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A B S T R A C T

In this work, the phase field method (PFM) is applied for modeling fracture in the polymeric type of materials.
Considering the large extensibility of polymer chains before fracture, a crack initiation criteria based on a
critical stretch value is proposed. The tensile stretches in the material contribute to the active strain energy,
which is responsible for driving fracture. Additive decomposition of strain energy into active and passive parts
is adopted based on the critical stretch value of polymer chains in a phase-field setting. This critical value
is determined by assuming an equivalent uniaxial tensile state of stress in front of the crack tip at the onset
of fracture. The stretch of individual polymeric chains is determined by using a polymer network model. The
critical fracture toughness of the polymer is kept constant up to the onset of fracture and a gradually reducing
value of it is adopted in front of the crack tip beyond the critical stretch. A hybrid phase-field formulation with
a staggered solver is used owing to its numerical efficiency and robustness. The effectiveness and applicability
of the present model are demonstrated through various numerical examples.
1. Introduction

Hyperelastic materials such as rubber, hydrogels, elastomers, tex-
tile fabrics, shape memory polymers are vastly used in various mod-
ern engineering applications. These types of materials have relatively
more desirable mechanical properties (heat resistance, stretchability,
strength) and behave elastically at large strain. Specifically, rubber
has high deformability and dissipative property, due to which it is
widely used in damping applications Coveney (2006), sealants (Syao
and Malysheva, 2014), etc. Other industrial applications of it includes
tyres, gaskets in automotive, aviation industry, and spaceships. Using
various mathematical tools and computational framework, researchers
have been trying to find the true behavior of hyperelastic materials (Fu
et al., 2020; Basak et al., 2021; He et al., 2022).

Understanding the mechanical behavior, more importantly, damage
and fracture in rubber-like materials is an indispensable area among
researchers. Most rubber-like incompressible polymers are best repre-
sented by a network structure of polymer chains. In such materials, the
8-chain network model proposed by Arruda and Boyce (1993) is found
to predict results close to the experimental results than the 3-chain,
4-chain, and full network model (Wu and Van Der Giessen, 1993).
These micro-mechanically motivated models capture the behavior of
polymer chains at the microscopic scale and are able to represent it
on the continuum scale by the use of a representative volume element
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(RVE). A detailed description of different phenomenological and micro-
mechanical constitutive models for rubber-like materials and polymers
is given in Hossain and Steinmann (2013). The state of the art in
isotropic hyperelasticity constitutive models for rubber like materials
is given in Dal et al. (2021). Failure phenomena in certain class
of hyperelastic materials is brittle in nature and can be understood
using Griffith’s criteria (Griffith, 1921). The fracture process in these
materials involves high material and geometric nonlinearities in front
of the crack tip, hence are very challenging to predict it correctly.
Recently, fracture prediction using different criteria are proposed for
rubber-like polymers. Averaged strain energy density criteria (ASED)
by Heydari-Meybodi et al. (2019), an effective stretch criterion for
mode-I crack (Ayatollahi et al., 2016) are some of the contributions.

Discrete crack modeling of fracture model the crack as displacement
discontinuities. They track the crack path explicitly using additional cri-
teria and hence computationally expensive. Phase Field Method (PFM)
for modeling fracture follows a diffused crack approach. Initially used
for image segmentation and micro-structure evolution, the advantages,
and robustness of this method are well established (see Bourdin et al.,
2000; Miehe et al., 2010) for modeling fracture. In this case, the crack
propagation is easily tracked by solving the coupled governing equation
in a variational setting.

Recently, attention is given to the application of PFM in modeling
fracture in polymers. A rate independent micro-mechanically motivated
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Fig. 1. 8-Chain model of polymer network in a cubic representative volume element.
Fig. 2. (a) Polymer chains in the undeformed state (b) Stretches in the polymer chains at the crack tip due to loading.
e

PFM model of rubber under slow deformation process is presented
in Miehe and Schänzel (2014). A comparison on strength and energy
based fracture criteria is presented in an anisotropic PFM model for
polymer–matrix composites by Denli et al. (2020). From numerical
point of view, Peng et al. (2020) modeled the crack propagation in
hyperelastic materials at large strain based on edge-based smoothed
finite element method (ES-FEM). The Neo-Hooken and Mooney–Rivlin
constitutive models are adopted to describe the response of rubber-
like materials. At nearly incompressible limit, Ang et al. given a mixed
formulation for phase field fracture in hyperelastic materials (Ang et al.,
2022).

Russ et al. (2020) studied the effect of length between inclusions
and size of initial notches on the fracture behavior of hyperelastic
composites (soft matrix and stiff inclusions) using PFM. The breakdown
mechanism of ferroelectric polymers are predicted by PFM in mechan-
ical and electrical loading environment by Mi et al. (2021). PFM is
used to predict fracture in polydisperse elastomeric networks in Li and
Bouklas (2020). An inter-phase model combined with PFM for polymer
composites is presented in Kumar et al. (2022). A mixed displacement-
pressure formulation with phase field is proposed by Tian et al. (2022)
to model fracture in nearly incompressible hyperelastic material. They
addressed the issue of material intactness in the crack opening zone,
when PFM is used for this type of material.
2

Mechanical behavior of polymers and biological tissues are depen-
dent on strain rates. Recently, constitutive model for strain rate depen-
dent visco-hyperelasticity is proposed (Upadhyay et al., 2020). Loew
et al. (2019) included the dependency of strain rate in the constitutive
description of rubber elasticity in a PFM setting. They also used an
active-set strategy for incorporating damage irreversibility condition
instead of using an history field +, as the later still allows damage to
volve even if + is constant for a decreased strain rate. A formulation

of rate effects in LS-DYNA for hyperelasticity is given by Kolling et al.
(2007). A rate dependent formulation with temperature effects for
rubber is studied in Trivedi and Siviour (2020).

Raina and Miehe (2015) used a rate-dependent anisotropic phase
field model for predicting damage in biological tissues. Here, a stress
based criteria is used for the damage driving field. Gültekin et al. (2018)
proposed a rate-dependent PFM for anisotropic biological tissues which
uses a energy based criteria for failure. Talamini et al. (2018) used a
constitutive description for polymers that considers the effect of bond
deformation and entropy in polymer chain scission process, which cap-
tures the microscopic effects. Thermo-viscoelastic analysis of polymers
using PFM is studied in Arash et al. (2021). Barba et al. (2020) studied
strain rate dependence on hardening and softening behavior of semi-
crystalline polymers. A non-local finite deformation constitutive theory
for viscoelastic material is proposed by Thamburaja et al. (2019).
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Fig. 3. Degradation pattern considered for 𝑐 .
Fig. 4. Degradation function adopted for 𝑐 in (a) Yin and Kaliske (2020) (b) Present work, which depends on hardening parameter 𝜁 and stretch 𝜉 respectively.
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he crack initiation is triggered by averaged Gibbs potential over the
racture process zone. In the present study, we consider only the quasi
tatic loading condition with sufficient slow deformation rate to capture
he rate-independent behavior.

Experiments on hyperelastic materials by Volokh and Trapper (2008)
nferred that higher the sharpness in the crack, lower will be the frac-
ure toughness. This is because Griffith’s theory neglects the sharpness
f crack tip and it is solely based on the energy balance concept. Hence,
ssuming a fixed value of 𝑐 during crack propagation seems to largely
imit the real scenario. Different energy dissipation phenomena occur
t the crack tip of soft materials. In dissipative soft materials with
he Mullins effect, Qi et al. (2018) proposed a method to evaluate
racture toughness. In this case, a higher amount of energy is required
o propagate the crack due to bulk dissipation around the crack tip. It is
bserved that propagation of a crack in a particular direction is easier if
ertain pre-stretch is previously present perpendicular to that direction.
his type of phenomena is prominent in crystallizing rubbers where
tress-induced crystallization occurs in the polymeric chains (Caimmi
t al., 2015). Hence, stretch at the crack tip influences the critical
racture toughness 𝑐 as the material deforms. Theoretical aspect of
his phenomena is less understood and mathematical modeling is
3

ssential to predict the true behavior of these materials during crack
ropagation.

Failure in polymer happens mainly by two phenomena, chain scis-
ion, and cross-link failure. According to Lake and Thomas model (Lake
nd Thomas, 1967), the entropic part is negligible and the internal
nergy contributes most to the free energy during fracture. This model
lso emphasizes the fact that the energy required to break the chemical
ond per unit cross-section is directly proportional to the elastically
ffective chains per unit volume (Akagi et al., 2013). Due to the effect
f damage on the monomers, the elastic property of the polymer chain
educes and the number of elastically effective chains reduces per unit
olume. Hence, the fracture toughness of polymer chains reduces at
igh stretches. At larger stretches (𝜆 ≥ 𝜆𝐿), the fracture is controlled
y internal energy contribution from the bonds of monomer, rather
han contribution only from entropic part (Mao et al., 2017). Here, 𝜆𝐿

is the locking stretch signifying a critical value of bond stretch. This
theory is applicable for polymers having strong covalent bonds, where
failure happens due to chain scission rather than cross-link failure.
Both of these studies motivate us to use a reduced value of critical
fracture energy (𝑐), only after the critical stretch is reached or after
the damage initiates. Degradation of  based on accumulated plastic
𝑐
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Fig. 5. Representation of (a) Discrete crack in 1D (b) Diffused crack in 1D (c) Representation of diffused crack in 2D.
Fig. 6. (a) Reference configuration of a body with initial sharp crack 𝛤0 subjected to traction force 𝑇0 on the boundary 𝜕𝛺𝑇
0 . Specified displacement boundary condition is given

at 𝜕𝛺0,𝒖. (b) Deformed configuration of the body after a time 𝑡 due to the nonlinear deformation mapping 𝜑(𝑿). The regularized crack is represented in a diffused manner in the
current configuration (𝛤𝑡,𝑙) with traction 𝑇𝑡 on the boundary 𝜕𝛺𝑇

𝑡 .
deformation (depends on hardening) in case of ductile fracture are
presented in Yin and Kaliske (2020). Modeling of fatigue crack growth
using PFM in polymers, which includes the degradation of fracture
toughness 𝑐 by a fatigue accumulated degradation function is given
in Yin et al. (2020a). Yin et al. (2020b) considered an increased value
of fracture toughness for high strain rate condition during fracture,
which is based on the dynamic increase factor concept. Kumar et al.
(2018) treated elastomers as a phase transition solids, which facilitates
to reduce the stiffness during the transition from one state to the other
in a PFM setting. While the studies for reduction of 𝑐 for ductile
fracture above follows a quadratic variation, present study adopts an
4

exponential degradation of 𝑐 value. In this case, degradation in the
initial phase is slower and then made it to fall faster (Fig. 3). This is
considered because the crack propagation becomes rapid after certain
damage has been accumulated in the rubbery material. Comparison
between the degradation function adopted in this work and that of
literature for ductile fracture is shown in Fig. 4. Moreover, present
study considers additional parameter (𝜌) for the rate of degradation of
𝑐 to accommodate behavior of different polymeric materials during
fracture.

Energy decomposition in PFM is crucial to account for the actual
energy that drives the fracture. Volumetric–deviatoric decomposition
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Fig. 7. (a) Stretched element for which 𝛹 𝑑𝑒𝑣
0 = 0 (b) Stretched element representing tensile and compressive stretches for which 𝛹 𝑑𝑒𝑣

0 ≠ 0.
Fig. 8. (a) Element for which there is no change in volume (𝛹 𝑣𝑜𝑙
0 = 0). (b) Element representing the volumetric change(𝛹 𝑣𝑜𝑙

0 ≠ 0).
Fig. 9. (a) Uniaxial tensile test setup for SBR specimen in Pidaparti et al. (1990). (b)
Uniaxial tensile test setup for SBR specimen in Hocine et al. (2002).

of strain energy in large deformation problems is given by Borden
et al. (2016). Orthogonal decomposition of strain tensor into tensile and
compressive parts is proposed by Nguyen et al. (2020) to avoid material
5

interpenetration in unilateral contact conditions. Tang et al. (2019)
decomposed the energy based on principal stretches which are relevant
in large deformation problems for the neo-Hookean type of materials.
Here, the individual principal stretches contribute to either positive or
negative parts of energy depending on their stretch value. In addition to
the above model, Zhang et al. (2019) defined shear and bulk modulus
according to tensile and compressive nature of stretch and volume
change respectively for both neo-Hookean and Ogden material. Ye
et al. (2020) used a Heaviside step function to eliminate the effect
of Ogden parameters in evaluating active and passive parts of strain
energy. Here, a displacement gradient and an enhanced deformation
gradient field are used to capture the hole collapse effect in hyper-
elastic material. Using the principal values of strain energy density
and principal directions, van Dijk et al. (2020), given a generalized
strain energy decomposition for isotropic and anisotropic materials.
Multiplicative decomposition of deformation gradient in terms of ten-
sile and compressive stretches is given in Hesch and Weinberg (2014).
This decomposition is only applicable for isotropic materials and in this
case, polyconvexity of the strain energy functional (condition of getting
at least one minimizing deformation) is not always guaranteed. For
ductile type fracture at finite strains, degradation of whole deviatoric
component of strain energy occurs while only volumetric tension is con-
sidered for fracture process (Ambati et al., 2016). Swamynathan et al.
(2021) follows the above approach and used a Heaviside function to
come up with positive and negative part of energy. This invariant-based
decomposition ensures the polyconvexity of the strain energy function.
Polyconvexity of strain energy agrees with the Legendre–Hadamard
condition and hence it does not behave unrealistically.

The above mentioned studies split the energy into crack driving
(active) and passive parts and the fracture starts instantaneously even
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Fig. 10. Flow chart of the staggered solver of coupled equilibrium and phase field problem.
if the load is significantly small. In the present study, fracture driving
force is zero until critical stretch is reached in the material. In this way,
a critical value of stretch is used to additively decompose the strain
energy into active and passive parts. Two novel extension of the phase
field to model fracture in polymeric material in the present study are

• Additive decomposition of strain energy density into an active,
i.e., fracture-driving part and a passive part. This is computed
6

based on the comparison of principal stretches to a critical value
of stretch 𝜆𝑐𝑟.

• Degradation of critical fracture energy 𝑐 beyond the critical
stretch 𝜆𝑐𝑟, considering the dependence of 𝑐 on the reduced
number of elastically effective polymer chains at large stretches.

Fracture does not initiate until the critical stretch is reached and
beyond which, fracture starts with a gradual reducing value of critical
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Fig. 11. DENT Specimen geometry. Bottom is fixed and uniform displacement incre-
ment is applied on the top. Initial crack length, a∗ = (28 mm, 20 mm and 12 mm) is
aken for the analysis.

racture toughness starting from 𝑐 . In this work, strain energy con-
ributes to crack evolution only when the principal stretch is greater
han the critical value. This is unlike the model presented by Tang
t al. (2019) and other phase field models, where damage starts as
oon as the load is applied and the fracture toughness is kept constant
hroughout the simulation. Total deviatoric strain energy contributes
o the crack driving force as per (Ambati et al., 2016), which ignores
he tensile or compressive nature of deformation. In contrary to that,
resent work considers only deviatoric strain energy contributed from
ensile stretches (𝜆𝑖 > 𝜆𝑐𝑟, 𝑖 = 1, 2, 3). For the volumetric part of strain
nergy, crack always happens in a volumetric tension (𝐽 ≥ 1) case and

it is avoided in volumetric compression (𝐽 < 1). Mao et al. (2017)
proposed an expression for the equivalent chain scission stretch, based
on the dissociation energy of the bonds. But, the present work gives
the expression for the critical stretch in terms of failure tensile stretch.
The tensile stretch at the rupture is taken from the load–displacement
plot provided in the literature (Hocine et al., 2002; Pidaparti et al.,
1990). By using the 8-chain network model of the polymer chain, the
expression for critical stretch at the continuum level in terms of multi-
axial stretches is arrived. Present work and the work in Mao et al.
(2017) follow the 8-chain network model to extend the chain property
at the micro-level to the continuum level.

The staggered solver proposed in Miehe et al. (2010) solves the
displacement field and crack phase-field separately within a Newton–
Raphson iteration scheme. Within one load step, the above procedure
is carried out for some minimum number of iterations to get the
converged value of 𝒖 and 𝜙. In the present work, the displacement
subproblem is solved iteratively until convergence is achieved for 𝒖,
and then, the crack phase field 𝜙 is solved in a single iteration for that
articular load step. This type of solver takes relatively less compu-
ational time and is effective when the load steps are comparatively
mall.
7

1.1. Organization of the manuscript and notation used

The paper is organized as follows. The behavior of rubber-like
polymer at large deformation, its network model and the proposed
degradation function for critical fracture toughness 𝑐 with its appli-
cation is explained in Section 2. Large deformation kinematics and the
concept of phase field method for fracture are described in Section 3.
Total energy expression, variational form, and finite element formu-
lation with the definition of energy decomposition are explained in
Section 4. Different numerical examples are discussed to showcase the
application and effectiveness of the proposed model in Section 5. Sum-
mary of the present work and some concluding remarks are presented
in Section 6.

Scalars are represented as lowercase italic lightface letters like 𝑥, 𝛼.
ectors, second- and fourth-order tensors are represented by italic
oldface minuscule, boldface majuscule and blackboard-bold majuscule
ike 𝒙, 𝑿 andX respectively. Any quantity written 𝑿0 and 𝑿𝑡 indicates

that 𝑿 is defined in reference and current configuration respectively.
The (𝑖𝑗) component of a second order tensor 𝑨 is represented by 𝐴𝑖𝑗
and A𝑖𝑗𝑘𝑙 represents the (𝑖𝑗𝑘𝑙) component of a fourth order tensor A.

2. Physics of rubber-like polymer at large strain

Rubber-like polymers consist of flexible long chains with random
orientations. Each molecular bond allows to change the direction of the
sub-units because of the rotational freedom. Thus, the molecular chains
can tangle with adjacent chains and form cross-links among themselves.
Bond stretching and chain straightening occur in the direction of the
applied load. These phenomena are responsible for the elastic behavior
of rubbery polymers. Before the chain stretches, unfolding of the chain
happens from the original state due to the application of external load.

The behavior of rubber at a macroscopic scale can be known from
individual polymeric chains by considering models in which groups of
chains are arranged in a certain manner. Therefore, the constitutive
model relating to the deformability of a single chain of polymer is
more appealing. Accordingly, various models such as 3-chain model,
4-chain model, 8-chain model (Arruda and Boyce, 1993), full network
model (Wu and Van Der Giessen, 1993) are proposed. These models are
based on the statistical mechanics approach of rubber elasticity. Among
these, the 8-chain model predicts the experimental observations with
high accuracy (Boyce and Arruda, 2000).

Considering the effect of surrounding chains and links, non-affine
deformation occurs in a chain i.e., the actual deformation in the chain
is less than the expected stretch. If ‘𝓁’ is the length of each sub-unit
and ‘𝑛’ is the number of sub-units in an unstrained chain, then from
a statistical point of view, the root mean square length of the chain
is

√

𝑛𝓁. Hence in a cubic representation of 8 similar chains (Fig. 1),
the relationship between chain stretch (𝜆𝑐ℎ) and multiaxial stretches
(𝜆1, 𝜆2, 𝜆3) is obtained from Boyce and Arruda (2000) as

𝜆𝑐ℎ =

√

𝜆21 + 𝜆22 + 𝜆23
3

. (1)

This hypothesis is assumed to reflect the behavior of all chains and
links that constitute the network. At a very large deformation, the
chains tend to align in the direction of applied load and get stretched
considerably until failure happens.

2.1. Critical stretch

During the application of load, polymer chains undergo straighten-
ing and stretching. As a result, the state of stress near the crack tip is
almost same as in case of uniaxial tension for both mode-I (Long et al.,
2011; Gao, 1997) and mixed mode (I/II) fracture (Zhou and Gao, 1998;
Hamdi et al., 2007). This assumption is valid only when the material
undergoes a considerable amount of stretch before fracture and it is

used to get the critical value of the chain stretch (𝜆𝑐𝑟). Let 𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒 be
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Fig. 12. Crack pattern at the displacement of (a) 𝑢 = 0 or undeformed state, (b) 𝑢 = 10 mm, (c) 𝑢 = 40.15 mm, (d) 𝑢 = 40.35 mm, (e) 𝑢 = 40.49 mm, (f) 𝑢 = 40.51 mm, (g) 𝑢 =
40.53 mm, (h) 𝑢 = 40.54 mm, (i) 𝑢 = 40.55 mm. (j) Crack pattern in reference configuration in the DENT specimen with initial crack length of 28 mm and length scale 𝑙 = 1 mm.
the stretch measured at the final rupture in the uniaxial tensile test
of a standard specimen. We have 𝜆1 = 𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒 in one direction at the
onset of fracture. Assuming nearly incompressible behavior of rubbery
polymer (𝐽 = 𝜆1𝜆2𝜆3 ≈ 1), we have

𝜆2 = 𝜆3 =
1

√

𝜆1
= 1

√

𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒
, (2)

and we get the critical stretch of the chain from Eq. (1) as

𝜆𝑐𝑟 =

√

𝜆3𝑡𝑒𝑛𝑠𝑖𝑙𝑒 + 2
3𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒

. (3)

2.2. Reduction of fracture toughness based on stretches

Considering the degradation of the elastic property of the polymer
chains as a result of damage, reduction in fracture toughness is consid-
ered based on the stretch value at any material point. Considering only
for rate-independent case (without any bulk dissipation phenomena in
front of the crack tip), we define a simple expression for gradually
reducing fracture toughness (𝑟𝑑 ) as a function of stretch in the loading
direction (𝜆). This is applicable when the condition of 𝜆 ≥ 𝜆𝑐𝑟 is
satisfied. We have adopted Eq. (4) to incorporate the degradation of
8

fracture toughness value according to the stretch. A schematic diagram
for the stretch of polymer chains in front of the crack is given in Fig. 2.
Here, we do not consider the effect of strain-induced crystallization,
due to which there is a relative increase in the value of 𝑐 because of
the alignment of polymers in the direction of the applied load. This
phenomena happens at a relatively higher temperature well above the
crystallization temperature and it is out of the scope of this study.

Reduced value of 𝑐 is expressed as

𝑟𝑑 = 𝜔𝑐 . (4)

Here, 𝜔 is a reducing factor for 𝑐 which is expressed as

𝜔 =
[

𝜔1 + (𝜔2 − 𝜔1)(1 −𝐷)
]

, 𝐷(𝜉) = 1

1 + 𝑒
−(1−𝜉)

𝜌

, (5)

𝜉 is given in terms of stretch.

𝜉 = 𝜆𝑐𝑟 +
(

𝜆
𝜆𝑐𝑟

− 1
)

. (6)

The reducing factor satisfies the properties 0 < 𝜔 ≤ 1, 𝜔(𝜉 < 𝜉𝑐𝑟) = 1.
with maximum value of 𝜔1 = 1 and minimum value of 𝜔2 as per the
percentage of degradation.

Here, 𝜌(= 0.2) is a parameter which controls the rate of transition
between 𝜔 and 𝜔 with respect to 𝜉. By choosing 𝜔 = 1 and 𝜔 =
1 2 1 2
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Fig. 13. (a) Comparison of load displacement plot for DENT specimen with initial edge crack length a∗ = 28 mm, 20 mm and 12 mm for a length scale 𝑙 = 1 mm (b) Comparison
of load displacement plot for different length scale using critical stretch of 1.61 and without using stretch criteria.
0.5, we can vary the value of 𝜔 between 1 and 0.5 for a range of 𝜉
values (Fig. 3). From the nature of function, it is verified that 𝑐 is
reduced to almost a constant value after certain value of stretch. Eq. (5)
is multiplied by a factor of 1.1 to get a lesser reduction effect. By
considering 𝜔2 value to be 0.5, 0.6 and 0.7, we achieve a 7, 12 and
18 percent reduction in 𝑐 respectively (Fig. 16). 𝜆 is the stretch at any
material point in the loading direction and 𝜆𝑐𝑟 is the critical stretch.
Eq. (4) is used only if the condition 𝜆 ≥ 𝜆𝑐𝑟 is satisfied.

Critical fracture toughness (𝑐) of rubber-like polymer is adopted
from Miehe and Schänzel (2014) considering the dissociation energy
of monomers in a polymer molecules. The extent of degradation can
be controlled by 𝜔2 and 𝜌. These values can be dependent on dif-
ferent loading conditions and the material under consideration. More
reduction should be considered for relatively sharp notch, like in case
of glassy polymers and less reduction can be considered for materials
those have relatively larger blunt notch during crack propagation.

3. Phase field method for hyperelastic material

In this section, the formulation of the phase-field fracture model in
the context of large deformation problems is presented. Decomposition
of strain energy density is proposed based on the critical stretch value
of the material.

3.1. Crack topology and regularized fracture energy

PFM approximates a sharp crack as a smeared crack by introducing
a length scale. The order parameter (𝜙 ∶= 𝜙(𝑿, 𝑡)) that represents
the extent of fracture varies exponentially (Eq. (8)) between 𝜙 = 0
(unbroken state) and 𝜙 = 1 (fully broken or separated state), see
Fig. 5(c). Topology of discrete and smeared crack is shown in Fig. 5(a)
and Fig. 5(b) respectively. The representation of crack in a discrete
sense is represented as

𝜙(𝑥) =

{

1 if 𝑥 = 0.
(7)
9

0 otherwise. w
and in smeared sense, it is represented as

𝜙(𝑥) = 𝑒−|𝑥|∕𝑙 , −∞ ≤ 𝑥 ≤ +∞ . (8)

Above equation satisfies the condition for 𝜙 as

𝜙(0) = 1 and 𝜙(±∞) = 0 (9)

In the context of large deformation, let us consider a deformable
body in the reference configuration 𝛺0 ⊂ 𝑛, 𝑛 ∈ [2, 3] enclosed by the
surface 𝜕𝛺0 (Fig. 6(a)) having normal to the surface 𝑵 has undergone a
nonlinear deformation by a function 𝝋(𝑿, 𝑡) to reach a current position
𝛺𝑡 ⊂ 𝑛 after time 𝑡 ⊂  . The position vector of material points
in 𝛺0 are given by 𝑿 which moves to 𝒙 in the current configuration
(Fig. 6(b)). The body is subjected to traction, 𝑻 on the boundary. The
deformation field is defined as

𝝋 ∶

{

𝛺0 ×  → 𝑛, 𝑛 ∈ [2, 3]
(𝑿, 𝑡) ⟼ 𝝋(𝑿, 𝑡).

(10)

Then deformation gradient 𝑭 is defined as

𝑭 = ∇𝑋𝝋 = 𝜕𝒙
𝜕𝑿

. (11)

The determinant of 𝑭 is denoted by 𝐽 = 𝑑𝑣
𝑑𝑉 > 0 which determines

the amount of volume change, where 𝑑𝑣 and 𝑑𝑉 are the infinitesimal
volume elements in current and reference configuration respectively. As
the body evolves through time  ⊂ , the space- and time-dependent
crack phase field 𝜙 is defined as

𝜙 ∶

{

𝛺0 ×  → [0, 1].
(𝑿, 𝑡) ⟼ 𝜙(𝑿, 𝑡).

(12)

It is readily observed that Eq. (8) is the solution to the homogeneous
differential equation of the form below.

𝜙(𝑥) − 𝑙2
𝑑2𝜙(𝑥)
𝑑𝑥2

= 0. (13)

ith constraints in Eq. (9).
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Fig. 14. Comparison of crack pattern in DENT specimen with initial crack length of a* = 12 mm and length scale 𝑙 = 1 mm, at a displacement of (a)62.37 mm (b) 62.75 mm.
Euler equation of the following variational principle gives the dif-

ferential equation of the form (13).

𝜙 = 𝐴𝑟𝑔[𝐼𝑛𝑓 𝐻(𝜙)] (14)
10

𝜙∈𝜁
where 𝜁 = {𝜙|𝜙(0) = 1, 𝜙(±∞) = 0}, with the functional 𝐻(𝜙) of the

form,

𝐻(𝜙) = 1 (𝜙2 + 𝑙2𝜙′2)𝑑𝛺0. (15)

2 ∫𝛺0
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Fig. 15. Plot of active energy, passive energy and total energy as the load is applied to the DENT specimen (a∗ = 28 mm) for length scale 𝑙 = 1 mm (a) Without using stretch
criteria (b) Using stretch criteria (Present model).
Fig. 16. (a) Reduction of 𝑐 value from 2.67 with stretch for various values of 𝜔2. (b) 0.3 mm square region selected for calculation of average 𝑟𝑑 and average stretch 𝜆 in
Figure (a) for DENT (a* = 28 mm) specimen.
We get 𝐻(𝜙) = 𝑙𝛤0, if we use 𝑑𝛺0 = 𝛤0𝑑𝑥 in Eq. (15) at 𝜙 = 𝑒
−|𝑥|
𝑙 .

⟹ 𝛤0,𝑙 =
1
𝑙
𝐻(𝜙) = ∫𝛺0

(

𝜙2

2𝑙
+ 𝑙

2
|∇𝜙|2

)

𝑑𝛺0 = ∫𝛺0

𝛾𝑙(𝜙,∇𝜙)𝑑𝛺0.

(16)

In a limiting sense, as 𝑙 → 0, the regularized crack surface becomes
a discrete crack surface (Bourdin et al., 2000).

lim
𝑙→0

𝛤0,𝑙 = lim
𝑙→0

𝐻(𝜙)
𝑙

≈ 𝛤0. (17)

The regularized fracture energy in the system for the evolved crack
surface, which is defined in terms of critical fracture energy along with
11
crack density functional is written as

𝐸𝑓𝑟𝑎𝑐
0 = 𝑐 ∫𝛤0

𝑑𝛤0 = ∫𝛺0

𝛾𝑙(𝜙,∇𝜙)𝑐 𝑑𝛺0, 𝛾𝑙 =
𝜙2

2𝑙
+ 𝑙

2
|∇𝜙|2. (18)

Where 𝑐 is the critical fracture energy of the material. From the mesh
discretization point of view, the condition of (ℎ ≤ 𝑙

2 ) needs to be met
for resolving the length scale. In other words, a minimum of 4 elements
has to be inside the diffusive crack band to get the value of regularized
crack surface energy 𝛤0,𝑙 close to sharp crack 𝛤0. Expression for critical
stress for 1D-bar, which depends on the critical fracture energy (𝑐)
and the length scale (𝑙) is given by 𝜎𝑐 =

9
16

√

𝐸𝑐
3𝑙 (Borden et al., 2012).

The symbols carry their usual meaning. Hence, the length scale (𝑙)
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Fig. 17. Load vs displacement response for without degradation and various reduced values of 𝑐 according to stretch in front of crack (DENT specimen- a* = 28 mm, 𝑙 = 1 mm).
Fig. 18. Crack pattern obtained at the displacement of 40 mm with initial crack length of 28 mm and length scale 𝑙 = 1 mm.(a) Present model without degradation of 𝑐 (b)
with degradation of 𝑐 from 2.67 N/mm to 2.5 N/mm (c) with degradation of 𝑐 from 2.67 N/mm to 2.2 N/mm.
is certainly associated with the material under consideration and it
needs to be calibrated through experiments. The chosen value of the
length scale affects the load–deflection behavior as it affects the value
of critical stress. Therefore the length scale (𝑙) chosen affects the peak
load and the displacement at which the fracture starts.

3.2. Dissipation function and crack irreversibility condition

Once the crack has formed it cannot be healed. To prevent the
healing of the crack, a crack irreversibility condition is used. The
evolution of regularized crack with time has to satisfy the following
equation for the crack to be irreversible. Let us assume 𝐸𝑖𝑛𝑡

0 is the total
internal energy potential of the system. The total dissipation for the
12
rate-dependent case is written as

−
𝛿𝐸𝑖𝑛𝑡

0
𝛿𝜙

𝜙̇ = k⟨𝜙̇⟩ + 𝛼⟨𝜙̇⟩2 ≥ 0. (19)

Here, 𝛼 is a numerical constant, known as the viscous regularization
parameter used for rate-dependent case. To satisfy the above condition
of Eq. (19),

𝜙̇ = 0, if −
𝛿𝐸𝑖𝑛𝑡

0
𝛿𝜙

< k (or) 𝛼𝜙̇ = ⟨−
𝛿𝐸𝑖𝑛𝑡

0
𝛿𝜙

− k⟩ (20)

Where

−
𝛿𝐸𝑖𝑛𝑡

0 =
[

𝑔′(𝜙)𝛹0 +
𝜕(𝛾𝑙𝑐 ) − ∇ ⋅

𝜕(𝛾𝑙𝑐 )
]

. (21)

𝛿𝜙 𝜕𝜙 𝜕∇𝜙
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Fig. 19. Penny shaped precracked specimen geometry. The notch width is symmetrically placed at the center and its width is 0.005 mm. Bottom of the specimen is restrained
against 𝑦-direction and one node at the middle is restrained against 𝑥-direction. Uniform displacement increment is applied on the top.
Fig. 20. Crack pattern at the displacement of (a) Initial configuration or 𝑢 = 0 (b) 𝑢 = 0.456 mm (c) 𝑢 = 0.476 mm (d) 𝑢 = 0.516 mm (e) 𝑢 = 0.536 mm (f) 𝑢 = 0.576 mm (g)
𝑢 = 0.592 mm (h) 𝑢 = 0.5952 mm applied for length scale 𝑙 = 0.02 mm in penny shaped precracked specimen. Smallest element size of 0.0025 is considered in the expected crack
region. (i) Crack pattern in the reference configuration.
Here, 𝜙̇ evolves according to the viscous over-force
(

−
𝛿𝐸𝑖𝑛𝑡

0
𝛿𝜙 − k

)

. k
is the threshold. The term 𝑔′(𝜙)𝛹0 is the energetic force defined as

𝑔′(𝜙)𝛹0 = −2(1 − 𝛽)(1 − 𝜙)𝛹0. (22)

Note that the total resistance is offered by crack phase field (𝑐𝛿𝜙𝛾𝑙)
and the viscous term (𝛼𝜙̇) defined in Eq. (20). This is against the local
driving force, known as history field 

𝑡∈[0, ]
= Max(𝛹0). This formula-

tion is thermodynamically consistent because the positive dissipation
condition is always satisfied by Eq. (19). As the value of 𝛼 approaches
zero, we get the rate-independent response of the system. The artifi-
cial viscous parameter (𝛼) tends to dissipate more energy during the
evolution of fracture. This regularized viscous formulation is followed
in this work which is essential to prevent numerical instability and
convergence issues of the FE solver for large deformation cases. Value
of (𝛼) is set as 0.001 N-s

mm2 for all simulations unless mentioned other-
wise. We can have the formulation without 𝛼 term but in that case, the
load drop suddenly occurs as the fracture starts in the material. Also,
13
numerical instability and mesh distortion occur [det(𝑭 ) < 0] in case of
large deformation problems. Whereas, for small deformation problems,
the formulation works well without any numerical instability.

4. Formulation

The total energy of the system is contributed by elastic strain
energy, fracture energy, and external energy which is represented as
a functional given below.

𝐸𝑡𝑜𝑡𝑎𝑙(𝝋, 𝜙) = 𝐸𝑖𝑛𝑡
0 + 𝐸𝑒𝑥𝑡

0 . (23)

The internal energy of the system consists of the strain energy stored
in the body due to deformation and the energy due to fracture.

𝐸𝑖𝑛𝑡
0 (𝝋, 𝜙) = ∫ 𝑔(𝜙)𝛹0𝑑𝛺0 + ∫ [𝛾𝑙(𝜙,∇𝜙)𝑐 + 𝛼𝜙̇]𝑑𝛺0. (24)
𝛺0 𝛺0
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Fig. 21. Comparison of load displacement plot for penny shaped precracked specimen with (a) length scale 𝑙 = 0.01 mm (b) length scale 𝑙 = 0.02 mm.
Fig. 22. Plot of active energy, passive energy and total energy as the load is applied to the penny shaped precracked specimen for length scale 𝑙 = 0.02 mm and 𝛼 = 0.5 N-s/mm2

(a) Without using stretch criteria (b) Using stretch criteria (Present model).
E
o

The external energy contributed from traction in the boundary and
body forces is defined as,

𝐸𝑒𝑥𝑡
0 = −∫𝛺0

𝑩 ⋅ 𝝋 𝑑𝛺0 − ∫𝜕𝛺𝑇
0

𝝋 ⋅ 𝑻 𝑑𝐴 . (25)

The elastic stiffness is degraded by the function 𝑔(𝜙), as some part of
the elastic strain energy is used for the crack formation. This degrada-
tion function facilitates the coupling of the equilibrium equation with
the phase field sub-problem. A quadratic degradation function of the
form 𝑔(𝜙) = (1−𝛽)(1−𝜙)2+𝛽 is considered which follows the constraints
𝑔(0) = 1, 𝑔(1) = 0, 𝑔′(1) = 0. 𝛽 is a very small numerical constant used
to prevent the ill-conditioning of stiffness matrix when the phase field
𝜙 = 1 or when the material is completely damaged. If 𝛽 is not included
in the degradation function, [𝑔(𝜙) = (1−𝜙)2] becomes zero when 𝜙 = 1.
This makes the tangent operator vanish and it destabilizes the solver.
𝛽 = 10−8 is taken for all simulations in this study. It makes the stress
values to be almost near zero, if not equal to zero when 𝜙 = 1. Hence
this value should be kept small enough not to have any significant stress
14

values when 𝜙 = 1. D
4.1. Variational form

The first variation of the internal strain energy (𝐸𝑖𝑛𝑡
0 ) is written as

𝛿𝐸𝑖𝑛𝑡
0 (𝝋, 𝛿𝝋, 𝜙, 𝛿𝜙) = −∫𝛺0

𝛿𝝋Div𝑷 𝑑𝛺0 − ∫𝛺0

2(1 − 𝛽)(1 − 𝜙)𝛹0𝛿𝜙 𝑑𝛺0,

+ ∫𝛺0

[

𝑐
𝑙
𝜙𝛿𝜙 − 𝑐 𝑙∇𝑋𝜙 ⋅ ∇𝑋 (𝛿𝜙) + 𝛼𝛿𝜙̇

]

𝑑𝛺0 + ∫𝜕𝛺0

𝛿𝝋𝑷 ⋅𝑵 𝑑𝐴

+ ∫𝜕𝛺0

𝛿𝜙𝑐 𝑙∇𝑋𝜙 ⋅𝑵 𝑑𝐴 = 0 . (26)

where, the degraded first Piola–Kirchhoff stress is defined as

𝑷 (𝑭 , 𝜙) = 𝑔(𝜙)
𝜕𝛹0
𝜕𝑭

. (27)

First variation of the external energy is

𝛿𝐸𝑒𝑥𝑡
0 (𝝋, 𝛿𝝋) = −∫𝛺0

𝛿𝝋 ⋅ 𝑩 𝑑𝛺0 − ∫𝜕𝛺𝑇
0

𝛿𝝋 ⋅ 𝑻 𝑑𝐴 = 𝑭 𝑒𝑥𝑡
𝝋 . (28)

quating the individual variations to zero, the governing equations are
btained as

iv𝑷 + 𝑩 = 0 in 𝛺 , (29)
0
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Fig. 23. Inclined center crack specimen geometry. Width of the inclined crack is
.2 mm and the inclination angle is 45◦. Bottom of the specimen is restrained against
-direction and one node at the middle is restrained against 𝑥-direction. Uniform

displacement is applied on the top.

and

2(1 − 𝛽)(1 − 𝜙)𝛹0 =
𝑐
𝑙
(𝜙 − 𝑙2∇ ⋅ ∇𝜙) + 𝛼𝜙̇ in 𝛺0. (30)

with boundary conditions

𝑷 ⋅𝑵 = 𝑻 on 𝜕𝛺𝑇
0 , (31)

𝒖 = 𝒖̄ on 𝜕𝛺0,𝑢, (32)

∇𝜙 ⋅𝑵 = 0 𝑜𝑛 𝜕𝛺0. (33)

4.2. Hybrid phase field model

The expression (𝛹0) in Eq. (30) refers to the total strain energy
in the material. To ensure that the crack occurs only in the tensile
region of the material, it is necessary to determine the active part of the
energy that is truly responsible for crack evolution. Here, we follow the
hybrid (isotropic–anisotropic type) formulation (Ambati et al., 2015)
where the total elastic stiffness is degraded but only the active part of
strain energy (𝛹 𝑎𝑐𝑡

0 ) will be used for solving the phase field equation.
The equations pertaining to various phase field formulations are given
below.
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4.2.1. Isotropic formulation
In this case, the total strain energy contributed from the active as

well as the passive part is used for the crack formation. In this case, the
total stress tensor is degraded due to fracture. Mathematically,

𝑷 (𝑭 , 𝜙) = 𝑔(𝜙)
𝜕𝛹0
𝜕𝑭

and 2(1 − 𝛽)(1 − 𝜙)𝛹0 =
𝑐
𝑙
(𝜙 − 𝑙2𝛥𝜙) + 𝛼𝜙̇ (34)

4.2.2. Tension–compression asymmetry formulation
Here, only the tensile part of the stress tensor is degraded and active

part of strain energy takes part is used in the crack formation. This
prevents crack in the compressive region.

𝑷 (𝑭 , 𝜙) = 𝑔(𝜙)
𝜕𝛹 𝑎𝑐𝑡

0

𝜕𝑭
+
𝜕𝛹 𝑝𝑎𝑠

0

𝜕𝑭
and 2(1−𝛽)(1−𝜙)𝛹 𝑎𝑐𝑡

0 =
𝑐

𝑙
(𝜙−𝑙2𝛥𝜙)+𝛼𝜙̇

(35)

.2.3. Hybrid formulation
The definition of stress and the governing evolution equation in this

ase are

(𝑭 , 𝜙) = 𝑔(𝜙)
𝜕𝛹0
𝜕𝑭

and 2(1 − 𝛽)(1 −𝜙)𝛹 𝑎𝑐𝑡
0 =

𝑐
𝑙
(𝜙− 𝑙2𝛥𝜙) + 𝛼𝜙̇ (36)

he advantage of the hybrid approach is that it avoids the complex
umerical treatment of nonlinear Eq. (35)(a) and uses Eq. (34)(a) for
tress calculations. But it considers the active part of strain energy to
olve the crack phase field. To avoid the crack to heal, the strain energy
n the region is assessed in the whole time range [0,  ] and stored as
history parameter which is defined as follows.

+
∈[0, ]

= Max(𝛹𝑎𝑐𝑡
0 (𝜆+𝑖 , 𝐽 , 𝑡)). (37)

Definition of 𝜆+𝑖 is based on critical stretches which are given in the
ext section.

.3. Additive decomposition of strain energy density based on critical stretch

To find the crack initiation criteria based on the critical principal
tretches, we define the active part of strain energy by additive decom-
osition. A neo-Hookean type strain energy density function of the form
iven below is considered (Miehe and Schänzel, 2014).

0(𝑭 ) =
𝜇
2
[

𝑭 ∶ 𝑭 − 3
]

+
𝜇
𝜂
[𝐽−𝜂 − 1], 𝜂 = 2𝜈

1 − 2𝜈
. (38)

ere 𝜇 is the shear modulus and 𝜈 is the Poisson’s ratio of the material
n the small strain regime. To begin with the energy decomposition, we
xpress the energy density function in deviatoric and volumetric form.

0 = 𝛹𝑑𝑒𝑣
0 (𝜆1, 𝜆2, 𝜆3) + 𝛹𝑣𝑜𝑙

0 (𝐽 ). (39)

𝑑𝑒𝑣
0 (𝜆1, 𝜆2, 𝜆3) =

𝜇
2

3
∑

𝑖=1
(𝜆2𝑖 − 1), 𝛹𝑣𝑜𝑙

0 (𝐽 ) =
𝜇
𝜂
[𝐽−𝜂 − 1], 𝐽 = 𝜆1𝜆2𝜆3.

(40)

lthough 𝛹𝑣𝑜𝑙
0 expression does not become exactly zero for 𝐽 = 1, the

value is nearly equal to zero for this definition of volumetric energy.
Here, 𝜆𝑖 are the principal stretches which are square roots of eigen
values of Right Cauchy Green deformation tensor 𝑪. The active and
passive parts of energy are computed based on tensile and compressive
nature of 𝜆𝑖 and on the nature of the volumetric deformation. This
combination of deviatoric and volumetric energy for defining active
and passive part are expressed as (See Fig. 7, 8),

𝛹𝑎𝑐𝑡
0 = 𝛹𝑑𝑒𝑣

0 (𝜆+𝑖 ) +𝑋, (41)

𝛹 𝑝𝑎𝑠
0 = 𝛹𝑑𝑒𝑣

0 (𝜆−𝑖 ) + 𝑌 . (42)
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Fig. 24. Crack pattern at the displacement of (a) 𝑢 = 0 mm or undeformed state, (b) 𝑢 = 65.38 mm, (c) 𝑢 = 68.98 mm, (d) 𝑢 = 70.18 mm, (e) 𝑢 = 70.58 mm, (f) 𝑢 = 70.66 mm
applied for length scale 𝑙 = 0.1 mm and smallest element size of 0.04 mm. (g) Crack pattern in the reference configuration.
Fig. 25. Comparison of load displacement plot for centrally inclined crack specimen with initial edge crack length of 7 mm for different length scale. Smallest element size of
0.04 mm in-front of the crack tip is considered. Critical stretch 𝜆𝑐𝑟 = 1.79 is used.
Where, the fracture contributing stretches (𝜆+𝑖 ) and passive stretches
(𝜆−𝑖 ) are defined as

𝜆+𝑖 =

{

𝜆𝑖 if 𝜆𝑖 ≥ 𝜆𝑐𝑟. and 𝜆−𝑖 =

{

1 if 𝜆𝑖 ≥ 𝜆𝑐𝑟. (43)
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1 if 𝜆𝑖 < 𝜆𝑐𝑟. 𝜆𝑖 if 𝜆𝑖 < 𝜆𝑐𝑟.
and the definition of 𝑋 and 𝑌 is,

𝑋 = 𝛹𝑣𝑜𝑙
0 (𝐽 ) and 𝑌 = 0, if 𝐽 ≥ 1,

𝑋 = 0 and 𝑌 = 𝛹𝑣𝑜𝑙
0 (𝐽 ), if 𝐽 < 1. (44)

Above Eq. (43) ensures that the individual principal stretches con-
tribute to the active part of energy if and only if their value is more than
𝜆 . This is because 𝜆+ = 1, if 𝜆 < 𝜆 . 𝜆+ = 1 makes the deviatoric
𝑐𝑟 𝑖 𝑖 𝑐𝑟 𝑖



International Journal of Solids and Structures 270 (2023) 112216P. Aurojyoti et al.
Fig. 26. Plot of active energy, passive energy and total energy in centrally inclined crack specimen.(a) Energy decomposition without critical stretch. (b) Present model for length
scale 𝑙 = 0.1 mm, Critical stretch 𝜆𝑐𝑟 = 1.79.
Fig. 27. Principal stress plot in inclined center crack specimen just before crack initiation load value 𝐹 = 90 N (Pidaparti et al., 1990).
part of energy in Eq. (40)) to be zero for that particular principal
stretch. This ensures the crack phase-field remains zero (undamaged
state) even under material deformation. Hence this method guarantees
a threshold energy value for the crack initiation. This proposed method
of energy decomposition matches with the definition of tensile and
compressive stretch given in Tang et al. (2019), if we take 𝜆𝑐𝑟 = 1
in Eq. (43). Eq. (44) states that in the case of compression (𝐽 < 1) there
is no contribution from the volumetric part of energy towards the crack
formation. Cracks form only in volumetric tension (𝐽 ≥ 1).

According to the above definition, if one of the principal stretches
is greater than 𝜆𝑐𝑟 and the other two are less than it, then the stretch
which is greater than 𝜆𝑐𝑟 only contributes to the active part of strain
energy and other two contribute to the passive part. Similarly, if the
volume increases (𝐽 > 1), it contributes to the active part of strain
energy otherwise it contributes to the passive part. The absolute value
of all energy measures is plotted for each numerical study.

Numerical examples in Section 5 are based on styrene-butadiene
rubber (SBR). For mode-I fracture, we have adopted the final rupture
tensile stretch 𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 2.65 for this material from experimental obser-
vation (see Figure 4 in Hocine et al. (2002) for SBR). The stretch is
measured by the ratio of deformed length to the undeformed length
17
between two marking lines equally spaced (10 mm) from the center of
the specimen (Fig. 9(b)) in the experiment. Eq. (3) is used to arrive at
the critical stretch value (𝜆𝑐𝑟). For the mixed mode fracture case, we
have taken the tensile test conducted by Pidaparti et al. (1990). The
test specimen is shown in Fig. 9(a). The rupture tensile stretch (𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒)
depends on the properties of the SBR specimen and can vary from 1.8
to 2.9 (see curve D of Figure 2 in Pidaparti et al., 1990).

The specimen geometry and thickness may affect the rupture tensile
stretch. The effect of geometry and thickness on rupture tensile stretch
value is not studied here. The size of the experimental setup from
the literature and the numerical examples presented here are of the
same order or similar in size. Hence, the same rupture tensile stretch
is considered for the calculation of critical stretch. For mixed-mode
fracture, the strong assumption of 𝜆2 = 𝜆3 can be relaxed to obtain a
more accurate value of critical stretch. The rupture tensile stretch used
here is measured when there is no pre-defined notch in the specimen.
But, this value might differ depending on the position, orientation,
and extent of the initial crack in the specimen. The dependence of 𝜆𝑐𝑟
on the extent of deformation, the distribution of stresses, and other
factors discussed above can be considered an extension of this work.
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Fig. 28. Circular hole with inclined crack specimen geometry. Width of the inclined
rack is 0.2 mm and the inclination angle is 45◦. Bottom of the specimen is restrained

against 𝑦-direction and one node at the middle is restrained against 𝑥-direction.

We assume that 𝜆𝑐𝑟 to be constant throughout the simulation for all
material points.

4.4. Finite element formulation

For the finite element framework, we find the weak form of the
governing equations by multiplying admissible test function 𝒘𝑢 for
deformation field and 𝑤𝜙 for phase field and integrate over the domain.

Neglecting the traction and body force, the residual for the defor-
mation field is obtained as follows

𝑹𝝋 = ∫𝛺0

𝑷 ∶ ∇𝑋𝒘𝑢 𝑑𝛺0 = 0. (45)

𝑹𝜙 = ∫𝛺0

[

𝑤𝜙
𝑐
𝑙
𝜙 +𝑤𝜙𝑐 𝑙∇𝜙 ⋅ ∇𝑤𝜙

−2(1 − 𝛽)(1 − 𝜙)𝛹𝑎𝑐𝑡
0 𝑤𝜙 +𝑤𝜙𝛼

(𝜙 − 𝜙𝑛−1)
𝛥𝑡

]

𝑑𝛺0 = 0.

.4.1. Discretization of field variables
The deformation map and the weight functions used in the FEM

iscretization at the element level are given by

(𝑿) ≈
𝑛𝑜𝑑𝑒
∑

𝝋𝑗𝑁 𝑗 (𝑿), 𝜙 ≈
𝑛𝑜𝑑𝑒
∑

𝜙𝑗𝑁 𝑗 (𝑿). (46)
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𝑗=1 𝑗=1
and

𝒘𝑢 = 𝑁 𝑖(𝑿), 𝑤𝜙 = 𝑁 𝑖(𝑿). (47)

he gradient of weight function is approximated as

𝑋𝒘𝑢 = ∇𝑋𝑁
𝑖(𝑿). (48)

fter putting approximation to the residual, we have

𝑖
𝝋 = ∫𝛺0

𝑷 ⋅ ∇𝑋𝑁
𝑖𝑑𝛺0 = 0. (49)

𝑖
𝜙 = ∫𝛺0

[ 𝑐𝜙
𝑙

𝑁 𝑖 + 𝑐 𝑙(∇𝑋𝜙 ⋅ ∇𝑋𝑁
𝑖)

− 2(1 − 𝛽)(1 − 𝜙)+𝑁 𝑖 +𝑁 𝑖𝛼
(𝜙 − 𝜙𝑛−1)

𝛥𝑡
]

𝑑𝛺0 = 0. (50)

.4.2. Tangent operators and stiffness terms
The linearized tangent stiffness terms are given below.

𝑖𝑗
𝜑𝜑 =

𝜕𝑹𝑖
𝜑

𝜕𝜑𝑗
= ∫𝛺0

[[ 𝜕𝑷
𝜕𝑭

⋅ ∇𝑋𝑁
𝑖] ⋅ ∇𝑋𝑁

𝑗]𝑑𝛺0, (51)

and

𝑲 𝑖𝑗
𝜙𝜙 = ∫𝛺0

[ 𝑐
𝑙
𝑁 𝑖 ⋅𝑁 𝑗 + 𝑐 𝑙(∇𝑋𝑁

𝑖 ⋅ ∇𝑋𝑁
𝑗 ) + 2+(1 − 𝛽)𝑁 𝑖 ⋅𝑁 𝑗+

𝛼
𝛥𝑡

𝑁 𝑖 ⋅𝑁 𝑗 ] 𝑑𝛺0. (52)

riving force for damage is obtained as

𝑖
𝜙 = ∫𝛺0

2(1 − 𝛽)+ ⋅𝑁 𝑖 + 𝛼
𝜙𝑛−1
𝛥𝑡

⋅𝑁 𝑖𝑑𝛺0. (53)

The expressions for the first Piola Kirchhoff stress 𝑷 and tangent
operators 𝜕𝑷

𝜕𝑭 are given below.

𝑷 =
𝜕𝛹0
𝜕𝑭

= 𝑷 1 + 𝑷 2. (54)

(𝑃1)𝑖𝑗 = 𝜇𝐹𝑖𝑗 , (55)

(𝑃2)𝑖𝑗 = −𝜇𝐽−𝜂𝐹−1
𝑗𝑖 . (56)

𝑷 1 and 𝑷 2 represents the deviatoric and volumetric part of First Piola–
Kirchhoff stress tensor 𝑷 respectively. The linearized tangent stiffness
terms are written as follows

A1
𝑖𝑗𝑘𝑙 =

𝜕(𝑃1)𝑖𝑗
𝜕𝐹𝑘𝑙

= 𝜇𝛿𝑖𝑘𝛿𝑗𝑙 , (57)

A2
𝑖𝑗𝑘𝑙 =

𝜕(𝑃2)𝑖𝑗
𝜕𝐹𝑘𝑙

= 𝜇[𝜂𝐽−𝜂𝐹−1
𝑙𝑘 𝐹−1

𝑗𝑖 + 𝐽−𝜂𝐹−1
𝑗𝑘 𝐹−1

𝑖𝑙 ]. (58)

.5. Numerical implementation

Mechanical problem (Eq. (29)) coupled with evolution equation
Eq. (30)) is solved using a staggered approach, where the phase
ield is kept frozen while solving for the displacement field, and the
isplacement field is kept constant while solving for the phase field.
istory parameter +, which stores the maximum active strain energy
p to the current displacement/load step links the two sub-problems,
nd is responsible for fracture evolution. The flowchart showing the
rocedure of the staggered scheme is given in Fig. 10.

Consider (𝑟 + 1)th iteration of 𝑛th load step in the simulation.
pplying the Newton–Raphson method to solve for deformation field
𝝋), we have

𝒖 = −[𝑲𝜑𝜑(𝒖𝑟𝑛)]
−1𝑹𝑟

𝝋,𝑛. (59)

here, 𝑲𝜑𝜑(𝒖𝑟𝑛) =
[
𝜕𝑹𝜑

𝜕𝝋
]𝑟
𝑛 as per Eq. (51)

Expression for 𝑹𝜑 is given as per Eq. (49), 𝒖𝑟+1𝑛 = 𝒖𝑟𝑛 + 𝛿𝒖.
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Fig. 29. Crack pattern at the displacement of (a) 𝑢 = 0 mm or undeformed state, (b) 𝑢 = 50.6 mm, (c) 𝑢 = 52 mm, (d) 𝑢 = 52.1 mm, (e) 𝑢 = 52.2 mm (f) Crack pattern in the
reference configuration. Length scale 𝑙 = 0.15 mm is used.
Fig. 30. Principal stress plot in circular hole with inclined crack specimen just before crack initiation load value 𝐹 = 90 N (Pidaparti et al., 1990) (a) Near to the hole region (b)
Near to the crack tip.
Solving for phase-field (𝝓) in [𝑲𝜙𝜙] ⋅ {𝝓} = {𝑭 𝜙} is carried out
in a single step (without any iteration) as 𝑲𝜙𝜙 does not involve any
non-linear terms. λ, μ are the Lame’s parameters. The tolerance (𝑇 𝑜𝑙) is
taken as 10−7 for each simulation and the maximum number of itera-
tions (𝑟𝑚𝑎𝑥) within one load step is considered as 25 for convergence.
𝜑 is the 𝐿2-norm of the residual vector 𝑹𝜑. 𝑛𝑚𝑎𝑥 is the maximum
number of load steps and 𝑛 is the current load step. The simulations
are carried out using MATLAB and the figures showing crack patterns
are plotted using GiD software.

5. Numerical results and discussions

5.1. Double edge notched specimen in tension (DENT) test

The experimental work of Hocine et al. (2002) on double edge notch
in tension (DENT) test of styrene-butadiene rubber (SBR) is used as a
benchmark example for the nearly incompressible problem. The geom-
etry and boundary conditions are given in Fig. 11. The notch width is
0.5 mm. The Lamé constants are μ = 0.203 MPa and λ = 1.827 MPa with
Poisson’s ratio 𝜈 = 0.45. The critical fracture energy 𝑐 (=2.67 N/mm)
is considered according to the polymer network model (see Miehe and
19
Schänzel, 2014). The thickness of the specimen in the experiments is
3 mm. Exploiting the symmetry of the specimen, we have analyzed
only the right half portion of the specimen and is discretized into
6645 quadrilateral elements with 8 elements in the initial notch width
resulting smallest element size of 0.0625 mm. Length scale 𝑙 = 1 mm
is considered. Comparatively larger increment value is used until the
total displacement of 38 mm and then the displacement increment (𝛥𝑢)
of 0.01 is used during the crack propagation. From the uniaxial test of
SBR specimen, it is found that the rupture tensile stretch (𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒) is
approximately 2.65 (see Figure 4 in Hocine et al., 2002 for SBR). The
critical stretch 𝜆𝑐𝑟 (=1.61) is evaluated using Eq. (3). The crack patterns
are shown in Fig. 12.

The present study predicts almost the same peak load as compared
to the experimental observation by Hocine et al. (2002). The energy
decomposition without critical stretch predicts a little lesser peak load
although the failure displacements are the same (see Fig. 13(a)). The
length scale of 𝑙 = 1 mm admits good agreement with experiments.
Higher length scale values predict lesser peak load compared to lower
length scale (see Fig. 13(b)). From Fig. 15(b), it is observed that
active energy is almost zero up to a certain displacement due to the
use of critical stretch for energy decomposition. Beyond this point,
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Fig. 31. Load displacement plot for circular hole with inclined crack specimen using length scale 𝑙 = 0.15 mm with stretch (𝜆𝑐𝑟 = 1.79) and without using stretch criteria.
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Fig. 32. Geometry of plate with a central hole. Bottom end is fixed and uniform load
s applied on the top.

ctive energy increases and contributes to crack propagation. When the
ondition of stretch is used, active energy is almost equal to the total
nergy indicating the complete use of energy during crack evolution,
hereas some residual energy is remaining when this condition is not
sed (Fig. 15(a)). For a* = 28 mm, the displacement at which the crack
nitiates is almost same as per the present model and by the other PF
odel. Hence, the crack pattern would be same for both the cases.
rack initiates little early in case of a* = 12 mm as per the present
tudy. Comparison for crack evolution are shown in Fig. 14. Because of
he rapid progression, substantial crack growth at displacement of u =
20
62.75 mm has already happened in the present model while it is just
starting according to the other.

The effect of reduction in 𝑐 values on failure load and displacement
s studied. 𝑐 is varied from 2.67 to 2.5, 2.2 (Fig. 17) at all material

points by varying different values of 𝜔2, if the stretch is more than 𝜆𝑐𝑟.
The average value of 𝑐 in the crack tip (0.3 mm × 0.3 mm square red
block) as shown in Fig. 16(b) is used for plotting the reduced value of
critical fracture toughness 𝑟𝑑 in Fig. 16(a). The peak load decreases as
he 𝑐 reduced to lower values. Due to lower 𝑐 , less energy is required
o propagate the crack and causes the material to fail early.

The crack evolution follows the same pattern for different degraded
alues of critical fracture toughness, but the crack initiation point
iffers for each as per Fig. 17. At the displacement of 40 mm, the crack
as already propagated substantially when 𝑐 degraded to 2.2 N/mm.
ut at the same displacement value, crack is just initiating when 𝑐 is
ot degraded and the crack front is little more damaged when 𝑐 is
egraded to 2.5 N/mm from 2.6 N/mm. The crack patterns are shown
n Fig. 18. Energy decomposition with critical stretch increases the peak
oad while degradation of 𝑐 decreases the failure displacement.

.2. Penny shaped precracked test specimen

The benchmark example of a penny-shaped pre-crack specimen is
onsidered as shown in Fig. 19. The height and width of the specimen
re 0.4 mm and 2 mm respectively. A central notch of length 0.2 mm
nd width of 0.005 mm is modeled to introduce a small perturbation
n the system. A constant incremental displacement (𝛥𝑢) of 0.01 mm
s applied until a total displacement of 0.38 mm and is reduced to
.0001 mm during the crack propagation. The domain is discretized
nto 5000 quadrilateral elements. Elastic properties λ, μ of the material
re taken as 45 MPa and 5 MPa respectively with Poisson’s ratio 𝜈 =
.45 to consider weak compressibility. Critical energy release rate 𝑐
s taken as 2.4 N/mm and critical stretch value is taken the same as
er the previous example i.e. 𝜆𝑐𝑟 = 1.61. The analysis is carried out for
ength scales 𝑙 = 0.01 mm and 𝑙 = 0.02 mm to study the effect of length
cales. The crack patterns are shown in Fig. 20. The load–displacement
urve is shown in Fig. 21. The present study predicts a higher peak
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Fig. 33. Crack pattern at the displacement of (a) 𝑢 = 0 mm or undeformed state (b) 𝑢 = 2.08 mm (c) 𝑢 = 4.48 mm (d) 𝑢 = 4.88 mm (e) 𝑢 = 5.08 mm (f) 𝑢 = 5.28 mm (g) 𝑢 =
5.38 mm (h) 𝑢 = 5.48 mm (i) 𝑢 = 5.68 mm applied for length scale 𝑙 = 1.6 mm. (j) Crack pattern in the reference configuration. The geometry is discretized with uniform element
size of 0.5 mm. and Poisson’s ratio 𝜈 = 0.42 is considered for this simulation.
load compared to Miehe and Schänzel (2014). The displacement for
final rupture is also more. As the artificial viscosity parameter (𝛼) is
one type of regularization used for the rate-independent case, the load–
displacement plot approaches the rate-independent limit as a lesser
value of 𝛼 is used. Higher the viscosity parameter, the higher the failure
displacement, although the peak load is almost the same. The energy
plot given in Fig. 22 shows that active energy increases gradually until
fracture initiates and then drops afterward. When the critical stretch
criteria are used, the active energy is almost zero up to a certain stretch
value and gradually increases afterward (Fig. 22(b)). Present model
predicts relatively higher displacement values at crack initiation than
other model. Hence, the damage pattern will follow the same as per
other PF models, but the crack initiation point would differ.

5.3. Mixed mode fracture in inclined center crack specimen

To verify the present model for mixed mode fracture, the exper-
imental work of Pidaparti et al. (1990) on the inclined center crack
specimen is considered. The geometry and the boundary conditions are
21
given in Fig. 23. Critical fracture energy 𝑐 = 15 N/mm (Range of
12.5 N/mm-24.5 N/mm in Pidaparti et al. (1990)), Young’s modulus
𝐸 = 6.5 MPa and Poisson’s ratio 𝜈 = 0.45 are taken for the simulation
as given in Mandal et al. (2020). Plane stress condition is considered.
Critical stretch value 𝜆𝑐𝑟 = 1.79 is adopted based on the tensile stretch
value 𝜆𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 2.9 (see curve D of Figure 2 in Pidaparti et al. (1990)).
Simulations are performed for two different length scales 𝑙 = 0.1 mm
and 𝑙 = 0.15 mm. The crack patterns are shown in Fig. 24.

The experimental range for crack initiation load is reported as (180–
234) N (Pidaparti et al., 1990). The present study predicts the peak
load of 167 N (Fig. 25) for length scale 𝑙 = 0.1 mm. The lower length
scale predicts a higher peak load than the higher length scale value.
The active energy plot shows that up to 26 mm displacement there is
little energy contribution towards the crack formation and afterward,
the active energy increases continuously (Fig. 26(b)). Active energy
contributes to fracture from the beginning of loading if there is no
definition for active energy based on stretch (Fig. 26(a)). The principal
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Fig. 34. Load vs Displacement plot of plate with a central hole example for different Poisson’s ratio. Length scale 𝑙 = 1.6 mm with minimum element size of 0.2 mm is adopted.
Fig. 35. Active energy plot for different Poisson’s ratio attaining incompressible limit.
stress plot agrees well with Pidaparti et al. (1990) and is shown in
Fig. 27.

5.4. Circular hole with inclined crack specimen

This example is also a case of mixed mode fracture condition
with unsymmetric stress concentration. The geometry and boundary
condition is given in Fig. 28. The material parameter is taken the same
as the CINT specimen. The crack pattern is shown in Fig. 29. The stress
plot agrees well with the work of Pidaparti et al. (1990) and is shown in
22
Fig. 30. This study predicts the failure load to be 120 N (Fig. 31) when
length scale 𝑙 = 0.15 is used, and the experimental range is (120–169)
N. The lower length scale (𝑙) predicts a higher failure load, which is
related to the material parameter.

5.5. Fracture in plate with a central hole under uniaxial tension

This example is considered to study the effect of Poison’s ratio
on fracture behavior. The geometry and the boundary conditions of
a square plate with a central hole are given in Fig. 32. The critical
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fracture energy 𝑐 = 4 N/mm, shear modulus 𝜇 = 5 MPa are taken for
the simulation. Plane strain condition is assumed. The crack patterns
and the load–displacement curve are shown in Fig. 33 and Fig. 34
respectively. As the Poisson’s ratio approaches the incompressible limit,
the peak load increases, and the failure displacement decreases. Contri-
bution of active energy to the fracture increases as the Poisson’s ratio
decreases shown in Fig. 35.

6. Conclusions

A new energy decomposition method is proposed specifically for
rubber-like polymers to model fracture using phase field method in
mode-I and for mixed mode (I/II) case. A threshold value of stretch
or critical stretch is evaluated from tensile test experimental data
presented in literature. By considering material to be nearly incom-
pressible, expression for critical stretch in terms of multiaxial stretch
values is obtained. This is used to establish a criteria for crack initiation.
Different numerical examples are studied to validate the present model.
Considering the Lake-Thomas model of the critical fracture energy of
polymer, we propose a exponential reduction of 𝑐 , only beyond the
ritical value of stretch. This is assumed considering reduced number
f elastically effective polymer chains per unit volume due to the effect
f damage. As the degradation of elastic energy does not happen unless
t reaches a certain value, this model predicts comparatively larger
eak loads before the final fracture as compared to standard phase
ield models. Crack patterns at various instances are plotted and it is
nferred that the crack grows faster after initiation and requires small
isplacement increments. Fracture modeling in the mixed-mode case
s more sensitive to the length scale than mode-I case. As the length
cale 𝑙 is related to the material properties, determination of its value
s essential for predicting correct value of failure load using PFM. The
ffect of reduction in 𝑐 value for various ranges is analyzed based on
tretch. The percentage of reduction can be attributed to the nature
f polymer chains and its weakening response to the stretch. Present
odel with degradation of 𝑐 predicts crack initiation earlier than when

𝑐 is not degraded. The effect of Poisson’s ratio is studied and it is
inferred that, the positive energy contribution towards fracture energy
increases as the Poisson’s ratio decreases. The difference between total
and active energy reduces with the increase in Poisson’s ratio, while
keeping the other parameters constant.
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