Adaptable Hybrid Neighborhood Aggregator

(ANA) shown in the lower part of Fig. 5.5.

In what follows, we detail the devised two forms of meta neighborhood aggregation methods,

i.e., GNA and ANA, and also the associated training strategy.

86 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

Algorithm 2 Training a lightweight 1-bit GNN model with the proposed meta neighborhood
aggregators.
Input: L: the number of layers; W: the GNN model weight; G = {V , E}: input graph data

with nodes vi 2 V and edges (vi, vj) 2 E ; X : the input binarized node feature vector; A:
the graph auto-encoder; Meta-Aggre.2{GNA, ANA}: the choice of meta neighborhood
aggregators.

Output: Mb: Target 1-bit binarized GNN model.
1: for ` = 1 to L do
2: Feed the graph sample G into the GNN layer `;
3: Binarize the GNN weight W` into W`

b by Eq. 5.2;
4: Perform 1-bit transformation with X and W`

b ;
5: Binarize the weight WA` of A` into WA`

b by Eq. 5.2;
6: Obtain the encoded features A`(G) with WA`

b ;
7: // Identify the choice from the two meta aggregators
8: if Meta-Aggre. is GNA then
9: // Exclusively decide an optimal aggregator

10: Feed A`(G) into the GNA module.
11: Obtain the decision GNA`

i for node vi by Eq. 5.4;
12: Perform aggregations with the obtained GNA`

i ;
13: else if Meta-Aggre. is ANA then
14: // Generate a diffused aggregator
15: Feed A`(G) into the ANA module;
16: Obtain the diffused aggregator ANA`

i by Eq. 5.5;
17: Perform aggregations with the obtained ANA`

i ;
18: end if
19: end for
20: Optimize the binarized GNN Mb for epochs by Eq. 5.3.

5.3.2 Greedy Gumbel Aggregator

Motivated by the observation from Fig. 5.4, where different single aggregators work for

a corresponding set of cases as explained in Sect. 5.2, we propose the idea of adaptively

determining the optimal aggregator depending on the specific input graphs, as depicted in the

upper part of Fig. 5.5.

To this end, there are a few challenges to be addressed. First, the aggregation selector should

understand the underlying characteristics of various input graphs without introducing much

additional computational cost. To address this issue, we propose to leverage a 1-bit graph

auto-encoder to extract meaningful information from input graphs, which is then exploited to

guide the decision of different aggregation methods.

5.3 META NEIGHBORHOOD AGGREGATION 87

TABLE 5.1: Results on the ZINC dataset with different architectures, in terms
of the mean absolute error (MAE). From left to right: the results of the full-
precision GNNs (Full), those of the 1-bit GNNs without the proposed meta
aggregators (Vanilla), and the results of the 1-bit GNNs with GNA and ANA.
We also provide the p-value of the paired t-test to demonstrate the statistically
meaningful improvements by the proposed GNA and ANA.

Methods Full (GAT) [153] Vanilla (GAT) [61] GNA (GAT) ANA (GAT) Full (GCN) [82] Vanilla (GCN) [61] GNA (GCN) ANA (GCN)
Bit-width 32/32 1/1 1/1 1/1 32/32 1/1 1/1 1/1
Param Size 399.941KB 81.7070KB 82.0610KB 81.8799KB 402.645KB 82.2002KB 82.5566KB 82.3740KB
Test MAE±SD 0.476±0.006 0.670±0.064 0.592±0.013 0.566±0.012 0.407±0.018 0.669±0.070 0.608±0.024 0.607±0.020
Train MAE±SD 0.300±0.024 0.610±0.066 0.531±0.013 0.453±0.019 0.303±0.026 0.624±0.069 0.558±0.027 0.564±0.021
p-value GNA vs. Vanilla: 3.010⇥10�7 / ANA vs. Vanilla: 2.359⇥10�10 GNA vs. Vanilla: 1.597⇥10�4 / ANA vs. Vanilla: 9.787⇥10�5

The second challenge is how to incorporate the discrete selections into the gradient descent

process in training GNNs. One straightforward solution would be to model the discrete

determination process as a state classification problem and to consider the various aggregators

in the candidate pool as different labels. However, this naïve attempt does not account for

the uncertainty of the selector, which is likely to cause the model collapse problem where

the output choice is independent of the input graphs, such as always or never picking up a

specific aggregator.

To alleviate this dilemma, we propose to impose stochasticity in the aggregator decision

process with greedy Gumbel sampling [109, 152] and propagate gradients through stochastic

neurons through the continuous form of Gumbel-Max trick [65]. Specifically, we introduce

such stochasticity by greedily sampling noise from the Gumbel distribution, due to its property

of Gumbel-Max trick [44]. In terms of Gumbel random variables, the Gumbel-Max trick

can be utilized to parameterize discrete distributions. However, there is a argmax operation

in the Gumbel-Max trick, which is not differentiable. We thereby resort to its continuous

relaxation form, termed as Gumbel-softmax estimator, to address this issue, which uses a

softmax function to replace the undifferentiable argmax function.

With the aforementioned graph auto-encoder and also the Gumbel-softmax estimator to

address the two challenges, respectively, the proposed greedy Gumbel aggregator (GNA) for

node vi can then be formulated as:

GNA`
i = softmax

⇣�
A`(G) +G

�
/⌧

⌘
, (5.4)

88 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

where A` represents the binarized graph auto-encoder at layer ` that extracts principal and

meaningful information, and G denotes the sampled Gumbel random noise. G is the input

subgraph with one centered node vi and a set of its neighboring nodes vj where the connection

(vi, vj) 2 E . ⌧ is a constant that denotes the temperature of the softmax. GNA`
i is the output

one-hot vector that indicates the aggregator decision at node vi and layer ` from a pool of

candidate aggregators like {max,min, std, var, . . . ,mean}.

In this way, the proposed greedy Gumbel aggregator adaptively decides the optimal aggregator

conditioned on each specific node and layer in a learnable manner, which can significantly

improve the topological discriminative capability of the vanilla binary GNN model.

5.3.3 Adaptable Hybrid Aggregator

Despite the improved representational ability, the performance of the greedy Gumbel aggreg-

ator is bottlenecked by that of the existing standard aggregators, which leaves room for further

improvement. Motivated by this observation, we further devise an adaptable hybrid neighbor-

hood aggregator (ANA) that can generate a hybrid form of the several standard aggregators in

a learnable manner, thereby simultaneously retaining the advantages of different aggregators.

The overall computational pipeline of ANA is demonstrated in the lower part of Fig. 5.5.

We start by giving the developed graph-based mathematical formulation for diffused message

aggregation, defined as follows:

ANA`
i =

1

A`(G) log

2

4 1

degi

X

(j,i)2E

exp(A`(G)X `
j)

3

5 , (5.5)

where degi is the in-degree of the node vi and G = {V , E} is the graph sample with edges

(vi, vj) 2 E . We use A` to denote the 1-bit graph auto-encoder at layer `, as is also used in

Eq. 5.4. X `
j represents the feature vector of the neighboring node vj at layer `, whereas ANA`

i

is the obtained diffused aggregator.

Eq. 5.5 can essentially approximate the max and mean functions, depending on the output

of graph auto-encoder A`(G). Specifically, higher A`(G) will lead to a behavior similar to

5.3 META NEIGHBORHOOD AGGREGATION 89

that of the max aggregator, while smaller values of A`(G) generate an effect of the mean

neighborhood aggregation. Detailed mathematical proof is provided in the next section of

additional results and details.

By slightly changing the form of Eq. 5.5, we can also approximate other aggregators. For

example, by simply adding a minus to the input graph features, Eq. 5.5 can approach the beha-

vior of the min aggregation. Also, by utilizing the fact Var(X) = mean(X 2)�
�
mean(X)

�2,

the variance aggregator can be approximated by adding the square operations to Eq. 5.5. More

detailed derivations and mathematical proofs can be found in the next section of additional

results and details.

Furthermore, it is also possible to simultaneously combine the benefits of all these approxim-

ated aggregators, by summing multiple terms in Eq. 5.5 with graph-based learnable weighting

factors that adaptively control the diffused degree of various aggregator approximations. We

illustrate the corresponding sophisticated formulation and also more detailed explanations in

the next section of additional results and details.

5.3.4 Training Strategy

We also propose a training strategy, tailored for the proposed method. As a whole, the

principal operations of training a 1-bit GNN model with the proposed meta neighborhood

aggregation approaches is concluded in Alg. 2. For the sake of clarity, we omit the bias terms

in our illustration, which have similar behavior to that of the GNN weight W . Also, we take

the case where the feature transformation happens before the aggregation step as an example

to illustrate the overall workflow.

As can be observed from Alg. 2, at each layer, the input graph is fed into the lightweight 1-bit

graph auto-encoder A to extract useful information that is beneficial to the following meta

aggregators. Followed by this graph encoding process, the meta neighborhood aggregation

module receives the encoded features and exclusively determines an optimal aggregator,

or produces a diffused aggregator that amalgamates the behaviors of several independent

90 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

TABLE 5.2: Results of the proposed meta aggregation methods and other
approaches for 32-bit full-precision models on the ZINC dataset, in terms of
MAE. The results are averaged over 25 independent runs with 25 different
random seeds.

Methods Param Size Test MAE±SD Train MAE±SD
GatedGCN [7] 413.027KB 0.426±0.012 0.272±0.023
GraphSage [47] 371.004KB 0.475±0.007 0.296±0.030
GIN [180] 402.652KB 0.387±0.019 0.319±0.020
MoNet [118] 414.070KB 0.386±0.009 0.299±0.016
GCN [82] 402.645KB 0.407±0.018 0.303±0.026
GAT [153] 399.941KB 0.476±0.006 0.300±0.024
GNA (Ours) 411.270KB 0.337±0.021 0.160±0.026
ANA (Ours) 404.504KB 0.325±0.015 0.109±0.014

aggregators. The desired 1-bit GNN model can eventually be obtained by optimizing the

model for epochs with the straight-through estimator, as explained in Sect. 5.2.

5.4 Experiments

In this section, we perform extensive experiments on three publicly available benchmarks

across diversified problem domains, including graph regression, node classification, and 3D

object recognition. Followed by the evaluations, we further provide detailed discussions

regarding the strengths and weaknesses of the devised meta aggregators.

5.4.1 Experimental Settings

Datasets. We validate the effectiveness of the proposed meta aggregation methods on three

different datasets, each of which specializes in a distinct task. Specifically, for the task of

graph regression, we use the ZINC dataset [63], which is one of the most popular real-world

molecular datasets [32]. The goal of ZINC is to regress a specific molecular property, i.e.the

constrained solubility, which is a critical property for developing GNNs for molecules [200].

Also, for the node classification task, we adopt the protein-protein interaction (PPI) dataset

[226], which is a multi-label dataset with 24 graphs corresponding to different human tissues.

5.4 EXPERIMENTS 91

TABLE 5.3: Results on the PPI dataset for the task of node classification, in
terms of micro-averaged F1 score. Detailed network architectures can be found
in the next section of additional results and details.

Methods Bit-width Param Size F1 Score
Full Prec. [153] 32/32 43.7712MB 98.70
Vanilla [61] 1/1 28.2560MB 92.68
GNA (Ours) 1/1 28.2572MB 97.52
ANA (Ours) 1/1 28.2565MB 97.71

Each node in the PPI dataset is labeled with various protein functions. The objective of

PPI is thereby to predict the 121 protein functions from the interactions of human tissue

proteins. Furthermore, we utilize ModelNet40 [175] for the evaluation on the task of 3D object

classification. ModelNet40 is a popular dataset for 3D object analysis [126, 127], containing

12,311 meshed CAD models from 40 shape categories in total. Each object comprises a set of

3D points, with the 3D coordinates as the features. The goal is to predict the category of each

3D shape.

For other settings such as learning rates and batch size, we follow those in the works of

[32], [153], and [167] for the tasks of graph regression, node classification, and point cloud

classification, respectively.

In particular, for more convincing evaluations, we report the results on the ZINC dataset

over 25 independent runs with 25 different random seeds. Also, as done in the field of CNN

binarization [130], we keep the first and the last GNN layer full-precision and binarize the

other GNN layers for all the comparison methods. More detailed task-by-task architecture

designs as well as the hyperparameter settings can be found in the next section of additional

results and details.

5.4.2 Results

Graph Regression. Tab. 5.1 shows the ablation results of the vanilla 1-bit GNN models

and those of GNNs with the proposed meta neighborhood aggregators GAN and ANA.

Specifically, we report the results on two GNN architectures, i.e., GCN [82] and GAT [153],

by averaging over 25 independent runs with 25 seeds.

92 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

The proposed GNA and ANA, as shown in Tab. 5.1, achieves gratifying performance in terms

of both test and train MAE, and at the same time maintains a compact model size. Moreover,

we provide in the last row of Tab. 5.1 the p-value of the paired t-test between the 1-bit GNNs

with a fixed aggregator (Vanilla) and those with the proposed learnable meta aggregators. The

corresponding results statistically validate the effectiveness of the proposed method.

Furthermore, we show in Tab. 5.2 the results of extending the proposed meta aggregators to

full-precision GNNs and compare them with those of the state-of-the-art approaches [7, 47,

180, 118, 82, 153]. Specifically, the results in the last two rows of Tab. 5.2 are obtained by

simply replacing the pre-defined aggregator in GAT with the proposed GNA and ANA. As

can be observed from Tab. 5.2, the proposed method outperforms other approaches by a large

margin, and meanwhile introduces few additional parameters.

The proposed GNA and ANA, as shown in Tab. 5.3, yield results on par with those of the

32-bit full-precision models, but comes with a more lightweight architecture. The proposed

method also outperforms the vanilla 1-bit GNN model that relies on a fixed aggregation

scheme.

Fixed Aggr. GNA ANA Full Prec. Fixed Aggr. GNA ANA Full Prec.

Near Far

FIGURE 5.6: Visualization results of the learned feature space, depicted as
the distance between the red point and the rest of the others. The visualized
features are extracted from the intermediate layer of the models. More results
can be found in the next section of additional results and details.

5.4 EXPERIMENTS 93

TABLE 5.4: Results on the ModelNet40 dataset for 3D object recognition, in
terms of the overall accuracy (Acc) and the mean class accuracy (mAcc).

Methods Bit-width Param Size Acc (%) mAcc (%)
Full Prec. [167] 32/32 1681.66KB 92.42 89.51
Vanilla [61] 1/1 1091.20KB 74.19 65.95
GNA (Ours) 1/1 1091.30KB 78.36 71.67
ANA (Ours) 1/1 1091.30KB 84.64 78.89

We build our network here based on the architecture designed in [188]. We also demonstrate

in Fig. 5.6 the corresponding visualization results of different approaches, where the column

termed as “Fixed Aggr.” in Fig. 5.6 corresponds to the “Vanilla” model in Tab. 5.4. With the

proposed meta aggregation schemes, the 1-bit GNN model gains a boost by more than 10%

in both the overall accuracy and the mean class accuracy. This improvement is also illustrated

in Fig. 5.6, where the proposed meta aggregators help the 1-bit GNN learn a closer structure

to that of the full-precision GNN model. Nevertheless, it’s worth noting that the complexity

of the point cloud analysis task leads to a considerable performance drop in comparison to

the full-precision model. This issue will be a key focus for our future endeavors.

5.4.3 Discussions

We provide here a detailed account of the strengths and weaknesses of the proposed two

meta aggregators GNA and ANA. For the exclusive meta form GNA, the performance can

potentially be further enhanced with the advance of novel aggregation schemes. In other

words, the results of GNA depend on those of every single aggregator in the candidate

aggregation pool, which at the same time is a weakness of GNA since its performance is

bottlenecked by that of the single aggregator. The diffused form ANA, on the other hand, may

simultaneously retain the benefits of several popular aggregators. However, the mathematical

form in Eq. 5.5 limits the type of aggregators that ANA can potentially approximate, meaning

that ANA may not have much room for further improvement even with the emergence of

novel and prevailing aggregators in the future.

94 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

5.5 Theoretical Analysis

In this section, we provide the propositions and the corresponding theoretical proofs on how

and why the proposed Adaptable Hybrid Neighborhood Aggregator (ANA) can approximate

various existing aggregation methods, such as max, mean, and variance.

We start by showing the mathematical form of ANA again, based on the Log-Sum-Exp

function in convex optimization:

f(G,X) =
1

A`(G) log

2

4 1

degi

X

(j,i)2E

eA
`(G)X `

j

3

5 , (5.6)

where A` denotes the 1-bit graph auto-encoder at layer `. degi is the in-degree of the node

vi, and G = {V , E} is the graph sample with edges (vi, vj) 2 E . X `
j represents the feature

vector of the neighboring node vj at layer `, whereas f(G,X) denotes the obtained diffused

aggregator.

Based on Eq. 5.6, we provide the following propositions and the corresponding proofs:

Proposition 5.5.1 (Mean). ANA, as defined in Eq. 5.6 as f(G,X), can approximate the mean

aggregator when A`(G) ! 0.

PROOF. We prove Proposition 3.2.1 primarily based on the inequality of arithmetic and

geometric, defined as:
1

n

nX

i=1

xi �
⇣ nY

i=1

xi

⌘ 1
n
, (5.7)

where the equality holds when x1 = x2 = · · · = xn.

By combining Eq. 5.6 and Eq. 5.7, we can derive the following inequation:

f(G,X) = log

2

4 1

degi

X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

� log

2

4
Y

(j,i)2E

eA
`(G)X `

j

3

5

1
degiA`(G)

= log

2

4
Y

(j,i)2E

eX
`
j

3

5

1
degi

.

(5.8)

5.5 THEORETICAL ANALYSIS 95

The equality in Eq. 5.8 holds when A`(G) ! 0, i.e.,

f(G,X) = log

2

4
Y

(j,i)2E

eX
`
j

3

5

1
degi

=
1

degi

log

2

4
Y

(j,i)2E

eX
`
j

3

5 =
1

degi

X

(j,i)2E

eX
`
j . (5.9)

Eq. 5.9 is, in fact, the formulation of the mean aggregation. Thus, the proposed AN can

approximate the mean aggregator. ⇤

Proposition 5.5.2 (Max). ANA defined in Eq. 5.6 can approximate the max aggregator when

A`(G) ! 1.

PROOF. To prove Proposition 3.2.2, we begin by reformulating Eq. 5.6 into:

f(G,X) =
1

A`(G) log

2

4 1

degi

X

(j,i)2E

eA
`(G)X `

j

3

5

= log

2

4
X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

� 1

A`(G) log(degi).

(5.10)

Meanwhile, in our implementation, we keep A`(G) > 0 by using an absolute operation. As

such, we can also obtain the following inequation:

max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

2

4
X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

degi · max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

.

(5.11)

By combining Eq. 5.10 and Eq. 5.11, we can obtain:

log

max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

 log

2

4
X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

 1

A`(G) log(degi) + log

max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

.

(5.12)

96 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

When A`(G) ! 1, we have: 1
A`(G) log(degi) ! 0. As such, by replacing 1

A`(G) log(degi)

with 0 in Eq. 5.12, we can obtain the following equation:

log

2

4
X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

= log

max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

. (5.13)

By combing Eq. 5.13 and Eq. 5.10, and meanwhile replacing 1
A`(G) log(degi) in Eq. 5.10 with

0, we can derive the following equation:

f(G,X) = log

2

4
X

(j,i)2E

eA
`(G)X `

j

3

5

1
A`(G)

= log

max
(j,i)2E

(eA
`(G)X `

j)

� 1
A`(G)

. (5.14)

The right part of Eq. 5.14 is, in fact, the mathematical form of the max aggregation method,

which indicates that the proposed ANA can approximate the max aggregator when A`(G) !

1. ⇤

Proposition 5.5.3 (Variance). The variant of ANA, defined as h(G,X) in Eq. 5.15, can

approximate the variance aggregator when A`(G) ! 0.

h(G,X) =
1

A`(G) log

2

4 1

degi

X

(j,i)2E

eA
`(G) (X `

j)
2

3

5 �

8
<

:
1

A`(G) log

2

4 1

degi

X

(j,i)2E

eA
`(G)X `

j

3

5

9
=

;

2

.

(5.15)

PROOF. By combining Eq. 5.6 and Eq. 5.15, we can obtain: h(G,X) = f(G,X 2) �

[f(G,X)]2. When A`(G) ! 0, we have:

h(G,X) =
1

degi

X

(j,i)2E

e(X
`
j)

2 �

2

4 1

degi

X

(j,i)2E

eX
`
j

3

5
2

, (5.16)

which is, in fact, the formulation of the variance aggregator. ⇤

5.6 ADDITIONAL RESULTS 97

The final form of the proposed ANA consists of one term in the form of Eq. 5.6 and also one

term in the form of Eq. 5.15, with the two corresponding graph auto-encoders A` as well as

two learnable weighting factors that determine the portion of each approximated aggregator.

As such, the proposed ANA can potentially approximate various aggregators at the same time,

and generate a hybrid behavior of different aggregators by controlling the weighting factors.

5.6 Additional Results

This section provides more results of the 1-bit graph neural networks (GNNs) with the

proposed meta aggregators on the tasks of graph regression and multi-label node classification,

as well as additional results of point cloud classification models.

5.6.1 Additional Results on Graph Regression Task

In this section, we provide additional results on the ZINC dataset for the task of graph

regression. Specifically, we conduct extensive ablation studies on ZINC to validate the

effectiveness of the proposed method.

Implementation Details. We use the ZINC dataset for the task of graph regression [63].

ZINC is a large-scale molecular dataset. The objective of ZINC is to regress a specific

molecular property. The node features in every molecular graph represent the heavy atom

types. The corresponding edge features denote the bond types between them. For the dataset

splittings, we follow the standard splitting protocol in [32]. Specifically, 10,000 molecular

graphs in ZINC are used for training, 1,000 graphs are for validation, and the remaining 1,000

ones are used for testing. In training, we use the Adam optimizer [80]. The batch size is set to

128. For the learning rate, we set the initial value as 10�3, which is reduced by half if there

is no improvement in the validation loss after 10 epochs. The training process is stopped

when the learning rate reaches 10�3. We measure the performance using the mean absolute

error (MAE) between the predicted property and the ground-truth one. Detailed network

architectures are summarized in Tab. 5.5.

98 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

TABLE 5.5: Detailed network architectures for the task of graph regression
on the ZINC dataset, where Architecture-ZINC-Main-GAT and Architecture-
ZINC-Main-GCN represent the architectures of the two models shown in
Tab. 5.1 and Tab. 5.2. Architecture-ZINC-Supp denotes the architectures that
will be used for ablation studies in this section.

Models Layers Attention Heads Hidden Output
Architecture-ZINC-Main-GAT 6 {8, 8, 8, 8} 18 144
Architecture-ZINC-Main-GCN 6 – 145 145
Architecture-ZINC-Supp-V1 5 {8, 8, 8} 18 144
Architecture-ZINC-Supp-V2 5 {8, 8, 8} 22 176
Architecture-ZINC-Supp-V3 8 {8, 8, 8, 8, 8, 8} 22 176

TABLE 5.6: Results on the ZINC dataset for the task of graph-property re-
gression, in terms of the mean absolute error (MAE). The detailed network
architectures of Architecture-ZINC-Supp-V1 and Architecture-ZINC-Supp-
V2 are shown in Tab. 5.5.

Architecture Architecture-ZINC-Supp-V1 Architecture-ZINC-Supp-V2
Methods Full Prec. [153] Vanilla [61] GNA (Ours) ANA (Ours) Full Prec. [153] Vanilla [61] GNA (Ours) ANA (Ours)
Bit-width 32/32 1/1 1/1 1/1 32/32 1/1 1/1 1/1
Param Size 316.691KB 78.0156KB 78.2811KB 78.1226KB 466.816KB 111.164KB 111.488KB 111.294KB
Test MAE±SD 0.495±0.008 0.647±0.064 0.598±0.022 0.576±0.031 0.496±0.006 0.687±0.081 0.590±0.020 0.566±0.015
Train MAE±SD 0.372±0.017 0.588±0.065 0.536±0.024 0.471±0.035 0.362±0.013 0.629±0.083 0.523±0.022 0.444±0.024
p-value GNA vs. Vanilla: 6.316⇥10�4/ANA vs. Vanilla: 7.101⇥10�6 GNA vs. Vanilla: 3.869⇥10�7/ANA vs. Vanilla: 1.768⇥10�9

Ablation Studies. We show in Tab. 5.6 the regression results of the 1-bit GNNs with different

network architectures. Specifically, from left to right, Tab. 5.6 shows the results of the full-

precision GNNs (Full Prec.), those of the 1-bit GNNs without the proposed meta aggregators

(Vanilla), and the results of the 1-bit GNNs with GNA and ANA. In the last line of Tab. 5.6,

we also provide the p-value of the paired t-test between the proposed meta aggregator and the

vanilla one, so as to demonstrate the statistically meaningful improvements by the proposed

GNA and ANA. It is noticeable that both GNA and ANA achieve performance superior to

that of the vanilla one that depends on a single fixed and pre-defined aggregator.

Furthermore, we provide in Tab. 5.7 the results of the 32-bit models with the proposed GNA

and ANA, corresponding to Tab. 5.2 but with a different additional network architecture.

The proposed meta aggregators, as shown in Tab. 5.7, also achieve results superior to the

state-of-the-art on the full-precision models.

5.6 ADDITIONAL RESULTS 99

TABLE 5.7: Results of the proposed GNA and ANA as well as other meth-
ods for 32-bit full-precision models on the ZINC dataset, in terms of MAE.
The detailed network architectures of the proposed methods are shown as
Architecture-ZINC-Supp-V3 in Tab. 5.5. For the architectures of the compar-
ison methods [7, 47, 180, 118, 82, 153], we follow the network architecture
designs in [32].

Methods Param Size Test MAE±SD Train MAE±SD Methods Param Size Test MAE±SD Train MAE±SD
GraphSage [47] 1973.99KB 0.398±0.002 0.081±0.009 RingGNN [20] 2059.70KB 0.353±0.019 0.236±0.019
GIN [180] 1990.43KB 0.526±0.051 0.444±0.039 MoNet [118] 1968.80KB 0.292±0.006 0.093±0.014
GCN [82] 1972.96KB 0.367±0.011 0.128±0.019 GAT [153] 2075.57KB 0.384±0.007 0.067±0.004
GNA (Ours) 858.809KB 0.295±0.013 0.088±0.016 ANA (Ours) 846.410KB 0.294±0.010 0.079±0.018

TABLE 5.8: Summary of the detailed network architectures for the task of
multi-label node classification on the PPI dataset.

Models Layers Attention Heads Hidden
Architecture-PPI-Main 3 {4, 4, 6} 512
Architecture-PPI-Supp-V1 3 {4, 4, 6} 256
Architecture-PPI-Supp-V2 5 {2, 2, 2, 2, 2} 128
Architecture-PPI-Supp-V3 5 {2, 2, 2, 2, 2} 64

5.6.2 Additional Results on Multi-label Node Classification Task

In this section, we show more results on the PPI dataset for the task of multi-label node

classification. Specifically, we provide here additional results with three newly designed

network architectures.

Implementation Details. We use the protein-protein interaction (PPI) dataset for the task of

multi-label node classification, containing biological graphs with the nodes that are labeled

with different protein functions [226]. In particular, each node can simultaneously have

several labels. In training, the batch size is set to 1. The learning rate is 0.005 for each model.

In total, we optimize all the models for 500 epochs and report the corresponding results with

the best validation accuracies. The detailed network architectures are demonstrated in Tab. 5.8.

Specifically, the 2nd row of Tab. 5.8 shows the architecture used in Tab. 5.3. The 3rd, 4th, and

5th rows, on the other hand, correspond to three newly-designed architectures that are used in

the following extensive ablation studies.

100 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

Ablation Studies. We perform here ablation studies on various network architectures for

the task of multi-label node classification. The corresponding results are shown in Tab. 5.9.

The proposed GNA and ANA, as can be seen from Tab. 5.9, delivers competitive results as

compared with those of the full-precision-based approach across all the four distinct architec-

tures, yet maintaining a compact model size. Also, with a similar lightweight architecture,

the 1-bit GNNs with the proposed meta aggregators achieve superior performance to that of

the model with a pre-defined aggregator, demonstrating the effectiveness of the proposed

learnable aggregation schemes.

5.6.3 Additional Results on 3D Object Recognition Task

We provide in this section more results on the ModelNet40 dataset for the task of 3D object

classification. Specifically, we devise two additional architectures and conduct extensive

ablation studies accordingly.

Implementation Details. We follow the official dataset splitting protocol in [175, 167]. We

set the learning rate as 0.001 and use a batch size of 16. We adopt the Adam optimizer [80] and

all the models are optimized for 1000 epochs for full convergence. The detailed architecture

designs are summarized in Tab. 5.10, where the 2nd row corresponds to the architecture used

TABLE 5.9: Results on the PPI dataset for the task of node classification,
in terms of micro-averaged F1 score. Detailed network architectures of
Architecture-PPI-Main as well as Architecture-PPI-Supp-V1, V2, and V3
can be found in Tab. 5.8.

Architecture Architecture-PPI-Main Architecture-PPI-Supp-V1
Methods Bit-width Param Size F1 Score Bit-width Param Size F1 Score
Full Prec. [82] 32/32 43.7712MB 98.70 32/32 13.8884MB 98.67
Vanilla [61] 1/1 28.2560MB 92.68 1/1 10.0058MB 93.27
GNA (Ours) 1/1 28.2572MB 97.52 1/1 10.0064MB 96.79
ANA (Ours) 1/1 28.2565MB 97.71 1/1 10.0060MB 97.02
Architecture Architecture-PPI-Supp-V2 Architecture-PPI-Supp-V3
Methods Bit-width Param Size F1 Score Bit-width Param Size F1 Score
Full Prec. [82] 32/32 2.0311MB 98.21 32/32 0.64150MB 94.80
Vanilla [61] 1/1 1.2989MB 48.54 1/1 0.45702MB 45.88
GNA (Ours) 1/1 1.2994MB 53.52 1/1 0.45725MB 53.94
ANA (Ours) 1/1 1.2991MB 69.24 1/1 0.45711MB 72.29

5.6 ADDITIONAL RESULTS 101

Fixed Aggr. GNA ANA Full Prec. Fixed Aggr. GNA ANA Full Prec.

Near Far

FIGURE 5.7: Comparative visualization results. Node color encodes the
distance between the red dot and node of interest. All the visualized features
are extracted from the intermediate layer of the models.

in Tab. 5.4. The 3rd and 4th rows, on the other hand, demonstrate the architectures that are

used in this section for extensive ablation studies.

102 5 DATA-MODEL-DRIVEN EFFICIENT LEARNING WITH META-AGGREGATOR

TABLE 5.10: Summary of the detailed network architectures for the task of
3D object recognition on ModelNet40.

Models Layers Feature Map Channels MLPs
Architecture-ModelNet40-Main 6 [64, 64, 128, 512] [256, 40]
Architecture-ModelNet40-Supp-V1 6 [32, 32, 64, 128] [256, 40]
Architecture-ModelNet40-Supp-V2 8 [64, 64, 128, 256, 1024] [512, 256, 40]

TABLE 5.11: Results on the ModelNet40 dataset for the task of 3D object
recognition, in terms of the overall accuracy (Acc) and the mean class accuracy
(mAcc). The details of Architecture-ModelNet40-Supp-V1 and Architecture-
ModelNet40-Supp-V2 are shown in Tab. 5.10.

Architecture Architecture-ModelNet40-Supp-V1 Architecture-ModelNet40-Supp-V2
Methods Bit-width Param Size Acc mAcc Bit-width Param Size Acc mAcc
Full Prec. [167] 32/32 388.906KB 92.30% 89.43% 32/32 7068.66KB 93.03% 89.70%
Vanilla [61] 1/1 302.930KB 55.79% 46.28% 1/1 4742.20KB 81.12% 73.88%
GNA (Ours) 1/1 303.023KB 60.66% 49.74% 1/1 4742.39KB 81.65% 75.23%
ANA (Ours) 1/1 302.962KB 74.27% 65.96% 1/1 4742.33KB 84.81% 78.97%

Ablation Studies. We provide in Tab. 5.11 the results of different approaches with the two

newly-designed architectures. The quantitative results in Tab. 5.11 indicate that both of the

proposed GNA and ANA can boost the performance of 1-bit GNNs by a large margin across

various network architectures, as compared with the vanilla fixed aggregation method [61].

More Qualitative Results. We also show in Fig. 5.7 more qualitative results of different

approaches, by visualizing the structures of the learned feature spaces. It can be observed that

the proposed GNA and ANA can facilitate the 1-bit GNNs to learn a more similar feature

structure to that of the cumbersome full-precision ones.

5.7 Summary

This chapter explores a couple of learnable aggregation schemes for 1-bit compact GNNs.

The goal of the proposed method is to enhance the topological discriminative ability of the

1-bit GNNs. This is achieved by adaptively selecting a single aggregator, or generating a

hybrid aggregation form that can simultaneously maintain the strengths of several aggregators.

Moreover, the proposed meta aggregation schemes can be readily extended to the full-precision

5.7 SUMMARY 103

GNN models. Experiments across various domains demonstrate that, with the proposed meta

aggregators, the 1-bit GNN yields results on par with those of the cumbersome full-precision

ones. In our future work, we will strive to generalize the proposed aggregator to compact and

lightweight visual transformers.

CHAPTER 6

Application-Driven Efficient Learning with

Semi-parametric Style Transfer

While the previous three chapters primarily focused on the development of universal effi-

cient learning schemes, this chapter takes a different approach by introducing an alternative

application-driven perspective. The primary objective of this chapter is to investigate a custom-

ized efficient representation learning paradigm that is specifically tailored for the application

of image style transfer. In particular, this chapter studies a novel semi-parametric neural

style transfer framework that alleviates the deficiency of both parametric and non-parametric

stylization. The core idea of the proposed approach is to efficiently establish accurate and

fine-grained content-style correspondences using graph neural networks. To this end, this

chapter develops an elaborated GNN model with content and style local patches as the graph

vertices. The style transfer procedure is then modeled as the attention-based heterogeneous

message passing between the style and content nodes in a learnable manner, leading to adapt-

ive many-to-one style-content correlations at the local patch level. In addition, an elaborated

deformable graph convolutional operation is introduced for cross-scale style-content match-

ing. Experimental results demonstrate that the proposed semi-parametric image stylization

approach efficiently yields encouraging results on the challenging style patterns, preserving

both global appearance and exquisite details.

6.1 Introduction

Image style transfer aims to automatically transfer the artistic style from a source style image

to a given content one, and has been studied for a long time in the computer vision community.
104

6.1 INTRODUCTION 105

Conventionally, image style transfer is generally cast as the problem of non-photorealistic

rendering in the domain of computer graphics. Inspired by the success of deep learning [29,

146, 30, 193, 28], Gatys et al. [39] pioneer the paradigm that leverages the feature activations

from deep convolutional neural networks (CNNs) to extract and match the target content and

style, leading to the benefits of no explicit restrictions on style types and no requirements of

ground-truth training data. As such, various CNN-based style transfer methods are developed

in the literature [78, 86, 14, 181, 173, 62, 54, 100, 103], establishing a novel field of neural

style transfer (NST) [72].

State-of-the-art NST algorithms can be categorized into two streams of methods, parametric

and non-parametric ones, depending on the style representation mechanisms. In particular,

parametric NST approaches rely on the global summary statistics over the entire feature

map from pre-trained deep CNNs to extract and match the target artistic style [39, 75, 59].

Non-parametric neural methods, also known as patch-based NST methods [19, 147], leverage

the local feature patches to represent the style information, inspired by the conventional

patch-based texture modeling approaches with Markov random fields. The idea is to swap the

content neural patches with the most similar style ones, through a greedy one-to-one patch

matching strategy.

Both parametric and non-parametric methods, unfortunately, have their own limitations,

as demonstrated in Fig. 6.1. Parametric stylization methods achieve good performance in

transferring the overall appearance of the style images, but are incompetent in generating

fine-grained local style patterns. By contrast, non-parametric style transfer algorithms allow

for locally-aligned stylization; however, such patch-based methods are typically accomplished

with the undesired artifacts due to content-style mismatching.

In this chapter, we present a semi-parametric style transfer scheme, towards alleviating

the dilemmas of existing parametric and non-parametric methods. On the one hand, our

semi-parametric approach allows for the establishment of more accurate many-to-one corres-

pondences between different content and style regions in a learnable manner. As such, our

approach explicitly tackles the issue of content-style mismatching in non-parametric NST

algorithms, thereby largely alleviating the deficiency of unplausible artifacts. On the other

106 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

(a) Content (b) Huang et al. [59] (c) An et al. [1] (d) Li et al. [96]

(e) Style (f) Chen et al. [19] (g) Sheng et al. [147] (h) Ours

FIGURE 6.1: Existing parametric (b,c,d) and non-parametric (f,g) NST meth-
ods either barely transfer the global style appearance to the target (f), or
produce distorted local style patterns (b,c,d) and undesired artifacts (g). By
contrast, the proposed GNN-based approach (h) achieves superior styliza-
tion performance in the transfers of both global stroke arrangement and local
fine-grained patterns.

hand, the proposed semi-parametric method adaptively divides content and style features into

tiny and cross-scale feature patches for stylization, thus addressing the dilemma of lacking

local details in prior parametric schemes.

Towards this end, we introduce to the proposed semi-parametric NST a dedicated learn-

ing mechanism, graph neural networks (GNNs), to enable adaptive local patch-level inter-

play between the content and style. As a well-established learning paradigm for handling

non-Euclidean data, GNNs are designed to explicitly account for structural relations and

interdependency between nodes. Moreover, GNNs are equipped with efficacious strategies

for aggregating information from multiple neighbors to a center node. Such competences

make GNN an ideal tool for tackling the intricate content-style region matching challenge in

style transfer, especially the many-to-one mapping between each content patch and multiple

potentially-matching style patches. We therefore exploit GNNs to adaptively set up the

6.2 PROPOSED METHOD 107

faithful topological correspondences among the very different content and style, such that

every content region is rendered with the optimal style strokes.

Specifically, we start by building a heterogeneous NST graph, with content and style feature

patches as the vertices. The multi-patch parametric aggregation in semi-parametric NST can

thereby be modeled as the message passing procedure among different patch nodes in the

constructed stylization graph. By employing the prevalent GNN mechanisms such as the

graph attention network, the k most similar patches can be aggregated in an attention-based

parametric manner. The aggregated patches are then composed back into the image features,

which are further aligned with the target global statistics to obtain the final stylized result.

Also, a deformable graph convolutional operation is devised, making it possible for cross-

scale style-content matching with spatially-varying stroke sizes in a single stylized image.

Furthermore, our GNN-based NST can readily perform diversified patch-based stylization, by

simply changing the number of connections during inference.

In sum, our contribution is a novel semi-parametric arbitrary stylization scheme that allows

for the effective generation of both the global and local style patterns, backed by a dedicated

deformable graph convolutional design. This is specifically achieved through modeling the

NST process as the message passing between content and style under the framework of GNNs.

Experimental results demonstrate that the proposed GNN-based stylization method yields

results superior to the state of the art.

6.2 Proposed Method

Towards addressing the limitations of existing parametric and non-parametric NST methods,

we introduce the proposed semi-parametric style transfer framework with GNNs. In what

follows, we begin by providing an overview of the proposed GNN-based approach, and

then elaborating several key components, including the construction of the topological NST

graph, the dedicated deformable graph convolutional operation customized for the established

NST graph, and the detailed 2-hop heterogeneous message passing process for stylization.

108 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

Stylization Graph Construction

Style

Content

StyleFeature

ContentFeature

StylePatch

ContentPatch

KNN

GNN

k
k

PatchScale

PatchResize

Patc
h2Fe

at

Feat
2Pat

ch

Global Feature
Refinement

StylizedResultfs

fs
fc

fc

StyleFeature

Aggregated
Result

FC

HeteroGraph

Encoder
Decoder

FIGURE 6.2: Network architecture of the proposed semi-parametric style
transfer network with GNNs. From left to right, the corresponding stylization
pipeline comprises four subprocesses, i.e., image encoding with the encoder,
local patch-based manipulation based on heterogeneous GNNs, global feature
refinement, and the feature decoding procedure. The symbols of scissors
represent the process to divide the feature maps into feature patches. Hetero-
Graph denotes the established heterogeneous stylization graph with two types
of content-style inter-domain connections and content-content intra-domain
connections.

Finally, we illustrate the cascaded patch-to-image training pipeline, tailored for the proposed

GNN-based stylization system.

6.2.1 Network Overview

The overall workflow of the proposed semi-parametric NST framework is shown in Fig. 6.2.

There are primarily four modules in the whole pipeline, termed as image encoding, local

patch-based manipulation, global feature refinement, and feature decoding. At the heart of

the proposed framework is the local patch-based manipulation module, which will be further

detailed in the following sections.

Image Encoding Module. The proposed semi-parametric stylization starts by receiving style

and content images as inputs and encoding these images into meaningful feature maps (the

green and yellow blocks in Fig. 6.2), by exploiting the first few layers of the pre-trained VGG

network. In particular, unlike the existing work [59] that uses the layers before relu4_1,

6.2 PROPOSED METHOD 109

we leverage the VGG layers up to relu3_1, for the sake of more valid feature patches that

can be exploited by the following local patch-based feature transformation stage.

Local Patch-based Manipulation Module. With the embeded content and style features as

inputs, the local patch-based manipulation module extracts the corresponding content and

style feature patches with the stride of s and the sliding window size of p⇥ p, represented

as the scissor symbol in Fig. 6.2. We then build a heterogeneous stylization graph (the red

frame in Fig. 6.2) with the obtained feature patches as graph nodes and perform the dedicated

deformable graph convolution to generate the locally-stylized features, which will be further

detailed in the succeeding Sect. 6.2.2 and Sect. 6.2.3.

Global Feature Refinement Module. The produced style-transferred results from the stage

of patch-based manipulation are effective at preserving fine-grained local style patterns;

however, the global style appearance is likely to be less similar to the target style image, due to

the lack of global constraint on the stroke arrangement. To alleviate this dilemma, we propose

a hierarchical patch-to-image stylization scheme to yield both the exquisite brushstroke and

large-scale texture patterns. This is achieved by refining the feature representations at a global

level, subsequent to the local patch-based manipulation. For the specific refinement method,

since there already exist several effective global feature decorated strategies in the field of

NST (e.g., adaptive instance normalization (AdaIN) [59] and zero-phase component analysis

(ZCA) [96]), here we directly utilize AdaIN as our refinement scheme, considering its high

efficiency.

Feature Decoding Module. The last stage of our semi-parametric style transfer pipeline,

termed as feature decoding, aims to decode the obtained feature representations from the

preceding global feature refinement module into the final stylized image. The decoder module

specifically comprises a sequence of convolutional and bilinear upsampling layers with the

ReLU nonlinearities.

In the following sections, we will explain more details regarding the key module of Local

Patch-based Manipulation with GNNs, including the graph construction procedure and the

deformable graph convolutional process.

110 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

6.2.2 Stylization Graph Construction

At the stage of local patch-based manipulation, the first challenge towards the adaptive patch-

level interactions between content and style with GNNs is the establishment of topological

graphs. Unlike conventional GNN-based applications where the inputs can be naturally

modeled as graphs (e.g., biological molecules and social networks), there is no such natural

topological structure for our task of semi-parametric image style transfer. To address this

issue, we develop a dedicated graph construction technique, tailored for image stylization.

We start by giving the mathematical model of general graph-structured data as: G = {V , E},

where G represents a directed or undirected graph. V denotes the set of vertices with nodes

vi 2 V . E represents the edge set with (vi, vj) 2 E , where {vj} is the set of neighboring

nodes of vi. Each vertex has an associated node feature X = [x1 x2 ... xn]. For example, x

can be defined as the 3D coordinates in the task of point cloud classification.

As can be observed from the above formulation of prevalent graph data, the key elements in a

graph are the vertices with the corresponding node features as well as the edges, which are

thereby identified as our target objects to instantiate in the domain of style transfer as follows:

Heterogeneous Patch Vertices. To leverage GNNs to benefit the local-level stylization, we

model in our framework the content and style patches as the graph nodes. Specifically, we

exploit the content and style feature activations from the pre-trained VGG encoder, shown

as the green and yellow blocks in Fig. 6.2, respectively, to capture the corresponding feature

patches with a sliding window (i.e., the scissor symbol in Fig. 6.2), in a similar manner as

what is done when performing convolutions. We set the stride as 1 by default, meaning that

there exist overlaps among our extracted activation patches. Such a manner of overlapped

patch generation allows for smooth transitions among different stylized regions. In particular,

to achieve cross-scale patch matching, we perform multi-scale patch division, which will be

demonstrated in detail as a part of the deformable convolution in Sect. 6.2.3.

For the definition of the associated features for each patch vertex, we use a Patch2Feat

operation, depicted as the red fonts in Fig. 6.2, to produce the desired format of node features

6.2 PROPOSED METHOD 111

for the use of the subsequent GNN layers, as also done in [223]. The designed Patch2Feat

operation specifically amalgamates the c-dimensional features at each position of the p⇥ p

activation patch into a 1-dimensional feature vector, which is then considered as the node

feature at every patch vertex. The derived content and style node features are shown as [fc]

and [fs] in Fig. 6.2, respectively, for the use of the latter GNN layers.

Inter- and Intra-KNN Edges. Another critical issue in building the stylization graph is the

establishment of connections among different patch vertices. Customized for the task of style

transfer, we formulate two types of edges, termed as content-style inter-domain edges and

content-content intra-domain edges, leading to a special kind of heterogeneous graph.

In particular, the inter-domain connections between heterogeneous style and content nodes

aim to attain more accurate many-to-one style-content matching for patch-based stylization.

More specifically, for each content query patch �i(Fc) with Fc representing the whole content

feature map, we search the corresponding k-nearest ones in the set of style feature patches

{�(Fs)}, which are identified as the neighbors coupled with inter-domain edges. This process

of k-nearest neighbor search (KNN) is shown in the black dotted frame in Fig. 6.2. We employ

the distance metric of normalized cross-correlation (NCC) for pair-wise KNN, by scoring the

cosine distance between a couple of content and style patches. Given a specific content patch

�i(Fc) as the query, our KNN procedure based on NCC can be specifically formulated as:

KNN(�i(Fc), {�(Fs)}) = argmaxk
j2{1,...,Ns}

h�i(Fc),�j(Fs)i
k�i(Fc)kk�j(Fs)k

, i 2 {1, . . . , Nc}, (6.1)

where Nc and Ns denote the cardinalities of the corresponding content and style patch sets,

respectively. maxk returns the k largest elements from the set of the computed pair-wise

NCCs. KNN(�i(Fc)) represents the target k nearest-neighboring style vertices for the content

patch �i(Fc).

We also introduce the intra-domain connections within the set of content activation patches

in our stylization graph, shown as the brown arrows in the black dotted rectangle in Fig. 6.2.

The goal of such content-to-content edges is to unify the transferred styles across different

content patches. In other words, we utilize the devised intra-domain connections to make sure

112 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

that the semantically-similar content regions will also be rendered with homogeneous style

patterns. This is specifically accomplished by linking the query content patch �i(Fc) with the

top-k most similar patches {�j(Fc)} where j 2 {1, . . . , Nc}, by NCC-based KNN search in

a similar manner with that in Eq. 6.1.

The ultimate heterogeneous stylization graph, with the two node types of content and style

vertices and also the two edge types of inter- and intra-domain connections, is demonstrated

as the red rectangle in Fig. 6.2. The relationship between the involved nodes is defined as the

NCC-based patch similarity.

6.2.3 Deformable Graph Convolution

With the constructed stylization graph, we are then ready to apply GNN layers to per-

form heterogeneous message passing along the content-style inter-domain edges and also

content-content intra-domain edges. A naïve way will be simply performing existing graph

convolutions on the heterogeneous stylization graph to aggregate messages from the content

and style vertices.

However, this vanilla approach is not optimal for the task of style transfer, due to a lack of

considerations in feature scales. Specifically, in the process of image stylization, the proper

feature scale is directly correlated with the stroke scale in the eventual output [74], which is

a vital geometric primitive to characterize an artwork. The objective stylized results should

have various scales of style strokes across the whole image, depending on the semantics of

different content regions.

Towards this end, we propose a dedicated deformable graph convolutional network that

explicitly accounts for the scale information in message passing. The devised deformable

graph convolutional network comprises two components. Specifically, the first component

is an elaborated deformable scale prediction module, with a fully-connected (FC) layer in

the end, that aims to generate the optimal scale of each patch in a learnable manner before

conducting message aggregation, as also done in [21]. In particular, the scale predictor receives

6.2 PROPOSED METHOD 113

both the content and style features as inputs, considering the potential scale mismatching

between the content and style, as shown in the upper left part of Fig. 6.2.

As such, by adaptively performing scale adjustment according to both content and style

inputs, the proposed deformable graph conventional network makes it possible for cross-scale

style-content matching with spatially-varying stroke sizes across the whole image. We clarify

that we only incorporate one-single predictor in our deformable graph convolutional network

that produces the style scales, for the sake of computational efficiency. There is no need to

also augment another predictor for content scale prediction, which is, in fact, equivalent to

fixing the content scale and only changing the style one.

The second component of the proposed deformable graph convolutional network is the general

feature aggregation module that learns to aggregate the useful features from the neighboring

heterogeneous content and style nodes. Various existing message passing mechanisms can, in

fact, readily be applied at this stage for message propagation. Here, we leverage the graph

attention scheme to demonstrate the message flow along with the two types of stylization

edges, which empirically leads to superior stylization performance thanks to its property of

anisotropy.

Specifically, given an established stylization graph, our dedicated heterogeneous aggregation

process is composed of two key stages, termed as style-to-content message passing stage and

content-to-content messing passing stage:

Style-to-Content Message Passing. The first style-to-content stage aims to gather the useful

style features from the k neighboring style vertices. For the specific message gathering

method, one vanilla way is to treat the information from every style vertex equally, meaning

that the aggregated result would be simply the sum of all the neighboring style node features.

However, the results of such naïve approach are likely to be affected by the noisy style vertices,

resulting in undesired artifacts.

To tackle this challenge, we apply an attention coefficient for each style vertex during message

passing, which is learned in a data-driven manner. Given a centering content node vc and

its neighboring style nodes {vs} with the cardinality of k, the learned attention coefficients

114 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

w(vc, vjs) between vc and a specific neighbor vjs can be computed as:

w(vc, v
j
s) =

exp (LeakyReLU (Wa[WbFckWbF j
s]))Pk

m=1 exp (LeakyReLU (Wa[WbFckWbFm
s]))

, (6.2)

where W represents the learnable matrix in linear transformation. k is the concatenation

operation.

With such an attention-based aggregation manner, our stylization GNN can adaptively collect

more significant information from the best-matching style patches, and meanwhile reduce

the features from the less-matching noisy ones. Furthermore, we also apply a multi-headed

architecture that generates the multi-head attention, so as to stabilize the attention learning

process.

Content-to-Content Message Passing. With the updated node features at the content vertices

from the preceding style-to-content message passing process, we also perform a second-phase

information propagation among different content nodes. The rationale behind our content-

to-content message passing is to perform global patch-based adjustment upon the results of

the style-to-content stage, by considering the inter-relationship between the stylized patches

at different locations. As such, the global coherence can be maintained, where the content

objects that share similar semantics are more likely to resemble each other in stylization,

which will be further validated in the experiments.

This proposed intra-content propagation also delivers the benefit of alleviating the artifacts

resulting from potential style-content patch mismatching, by combining the features from

the correctly-matching results. The detailed content-to-content message passing procedure

is analogous to that in style-to-content message passing, but replacing the style vertices in

Eq. 6.2 with the neighboring content vertices with the associated updated node features.

The eventual aggregation results from the proposed inter- and intra-domain message passing

are then converted back into the feature patches by a Feat2Patch operation, which is

an inverse operation of Patch2Feat. The obtained patches are further transformed into

the feature map for the use of the subsequent global feature alignment module and feature

decoding module.

6.2 PROPOSED METHOD 115

Algorithm 3 Training a GNN-based stylization model that can transfer arbitrary styles in a
semi-parametric manner.
Input: Ic: the content image; Is: the style image; VGG: the pre-trained loss network.
Output: Io: Target stylized image that simultaneously preserves the appearance of Is and

the semantics of Ic.
1: Perform initializations on the image encoder Enc(·), the scale predictor Prec(·), GNN

parameters Wa and Wb, and the feature decoder Dec(·).
2: for i = 1 to T iterations do
3: Feed Is and Ic into Enc(·) and obtain the style and content features Fs and Fc;
4: Divide Fc into equal-size content patches {�(Fc)} by using a sliding window;
5: Feed {Fs, Fc} into Prec(·) and obtain the optimal scales {↵} for style patches;
6: Divide Fs into varying-size style patches {�(Fs)} with the obtained scales {↵};
7: Resize {�(Fs)} according to the size of the content patches {�(Fc)};
8: Construct inter- and intra-domain edges by Eq. 6.1;
9: Transform {�(Fs)} and {�(Fc)} into the node features by using Patch2Feat;

10: Establish the heterogeneous graph GNST and feed GNST into the GNN layers;
11: Perform heterogeneous message passing over GNST by Eq. 6.2 and obtain fc;
12: Convert the aggregation results fc into feature map Fo by Feat2Patch;
13: Feed the obtained features Fo into the global feature refiner and obtain F 0

o;
14: Feed F 0

o into the decoder Dec(·) to obtain the target stylized image Io;
15: Feed {Io, Ic, Is} into VGG and compute Lc and Ls by Eq. 6.3 and Eq. 6.4;
16: Optimize Enc(·), Prec(·), Wa, Wb, and Dec(·) with the Adam optimizer;
17: end for

6.2.4 Loss Function and Training Strategy

To align the semantic content, our content loss Lc is defined as the perceptual loss over the

features from layer {relu4_1} of the pre-trained VGG network �:

Lc = k�relu4_1(Ic)� �relu4_1(Io)k2, (6.3)

where Ic and Io represent the content and the output stylized images, respectively. For the

style loss, we use the BN-statistic loss to extrat and transfer the style information, computed

at layer {relu1_1,relu2_1,relu3_1,relu4_1} of the VGG network �:

Ls(h) =
4X

`=1

(
��h

�
�relu`_1 (Is)

�
� h

�
�relu`_1 (Io)

���
2
), (6.4)

where h(·) denotes the mapping of computing the BN statistics over the feature maps. The

style loss can then be defined as: Ls = Ls(µ) +Ls(�), with µ(·) and �(·) denoting mean and

standard standard deviation, respectively.

116 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

Our total loss is thereby a weighted sum of the content and style loss, formulated as: L =

Lcontent + �Lstyle with � as the weighting factor that balances the content and style portions.

We also derive an elaborated training pipeline, tailored for the proposed GNN-based semi-

parametric style transfer framework. As a whole, the detailed process of training a GNN-based

semi-parametric arbitrary stylization model with the proposed algorithm is concluded in

Alg. 3.

6.3 Experiments

6.3.1 Experimental Settings

We demonstrate here the implementation details as per the stage of the proposed semi-

parametric pipeline. For the stylization graph construction stage, we set k as 5 by default

for the NCC-based KNN search. The stride s for the sliding window is set to 1, whereas the

kernel size is set to 5⇥ 5. At the stage of deformable graph convolution, we primarily use

the graph attention network (GAT) [153] for the GNN layers to validate the effectiveness of

the proposed semi-parametric NST scheme. During training, we adopt the Adam optimizer

[81] to optimize the whole GNN-based network. The learning rate is 1⇥ 10�4 with a weight

decay of 5⇥ 10�5. The batch size is set to 8. The weighting factor � is set to 10. We employ

a pre-trained VGG-19 as our loss network, as also done in [39, 59]. The network is trained on

the Microsoft COCO dataset [98] and the WikiArt [122] dataset. Our code is based on Deep

Graph Library (DGL) [161]. The training takes roughly two days on an NVIDIA Tesla A100

GPU.

6.3.2 Results

Qualitative comparison. Fig. 6.3 demonstrates the results of the proposed GNN-based

semi-parametric method and other arbitrary style transfer methods [96, 59, 1, 19, 147]. The

results of [96] are prone to distorted patterns. By contrast, the algorithms of [59, 1] generate

sharper details; however, the local style patterns in their results are not well aligned with the

6.3 EXPERIMENTS 117

Content+Style Ours Li et al. [96] Huang et al. [59] An et al. [1] Chen et al. [19] Sheng et al. [147]

FIGURE 6.3: Qualitative results of our proposed GNN-based semi-parametric
stylization algorithm and other parametric [96, 59, 1] and non-parametric [19,
147] methods.

target ones, where very few fine strokes are produced for most styles. For the non-parametric

NST approaches of [19, 147], their stylized results either introduce fewer style patterns or

suffer from artifacts, due to the potential issue of one-to-one patch mismatching. Compared

with other approaches, our semi-parametric framework leads to few artifacts, and meanwhile

preserves both the global style appearance and the local fine details, thanks to the local

patch-based manipulation module with GNNs.

Efficiency analysis. In Tab. 6.1, we compare the average stylization speed of the proposed

approach with other algorithms. For a fair comparison, all the methods are implemented with

PyTorch. The experiments are performed over 100 equal-size content and style images of

different resolutions using an NVIDIA Tesla A100 GPU. The proposed method demonstrates

improved efficiency over the non-parametric method proposed by Sheng et al. [147], while

maintaining a comparable processing speed to Chen et al. [19]. Moreover, it excels in

generating fewer artifacts and finer-grained details than the non-parametric and parametric

techniques presented by Chen et al. [19], Li et al. [96], Huang et al. [59], and An et al.

118 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

TABLE 6.1: Average speed comparison in terms of seconds per image.

Methods Time (s)
256⇥ 256 384⇥ 384 512⇥ 512

Li et al. [96] 0.707 0.779 0.878
Huang et al. [59] 0.007 0.010 0.017

An et al. [1] 0.069 0.108 0.169
Chen et al. [19] 0.017 0.051 0.218

Sheng et al. [147] 0.412 0.536 0.630
Ours 0.094 0.198 0.464

[1], attributed to the more accurate GNN-based patch matching. Also, our speed is, in fact,

bottlenecked by the KNN search process, which can be further improved with an optimized

KNN implementation.

6.3.3 Ablation Studies

Heterogeneous aggregation schemes. We show in Fig. 6.4 the stylization results by using

different neighborhood aggregation strategies in the local patch-based manipulation module.

The results of the GAT aggregation scheme, as shown in the 3rd column of Fig. 6.4, outperform

those of others in finer structures and global coherence (the areas of the sky and the human

face in Fig. 6.4), thereby validating the superiority of the attention scheme in Eq. 6.2.

Style Content GAT GCN GIN EdgeConv GraphSAGE

FIGURE 6.4: Comparative results of using various aggregation mechanisms
for heterogeneous message passing, including graph attention network (GAT)
[153], graph convolutional network (GCN) [82], graph isomorphism network
(GIN) [180], dynamic graph convolution (EdgeConv) [167], and GraphSAGE
[48]. The GAT mechanism generally yields superior stylization results, thanks
to its attention-based aggregation scheme in Eq. 6.2.

6.3 EXPERIMENTS 119

Style Content Equal-Size Deformable Style Content Equal-Size Deformable

FIGURE 6.5: Results of the equal-size patch division method and the proposed
deformable one with a learnable scale predictor. Our deformable scheme
allows for cross-scale style-content matching, thereby leading to spatially-
adaptive multi-stroke stylization with an enhanced semantic saliency (e.g., the
foreground regions of the horse and squirrel).

Style Content w/o Intra w/ Intra Style Content w/o Intra w/ Intra

FIGURE 6.6: Results of removing the content-to-content intra-domain edges
(w/o Intra) and those with the intra-domain ones (w/ Intra). The devised
intra-domain connections incorporate the inter-relationship between the styl-
ized patches at different locations, thereby maintaining the global stylization
coherence (e.g., the eye regions in the figure).

Stylization w/ and w/o the deformable scheme. Fig. 6.5 demonstrates the results with the

equal-size patch division method, and those with the proposed deformable patch splitting

scheme. The devised deformable module makes it possible to adaptively control the strokes

in different areas. As a result, the contrast information in the stylized results can be enhanced.

Graph w/ and w/o intra-domain edges. In Fig. 6.6, we validate the effectiveness of the

proposed content-to-content message passing scheme, which typically leads to more consistent

style patterns in semantically-similar content regions, as can be observed in the foreground

human and fox eye areas, as well as the background regions of Fig. 6.6.

Euclidean distance vs. normalized cross-correlation. Fig. 6.7 shows the results of using

the Euclidean distance and the normalized cross-correlation (NCC) as the distance metric,

respectively, in the construction of the stylization graph. The adopted metric of NCC in our

framework, as observed from the 4th and 8th columns of Fig. 6.7, leads to superior performance

than the Euclidean distance (Fig. 6.7, the 3rd and 7th columns) in terms of both the global

stroke arrangements and local details.

120 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

Style Content Euclidean NCC (Ours) Style Content Euclidean NCC (Ours)

FIGURE 6.7: Results obtained using Euclidean distance and normalized cross-
correlation (NCC) for similarity measurement during the construction of
heterogeneous edges.

Patch Size=3 Patch Size=5 Patch Size=7 Patch Size=9 Patch Size=3 Patch Size=5 Patch Size=7 Patch Size=9

FIGURE 6.8: Results obtained using various patch sizes for constructing
content and style vertices in the local patch-based manipulation module. By
using a larger patch size, the stylized results can maintain an overall larger
stroke size.

Various patch sizes. We show in Fig. 6.8 the results of diversified feature patch sizes. Larger

patch sizes, as shown from the left to right in the figure, generally lead to larger strokes in

the stylized results, which is especially obvious when we observe the regions of the dog and

horse in Fig. 6.8.

6.3.4 Diversified Stylization Control

The proposed GNN-based arbitrary style transfer scheme, as shown in Fig. 6.9, can readily

support diversified stylization with solely a single model. We also zoom in on the same

regions (i.e., the red frames in Fig. 6.9) to observe the details. Such diversities in Fig. 6.9

are specifically achieved by simply changing the numbers of node-specific connections for

heterogeneous message passing, which provide users of various tastes with more stylization

choices.

6.4 Additional Details and Results

This section presents:

6.4 ADDITIONAL DETAILS AND RESULTS 121

Content+Style Pattern #1 Pattern #2 Pattern #3 Content+Style Pattern #1 Pattern #2 Pattern #3

FIGURE 6.9: Flexible control of diversified patch-based arbitrary style trans-
fer during inference. The proposed GNN-based semi-parametric stylization
scheme makes it possible to generate heterogeneous style patterns with only a
single trained model.

• Two newly-added ablation studies, including the results with the proposed local

patch-based manipulation (LPM) module and those without LPM. We also validate

the effectiveness of the proposed GNN-based approach by developing two possible

semi-parametric solutions and demonstrate here the corresponding comparative

results;

• Additional results of the five ablation studies, including more results of heterogeneous

neighborhood aggregation schemes, different distance metrics, various content and

style patch sizes, distinct patch division schemes, and the designed intra-domain

connections;

• Additional results of the novel functionality, including flexible diversified arbitrary

stylization and multi-style amalgamation with a single model.

For the proposed approach, this section provides here more architecture details of each

module and more detailed explanations of the proposed heterogeneous content-style and

content-content message passing.

6.4.1 Architecture Details

We show in Tab. 6.2 the architecture details of the proposed method. In particular, for the

image encoder, we use the first few layers of VGG-19 before relu3_1, as also done in [19],

to generate more feature patches for matching. We do not include the global feature refinement

module in Tab. 6.2, since there are no involved trainable parameters during our process of

global feature refinement for the sake of computational efficiency. For the deformable module,

122 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

TABLE 6.2: Detailed architectures of the image encoding module, deformable
module, GNN-based local patch-based manipulation module, and feature
decoding module in the proposed semi-parametric style transfer network,
respectively.

Layer In_Chans Out_Chans Kernel Stride Activation

Image Encoding

Conv 3 3 1⇥1 1 -
Conv 3 64 3⇥3 1 ReLU
Conv 64 64 3⇥3 1 ReLU

MaxPool 64 64 - 2 -
Conv 64 128 3⇥3 1 ReLU
Conv 128 128 3⇥3 1 ReLU

MaxPool 128 128 - 2 -
Conv 128 256 3⇥3 1 ReLU

Deformable Module

Conv 512 256 1⇥1 1 GELUS
Conv 256 256 3⇥3 1 -
Conv 256 6400 5⇥5 1 -
Linear 6400 4 - - -
Linear 2304 6400 - - -

Local Patch-based
Manipulation

Feat2Patch 256 6400 - - -
KNN - - - - -

GATConv 256 256 - - ReLU
GATConv 256 256 - - ReLU
Patch2Feat 6400 256 - - -

Feature Decoding

Conv 256 256 3⇥3 1 ReLU
Conv 256 256 3⇥3 1 ReLU
Conv 256 256 3⇥3 1 ReLU
Conv 256 128 3⇥3 1 ReLU

Upsample 128 128 1/2 - -
Conv 128 128 3⇥3 1 ReLU
Conv 128 64 3⇥3 1 ReLU

Upsample 64 64 1/2 - -
Conv 64 64 3⇥3 1 ReLU
Conv 64 3 3⇥3 1 -

we would like to clarify that we omit a sampling-interpolation procedure that is hard to depict

in Tab. 6.2, which addresses the fractional coordinate issue, with: 2304 = in_channels ⇥

sampling_window_size. Also, the outputs of the scale predictor in Tab. 6.2 are the final

rescaled feature patches, with 6400 = in_chans ⇥patch_size2.

6.4 ADDITIONAL DETAILS AND RESULTS 123

style-to-content
message passing

content-to-content
message passing

content

style

FIGURE 6.10: Illustrations of the dedicated two-stage heterogeneous aggreg-
ation process, including style-to-content message passing stage (i.e., the left
red block in the figure) and content-to-content messing passing stage (i.e., the
right red block in the figure).

6.4.2 More Illustrations of Heterogeneous Style-Content and

Content-Content Message Passing

In this section, we give more explanations of the proposed path-based message passing scheme.

We demonstrate the detailed style-to-content message passing and content-to-content message

passing in Fig. 6.10. Specifically, the style-to-content message passing, as shown in Fig. 6.10,

aims to aggregate style information from the k most similar style patches along the inter-

domain edges (green arrows in Fig. 6.10). Subsequent to the style-to-content message passing,

the proposed content-to-content aggregation further gathers the features from neighboring

content nodes, such that the semantically-similar content regions will also be rendered with

homogeneous style patterns. The effectiveness of such content-to-content message passing

will be further validated in Fig. 6.15 of Sect. 6.4.4.3.

6.4.3 Newly-Added Ablation Studies

In this section, we perform extensive ablation studies to further validate the effectiveness

of the proposed semi-parametric style transfer framework. In particular, we add two new

ablation studies, including the stylization results with the local patch-based manipulation

(LPM) module and those without the LPM module, and also the results of the two possible

124 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

solutions of semi-parametric stylization, including the combination of AdaIN and style swap,

and also the combination of AdaIN and style decorator.

6.4.3.1 Stylization w/ and w/o Local Patch-based Manipulation Module

Fig. 6.11 shows the stylization results with the proposed local patch-based manipulation

(LPM) module, and those without the LPM module. The stylized results without the proposed

LPM module, as shown in the 2nd and the 5th columns of Fig. 6.11, retain the global appearance

of the style images, but are prone to undesired local artifacts. In contrast, the results with the

dedicated LPM are effective in producing fine-grained patterns and sharper details, as can

be observed in the 3rd and the 6th columns Fig. 6.11. For example, the 3rd row, 6th column

of Fig. 6.11 successfully transfers the corresponding style strokes to the petals, whereas

the 5th column in Fig. 6.11 only keeps the original petal colors. Similar observations can

also be obtained from the 1st row of Fig. 6.11, where the bird feathers are rendered with the

corresponding best-matched style patterns.

Content+Style w/o LPM w/ LPM Content+Style w/o LPM w/ LPM

FIGURE 6.11: Comparative results without the local patch-based manipula-
tion (LPM) module and those with the LPM module.

6.4 ADDITIONAL DETAILS AND RESULTS 125

6.4.3.2 Ours vs AdaIN+Style-Swap vs AdaIN+Style-Decorator

To further demonstrate the superiority of the proposed local patch-based manipulation module,

we develop two possible solutions for semi-parametric neural style transfer. Specifically,

we combine the style swap module in [19] with the global feature refinement module (i.e.,

AdaIN), and also combine the style decorator module in [147] with AdaIN. As such, both

local manipulation and global refinement are performed, leading to the two possible semi-

parametric stylization methods. The results of the developed two possible solutions and our

method (i.e., AdaIN+GNN) are provided in Fig. 6.12, indicating that the proposed GNN-based

approach is indeed superior than others.

Style Content AdaIN+[147] AdaIN+[19] Ours

FIGURE 6.12: Comparative results of the proposed GNN-based method
with two possible semi-parametric solutions of AdaIN+Style-Swap and
AdaIN+Style-Decorator.

126 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

6.4.4 Additional Results of Ablation Studies

In particular, we provide additional results of the five ablation studies, including the styliza-

tion results of various content/style patch sizes and heterogeneous aggregation mechanisms.

We also give more results to validate the effectiveness of the proposed content-to-content

message passing, the proposed deformable scheme, and the adopted similarity measurement

metric of normalized cross-correlation.

6.4.4.1 Heterogeneous Aggregation Schemes

We provide in Fig. 6.13 the results of using various GNN mechanisms in the proposed

local patch-based manipulation module, including graph attention network (GAT) [153],

graph convolutional network (GCN) [82], dynamic graph convolution (EdgeConv) [167],

GraphSAGE [48], and graph isomorphism network (GIN) [180]. In what follows, we start

Style Content GAT GCN GIN EdgeConv GraphSAGE

FIGURE 6.13: Comparative results of using various aggregation mechanisms
for heterogeneous message passing, including graph attention network (GAT)
[153], graph convolutional network (GCN) [82], graph isomorphism network
(GIN) [180], dynamic graph convolution (EdgeConv) [167], and GraphSAGE
[48].

6.4 ADDITIONAL DETAILS AND RESULTS 127

by briefly introducing these different GNN schemes and then explain the corresponding

comparison results.

The most straightforward GNN mechanism is GCN. The idea of GCN is to optimize the

node features in an iterative manner, specifically through an isotropic averaging process over

the features of the neighbor nodes: h`+1
i = ReLU

⇣
U ` Meanj2Ni h

`
j

⌘
, where h`+1

i represents

the updated node features at layer ` + 1. U denotes the learnable transformation matrix. j

represents the neighbors Ni of the node i. For GAT, the rationale is to improve the simplest

GCN by incorporating the use of the self-attention scheme. Also, GraphSAGE improves GCN

in a different way, by explicitly considering the node’s own representations from the previous

layer, which can be formulated as: ĥ`+1
i = ReLU

⇣
U ` Concat

�
h`
i , Meanj2Ni h

`
j

� ⌘
, where

Concat represents the concatenation operation. Moreover, GIN is developed upon Weisfeiler-

Lehman Isomorphism Test [170], whereas EdgeConv yields the edge features describing

the relationships between the points and their neighbors for information propagation. More

details can be found in [82, 153, 167, 48, 180, 32].

As can be observed in Fig. 6.13, the GAT mechanism generally yield superior locally-style-

aligned stylized results, thanks to its attention-based scheme. For example, in the 1st row of

Fig. 6.13, GAT yields fine-grained style elements for the petals, in contrast to other GNNs that

merely transfer the global style appearance from the target style. Another observation from

Fig. 6.13 is that the GraphSAGE architecture is more effective at preserving the semantics of

the content images, possibly due to its property of combining the node’s own features from

the previous layer. Also, the results of EdgeConv are less appealing, demonstrating that the

edge features are inferior to the node features for the specific task of style transfer. Similar

observations can be obtained from the results of GIN, where the style patterns are sometimes

not sufficiently transferred to the stylized image, as shown in the 6th row of Fig. 6.13.

6.4.4.2 Distinct Patch Division Schemes

We show in Fig. 6.14 additional comparative results of equal-size patch division method, and

those with the proposed deformable patch splitting scheme. Our deformable scheme allows

for cross-scale style-content matching, thereby leading to spatially-adaptive multi-stroke

128 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

Content+Style Equal-Size Deformable Content+Style Equal-Size Deformable

FIGURE 6.14: Additional results of the equal-size patch division method and
the proposed deformable module with a learnable scale predictor.

Content+Style w/o Intra w/ Intra Content+Style w/o Intra w/ Intra

FIGURE 6.15: Stylization results of removing the content-to-content intra-
domain edges and those with the intra-domain edges.

stylization with the enhanced semantic saliency. Also, the proposed deformable module

reduces the undesired artifacts in the stylization results, as shown in Fig. 6.14.

6.4 ADDITIONAL DETAILS AND RESULTS 129

Content+Style Euclidean NCC (Ours) Content+Style Euclidean NCC (Ours)

FIGURE 6.16: Results obtained using Euclidean distance and normalized
cross-correlation (NCC) for similarity measurement during the construction of
heterogeneous content-to-style and content-to-content edges.

6.4.4.3 NST Graph w/ and w/o Intra-domain Edges

To validate the effectiveness of the proposed content-to-content message passing scheme, we

perform extensive ablation studies in Fig. 6.15 by using or removing the intra-domain edges

in the constructed stylization graph. Our design of intra-domain edges, as shown in the 3rd and

the 6th columns of Fig. 6.15, leads to more consistent style patterns in semantically-similar

content regions, which is especially obvious when we observe the human faces in the 1st row

of Fig. 6.15.

6.4.4.4 Euclidean Distance vs. Normalized Cross-correlation

In Fig. 6.16, we compare the results of using the Euclidean distance and the normalized

cross-correlation (NCC) as the similarity measurement, respectively, in the construction of

the stylization graph. The adopted metric of NCC in our framework, as observed from the 3rd

and the 6th columns of Fig. 6.16, leads to superior performance than the Euclidean distance

(Fig. 6.16, the 2nd and 5th columns) in terms of both the global stroke arrangements and local

details. We take the 3rd row of Fig. 6.16 as an example. It is evident that the stylization results

with the Euclidean distance have more artifacts than those with NCC in the background of the

130 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

Style Content Patch Size = 3 Patch Size = 5 Patch Size = 7 Patch Size = 9

FIGURE 6.17: Results obtained using various patch sizes for constructing
content and style vertices in local patch-based manipulation module.

sewing machine, demonstrating that NCC is better-suited for patch-based matching in our

GNN-based framework.

6.4.4.5 Various Patch Sizes

We demonstrate in Fig. 6.17 the results of diversified feature patch sizes. Larger patch sizes,

as shown in Fig. 6.17, generally lead to larger strokes in the stylized results. For example, the

stylized images in the 3rd row, the 6th column of Fig. 6.17 has much larger strokes than those

in the 3rd row, the 3rd column, which is especially obvious from the regions of the sky.

6.4 ADDITIONAL DETAILS AND RESULTS 131

Content Pattern #1 Pattern #2 Pattern #3 Content Pattern #1 Pattern #2 Pattern #3

FIGURE 6.18: Additional results of diversified patch-based arbitrary style
transfer with solely a single model, corresponding to Fig. 6.6. We zoom in on
the same regions (i.e., the red frames) to observe the details.

6.4.5 Additional Results of User Controls

6.4.5.1 Diversified Stylization Control

We provide in this section more results of the proposed diversified stylization control, corres-

ponding to Fig. 6.9. Additional diversified results are given in Fig. 6.18, where we zoom in on

the same regions in the red frames for the illustrations of local details. For example, in the last

row of Fig. 6.18, it is noticeable that our diversified stylization control can yield various style

patterns with different colors and strokes with only a single trained model. Such diversified

user control is simply achieved by using different numbers of style-to-content connections

during style-to-content message passing, leading to a limited auxiliary computational burden.

6.4.5.2 Multi-style Amalgamation

The proposed GNN-based style transfer approach also triggers the functionality of flexible

multi-style transfer that combines the style patterns in multiple distinct artistic styles. We

show in Fig. 6.19 the results that amalgamate four different style images as an example,

132 6 APPLICATION-DRIVEN EFFICIENT LEARNING WITH SEMI-PARAMETRIC STYLE TRANSFER

FIGURE 6.19: Multi-style transfer within a single image, by performing style
interpolation among various artistic styles.

but we would like to clarify that our method readily supports arbitrary style numbers for

compositions. From the algorithm level, this multi-style image stylization is specifically

realized by exploiting the style feature patches from multiple style images to construct

the style vertices, which are then used to establish the multistyle-to-content heterogeneous

connections for the subsequent multistyle message passing.

6.5 SUMMARY 133

6.5 Summary

This chapter investigates a semi-parametric arbitrary style transfer scheme for the effective

transfers of challenging style patterns at the both local and global levels. Towards this goal, we

identify two key challenges in existing parametric and non-parametric stylization approaches,

and propose a dedicated GNN-based style transfer scheme to solve the dilemma. This is

specifically accomplished by modeling the style transfers as the heterogeneous information

propagation process among the constructed content and style vertices for accurate patch-based

style-content correspondences. Moreover, we develop a deformable graph convolutional

network for various-scale stroke generations. Experiments demonstrate that the proposed

approach achieves favorable performance in both global stroke arrangement and local details.

In our future work, we will investigate employing arbitrary patches based on superpixels,

rather than rectangular patches, for GNN-based style transfer. We will also strive to generalize

the proposed GNN-based scheme to other vision tasks.

CHAPTER 7

Conclusions

This chapter provides a comprehensive overview of the contributions presented in the previous

chapters, while also offering perspectives into potential avenues for future research.

7.1 Summary of Contributions

This thesis focuses on the research of learning efficient representations with GNN architectures

for various domains, such as visual SLAM, visual perception utilizing event cameras, as well

as point cloud classification and segmentation. While GNNs have shown promising results

in these tasks, their increasing complexity and resource requirements pose challenges for

practical deployment in real-world applications such as autonomous driving. This specifically

includes the limitations in resource-constrained environments, time-sensitive applications,

and processing large-scale graphs.

To address these challenges, this thesis identifies four key aspects of efficient graph represent-

ation learning: data-driven efficiency, model-driven efficiency, data-model-driven efficiency,

and application-driven efficiency. To tackle these aspects, four complementary research works

are introduced.

To address data-driven efficiency, a deep graph reprogramming method is proposed. It

allows for the adaptation of a pre-trained GNN to multiple cross-level downstream tasks by

modifying input data, without altering the model parameters. For model-driven efficiency, a

novel knowledge amalgamation approach is explored. It enables the training of a compact
134

7.2 FUTURE RESEARCH 135

and versatile student model by amalgamating knowledge from heterogeneous teacher GNNs,

handling different tasks without relying on human-annotated labels.

To achieve joint data-model-driven efficiency, a customized 1-bit learning framework is

developed. It simultaneously binarizes input graph data and model parameters, replacing

resource-intensive operations with more efficient 1-bit operations for lightweight graph

inference. For application-driven efficiency, an application-specific efficient learning method

is proposed for image style transfer. It employs efficient heterogeneous message passing

in GNNs to model the content-style matching process, improving efficiency compared to

traditional methods.

In summary, these research works contribute to advancing the field of efficient representation

learning with GNNs, addressing various efficiency challenges and offering practical solutions

applicable to a wide range of applications, including the field of visual SLAM.

7.2 Future Research

Efficient representation learning with GNNs is in its early stages and has yet to reach saturation.

In this section, this thesis delves into several potential avenues for future research in this

domain.

For data-driven efficiency, the presented Meta-FeatPadding technique operates under the

assumption that the dimension of the pre-trained data is larger than that of the downstream

data. This allows for the introduction of padding to effectively accommodate the varying

downstream feature dimensions. However, this particular prerequisite imposes a constraint

on the range of applications suitable for this data-driven learning approach. To overcome

this limitation, one potential avenue is the integration of prototype learning, which holds

promise in mitigating the aforementioned challenge. Beyond the scope of the introduced deep

graph reprogramming detailed in this thesis, an alternative strategy for enhancing data-centric

efficiency is graph condensation with GNNs, which involves the compression of a large graph

into a more compact yet remarkably informative representation.

136 7 CONCLUSIONS

In the pursuit of model-driven efficient learning, the computation of the suggested topological

attribution map necessitates resource-intensive gradient computations, thereby introducing

some complexity into the training process. A potential avenue for future research involves the

enhancement of computational efficiency in generating the proposed topological attribution

map, which is a crucial component for achieving structural semantics alignment in know-

ledge amalgamation. Despite the encouraging results of the model-driven efficient learning

approach, it exhibits suboptimal performance empirically when faced with heterogeneous

teachers characterized by significant domain disparities, as seen in scenarios like segmentation

and detection tasks. A prospective direction for further investigation lies in the development

of more broadly applicable model-driven efficient representation learning strategies with

GNNs to bridge substantial domain gaps present in diverse teacher models.

Towards joint data-model-driven efficient representation learning, the utilization of 1-bit

GNNs with the proposed meta aggregators still results in a notable decline in performance

when compared to the full-precision models, particularly evident in intricate tasks such as

point cloud analysis. A prospective avenue for future exploration involves the development of

task-specific and tailored binarization techniques to improve post-binarization performance

across diverse and complex tasks. Moreover, shifting from the current 1-bit precision to half

precision for both graph data and model parameters holds promise as a direction to achieve

a favorable balance between performance and speed. Furthermore, the concept of meta

aggregators offers potential beyond the scope of 1-bit GNNs. Exploring their application to

enhance the performance of full-precision models presents a promising opportunity, especially

in the context of more generalized GNN architectures.

In the context of application-driven efficiency, the proposed semi-parametric style transfer

framework, built upon GNNs, adopts the strategy of segmenting images into regular rectan-

gular patches. A potential avenue for future exploration involves the adoption of arbitrary

patches based on superpixels, as opposed to confining to rectangular patches. This adaptation

would offer increased flexibility and enhanced semantic precision in content-style alignment.

Furthermore, this thesis stands as an innovative endeavor to leverage GNNs to enhance the

manipulation of pixel-based images. A promising path for further investigation lies in the

7.2 FUTURE RESEARCH 137

exploration of GNN integration across a wider range of pixel-based image tasks. This encom-

passes domains like image deblurring, object detection and tracking, and image segmentation,

each of which holds potential for reaping the benefits of GNN-powered methodologies. Addi-

tionally, the application of GNNs in more intricate video-based scenarios presents another

promising trajectory for advancement, extending the potential of GNNs into more complex

and dynamic visual contexts.

Bibliography

[1] Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu and Jiebo Luo. ‘ArtFlow: Unbiased Im-

age Style Transfer via Reversible Neural Flows’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 862–871.

[2] Andreas Argyriou, Theodoros Evgeniou and Massimiliano Pontil. ‘Convex multi-task feature

learning’. In: Machine Learning 73.3 (2008), pp. 243–272.

[3] Mehdi Bahri, Gaétan Bahl and Stefanos Zafeiriou. ‘Binary graph neural networks’. In: Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2021, pp. 9492–9501.

[4] Yoshua Bengio, Nicholas Léonard and Aaron Courville. ‘Estimating or propagating gradients

through stochastic neurons for conditional computation’. In: arXiv preprint arXiv:1308.3432

(2013).

[5] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill et al. ‘On the

opportunities and risks of foundation models’. In: arXiv preprint arXiv:2108.07258 (2021).

[6] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola

and Hans-Peter Kriegel. ‘Protein function prediction via graph kernels’. In: Bioinformatics

21.suppl_1 (2005), pp. i47–i56.

[7] Xavier Bresson and Thomas Laurent. ‘Residual gated graph convnets’. In: arXiv preprint

arXiv:1711.07553 (2017).

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell et al. ‘Language

models are few-shot learners’. In: Advances in Neural Information Processing Systems (Neur-

IPS). Vol. 33. 2020, pp. 1877–1901.

[9] Adrian Bulat and Georgios Tzimiropoulos. ‘Xnor-net++: Improved binary neural networks’.

In: The British Machine Vision Conference (BMVC). 2019, p. 62.

138

BIBLIOGRAPHY 139

[10] Fabio Capela, Vincent Nouchi, Ruud Van Deursen, Igor V Tetko and Guillaume Godin.

‘Multitask learning on graph neural networks applied to molecular property predictions’. In:

arXiv preprint arXiv:1910.13124 (2019).

[11] Alex J Champandard. ‘Semantic style transfer and turning two-bit doodles into fine artworks’.

In: arXiv preprint arXiv:1603.01768 (2016).

[12] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu and Gang Hua. ‘Explicit filterbank learning

for neural image style transfer and image processing’. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI) 43.7 (2020), pp. 2373–2387.

[13] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu and Gang Hua. ‘StyleBank: An explicit

representation for neural image style transfer’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2770–2779.

[14] Haibo Chen, Lei Zhao, Huiming Zhang, Zhizhong Wang, Zhiwen Zuo, Ailin Li, Wei Xing

and Dongming Lu. ‘Diverse Image Style Transfer via Invertible Cross-Space Mapping’. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 14860–14869.

[15] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian and Chang Xu.

‘AdderNet: Do we really need multiplications in deep learning?’ In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 1468–

1477.

[16] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei

Ma, Chunjing Xu, Chao Xu and Wen Gao. ‘Pre-trained image processing transformer’. In:

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2021, pp. 12299–12310.

[17] Jie Chen, Tengfei Ma and Cao Xiao. ‘Fastgcn: fast learning with graph convolutional networks

via importance sampling’. In: International Conference on Learning Representations (ICLR).

2018.

[18] Pin-Yu Chen. ‘Model reprogramming: Resource-efficient cross-domain machine learning’. In:

arXiv preprint arXiv:2202.10629 (2022).

[19] Tian Qi Chen and Mark Schmidt. ‘Fast patch-based style transfer of arbitrary style’. In:

NeurIPS Workshop on Constructive Machine Learning. 2016.

[20] Zhengdao Chen, Lei Chen, Soledad Villar and Joan Bruna. ‘On the equivalence between graph

isomorphism testing and function approximation with GNNs’. In: 32 (2019), pp. 15868–15876.

140 BIBLIOGRAPHY

[21] Zhiyang Chen, Yousong Zhu, Chaoyang Zhao, Guosheng Hu, Wei Zeng, Jinqiao Wang and

Ming Tang. ‘Dpt: Deformable patch-based transformer for visual recognition’. In: Proceedings

of the ACM International Conference on Multimedia. 2021, pp. 2899–2907.

[22] Xiao Chu, Wanli Ouyang, Wei Yang and Xiaogang Wang. ‘Multi-task recurrent neural network

for immediacy prediction’. In: Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV). 2015, pp. 3352–3360.

[23] Ronan Collobert and Jason Weston. ‘A unified architecture for natural language processing:

Deep neural networks with multitask learning’. In: International Conference on Machine

Learning (ICML). 2008, pp. 160–167.

[24] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò and Petar Veličković. ‘Principal

Neighbourhood Aggregation for Graph Nets’. In: Advances in Neural Information Processing

Systems (NeurIPS) 33 (2020), pp. 13260–13271.

[25] Matthieu Courbariaux, Yoshua Bengio and Jean-Pierre David. ‘BinaryConnect: training deep

neural networks with binary weights during propagations’. In: Advances in Neural Information

Processing Systems (NeurIPS). Vol. 28. 2015, pp. 3123–3131.

[26] Xiang Deng and Zhongfei Zhang. ‘Graph-free knowledge distillation for graph neural net-

works’. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

2021, pp. 2441–2447.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. ‘Bert: Pre-training of

deep bidirectional transformers for language understanding’. In: arXiv preprint arXiv:1810.04805

(2018).

[28] Liang Ding, Longyue Wang, Di Wu, Dacheng Tao and Zhaopeng Tu. ‘Context-Aware Cross-

Attention for Non-Autoregressive Translation’. In: Proceedings of the International Conference

on Computational Linguistics (COLING). 2020, pp. 4396–4402.

[29] Liang Ding, Longyue Wang and Dacheng Tao. ‘Self-Attention with Cross-Lingual Position

Representation’. In: Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL). 2020, pp. 1679–1685.

[30] Liang Ding, Longyue Wang, Xuebo Liu, Derek F Wong, Dacheng Tao and Zhaopeng Tu.

‘Understanding and Improving Lexical Choice in Non-Autoregressive Translation’. In: Inter-

national Conference on Learning Representations (ICLR). 2021.

BIBLIOGRAPHY 141

[31] Carl Doersch and Andrew Zisserman. ‘Multi-task self-supervised visual learning’. In: Proceed-

ings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2017, pp. 2051–

2060.

[32] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio and Xavier

Bresson. ‘Benchmarking graph neural networks’. In: arXiv preprint arXiv:2003.00982 (2020).

[33] Gamaleldin F Elsayed, Ian Goodfellow and Jascha Sohl-Dickstein. ‘Adversarial reprogram-

ming of neural networks’. In: International Conference on Learning Representations (ICLR).

2019.

[34] Matthias Englert and Ranko Lazic. ‘Adversarial Reprogramming Revisited’. In: arXiv preprint

arXiv:2206.03466 (2022).

[35] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi and Xinchao Wang. ‘DepGraph:

Towards Any Structural Pruning’. In: arXiv preprint arXiv:2301.12900 (2023).

[36] Kaituo Feng, Changsheng Li, Ye Yuan and Guoren Wang. ‘FreeKD: Free-direction Knowledge

Distillation for Graph Neural Networks’. In: Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD). 2022, pp. 357–366.

[37] Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti and Anima Anandku-

mar. ‘Born Again Neural Networks’. In: International Conference on Machine Learning

(ICML). PMLR. 2018, pp. 1607–1616.

[38] Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea

Censi, Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis et al. ‘Event-

based vision: A survey’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI) 44.1 (2020), pp. 154–180.

[39] Leon A. Gatys, Alexander S. Ecker and Matthias Bethge. ‘Image style transfer using convolu-

tional neural networks’. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2016, pp. 2414–2423.

[40] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals and George E Dahl.

‘Neural message passing for quantum chemistry’. In: International Conference on Machine

Learning (ICML). PMLR. 2017, pp. 1263–1272.

[41] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals and George E Dahl.

‘Neural message passing for quantum chemistry’. In: International Conference on Machine

Learning (ICML). PMLR. 2017, pp. 1263–1272.

142 BIBLIOGRAPHY

[42] Pinghua Gong, Jiayu Zhou, Wei Fan and Jieping Ye. ‘Efficient multi-task feature learning with

calibration’. In: Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). 2014, pp. 761–770.

[43] Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei and Jifeng Dai. ‘Learning region features for

object detection’. In: Proceedings of the European Conference on Computer Vision (ECCV).

2018, pp. 381–395.

[44] Emil Julius Gumbel. Statistical theory of extreme values and some practical applications: a

series of lectures. Vol. 33. US Government Printing Office, 1954.

[45] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu and Mohammed Bennamoun.

‘Deep learning for 3d point clouds: A survey’. In: IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI) 43.12 (2020), pp. 4338–4364.

[46] Karen Hambardzumyan, Hrant Khachatrian and Jonathan May. ‘Warp: Word-level adversarial

reprogramming’. In: Proceedings of the Annual Meeting of the Association for Computational

Linguistics (ACL). 2021, pp. 4921–4933.

[47] Will Hamilton, Zhitao Ying and Jure Leskovec. ‘Inductive representation learning on large

graphs’. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 30. 2017,

1025––1035.

[48] William L Hamilton, Rex Ying and Jure Leskovec. ‘Inductive representation learning on large

graphs’. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 30. 2017,

pp. 1024–1034.

[49] Kai Han, Yunhe Wang, Jianyuan Guo, Yehui Tang and Enhua Wu. ‘Vision gnn: An image is

worth graph of nodes’. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 35. 2022, pp. 8291–8303.

[50] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang and Yulin Wang. ‘Dynamic

neural networks: A survey’. In: IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI) 44.11 (2021), pp. 7436–7456.

[51] Dan He, David Kuhn and Laxmi Parida. ‘Novel applications of multitask learning and multiple

output regression to multiple genetic trait prediction’. In: Bioinformatics 32.12 (2016), pp. i37–

i43.

[52] Kaiming He, Georgia Gkioxari, Piotr Dollár and Ross Girshick. ‘Mask r-cnn’. In: Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV). 2017, pp. 2961–2969.

BIBLIOGRAPHY 143

[53] Geoffrey Hinton, Oriol Vinyals and Jeff Dean. ‘Distilling the knowledge in a neural network’.

In: NIPS Deep Learning and Representation Learning Workshop. 2015.

[54] Kibeom Hong, Seogkyu Jeon, Huan Yang, Jianlong Fu and Hyeran Byun. ‘Domain-Aware

Universal Style Transfer’. In: Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV). 2021, pp. 14609–14617.

[55] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai and Yichen Wei. ‘Relation networks for object

detection’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2018, pp. 3588–3597.

[56] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele

Catasta and Jure Leskovec. ‘Open graph benchmark: Datasets for machine learning on graphs’.

In: arXiv preprint arXiv:2005.00687 (2020).

[57] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande and Jure

Leskovec. ‘Strategies for pre-training graph neural networks’. In: International Conference on

Learning Representations (ICLR). 2020.

[58] Wenbing Huang, Tong Zhang, Yu Rong and Junzhou Huang. ‘Adaptive sampling towards

fast graph representation learning’. In: Advances in Neural Information Processing Systems

(NeurIPS). Vol. 31. 2018, 4563––4572.

[59] Xun Huang and Serge Belongie. ‘Arbitrary style transfer in real-time with adaptive instance

normalization’. In: Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV). 2017, pp. 1510–1519.

[60] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv and Yoshua Bengio. ‘Binar-

ized neural networks: Training neural networks with weights and activations constrained to+ 1

or-1’. In: arXiv preprint arXiv:1602.02830 (2016).

[61] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv and Yoshua Bengio. ‘Bin-

arized neural networks’. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 29. 2016, pp. 4107–4115.

[62] Jing Huo, Shiyin Jin, Wenbin Li, Jing Wu, Yu-Kun Lai, Yinghuan Shi and Yang Gao. ‘Mani-

fold Alignment for Semantically Aligned Style Transfer’. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV). 2021, pp. 14861–14869.

[63] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad and Ryan G Coleman.

‘ZINC: a free tool to discover chemistry for biology’. In: Journal of Chemical Information and

Modeling 52.7 (2012), pp. 1757–1768.

144 BIBLIOGRAPHY

[64] Ashesh Jain, Amir R Zamir, Silvio Savarese and Ashutosh Saxena. ‘Structural-rnn: Deep learn-

ing on spatio-temporal graphs’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2016, pp. 5308–5317.

[65] Eric Jang, Shixiang Gu and Ben Poole. ‘Categorical reparameterization with gumbel-softmax’.

In: arXiv preprint arXiv:1611.01144 (2016).

[66] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal and Jiliang Tang.

‘Adversarial attacks and defenses on graphs’. In: ACM SIGKDD Explorations Newsletter 22.2

(2021), pp. 19–34.

[67] Wengong Jin, Regina Barzilay and Tommi Jaakkola. ‘Junction tree variational autoencoder

for molecular graph generation’. In: International Conference on Machine Learning (ICML).

PMLR. 2018, pp. 2323–2332.

[68] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song and Dacheng Tao. ‘Amalgamating

Knowledge From Heterogeneous Graph Neural Networks’. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 15709–15718.

[69] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang, Errui Ding, Mingli Song and Shilei

Wen. ‘Dynamic Instance Normalization for Arbitrary Style Transfer’. In: Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI). Vol. 34. 04. 2020, pp. 4369–4376.

[70] Yongcheng Jing, Yining Mao, Yiding Yang, Yibing Zhan, Mingli Song, Xinchao Wang and

Dacheng Tao. ‘Learning graph neural networks for image style transfer’. In: Proceedings of

the European Conference on Computer Vision (ECCV). 2022, pp. 111–128.

[71] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song and Dacheng Tao. ‘Meta-Aggregator:

Learning to Aggregate for 1-bit Graph Neural Networks’. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV). 2021, pp. 5301–5310.

[72] Yongcheng Jing, Yezhou Yang, Zunlei Feng, Jingwen Ye, Yizhou Yu and Mingli Song. ‘Neural

Style Transfer: A Review’. In: IEEE Transactions on Visualization and Computer Graphics

(TVCG) 26.11 (2020), pp. 3365–3385.

[73] Yongcheng Jing, Xinchao Wang and Dacheng Tao. ‘Segment anything in non-euclidean

domains: Challenges and opportunities’. In: arXiv preprint arXiv:2304.11595 (2023).

[74] Yongcheng Jing, Yang Liu, Yezhou Yang, Zunlei Feng, Yizhou Yu, Dacheng Tao and Mingli

Song. ‘Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields’. In: Proceed-

ings of the European Conference on Computer Vision (ECCV). 2018, pp. 238–254.

BIBLIOGRAPHY 145

[75] Justin Johnson, Alexandre Alahi and Li Fei-Fei. ‘Perceptual losses for real-time style transfer

and super-resolution’. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2016, pp. 694–711.

[76] Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin and Chuan-Sheng Foo. ‘On Representation

Knowledge Distillation for Graph Neural Networks’. In: arXiv preprint arXiv:2111.04964

(2021).

[77] Łukasz Kaiser and Samy Bengio. ‘Discrete autoencoders for sequence models’. In: arXiv

preprint arXiv:1801.09797 (2018).

[78] Nikolai Kalischek, Jan D Wegner and Konrad Schindler. ‘In the light of feature distributions:

moment matching for Neural Style Transfer’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 9382–9391.

[79] Minje Kim and Paris Smaragdis. ‘Bitwise neural networks’. In: arXiv preprint arXiv:1601.06071

(2016).

[80] Diederik P Kingma and Jimmy Ba. ‘Adam: A method for stochastic optimization’. In: Inter-

national Conference on Learning Representations (ICLR). 2015.

[81] Diederik Kingma and Jimmy Ba. ‘Adam: A method for stochastic optimization’. In: Interna-

tional Conference on Learning Representations (ICLR). 2015.

[82] Thomas N Kipf and Max Welling. ‘Semi-supervised classification with graph convolutional

networks’. In: International Conference on Learning Representations (ICLR). 2017.

[83] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,

Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo et al. ‘Segment anything’. In:

arXiv preprint arXiv:2304.02643 (2023).

[84] Eliska Kloberdanz, Jin Tian and Wei Le. ‘An improved (adversarial) reprogramming technique

for neural networks’. In: International Conference on Artificial Neural Networks (ICANN).

2021, pp. 3–15.

[85] Iasonas Kokkinos. ‘Ubernet: Training a universal convolutional neural network for low-, mid-,

and high-level vision using diverse datasets and limited memory’. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 6129–

6138.

[86] Nicholas Kolkin, Jason Salavon and Gregory Shakhnarovich. ‘Style transfer by relaxed optimal

transport and self-similarity’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2019, pp. 10051–10060.

146 BIBLIOGRAPHY

[87] Yajing Kong, Liu Liu, Jun Wang and Dacheng Tao. ‘Adaptive curriculum learning’. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 5047–5056.

[88] Loic Landrieu and Martin Simonovsky. ‘Large-scale point cloud semantic segmentation with

superpoint graphs’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2018, pp. 4558–4567.

[89] Chuan Li and Michael Wand. ‘Combining markov random fields and convolutional neural

networks for image synthesis’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2016, pp. 2479–2486.

[90] Guohao Li, Matthias Muller, Ali Thabet and Bernard Ghanem. ‘Deepgcns: Can gcns go as

deep as cnns?’ In: Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV). 2019, pp. 9267–9276.

[91] Qimai Li, Zhichao Han and Xiao-Ming Wu. ‘Deeper insights into graph convolutional net-

works for semi-supervised learning’. In: Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI). Vol. 32. 1. 2018.

[92] Ruoyu Li, Sheng Wang, Feiyun Zhu and Junzhou Huang. ‘Adaptive graph convolutional

neural networks’. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Vol. 32. 1. 2018.

[93] Yan Li, Jie Wang, Jieping Ye and Chandan K Reddy. ‘A multi-task learning formulation

for survival analysis’. In: Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD). 2016, pp. 1715–1724.

[94] Yanghao Li, Naiyan Wang, Jiaying Liu and Xiaodi Hou. ‘Demystifying neural style transfer’.

In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2017,

pp. 2230–2236.

[95] Yijun Li, Fang Chen, Jimei Yang, Zhaowen Wang, Xin Lu and Ming-Hsuan Yang. ‘Diversified

texture synthesis with feed-forward networks’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 266–274.

[96] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu and Ming-Hsuan Yang. ‘Universal

style transfer via feature transforms’. In: Advances in Neural Information Processing Systems

(NeurIPS). Vol. 30. 2017, pp. 386–396.

BIBLIOGRAPHY 147

[97] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua and Sing Bing Kang. ‘Visual attribute transfer

through deep image analogy’. In: ACM Transactions on Graphics (TOG) 36.4 (2017), pp. 1–

15.

[98] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár and C Lawrence Zitnick. ‘Microsoft coco: Common objects in context’. In:

Proceedings of the European Conference on Computer Vision (ECCV). 2014, pp. 740–755.

[99] Huihui Liu, Yiding Yang and Xinchao Wang. ‘Overcoming Catastrophic Forgetting in Graph

Neural Networks’. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Vol. 35. 10. 2021, pp. 8653–8661.

[100] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling Wang, Xin Li, Zhengxing Sun, Qian

Li and Errui Ding. ‘Adaattn: Revisit attention mechanism in arbitrary neural style transfer’. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 6629–6638.

[101] Songhua Liu, Kai Wang, Xingyi Yang, Jingwen Ye and Xinchao Wang. ‘Dataset distillation

via factorization’. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 35.

2022, pp. 1100–1113.

[102] Songhua Liu, Jingwen Ye, Sucheng Ren and Xinchao Wang. ‘Dynast: Dynamic sparse trans-

former for exemplar-guided image generation’. In: Proceedings of the European Conference

on Computer Vision (ECCV). 2022, pp. 72–90.

[103] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Ruifeng Deng, Xin Li, Errui Ding and

Hao Wang. ‘Paint transformer: Feed forward neural painting with stroke prediction’. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2021,

pp. 6598–6607.

[104] Xiao-Chang Liu, Yong-Liang Yang and Peter Hall. ‘Learning To Warp for Style Transfer’.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2021, pp. 3702–3711.

[105] Gen Luo, Yiyi Zhou, Xiaoshuai Sun, Liujuan Cao, Chenglin Wu, Cheng Deng and Rongrong

Ji. ‘Multi-task Collaborative Network for Joint Referring Expression Comprehension and

Segmentation’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2020, pp. 10034–10043.

[106] Sihui Luo, Wenwen Pan, Xinchao Wang, Dazhou Wang, Haihong Tang and Mingli Song.

‘Collaboration by Competition: Self-coordinated Knowledge Amalgamation for Multi-talent

148 BIBLIOGRAPHY

Student Learning’. In: Proceedings of the European Conference on Computer Vision (ECCV).

2020, pp. 631–646.

[107] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang and Wenwu Zhu. ‘Disentangled graph convolu-

tional networks’. In: International Conference on Machine Learning (ICML). PMLR. 2019,

pp. 4212–4221.

[108] Jiaqi Ma, Shuangrui Ding and Qiaozhu Mei. ‘Towards more practical adversarial attacks on

graph neural networks’. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 33. 2020, pp. 4756–4766.

[109] Chris J Maddison, Daniel Tarlow and Tom Minka. ‘A* sampling’. In: Advances in Neural

Information Processing Systems (NeurIPS). Vol. 27. 2014, pp. 3086–3094.

[110] Kaleel Mahmood, Rigel Mahmood and Marten Van Dijk. ‘On the robustness of vision trans-

formers to adversarial examples’. In: Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV). 2021, pp. 7838–7847.

[111] Brais Martinez, Jing Yang, Adrian Bulat and Georgios Tzimiropoulos. ‘Training binary

neural networks with real-to-binary convolutions’. In: International Conference on Learning

Representations (ICLR). 2020.

[112] Julian McAuley, Christopher Targett, Qinfeng Shi and Anton Van Den Hengel. ‘Image-based

recommendations on styles and substitutes’. In: Proceedings of the International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR). 2015, pp. 43–52.

[113] Bryan McCann, Nitish Shirish Keskar, Caiming Xiong and Richard Socher. ‘The natural lan-

guage decathlon: Multitask learning as question answering’. In: arXiv preprint arXiv:1806.08730

(2018).

[114] Scott McLean, Gemma JM Read, Jason Thompson, Chris Baber, Neville A Stanton and Paul M

Salmon. ‘The risks associated with Artificial General Intelligence: A systematic review’. In:

Journal of Experimental & Theoretical Artificial Intelligence (JETAI) (2021), pp. 1–15.

[115] Roey Mechrez, Itamar Talmi and Lihi Zelnik-Manor. ‘The contextual loss for image trans-

formation with non-aligned data’. In: Proceedings of the European Conference on Computer

Vision (ECCV). 2018, pp. 768–783.

[116] Stefan Milz, Georg Arbeiter, Christian Witt, Bassam Abdallah and Senthil Yogamani. ‘Visual

slam for automated driving: Exploring the applications of deep learning’. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

2018, pp. 247–257.

BIBLIOGRAPHY 149

[117] Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia, Katja

Hansen, Alexandre Tkatchenko, Klaus-Robert Müller and O Anatole Von Lilienfeld. ‘Machine

learning of molecular electronic properties in chemical compound space’. In: New Journal of

Physics (NJP) 15.9 (2013), p. 095003.

[118] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda and

Michael M Bronstein. ‘Geometric deep learning on graphs and manifolds using mixture

model cnns’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2017, pp. 5115–5124.

[119] Hoang NT and Takanori Maehara. ‘Revisiting Graph Neural Networks: All We Have is

Low-Pass Filters’. In: arXiv preprint arXiv:1905.09550 (2019).

[120] Paarth Neekhara, Shehzeen Hussain, Shlomo Dubnov and Farinaz Koushanfar. ‘Adversarial

reprogramming of text classification neural networks’. In: Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP). 2019, pp. 5215–5224.

[121] Paarth Neekhara, Shehzeen Hussain, Jinglong Du, Shlomo Dubnov, Farinaz Koushanfar

and Julian McAuley. ‘Cross-modal Adversarial Reprogramming’. In: Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022, pp. 2427–

2435.

[122] Kiri Nichol. Painter by Numbers. 2016. URL: https : / / www . kaggle . com / c /

painter-by-numbers.

[123] OpenAI. ‘GPT-4 Technical Report’. In: arXiv preprint arXiv:2303.08774 (2023).

[124] Emilio Parisotto, Jimmy Lei Ba and Ruslan Salakhutdinov. ‘Actor-mimic: Deep multitask and

transfer reinforcement learning’. In: arXiv preprint arXiv:1511.06342 (2015).

[125] Bryan Perozzi, Rami Al-Rfou and Steven Skiena. ‘Deepwalk: Online learning of social rep-

resentations’. In: Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). 2014, pp. 701–710.

[126] Charles R Qi, Hao Su, Kaichun Mo and Leonidas J Guibas. ‘Pointnet: Deep learning on point

sets for 3d classification and segmentation’. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp. 652–660.

[127] Charles Ruizhongtai Qi, Li Yi, Hao Su and Leonidas J Guibas. ‘Pointnet++: Deep hierarchical

feature learning on point sets in a metric space’. In: Advances in Neural Information Processing

Systems (NeurIPS). Vol. 30. 2017, 5105––5114.

https://www.kaggle.com/c/painter-by-numbers
https://www.kaggle.com/c/painter-by-numbers

150 BIBLIOGRAPHY

[128] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen and Song-Chun Zhu. ‘Learning

human-object interactions by graph parsing neural networks’. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2018, pp. 401–417.

[129] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler and Raquel Urtasun. ‘3d graph neural

networks for rgbd semantic segmentation’. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 2017, pp. 5199–5208.

[130] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song and Nicu Sebe. ‘Binary

neural networks: A survey’. In: Pattern Recognition 105 (2020), p. 107281.

[131] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon and Ali Farhadi. ‘Xnor-net: Imagenet

classification using binary convolutional neural networks’. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2016, pp. 525–542.

[132] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,

Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg et al.

‘A generalist agent’. In: arXiv preprint arXiv:2205.06175 (2022).

[133] Sucheng Ren, Daquan Zhou, Shengfeng He, Jiashi Feng and Xinchao Wang. ‘Shunted Self-

Attention via Multi-Scale Token Aggregation’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 10853–10862.

[134] Eric Risser, Pierre Wilmot and Connelly Barnes. ‘Stable and controllable neural texture

synthesis and style transfer using histogram losses’. In: arXiv preprint arXiv:1701.08893

(2017).

[135] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta and

Yoshua Bengio. ‘Fitnets: Hints for thin deep nets’. In: arXiv preprint arXiv:1412.6550 (2014).

[136] Yu Rong, Wenbing Huang, Tingyang Xu and Junzhou Huang. ‘Dropedge: Towards deep graph

convolutional networks on node classification’. In: International Conference on Learning

Representations (ICLR). 2020.

[137] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. ‘Learning representations by

back-propagating errors’. In: Nature 323.6088 (1986), pp. 533–536.

[138] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,

Koray Kavukcuoglu, Razvan Pascanu and Raia Hadsell. ‘Progressive neural networks’. In:

arXiv preprint arXiv:1606.04671 (2016).

BIBLIOGRAPHY 151

[139] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz and Andrew Rabinovich. ‘Super-

glue: Learning feature matching with graph neural networks’. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 4938–4947.

[140] Simon Schaefer, Daniel Gehrig and Davide Scaramuzza. ‘AEGNN: Asynchronous event-based

graph neural networks’. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2022, pp. 12371–12381.

[141] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher and Tina Eliassi-

Rad. ‘Collective classification in network data’. In: AI Magazine 29.3 (2008), pp. 93–93.

[142] Chengchao Shen, Xinchao Wang, Jie Song, Li Sun and Mingli Song. ‘Amalgamating know-

ledge towards comprehensive classification’. In: Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI). Vol. 33. 01. 2019, pp. 3068–3075.

[143] Chengchao Shen, Mengqi Xue, Xinchao Wang, Jie Song, Li Sun and Mingli Song. ‘Customiz-

ing student networks from heterogeneous teachers via adaptive knowledge amalgamation’. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2019,

pp. 3504–3513.

[144] Chengchao Shen, Xinchao Wang, Youtan Yin, Jie Song, Sihui Luo and Mingli Song. ‘Progress-

ive Network Grafting for Few-Shot Knowledge Distillation’. In: arXiv preprint arXiv:2012.04915

(2020).

[145] Chengchao Shen, Xinchao Wang, Youtan Yin, Jie Song, Sihui Luo and Mingli Song. ‘Pro-

gressive Network Grafting for Few-Shot Knowledge Distillation’. In: Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI). Vol. 35. 3. 2021, pp. 2541–2549.

[146] Chengchao Shen, Youtan Yin, Xinchao Wang, Xubin Li, Jie Song and Mingli Song. ‘Training

generative adversarial networks in one stage’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2021, pp. 3350–3360.

[147] Lu Sheng, Jing Shao, Ziyi Lin, Simon Warfield and Xiaogang Wang. ‘Avatar-Net: Multi-scale

Zero-shot Style Transfer by Feature Decoration’. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 8242–8250.

[148] David Silver, Satinder Singh, Doina Precup and Richard S Sutton. ‘Reward is enough’. In:

Artificial Intelligence 299 (2021), p. 103535.

[149] Jie Song, Ying Chen, Jingwen Ye and Mingli Song. ‘Spot-adaptive knowledge distillation’. In:

IEEE Transactions on Image Processing (TIP) 31 (2022), pp. 3359–3370.

152 BIBLIOGRAPHY

[150] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He and Bo Li. ‘Adversarial

attack and defense on graph data: A survey’. In: IEEE Transactions on Knowledge and Data

Engineering (TKDE) (2022), pp. 1–20.

[151] Takafumi Taketomi, Hideaki Uchiyama and Sei Ikeda. ‘Visual SLAM algorithms: A survey

from 2010 to 2016’. In: IPSJ Transactions on Computer Vision and Applications 9.1 (2017),

pp. 1–11.

[152] Andreas Veit and Serge Belongie. ‘Convolutional Networks with Adaptive Inference Graphs’.

In: International Journal of Computer Vision (IJCV) 128.3 (2020).

[153] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio and

Yoshua Bengio. ‘Graph attention networks’. In: International Conference on Learning Repres-

entations (ICLR). 2018.

[154] Can Wang, Zhe Wang, Defang Chen, Sheng Zhou, Yan Feng and Chun Chen. ‘Online Ad-

versarial Distillation for Graph Neural Networks’. In: arXiv preprint arXiv:2112.13966 (2021).

[155] Chen Wang, Le Zhang, Lihua Xie and Junsong Yuan. ‘Kernel cross-correlator’. In: Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI). Vol. 32. 1. 2018.

[156] Chen Wang, Yuheng Qiu, Dasong Gao and Sebastian Scherer. ‘Lifelong graph learning’.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). 2022, pp. 13719–13728.

[157] Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, Xiangjian He, Yiguang Lin and Xuemin Lin.

‘Binarized Graph Neural Network’. In: arXiv preprint arXiv:2004.11147 (2020).

[158] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie

and Minyi Guo. ‘Graphgan: Graph representation learning with generative adversarial nets’.

In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). Vol. 32. 1. 2018.

[159] Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang and Yuanfang Guo. ‘Bi-GCN: Binary

Graph Convolutional Network’. In: arXiv preprint arXiv:2010.07565 (2020).

[160] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong and Anshul

Kanakia. ‘Microsoft academic graph: When experts are not enough’. In: Quantitative Science

Studies (QSS) 1.1 (2020), pp. 396–413.

[161] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,

Qi Huang, Chao Ma et al. ‘Deep graph library: Towards efficient and scalable deep learning on

graphs’. In: International Conference on Learning Representations (ICLR) Workshop. 2019.

BIBLIOGRAPHY 153

[162] Pei Wang, Yijun Li and Nuno Vasconcelos. ‘Rethinking and improving the robustness of

image style transfer’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2021, pp. 124–133.

[163] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,

Rogerio Feris, David Daniel Cox, Zhangyang Wang and Yoon Kim. ‘Learning to Grow

Pretrained Models for Efficient Transformer Training’. In: arXiv preprint arXiv:2303.00980

(2023).

[164] Wen Wang, Yang Cao, Jing Zhang and Dacheng Tao. ‘Fp-detr: Detection transformer advanced

by fully pre-training’. In: International Conference on Learning Representations (ICLR). 2021.

[165] Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen and Dacheng Tao. ‘Towards data-efficient

detection transformers’. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2022, pp. 88–105.

[166] Yue Wang and Justin M Solomon. ‘Object dgcnn: 3d object detection using dynamic graphs’.

In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 34. 2021, pp. 20745–

20758.

[167] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein and Justin M

Solomon. ‘Dynamic graph cnn for learning on point clouds’. In: ACM Transactions on

Graphics (TOG) 38.5 (2019), pp. 1–12.

[168] Yuxuan Wang, Jiakai Wang, Zixin Yin, Ruihao Gong, Jingyi Wang, Aishan Liu and Xian-

glong Liu. ‘Generating transferable adversarial examples against vision transformers’. In:

Proceedings of the ACM International Conference on Multimedia. 2022, pp. 5181–5190.

[169] Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein and Yu-Gang

Jiang. ‘Towards transferable adversarial attacks on vision transformers’. In: Proceedings of

the AAAI Conference on Artificial Intelligence (AAAI). Vol. 36. 3. 2022, pp. 2668–2676.

[170] Boris Weisfeiler and Andrei A Lehman. ‘A reduction of a graph to a canonical form and an

algebra arising during this reduction’. In: Nauchno-Technicheskaya Informatsia 2.9 (1968),

pp. 12–16.

[171] Cheng Wen, Baosheng Yu and Dacheng Tao. ‘Learning progressive point embeddings for 3d

point cloud generation’. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2021, pp. 10266–10275.

154 BIBLIOGRAPHY

[172] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie and Bin Cui. ‘Graph neural networks in re-

commender systems: a survey’. In: ACM Computing Surveys (CSUR) 55.5 (2022), pp. 1–

37.

[173] Xiaolei Wu, Zhihao Hu, Lu Sheng and Dong Xu. ‘StyleFormer: Real-Time Arbitrary Style

Transfer via Parametric Style Composition’. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV). 2021, pp. 14618–14627.

[174] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S

Pappu, Karl Leswing and Vijay Pande. ‘MoleculeNet: a benchmark for molecular machine

learning’. In: Chemical Science 9.2 (2018), pp. 513–530.

[175] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang and

Jianxiong Xiao. ‘3d shapenets: A deep representation for volumetric shapes’. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2015,

pp. 1912–1920.

[176] Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts and Simon King. ‘Deep neural networks

employing multi-task learning and stacked bottleneck features for speech synthesis’. In:

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2015,

pp. 4460–4464.

[177] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang and S Yu Philip. ‘A

comprehensive survey on graph neural networks’. In: IEEE Transactions on Neural Networks

and Learning Systems (TNNLS) 32.1 (2020), pp. 4–24.

[178] Jianpeng Xu, Pang-Ning Tan, Lifeng Luo and Jiayu Zhou. ‘Gspartan: a geospatio-temporal

multi-task learning framework for multi-location prediction’. In: Proceedings of the 2016

SIAM International Conference on Data Mining (SDM). 2016, pp. 657–665.

[179] Jianpeng Xu, Pang-Ning Tan, Jiayu Zhou and Lifeng Luo. ‘Online multi-task learning frame-

work for ensemble forecasting’. In: IEEE Transactions on Knowledge and Data Engineering

29.6 (2017), pp. 1268–1280.

[180] Keyulu Xu, Weihua Hu, Jure Leskovec and Stefanie Jegelka. ‘How powerful are graph neural

networks?’ In: International Conference on Learning Representations (ICLR). 2019.

[181] Wenju Xu, Chengjiang Long, Ruisheng Wang and Guanghui Wang. ‘DRB-GAN: A Dynamic

ResBlock Generative Adversarial Network for Artistic Style Transfer’. In: Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV). 2021, pp. 6383–6392.

BIBLIOGRAPHY 155

[182] Yufei Xu, Qiming Zhang, Jing Zhang and Dacheng Tao. ‘Vitae: Vision transformer advanced

by exploring intrinsic inductive bias’. In: Advances in Neural Information Processing Systems

(NeurIPS) (2021).

[183] Sijie Yan, Yuanjun Xiong and Dahua Lin. ‘Spatial temporal graph convolutional networks

for skeleton-based action recognition’. In: Proceedings of the AAAI Conference on Artificial

Intelligence (AAAI). Vol. 32. 1. 2018.

[184] Allen Y Yang, Roozbeh Jafari, S Shankar Sastry and Ruzena Bajcsy. ‘Distributed recognition

of human actions using wearable motion sensor networks’. In: Journal of Ambient Intelligence

and Smart Environments 1.2 (2009), pp. 103–115.

[185] Erkun Yang, Cheng Deng, Wei Liu, Xianglong Liu, Dacheng Tao and Xinbo Gao. ‘Pairwise

relationship guided deep hashing for cross-modal retrieval’. In: Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI). Vol. 31. 1. 2017.

[186] Xingyi Yang, Zhou Daquan, Songhua Liu, Jingwen Ye and Xinchao Wang. ‘Deep model

reassembly’. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 35. 2022,

pp. 25739–25753.

[187] Xingyi Yang, Jingwen Ye and Xinchao Wang. ‘Factorizing knowledge in neural networks’. In:

Proceedings of the European Conference on Computer Vision (ECCV). 2022, pp. 73–91.

[188] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao and Xinchao Wang. ‘Distilling know-

ledge from graph convolutional networks’. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2020, pp. 7074–7083.

[189] Yiding Yang, Zunlei Feng, Mingli Song and Xinchao Wang. ‘Factorizable Graph Convolutional

Networks’. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 33. 2020,

pp. 20286–20296.

[190] Yiding Yang, Zhou Ren, Haoxiang Li, Chunluan Zhou, Xinchao Wang and Gang Hua. ‘Learn-

ing dynamics via graph neural networks for human pose estimation and tracking’. In: Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021,

pp. 8074–8084.

[191] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan and Dacheng Tao. ‘Spagan: Shortest

path graph attention network’. In: Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI). 2019, pp. 4099–4105.

156 BIBLIOGRAPHY

[192] Jingwen Ye, Yixin Ji, Xinchao Wang, Xin Gao and Mingli Song. ‘Data-Free Knowledge

Amalgamation via Group-Stack Dual-GAN’. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) (2020), pp. 12516–12525.

[193] Jingwen Ye, Yongcheng Jing, Xinchao Wang, Kairi Ou, Dacheng Tao and Mingli Song. ‘Edge-

sensitive human cutout with hierarchical granularity and loopy matting guidance’. In: IEEE

Transactions on Image Processing (TIP) 29 (2019), pp. 1177–1191.

[194] Jingwen Ye, Yifang Fu, Jie Song, Xingyi Yang, Songhua Liu, Xin Jin, Mingli Song and

Xinchao Wang. ‘Learning with Recoverable Forgetting’. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2022, pp. 87–103.

[195] Jingwen Ye, Yining Mao, Jie Song, Xinchao Wang, Cheng Jin and Mingli Song. ‘Safe

Distillation Box’. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Vol. 36. 3. 2022, pp. 3117–3124.

[196] Jingwen Ye, Yixin Ji, Xinchao Wang, Kairi Ou, Dapeng Tao and Mingli Song. ‘Student

Becoming the Master: Knowledge Amalgamation for Joint Scene Parsing, Depth Estimation,

and More’. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). 2019, pp. 2829–2838.

[197] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing

Huang, Alla Sheffer and Leonidas Guibas. ‘A scalable active framework for region annotation

in 3d shape collections’. In: ACM Transactions on Graphics (TOG) 35.6 (2016), pp. 1–12.

[198] Junho Yim, Donggyu Joo, Jihoon Bae and Junmo Kim. ‘A gift from knowledge distilla-

tion: Fast optimization, network minimization and transfer learning’. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4133–

4141.

[199] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton and Jure

Leskovec. ‘Graph convolutional neural networks for web-scale recommender systems’. In:

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (KDD). 2018, pp. 974–983.

[200] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande and Jure Leskovec. ‘Graph convolutional

policy network for goal-directed molecular graph generation’. In: Advances in Neural Inform-

ation Processing Systems (NeurIPS). Vol. 31. 2018, pp. 6412–6422.

BIBLIOGRAPHY 157

[201] Jiahui Yu and Thomas S Huang. ‘Universally slimmable networks and improved training

techniques’. In: Proceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV). 2019, pp. 1803–1811.

[202] Ruonan Yu, Songhua Liu and Xinchao Wang. ‘Dataset Distillation: A Comprehensive Review’.

In: arXiv preprint arXiv:2301.07014 (2023).

[203] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng

and Shuicheng Yan. ‘Metaformer is actually what you need for vision’. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022,

pp. 10819–10829.

[204] Xiyu Yu, Tongliang Liu, Xinchao Wang and Dacheng Tao. ‘On compressing deep models

by low rank and sparse decomposition’. In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp. 7370–7379.

[205] Sergey Zagoruyko and Nikos Komodakis. ‘Paying more attention to attention: Improving

the performance of convolutional neural networks via attention transfer’. In: arXiv preprint

arXiv:1612.03928 (2016).

[206] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik and Silvio

Savarese. ‘Taskonomy: Disentangling task transfer learning’. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 3712–3722.

[207] Wei Zhai, Yang Cao, Zheng-Jun Zha, HaiYong Xie and Feng Wu. ‘Deep structure-revealed

network for texture recognition’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2020, pp. 11010–11019.

[208] Wei Zhai, Yang Cao, Jing Zhang and Zheng-Jun Zha. ‘Exploring Figure-Ground Assignment

Mechanism in Perceptual Organization’. In: Advances in Neural Information Processing

Systems (NeurIPS). Vol. 35. 2022, pp. 17030–17042.

[209] Wei Zhai, Hongchen Luo, Jing Zhang, Yang Cao and Dacheng Tao. ‘One-shot object affordance

detection in the wild’. In: International Journal of Computer Vision 130.10 (2022), pp. 2472–

2500.

[210] Yibing Zhan, Jun Yu, Ting Yu and Dacheng Tao. ‘Multi-task compositional network for

visual relationship detection’. In: International Journal of Computer Vision (IJCV) 128 (2020),

pp. 2146–2165.

158 BIBLIOGRAPHY

[211] Yibing Zhan, Jun Yu, Ting Yu and Dacheng Tao. ‘On exploring undetermined relationships

for visual relationship detection’. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). 2019, pp. 5128–5137.

[212] Hang Zhang and Kristin Dana. ‘Multi-style generative network for real-time transfer’. In:

arXiv preprint arXiv:1703.06953 (2017).

[213] Qiming Zhang, Yufei Xu, Jing Zhang and Dacheng Tao. ‘VSA: Learning Varied-Size Window

Attention in Vision Transformers’. In: arXiv preprint arXiv:2204.08446 (2022).

[214] Qiming Zhang, Yufei Xu, Jing Zhang and Dacheng Tao. ‘Vitaev2: Vision transformer ad-

vanced by exploring inductive bias for image recognition and beyond’. In: arXiv preprint

arXiv:2202.10108 (2022).

[215] Xiang Zhang and Marinka Zitnik. ‘Gnnguard: Defending graph neural networks against

adversarial attacks’. In: Advances in Neural Information Processing Systems (NeurIPS).

Vol. 33. 2020, pp. 9263–9275.

[216] Yu Zhang and Qiang Yang. ‘An overview of multi-task learning’. In: National Science Review

5.1 (2018), pp. 30–43.

[217] Zhanpeng Zhang, Ping Luo, Chen Change Loy and Xiaoou Tang. ‘Facial landmark detection

by deep multi-task learning’. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2014, pp. 94–108.

[218] Haimei Zhao, Wei Bian, Bo Yuan and Dacheng Tao. ‘Collaborative Learning of Depth Estima-

tion, Visual Odometry and Camera Relocalization from Monocular Videos’. In: Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI). 2020, pp. 488–494.

[219] Lingxiao Zhao and Leman Akoglu. ‘PairNorm: Tackling Oversmoothing in GNNs’. In: Inter-

national Conference on Learning Representations (ICLR). 2020.

[220] Yang Zheng, Xiaoyi Feng, Zhaoqiang Xia, Xiaoyue Jiang, Ambra Demontis, Maura Pintor,

Battista Biggio and Fabio Roli. ‘Why Adversarial Reprogramming Works, When It Fails, and

How to Tell the Difference’. In: arXiv preprint arXiv:2108.11673 (2021).

[221] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng

Li and Maosong Sun. ‘Graph neural networks: A review of methods and applications’. In:

arXiv preprint arXiv:1812.08434 (2018).

[222] Ling Zhou, Zhen Cui, Chunyan Xu, Zhenyu Zhang, Chaoqun Wang, Tong Zhang and Jian

Yang. ‘Pattern-Structure Diffusion for Multi-Task Learning’. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 4514–4523.

BIBLIOGRAPHY 159

[223] Shangchen Zhou, Jiawei Zhang, Wangmeng Zuo and Chen Change Loy. ‘Cross-scale in-

ternal graph neural network for image super-resolution’. In: Advances in Neural Information

Processing Systems (NeurIPS) 33 (2020), pp. 3499–3509.

[224] Sheng Zhou, Yucheng Wang, Defang Chen, Jiawei Chen, Xin Wang, Can Wang and Jiajun Bu.

‘Distilling holistic knowledge with graph neural networks’. In: Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV). 2021, pp. 10387–10396.

[225] Xiatian Zhu, Shaogang Gong et al. ‘Knowledge distillation by on-the-fly native ensemble’. In:

Advances in Neural Information Processing Systems (NeurIPS). Vol. 31. 2018, 7528––7538.

[226] Marinka Zitnik and Jure Leskovec. ‘Predicting multicellular function through multi-layer

tissue networks’. In: Bioinformatics 33.14 (2017), pp. i190–i198.

	Statement of Originality
	Authorship Attribution Statement
	Acknowledgements
	Abstract
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Background and Motivation
	1.2. Problem Statement
	1.3. Contributions
	1.4. Thesis Outline

	Chapter 2. Literature Review
	2.1. Graph Neural Network
	2.2. Model Reusing
	2.3. Multi-task Learning
	2.4. Network Binarization
	2.5. Neural Style Transfer

	Chapter 3. Data-Driven Efficient Learning with Deep Graph Reprogramming
	3.1. Introduction
	3.2. Motivation and Pre-analysis
	3.2.1. Task Motivation and Definition
	3.2.2. Challenges Towards GARE
	3.2.3. Reprogramming Paradigms for GARE

	3.3. Proposed Methods: Implementing DARE and MERE Paradigms
	3.3.1. Overview and Case Discussions
	3.3.2. Universal Meta-FeatPadding for Heter-DARE
	3.3.3. Transductive Edge-Slimming for Homo-DARE
	3.3.4. Inductive Meta-GraPadding for Homo-DARE
	3.3.5. Reprogrammable Aggregating for MERE

	3.4. Experiments
	3.4.1. Experimental Settings
	3.4.2. Reprogramming in Heterogeneous Domains
	3.4.3. Reprogramming in Homogenous Domains

	3.5. Additional Details and Results
	3.5.1. More Details of Method Pre-analysis
	3.5.2. Dataset Statistics and Descriptions
	3.5.3. Additional Results on Heterogeneous Node Property Prediction
	3.5.4. Additional Results on Heterogeneous Graph Classification and Regression
	3.5.5. Additional Results on Homogenous Node Property Prediction
	3.5.6. Additional Results on Homogenous Graph Classification and Regression
	3.5.7. Additional Results on 3D Object Recognition

	3.6. Summary

	Chapter 4. Model-Driven Efficient Learning with Knowledge Amalgamation
	4.1. Introduction
	4.2. Problem Definition
	4.3. Proposed Method
	4.3.1. Overview
	4.3.2. Slimmable Graph Convolution
	4.3.3. Topological Semantics Alignment
	4.3.4. Loss Function and Training Strategy

	4.4. Experiments
	4.4.1. Experimental Settings
	4.4.2. Results

	4.5. Additional Details and Results
	4.5.1. Amalgamating Graph Regression Models
	4.5.2. Amalgamating Node Classification Models
	4.5.3. Amalgamating Point Cloud Classification and Segmentation Models

	4.6. Summary

	Chapter 5. Data-Model-Driven Efficient Learning with Meta-Aggregator
	5.1. Introduction
	5.2. Vanilla Binary GNN and Pre-analysis
	5.3. Meta Neighborhood Aggregation
	5.3.1. Overview
	5.3.2. Greedy Gumbel Aggregator
	5.3.3. Adaptable Hybrid Aggregator
	5.3.4. Training Strategy

	5.4. Experiments
	5.4.1. Experimental Settings
	5.4.2. Results
	5.4.3. Discussions

	5.5. Theoretical Analysis
	5.6. Additional Results
	5.6.1. Additional Results on Graph Regression Task
	5.6.2. Additional Results on Multi-label Node Classification Task
	5.6.3. Additional Results on 3D Object Recognition Task

	5.7. Summary

	Chapter 6. Application-Driven Efficient Learning with Semi-parametric Style Transfer
	6.1. Introduction
	6.2. Proposed Method
	6.2.1. Network Overview
	6.2.2. Stylization Graph Construction
	6.2.3. Deformable Graph Convolution
	6.2.4. Loss Function and Training Strategy

	6.3. Experiments
	6.3.1. Experimental Settings
	6.3.2. Results
	6.3.3. Ablation Studies
	6.3.4. Diversified Stylization Control

	6.4. Additional Details and Results
	6.4.1. Architecture Details
	6.4.2. More Illustrations of Heterogeneous Style-Content and Content-Content Message Passing
	6.4.3. Newly-Added Ablation Studies
	6.4.4. Additional Results of Ablation Studies
	6.4.5. Additional Results of User Controls

	6.5. Summary

	Chapter 7. Conclusions
	7.1. Summary of Contributions
	7.2. Future Research

	Bibliography

