
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

End-to-End Network Slicing Design Policy in 5G Networks

Wang, Ranyin

Awarding institution:
King's College London

Download date: 08. Oct. 2023

End-to-End Network Slicing Design

Policy in 5G Networks

Ranyin Wang

Supervisor: Prof A. Hamid Aghvami

Department of Engineering

King’s College London

A thesis submitted to King’s College London in fulfillment

the requirements for the Degree of

Doctor of Philosophy

February 2023

Acknowledgements

The PhD study over the last four years has been a memorable and precious experience

for me. Here, I express my sincere gratitude to all the people who have helped and

encouraged me along my path.

First, I would like to express my genuine appreciation to my supervisor Prof Hamid

Aghvami for his support, help and encouragement. Under his supervision, I learned a

rigorous research attitude and a broad outlook on life. He has always emphasized the

importance of fundamental knowledge in scientific research, which motivates me to

study the basics patiently. He also has taught me to be confident and ambitious, which

gives me power. And I am inspired to be diligent by his hard-working. Then, I want

to give sincere thanks to my second supervisor Dr Vasilis Friderikos for his helpful

remarks and advice on my research works.

Furthermore, I would like to thank my colleagues and friends in the Departments of

Informatics and Engineering at King’s College London for their continuous friendship,

support and encouragement. I will always remember the joyful days we spent together

during our PhD studies.

Special thanks to Dr Qiang Sheng for his constant love, care, help and support. Last

but not least, I would like to express my deepest thanks to my dear parents for their

unconditional love and continuous support. Undoubtedly, I could not have finished my

PhD study without their support. They always give their best to support me in pursuing

all I want. I would like to dedicate the thesis to my beloved mother and father.

Abstract

End-to-End network slicing is an emerging technology that provides substantial poten-

tial for supporting various services and carries flexible resource orchestration for 5G

networks. The technology allows a physical infrastructure to be divided into several

logical and virtual network slices based on the powerful Software-Defined Networking

and Network Function Virtualization techniques. However, it is challenging to ensure

high efficiency of resource utilization and energy consumption in the deployment of

network slices by proposing design policies for different scenarios. Thus, it is neces-

sary to investigate appropriate algorithms of design policy to facilitate the deployment

of the network slices onto a shared underlying infrastructure in various scenarios. In

the thesis, the proposal of design policy is based on multiple objectives. The primary

design objectives are covered from three different aspects, containing the character-

istics of diverse service scenarios, the fluctuated traffic demands in the network and

the energy consumption of network slices. On this basis, the proposed algorithms

aim to enhance resource and energy efficiency and satisfy various service require-

ments for different 5G use cases, including enhanced Mobile BroadBand (eMBB),

massive Machine Type Communications (mMTC) and ultra Reliable & Low Latency

Communications (uRLLC).

Firstly, a design problem of network slicing is proposed and formulated via a

mathematical model. And a basic algorithm of design policy is presented, which

can ensure various network slices in different use cases are deployed onto a shared

underlying infrastructure with a certain number of resources. The proposed algorithm

can deliver an efficient utilization of network resources and a balanced occupancy of the

physical network. Nevertheless, the design policy fails to consider the uncertainty in

service requirements. For instance, uncertainty can lead to fluctuating traffic demands.

iv

Thus, in the following work, a service-aware design problem is formulated with the

fluctuations in traffic demands, including a deterministic formulation and a robustness

one. In addition, a heuristic algorithm is proposed to realize the mapping of network

slices under fluctuation in resource requirements and guarantee the performance of

different services. However, the design problem for network slices is an NP-hard

problem, its exact formulation is incapable of obtaining optimal solutions within a

reasonable computation time. Besides, it is very likely for heuristic algorithms to suffer

from a locally optimal solution. Hence, thirdly, a Deep Reinforcement Learning (DRL)-

based approach is introduced to investigate the design problem with an energy-aware

objective. It is modeled as a Markov Decision Process problem with the elements

of state, action and reward. Furthermore, a policy network is established based on

the Pointer Network architecture. And the network model is trained by leveraging

the Advantage Actor-Critic algorithm. It is found that the proposed design policy

can guarantee an efficient energy cost. Finally, the thesis is summarized, and some

promising research directions for the network slicing design problem are stated.

Table of contents

List of figures ix

List of tables xiii

List of glossary & acronyms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Network Slicing Design Problem Statement 3

1.3 Research Contributions . 4

1.4 Thesis Structure . 7

2 Background 9

2.1 Fundamental Concepts for End-to-End Network Slicing 9

2.1.1 Virtualization . 9

2.1.2 Virtual Machines & Containers 10

2.1.3 Network Function Virtualization 11

2.1.4 Software Defined Networking 13

2.1.5 Cloud & Edge Computing 14

2.1.6 Isolation . 14

2.2 End-to-End Network Slicing Technology 15

2.2.1 Network Slicing Principles 16

2.2.2 Network Slicing Framework 17

2.3 5G Use Cases . 19

Table of contents vi

2.3.1 Enhanced Mobile Broadband Communications 20

2.3.2 Ultra Reliable & Low Latency Communications 20

2.3.3 Massive Machine Type Communications 20

2.4 Enabling Technologies of Network Slicing Design Problem 21

2.4.1 Virtual Network Embedding 21

2.4.2 Service Function Chain Placement 24

2.4.3 Optimization Methods . 25

2.4.4 Deep Reinforcement Learning 39

2.5 Conclusions . 52

3 A Basic Design Policy of End-to-End Network Slicing 54

3.1 Introduction . 54

3.2 Related Works . 55

3.3 Network Model of Basic Network Slicing Design Problem 56

3.3.1 Physical Network Model . 56

3.3.2 Network Slicing Request Model 58

3.3.3 Problem Description . 59

3.4 Problem Formulation . 60

3.5 Algorithms of Basic Design Policy 62

3.6 Performance Evaluation . 65

3.6.1 Simulation Setup . 65

3.6.2 Evaluations Results . 66

3.7 Conclusions . 70

4 Service-aware Design Policy of End-to-End Network Slicing For 5G Use

Cases 71

4.1 Introduction . 71

4.2 Network Model of Service-aware Network Slicing Design Problem . . 74

4.2.1 Physical Infrastructure Model 74

4.2.2 Network Slice Request Model 74

4.3 Problem Formulation . 76

Table of contents vii

4.3.1 Service-aware Design Objectives 76

4.3.2 Deterministic Formulation 80

4.3.3 Robust Formulation . 81

4.4 Algorithms of Service-aware Design Policy 85

4.4.1 Basic Concepts of Algorithms 86

4.4.2 Detailed Description of Algorithms 89

4.5 Performance Evaluation . 91

4.5.1 Simulation Setup . 93

4.5.2 Evaluations Results . 95

4.6 Conclusions . 103

5 Energy-aware Design Policy of End-to-End Network Slicing using Deep

Reinforcement Learning 105

5.1 Introduction . 105

5.2 Related Works . 108

5.2.1 Deep Q-Learning for Network Slicing 109

5.2.2 Actor-Critic for Network Slicing 110

5.3 Network Model of Energy-aware Network Slicing Design Problem . . 111

5.3.1 Physical Infrastructure Model 111

5.3.2 Network Slice Request Model 112

5.4 Problem Formulation . 113

5.4.1 Energy-aware Design Objective 114

5.4.2 MDP Formulation for the Energy-aware NSDP 116

5.5 Algorithm Framework . 120

5.5.1 Learning Agent . 120

5.5.2 Optimization with Policy Gradient 123

5.5.3 Leaning Algorithms of Energy-aware Design Policy 126

5.6 Performance Evaluation . 130

5.6.1 Simulation Setup . 131

5.6.2 Evaluations Results . 133

5.7 Conclusions . 142

Table of contents viii

6 Conclusions and Future Works 144

6.1 Conclusions . 144

6.2 Future Works . 146

References 149

List of figures

1.1 Illustration of the network slicing design problem for various 5G use

cases. 4

2.1 Structures of VMs and containers. 11

2.2 Framework of the NFV architecture. 12

2.3 Framework of the SDN architecture. 13

2.4 The overall network slicing framework. 17

2.5 Life cycle management of network slices. 18

2.6 Illustration of an exampled VNE problem. 22

2.7 An example of SFC placement on physical infrastructure. 25

2.8 Framework of a basic optimization problem. 26

2.9 Illustration of the concept of the Pareto dominance relation. 29

2.10 Illustration of the Pareto optimal set. 31

2.11 Illustration of the Pareto front. 32

2.12 Flowchart of the MOPSO algorithm. 34

2.13 Illustration of the iteration processes of the MOPSO algorithm. 36

2.14 Illustration of the structures of the uncertain set with different values

of Γ. 38

2.15 Basic architecture of the DNNs: a. FNNs and b. RNNs. 41

2.16 Deep Reinforcement Learning Framework. 42

2.17 Illustration of Markov Decision Process. 45

2.18 Basic structures of DRL approaches: a. value-based DRL methods, b.

policy-based DRL methods. 46

List of figures x

3.1 Illustration of a physical path Li j including a set of physical links. . . 57

3.2 Illustration of the basic network slicing design problem 60

3.3 Average Physical Node Utilization Efficiency 66

3.4 Average Physical Link Utilization Efficiency 67

3.5 Physical Nodes Occupancy Ratio . 68

3.6 Physical Links Occupancy Ratio . 68

3.7 Execution Time . 69

4.1 Traffic demands in different slice requests through the same underlying

infrastructure. 90

4.2 Gap percentages for different values of Ψ under Γ = 1,2,3. 96

4.3 Gap percentages for different values of Ψ (Γ = 2) of different types of

slice requests. 97

4.4 Bandwidth utilization ratios for different time units of different types

of slice requests. 98

4.5 Resource utilization ratios for different number of slice requests: a.

mMTC, b. eMBB, c. uRLLC. 99

4.6 Acceptance ratios for different number of slice requests: a comparison

between the proposed algorithm and existing algorithm. 100

4.7 Average ratios of resource utilization for different number of slice

requests: a comparison between the proposed algorithm and existing

algorithm. 100

4.8 Resource efficiency for different number of slice requests: a compari-

son between the proposed algorithm and existing algorithm. 101

4.9 Node occupancy ratios for different number of slice requests: a com-

parison of the proposed algorithm with different values of ωe, ωm,

ωu. 102

4.10 Bandwidth utilization ratios for different time units (ωm : ωu : ωe = 1 :

1 : 1) of different number of slice requests. 102

4.11 Execution time with the increment of the number of slice requests. . . 103

5.1 Illustration of Energy-aware Network Slicing Design Problem. 113

List of figures xi

5.2 Illustration of the learning agent architecture for the EA-NSDP. 121

5.3 Diagram of the A2C algorithm structure. 123

5.4 Detailed architecture of the training model for the network slicing

design problem. 124

5.5 Illustration of the structure of the physical network. 131

5.6 Energy efficiency with different iteration times of the batch size K =

32: a. Energy efficiency under different time unit; b. Average energy

efficiency for 1000 time units. 133

5.7 Resource utilization ratios with different iteration times of the batch

size K = 32: a. Node utilization ratio under different time unit; b. Link

utilization ratio under different time unit. 134

5.8 Execution time with different iteration times of the batch size K = 32:

a. Execution time of deploying a network slice request under different

time unit; b. Average execution time for 1000 time units. 135

5.9 Energy efficiency with different batch sizes of the iteration time I = 10:

a. Energy efficiency under different time unit; b. Average energy

efficiency for 1000 time units. 137

5.10 Energy efficiency with the batch sizes K = 128,256 of the iteration

time I = 60. 137

5.11 Resource utilization ratio of the physical link with different batch sizes

of the iteration time I = 10 under different time unit. 138

5.12 Execution time with different batch sizes of the iteration time I = 10:

a. Execution time of deploying a network slice request under different

time unit; b. Average execution time for 1000 time units. 138

5.13 Cumulative acceptance ratio: a comparison between the proposed

algorithms of the EA-NSDP and two exiting algorithms GCN and

NodeRank. 139

5.14 Energy efficiency: a comparison between the proposed algorithms of

the EA-NSDP and two exiting algorithms GCN and NodeRank. . . . 139

List of figures xii

5.15 Resource utilization ratio: a comparison between the proposed algo-

rithms of the EA-NSDP and two exiting algorithms GCN and NodeRank.140

5.16 Resource utilization ratio: a comparison between the proposed algo-

rithms of the EA-NSDP and two exiting algorithms GCN and NodeRank.140

5.17 Execution time: a comparison between the proposed algorithms of the

EA-NSDP and two exiting algorithms GCN and NodeRank. 141

List of tables

2.1 Differences among eMBB, uRLLC and mMTC use cases. 19

3.1 Formal context of an example physical network 58

3.2 Formal context of a given network slice request 58

4.1 Notations of the service-aware NSDP 75

5.1 Notations of the energy-aware NSDP 112

List of glossary & acronyms

Glossary

G Physical infrastructure topology

P Set of physical nodes

L Set of physical links

T Set of relations of physical nodes and their attributes

AP Set of attributes of physical nodes P

AL Set of attributes of physical links L

Q Network slice topology

K The number of network slice requests

V Set of virtual network functions

E Set of virtual links

pi A physical node

vs A virtual network function

qk A network slice request

li′ j′ Physical link between the physical nodes pi′ and p j′ when they connect each

other directly

List of glossary & acronyms xv

Li j Physical path between the physical nodes pi and p j when a forwarding node

pη exists between them, denoting as Li j = {liη , pη , lη j}

h(Li j) Latency of the physical path Li j

b(Li j) Bandwidth capacity of Li j

Dk Set of traffic demands of qk

S(Dk) Set of sources of Dk

H(Dk) Set of destination of Dk

est Virtual link between the VNFs vs and vt

dk A traffic demand in Dk

cpi CPU capacity of pi

mpi Memory capacity of pi

Ivs Set of required attributes of vs

cvs Size of CPU resource blocks required by vs

mvs Size of memory resource blocks required by vs

εvs Elastic coefficient of vs

cλvs
CPU resource coefficient of vs

mλvs
Memory resource coefficient of vs

ρ
s,k
i Decision variable of VNFs

γ
st,k
i j Decision variable of virtual links

ζi Variable of occupancy status of pi

xvs Number of resource blocks required by vs

κpi Performing role of pi

List of glossary & acronyms xvi

opi Occupancy state of pi

aδ Energy consumption of per unit of CPU

zδ Energy consumption of per unit of bandwidth

Acronyms

NS Network Slicing

NSDP Network Slicing Design Problem

QoS Quality of Service

NFV Network Function Virtualization

SDN Software Defined Networking

InP Infrastructure Provider

VNF Virtual Network Function

NSP Network Service Provider

VN Virtual Network

SP Slice Provider

NO Network Operator

SFC Service Function Chain

NSI Network Slice Instance

mMTC massive Machine Type Communications

eMBB enhanced Mobile Broadband

uRLLC ultra Reliable & Low Latency Communications

VNE Virtual Network Embedding

List of glossary & acronyms xvii

SFCP Service Function Chaining Placement

CAPEX Capital Expenditures

OPEX Operational Expenditures

SLA Service Level Agreement

SSI Slice Service Instance

PSO Particle Swarm Optimization

MOPSO Multi-Objective Particle Swarm Optimization

MDP Markov Decision Process

RL Reinforcement Learning

DRL Deep Reinforcement Learning

DQN Deep Q-learning Network

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ANN Artificial Neural Network

RNN Recurrent Neural Network

CNN Convolutional Neural Network

DNN Deep Neural Network

LSTM Long Short-Term Memory

MC Monte Carlo

TD Temporal Difference

DP Dynamic Programming

List of glossary & acronyms xviii

DPG Deterministic Policy Gradient

VM Virtual Machine

VMM Virtual Machine Monitor

NFVI Network Function Virtualization Infrastructure

EMS Element Management System

MANO NFV Management and Orchestrator

VNFM Virtual Network Function Manager

VIM Virtual Infrastructure Manager

OSS Operations Support System

BSS Business Support System

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

NaaS Network as a Service

NSaaS Network Slicing as a service

RAN Radio Access Network

CN Core Network

TN Transport Network

AMF Access and Mobility Management Function

SMF Session Management Function

UPF User Plane Function

List of glossary & acronyms xix

UDM Unified Data Management

PCF Policy Control Function

NRF Network Function Repository Function

NSSF Network Slice Selection Function

VA Virtual Augmented

VR Virtual Reality

V2X Vehicle to Everything

LP Linear Programming

ILP Integer Linear Programming

MILP Mixed Integer Linear Programming

NLP Non-Linear Programming

SOP Single-objective Optimization Problem

MOP Multiple-Objective Optimization Problem

RO Robust Optimization

SO Stochastic Optimization

CO Combinatorial Optimization

NCO Neural Combinatorial Optimization

COP Combinatorial Optimization Problem

MCDM Multi-Criteria Decision Making

EMO Evolutionary Multi-Objective Optimization

SAW Simple Additive Weighting

List of glossary & acronyms xx

TSP Travelling Salesman Problem

FCA Formal Concept Analysis

TTL Time-To-Live

Chapter 1

Introduction

1.1 Motivation

Nowadays, an explosive growth of mobile data traffic and unpredictable connections

among devices can stimulate tremendous pressure on the performance of traditional

communication networks [1]. With the rapid development of wireless communication

technologies, 5G networks and beyond systems are expected to support a wide range

of services with various performance requirements for different application scenarios.

Thus, Network Slicing (NS) technology has emerged as a powerful architecture in 5G

networks, which allows the physical network to split into several virtual, isolated and

logical End-to-End network slices [2]. Different network slices can be accommodated

by a shared underlying infrastructure based on various requirements of Quality of

Service (QoS).

Network slicing technology has been developed as an appropriate way for the

network management and administration, which can provide multi-tenancy, scalability

and flexibility. Specifically, it is built on several promising softwarization technologies,

such as Network Function Virtualization (NFV) [3], Software-Defined Networking

(SDN) [4], and Cloud computing [5]. NFV provides a new way to virtualize network

functions and enables them to operate on proprietary hardware, promising the flexibility

of resource management and orchestration. SDN is a developing technology that

can decouple the data plane of the forwarding process of network packets from the

1.1 Motivation 2

control plane of the routing process. In addition, Cloud computing technology can

allocate resources dynamically to run applications for remote end users through cloud

architectures with a set of data center servers and software development platforms.

Network slices can be enabled by leveraging network virtualization technologies,

which allow multiple virtual networks to be deployed onto the same physical infrastruc-

ture [6]. In the network virtualization, physical resources are managed and orchestrated

by Infrastructure Providers (InPs). NFV technology can facilitate service operators to

deploy Virtual Network Functions (VNFs) and Network Service Providers (NSPs) flex-

ibly, which can integrate diverse network resources of multiple providers to generate

customized Virtual Networks (VNs) [7]. Besides, network slices are provided by Slice

Providers (SPs) for tenants to supply diverse services. To realize different services,

tenants can apply for a new creation of network slices from Network Operators (NOs)

based on their specific requirements. The services can be described by a set of Service

Function Chains (SFCs) with a predefined sequence of VNFs [6].

Each use case can be served by a set of network slices. And every network slice

consists of a set of Network Slice Instances (NSIs) including VNFs and abstraction of

required infrastructure resources [4]. The network slicing technology can orchestrate

and manage network resources flexibly, which can provide multiple services satisfying

various performance requirements in different use cases.

Three fundamental types of 5G use cases have been identified: massive Machine

Type Communications (mMTC), enhanced Mobile Broadband (eMBBs) and ultra

Reliable & Low Latency Communications (uRLLC) [8]. Particularly, mMTC use

cases can support massive device accesses sending small data packages. eMBB use

cases express performance requirements on high traffic demands, and uRLLC use

cases require millisecond latency and high reliability.

Although the network slicing technology brings substantial benefits to 5G networks,

some intractable issues still need to be addressed. One of the vital problems is the

Network Slicing Design Problem (NSDP), which is defined as how to efficiently guide

the implementation of network slices constrained by limited infrastructure resources.

1.2 Network Slicing Design Problem Statement 3

Technically, the NSDP is derived from the Virtual Network Embedding (VNE)

technology [9, 10] and the Service Function Chaining Placement (SFCP) technique [11–

13]. Despite this, the NSDP can not be solved by only leveraging these two techniques.

The main reason is that the existing methods focused mainly on the reduction of

Capital Expenditures (CAPEX) and Operational Expenditures (OPEX). They give

little consideration on the inherent characteristics of network slices, especially for

different service use cases.

To sum up, it is significant to study the network slicing design problem. And the

problem should be extensively investigated in both academia and industries.

1.2 Network Slicing Design Problem Statement

The overall aim of the network slicing design problem is to deploy different network

slices onto the physical infrastructure and efficiently allocate the required computa-

tional, storage and networking resources based on proper mechanisms while satisfying

various Service Level Agreements (SLAs) of network slice tenants. The thesis aims to

achieve the goal by proposing several algorithms of design policy with different design

objectives constrained by limited resources of the underlying infrastructure, taking into

consideration different characteristics of various use cases, fluctuated traffic demands

in the network and the energy consumption of the network slices. The proposed design

policies intend to satisfy the performance requirements of various network slices in

different use cases and enhance the resource and energy efficiency of the network.

In the thesis, it is assumed that the VNFs and virtual links in different network

slices are provisioned by the same underlying infrastructure. And the physical nodes

and physical paths in the underlying infrastructure have the same priority to host every

VNF and virtual link. End-to-End network slices are deployed to provide services

in various 5G application scenarios for users. Each Slice Service Instance (SSI) is

modeled as a set of VNFs and the required resources (e.g. computing, networking and

storage resources), which can form a deployed network slice request to satisfy certain

network characteristics. The required resources are allocated to the requests according

1.3 Research Contributions 4

Fig. 1.1 Illustration of the network slicing design problem for various 5G use cases.

to a set of restrictions. Fig. 1.1 illustrates that different customized network slices

including several SSIs are established onto the underlying infrastructure.

1.3 Research Contributions

The main contributions of the thesis are the proposal of the network slicing design

problem with multiple design objectives and the delivery of the algorithms of de-

sign policies for network slices in 5G networks. The research contributions can be

summarized as follows:

• The network slicing design problem has been presented and solved from multiple

aspects with different design objectives. The proposal of design objective mainly

focuses on the various network characteristics of eMBB, mMTC and uRLLC

use cases, the fluctuation of traffic demands in the network and the energy cost

of the network slices deployment.

To be specific, a basic design objective is proposed for various use cases, on

this basis, a service-aware design objective is presented with fluctuated traffic

1.3 Research Contributions 5

demands, both of them are considering the bandwidth resource utilization, the

CPU and memory resource utilization and latency. Besides, an energy-aware

design objective is given, which consists of the energy consumption of physical

nodes and links.

• The formulation of an Integer Linear Programming (ILP) problem for the net-

work slicing design problem is presented, which aims to satisfy the performance

requirements in different 5G application scenarios and improve the resource and

energy efficiency of the network.

In particular, two optimization models of the service-aware network slicing

design problem are formulated concerning uncertain traffic demands. A deter-

ministic formulation is regarded as a nominal case with certain traffic demands.

And a robust one is developed as an extended version of the deterministic for-

mulation to deal with uncertain situations, where equivalent robust counterparts

can be obtained with robust coefficients.

• A basic heuristic algorithm and a service-aware heuristic algorithm are pro-

posed respectively to solve the network slicing design problem by obtaining

sub-optimal solutions. Both algorithms are inspired by the Particle Swarm Opti-

mization (PSO) algorithm. They are considered as a trade-off scheme between

computational efforts and the quality of solutions.

Specifically, in the basic algorithm of design policy, each particle is regarded as

a design solution of VNFs in network slices. Furthermore, in the service-aware

algorithm, each particle represents a final design solution of network slice, and it

is assumed that each network slice contains a set of end-to-end traffic demands

that may fluctuate after they steer through a collection of predetermined order

VNFs. An initialization algorithm of particle swarms is presented to obtain a set

of candidate solutions. An update scheme of particle positions is also proposed

to guide the particles to approach the sub-optimal solution during exploration

processes according to fitness values with fluctuated traffic demands.

1.3 Research Contributions 6

• Regarding the energy-aware network slicing design problem, it is modeled as

a Markov Decision Process (MDP) problem with a set of critical elements,

including a finite state space, a finite action set, a transition probability and a

reward function. The reward function is investigated in terms of the link energy

consumption of network slices, which can combine the design process of VNFs

with the design process of virtual links.

Particularly, a Deep Reinforcement Learning-based algorithm, the Advantage

Actor-Critic (A2C) algorithm, is employed to solve the energy-aware problem

by learning design policies. The parameterized policy network as an actor

network is optimized under the guidance of a critic network. The policy network

is implemented based on the pointer network architecture with an attention

mechanism, and both the actor and critic networks contain two Recurrent Neural

Networks (RNNs) with Long Short-Term Memory (LSTM) layers. And a search

strategy is presented to refine and update the parameters of the policy network

and verify the sampled solutions during the inference process for determining the

final design solutions. The present algorithm architecture can provide flexibility

and scalability in terms of the size of output sequences, which is appropriate to

address the network slicing design problem with a variation of network slices.

Additionally, the work publications listed below present the research outputs of

the thesis.

Publications:

• Ranyin Wang, A. Hamid Aghvami, Vasilis Friderikos. An End-to-End Net-

work Slicing Design Policy. (2020). In 2020 IEEE 31st Annual International

Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1-6.

• Ranyin Wang, A. Hamid Aghvami, Vasilis Friderikos. Service-Aware Design

Policy of End-to-End Network Slicing for 5G Use Cases. (2022). IEEE Trans-

actions on Network and Service Management, 19(2), pp. 962-975.

• Ranyin Wang, A. Hamid Aghvami. Energy-aware Design Policy for Network

Slicing using Deep Reinforcement Learning. (Under review)

1.4 Thesis Structure 7

1.4 Thesis Structure

The rest chapters of the thesis are organized as follows:

• Chapter 2 introduces the technical background of the research area in this thesis.

The chapter firstly gives a brief introduction of key concepts in the End-to-

End network slicing technology. Then, the fundamental knowledge of the

network slicing technology is introduced, including the implementing principles

and framework of network slices. A brief summary of 5G use cases is also

presented. Besides, this chapter summarizes the enabling technologies of the

network slicing design problem, including the Virtual Network Embedding, the

Service Function Chain Placement, the Optimization Methods and the Deep

Reinforcement Learning technology.

• Chapter 3 presents a basic network slicing design policy for different use cases.

One of the vital aims of the network slicing design problem is to solve the

deployment of different network slices and guarantee them coexist in the same

physical infrastructure. Thus, in this chapter, an ILP formulation of the basic

network slicing design problem is formulated with multiple design objectives

for various use cases. And a heuristic algorithm of a versatile design policy is

proposed to ensure different kinds of network slices can be deployed onto a

shared physical network while satisfying the service requirements of various

application scenarios.

• Chapter 4 proposes a service-aware network slicing design policy for different

use cases concerning fluctuated traffic demands in the network. One of the

key challenges is how to develop a proper deployment mechanism for mapping

network slices onto the physical network and allocating their required resources

for satisfying the requirements of various network services, especially when

the requirements are uncertain due to traffic fluctuation. Therefore, in this

chapter, two optimization models, the deterministic formulation and the robust

formulation, are proposed to deal with the uncertain situations in the design

processes of network slices. Moreover, a heuristic algorithm is presented to

1.4 Thesis Structure 8

deploy network slices, which aims to utilize network resources efficiently while

ensuring different service performances of network slices.

• Chapter 5 investigates an energy-aware network slicing design policy taking

into consideration of the energy consumption of the network. One of the critical

principles for solving the energy-aware network slicing design problem is to

ensure a maximum number of network slices can be accommodated by the

underlying infrastructure while saving energy in the deployment of network

slices. Hence, in this chapter, an energy-aware objective for the network slicing

design problem is proposed, and the energy consumption of the network is

investigated from two aspects, the energy costs of physical nodes and physical

links. Besides, the energy-aware problem is modeled as a Markov Decision

Process problem with Reinforcement Learning elements. And a DRL-based

algorithm, the Advantage Actor-Critic algorithm, is leveraged to solve the

problem with the help of the pointer network architecture and policy gradient

mechanism.

• Finally, Chapter 6 concludes the thesis. Future insights and potential directions

in the research of network slicing are also stated.

Chapter 2

Background

2.1 Fundamental Concepts for End-to-End Network

Slicing

5G networks are expected to support a great variety of vertical industries that may

require different service performances. Mobile network operators aim to provide

customers with a 5G service of various characteristics, such as End-to-End, flexibility,

scalability, demand-aware and security. End-to-End Network Slicing is a crucial

technology to achieve the goal where network slices can be customized to satisfy

different service requirements of various application scenarios. The realization of

network slices mainly depends on a range of critical techniques, such as Virtualization,

Containerization, Softwarization, Virtual Machines, Containers, SDN, NFV, Cloud

Computing and Isolation, which enable physical resources to be shared among various

network slices effectively. In this section, the fundamental concepts of the End-to-End

network slicing are introduced as follows.

2.1.1 Virtualization

Virtualization is a powerful technology that can simplify the development and testing

of systems, which refers to the creation of virtual resources, such as servers, operating

systems and networks [14]. It is an important process for network slicing as it can

2.1 Fundamental Concepts for End-to-End Network Slicing 10

enable flexible and dynamic network orchestration and management to tackle the

network ossification problems by allowing various virtual networks to share the same

resource pool of a physical network.

The main goal of virtualization is to create a virtual version of the physical hardware

for managing resources and workloads flexibly. Virtualization can emulate hardware

devices by using software applications, which makes traditional dedicated resources

more scalable and programmable. Virtualization provides many benefits, such as low or

no-cost deployment, sufficient resource utilization, operational cost savings and power

savings [15]. Besides, the virtualization can be applied to different system layers,

containing the CPU virtualization, memory virtualization and device/IO virtualization.

Each kind of virtualization technology has its own set of strengths and complexities.

2.1.2 Virtual Machines & Containers

Each Virtual Machine (VM) hosted by the same physical device shares the same

hardware resources, such as computing resources, storage and memory resources

and networking resources, while they are isolated from each other and the host [16].

Containers are created based on the operating system-level virtualization technology,

which are light-weight hypervisor-based VMs. The differences of the structures of

VMs and containers are shown in Fig. 2.1.

Containerization is a kind of virtualization technology that has been developed

as an alternative to the conventional hypervisor-based virtualization strategy [17]. In

containerization, different containers share the same virtualized physical server rather

than create it for each VM. Docker is a typical example of container virtualization

platform [18].

Furthermore, the layer between the physical hardware and the operating system is

responsible for creating, controlling, supervising and orchestrating guest VMs, and it is

defined as Virtual Machine Monitor (VMM) or hypervisor. Hypervisor can supervise

the sharing of physical resources among heterogeneous virtual networks. Two main

types of hypervisor have been investigated, namely the type-1 (bare metal hypervisor),

2.1 Fundamental Concepts for End-to-End Network Slicing 11

Physical Network

Infrastructure Infrastructure

Host OS OS

Hypervisor Docker Engine

Guest OS Guest OS Guest OS

Bins/Libs Bins/Libs Bins/Libs

App1 APP2 APP3

Bins/Libs Bins/Libs Bins/Libs

App1 APP2 APP3

VMs Containers

Fig. 2.1 Structures of VMs and containers.

i.e., XEN [19], VMware [20], KVM [21], and the type-2 (hosted hypervisor), like

Oracle Virtual Box, similarly to other computer applications.

2.1.3 Network Function Virtualization

Network Function Virtualization (NFV) provides a promising approach to design,

deploy and manage networking services, which is developed with the help of the

evolution of IT virtualization [7]. NFV can separate Network Functions (NFs) from the

physical hardware devices. It also enables to transfer NFs from underlying dedicated

devices to software-based applications running on commercial servers.

Besides, NFV can bring many benefits to the telecommunications industry, such

as the openness of platforms, scalability and flexibility and the reduction of CAPEX

and OPEX investments [3]. It aims to assign Virtual Network Functions (VNFs) to

the hardware facilities flexibly and enhance the network operations effectively. To

achieve the goal promised by NFV, the ETSI NFV group [22] has standardized the

2.1 Fundamental Concepts for End-to-End Network Slicing 12

core layer

aggregation layer

edge layer

servers

OSS/BSS

VNF

EMS

NFV MANO

NFVO

VNFM

VIM

NFVI

Physical
Computing

Physical
Storage

Physical
Networking

Virtualization Layer

Virtual
Computing

Virtual
Storage

Virtual
Networking

Fig. 2.2 Framework of the NFV architecture.

architectural framework of NFV by decoupling NFs from the proprietary hardware

appliances, which ensures the NFs can be performed in software.

The architectural framework of NFV is illustrated in Fig. 2.2, which consists

of several functional components, such as VNFs, Network Function Virtualization

Infrastructure (NFVI), Element Management System (EMS), NFV Management and

Orchestrator (MANO), VNF Manager (VNFM), Virtual Infrastructure Manager (VIM),

Operations Support System (OSS) and Business Support System (BSS) [23]. Specif-

ically, the NFVI is required to run VNFs that are managed by the EMSs. MANO

manages the lifecycle of network services consisting of a set of VNFs, VNFM man-

ages the lifecycle of VNFs, and VIM supervises and orchestrates the NFVI associated

resources.

2.1 Fundamental Concepts for End-to-End Network Slicing 13

Switches

SDN
Cont rollers

Apps

Apps

Data Plane

Control Plane

Management Plane

Fig. 2.3 Framework of the SDN architecture.

2.1.4 Software Defined Networking

Software Defined Networking (SDN) is a complementary methodology to NFV for

network management. SDN refers to a network architecture where the forwarding

status in the data plane is managed by the remote control plane decoupled from the

forwarding plane. The architecture is appropriate to support 5G network slicing and

to provide important characteristics that are necessary for implementing network

slicing, such as programability, scalability and service-oriented adaptation [24]. The

illustration of the architecture of SDN is shown in Fig. 2.3.

Additionally, the main SDN architectural components are logically centralized

controllers, which can manage network slices effectively and dynamically based on

the key principles of network slicing. SDN can provide a centralized view of networks,

which enables the SDN controllers to act as a orchestrator in networks [25]. SDN

leverages centralized and programmable technology to enhance the possibility of

adjusting to the rapidly changing needs of industry and business. Besides, SDN

2.1 Fundamental Concepts for End-to-End Network Slicing 14

can promise lower costs and reduce wasteful provisioning, and it can also provide

flexibility and innovation for networks.

2.1.5 Cloud & Edge Computing

Cloud computing can provide storage, computing and networking resources in a single

or several remote public platforms to enable a network slice [1]. Particularly, it allows

physical servers to host one or more VMs on demand, which offers efficient resource

allocation of servers by using cloud architectures. Further, Cloud computing can

allocate resources and carry out applications for remote end users dynamically by

leveraging the data center servers and software development platforms. There are three

typical categories of Cloud computing services: private, public and hybrid. Moreover,

the services can be categorized as Infrastructure as a Service (IaaS), Platform as a

Service (PaaS) or Software as a Service (SaaS) [5]. In recent days, cloud deployments

have a rapid development with efficient cost savings and greater flexibility over the

conventional private data centers.

Edge computing is a promising technology in 5G, which is expected to provide

low-latency communications. Edge computing can move the system resources, such as

computing, storage, and networking resources, from remote public clouds to the edge

of networks [26]. Hence, mobile customers can experience a low end-to-end latency

by requiring virtual resources from the access network.

2.1.6 Isolation

Isolation is a basic property for network slicing, the cooperation of virtualization

and orchestration can ensure the required isolation levels of each network slice are

realized [4]. The isolation of network slices aims to guarantee the service-based

performance requirements and the security and privacy of tenants [4]. To be specific,

the isolation performance must be assured as multiple slices are performed on a shared

infrastructure. Without proper isolation among different network slices, attacks and

faults may be launched continuously. Attackers can attack network slices from one to

2.2 End-to-End Network Slicing Technology 15

others. Thus, network slices must maintain proper isolation and security functions to

prevent unauthorized accesses.

To achieve this goal, several measurements shall be considered. For instance,

the physical resources allocated to various network slices should be different. Each

network slice can be regarded as a set of resources configured on the infrastructure,

and the allocated resources must have no impact on others. However, it may result

in inefficient utilization of network resources since the extra cost is needed for the

explicit use of separating resources. Besides, potential attacks in a single network

slice should be avoided by developing an appropriate strategy, which can exclude

illegitimate accesses.

2.2 End-to-End Network Slicing Technology

An End-to-End network slice is logically managed as a virtual network, which may

contain the capabilities of Radio Access Network (RAN), Core Network (CN) and

Transport Network (TN). It aims to provide a Network as a Service (NaaS) for vari-

ous use cases, which allows the mobile network operators to create multiple virtual

networks on a shared physical infrastructure. In 5G networks, three fundamental use

cases of network slicing have been identified, such as eMBB, uRLLC and mMTC. The

details of the three application scenarios are introduced in the next Section 2.3.

End-to-End network slicing is the fundamental technology in 5G networks, which

can provide better network performance than the traditional one-size-fits-all network

architecture. Network slices can be customized based on different service requirements,

where the allocation and utilization of physical resources can be optimized. Besides,

each network slice contains its own network topology, VNFs, virtual resources and

traffic flows.

In particular, RAN network slicing can be realized through a logical abstraction of

physical radio resources and hardware, such as spectrum resources and base stations

[26]. RAN slicing can be implemented by employing the Cloud RAN (C-RAN) archi-

tecture. C-RAN is a cloud computing-based architecture for RAN, which leverages

the virtualization technique enhanced in cloud computing to dynamically share the

2.2 End-to-End Network Slicing Technology 16

physical resources and provide support to multiple end users. Besides, core network

slicing is implemented to fulfill diverse service requirements by multiple VNFs, such

as Access and Mobility Management Function (AMF), Session Management Func-

tion (SMF), User Plane Function (UPF), Unified Data Management (UDM), Policy

Control Function (PCF), NF Repository Function (NRF) and Network Slice Selection

Function (NSSF) [1]. Core network slicing aims to achieve dynamic management

and orchestration of network resources. Specifically, mobile operators can design,

create, manage, modify and delete the dedicated network slices for specific application

scenarios dynamically. Regarding the transport network slicing, large bandwidth and

low latency are necessary to satisfy the requirements of different use cases. The same

transport network is expected to support different application scenarios.

In addition, the principles and framework of network slicing are introduced as

follows.

2.2.1 Network Slicing Principles

Basic principles of implementing network slices are listed as follows [27]:

• High-Reliability and Isolation: Security of network slicing needs to be guaran-

teed first. High-reliable and isolated services should be provided to tenants who

requested various performance requirements.

• Programmability and Scalability: Flexibility of network slicing is a key charac-

teristic that is different from the conventional one-size-fits-all network system.

Network slices should be updated and programmed to fulfill new service require-

ments flexibly.

• Dynamic and Automation: Automatic management of network slicing is neces-

sary. The creation, deployment, deletion and update of network slices should

be orchestrated automatically. Especially, network resources in network slicing

should be utilized efficiently. The elasticity of network resources can be realized

through a dynamic allocation scheme where the resources are allocated on a

dynamic scale.

2.2 End-to-End Network Slicing Technology 17

Switches

SDN
Cont rollers

Apps

Apps

Data Plane

Control Plane

Management Plane

Ochestrator

Virtualization, SDN and NFV

RAN TN CN

Slice 1 Slice 2 Slice 3

Fig. 2.4 The overall network slicing framework.

• Customization: Network slices are customized to provide various services based

on different requirements of tenants. The customization of network slices can

be achieved not only by leveraging the SDN technology that can decouple

the data and control planes but also by using NFV technology that can enable

service-oriented VNFs.

2.2.2 Network Slicing Framework

The overall framework of network slicing consists of four fundamental layers, includ-

ing the infrastructure layer, the virtualization layer, the network slicing layer and the

network slicing management layer, which is illustrated in Fig. 2.4.

To be specific, the infrastructure layer is formed of basic network capabilities of

RAN, TN and CN, which can provide physical resources to support network slices,

2.2 End-to-End Network Slicing Technology 18

Abstract network capabilit ies
into network funct ion
components (NFC)

Create network silces
template based on NFC
and service requirements

Design

Relate service requirements
to network slices

Instant iate network slices on
shared resources

Steer traff ic data to the
created nework slices

Instantiation and
Activation

Analyze and learn

Optimize network slices
(design and configurat ion)

Monitor network
performance

Deactivate network
slices

Release resources

Run time

Decommissioning

Fig. 2.5 Life cycle management of network slices.

such as storage resources, computing resources and networking connectivity. In the

virtualization layer, virtual resources are abstracted in terms of attributes. NFV makes

the VNFs independent of the underlying hardware devices, and SDN enables the

creation of different isolated network slices that are completely decoupled from the

infrastructure. The network slicing layer can safely run on top of the infrastructure

through the virtualization layer. Service-oriented VNFs are deployed to form End-to-

End network slices based on the network slicing instances.

Moreover, the network slicing management layer is introduced to enable flexible

and automatic management of network slices. It is a critical part of the network slicing

framework, which designs and manages network slices based on the scope of NFV

MANO framework. The network slicing management layer consists of the OSS/BSS

functions and the network slice MANO system [28]. Specifically, the network slice

2.3 5G Use Cases 19

Table 2.1 Differences among eMBB, uRLLC and mMTC use cases.

Characteristic mMTC uRLLC eMBB

Availability Regular Very High Regular (baseline)
E2E latency Not highly sensitive Extremely sensitive Not highly sensitive

Throughput type Low Low/med/high Medium
Density High Medium High

Network coverage Full Localized Full

MANO is the development of the NFV MANO, which contains the network slice

templates management and the life cycle management of network slices [26].

The network slice MANO aims to create and manage VMs by utilizing system

resources. The resources are allocated to the VNFs so that they can be connected to

form different service function chains. Furthermore, the network slice MANO can

manage the life cycle of network slices by interacting with the network slicing layer.

The life cycle of network slices consists of four logical phases [2], and the details are

illustrated in Fig. 2.5.

2.3 5G Use Cases

Each 5G use case, such as eMBB, uRLLC and mMTC, can be served by a set of

network slices to provide its corresponding service scenarios, for instance, Ultra-HD

Videos, Virtual/Augmented Reality (VR/AR), Automotive Network and Vehicle to

Everything (V2X), Smart Grids, Remote Medical Services including Remote Surgery,

Motion Controls and Intelligent Cities. Specifically, different performance require-

ments, such as low latency, i.e., 1-10ms, and high reliability, enhanced data rate of

10Gbps and connection density with 106 devices per km2 are required in 5G networks

[1]. The summary of the differences among eMBB, uRLLC and mMTC use cases is

illustrated in Table 2.1.

2.3 5G Use Cases 20

2.3.1 Enhanced Mobile Broadband Communications

eMBB use cases aim to provide broadband accesses with up to 10Gbps bandwidth

to enable different service scenarios, such as dense urban society, i.e. stadium, Ultra-

High Definition (UHD) Videos streaming, Cloud Storage, Moving Hot-spots and

AR. They facilitate the support for the services with high data rates. Specifically,

they can deal with huge data traffic volumes and offer wide area connectivity and

coverage. Moreover, they can support the scenarios with high user mobility and

enhanced broadband, for instance, the extremely fast moving vehicles, including high

speed trains and drones. For most eMBB use cases, the latency should be low, i.e.,

5-10 ms, and the minimum availability and reliability should be 95% respectively [29].

2.3.2 Ultra Reliable & Low Latency Communications

uRLLC use cases can assure the services with ultra-low latency connectivity, ultra-high

reliability and availability, such as interactive tactile Internet, automated traffic control,

automatic driving, AR/VR, collaborative robots and remote object manipulation. The

services require a very low latency, i.e., 1ms and a very high reliability and availability

with minimum 99.9% and 99.999% respectively. Besides, the service scenarios of

e-healthcare, lifeline communications and public safety, such as disaster relief and

emergency response, require a low latency, i.e., 5ms, and a very high reliability and

availability with minimum 99.999% and 99.999%, respectively, with packet loss as

low as 1 packet out of every 104 packets [29].

2.3.3 Massive Machine Type Communications

mMTC use cases can facilitate the network connectivity for high density of devices,

especially the non-latency sensitive devices, in ultra-dense scenarios with broadband

accesses. They can guarantee the high density of network connectivity for users with

various smart and intelligent devices, i.e., Smart-phones and Smart Wearables, in

the area of Smart Homes/Cities and Smart Farming. The use cases can relatively be

2.4 Enabling Technologies of Network Slicing Design Problem 21

tolerant to the latency, for instance, 10ms. And they require a normal to high reliability

and availability with minimum 95% respectively [29].

2.4 Enabling Technologies of Network Slicing Design

Problem

Network slicing is a key component of the 5G networks. A significant challenge in the

research of network slicing is how to guide a practical deployment and implementation

of network slices, which spawns the NSDP. In this section, the basics of enabling

technologies for addressing the NSDP are introduced.

Specifically, two fundamental enabling technologies: VNE and SFCP are firstly

illustrated. Then, the optimization methods are introduced, including Integer Linear

Programming, Multi-Objective Particle Swarm Optimization, Robust Optimization,

and Neural Combinatorial Optimization. Besides, the details of DRL approaches

are given, containing the general idea behind DRL, the fundamental definitions, the

value-based DRL methods and the policy-based DRL approaches.

2.4.1 Virtual Network Embedding

One of the most difficult challenges faced in the practical deployment process of

network slices is to determine a feasible design policy. The slicing design process

is mathematically known as a VNE problem. Thus, the NSDP with the goal of

deploying different network slices onto the physical network can be regarded as a

VNE-type problem. To be specific, embedding a set of virtual networks to a physical

infrastructure is proven to be a NP-Hard problem [30], which means that the problem

is challenging to be solved within a polynomial computing time even for small to

medium network instances. As a result, the studies about VNE have received extensive

attentions from researchers.

An example of a VNE problem is illustrated in Fig. 2.6. Specifically, in the figure,

regarding the physical nodes A−F , the numbers (2,16), (4,8), (4,32), (8,16), (2,8)

and (8,8) next to A−F represent their physical resources capabilities, such as CPU

2.4 Enabling Technologies of Network Slicing Design Problem 22

Fig. 2.6 Illustration of an exampled VNE problem.

and storage. And the numbers next to the physical links among the physical nodes

A−F indicate their bandwidth capabilities. Similarly, the numbers next to the VNFs

a− c and their virtual links indicate their resource requirements on demand. In the

given example, obviously, the VNFs a, b and c can be mapped onto the physical nodes

F , C and D, respectively, and the virtual links a→ b and b→ c can be placed onto a

physical path composed of the physical links F → E, E→C and C→ D.

Many studies on the VNE have been devoted to exploring heuristic algorithms

to embed virtual networks onto the same infrastructure. For instance, Yu et al. [30]

reconsidered the VNE problem and proposed an algorithm to consider the flexible

path splitting and migration, which contained two phases: the virtual nodes mapping

and the virtual links mapping. Later, Chowdhury et al. [31] developed two classic

VNE algorithms, D-ViNE and R-ViNE, presenting an enhanced correlation between

two phases: the node mapping phase and the link mapping phase, via deterministic

and randomized rounding techniques. And a fast-convergent heuristic algorithm was

proposed in Reference [32] based on the Particle Swarm Optimization algorithm by

considering the network topology, which aimed to provide a solution to embed a

sequence of virtual networks into the underlying infrastructure.

2.4 Enabling Technologies of Network Slicing Design Problem 23

Additionally, the Deep Reinforcement Learning methods introduced in Subsection

2.4.4 have also been applied to solve the VNE problem, including the policy gradient

mechanisms and the Deep-Q learning methods. For instance, Yao et al. [33] proposed

a continuous-decision VNE problem based on a Reinforcement Learning method,

which was intended to solve the problem that the continuity of nodes embedding in

virtual network requests was ignored. The authors modeled a continuous process

of the node embedding by RNNs and updated network parameters through a basic

policy-gradient approach. Reference [34] aimed to solve an automatic VNE problem

by combining a Deep Reinforcement Learning method with a neural network structure

of the Graph Convolutional Network. Specifically, the Asynchronous Advantage Actor

Critic (A3C) algorithm was adopted to train the policy generation algorithm, which

improved the efficiency of training procedures.

Moreover, in Reference [35], a DRL-based algorithm was proposed to solve the

VNE problem. However, the representation of physical infrastructures and the changes

of underlying network resources were both ignored during training processes. Besides,

Dolati et al. [36] developed a DQN-based VNE problem named DeepViNE, which

could automate the collection of problem features required in DRL methods. The key

idea of this work was to encode physical and virtual networks as two-dimensional

images by using a deep convolutional neural network. And a long-term reward of the

proposed algorithm was formulated to minimize the failures of networks embedding.

Solozabal et al. [37] employed a Reinforcement Learning approach to formulate a

VNF placement policy by extending the neural combinatorial optimization theory. In

this work, a neural network model was proposed to solve the placement problem by

minimizing the overall energy consumption.

Despite the extensive attention on the VNE problems, the existing approaches and

works do not take into account the heterogeneous application scenarios and different

domains in 5G networks. The embedding problems will become harder and more

complex when different use cases and service scenarios are considered. In tradition,

the VNE approaches are proposed to map the virtual networks with only one type and

to allocate the expected resources based on a single objective, which is not the case in

2.4 Enabling Technologies of Network Slicing Design Problem 24

5G network slicing. Obviously, it is infeasible to solve the NSDP in 5G networks by

adopting the existing VNE works directly. Thus, the new technologies for deploying

network slices in 5G are significant to be researched by the scientific community.

2.4.2 Service Function Chain Placement

In general, a Service Function Chain (SFC) is an ordered and connected chain of VNFs

for processing traffic flows with QoS requirements, which aims to deliver network

services in virtual networks [38]. SFC placement mechanisms can support network

services with the capabilities of the NFV and SDN technologies, which can define and

instantiate an ordered set of VNFs and the flowing traffic through these functions [13].

The SFC placement mechanisms can automatically set up virtual network connec-

tions to handle different types of traffic demands via calculating an optimal routing

path. Network services can be provided when traffic flows steer through a SFC accord-

ing to performance requirements. The mechanisms can also address the challenges

of the dynamic formation of service function chains for traffic flows. Thus, it is a

significant enabling technology for solving the NSDP.

An example of a SFC placed onto a physical infrastructure is illustrated in Fig. 2.7.

To be specific, a service function chain V NF1→V NF2 with the source node src and

destination node dst can be placed onto the physical infrastructure and routed through

an optimal physical path for delivering a service.

Traditional SFC placement problems have been studied extensively. Specifically, in

Reference [39], a SFC placement problem in the MEC-NFV scenario was formulated

using weighted graphs, and a Linear Programming-based approach and a heuristic algo-

rithm were presented to solve the problem by maximizing resource utilization. Jang et

al. [40] succeeded in maximizing acceptable flow rates and minimizing the energy cost

by formulating an optimization problem of dynamic SFC placement. Reference [41]

formulated a multiple objective optimization model to optimize the deployment cost by

mapping VNFs and virtual links in SFCs. Abdelaal et al. introduced a novel approach

for the SFC placement problem to achieve a load balancing over the core links and an

efficient utilization of energy and bandwidth based on multiple resource constraints

2.4 Enabling Technologies of Network Slicing Design Problem 25

Abstract network capabilit ies
into network funct ion
components (NFC)

Create network silces
template based on NFC
and service requirements

Design

Relate service requirements
to network slices

Instant iate network slices on
shared resources

Steer traff ic data to the
created nework slices

Instantiation and
Activation

Analyze and learn

Optimize network slices
(design and configurat ion)

Monitor network
performance

Deactivate network
slices

Release resources

Run time

Decommissioning

src
VNF1 VNF2

dst

src dst

VNF1

VNF2

SFC

Physical
Infrastructure

Fig. 2.7 An example of SFC placement on physical infrastructure.

[42]. Reference [43] focused on the multiple routing of data flows and intended to

place SFCs in virtual networks. The work formulated the VNF placement and routing

problem as a MILP problem to minimize the accumulated delay by considering the

overall delay cost and the routing cost.

However, the emerging 5G brings new challenges to the existing SFC placement

problems. Specifically, the SFC placement methods applied to solve the NSDP must

consider diverse slice service requirements with different QoS parameters for various

scenarios in 5G, which will increase the complexity of the problem compared to only

taking into account sole scenarios. Besides, each network slice in various use cases

requires distinct network behaviours, and different priorities of network characteristics

should be considered in the SFC placement processes. Thus, it is crucial to investigate

new approaches to solve the NSDP.

2.4.3 Optimization Methods

In this subsection, the optimization methods used to solve the NSDP are introduced.

Firstly, a basic optimization problem can be formulated as:

2.4 Enabling Technologies of Network Slicing Design Problem 26

Formulation

Optimizer

Initial Values Optimal Solutions

Decision
Variables

Objective
Functions

and
Constraints

Fig. 2.8 Framework of a basic optimization problem.

Optimize Y = y(x), (2.1)

subject to

f (x) = 0,

g(x)≤ 0.
(2.2)

The goal of an optimization problem is to decide a decision variables x that can

optimize the objective function Y while guaranteeing that the formulation can produce

feasible solutions limited by the equality constraints f and the inequality constraints g.

The framework of a basic optimization problem is illustrated in Fig.2.8.

Among the ongoing researches of network slicing, in particular, regarding the

issues about the deployment strategies and resource allocation mechanisms of network

slices, the optimization methods have been explored extensively.

For instance, Reference [44] presented an inter-domain resource allocation scheme

for network slices to maximize social welfare among tenants while minimizing opera-

tional expenditures for InPs. Fossati et al. [45] proposed an optimization framework

2.4 Enabling Technologies of Network Slicing Design Problem 27

for a fairly sharing multiple resources between slices. And a resource allocation

scheme was formulated in Reference [46] as a convex optimization problem, where

a distributed solution was introduced for the resource allocation problem between

slices and data centers. In addition, Tajiki et al. [47] developed a novel architecture of

resource allocation optimization to jointly manage the VNFs placement and routing,

aiming to reduce the energy consumption.

Specifically, the main optimization methods applied in the research of network

slicing can be summarized in the following categories [48] according to different types

of decision variables, objective functions and constraints.

• Linear Programming (LP): the objective function and constraints are both linear.

The decision variables can be integer or continuous. The LP problems consist

of the Integer Linear Programming (ILP) problems and Mixed Integer Linear

Programming (MILP) problems.

• Nonlinear Programming (NLP): the objective function or/and constraints are

nonlinear. The decision variables can be scalar or continuous. The Mixed Integer

Nonlinear Programming (MINLP) problems contain integer and continuous

decision variables.

• Multiple-Objective Optimization Problems (MOP): there are more than one

objectives in these problems.

• Robust Optimization or Stochastic Optimization (RO or SO): the objective

function or/and the constraints have uncertain variables.

• Neural Combinatorial Optimization (NCO): a scheme to solve the Combinatorial

Optimization Problems (COP) by using the Reinforcement Learning methods

and Neural Networks.

In the following, the fundamental knowledge of the optimization methods used in

the thesis are introduced.

2.4 Enabling Technologies of Network Slicing Design Problem 28

Integer Linear Programming

The ILP problems involve a linear objective function and linear constraints with integer

decision variables. The generalized formulation of an ILP problem can be stated as:

Optimize Y =
N

∑
i=1

Aixi, (2.3)

subject to

N

∑
i=1

a jixi ≤ b j,

j = 1,2, ...,m,

xi ∈ Z.

(2.4)

If all of the decision variables xi (i = 1,2, ...,n) are restricted on binary values

{0,1}, then the ILP problem is considered as a binary optimization problem. It is also

a special case of the Discrete Optimization Problems.

Besides, it is clear to compare any given pair of solutions to decide on a better

one when an ILP optimization problem has a single-objective. Consequently, a single-

objective optimization problem is usually formulated.

Multiple-Objective Optimization

The optimization problems are called Multi-objective Optimization Problems (MOPs)

if they have multiple objectives. Generally, it is difficult to determine a straightforward

approach to obtain an optimal solution for the MOPs. Because the different objectives

are usually defined in an incomparable way, specifically, one objective cannot gain a

performance enhancement without deterioration of at least another objective. Thus,

instead of deciding an optimal solution, the Pareto optimal solutions or non-dominated

solutions are commonly obtained to determine a set of alternatives for the trade-offs of

different objectives.

However, in practice, a preferred solution should be selected by a decision maker

for implementation. To be specific, there are two main methods are employed to solve

2.4 Enabling Technologies of Network Slicing Design Problem 29

Formulation

Optimizer

Initial Values Optimal Solutions

Decision
Variables

Objective
Functions

and
Constraints

y1

y2

x1 x2

x3 x4

Fig. 2.9 Illustration of the concept of the Pareto dominance relation.

the MOPs, including the Multi-Criteria Decision Making (MCDM) approach [49] and

the Evolutionary Multi-Objective Optimization (EMO) method [50].

Formally, a generalized MOP can be defined as:

Optimize Y = {y1(x),y2(x), ...,yk(x)}, (2.5)

subject to

f (x) = 0,

g(x)≤ 0.
(2.6)

where the decision vector x consists of a set of decision variables.

In the MOPs, the Pareto dominance relation [51] is usually adopted to obtain the

optimal solutions. Assume xa and xb are two decision vectors for minimizing (2.5), xa

can Pareto dominate xb, expressing as xa ≺ xb, if Y (xa)≤ Y (xb) (∀i = {1,2, ...}) and

Y (xa)< Y (xb) (∃i = {1,2, ...}).

2.4 Enabling Technologies of Network Slicing Design Problem 30

Fig. 2.9 illustrates an example of the Pareto dominance relation in a minimized

problem. Specifically, x3 can Pareto dominate x2, noting as x3 ≺ x2, because y(x3
i)≤

y(x2
i) for ∀i = {1,2, ...} and y(x3

i) < y(x2
i) for ∃i = {1,2, ...}. Besides, x3 can also

Pareto dominate x1 since y1(x3) < y1(x1) even though y2(x3) = y2(x1). Similarly,

x3 ≺ x4, x4 ≺ x2 and x1 ≺ x2. However, x1 and x4 can not dominate each other,

which can be represented as x1 ⊀ x4 and x4 ⊀ x1. Clearly, no decision vector Pareto

dominates x3, and x3 can be defined as a Pareto optimal decision vector. Hence, the set

of Pareto optimal decision vectors should be determined to obtain solutions of a MOP.

Furthermore, a Pareto optimal decision vector x∗ exists only if no other decision

vector x can dominate it to obtain y(x) ⪯ y(x∗). And a Pareto optimal set X∗ is

consisted of all Pareto optimal decision vectors x∗, which can be defined by:

X∗ = {x∗ ∈ X |∄x ∈ X : y(x)⪯ y(x∗)}, (2.7)

where X is a decision space containing a set of feasible decision vectors. Moreover,

the Pareto front F∗ regarding the Pareto optimal set X∗ is expressed as:

F∗ = {y = (y1(x∗), ...,yk(x∗))|x∗ ∈ X∗}. (2.8)

Figs. 2.10 and 2.11 show the illustrations of the Pareto optimal set and Pareto front

of two exampled functions: y1 =
√

1+ x2 and y2 = 4+2
√

1+(x−1)2.

To be specific, the mathematical programming technologies of the MOPs can be

classified based on the different ways of searching for solutions. In the following, two

classic MCDM approaches are introduced, in which decision makers are needed to

deduce the preference choice after a set of search processes.

(1) Simple Additive Weighting (SAW) Method

The basic idea of the SAW method is to allocate a weighting coefficient to each

objective function, aiming to minimize or maximize the weighted sum of all objectives.

Accordingly, a multi-objective optimization problem can be transformed into a new

single objective optimization problem.

Generally, the new problem can be formulated as:

2.4 Enabling Technologies of Network Slicing Design Problem 31

Fig. 2.10 Illustration of the Pareto optimal set.

Optimize
n

∑
i=1

wiyi(x), (2.9)

subject to

f (x) = 0,

g(x)≤ 0,
(2.10)

where wi ≥ 0 (i = 1, ...,n) and ∑
n
i=1 wi = 1. At least one weighting coefficient must be

positive for its corresponding objective function. The set of non-dominated solutions

can be obtained by adjusting the weighting coefficient of each objective function.

Particularly, if all of weighting coefficients are positive, i.e, wi > 0 for ∀i, then the

obtained solutions of a SAW problem are Pareto optimal [52].

(2) ε-Constraint Method

In this method, one of the objective functions should be minimized or maximized

while the other objectives are considered as constraints limited by the parameters ε . A

MOP problem can be transformed into a ε-constraint problem, which is expressed as:

Optimize y j(x), (2.11)

2.4 Enabling Technologies of Network Slicing Design Problem 32

Fig. 2.11 Illustration of the Pareto front.

subject to

yi(x)≤ εi ∀i = 1, ...,n, i ̸= j,

f (x) = 0,

g(x)≤ 0.

(2.12)

Specifically, the method can generate several Pareto optimal solutions by setting

different values of εi. The solution x∗ is Pareto optimal if and only if εi = yi(x∗) for

∀i = 1, ...,n, i ̸= j, and x∗ should be an optimal solution for ∀ j = 1, ...,n [52]. As

a consequence, n or less than n single optimization problems should be solved to

generate the Pareto solutions using the ε-constraint approach.

Although the above two mathematical programming methods have been applied to

solve the MOPs [53], challenges still exist. For instance, some MOPs belonging to the

complex COPs are known as NP-hard, which will take unreasonable computational

cost to solve. Besides, their programming models have to be run many times to

determine a Pareto optimal set, and extra domain information is usually required.

To solve the challenges, the EMO algorithms have been applied to solve the

MOPs widely, which are suitable to solve the complex COPs [54]. The evolutionary

algorithms always start with a set of solutions called an initial population, which are

2.4 Enabling Technologies of Network Slicing Design Problem 33

generated randomly. The descendant populations are then produced by a series of

operators such as mutation, crossover and selection based on the initial population.

In the thesis, the Multi-Objective Particle Swarm Optimization (MOPSO) algo-

rithm [55] is adopted to solve the NSDP with multiple design objectives. The MOPSO

is an extended version of the Particles Swarm Optimization (PSO) algorithm [56],

which is a well-known meta-heuristic optimization method for the MOPs. The PSO

algorithm is an emerging approach based on the evolutionary algorithms, which was

first proposed by Kennedy and Eberhart in 1995. The PSO algorithm is inspired by

the bird herd behaviour and it leverages the swarm intelligence to obtain the optimal

solutions. To be specific, a swarm of particles represented as potential solutions fly

through the search space following the current optimum particles to search for the

optimal solution with a certain velocity.

Each particle i is associated with two vectors: the position vector Xi =(x1
i ,x

2
i , ...,x

D
i)

and the velocity vector Vi = (V 1
i ,V

2
i , ...,V

D
i), where D denotes the dimensions of the

solution space. The quality of positions of particles can be determined by a fitness

function that is adjusted according to different application scenarios. The velocity

vectors of particles can be determined by three factors: the position with the best

fitness found so far for the particle i (pBest i), the best position in the swarm (gBest i)

and the current position of the particle i.

During the evolutionary process, the position and velocity of the particle i on the

dth dimension can be updated as follows:

xd
i (t +1) = xd

i (t)+ vd
i (t +1), (2.13)

vd
i (t +1) = w · vd

i (t)+ c1 · rd
1(pBestd

i)+ c2 · rd
2(gBestd

i), (2.14)

where w denotes the inertia weight, c1 is the cognition weight and c2 is the social

weight. rd
1 and rd

2 are two random variables uniformly distributed in the range of [0,1].

The flowchart of the MOPSO algorithm is shown as Fig. 2.12. Firstly, initialize the

population POP for each particle POP[i] (i = 0, ...,Max), where Max is the maximum

number of the particles. Then, initialize the velocity of each particle and evaluate them.

2.4 Enabling Technologies of Network Slicing Design Problem 34

Fig. 2.12 Flowchart of the MOPSO algorithm.

2.4 Enabling Technologies of Network Slicing Design Problem 35

And store the particles positions of non-dominated solutions into the archive. Locate

each particle in the search space by using hyper-cubes and initialize the memory of

each particle to store the pBest i. Next, compute the positions and velocities of new

particles. And evaluate each particle in POP and update the elements of the archive of

the non-dominated vectors. If the particle’s current position has higher quality than

the position stored in its memory, then update the particle’s new position. Repeat

the above procedures until all of iteration processes end. An example of the iteration

processes of the MOPSO algorithm is illustrated in Fig. 2.13.

Robust Optimization

In practice, uncertain data is usually considered in optimization problems. Recently,

two main methodologies have been proposed to address data uncertainty, namely

Stochastic Optimization (SO) and Robust Optimization (RO) [57]. In stochastic

optimization, it is assumed to know the true probability distribution of the uncertain

data, however, it is difficult to capture the distribution in practical scenarios. Thus, the

robust optimization has been investigated as another important approach for addressing

the optimization problems under uncertainty, which can be computationally tractable

for many kinds of problems. Robust optimization does not require the probability

distributions, but instead, it aims to obtain candidate solutions that are feasible for any

realization of the data from an uncertainty set.

In general, for an uncertain linear optimization problem, the formulation can be

expressed as:

Optimize ∑
j

c jx j (2.15)

subject to

∑
j

ai jx j ≤ bi, ∀i,

l≤ x≤ u,
(2.16)

2.4 Enabling Technologies of Network Slicing Design Problem 36

a. Iteration time=1

b. Iteration time=10

c. Iteration time=20

d. Iteration time=30

Fig. 2.13 Illustration of the iteration processes of the MOPSO algorithm.

2.4 Enabling Technologies of Network Slicing Design Problem 37

where x j ∈ x indicates a decision variable, and c j ∈ c, ai j ∈ A and bi ∈ b denote the

uncertain coefficients respectively.

Specifically, the structure of the uncertain set U has a strong effect on the robustness

of solutions. Define an uncertain element ai j in U as ai j = āi j + ξi jâi j, where āi j is

the nominal value of an uncertain data and âi j represents a constant perturbation. ξi j

indicates an independent random variable that is related to the uncertain data [58].

The constraint of (2.16) can be reformulated as:

∑
j

ai jx j + ∑
j∈Ji

ξi jâi jx j ≤ bi. (2.17)

To immunize against the infeasibility of solutions for any ξ in U , the above formula

can be rewritten as:

∑
j

ai jx j +maxξ∈U{∑
j∈Ji

ξi jâi jx j} ≤ bi. (2.18)

In the following, three types of uncertain sets are introduced, where Ψ and Γ are

two adjustable parameters that can control the size and structure of the uncertainty

sets.

• Box Uncertainty Set:

U∞ = {ξ |∥ξ∥
∞
≤Ψ}= {ξ ||ξ j| ≤Ψ,∀ j ∈ Ji}.

And its corresponding robust counterpart constraint is shown as:

 ∑ j ai jx j +Ψ∑ j∈Ji âi ju j ≤ bi

−u j ≤ x j ≤ u j.
(2.19)

• Polyhedral Uncertainty Set

U1 = {ξ |∥ξ∥1 ≤ Γ}= {ξ |∑ j∈Ji |ξ j| ≤ Γ}.

The corresponding robust counterpart constraint is expressed as:

2.4 Enabling Technologies of Network Slicing Design Problem 38

Fig. 2.14 Illustration of the structures of the uncertain set with different values of Γ.


∑ j ai jx j +Γsi ≤ bi

si ≥ âiu j,∀ j ∈ Ji

−u j ≤ x j ≤ u j.

(2.20)

• Box & Polyhedral Uncertainty Set:

U1∞ = {ξ |∑ j∈Ji |ξ j| ≤ Γ, |ξ j| ≤Ψ,∀ j ∈ Ji}.

Then the corresponding robust counterpart constraint can be formulated as:



∑ j ai jx j +Γsi +Ψ∑ j∈Ji ti j ≤ bi

si + ti j ≥ âiu j,∀ j ∈ Ji

−u j ≤ x j ≤ u j,

si ≥ 0, ti j ≥ 0.

(2.21)

In particular, when Ψ = 1, the intersection between the box and polyhedral sets

is defined as an overlap set called "box+polyhedral" uncertainty set [58]. The

different structures of the overlap set are illustrated in Fig. 2.14 with different

values of Γ.

Neural Combinatorial Optimization

Combinatorial optimization (CO) problems aim to identify the optimal solution of

an objective function from a finite set of candidate solutions whose domain space

2.4 Enabling Technologies of Network Slicing Design Problem 39

is discrete and huge [59]. Usually, the CO problems are relatively easy to solve

when their searching space of solutions is small. However, it is difficult to solve the

CO problems of large scales because the exact methods cannot be computed with a

reasonable computational cost, and meta-heuristics and heuristics algorithms cannot

ensure to obtain the optimal solution with a speed convergence.

As a consequence, a novel approach to tackle the Combinatorial Optimization

Problems by employing the Reinforcement Learning (RL) and Neural Networks

(NNs) has been emerged, named Neural Combinatorial Optimization (NCO) [60]. For

instance, Pointer Network is a fundamental NCO approach, which mainly employs the

Recurrent Neural Networks (RNNs) architecture in the Deep Learning (DL) methods

[61]. The details of RL and DL are introduced in Section 2.4.4.

The NCO method has been proven feasible in finding near-optimal solutions to

some classic CO problems, such as TSP and knapsack problems [60]. To be specific,

data labels are not necessary during training processes in the NCO since the rewards

obtained by learning agents can used to evaluate candidate solutions. And the solution

(action) space of CO problems is usually associated with a large-dimensional search

space. Thus, the NCO can leverage the policy-based approaches in the RL methods to

learn a policy function directly to map an instance of a problem (state) to an action in

the environment [37].

2.4.4 Deep Reinforcement Learning

The proposed NSDP is an application of the Combinatorial Optimization problem,

which can be solved efficiently using the NCO methodology. Thus, the Deep Rein-

forcement Learning (Deep RL) technology is regarded as a promising approach for

addressing the problem.

For instance, Reference [62] proposed an end-to-end network slicing system, aim-

ing to manage various resources, such as radio spectrum resources, transportation

bandwidth and computing resources. Specifically, this work presented a derivative-

based optimization framework to achieve the goal by using deep reinforcement learning

techniques. Wang et al. [63] presented a dynamic resource scheduling framework

2.4 Enabling Technologies of Network Slicing Design Problem 40

for network slices. This framework aimed not only to obtain an automatic resource

allocation scheme but also to maximize the resource utilization of slices. And a Con-

volutional Neural Network (CNN) was deployed to model the network environment.

State tensors can be transferred into images, which can be fed into the learning agent.

General Idea Behind Deep RL

Reinforcement Learning (RL) [64] is a branch of Machine Learning methods in which

a learning agent can learn from interacting with an environment through trials and

errors. The RL aims to compute a policy or a control strategy to maximize the expected

cumulative reward over time.

In the RL setting up, a decision-maker, called the learning agent, interacts with the

environment built by a set of states st ∈ S of observing the consequences of actions.

The learning agent can take a certain action at ∈ A(st), as a reaction of the current

state st . After selecting the action at at time step t, the agent will receive a scalar

reward rt+1 ∈ R as feedback, and the environment takes a transition to a new state

st+1 according to the current state st and the chosen action at .

The learning agent tries to learn a policy π at each time step, which is a behavior

strategy that maps from states to the probability of choosing a possible action. The

policy π(s,a) = P[at = a|st = s] denotes the probability of selecting a = at when

s = st . Given a state, the goal of the learning agent is to learn and perform an optimal

policy for maximizing the expected reward in the environment.

Furthermore, the Deep Learning (DL) [65] enables the RL to solve the decision-

making problems that were previously intractable, such as the problems with high-

dimensional states and action spaces. The DL can avoid manual interference of a

data structure by automatic learning from the raw data. Besides, the Deep learning

approaches with Neural Networks have been applied to dramatically improve the

state-of-the-art engineering areas such as the object detection, speech recognition and

natural language processing. Any neural network with two or more hidden layers is

defined as a Deep Neural Network (DNN). In particular, Feedforward Neural Networks

2.4 Enabling Technologies of Network Slicing Design Problem 41

a. Feedforward Neural Networks (FNNs)

b. Recurrent Neural Networks (RNNs)

Fig. 2.15 Basic architecture of the DNNs: a. FNNs and b. RNNs.

(FNNs) and Recurrent Neural Networks (RNNs) are two typical DNNs models, their

basic architectures are illustrated in Fig. 2.15.

To be specific, the Convolutional Neural Networks (CNNs) paradigm is the most

well known FNNs model, where the information flows in one direction without cycles

or loops, i.e., from the input through hidden layers and to the output [66].

In contrast, the RNN is a kind of recursive Artificial Neural Networks (ANNs),

where connections between neurons form directed loops or cycles. The output at

each time step depends on the instant inputs and the previous states of neurons. The

RNNs compose a set of hidden states and optional outputs, which are appropriate for

operating on variable-length sequences. It can determine a probability distribution

over a set of sequential data by learning to predict the next symbol in a sequence [67].

2.4 Enabling Technologies of Network Slicing Design Problem 42

Fig. 2.16 Deep Reinforcement Learning Framework.

Concretely, recurrent neurons are responsible for both performing computation and

memorizing information. To solve the long-term sequential problems, the Long Short-

Term Memory (LSTM) structure [68] is often applied in the RNNs. The LSTM can

solve problems by incorporating memory units to let the network forget the previously

vain hidden states.

Consequently, the RL learning framework, in combination with the DNNs model,

is proposed as Deep Reinforcement Learning (DRL or Deep RL) [65], which aims to

improve the policy performance of the problems with high dimensional raw data input

by interacting with the environment.

The basic framework of the Deep Reinforcement Learning is shown in Fig. 2.16.

In this figure, the left Deep Learning component receives the target observation

information from the environment and gives the state information to the current

environment. And the right Reinforcement Learning model produces a corresponding

action based on the current state and evaluates the value of its expected reward [69].

Thus, the DRL model enables the learning agent to have a good perception of the

environment, which is a very active research area for a wide range of engineering

scenarios.

2.4 Enabling Technologies of Network Slicing Design Problem 43

Fundamental Definitions

In this subsection, the fundamental definitions of the DRL are summarized as follows

based on References [70], [71], [69].

• Return

The long-term cumulative returnRt after time step t with a finite time horizon

that terminates at T is defined by:

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT =
T

∑
i=t+1

ri. (2.22)

Moreover, the expected discounted returnRt is represented as follows:

Rt = E[rt+1 + γrt+2 + γ
2rt+3 + · · ·+ γ

T−t−1rT] = E[
∞

∑
i=0

γ
irt+1+i], (2.23)

where E[·] indicates the expectation regarding to the return distribution and

0≤ γ ≤ 1 denotes the discount factor.

• State-Value Function

Value functions are used to predict the potential future reward and evaluate the

benefit that the agent can obtain in a given state.

The state-value function Vπ(s) is defined as the expected return when starting in

the state s following a policy π , which is shown as:

Vπ(s) = Eπ [Rt |st = s] = Eπ [
∞

∑
i=0

γ
irt+1+i|st = s]. (2.24)

The optimal state-value function V∗(s) is associated with the optimal policy π∗.

And V∗(s) is defined as follows:

V∗(s) = max
π

Vπ∗(s) ∀s ∈ S. (2.25)

2.4 Enabling Technologies of Network Slicing Design Problem 44

If V∗(s) is available, π∗ can be obtained by selecting the optimal actions in the

action set A at state st , which can maximize Eπ [Rt+1|st+1 = s].

• Action-Value Function

The action-value function is the expected return achieved by starting from state

s and performing action a and then following a policy π . It is expressed as:

Qπ(s,a) = Eπ [Rt |st = s,at = a] = Eπ [
∞

∑
i=0

γ
irt+1+i|st = s,at = a]. (2.26)

Similarly to V∗(s), the optimal action-value function Q∗(s,a) is defined by:

Q∗(s,a) = max
π

Qπ∗(s,a) ∀s ∈ S,∀at ∈ A. (2.27)

• Optimal Policy

The optimal policy π∗ is the policy that can achieve the best value of the cumu-

lative discounted return. Given the optimal state-value function V∗, the optimal

policy π∗ can be represented by:

π∗ = argmax
π

V∗(s) ∀s ∈ S. (2.28)

Besides, similarly, given the optimal action-value function Q∗, the optimal policy

π∗ can be extracted by:

π∗(s) = argmax
a∈A

Q∗(s,a) ∀s ∈ S. (2.29)

• Markov Decision Process (MDP)

The MDP [72] can provide a mathematical framework to formalize the sequential

decision-making problems in the DRL. A MDP is illustrated in Fig. 2.17.

In general, a MDP can be represented by a tuple (S,A,P,R,γ), where:

2.4 Enabling Technologies of Network Slicing Design Problem 45

Fig. 2.17 Illustration of Markov Decision Process.

– S is a finite set of possible states;

– A is a finite set of available actions;

– P is a state transition probability function S ×A→P(S). It maps from

the state-action pair to the probability distributions of the next state, and

follows the following Markov Property:

P(st+1 = s′|s0,a0, ...,st ,at) = P(st+1 = s′|st ,at); (2.30)

– R is a reward functionR= E[Rt+1|St = s];

– γ is a discount factor, γ ∈ [0,1].

In a MDP, T = (st ,at ,st+1,at+1, · · ·,sT ,aT) is assumed as a trajectory, and

(st ,at ,rt ,st+1) is called an experience. The optimal policy π∗ can be obtained

when Est+1∼T (st+1|st ,at)[V∗(st+1)] achieves the maximum expected return.

In addition, the action-value function Qπ can be re-expressed as a Bellman

equation [73] by exploiting the Markov Property, which is shown as follows:

Qπ(st ,at) = Et+1[rt+1 + γQπ(st+1,π(st+1))]. (2.31)

Value-based Deep RL

Given a Deep RL problem, two main approaches are proposed to compute the optimal

policy. One approach is based on searching in the space of value functions, which is

called the value-based Deep RL; the other one is based on searching in the space of

2.4 Enabling Technologies of Network Slicing Design Problem 46

a. value-based Deep RL b. policy-based Deep RL

Fig. 2.18 Basic structures of DRL approaches: a. value-based DRL methods, b.
policy-based DRL methods.

policies, which is called the policy-based Deep RL [70]. The basic structures of the

two types of the DRL are illustrated in Fig. 2.18.

In the value-based DRL algorithms, the learning agents attempt to approximate

value functions and deduce the optimal policy π∗, instead of finding an explicit policy.

In particular, the problem of searching π∗ can be transformed into a problem of

approximating the optimal action-value function. The Monte Carlo (MC) estimation

methods and Temporal Difference (TD) learning are two typical technologies to

achieve the goal of function approximation.

The MC methods learn directly from the return of whole historical experience,

which contributes to low bias in estimation. The action-value function is updated

periodically to improve the policy based on the principle of Policy Iteration [74]. The

process of iteration can be represented as follows:

π0→ Qπ0 → π1→ Qπ1 → ...πk→ Qπk → ...π∗→ Qπ∗, (2.32)

2.4 Enabling Technologies of Network Slicing Design Problem 47

where π0 represents the initial policy. The current estimation Qπk(st ,at) can be updated

based on the cumulative returnR(T |st ,at), which is shown as:

Qπk(st ,at)← Qπk(st ,at)+α(R(T |st+1,at+1)−Qπk(st ,at)), (2.33)

where α is the learning rate.

It is assumed that the action-value function Qπ can asymptotically approach the

real action-value function with respect to the current policy, and the MC methods

can converge to the optimal Q∗ and π∗ eventually. A new greedy policy πk+1 can be

constructed based on the current Qπk , where actions are taken greedily to achieve the

maximal return, and it can be defined as follows:

πk+1(st)← argmax
a∈A

Qπk(st ,a), ∀st ∈ S. (2.34)

In addition, the TD learning method learns from incomplete experience efficiently

based on the prediction of the next state, which plays to low variance in estimation. Its

iteration process is similar to (2.32). However, differently, the TD learning updates

the action-value function by using the Dynamic Programming (DP) method [75] with

bootstrapping. The current estimation Qπk(st ,at) is updated based on the immediate

return rt+1 and the predicted value of the next state, which is expressed as:

Qπk(st ,at)← Qπk(st ,at)+α(rt + γ max
at+1∈A

Qπk(st+1,at+1)−Qπk(st ,at)), (2.35)

where rt + γ max
at+1∈A

Qπk(st+1,at+1)−Qπk(st ,at) is called the TD error, which has the

Markov Property. Thus, the TD learning can learn after each decision epoch [76]

rather than finishing the complete episode.

The typical value-based Deep RL algorithms include Deep Q-learning Network

(DQN) [77], Double Deep Q-learning Network [78] and Dueling Q-learning Net-

work [79]. For the Deep Q-Learning problems, a DNN function approximator with

parameter ω is trained to estimate the Q-values, which is shown as:

2.4 Enabling Technologies of Network Slicing Design Problem 48

Q(s,a;ω)≈ Qπ(s,a). (2.36)

In general, the approximation process can be achieved by minimizing the loss

function of Mean Squared Error (MSE) at each step t:

L = Es,a,r,s′∼π [(yt−Q(s,a;ω))2] (2.37)

where yt = r+ γmaxa′Q(s′,a′;ω) is the TD target and δt = yt −Q(s,a;ω) is the TD

error. To be specific, the Deep Q-learning-based agent learns the optimal policy

through a greedy policy and a = maxaQ(s,a;ω). Usually, the ε-greedy policy is used

to ensure a good convergence, which selects a random action with probability ε and

the greedy action with probability 1− ε .

To overcome the over-estimation problem of the Deep Q-learning algorithms, the

Double Deep Q-learning model [78] is introduced to select and evaluate action values

simultaneously by using two Q-value networks, such as Q and Q′ with parameters ω

and ω ′ respectively. The loss function is defined by:

L = Es,a,r,s′∼π [(r+ γQ′(s′,argmax
a′

Q(s′,a;ω),ω ′)−Q(s,a;ω))2], (2.38)

where argmax
a′

Q(s′,a;ω) = amax(s′,ω).

Further, to solve the MDPs with large action spaces, a dueling architecture is

proposed. In the Dueling Deep Q-learning, the value of an action a at state s can

be computed by two functions [80]. The first part is the state-value function V (s),

which is used to estimate the benefit of being in a state s. And the second part is

the action-value function A (s,a) = Q(s,a)−V (s), which can estimate the reward of

picking the action a at state s. As a result, the Q-value function can be represented as:

Q(s,a) = V (s)+A (s,a). Specifically, it can be expressed as follows:

Q(s,a;ω,σ ,β) = V (s;ω,σ)+(A (s,a;ω,β)− 1
|A| ∑

a′∈A
A (s,a′;ω,β)), (2.39)

2.4 Enabling Technologies of Network Slicing Design Problem 49

where σ and β are the parameters of the two functions V (s;ω) and A (s,a′;ω,β)

respectively, and |A| is the size of the action space. The loss function of the Dueling

Deep Q-learning is formulated in (2.39).

The DQN technologies are mainly applied to deal with the issues that 1) the

subsequent states in the Deep RL tasks are correlated, 2) the policy changes frequently

due to the slight changes of Q-values [64]. Clearly, the DQN is suitable to be applied in

the field of network slicing, because each state in the network slice design environment

is related and the slice design plans will be different as the value functions change.

Recently, Qi et al. [81] have focused on solving the allocation problem of lim-

ited spectrum resources on a finer-grained resolution across network slices based

on the Deep Reinforcement Learning techniques. The authors introduced a discrete

normalized advantage function into the Deep Q-learning method, trying to separate

the Q-value function as a state-value function and an advantage function. And a

deterministic policy gradient descent (DPGD) algorithm [82] was adopted to avoid

extra calculation of the Q-value for state-action pairs.

Policy-based Deep RL

As shown in (2.32), a policy is inferred from the action-value function in the value-

based DRL algorithms. Conversely, the policy-based DRL algorithms aim to model

a policy explicitly by employing parameterized approximators, i.e., DNNs. In other

words, they do not need to maintain the value functions but directly learn an optimal

policy π∗. Thus, for many problems especially with high-dimensional, the policy-

based approaches converge and train much more efficiently by avoiding searching the

action space.

In the policy-based DRL algorithms, a parameterized policy network πθ is defined

with the parameters θ , which can be updated for maximizing the expected return

E[Rt |θ]. Specifically, a stochastic policy can map from states to the probability

distribution over the action space, which is represented as follows:

πθ (s,a) = P(a|s,θ). (2.40)

2.4 Enabling Technologies of Network Slicing Design Problem 50

The objective function of the policy-based DRL approaches is defined by:

J(θ) = Eπθ
[R(T)]

= ∑
T
P(T |θ)R(T),

(2.41)

where P(T |θ) is the probability of T with respect to the policy πθ .

The fundamental idea of the policy-based DRL algorithms is to find the optimal θ∗

that can maximize J(θ), which is shown as:

θ∗ = argmaxθ J(θ). (2.42)

Based on the policy gradient theorem [83], a general form of the policy gradient

for πθ is shown as:

∇θ J(θ) = ∑
T

∇θP(T |θ)R(T)

= ∑
T
P(T |θ)R(T)∇θ logP(T |θ)

= Eπθ
[∇θ logπθ (a|s)Qπθ

(s,a)].

(2.43)

In particular, a classic policy-based DRL algorithm based on the MC policy gradi-

ent is proposed called the REINFORCE [83]. The algorithm updates the parameters

θ based on the stochastic gradient ascent mechanism and approximates the optimal

policy using MC sampling. And it uses the return rt as an unbiased sample of the

action-value function Qπθ
(st ,at). The gradient policy of the REINFORCE is expressed

as follows. And its pseudocode is shown as Algorithm 1.

∇θ J(θ) = Eπθ
[∇θ logπθ (a|s)rt]. (2.44)

In addition, another famous Deep RL architecture, called the Actor-Critic (AC)

algorithm [84], is proposed to solve problems by combining the value-based DRL and

policy-based DRL. Because the two methods both have their drawbacks and flaws.

Specifically, the policy-based DRL approaches tend to fall in local optima and may

2.4 Enabling Technologies of Network Slicing Design Problem 51

Algorithm 1 REINFORCE Algorithm
1: Initialize θ arbitrarily;
2: for each T ∼ πθ do
3: for t=1 to T-1 do
4: θ → θ +∇θ logπθ (a|s)vt ;
5: end for
6: end for
7: return θ

result in a high variability gradient. Besides, the value-based DRL approaches are

intractable for the problems with a high dimensional action space.

Consequently, the Actor-Critic architecture combines the strengths of these two

approaches. First, the value-function approximator with the parameter ω is used as a

critic to estimate the action-value function, which is shown as:

Qω ≈ Qπθ
(s,a). (2.45)

Moreover, the parameterized policy network is used as an actor to update the

parameters θ under the guidance of the critic. The approximated policy gradient of

the Actor-Critic algorithm is defined by:

∇θ J(θ)≈ Eπθ
[∇θ logπθ (a|s)Qω(s,a)]. (2.46)

The Actor-Critic architecture can reduce the variance of gradient, and it is sample-

efficient. This architecture has been widely developed into many algorithms, such as

Actor-Critic [84], Advantaged Actor-Critic (A2C) [85], Asynchronous Advantaged

Actor-Critic (A3C) [86] and Deterministic Policy Gradient (DPG) [87]. The algorithm

of the basic Actor-Critic is shown in Algorithm 2.

So far, the policy-based DRL algorithms have gradually been applied in the network

slicing research area. For example, in Reference [88], a resource allocation problem in

network slicing was proposed, which aimed to maximize the total throughput by using

the Soft Actor-Critic algorithm [89]. The work built a mixed action space including

discrete and continuous actions, and it satisfied both the energy and queue length

constraints of each network slice. Besides, a Lagrangian multiplier was introduced to

2.5 Conclusions 52

Algorithm 2 Actor-Critic Algorithm
1: Initialize s, θ ;
2: sample an action a ∼ πθ ;
3: for each step do
4: sample reward r =R;
5: sample transition s′ ∼ P;
6: sample action a′ ∼ πθ (s′,a′);
7: δ = r+ γQω(s′,a′)−Qω(s,a);
8: θ = θ +∇θ logπθ (a|s)Qω(s,a);
9: ω ← ω +δφ(s,a);

10: a← a′,s← s′.
11: end for

deal with the energy and queue constraints during the policy learning processes. Li et

al. [90] provided an intelligent resource management mechanism in the RAN network

slicing scenario based on the A2C algorithm [86]. The mechanism aimed to solve the

problem that considered varying service demands regarding to user mobility. And it

also tried to make appropriate resource allocation decisions in a dynamic environment

for network slicing.

2.5 Conclusions

In this chapter, the technical background of the network slicing design problem is

summarized in detail. Specifically, the fundamental concepts of End-to-End network

slicing technology are introduced, including the basic knowledge of Virtualization

techniques, the differences between virtual machines and containers, the importance

of NFV, SDN, cloud and edge computing and the isolation issues in network slicing.

Then the principles of deploying and implementing network slices are listed, and the

overall framework of network slicing is illustrated. The detailed characteristics of

different 5G use cases are also stated, such as eMBB, mMTC and uRLLC. Besides, the

research progresses of two prerequisite technologies for achieving the network slicing

design policy are introduced, including the VNE and SFCP. And two critical enabling

technologies, optimization algorithms and deep reinforcement learning methods, for

solving the network slicing design problem are explained.

2.5 Conclusions 53

Technically, the network slicing design problem is derived and developed from

the two prerequisite technologies VNE and SFCP. However, the problem can not be

solved thoroughly by only using these two techniques. Because there are still several

research gaps. For instance, the existing methods in these two technologies mainly

focused on the reduction of capital and operational expenditures for deploying one

type of virtual networks. These methods ignore the inherent and crucial characteristics

of the deployment of 5G network slices, such as the resource utilization efficiency

for deploying various network slices, the energy consumption of the network and the

different service requirements of diverse 5G use cases and application scenarios. Thus,

in the following chapters, the contributions of the thesis are illustrated based on the

above-introduced background knowledge, which aims to bridge the research gaps.

Chapter 3

A Basic Design Policy of End-to-End

Network Slicing

3.1 Introduction

In this chapter, a basic design policy for network slicing is proposed to address the

NSDP problem, which aims to make efficient utilization of network resources in

different 5G use cases. An ILP problem is formulated with multiple design objectives

for eMBB, mMTC and uRLLC use cases. However, the proposed formulation of the

slicing process is mathematically known as a VNE problem, which is proven to be

NP-Hard [91]. The characteristic of NP-hard of a VNE problem can be proven by

reducing it to the Multiway Separator Problem [92], which means that the problem is

hard to be solved in polynomial time. Thus, a heuristic algorithm of the basic design

policy is presented as a trade-off solution. The algorithm can implement network

slices through a set of efficient iterations using the PSO algorithm [56]. The main

contributions of this chapter can be summarized as follows:

• The network model of the basic NSDP is built, including the mathematical

models of the physical network and different network slice requests, by adopting

the Formal Concept Analysis (FCA) methodology.

3.2 Related Works 55

• Multiple design objectives of the basic NSDP are presented for the eMBB,

mMTC and uRLLC use cases. An ILP formulation of the problem is presented,

which aims to utilize the system resources efficiently.

• A heuristic algorithm is proposed inspiring from the PSO algorithm, which can

solve the basic NSDP by obtaining sub-optimal solutions. The present algorithm

is verified by a set of simulations, which illustrates that its resource efficiency

achieves better performance than the existing algorithms.

The rest of this chapter is organized as follows. Section 3.2 gives a brief summary

of the related works of network slicing. In Section 3.3, the network model is presented,

and the problem description is stated. The ILP formulation of the basic NSDP and

the details of the proposed heuristic algorithm are respectively illustrated in Sections

3.4 and 3.5. In Section 3.6, numerical results of the simulation are discussed. Finally,

section 3.7 concludes this chapter.

3.2 Related Works

Recently, numerous researches have been taken by industries and academia to explore

how to implement network slices in 5G networks. Extensive efforts have been carried

to investigate the network slicing technology, which are involved in several research

orientations, such as the framework of network slicing, deployment schemes and

reconfiguration strategies.

For instance, Taleb et al. are first to consider End-to-End network slicing and

introduce the PERMIT slice framework [93]. Zhou et al. illustrated a Network Slicing

as a service (NSaaS) and give an introduction about the business model of NSaaS [94].

And a heuristic algorithm was introduced by Reference [95] for the network slicing

deployment considering the complex network theory. A hybrid slice reconfiguration

framework and a dimension slice reconfiguration scheme were illustrated to reduce

the overhead of network slice reconfiguration in Reference [96]. Reference [97]

presented a network slicing problem to minimize the network latency, and a SDN

based architecture was proposed to enable the creation of radio and transport slices

3.3 Network Model of Basic Network Slicing Design Problem 56

by predicting slice capacities and congestion with Machine Learning technology. An

optimization problem of the network slice provisioning was formulated in Reference

[98], which joined the flexible radio access functional splitting methods with the data-

plane and control-plane network function sharing polices. Yin et al. [99] proposed

a prediction-based dynamic network slicing algorithm, which could reallocate the

isolated resources of existing network slices by leveraging traffic predictions. The

authors attempted to solve the problem of deploying isolated network slices under a

dynamic service provision with time-changing network status in Fi-Wi networks.

3.3 Network Model of Basic Network Slicing Design

Problem

In this section, the network models of the physical network and network slicing

requests are presented by using the FCA methodology, which aims to provide accurate

descriptions about the binary relations between network nodes and their heterogeneous

attributes. The FCA methodology has been applied widely to analyze binary relations

in various domains, which can model concepts and extract rules [100]. Specifically,

a formal context can be represented as a triple (O,A,R) for describing the binary

relationsR (R⊆O⊗A) between an object O and its attributes A.

3.3.1 Physical Network Model

The physical network is represented as an undirected graph G = (P,L,AP,AL), where

P represents the set of physical nodes, L represents the set of physical links. AP and

AL denote the sets of attributes of physical nodes and links, respectively. Let the

triple T = (P,AP,S) describe the binary relations between P and the set of hetero-

geneous attributes AP. Each physical node pi ∈ P is associated with its attribute set

Api . The relation is represented by Si ⊆ pi⊗Api (Si ∈ S). AP can be represented as

AP = ({ci,mi}|pi ∈ P), where ci and mi denote the levels of CPU and memory of pi,

respectively. The binary relations between pi and its attributes can be denoted by

(pi,Api) ∈ Spi .

3.3 Network Model of Basic Network Slicing Design Problem 57

Fig. 3.1 Illustration of a physical path Li j including a set of physical links.

Moreover, a physical link li′ j′ directly connecting two physical nodes pi′ and p j′

is associated with the bandwidth capacity b(li′ j′) and base delay attribute δ (li′ j′). A

physical path Li j is composed of a set of physical links, which can be defined by

Li j = {liη , pη , lη j}. To be specific, pη is a forwarding node, and Li j is illustrated in

Fig. 3.1. The bandwidth capacity of Li j is represented by b(Li j) = min(b(liη),b(lη j)).

The base delay attribute of the physical path Li j is defined by δ (Li j) = ∑δ (li′ j′), li′ j′ ∈

Li j. And h(Li j) is the minimum hops among the set of physical links. Particularly,

AL = (b(Li j),δ (Li j),h(Li j)).

The binary relation between each physical node and its attributes can be expressed

as a formal context, which is illustrated in Table 3.1. For this given example, the

physical network contains 6 physical nodes, and they have three different levels of

CPU and memory capacities. In addition, the bandwidth capacity of physical nodes

refers to the total bandwidth resources of their adjacent physical paths.

3.3 Network Model of Basic Network Slicing Design Problem 58

Table 3.1 Formal context of an example physical network

Node CPU Level Memory Level Bandwidthlev1 lev2 lev3 lev1 lev2 lev3
p1 × × ×
p2 × × ×
p3 × × ×
p4 × × ×
p5 × × ×
p6 × × ×

Table 3.2 Formal context of a given network slice request

Node CPU Level Memory Level Bandwidthlev1 lev2 lev3 lev1 lev2 lev3
vk

1 × × ×
vk

2 × × ×
vk

3 × × ×

3.3.2 Network Slicing Request Model

Let Q represent the set of network slice requests, which consists of three types of use

cases. Q is defined by Q= (Qe∪Qm∪Qu), where Qe, Qm and Qu denote the sets of

eMBB, mMTC and uRLLC use cases, respectively.

Similar to the physical network, each network slice request is defined by an

undirected graph Q = (V,E, IV , IE ,T), where V denotes the set of requested Virtual

Network Functions (VNFs), and E indicates the requested virtual links of network

slice requests. IV and IE respectively represent the resource requirements of VNFs

and virtual links regarding to the resource capacities of physical nodes and links. In

addition, T denotes the types of network slice requests.

Let a triple Rk = (Ok, Ik,Fk) represent the binary relationships of a network slice

request qk, in which Ok denotes the set of requested objects, including the set of VNFs

v and the set of virtual links e. The requirements of qk are represented as Ik = (Iv, Ie),

where Iv = ({cvs,mvs}|vs ∈ v) and Ie = ({b(est)}|est ∈ e). Specifically, cvs and mvs

represent the levels of requested CPU and memory of the VNF vs respectively, and

b(est) denotes the requested bandwidth of the virtual link between the VNFs vs and vt .

The binary relationship between v and Iv are denoted by Fk ⊆ v⊗ Iv (v ∈V). A given

example of a network slice request is illustrated in Table 3.2. As can be seen from this

table, different VNFs may require various levels of CPU and memory resources.

3.3 Network Model of Basic Network Slicing Design Problem 59

3.3.3 Problem Description

In this chapter, the primary goal of the basic NSDP is to achieve the utilization

efficiency of physical resources while satisfying the diverse service requirements

of network slice requests by deploying them onto a shared physical infrastructure.

Solving the NSDP problem is mainly to determine a set of design operations under the

premise of meeting the different service requirements of each network slice request.

The design operation of each network slice is composed by two phases: 1) VNFs are

mapped onto physical nodes, 2) virtual links are mapped onto physical paths.

The proposed network slicing design policy consists of a set of design operations,

which is defined by D = (D1,D2, · · · ,DK), where Dk(∀k ∈ K) is the set of design

operations for a network slice request qk. Resource requirements of different network

slices must be satisfied to ensure the Quality of Services for various use cases. To be

specific, Dk is represented by Dk = (Dk
vs
,Dk

est
):

Dk =

 Dk
vs

: [vs, Ivs]→ [pi,Api] vs ∈ v, pi ∈ P

Dk
est

: [est ,dk]→ [Li j,ALi j] est ∈ e,Li j ∈ L
, (3.1)

where Dk
vs

indicates that vs is placed on pi. And its resource requirements can be

satisfied by the resource capacities of pi. Similarly to Dk
est

, the bandwidth resources of

Li j are consumed to process the traffic demands of est . Overall, the task of solving

the present NSDP can be transformed into obtaining a set of Dk, which simplifies the

difficulty of solving the proposed design problem.

We assume that one VNF of each network slice request can only be mapped onto

one physical node in the physical network, and a physical node can only host at most

one VNF from a same request. Besides, an illustration of the basic NSDP is shown

in Fig. 3.2, in which three different types of network slice requests can be deployed

onto a shared physical network. For instance, the VNFs a, b and c of an eMBB slice

are deployed onto the physical nodes A, B and C respectively, and the virtual links

between them are placed onto the physical path A→ B→C. Similarly, mMTC slices

and uRLLC slices are also deployed onto the same underlying physical network.

3.4 Problem Formulation 60

Fig. 3.2 Illustration of the basic network slicing design problem

3.4 Problem Formulation

In this section, an ILP model of the basic NSDP is formulated with multiple design

objectives, which aims to provide network slicing services for different types of

application scenarios.

The details of the proposed ILP formulation for the basic NSDP are shown as

follows.

Variables:

• Let decision variable ρ
s,k
i ∈ {0,1} take 1 if the VNF vs in the network slice

request qk residing on the physical node pi ∈ P.

• With the decision variable γ
st,k
i j taken as 1, the traffic between the virtual link

est ∈ e is routed through the physical path Li j regarding qk, and 0 otherwise. A

single path is enforced to be unsplit since γ
st,k
i j is an integer.

3.4 Problem Formulation 61

• ζi ∈ {0,1} denotes the occupancy status of pi, with ζi = 1, pi hosts one or more

VNFs; with ζi = 0, pi is available. ζi = 1−∏k∈K[∏vs∈V (1−ρ
s,k
i)], here, for

notational convenience, we introduce an auxiliary variable τi =∏k∈K[∏vs∈V (1−

ρ
s,k
i)]. ζi = 1− τi equals to 1, if more than one VNFs are resided on pi, and 0

otherwise.

Objectives:

• Network slices are required to provide advanced services for the connected

latency-sensitive devices, especially in the uRLLC use cases. The design objec-

tive for minimizing the transmission latency of slices is represented as follows:

min fu = ∑
i j

∑
st
{γst,k

i j ·δ (Li j)+h(Li j)},∀k ∈ K. (3.2)

• Network slices need enhanced and sufficient computing resources to provide

high data rates and better user experiences to customers, particularly in the

eMBB use cases. The design objective for maximizing remaining computing

resources of the physical network is defined as below:

max fe = ∑
i

∑
s
{ζi(ci +mi)−ρ

s,k
i (cs +ms)},∀k ∈ K. (3.3)

• Network slices are expected to support extremely high connection density of

wireless devices when they transmit data simultaneously through the network,

especially in the mMTC use cases. The minimum bandwidth utilization of

occupied links is crucial for providing sufficient bandwidth capacity, the design

objective is as follows:

min fm = ∑
i j

∑
st
{γst,k

i j ·b(e
k
st) ·h(Li j)},∀k ∈ K. (3.4)

Capacity Constrains:

3.5 Algorithms of Basic Design Policy 62

∀k ∈ K, pi ∈ P :


∑
s

ρ
s,k
i · cs ≤ ci

∑
s

ρ
s,k
i ·ms ≤ mi

(3.5)

∑
k

∑
est∈e

γ
st,k
i j ·b(e

k
st)≤ b(Li j) Li j ∈ L (3.6)

Connectivity Constrains:

∀ek
st ∈ E, s < t, ∀i, ∀k ∈ K :

∑
i j
[γst,k

i j − γ
st,k
ji] = ρ

s,k
i −ρ

t,k
i

(3.7)

Variable Constraints:

∀pi ∈ P, ∀vk
s ∈V, ∀k ∈ K


∑
s

ρ
s,k
i ≤ 1

∑
i

ρ
s,k
i = 1

(3.8)

∀pi ∈ P, ∀vk
s ∈V, ∀k ∈ K


τi ≤ 1−ρ

s,k
i

τi ≥ 1−∑
s

ρ
s,k
i

(3.9)

ζi = 1− τi ∀pi ∈ P (3.10)

ρ
s,k
i , γ

st,k
ji , ζi, τi = {0,1} (3.11)

3.5 Algorithms of Basic Design Policy

In this section, the details of the proposed algorithm for the basic NSDP are provided

to achieve a trade-off between computational complexity and performance.

The position of particle η is represented by Xk
η = (xk

η ,1,x
k
η ,2, ..,x

k
η ,ε , ..x

k
η ,z), which

can be considered as the design solution of VNFs for the slice request qk, where ε

denotes the VNF serial number and z denotes the total number of VNFs for qk. The

location number of the physical node denoted xk
η ,ε can be represented as the design

3.5 Algorithms of Basic Design Policy 63

result of ε th VNF in qk. That is to say, the mapping location of ε th VNF is xk
η ,ε in

the physical network. Specifically, the quality of Xk
η can be determined by the fitness

function F(qk), which is defined as follows:

min F(qk) = wu · f ′u
k
+wm · f ′m

k−we · f ′e
k (3.12)

where the normalization of f ′u
k, f ′m

k and f ′e
k are expressed as follows:

f ′u
k
=

f k
u −min(f k

u)

max(f k
u)−min(f k

u)+1
(3.13)

f ′m
k
=

f k
m−min(f k

m)

max(f k
m)−min(f k

m)+1
(3.14)

f ′e
k
=

f k
e

∑i ζi(ci +mi)
(3.15)

In the model, the values of f ′u
k, f ′m

k and f ′e
k will be set to infinity when the particles

do not satisfy their capacity constraints. In addition, the weights wu, wm and we are

denoted by the ratios of the numbers of uRLLC, mMTC and eMBB slices to the total

number of NS requests, respectively.

During the design processes of network slices, each particle will deposit its previous

positions after each iteration. The iterative updates of particles are performed in terms

of their velocity and position, which are determined by three factors: the current

position xη ,d , the best position of each particle Bη ,d and the best global position of all

particles Bg,d . The velocity and position of the particle η during its iteration can be

updated as follows:

Vη ,d(t +1) = ωVη ,d(t)+C1r1(Bη ,d− xη ,d(t))+

C2r2(Bg,d− xη ,d(t))
(3.16)

xη ,d(t +1) = xη ,d(t)+Vη ,d(t +1) (3.17)

3.5 Algorithms of Basic Design Policy 64

where η = (1,2, ...,M), d = (1,2, ...,z) and ω denotes the inertia weight. C1 and C2

are learning factors for adjusting the convergence of the algorithm, r1 and r2 stand for

two random numbers which are uniformly distributed in [0,1].

Algorithm 3 Basic Network Slicing Design Policy Algorithm
Input:

G: the physical network;
qk: the set of network slice requests (k = 1,2...,K);

Output:
D: the network slice design solution;

1: for each network slice request qk do
2: construct a candidate position list for each VNF;
3: initialize position X and velocity V forM particles;
4: for each iteration Nn do
5: for each particle η do
6: if the particle η satisfies the constrains (3.7)-(3.11) then
7: calculate F(qk) based on the formula (3.12);
8: else
9: make f ′u

k, f ′m
k and f ′e

k infinity;
10: end if
11: calculate Bη ,d and Bg,d;
12: calculate Vη ,d , xη ,d based on formulas (3.16), (3.17);
13: end for
14: if Nn=N then
15: go to step 18;
16: else
17: go back to step 5;
18: end if
19: return Dk

V
20: end for
21: for each link es ∈ E do
22: map links based on the Dijkstra algorithm;
23: return Dk

E
24: end for
25: end for
26: return D

In this work, the matching degree g(vs, pi) between each VNF vs ∈ v and the

physical node pi (i = 1,2.., |P|) is defined to initialize the position of particles by

means of the formal contexts of the physical nodes and network slice requests. To be

specific, the definition of g(vs, pi) is shown as:

3.6 Performance Evaluation 65

g(vs, pi) =
|cs ≤ ci|+ |ms ≤ mi|

|Api ∪ Iv|
(3.18)

where Api ∪ Iv is the union set of resource attributes of pi and vs, and pi can be the

candidate position of vs when g(vs, pi)≥ 0.5. The details of the basic network slicing

design policy algorithm are shown in Algorithm 3, which implements the design

processes of network slice requests by a set of efficient iterations. Besides, the time

complexity of Algorithm 3 is O(N ·M+ |E|) for the design process of each network

slice request.

3.6 Performance Evaluation

In this section, the experimental environment settings are introduced, and the main

performance evaluations compared with several existing algorithms are presented.

3.6.1 Simulation Setup

In the simulation works, the physical network topology is randomly generated with

50 nodes and 130 links employing the GT-ITM tool [16], which is correspond to a

medium-sized network. The CPU and memory capacity levels of physical nodes are

uniformly distributed between 0 to 25 and the physical bandwidth resource capacities

have uniform distribution of U [0,100].

In this work, the design process of network slice requests is online. It is assumed

that each network slice request arrives according to a Poisson Process, and each of

them has an exponential distributed Time-To-Live (TTL) with an average of µ = 1000

time units. In the network topology of each slice, the number of VNFs is randomly

determined a uniform distribution of U [2,10] following similar setups to previous

work [9]. Besides, the CPU and memory requirements of each virtual node obey to

the uniform distribution of U [0,10] and the bandwidth requirements are uniformly

distributed between 0 to 50.

The number of particlesM is set to 5 and the threshold of iteration N is set to

50. The initial values of ω , C1 and C2 are set to 0.729, 2 and 2 respectively, which

3.6 Performance Evaluation 66

250 500 1000 1500 2000

Number of NS Requests

0

5

10

15

20

25

30

35

40

A
v
e
ra

g
e
 N

o
d
e
 U

ti
liz

a
ti
o
n
 E

ff
ic

ie
n
c
y
 (

%
)

G-SP

G-MCF

D-ViNE-SP

D-ViNE

D-ViNE-LB

R-ViNE

MOPSO-NSDA

1000

12

14

1500

15

16

17

2000

17

18

19

500

6

7

8

250

3

4

5

Fig. 3.3 Average Physical Node Utilization Efficiency

are set based on the experimental results of the Reference [101]. The weights wu, we

and wm are set as the same value 1/3, which means the numbers of different kinds of

slices are the same in our simulations. Moreover, in our evaluations, we compare our

proposed approach MOPSO-NSDA with several classic algorithms, such as G-MCF[9],

G-SP[30], R-ViNE, D-ViNE, D-ViNE-SP and D-ViNE-LB [31]. In addition, 250, 500,

1000, 1500 and 2000 network slice requests are set to evaluate the algorithms in this

chapter. The algorithms were set to run until 50,000 time units. And all simulations

are carried out on a laptop with eight 1.9GHz CPU cores and 16GB memories.

3.6.2 Evaluations Results

Different performance metrics for evaluation purposes are employed in our simulation,

such as the average node and link utilization efficiencies, the node and link occupancy

ratios and the execution time of the proposed algorithm.

3.6 Performance Evaluation 67

250 500 1000 1500 2000

Number of NS Requests

5

10

15

20

25

30

35

40

45

50

55

A
v
e

ra
g

e
 L

in
k
 U

ti
liz

a
ti
o

n
 E

ff
ic

ie
n

c
y
 (

%
)

G-SP

G-MCF

D-ViNE-SP

D-ViNE

D-ViNE-LB

R-ViNE

MOPSO-NSDA

250

5.5

6

6.5

7

500

11

12

13

14

15

1000

18

19

20

21

1500

23

24

25

26

27

2000

26

27

28

Fig. 3.4 Average Physical Link Utilization Efficiency

Fig. 3.3 and Fig. 3.4 demonstrate the average node and link utilization efficiencies,

the proposed algorithm leads to better results than the existing comparison algorithms

due to the help of the local and global optimal mapping positions of particles during

the iterations. Moreover, the different kinds of resource capacities are considered for

various use cases, such as transmission latency, computing resources and bandwidth

capacity during the slice design processes. The G-SP is the baseline algorithm that

adopts the greedy strategy node mapping with k-shortest link mapping algorithms.

From the results, it can be seen that the average node and link resource utilization

efficiencies are 38.29% and 52.84% for 2000 network slice requests of the proposed

algorithm, respectively, which means that they can obtain up to twice of that compared

with the G-SP and other algorithms. In addition, the highest node and link resource

utilization efficiencies of the proposed algorithm imply its highest acceptance ratio.

From Fig. 3.5 and Fig. 3.6, it is evident that the node and link occupancy ratios

gradually increase as the number of NS requests is increased. Regarding different time

3.6 Performance Evaluation 68

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time Unit 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

d
e

 O
c
c
u

p
a

n
c
y
 R

a
ti
o

250req

500req

1000req

1500req

2000req

Fig. 3.5 Physical Nodes Occupancy Ratio

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time Unit 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
in

k
 O

c
c
u

p
a

n
c
y
 R

a
ti
o

250req

500req

1000req

1500req

2000req

Fig. 3.6 Physical Links Occupancy Ratio

3.6 Performance Evaluation 69

250 500 1000 1500 2000

Number of NS Requests

0

500

1000

1500

2000

2500

3000

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Fig. 3.7 Execution Time

units, the occupancy ratios of the proposed algorithm fluctuate within a certain range,

which implies that it can guarantee the balanced utilization of physical nodes and links

of the system. However, the tendencies of different numbers of network slice requests

in terms of time unit are still fluctuated, because different slice requests have different

TTL so that will can be removed from the physical network when they are expired.

Furthermore, the total execution time of the proposed algorithm in terms of different

number of network slice requests is depicted in Fig. 3.7. It is obvious that the more

network slicing request is, the longer execution time is. From the simulation results,

the average execution time for each network slice request design process is around

1.5006s.

3.7 Conclusions 70

3.7 Conclusions

Network slicing is recognized as a promising technology, which can not only allow

the physical network to divide into different network slices but provide various service

for different application scenarios. For the implementation of network slicing, the

design policy is regarded as one of the most significant issues. Thus, this chapter

presents an ILP formulation and a meta-heuristic algorithm for the basic NSDP

problem. To be specific, the simulations results show that the performance of resource

utilization efficiency of the proposed algorithm is better than other existing algorithms.

The analysis of average node and link occupancy ratios illustrates that the proposed

algorithm can guarantee the balanced utilization of system resource. And the analysis

shows that the execution time of network slice design process is fast with the proposed

algorithm. Further, a service-aware design policy will be investigated in Chapter 4

based on the present basic design policy.

Chapter 4

Service-aware Design Policy of

End-to-End Network Slicing For 5G

Use Cases

4.1 Introduction

Recently, the NSDP is being investigated extensively in both academia and industries.

Some uncertain scenarios are considered in the network slicing research, because the

traffic demands in different slices may fluctuate or they may burst in a period of time.

In existing works, the robust optimization methodology is regarded as a conducive

approach to solve the uncertain problems. It contains no assumption that the probability

distributions should be available in advance, leading to computationally tractable

formulations [57]. For instance, Bertsimas and Sim [102] developed a Γ-robust model

to deal with the data uncertainty for network flows and discrete optimization, which

can be deemed as a main foundation stone to deal with uncertain demands in networks.

On this basis, some related works are proposed, for example, a Γ-robust optimiza-

tion model was presented to solve the virtual network embedding problem for the

networks of large scale with uncertain demands in Reference [103]. Also, Reference

[104] employed the Γ-robust uncertainty set proposed in [102] to handle traffic uncer-

tainties by presenting two optimization models, which aimed to reduce the deployment

4.1 Introduction 72

cost of slices. And a study about robust network slicing schemes was investigated in

Reference [105] to deal with the recovery and reconfiguration of slices in a unified

framework, to minimize the bandwidth consumption. Reference [106] illustrated a

solution of the communication network planning based on the robust optimization

using an accurate mathematical model with demand uncertainty.

The formulations of the NSDP considering the uncertainty in traffic demands were

proposed in References [104, 103]. However, the differences among the characteristics

of diverse slice use cases are neglected. In addition, a service-focused deployment

algorithm of network slicing [95] was proposed to the realize efficient utilization

of resources for different slices. Nevertheless, the traffic demands in diverse slice

requests are ignored. In practice, network slices usually have different performance

requirements for various service application scenarios. The traffic demands in network

slices may fluctuate to some extent. Thus, it is significant to explore the service-aware

NSDP for various use cases considering fluctuated traffic demands.

This chapter aims to propose a versatile service-aware network slice design policy,

which is appropriate for the application scenario that different use cases can coexist

in an efficient way, whilst considering the fluctuation of traffic demands. The present

design policy can not only enhance resource efficiency but also guarantee the various

service requirements.

Firstly, multiple design objectives for eMBB, mMTC and uRLLC use cases are

introduced, respectively. Then, two optimization models of the service-aware NSDP

are formulated, including the deterministic model and the robust model. Similar to the

basic NSDP problem, the formulated service-aware NSDP is also an Integer Linear

Programming problem, which is a NP-Hard problem. Besides, the NSDP problem

evolves from the VNE problems, which means that it may be hard to solve the problem

within a polynomial computing time when its input size is considerably large [9]. Thus,

a heuristic algorithm is proposed, called the service-aware network slicing design

policy (S-NSDP) algorithm. It can be implemented via efficient iterations, which is

inspired by the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm

[55]. The contributions of this chapter can be summarized as follows:

4.1 Introduction 73

• Multiple design objectives for eMBB, mMTC and uRLLC use cases are pro-

posed, respectively, concerning different priorities, including bandwidth resource

utilization, CPU and memory resource utilization and latency, providing various

services and satisfying performance requirements in different 5G application

scenarios.

• Two optimization models of the NSDP are formulated: first, the deterministic

formulation is considered as the nominal case with nominal traffic demands; then,

the robust formulation is adopted as an extended version of the deterministic

formulation to deal with uncertain traffic demands, where equivalent robust

counterparts can be obtained with robust coefficients Γ and Ψ.

• The S-NSDP algorithm is proposed with fluctuated traffic demands, which can

not only utilize resources efficiently but also ensure the different performance

requirements of slices. It can be considered as a trade-off between computational

effort and the quality of solutions. Specifically, the initialization algorithm of

particle swarms and the update scheme of particle positions are presented.

• Extensive simulations are carried out to validate the present design policy, the

impact on objective values is analyzed considering the robustness optimization.

And the algorithm performance is evaluated compared with existing work. A

comprehensive enhancement is demonstrated by the proposed algorithms, of

resource utilization, resource efficiency and acceptance ratio.

The rest of this chapter is organized as follows: Section 4.2 provides a network

model of the service-aware NSDP. Section 4.3 presents the details of multiple service-

aware design objectives for different slices, and the optimization models of the NSDP,

including the deterministic model and the robust model, with resource constraints.

Besides, the proposed algorithms of the service-aware network slicing design policy

are introduced in Section 4.4 and evaluated in Section 4.5 with a detailed analysis.

Finally, a brief conclusion is presented in Section 4.6.

4.2 Network Model of Service-aware Network Slicing Design Problem 74

4.2 Network Model of Service-aware Network Slicing

Design Problem

The basic mathematical models of the physical infrastructure and network slice requests

have been introduced in Section 3.2. In this section, the additional information on the

network models related to the service-aware NSDP is supplemented. The notations

used to define the NSDP problem are summarized in Table 4.1.

4.2.1 Physical Infrastructure Model

The physical infrastructure is associated with an undirected graph G = (P,L,AP,AL).

Api ∈ AP is defined by Api = ({cpi,mpi,∆pi}|pi ∈ P), where cpi , mpi and ∆pi represent

the CPU capacity, memory capacity and node type of pi, respectively. ∆pi is a binary

parameter, and ∆pi = 0 if pi is an access node. Besides, AL = ({b(Li j),h(Li j)}, where

b(Li j) represents the bandwidth capacity of the physical path Li j, and h(Li j) indicates

its total latency.

4.2.2 Network Slice Request Model

A network slice request qk is represented by qk = (v,e,o,Tk,Dk), where v ∈V , e ∈ E.

o denotes its Time-To-Live (TTL), which indicates that qk will be removed when its

TTL expires. And Tk denotes the type of use case of qk.

Given a set of end-to-end traffic demands Dk for qk, which is defined by Dk =

(vs,vt ,dk|∀k ∈ K). Each traffic dk is routed from its source node vs ∈ v towards its

destination node vt ∈ v through the virtual link est ∈ e. Dk leaves sources and arrives at

their destinations by routing through a collection of VNFs in a predefined order. The set

of sources can be represented by S(Dk) = {(vs,vt) = est ∈ e(dk)|vs = s(dk),∀dk ∈Dk},

similarly, the set of destinations is denoted by H(Dk) = {(vs,vt) = est ∈ e(dk)|vt =

h(dk),∀dk ∈ Dk}.

Ivs denotes the required attributes of the VNF vs, which can be represented by

Ivs = ({cvs,mvs,εvs,cλvs
,mλvs

}|vs ∈ v). Specifically, cvs and mvs specify the size of CPU

and memory resource blocks required by the VNF vs for its implementation in the

4.2 Network Model of Service-aware Network Slicing Design Problem 75

Table 4.1 Notations of the service-aware NSDP

Notation Description

G Physical infrastructure topology

P Set of physical nodes

L Set of physical links

T Set of relations of physical nodes and their attributes

AP Set of attributes of P

AL Set of attributes of L

Q Network slice topology

V Set of virtual network functions

E Set of virtual links

Dk Set of traffic demands of qk

S(Dk) Set of sources of Dk

H(Dk) Set of destination of Dk

qk A slice request

Li j Physical path between the physical nodes pi and p j

est Virtual link between the VNFs vs and vt

dk A traffic demand in Dk

cpi CPU capacity of pi

mpi Memory capacity of pi

b(Li j) Bandwidth capacity of Li j

h(Li j) Latency of Li j

Ivs Set of required attributes of vs

cvs Size of CPU resource blocks required by vs

mvs Size of memory resource blocks required by vs

εvs Elastic coefficient of vs

cλvs
CPU resource coefficient of vs

mλvs
Memory resource coefficient of vs

ρ
s,k
i Decision variable of VNFs

γ
st,k
i j Decision variable of virtual links

ζi Variable of occupancy status of pi

xvs Number of resource blocks required by vs

4.3 Problem Formulation 76

infrastructure. Besides, cλvs
denotes the CPU resource coefficient of vs, meaning that

it requires cλvs
(cλvs

> 0,∀vs ∈ v) CPU resources to process one unit of traffic demand,

similarly to the memory resource coefficient mλvs
> 0. Let εvs represent the elastic

coefficient of vs, which indicates that the traffic demand dk may fluctuate to dk ∗ εvs

(εvs ⩾ 0,∀vs ∈ v) after it routes through vs.

4.3 Problem Formulation

4.3.1 Service-aware Design Objectives

In this chapter, it is aimed to propose a versatile service-aware network slice design

policy to support various application scenarios. Thus, a comprehensive design objective

function is necessary. For different 5G use cases, such as eMBB, uRLLC and mMTC,

they are served by a set of network slices. The network slices belonging to different

use cases should satisfy their specific service requirements, such as latency, computing

and bandwidth resources. Each use case has its own priority of service requirements,

which should be fully considered.

In detail, it is essential to ensure that uRLLC slices have a high priority in end-

to-end latency. They need extremely low latency and significantly high availability

to promise high-quality services. For instance, they are expected to deliver advanced

services for connected latency-sensitive devices, such as intelligent transportation

vehicles, remote health-care tools, tactile communications and virtual reality.

In the present work, the latency h(Li j) of the physical path Li j between pi and p j

is determined by its transmission delay, propagation delay and the processing delay of

VNFs and physical nodes. The maximum transmission delay of Li j is denoted by ξi j

when its all bandwidth capacities are occupied. Further, the transmission delay of Li j

indicates as µi j ·ξi j, where µi j is represented by the utilization ratio of Li j and it can

be expressed as:

µi j =
∑k∈K ∑est∈e γ

st,k
i j εvsdk

b(Li j)
, (4.1)

4.3 Problem Formulation 77

where γ
st,k
i j denotes the decision variable, with it taken as 1, the traffic between the

virtual link est ∈ e is routed through the physical path Li j regarding the traffic dk ∈Dk;

and 0 otherwise.

Let κi j denote the propagation latency of Li j, it is defined by the number of

hops between Li j. The processing latency of pi is indicated by ιpi(∀pi ∈ P). And

ιvs(∀vs ∈V) denotes the processing latency of vs. The total latency δi j of Li j increases

as more VNFs are placed on pi and p j. The network slice design objective regarding

latency is shown as:

max fu =C −∑
Li j

{
∑k∈K ∑est∈e γ

st,k
i j εvsdk

b(Li j)
ξi j +κi j + ∑

k∈K
∑

pi∈Li j

(ιpi + ∑
vs∈v

ρ
s,k
i ιvs)},

(4.2)

where C is a sufficiently large constant. ρ
s,k
i indicates the decision variable for deter-

mining the traffic demand dk to route through the VNF vs placing onto the physical

node pi.

The network slicing technique facilitates the mobile network operators to provide

improved user experience and high data rate services by creating different slice service

instances. Under these circumstances, massive traffic data will be transmitted simulta-

neously through networks. Therefore, the effective use of bandwidth resources should

be guaranteed in the design of network slicing.

Particularly, it is significant to satisfy the requirements of bandwidth resources for

eMBB slices, which can prevent the exhaustion of bandwidth resources from affecting

their service qualities. Because eMBB slices usually require high traffic demands, such

as ultra HD video stream, cloud storage and mobile augmented reality. Specifically,

the slice design objective considering bandwidth resources is expressed as:

max fe = ∑
k∈K

∑
est(vs)∈e

∑
Li j

{γst,k
i j εvsdk}. (4.3)

In addition, sufficient computing resources, such as CPU and memory resources,

are crucial for the implementation of network slicing. For instance, in IoT application

scenarios of mMTC use cases, a growing number of intelligent devices are enabled for

4.3 Problem Formulation 78

consumer use, including wearable devices, automation systems and some appliances

with remote monitoring capabilities. Thus, it is important to supply enhanced and

abundant computing resources for the services of the high density of diverse connec-

tions preferentially. The network slice design objective related to computing resources

is defined by:

max fm = ∑
k∈K

∑
pi∈P

∑
vs∈v

ρ
s,k
i {xvs(cvs +mvs)+(cλvs

+mλvs
)εvsdk}, (4.4)

where xvs ∈ R⩾0 specifies the number of resource blocks required by vs.

In conclusion, the intention in setting out the multiple design objectives is to

propose a comprehensive design objective function. The proposed design policy is

appropriate for various application scenarios, where tenants can require different types

of network slices in the same infrastructure. Therefore, the design objective function

of the service-aware NSDP is formulated by using the Simple Additive Weighting

(SAW) method, which is shown as:

max ωu fu +ωe fe +ωm fm (4.5)

where the weighting coefficients ωu, ωe and ωm are defined as the degrees of priority

regarding different types of network slices. They are respectively denoted by the ratios

of the number of uRLLC, eMBB and mMTC network slice requests to the total size of

the network slice set.

In fact, the SAW method and the ε- constraint model both are nominal models

for solving Multi-objective Optimization Problems (MOPs). Both techniques aim

to reduce the dimensionality of the multiple objectives in a certain way for MOP

problems. In essence, both two methods transform a MOP problem into a Single-

objective Optimization Problem (SOP), which make it easier to be solved. In addition

to the SAW method, the ε- constraint method also seems to work to solve the NSDP.

However, the SAW method is considered as a more appropriate way to solve the

proposed NSDP problem compared to the ε- constraint model. First of all, this chapter

4.3 Problem Formulation 79

aims to propose a versatile network slice design policy to guarantee the different

services in various use cases, which does not focus on one specific slice scenario

like other existing works [107], [108]. Besides, different types of network slices

belonging to diverse use cases are accommodated in the same underlying physical

infrastructure, and the concordant coexistence of various slices should be guaranteed.

Hence, a general design objective function is necessary to be proposed for various

eMBB, uRLLC and mMTC network slices.

If the ε- constraint model is adopted in the proposed NSDP problem, a specific

design objective should be selected from the k objectives as the main objective, and the

other k−1 objectives will be considered as constraints by adding different thresholds.

Therefore, it is not suitable for the NSDP problem since it would be difficult to select

a function as the primary objective function, especially considering different network

slices.

To put it differently, the ε- constraint model is more suitable to solve the NSDP

problem for a specific use case rather than a general NSDP problem. Because it

is pertinent to select the main objective in a specific NSDP problem, so that it can

be better optimized. For instance, the latency objective can be determined as the

main objective and the computing resource and bandwidth resource objectives can be

considered as constraints in the NSDP problem for the uRLLC use case. However, for

the service-are NSDP problem proposed in this chapter, it should avoid selecting a

function as the main objective. Because it is infeasible to choose any objective as the

main objective for a general problem and the diverse use cases have different priorities

of service requirements.

Besides, the proposed NSDP problem can be solved and implemented more effi-

ciently by using the SAW method than the ε- constraint model. If the ε- constraint

method is employed, an appropriate way to solve the proposed NSDP problem is

to transform it into three different specific problems. Specifically, three different

optimization models should be formulated with different selected main objectives.

The value of threshold εi(i = 1,2,3...) needs to be set differently in various NSDP

scenarios, and then the optimization problems will be solved three times separately for

4.3 Problem Formulation 80

eMBB, uRLLC and mMTC use cases. Moreover, it will have a certain impact on the

optimal solutions whether εi is set appropriately or not. New constraint variables εi are

introduced, increasing the number of constraints in the optimization problem, which

will cause that the difficulty of solving the specific NSDP problems tends to increase.

In addition, the unique solution of the proposed NSDP problem is Pareto optimal by

using the SAW method when the weighting coefficients are defined as ωu,ωe,ωm ≥ 0.

And it is strictly positive for at least one design objective, and ωu +ωe +ωm = 1. The

corresponding proofs can be found in Formula (16) and Theorem 4 in Reference [52].

Particularly, different application scenarios of network slices can be realized at ease

by adjusting ωu, ωe and ωm. For instance, for the scenario containing three different

kinds of slice requests with the same priority, where ωu = ωe = ωm = 1/3. In the

following, the analysis of the different scenarios is given in Section 4.5, with different

values of ωu, ωe and ωm.

4.3.2 Deterministic Formulation

In this subsection, a deterministic optimization model of the service-aware NSDP is

formulated, which aims to enhance the resource utilization efficiency for hosting as

many network slice requests as possible in the network while satisfying their different

service requirements. The proposed model places VNFs and routes virtual links in the

physical infrastructure. It is assumed that the traffic demands in different slice requests

are deterministic. That is to say, the volume of traffic demand is fixed after the creation

of a network slice request. The deterministic problem of the service-aware NSDP is

formulated as follows:

max gd = ωu fu +ωe fe +ωm fm (4.6.1)

s.t. ∑
k∈K

∑
vs∈v

ρ
s,k
i (xvscvs + cλvs

εvsdk)≤ cpi ∀pi ∈ P (4.6.2)

∑
k∈K

∑
vs∈v

ρ
s,k
i (xvsmvs +mλvs

εvsdk)≤ mpi ∀pi ∈ P (4.6.3)

∑
k∈K

∑
est(vs)∈e

γ
st,k
i j εvsdk ≤ b(Li j) ∀Li j ∈ L,∀vs ∈ est (4.6.4)

4.3 Problem Formulation 81

∑
vs∈s(dk)

γ
st,k
i j − ∑

vs∈h(dk)

γ
st,k
ji

=


1vs∈s(dk)−ρ

t,k
i ∀k ∈ K,est ∈ Li j(vs)+,vs ∈ v

ρ
s,k
i −ρ

t,k
i ∀k ∈ K,est ∈ e/{s(dk)∪h(dk)}

ρ
s,k
i −1vs∈h(dk) ∀k ∈ K,est ∈ Li j(vs)−,vs ∈ v

(4.6.5)

∑
k∈K

∑
pi∈P

ρ
s,k
i = 1 ∀vs ∈ v (4.6.6)


τi ≤ ∑

k∈K
(1−ρ

s,k
i) ∀pi ∈ P,∀vs ∈ v

τi ≥ 1− ∑
k∈K

∑
vs∈v

ρ
s,k
i ∀pi ∈ P

(4.6.7)

ζi = 1− τi ∀pi ∈ P (4.6.8)

ρ
i
s, γ

st,k
i j , ζi, τi = {0,1} (4.6.9)

where constraints (4.6.2)-(4.6.3) ensure that the required resources for the implementa-

tion of slices and the processing of the traffic volume dk ∈ Dk should not exceed the

system resource capacities. Constraint (4.6.4) guarantees that the bandwidth capacity

of Li j should be capable of supporting the traffic demands routing through est that are

established on Li j. Constraint (4.6.5) enforces flow conservation at pi ∈ P. Constraints

(4.6.6)-(4.6.8) give the restriction of the occupancy status of pi ∈ P.

4.3.3 Robust Formulation

In the previous subsection, the deterministic formulation of the NSDP is introduced.

However, the assumption that the traffic demands are deterministic may not be appro-

priate in many practical application scenarios.

Actually, it is usually assumed that slice requests require resources according to the

peak traffic demands to guarantee the services. But, it is not efficient since resources

are unlikely to be fully utilized most of the time. Besides, it may cause infeasibility

if traffic demands fluctuate, any increase in traffic demands can lead to the failed

deployment of slice requests. Thus, a promising way to remedy these limitations is to

consider traffic uncertainty in the formulation of the NSDP.

4.3 Problem Formulation 82

In the present work, the Robust Optimization (RO) methodology is applied, which

has been widely adopted to deal with the challenges arising from uncertain situations

[102]. A robust approach for the NSDP is proposed by combining the Ψ-robust and

Γ-robust models. It is appropriate to the stochastic traffic demands because: 1) the

number of uncertain traffic demands that can fluctuate simultaneously can be adjusted

easily by changing the parameter Γ; 2) on basis of 1), the deviation of traffic demands

can be regulated by the parameter Ψ. To capture this uncertainty, the uncertainty

sets proposed by [109] is employed to formulate the uncertain traffic demands. The

traffic demands are modeled as a ’box+polyhedral’ uncertainty set U , which is the

intersection between the polyhedral and box [58]. U is defined by:

U = {σk|∥σk∥∞ ≤Ψ,∥σk∥1 ≤ Γ}. (4.7)

Assume that the traffic demands fluctuate independently, which indicates there

is no correlation among the elements in the uncertain set U . Each uncertain traffic

demand d̃k(k ∈ K) is denoted by:

d̃k = d̄k±σkd̂k, (4.8)

where d̃k takes value in the symmetric interval [d̄k−σkd̂k, d̄k +σkd̂k] with the nominal

traffic demand d̄k. Besides, traffic demands can fluctuate by the positive perturbation

d̂k and σk ∈U .

Assuming the number of traffic demands that deviate from their nominal values

simultaneously is at most Γ, and the maximum deviation magnitude is Ψ. To immunize

against infeasibility and obtain solutions that remain feasible for any independent

random variables in the given uncertainty set U , resource constraints (4.6.2), (4.6.3)

can be updated as their non-linear robust counterparts, which are shown as follows:

4.3 Problem Formulation 83



∑
k∈K

∑
vs∈v

ρ
s,k
i cλvs

εvs d̄k + ∑
k∈K

∑
vs∈v

ρ
s,k
i xvscvs+

max
J∈K,

|J|≤Γ,|σk|≤Ψ

{
∑
k∈J

∑
vs∈v

ρ
s,k
i cλvs

εvsσkd̂k
}
≤ cpi

∑
k∈K

∑
vs∈v

ρ
s,k
i mλvs

εvs d̄k + ∑
k∈K

∑
vs∈v

ρ
s,k
i xvsmvs+

max
J∈K,

|J|≤Γ,|σk|≤Ψ

{
∑
k∈J

∑
vs∈v

ρ
s,k
i mλvs

εvsσkd̂k
}
≤ mpi.

(4.9)

Further, the non-linear robust constraints (4.9) can be linearized by abstracting

them as exponential linear constraints. Each of them accounts for the scenario where a

possibility of the given uncertainty set U is realized, which is modeled as:



∑
k∈K

∑
vs∈v

ρ
s,k
i {xvscvs + cλvs

εvs(d̄k +σkd̂k)} ≤ cpi

∑
k∈K

∑
vs∈v

ρ
s,k
i {xvsmvs +mλvs

εvs(d̄k +σkd̂k)} ≤ mpi.

(4.10)

The robust NSDP with exponential constraints can be circumvented by employing

the duality technique proposed by [102]. Its tractable reformulation can be modeled,

where the inner maximization problems in the constraints (4.9) are converted to their

corresponding dual equivalent:

4.3 Problem Formulation 84



max
J∈K,

|J|≤Γ,|σk|≤Ψ

∑
k∈J

∑
vs∈v

ρ
s,k
i cλvs

εvsσkd̂k = min ∑
k∈K

∑
vs∈v

Ψς
s,k
i +Γzi

max
J∈K,

|J|≤Γ,|σk|≤Ψ

∑
k∈J

∑
vs∈v

ρ
s,k
i mλvs

εvsσkd̂k = min ∑
k∈K

∑
vs∈v

Ψς
s,k
i +Γzi

ς
s,k
i + zi ≥ d̂kρ

s,k
i ∀k ∈ K

ς
s,k
i ≥ 0,zi ≥ 0 ∀k ∈ K

(4.11)

where ς
s,k
i and zi are dual variables.

For fixed values of robust parameters Γ∈Z≥0 and Ψ∈R≥0, the robust counterparts

to constraints (4.6.2) and (4.6.3) correspond to:



∑
k∈K

∑
vs∈v

ρ
s,k
i (xvscvs + cλvs

εvs d̄k)+Ψ ∑
k∈K

∑
vs∈v

ς
s,k
i +Γzi ≤ cpi

∑
k∈K

∑
vs∈v

ρ
s,k
i (xvsmvs +mλvs

εvs d̄k)+Ψ ∑
k∈K

∑
vs∈v

ς
s,k
i +Γzi ≤ mpi

ς
s,k
i + zi ≥ d̂kρ

s,k
i

ς
s,k
i ≥ 0,zi ≥ 0 ∀vs ∈ v,∀pi ∈ P,∀k ∈ K

(4.12)

Similarly, the constraint (4.6.4) can be updated as:

∑
k∈K

∑
est(vs)∈e(dk)

γ
st,k
i j εvsdk + γ

st,k
i j εvsσkd̂k ≤ b(Li j) (4.13)

where, for any σk(k ∈ J), the maximization deviation part is shown as:

4.4 Algorithms of Service-aware Design Policy 85

max
σ∈U,J∈K,|J|≤Γ

{
∑
k∈J

∑
est(vs)∈e(dk)

γ
st,k
i j εvsσkd̂k

}
(4.14)

The corresponding robust counterpart of (4.13) is shown as:



∑
k∈K

∑
est(vs)∈e(dk)

γ
st,k
i j εvs d̄

k
st +Ψ ∑

k∈K
∑

est∈e(dk)

ς
st,k
i j +Γzi j ≤ b(Li j)

ς
st,k
i j + zi j ≥ d̂kγ

st,k
i j

ς
st,k
i j ≥ 0,zi j ≥ 0 ∀Li j ∈ L,∀k ∈ K

(4.15)

Notice that the robust formulation can be transformed into the nominal case when

Ψ = 0 and Γ = 0. Consider the deterministic formulation (4.6.1) - (4.6.9) with the

nominal traffic demands as the nominal case.

Moreover, the objective function of the robust formulation is represented as:

max gr = ωu fu +ωe fe +ωm fm, (4.16)

for the robust formulation, constraints (4.12) and (4.15) are the equivalence of the

constraints (4.6.2)-(4.6.4), which leverage the Γ and Ψ perturbations of uncertain

variables for traffic demands.

Thus, the integrated robust formulation is consisted of (4.16), (4.6.5) - (4.6.9), and

the counterparts (4.12) and (4.15) substituting for the constraints (4.6.2) - (4.6.4).

4.4 Algorithms of Service-aware Design Policy

Theoretically, the optimal design solutions can be obtained by calculating the opti-

mization models presented above. However, the proposed NSDP is an Integer Linear

Programming (ILP) VNE-type problem, which is NP-hard. Its computational time may

be extremely long when its input size is large [9]. Thus, to balance the computational

4.4 Algorithms of Service-aware Design Policy 86

effort and the quality of solutions, an effective heuristic algorithm is proposed, the

Service-aware Network Slicing Design Policy (S-NSDP) algorithm, which is inspired

by the MOPSO algorithm [55].

The S-NSDP algorithm we proposed is aimed at 1) utilizing system resources effi-

ciently with fluctuated traffic demands, 2) satisfying the various service requirements

of different slice requests, 3) guaranteeing the concordant coexistence of different

kinds of slices belonging to various use cases in a certain underlying infrastructure.

4.4.1 Basic Concepts of Algorithms

Assume that S indicates the set of slices, which consists of K slice service instances.

Each qk(qk ∈ S,k ∈K) may have more than one possible design solutions. The design

solutions are composed of two parts: the design records Av(qk) of VNFs and the

design records Ae(qk) of virtual links. In particular, Ae(qk) only can be obtained after

Av(qk) is determined.

The set A(qk) of candidate solutions of qk consists of Av(qk) and Ae(qk). To

be specific, a∗b computing resource constraints are formulated when qk consists of

a VNFs and the physical infrastructure contains b physical nodes. Besides, m ∗ n

bandwidth resource constraints are figured when there are n physical paths between

the corresponding physical nodes in Av(qk), to deploy qk with m virtual links.

In this work, a K-dimensional search space is assumed to obtain the final design

solution of S. Specifically, a particle swarm X is defined, which is composed ofM

particles. Each particle Xη(η ∈M) of X is expressed as:

Xη = [xη ,1,xη ,2, ...,xη ,k...,xη ,K] (4.17)

where xη ,k is the kth element of Xη , the value of xη ,k is the index into the sequence

of the set A(qk) containing candidate design solutions of qk. Xη is considered as an

integrated design solution of S.

The initial positions of X have a decisive influence on the final design solutions.

The X should be first initialized in its search space. The details of the initialization

algorithm of particle swarms are presented in Algorithm 4. To be specific, the set

4.4 Algorithms of Service-aware Design Policy 87

Algorithm 4 Algorithm of Particle Swarm Initialization
Input:
S: the set of slice service instances;

Output:
X : the set of initial particle swarm;

1: for qk(∀k ∈ K) do
2: get A(qk) = {Av(qk),Ae(qk)} based on the G-SP algorithm;
3: for y ∈ A(qk) do
4: for li j ∈ y do
5: βy(qk) = +δ (li j);
6: end for
7: rank A(qk) based on βy(qk) as L(qk);
8: end for
9: end for

10: if |L(qk)|<M & L(qk) ̸=∅ then
11: expand L(qk) with sizeM by collectingM elements in A(qk) cyclically in

order;
12: end if
13: for xη ,k(∀η ∈M,∀k ∈ K) do
14: if |L(qk)| ≥M then
15: initialize xη ,k as the index η into the sequence of L(qk);
16: else
17: initialize xη ,k as the random index into the sequence of L(qk);
18: end if
19: add xη ,k into Xη ;
20: end for
21: return X

A(qk) of candidate solutions is updated as L(qk) by ranking the total delay βy(qk) of

its included solution y(y ∈ A(qk)), which is shown as Lines 1−12. When the size of

L(qk) is larger than or equal toM, the value of each element xη ,k of Xη is initialized

as the index into the sequence of the η th solution in L(qk); otherwise, the initialization

of xη ,k is the index into the sequence of a random solution. The initialization processes

of particles are represented as Lines 13−21.

After the initialization of the X , feasible design solutions can be calculated by N

times iterations. Bη ,k denotes the personal optimal solution of xη ,k obtained so far, and

Bg,k represents the global optimal solution of the whole particle swarm X . Particles

will fly towards Bg,k while searching for their personal optimal solutions during each

iteration. The velocity of the particle Xη will update towards Bη and Bg, respectively,

4.4 Algorithms of Service-aware Design Policy 88

based on its current position, personal optimal position Bη and global optimal position

Bg. That is, VXη→Bη
and VXη→Bg . The new velocity of Xη can be updated as:

(Vη(t),VXη→Bη
,VXη→Bg)⇒Vη(t +1) (4.18)

where Bη is represented by:

Bη = [Bη ,1,Bη ,2, ...,Bη ,k, ...,Bη ,K], (4.19)

and Bg is denoted by:

Bg = [Bg,1,Bg,2, ...,Bg,k, ...,Bg,K]. (4.20)

Let Vη = (Vη ,1,Vη ,2, ...,Vη ,k, ...,Vη ,K) denote a velocity set of each element xη ,k

of Xη . Each Vη ,k is defined as:

Vη ,k(n+1) =ω · Vη ,k(n)+ r1 ·wlC1 · (Bη ,k(n)− xη ,k(n))+

r2 ·wgC2 · (Bg,k(n)− xη ,k(n))
(4.21)

where η ∈M, k ∈ K, n ∈ N , and ω denotes the inertia weight. r1 and r2 represent

two random numbers which are uniformly distributed in [0,1]. wl and wg denote local

parameter and global parameter, respectively. C1 and C2 indicate the learning factors

to adjust the convergence of the algorithm, they are defined by the size of A(qk).

Regarding the new position Xη(n+ 1) of the η th particle, it can be calculated

by the velocity Vη(n+ 1) and its current position Xη(n). The regeneration of each

element xη ,k of Xη is shown as:

xη ,k(n+1) = xη ,k(n)+Vη ,k(n+1). (4.22)

The details that the particle position of Xη updates during each iteration are shown

in Algorithm 5.

4.4 Algorithms of Service-aware Design Policy 89

Algorithm 5 Algorithm of Particle Position Update
Input:

Xη(n): the current position of Xη ,
Bη(n): the personal optimal position,
Bg(n): the global optimal position;

Output:
Xη(n+1): the new position of Xη ;

1: for xη ,k ∈ Xη(n),∀k ∈ K do
2: update Bη ,k(n) and Bg,k(n);
3: Vη ,k(n),Bη ,k(n),Bg,k(n)⇒Vη ,k(n+1);
4: xη ,k(n),Vη ,k(n+1)⇒ xη ,k(n+1);
5: if xη ,k(n+1)< 0 then
6: xη ,k(n+1) = 0;
7: else if xη ,k(n+1)≥M then
8: xη ,k(n+1) = random.randint(1, |A(qk)|);
9: else

10: xη ,k(n+1) = ⌈xη ,k(n+1)⌉;
11: end if
12: end for
13: return Xη(n+1)

4.4.2 Detailed Description of Algorithms

In the S-NSDP algorithm, we assume that traffic demands will vanish when their

source and destination are placed in the same infrastructure node. And qk will be

removed from the infrastructure when its TTL ok expires. Besides, the traffic demand

dk routing qk may fluctuate after it passes the set of predefined VNFs v, which is shown

as Fig. 4.1.

The solution of the versatile design policy should guarantee the various service

requirements in different use cases. It can be obtained by updating the set of candidate

design solutions. In particular, the candidate solutions are evaluated by their fitness

values. And the fitness value of each candidate solution is calculated by the general

design objective function. Thus, the fitness function F of each particle Xη(∀η ∈M)

is defined to evaluate the quality of each candidate design solution, which can be

expressed as:

F(Xη) = ωeRe +ωmRm +ωuRu (4.23)

4.4 Algorithms of Service-aware Design Policy 90

Fig. 4.1 Traffic demands in different slice requests through the same underlying
infrastructure.

where ωe, ωm and ωu are the weighting coefficients of eMBB, mMTC and uRLLC

slices, respectively. Besides, Re denotes the average utilization of bandwidth resources,

which is shown as:

Re =
∑k∈K ∑est(vs)∑Li j εvsdk

∑Li j b(Li j)
; (4.24)

Rm represents the average utilization of CPU and memory resources, and it is

defined by:

Rm =
∑pi∈P ∑vs∈v xvs(cvs +mvs)

∑pi∈P(cpi +mpi)
+

∑pi∈P ∑vs∈v ∑k∈K{(cλcs
+mλcs

)εvsdk}
∑pi∈P(cpi +mpi)

; (4.25)

Ru indicates the normalization value of the latency of all physical paths when the

design solution Xη is implemented, its definition is shown as:

Ru = 1−∑
Li j

{
∑k∈K ∑est(vs)∈e εvsdkξi j

C
+

κi j +∑k∈K ∑pi∈P(ιpi +∑vs∈v ιvs)

C
}. (4.26)

4.5 Performance Evaluation 91

The details of the S-NSDP algorithm are presented in Algorithm 6. The number of

iterationsN and the sizeM of the particle swarm X need to be initialized firstly. Each

particle xη ,k in X is initialized by Algorithm 4. An initial velocity set Vη is created

and the value of Vη ,k is initialized as 1. Bη and Bg are initialized, where their initial

fitness values Fη and Fg of the particle Xη are set to 0, respectively. For each iteration

n(n ∈ N), the particle xη ,k is updated by Algorithm 5, and xη ,k = 0 indicates that the

implementation of qk is not successful. Next, evaluate the quality of Xη by its fitness

value, and update Fη and Fg as the optimal value in the historical records. Afterwards,

update Bη , Fη , Bg and Fg until all iterations are completed. The final design solution

D is considered as Bg. Besides, traffic demands in S are fluctuated and their TTLs ok

may be different. The total number of time slots is defined as O. When each slot ends,

the occupied records of S are traversed. qk will be removed from the infrastructure

when its TTL expires, meanwhile, the occupied resources of the slice will also be

released. It may cause the occupancy status of the substrate network is varying.

In the S-NSDP algorithm, O(|A(qk)| · (1+ log2 |A(qk)|)+M· (1+N)+O) time

is required to obtain the design solution of each slice request. The occupied records of

the infrastructure will be updated once each time slot ends.

4.5 Performance Evaluation

In this section, the details of simulation scenarios are first described. Then, the

evaluation results are analyzed to validate the proposed formulations and algorithms

of the service-aware NSDP.

In this chapter, the deterministic formulation is defined as the so-called nominal

case, which considers the nominal values of traffic demands. The robustness formula-

tion is investigated by comparing it with the nominal case. Specifically, the impact on

the objective value of the nominal case is analyzed in terms of the objective gaps. The

definition of the gap percentage can be defined by:

gap =
|gd−gr|

gd
·100%. (4.27)

4.5 Performance Evaluation 92

Algorithm 6 Service-aware Network Slicing Design Policy Algorithm
Input:

G: the physical network;
S: the set of slice service instances;

Output:
D: the set of design solutions of S;
Fg(D): the global optimal fitness value;

1: initialize N ,M;
2: initialize the population of the particle swarm X by Algorithm 4;
3: initialize the velocity set Vη(η∀M) of each particle in X as Vη = ones[K];
4: evaluate the initial X ;
5: initialize Bη , Fη , Bg, Fg;
6: while n ∈N do
7: for Xη(η∀M) do
8: for xη ,k(k∀K) do
9: if xη ,k /∈ Aqk then

10: xη ,k = 0;
11: end if
12: update xη ,k based on Algorithm 5;
13: end for
14: evaluate F(Xη);
15: update Bη , Fη ;
16: update Bg, Fg;
17: end for
18: increase the iteration counter n;
19: end while
20: D = Bg;
21: for O do
22: traverse the occupied records of VNFs and virtual links of S based on D;
23: if ok = 0 then
24: remove qk and release the resource it occupied;
25: else
26: ok = ok−1;
27: end if
28: update Fg(D);
29: end for
30: return D, Fg(D)

4.5 Performance Evaluation 93

The present heuristic algorithms are evaluated from different aspects, such as the

average CPU and memory resource utilization, average bandwidth resource utilization

and acceptance ratio, compared with the following two algorithms: the Random

Greedy algorithm and the PARAA (Profit-Aware Resource Allocation) algorithm.

The approach of randomly drawing samples from the candidate setA(qk) is defined

as a Random Greedy method. A(qk) consists of the candidate design solutions for

each qk(∀k ∈ K). Specifically, the design solutions of the VNFs of each slice request

are sampled from A(qk). And virtual links are placed on the physical paths with the

most sufficient resources. The deployments of subsequent slice requests may fail when

a certain system resource is exhausted. It can be considered as a greedy comparison

algorithm to evaluate our proposed algorithms.

In addition, the PARAA algorithm [110] aims to solve the resource allocation

problem by using the BPSO (Binary Particle Swarm Optimization) methodology [111]

based on the costs and quality of service requirements of different network slice cases

for the 5G sliced networks. As this algorithm focuses on the radio access network,

it is developed here by considering the bandwidth resources and costs, making it

comparable with the present algorithm.

4.5.1 Simulation Setup

The deterministic and robust models are both implemented using MATLAB with

the programming solver Cplex 12.9.0 integrated. The robust model is carried out by

ROME [112] that is a MATLAB toolkit for modeling and solving robust optimization

problems. Heuristic algorithms are achieved using Python 3.7. The simulations are

performed on a Linux laptop with Eight CPU cores of 1.9GHz and 16GB RAM.

Regarding the infrastructure network, a sample network topology POLSKA of

SNDlib [113] is considered, which consists of 12 nodes and 18 links. The values of ∆

of all physical nodes are set to 1. The CPU and memory capacities of physical nodes

are respectively sampled from the tuples (80,110,150,180) and (100,140,160,200)

at random, with a probability of (0.2,0.3,0.3,0.2). The bandwidth capacity of physical

links has the uniform distribution of U [10,30]. The number of VNFs in each slice

4.5 Performance Evaluation 94

request is uniformly drawn from the tuple (2,3,4,5,6) with a probability of 0.2. For

each set of traffic demands Dk(∀k ∈ K), its source s(Dk) and destination h(Dk) are

collected from P while ensuring the length of each virtual link is at least 1. All

physical nodes have the same priority to host different types of VNFs. Further, it is

assumed that each slice service instance of specific use case where the set of VNFs

may be considered as the subset of V = {v1,v2,v3,v4,v5,v6,v7,v8} that consists of

8 types of VNFs. For instance, the set of VNFs of q1 is given as v = {v1,v3,v5,v7}

in which the set of end-to-end traffic demands traversing VNFs is represented as:

{(s,v1),(v1,v3),(v3,v5),(v5,v7),(v7,h)}.

The sizes of CPU and memory resource blocks cvs and mvs of each VNF vs(∀vs ∈V)

both have the uniform distribution of U [2,7]. The unit resource coefficients cλvs
and

mλvs
of each VNF vs take value from the uniform distribution of U [1,3]. The VNF

processing delay ιvs of vs ∈ V and the physical node processing delay ιpi of pi ∈ P

are both set to 1. And the maximum path transmission delay ξi j of Li j equals to 3.

Assume that the elastic coefficient εvs of each VNF vs is sampled from the uniform

distribution of U [0.5,2], which means the traffic demands can fluctuate from halving

to doubling after routing through them. The maximum TTL of each slice is set to 8.

And the constant C equals to 18.

Slice service instances are generated with an increasing number of requests K =

6,12,24,36,48,60, every instance of a given topology contains a set of traffic demands.

10 data sets are generated for each type of slice requests. The values of each data

set are sampled from the uniform distributions U [1.5,4], U [1,2.5] and U [0.1,0.5],

respectively, for the traffic demands of eMBB, mMTC and uRLLC slices. The nominal

values of traffic demands (d̄k,∀k ∈ K) are calculated as the arithmetic mean over the

generated data sets, and the positive perturbation d̂k is determined by the standard

deviation. The length of virtual links for eMBB and mMTC slices is respectively set

from the tuple (3,4,5,6) uniformly at random with an equal probability, similarly, and

the length of uRLLC slices is sampled from the tuple (1,2,3).

The number of eMBB, mMTC and uRLLC slices are defined by ωeK, ωwK and

ωuK, respectively, and ωe,ωw,ωu ∈ [0,1]. We set different application scenarios to

4.5 Performance Evaluation 95

illustrate the results of the S-NSDP algorithm with different values of ωe, ωw and

ωm, which are ωu : ωm : ωe = {1/3 : 1/3 : 1/3}, {1/2 : 1/6 : 1/3}, {1/3 : 1/6 : 1/2},

{1/6 : 1/2 : 1/3}. Besides, ωu : ωm : ωe = {1 : 0 : 0},{0 : 1 : 0},{0 : 0 : 1} respectively

indicates the application scenario of uRLLC, mMTC and eMBB slices. The inertia

weight ω of the S-NSDP algorithm is set to 0.729 [101]. wl and wg are both assumed

as 0.5. In addition, we adopt Γ = 1,2,3 and Ψ = 0.25,0.5,0.75,1,1.25,1.5.

For the parameter setting of the PARAA algorithm, the InP bandwidth capacity

is also sampled from U [10,30], each network operator (NO) requires a specific type

of slices with the number of NO as 3. With each network slice attached to a user,

the number of slices of each NO is set to 2,4,8,12,16,20, respectively. The cost of

each slice request is assumed to sample from a uniform distribution of U [1,10]. The

controlling parameters Wmin, Wmax, c1 and c2 are set to 0.2, 0.9, 0.2, 0.2, respectively.

For both our proposed algorithm and the PARAA algorithm, the number of particles

M is set to 50, and the threshold of iteration N is given as 300.

4.5.2 Evaluations Results

Fig. 4.2 shows the impact on the objective value of the deterministic case with nominal

traffic demands. It is illustrated by the objective gaps compared with the robustness

model considering the uncertain traffic demands. We focus on the scenario where the

number of slice requests is K = 6 and ωu : ωm : ωe = {1/3 : 1/3 : 1/3}. Since the

objective gap percentage is achieved almost 100%, larger values of Γ and Ψ are not

further reported. For the fixed value of Γ, the objective gap becomes larger with the

lager values of Ψ. For instance, Γ = 1, it can be observed that the gap percentage is

59.67% for Ψ = 0.5, and 76.52% for Ψ = 1. Besides, the robustness model is related

to the value of Ψ. The uncertainty may increase with an increasing Ψ, which leads to

a larger gap. When the value of Ψ is less than or equal to 1, the result of the robustness

model is more obviously affected by Ψ. For instance, Ψ = 0.25,0.5,0.75,1, the gaps

remain the same as the value of Γ increases. On the other hand, when the value of

Ψ is larger than 1, the result of the robustness model is mainly determined by Γ. For

example, when Γ is assumed as 2 or 3, the gaps become larger as 84.9%, 93.39%,

4.5 Performance Evaluation 96

0.25 0.50 0.75 1.00 1.25 1.50
Value of

30

40

50

60

70

80

90

100

G
ap

 p
er

ce
nt

ag
e

(%
)

=1
=2
=3

Fig. 4.2 Gap percentages for different values of Ψ under Γ = 1,2,3.

respectively, for Ψ = 1.25 and Ψ = 1.5. Thus, the illustrated results indicate that the

impact on the objective value of the nominal case is determined by different values of

Γ and Ψ. That is, the objective gaps become larger with the increment of the number

of deviated traffic demands and their fluctuations. And the gap percentage can achieve

almost 100% when Γ is given as 2 or 3.

Fig. 4.3 illustrates the impact on the objective value of the nominal case compared

with different application scenarios of the robustness model, where ωu : ωm : ωe =

{1/3 : 1/3 : 1/3},{1 : 0 : 0},{0 : 1 : 0},{0 : 0 : 1} with K = 6 and Γ = 2. The gap

percentage of mMTC slices is larger than the other two cases because their traffic

demands are smallest, which leads to their objective values being susceptible to traffic

fluctuations. The values of traffic demands in eMBB slices are greater than those in

uRLLC and mMTC slices, which causes the single objective value of eMBB slices

regarding bandwidth consumption to be less affected by the same level of fluctuations.

For example, for Ψ = 0.25, the gap percentage of eMBB slices equals 13.8%, however,

the gap percentages of mMTC and uRLLC slices are respectively 47.37%, 39%.

Besides, the objective gap percentage of eMBB slices increases linearly since there

is no influence of latency and computing resource consumption. We can see that the

4.5 Performance Evaluation 97

0.25 0.50 0.75 1.00
Value of

0
10
20
30
40
50
60
70
80
90

100

G
ap

 p
er

ce
nt

ag
e

(%
)

u : m : e=1:1:1
eMBB slice requests
uRLLC slice requests
mMTC slice requests

Fig. 4.3 Gap percentages for different values of Ψ (Γ = 2) of different types of slice
requests.

change tendency of the gap percentage of bandwidth consumption for eMBB slices

is nearly proportional to the changing trend of the value of Ψ. The values of the

gap percentage of eMBB slices are almost multiplied when the values of Ψ increase

multiply. For instance, the gap percentage increases from 13.8% to 27.78% when the

value of Ψ changes from 0.25 to 0.5; the gap percentage increases from 13.8% to

41.67% when the value of Ψ grows from 0.25 to 0.75.

In Fig. 4.4, we compare the bandwidth utilization of eMBB, mMTC and uRLLC

slices over different time units to illustrate their changes. In the present work, the

design process of all network slice requests is offline, network slices will be removed

from the network when their TTLs expire and no more new slices need to be deployed.

The eMBB, mMTC and uRLLC slices are deployed based on their specific design

objectives. Each curve indicates the bandwidth utilization of network slice requests in

different use cases, and the number of slices for different use cases is set to K = 30,

respectively. It can be observed that the ratios of bandwidth utilization gradually

decrease along with the increment of the time unit. Because more and more slices

are removed from the infrastructure when their TTLs expire, the occupied bandwidth

4.5 Performance Evaluation 98

1 2 3 4 5 6 7 8
Time unit

0.0

0.2

0.4

0.6

0.8

1.0

B
an

dw
id

th
 u

til
iz

at
io

n
ra

tio

eMBB slice requests
uRLLC slice requests
mMTC slice requests

Fig. 4.4 Bandwidth utilization ratios for different time units of different types of slice
requests.

resources are released and the bandwidth utilization ratio is decreased. The results

also show that the ratios of bandwidth utilization of eMBB slices are higher than the

other two use cases, which is caused by their highest values of traffic demands, even

though their elastic coefficients take values from the same uniform distribution.

To evaluate the resource utilization of eMBB, mMTC and uRLLC slices respec-

tively, the utilization ratios of CPU and memory resources for the first time slot are

shown in Fig. 4.5. Notice that the utilization ratios of CPU and memory resources

both gradually increase with the increment of the number of slice requests. Because

more resources are required as more VNFs are placed on the infrastructure. Besides,

VNFs consume more resources to process traffic demands as they route through more.

The resource utilization ratios of CPU and memory resources in uRLLC slices both

are the lowest. It is because their specific design objective mainly focuses on the

minimum latency so that traffic commodities can remain shortest. That is, less VNFs

are occupied, which also leads to less resources are required to process traffic demands.

Moreover, the resources consumed by mMTC slices are less than that of eMBB slices

since the traffic demands in mMTC slices are much smaller than eMBB slices. For

4.5 Performance Evaluation 99

a. mMTC use cases. b. eMBB use cases. c. uRLLC use cases.

Fig. 4.5 Resource utilization ratios for different number of slice requests: a. mMTC, b.
eMBB, c. uRLLC.

instance, for K = 15, the utilization ratios of CPU resources of mMTC slices and

eMBB slices are 30.8% and 76%, respectively.

In Fig. 4.6, the acceptance ratios of the first time slot are plotted, regarding

the different numbers of slice requests. The acceptance ratios are calculated by the

ratio of the number of embedded slices to the whole number of slice requests. To

assess the proposed algorithm, four scenario cases with different ωu, ωe, and ωm

are implemented. It is observed that the acceptance ratios of the two comparison

algorithms and four proposed cases all decrease gradually as the number of slice

requests increases. Besides, the acceptance ratios of the proposed cases are higher than

that of the two comparison algorithms. The main reason is that the proposed multiple

design objectives can coordinate resources consumption from different perspectives,

which may lead to fewer failures due to the exhaustion of one type of resources in

the infrastructure. It also can be observed that the acceptance ratios of the PARAA

algorithm are better than that of the Random Greedy algorithm. Because the PARAA

algorithm can not only allocate bandwidth resources optimally but also maximize the

system profit. However, the Random Greedy algorithm adopts a greedy scheme to

deploy slices so that it may cause more deployment failures due to the exhaustion of

infrastructure resources.

In addition, Fig. 4.7 illustrates the average ratios of CPU and memory resource

utilization of the six cases. Since the acceptance ratios of the proposed cases are higher

compared with the PARAA algorithm and the Random Greedy algorithms, it can be

4.5 Performance Evaluation 100

6 12 18 24 30 36 42 48 54 60
Number of slice requsts

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
ce

pt
an

ce
 r

at
io

u : m : e=3:1:2
u : m : e=1:1:1
u : m : e=2:1:3
u : m : e=1:3:2

PARAA
Random Greedy

Fig. 4.6 Acceptance ratios for different number of slice requests: a comparison between
the proposed algorithm and existing algorithm.

0 6 12 18 24 30 36 42 48 54 60
Number of slice requsts

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

re
so

ur
ce

 u
til

iz
at

io
n

ra
tio

u : m : e=3:1:2

u : m : e=1:1:1

u : m : e=2:1:3

u : m : e=1:3:2
PARAA
Random Greedy

Fig. 4.7 Average ratios of resource utilization for different number of slice requests: a
comparison between the proposed algorithm and existing algorithm.

4.5 Performance Evaluation 101

0 6 12 18 24 30 36 42 48 54 60
Number of slice requsts

0.0

0.2

0.4

0.6

0.8

1.0

R
es

ou
rc

e
ef

fic
ie

nc
y

u : m : e=3:1:2

u : m : e=1:1:1

u : m : e=2:1:3

u : m : e=1:3:2
PARAA
Random Greedy

Fig. 4.8 Resource efficiency for different number of slice requests: a comparison
between the proposed algorithm and existing algorithm.

seen that their resource utilization ratios are also higher than that of the comparison

algorithms. In Fig. 4.8, the resource efficiencies of different cases are compared over

the first time slot. The resource efficiency is determined by the mean of the acceptance

ratio and the ratio of resource utilization. That is to say, it is not only related to the

number of embedded slices but also is affected by the resource consumption. It can be

seen that the resource efficiencies of the proposed cases are better compared with the

other two algorithms. Furthermore, the resource efficiency gradually increases when

the number of slices requests becomes larger. Specifically, all curves rise sharply when

the number of slice requests changes from 0 to 6. And more than 60% infrastructure

nodes are occupied when K = 6, which can be observed in Fig. 4.9. All infrastructure

nodes are occupied when K is larger than 24.

Regarding the case of ωm : ωu : ωe = {1/3 : 1/3 : 1/3}, the utilization ratios of

bandwidth resources are plotted respectively for different time slots in Fig. 4.10. In

this figure, each line indicates the bandwidth utilization of different numbers of slice

requests. It can be observed that more bandwidth resources are consumed as the

number of slice requests increases. Particularly, 40% to 60% bandwidth resources

4.5 Performance Evaluation 102

6 12 18 24 30 36 42 48 54 60
Number of slice requsts

0.6

0.7

0.8

0.9

1.0

N
od

e
oc

cu
pa

nc
y

ra
tio

u : m : e=3:1:2
u : m : e=1:1:1
u : m : e=2:1:3
u : m : e=1:3:2

Fig. 4.9 Node occupancy ratios for different number of slice requests: a comparison of
the proposed algorithm with different values of ωe, ωm, ωu.

1 2 3 4 5 6 7 8
Time unit

0.0

0.2

0.4

0.6

0.8

1.0

B
an

dw
id

th
 u

til
iz

at
io

n
ra

tio

6 slice requests
12 slice requests
24 slice requests
36 slice requests
48 slice requests
60 slice requests

Fig. 4.10 Bandwidth utilization ratios for different time units (ωm : ωu : ωe = 1 : 1 : 1)
of different number of slice requests.

4.6 Conclusions 103

6 12 24 36 48 60
Number of slice requsts

0

10

20

30

40

E
xe

cu
tio

n
tim

e
(s

)

Fig. 4.11 Execution time with the increment of the number of slice requests.

are consumed over the different 8 time slots when K = 60. The utilization ratios of

bandwidth resources are decreased with the increment of the time slot since the TTLs

of slice requests gradually expire and they will be removed from the infrastructure.

Further, Fig. 4.11 illustrates the execution time of our proposed algorithm for

different numbers of slice requests. The average execution time of the four scenarios

with different ωu, ωe, and ωm increases as the number of slice requests increases.

Specifically, the average execution time of the design process for each network slice

request is 0.745s.

4.6 Conclusions

Network slicing facilitates the implementation of 5G networks. It can not only cus-

tomize virtual networks in the form of isolated slices but also satisfy different resource

requirements for various use cases to provide services. In this chapter, the service-

aware NSDP problem is investigated by considering fluctuated traffic demands for

different use cases, including eMBB, uRLLC and mMTC.

4.6 Conclusions 104

To solve the service-aware NSDP, firstly, multiple design objectives are proposed.

Then, the deterministic optimization model for nominal traffic demands is formulated.

And it is extended into a robust formulation with uncertain traffic demands to provide

robust communication services. Besides, a heuristic algorithm of the service-aware

NSDP is presented to balance the computational cost and quality of solutions. It is

shown that the two formulations can be solved in small scale networks. And the impact

on the objective value of the deterministic model are varied with different robustness

coefficients Γ and Ψ. Furthermore, the simulations validate the performance of the S-

NSDP algorithm, presenting improved results in terms of resource efficiency compared

to the existing work.

In the next chapter, an energy-aware NSDP problem is explored by adopting the

Deep Reinforcement Learning method, which can avoid the disadvantage of heuristic

algorithms of falling into local optimal.

Chapter 5

Energy-aware Design Policy of

End-to-End Network Slicing using

Deep Reinforcement Learning

5.1 Introduction

The carbon emission problem has been attracting extensive attention, together with the

energy shortage problem in some countries. Regarding the high power of the devices

in 5G technology, their energy consumption should be considered in implementations.

Network slicing is a core technology to implement the 5G or beyond network systems,

and it is significant to achieve its energy-aware deployment. Network slicing can

support a wide range of network services with various performance requirements [1].

Specifically, the underlying infrastructure can be divided into several logical, virtual

and isolated network slices.

In the 5G network slicing technology, the Network Slicing Design Problem (NSDP)

as an emerging research topic has been developed, and it origins from the Virtual

Network Embedding (VNE) and Service Function Chaining (SFC) techniques. The

NSDP aims to deploy various network slices onto the physical network and allocate

their required resources efficiently, such as computational, storage and networking

5.1 Introduction 106

resources, while satisfying various Service Level Agreements (SLAs) of different slice

tenants.

The NSDP considering energy cost should be investigated to achieve efficient

energy utilization and guarantee a balance between energy consumption and the accep-

tance ratio of the network slices deployed onto the physical infrastructure. However,

the energy cost of the deployment processes of network slices has not been thoroughly

considered, although the VNE and SFC problems regarding the energy issues have

been studied widely. For instance, Su et.al [114] proposed an energy cost model

and formulated an energy-aware VNE problem as an integer linear programming

problem by considering the energy consumption of physical nodes and links. Lin et.al

[115] provided an energy-aware SFC embedding scheme in a dynamic traffic scenario,

specifically, they introduced three heuristic algorithms for achieving energy savings by

switching off idle devices.

Thus, it is necessary to investigate an Energy-Aware Network Slicing Design Prob-

lem (EA-NSDP) by incorporating energy issues into the design processes of network

slices. Generally, an optimization problem of the NSDP can be solved by several

existing techniques, including exact-based approaches and heuristic-based algorithms.

Both of them can obtain acceptable results in most cases [116]. However, these meth-

ods may be limited to some extent to solve the optimization problem, because there

are still disadvantages to these methods. Specifically, they are challenging to deal with

the NSDP within a polynomial computation time due to its NP-hard characteristic in

the practical context of large-scale networks, although the exact-based approaches

may be effective for small-scale networks. Besides, convergence issues are reported

for heuristic-based algorithms (e.g. Particle Swarm Optimization algorithm [111],

Evolutionary algorithm [117] and Tabu Search algorithm [118]), and they fail to benefit

from historical experience.

Alternatively, the Deep Reinforcement Learning (DRL) as a promising approach

for solving the problems in network slicing has begun to been studied [119–122].

For example, in Reference [122], the authors proposed two DRL-based algorithms to

determine how to orchestrate network slices intelligently from the perspective of slice

5.1 Introduction 107

isolation and cloud-edge collaboration. In general, the DRL methods can integrate an

automatic optimization framework to address the decision-making problems effectively

with the benefit of historical experience by adopting the Reinforcement Learning (RL)

architecture as a learning agent and employing the Deep Learning (DL) technology as

the approach to feature extractions.

In this chapter, a DRL framework is developed to solve the EA-NSDP inspiring

from the Neural Combinatorial Optimization paradigm [60]. To be specific, the energy

efficiency is investigated from two aspects: the energy consumption of physical nodes

and the energy consumption of physical links [114]. The EA-NSDP is formulated as a

Markov Decision Process (MDP) problem, and the problem can be solved based on

DRL. In particular, we exploit the Advantage Actor-Critic (A2C) algorithm architecture

[86] to train the policy network for sampling the candidate solutions, and a search

strategy is proposed to refine the parameters of the policy network and determine

the final design solutions. The main contributions of this chapter are summarized as

follows:

• An energy-aware objective function is designed for the NSDP to improve the

energy efficiency, including the node energy consumption and link energy con-

sumption. Specifically, the energy consumption EN of physical nodes consists of

the switching power cost of host nodes, the basal power cost and demand power

cost of network nodes. Besides, the energy consumption EL of physical links

contains the demand power consumption of network links and the switching

power cost of forwarding nodes.

• The proposed EA-NSDP is modeled as a MDP problem with a set of rein-

forcement learning elements, including a state space, a finite action set and a

reward function. In particular, the reward function is defined based on the link

energy consumption by network slice requests, which can establish a connection

between the design processes of VNFs and virtual links in network slices.

• The A2C algorithm architecture is employed to train the proposed algorithm

framework. The parameterized policy network is regarded as an actor network,

5.2 Related Works 108

and its parameters are optimized based on a policy gradient method under the

guidance of a critic network. The policy network is implemented by leveraging

the pointer network architecture with an attention mechanism, which contains

two RNN networks: encoder and decoder. Besides, a search strategy is presented

to update and refine the parameters of the actor network and select the final

design policy of network slices. The present model architecture can provide

flexibility and scalability in terms of the varying sizes of output sequence, which

is appropriate to address the problem with a set of network slice requests of

different sizes.

• The performance of the proposed EA-NSDP algorithm is verified through ex-

tensive simulations. First, different batch sizes and iteration times in the search

strategy are implemented to validate the performance. Then, the simulation re-

sults demonstrate that our proposed algorithm achieves enhanced performance in

terms of energy efficiency, cumulative acceptance ratio and resource utilization

compared to two existing algorithms.

The rest of this chapter is organized as follows: Section 5.2 summarizes the related

works of the network slicing based on the DRL approaches. Section 5.3 provides the

network model, including the physical infrastructure and the network slice requests.

Section 5.4 introduces an energy-aware design objective of the NSDP, and gives the

details of problem formulation that contains a MDP model with several RL elements.

Moreover, the algorithm framework of the proposed EA-NSDP is proposed in Section

5.5, including the structure of the learning agent, the optimization of policy gradient

and the details of learning algorithms. In addition, the performance of the proposed

algorithms is verified in Section 5.6. Finally, a brief conclusion is summarized in

Section 5.7.

5.2 Related Works

The NSDP have been extensively investigated based on different optimization objectives[44,

97, 95]. For example, Reference [44] presented a resource allocation scheme of net-

5.2 Related Works 109

work slicing, which aimed to minimize the operational expenditures for the infras-

tructure providers while maximizing the social welfare among different network slice

tenants. Bouzidi et.al [97] introduced a SDN-based architecture to enable the creation

of radio and transport slices through the prediction of slice capacity and congestion,

which intended to minimize the overall latency of networks. Besides, Guan et.al [95]

proposed a service-oriented deployment algorithm for the network slicing to optimize

the resource utilization for different kinds of network slices.

Regarding the optimization methods for solving the NSDP, in addition to the two

methods (exact-based approaches and heuristic-based algorithms) mentioned above,

the DRL technology has been applied to solve the NSDP. Two representative DRL

approaches have been widely employed: the value-based Deep Q-learning algorithms

[123] and the policy-based Actor-Critic algorithms.

5.2.1 Deep Q-Learning for Network Slicing

Applying the approaches of Deep Q-Learning Networks (DQNs) as a solution for the

problems in network slicing has been investigated in recent literature, such as the re-

source allocation and management problems of network slices and the reconfiguration

mechanism.

In Reference [124], the authors demonstrated a demand-aware resource allocation

scheme for two network slicing scenarios, including the radio resource slicing and

priority-based core network slicing. The allocation scheme adopting the DQNs could

incorporate the relationship between user demands and resource supplies, which aimed

to enhance the effectiveness and agility for network slices. Suh et al. [119] investigated

a DRL-based network slicing technique, which attempted to improve the long-term

system throughput and satisfy the QoS requirements for different 5G application

scenarios. And they employed a DQN to train networks and exploited an action

elimination mechanism to speed up training processes by eliminating the undesirable

actions. Reference [120] studied a DQN-based resource allocation framework of

network slicing, which could be applied in multi-slices and multi-service scenarios.

This work was intended to maximize the End-to-End access rate by making dynamic

5.2 Related Works 110

decisions of resource allocation in both RAN slices and core slices. In Reference [125],

the authors investigated an intelligent network slicing reconfiguration mechanism under

the fluctuation of traffic flows by exploiting the deep reinforcement learning techniques,

which aimed to minimize the long-term resource consumption. Specifically, the large

state space and high-dimensional discrete action space were decreased by employing

the Branching Dueling DQN method. Besides, the work in Reference [126] designed a

DQN-based network slicing model in terms of multiple fog nodes collaborating through

an edge controller. Regarding the intelligent vehicular applications and smart city

scenarios, the proposed DRL-based model attempted to solve the resource allocation

problem that required heterogeneous latency and different computing needs.

5.2.2 Actor-Critic for Network Slicing

Although the DQN methods have been investigated widely for network slicing, the

Actor-Critic architecture as a technique that combines the strengths of the DQN

approaches and the policy gradient mechanisms has been a promising approach for

solving the resource allocation and optimization problems in network slicing.

For instance, Reference [127] proposed a resource allocation method in the RAN

network slicing in terms of the power and radio resources based on the DRL and

DL algorithms considering system power and slice isolation. To be specific, this

work employed the Asynchronous Advantage Actor-Critic (A3C) algorithm [86]

and SBiLSTM technique to determine the allocation scheme of power and spectrum

resources. In Reference [128], a dynamic resource allocation algorithm was developed

based on the Proximal Policy Optimization (PPO) method [129] for the network slicing

scenarios where heterogeneous requirements were considered in multi-access edge

computing environments. Its goal was to maximize the resource efficiency and satisfy

the QoS requirements of network slices at the same time by formulating a cooperative

multi-agent task. In Reference [121], a resource allocation mechanism for network

slicing named DeepSlicing was presented. The DeepSlicing method aimed to firstly

learn the resource requirements of users to satisfy their QoS requirements and then

optimize the resource management accordingly by integrating the Deep Q-Leaning

5.3 Network Model of Energy-aware Network Slicing Design Problem 111

Network and Actor-Critic method. In particular, a critic function was implemented to

estimate the value function of state-action pairs by using the DQN method. And an

actor function performed the mapping actions from a state to a specific action based

on the current policy.

However, despite the growing literature on the network slicing problems, there

still exists a critical research gap on how to deploy network slices based on DRL for

achieving efficient energy utilization while balancing the trade-off between the energy

cost and the acceptance ratio of the successful deployments of network slice requests.

Therefore, in the following, a novel policy solution to solve the energy-aware network

slicing design problem is proposed for deploying multiple network slices onto the

physical infrastructure based on heterogeneous requirements, aiming to optimize the

energy consumption and enhance the acceptance ratio.

5.3 Network Model of Energy-aware Network Slicing

Design Problem

In this section, the energy-aware network models are presented, including the physical

infrastructure and network slice requests. The main notations involved in this chapter

are summarized in Table 5.1.

5.3.1 Physical Infrastructure Model

A physical network is represented by a weighted undirected graph G = (P,L,AP,AL),

where P denotes a set of physical nodes, L represents a set of physical paths, and AP

and AL indicate the attributes sets of P and L respectively. Each physical node pi is

associated with its attribute set Api =({cpi,κpi,opi}|pi ∈P), and Api ⊆AP. Particularly,

cpi stands for the CPU capacity of pi. And κpi is a binary parameter denoting the

performing role of pi in the deployment process. Precisely, κpi = 0 means that pi is a

host node that can host one or more VNFs; otherwise, it is a forwarding node when it

does not host any VNFs but virtual links route through it. Besides, each physical node

5.3 Network Model of Energy-aware Network Slicing Design Problem 112

Table 5.1 Notations of the energy-aware NSDP

Notation Description

G Physical infrastructure topology

Q Network slice topology

K The number of network slice requests

κpi Performing role of pi

opi Occupancy state of pi

aδ Energy consumption of per unit of CPU

zδ Energy consumption of per unit of bandwidth

h(Li j) Latency of the physical path Li j

K Batch size

I Iteration times

pi is represented by its occupancy state opi = {0,1}. Specifically, opi = 1 means that

pi is active or powered up; otherwise, it is inactive state.

It is assumed that each unit of CPU capacity of physical nodes consumes aδ

energy to be activated. The physical path between pi and p j is defined by Li j, and

it is characterized by its attribute set ALi j ⊆ AL. Specifically, ALi j is represented by

ALi j = {b(Li j),h(Li j)}, where b(Li j) denotes the bandwidth capacity of Li j, and

h(Li j) indicates the latency of Li j. In addition, zδ energy consumption is required to

activate one unit of bandwidth capacity.

5.3.2 Network Slice Request Model

Each network slice is associated with an undirected graph Q = (V,E), where V denotes

the set of required VNFs and E indicates the set of virtual links. A network slice

request qk is represented by qk = (v,e,cv,be|∀k ∈ K), where v and e stand for the sets

of VNFs and virtual links respectively. cv indicates the set of CPU requirements of v,

be represents the set of bandwidth requirements of e. And K denotes the total amount

of network slice requests that need to be deployed in the network. Besides, each VNF

vs ∈ v is associated with its required CPU resources cvs ∈ cv. Each virtual link est ∈ e is

5.4 Problem Formulation 113

network slice 1

network slice 2

network slice 3

: virtual netwok functions

: activated host nodes

: activated forwading nodes

: inactivated nodes

: activated physical paths

: inactivated physical paths

physical network

Fig. 5.1 Illustration of Energy-aware Network Slicing Design Problem.

a logical connection between the VNFs vs and vt , and b(est) ∈ be denotes the required

bandwidth resources of est .

5.4 Problem Formulation

In this section, firstly, the energy-aware design objective for network slicing is proposed.

Then the present EA-NSDP is formulated as a Markov Decision Process (MDP)

problem with critical RL elements, including a state space, an action set and a reward

function. The illustration of the EA-NSDP processes is shown in Fig. 5.1.

5.4 Problem Formulation 114

5.4.1 Energy-aware Design Objective

In this chapter, we aim to solve an energy-aware network slicing design problem (EA-

NSDP) by deploying various network slice requests onto the physical infrastructure

concerning energy consumption. The design objective focuses on optimizing energy

consumption to enhance the energy efficiency of the network, including the node

energy consumption EN and link energy consumption EL, which is defined by:

min E = EN +EL. (5.1)

Node Energy Consumption

The node energy consumption of a network slice request qk can be calculated as

follows:

EN(qk) = ∆Sk +∆Dk +∆Bk, (5.2)

where ∆Sk denotes the switching power consumption of host nodes for deploying qk,

which indicates the energy cost consumed for transiting energy states from power-

saving into activated. ∆Dk indicates the demand power consumption of qk, which is

defined as the amount of power required to host the VNFs in qk. Besides, ∆Bk repre-

sents the basal power consumption with basic CPU load for hosting qk, specifically,

it indicates the amount of power required to maintain host nodes in basic working

conditions after being activated.

Let Sk(pi) denote the boot up or switching power cost for activating a host node pi

from an idle or sleeping mode. The occupancy state of pi can be represented by:

opi =

 1, ∑vs∈v xs
i > 0;

0, otherwise,
(5.3)

where xs
i ∈ {0,1} indicates a binary variable of a VNF deployment. In detail, xs

i = 1 if

a physical node pi hosts a VNF vs. The value of opi is set to 1 when pi hosts one or

more VNFs; otherwise, it is set to 0. The switching power consumption of host nodes

∆Sk for placing qk is defined by:

5.4 Problem Formulation 115

∆Sk = ∑
pi∈Pk

opi ·Sk(pi), (5.4)

where Pk ∈ P denotes a set of host nodes for deploying qk.

Further, activating resources on demand can avoid the waste of energy consump-

tion, according to the service requirements of network slices. The demand power

consumption ∆Dk can be represented by:

∆Dk = ∑
pi∈Pk

∑
vs∈v

xs
i · (cvsaδ). (5.5)

The basal power consumption ∆Bk can be expressed as:

∆Bk = ∑
pi∈Pk

∑
vs∈v

xs
i ·ρpi, (5.6)

where ρpi represents the amount of power required to maintain basic working condition

of a host node pi, and it is assumed that its value keeps the same for different physical

nodes.

The node energy consumption EN(qk) of qk can be calculated as:

EN(qk) = ∑
pi∈Pk

{opi ·Sk(pi)+ ∑
vs∈v

xs
i · (cvsaδ +ρpi)}. (5.7)

Link Energy Consumption

The link energy consumption of qk can be defined by:

EL(qk) = ∆D′k +∆S′k, (5.8)

where ∆D′k indicates the demand power consumption of a set of physical links, and

∆S′k represents the switching power consumption of forwarding nodes in qk.

Specifically, ∆D′k is represented by:

∆D′k = ∑
Li j∈Lk

∑
est∈e

yst
i j · (b(est)zδ) ·h(Li j), (5.9)

5.4 Problem Formulation 116

where Lk represents a set of physical links for placing qk. And yst
i j denotes a binary

variable of a virtual link deployment. yst
i j = 1 indicates that a single virtual link est

resides on a physical path Li j.

Let Sk(pη) denote the boot up power cost to activate a forwarding node pη for

deploying qk. And ∆S′k can be defined by:

∆S′k = Sk(pη) · ∑
pη∈Li j

κpη
. (5.10)

The link energy consumption EL(qk) of deploying qk can be represented by:

EL(qk) = ∑
Li j∈Lk

∑
est∈e

yst
i j · (b(est)zδ) ·h(Li j)+Sk(pη) · ∑

pη∈Li j

κpη
. (5.11)

The design objective of the EA-NSDP is to minimize the long-term energy con-

sumption of the physical infrastructure GP. Consequently, it can be defined as follows:

E (GP) = limT→∞{ ∑
k∈KT

EN(qk)+EL(qk)}, (5.12)

where KT = {k|0 < tk < T} indicates the set of network slice requests deploying

before time T.

5.4.2 MDP Formulation for the Energy-aware NSDP

In RL, a learning agent performs actions, which will cause a transition from the current

state to a new state. The agent then will be informed about the goodness of the

taken action by receiving a numerical reward provided by the environment based on a

reward function. Over time, the agent aims to learn the optimal action at any state and

maximize the long-term reward through a set of interactions with the environment.

A RL task can be modeled as a MDP problem when it has Markov property [85]. In

the present work, the decision-making processes can be formulated as a MDP problem,

because the states in the EA-NSDP are Markov states. To be specific, the EA-NSDP

is a VNE-type problem. The state defined in VNE problems is a Markov state when

5.4 Problem Formulation 117

it has Markov property, specifically, when virtual network requests are independent

of each other and previous states and actions. The detailed proof can be found in the

Proposition 3.1 of Reference [130].

In general, a MDP problem can be formulated by a tuple (S,A,P,R,γ), where S

and A indicate a finite state space and a finite action set, respectively. P denotes the

transition probability that a state s = st can transfer to a successor state s′ = st+1 after

an action a = at is performed [131]. It can be represented by:

Pa
ss′ = P[s

′ = st+1|s = st ,a = at]. (5.13)

Ra(s′,s) represents the reward received after executing the action a in state s

leading to state s′, which is defined by:

Ra(s′,s) = E[rt+1|s = st ,a = at]. (5.14)

The objective of a MDP problem is to maximize the long-term reward Gt , which

can be calculated by:

Gt = rt + γrt+1 + γ
2rt+2 + ...= ∑

i=0
γ

irt+i+1, (5.15)

where rt+i+1 indicates as an immediate reward. γ ∈ [0,1] is a discount factor that

reflects the decreasing importance of the present reward on futures in the cumulative

reward computation.

In this work, the environment consists of the physical infrastructure and a set of

network slice requests. The agent corresponds to the Network Slicing Management

and Orchestration (NS-MANO) framework, which can generate design solutions for

network slice requests after receiving the state of observations from the environment.

In addition, the specific definitions of state, action and reward regarding the EA-NSDP

are presented in the following.

State Space: The state observation contains the available resource capacities of

the physical infrastructure and the resource requirements of network slice requests.

The state st can be expressed as:

5.4 Problem Formulation 118

st = [Ct ,Qt ,Wt
sum,W

t
max,W

t
min], (5.16)

where Ct represents the available CPU resource capacity of physical nodes P at time

step t, it is defined by:

Ct = {c̃p1 , c̃p2, ..., c̃pN}, (5.17)

where N is the total number of physical nodes. c̃pi represents the remaining CPU

resources of pi ∈ P. In addition, Qt = {cvs,Wsum(vs)} indicates the state of a network

slice request qk, which is defined as the required amount of CPU resource cvs and

bandwidth resource Wsum(vs) of each VNF vs ∈ v.

Each physical node pi is associated with a set of adjacent physical links L(pi).

Wt
sum denotes the set of the sum of available bandwidth resources, which is defined

by: Wt
sum = (Wsum(p1),Wsum(p2), ...,Wsum(pN)). The available bandwidth resources

of L(pi) is defined by Wsum(pi), which is shown as follows:

Wsum(pi) = ∑
li j∈L(pi)

b̃li j ∀p j ∈ P, (5.18)

where li j is an adjacent link of pi, and b̃li j denotes the available bandwidth resources of

li j. It is assumed that pi can be assigned a higher probability of hosting VNFs when it

has more available bandwidth resources. Besides, the set of the maximum of available

bandwidth resources is defined by Wt
max =(Wmax(p1),Wmax(p2), ...,Wmax(pN)), where

Wmax(pi) denotes the maximum available bandwidth resource among L(pi). Similarly,

Wt
min indicates the set of the minimum available bandwidth resources.

Action Space: The action set can be represented as A = {a1,a2, ...,aT}, which

can describe a set of deployment processes of all VNFs in a network slice request qk.

The size of the set of VNFs of qk is defined as Mk = T . To generate a corresponding

mapping solution to host a VNF vt , a certain action at(t ∈ T) can select a candidate

physical node whose available resource capacities exceed the requirements of vt , from

the N-dimensional discrete set P = {p1, p2, ..., pN} . Besides, it is assumed that the

previously chosen actions can not be selected again for the same request, which means

5.4 Problem Formulation 119

that the VNFs in the same slice request should be embedded onto different physical

nodes.

Reward: The agent can adjust and improve its actions by receiving a correlative

reward from the environment, instead of following an explicit objective function in

ILP or MILP. It can be guided to deploy network slice requests in the direction of

maximizing the expected long-term return based on rewards.

A positive reward will be given to the agent after an effective action is implemented.

Specifically, physical nodes are selected, and a set of adjacent virtual links associated

with the embedded VNFs are mapped onto the shortest path of the selected physical

nodes when resource constraints are satisfied.

In the present work, a reward function can be defined as Eq. (5.12). However, the

energy consumption EN(qk) of physical nodes can be neglected as it is deterministic.

To be specific, it is decided by the three elements in Eq. (5.2), and they are not related

to specific deployment decisions of VNFs. Because the demand power consumption

∆Dk is estimated by the requirements of CPU resources, which is deterministic no

matter where the VNFs are mapped onto; in other words, the CPU resources will be

consumed exactly on demand. Besides, the switching power consumption ∆Sk of host

nodes is decided by an exact number of VNFs, and the basal power consumption ∆Bk

is evaluated by the same value of the parameter ρpi(pi ∈ P).

Furthermore, the energy consumption EL(qk), in Eq. (5.11), of physical links

varies from different actions. The demand power consumption ∆D′k of physical links

and the switching power consumption ∆S′k of forwarding nodes are both decided

by the adjacent links of VNFs, and they may vary according to different actions.

Therefore, the reward rt that the agent receives at time step t = T can be simplified

as rt = −EL(qk), where EL(qk) = {∑Li j∈Lk ∑est∈e yst
i j · (b(est)zδ) · h(Li j) + Sk(pη) ·

∑pη∈Li j κpη
}, and it can be employed to evaluate the quality of actions and guide the

agent to make appropriate decisions.

5.5 Algorithm Framework 120

5.5 Algorithm Framework

In this section, we present a DRL-based algorithm framework for solving the energy-

aware NSDP based on the theory of Neural Combinatorial Optimization paradigm with

Reinforcement Learning [60]. Specifically, the detailed architecture of the learning

agent is introduced based on the pointer network structure [61] with the Bahdanau

attention mechanism [132]. The proposed framework is trained using the Advantage

Actor-Critic (A2C) algorithm [86].

5.5.1 Learning Agent

The model architecture of the learning agent for the EA-NSDP is illustrated in Fig.

5.2, including two RNN models: Encoder and Decoder of Long Short-term Memory

(LSTM) cells [133]. The agent aims to generate a set of decisions for deploying

network slice requests.

The mechanism used to make decisions by the agent is called a policy π(·|s), which

is a probability distribution over possible actions under a certain state. Specifically,

π(at |st) indicates the probability to perform an action at under st , which is defined by:

π(at |st) = P[a = at |s = st]. (5.19)

In this work, we employ the pointer network architecture [61] to generate actions.

Generally, the architecture is a Sequence-to-Sequence (Seq2Seq) model [134], which

is appropriate to solve the problems with a variable size of output sequence. It can

select specific pointers from a set of input sequences with an attention mechanism by

integrating contributions of different elements of the input sequences, and then the

output of the architecture can be formed by a set of indexes to the input.

In our model, two inputs are given to the architecture. To be specific, a set of input

sequence of the physical network GP is represented as a sequence X = [x1,x2, ...,xN].

The vector of a physical node pn is defined as xn = {p̄n, c̃pn,Wsum(pn),Wmax(pn),

Wmin(pn)}(n ∈ N), where p̄n is the index of pn, and c̃pn denotes the available CPU

resources of pn. Besides, Wsum(pn) represents the sum of the available bandwidth

5.5 Algorithm Framework 121

Fig. 5.2 Illustration of the learning agent architecture for the EA-NSDP.

resources of pn, Wmin(pn) is the minimum available bandwidth resources, and Wmax(pn)

indicates the maximum available bandwidth resources.

Moreover, the input information of a given slice request qk can be defined as a

set of sequences [ζ1,ζ2, ...,ζT], where ζs = {v̄s,cvs,Wsum(vs)} denotes the information

vector of a VNF vs. v̄s represents the index of vs, cvs indicates the required CPU

resources of vs, and Wsum(vs) represents the total required bandwidth resources of its

adjacent links.

The state information xi(i ∈ N) of the physical network is fed into the network

model sequentially. An embedding of xi is denoted as ei, which is transformed

by executing a liner transformation through the embedding layer. The embedding

5.5 Algorithm Framework 122

set {e1,e2, ...,eN} is inputted into the Encoder network. A set of hidden states

{h1,h2, ...,hN} can be obtained through the LSTM cell layer. At each Encoder step i,

a hidden vector hi is associated with ei and the previous hidden vector hi−1. And hi

can be represented by hi = f (ei,hi−1), where f is a tanh activation function.

The initial input to the Decoder is a Start-of-Sequence (SoS) token denoting as △,

which is a N-dimensional zero matrix. The initial status of LSTM cells in the Decoder

is set as the hidden state of the final step of the Encoder. The hidden states of Decoder

network can be expressed as {d1,d2, ...,dT}. At each time step t, a hidden vector dt is

represented as dt = f (dt−1,yt−1,ct), where dt−1 indicates the previous hidden vector,

yt−1 is the output of the previous LSTM cell and ct is the context vector of the Encoder

processes. Besides, ct can be defined as the sum of hidden states of the input sequence

in the Encoder weighted by a set of corresponding attention weights, which is shown

as:

ct =
N

∑
n=1

αtnhn. (5.20)

The Decoder network can generate a probability distribution of the design solution

of each VNF in qk over the set of physical nodes using the attention mechanism [132].

Specifically, the Decoder network can pass the information of selected physical nodes

of hosting VNFs to the next Decoder step. Let At = {αt1,αt2, ...,αtN} represent the

attention for selecting physical nodes over the input sequence, and αtn denotes the

normalized probability of selecting pn to the output yt of the decoding process at the

Decoder step t, which is defined by:

αtn =
exp(utn)

∑
N
i=1 exp(uti)

, (5.21)

where the attention score u jn (∀n = 1,2, ...,N) is defined by:

utn =

 −∞, if c̃pn < cvt or Wsum(pn)<Wsum(vt);

v⊤α tanh(W1hn +W2dt), otherwise;
(5.22)

and vα , W1 and W2 are linear learning weights to be learned in the model.

5.5 Algorithm Framework 123

Pointer Network
(actor)

Value Network
(critic)

Environment

Action a

a

State s

Value v Reward r

s

Fig. 5.3 Diagram of the A2C algorithm structure.

Additionally, a filter layer is added to justify the output of the Decoder, aiming

to select policies without violation of resource constraints. Its inputs contain the

information of both GP and qk. A N-dimensional binary vectorM is implemented to

guarantee that the selection of physical nodes can satisfy the constraints of network

slice mapping. M is defined asM= {m1,m2, ...,mN}, which can be used to select

a subset of outputs by filtration. For ∀vs ∈ v and ∀pn ∈ P, mn is a binary parameter,

which can be calculated as follows:

mn =

 0, ∃cvs > c̃pn or ∃Wsum(vs)>Wsum(pn);

1, otherwise;
(5.23)

where mn = 0 represents that pn fails to satisfy the resource requirements of the VNF

vs, then the probability of selecting pn to host vs will be set to 0. The physical nodes

with highest probability will be selected as the output of the Decoder, which is a

sampled solution for hosting network slice requests.

5.5.2 Optimization with Policy Gradient

We employ the A2C algorithm architecture [86] to implement learning processes.

Generally, the A2C architecture is shown in Fig. 5.3, including two networks: an

5.5 Algorithm Framework 124

actor network and a critic network, in which an actor network can be trained under the

guidance of a critic network.

Specifically, the actor network represents the present policy network based on the

pointer network, which can generate an action a for deploying a VNF according to

the state s and value ν . The critic network parameterized by θv is responsible for

estimating the value ν of an action sampled by the policy network with parameters θ

according to a state-value function. Besides, the actor network and the critic network

both update their hidden states by using the attention glimpse mechanism [60] at the

memory states and feed the output of the glimpse function as input to the next step

of learning process, which is illustrated in Fig. 5.4. The actor network and the critic

network can generate different outputs: a policy πθ (st ,at) and a value estimation

Vθ (st ;θv), respectively.

;
network

information:

Embedding Layer Embedding Layer

... ...

LSTM Layer

... ...

Attention

Glimpses
LS
TM

y

... ...

LSTM Layer

... ...

Glimpses
y

 MLP

Pointer
Network

Critic
Network

input

Fig. 5.4 Detailed architecture of the training model for the network slicing design
problem.

5.5 Algorithm Framework 125

To be specific, a model-free and policy-based RL method is leveraged to train

the policy network by optimizing its parameters θ . At each time step t, for a given

physical network input X , the training objective is formulated as:

J(θ |X) = Eπ [rt(τ|X)], (5.24)

where E[·] is an expectation function. rt(τ|X) indicates the long-term reward till

t of finding sampled trajectory τ with an input sequence X , and τ is defined as

τ = (s1,a1, ...,st ,at).

During training processes, the vector of input sequences X is drawn based on

uniform distribution from P. We employ the stochastic gradient ascent to optimize the

policy network. The parameters θ of policy network can be updated as follows:

θt+1 = θt +ξ ∇θ J(θ), (5.25)

where ξ is a learning parameter. The optimal policy πθ∗ can be learned with θ ∗, and

θ ∗ is defined by:

θ
∗ = argmaxEπθ

[rt]. (5.26)

Differentiating J in terms of θ indicates the direction of the adjustment of network

parameters, which aims to update θ to find the global optimal solution efficiently.

The gradient ∇θ J(θ) is formulated based on the policy gradient method introduced in

Reference [83], which is expressed as:

∇θ J(θ) = E
τ∼πθ (τ)

[(r(τ|X)−b(X))∇θ logπθ (τ|X)], (5.27)

where b(X) is defined as a baseline function to estimate the predicted reward for

reducing the variance of the gradients, and it is independent on τ .

The policy gradient ∇θ J(θ) can be approximated based on the Monte-Carlo

sampling by drawing K sampled inputs X1,X2, ...,XK and sampling a design policy for

per input τk ∼ πθ (·|Xk). It can be estimated with:

5.5 Algorithm Framework 126

∇θ J(θ)≈ 1
K

K

∑
k=1

(r(τk|πθ)−b(Xk))∇θ logπθ (τk|Xk). (5.28)

Further, the learning processes of policy network can be improved with the guid-

ance of a critic network by learning the predicted return value sampled by the current

policy πθ for a given input sequence Xk. Specifically, the critic network can be trained

based on the mean squared error between a prediction estimator Bθv and the actual

return sampled by the recent policy. The loss function of the critic network L(θv) can

be formulated as:

L(θv) =
1
K

K

∑
k=1

[r(τk|Xk)−Bθv(Xk)]
2, (5.29)

similar to Reference [60], the baseline estimator Bθv(Xk) is defined as an exponential

moving average value of the long-term accumulated reward obtained by the policy

network, which can be updated during the learning processes automatically. It can

facilitate estimating the expected energy consumption by reducing the variance of the

policy gradients and leading to speed convergence.

5.5.3 Leaning Algorithms of Energy-aware Design Policy

In the present work, the training algorithm is based on the A2C architecture since

the difference between the sampled return value and the predicted value of the critic

network is an unbiased estimation of the advantage function. In A2C, the actor network

can sample actions according to the values predicted by the critic network, and the

parameters of the actor network can be optimized using the policy gradient mechanism.

The critic network improves its evaluation skills based on the reward given by the

environment.

The details of the training algorithm is presented in Algorithm 7. The parameters

of the actor network and critic network are firstly initialized. Then the policy network

with parameters θ can sample a solution τk by learning for deploying the network slice

request qk. In the learning processes, the parameters θ are adjusted in the direction

of the gradient of the objective function [37], which may tend to converge to local

5.5 Algorithm Framework 127

Algorithm 7 Algorithm of Training Process
Input:

GP: the physical network;
qk: a network slice request;
T : the number of training steps;
K: batch size;

1: initialize the parameters of the policy network θ ;
2: initialize the parameters of the critic network θv;
3: for 1,2, ...,T do
4: synchronize parameters θ and θv;
5: for k = 1,2, ...,K do
6: sample an input sequence Xk;
7: sample a solution τk = (s1,a1, ...,sT ,aT);
8: bk←Bθv(Xk);
9: end for

10: ∇θ J(θ)← 1
K ∑

K
k=1[(r(τk)−bk)∇θ logπθ (τk|Xk)];

11: L(θv)← 1
K ∑

K
k=1[r(τk)−bk]

2;
12: θ ← optimize(θ ,∇θ J(θ));
13: θv← optimize(θv,∇θvL(θv));
14: end for
15: return θ .

optimums if the objective function is non-convex. In this case, the learning agent can

suffer from a local convergence, and the system may fail to learn the optimal policy

even though the training process is extended. Besides, each network slice request is

hosted by a subgraph of the physical network topology. The number of subgraphs

exponentially grows with the increment of infrastructure components. The action

space can be extremely large when each possible subgraph is considered, and it can

also lead to slow convergence of the learning framework.

Based on this, we employ a search strategy [60] to further improve the efficiency of

searching in a large action space. The search strategy can validate candidate solutions

sampled by the policy network at the inference process and finally select the optimal

one. The details of the search strategy for the EA-NSDP are presented in Algorithm 8,

which can update and refine the parameters θ of the policy network and learn how to

determine final design solutions. Specifically, the policy network keeps being trained

by sampling solutions. Given an input sequence X and the network slice request qk,

candidate design solutions τ1, ...,τK are drawn from the policy network πθ (·|X ,qk).

5.5 Algorithm Framework 128

Algorithm 8 Algorithm of Search Strategy for the EA-NSDP
Input:

X : an input sequence of the physical network;
qk: the information of a network slicing request;
I: the number of iteration times;
K: batch size;
β : learning parameter;

Output:
τ∗: the design solution of the slice request qk;

1: input the information of X and qk to the model;
2: τ∗ ∼ initially sample a solution from πθ (·|X ,qk);
3: initialize Rτ∗ ← r(τ∗|X ,qk);
4: for i = 1,2, ..., I do
5: for k = 1,2, ...,K do
6: τk ∼ sample a solution based on πθ (·|X ,qk);
7: calculate r(τk|X ,qk) and let r(τk|X ,qk) =−∞ if resource constrains are vio-

lated;
8: end for
9: update Π = {τ1,τ2, ...,τK};

10: j = argmax {r(τ1|X ,qk), ...,r(τK|X ,qk)};
11: R j← r(τ j|X ,qk);
12: if R j > Rτ∗ then
13: τ∗← τ j;
14: Rτ∗ ← R j;
15: end if
16: ∇θ J(θ)← 1

K ∑
K
k=1[(r(τk)−bi)∇θ logπθ (τk|X)];

17: θ ← optimize(θ ,∇θ J(θ));
18: bi← βbi−1 +(1−β) 1

K ∑
K
k=1 bk;

19: end for
20: return τ∗.

The learning agent then calculates the reward of each candidate solution sampled from

the policy network, and the solution with maximum reward will be selected as the final

design solution among them.

During search processes, the baseline estimator bi is calculated by leveraging the

exponential moving average method instead of the critic network in each iteration,

since there is no need to differentiate among slice requests. bi is used to stimulate the

agent to select the solutions with better rewards. The parameters of the policy network

can be optimized in the direction of the baseline when the reward of a solution is less

than the value of baseline estimator. On the contrary, the policy network will explore

5.5 Algorithm Framework 129

new findings and optimize its parameters toward new directions. In addition, the

algorithm keeps training the policy network and calculating the gradients dynamically

in the search processes. Afterwards, the parameters θ of the policy network are further

refined and updated automatically.

The testing algorithm is shown in Algorithm 9. In particular, a design solution is

failed when the resource constraints of embedding VNFs or virtual links are violated.

A design solution of deploying VNFs is feasible if the resource requirements of VNFs

in qk are satisfied by the selected physical nodes, and then its design solution of the

corresponding virtual links is calculated based on the Dijkstra shortest path algorithm

[135]. Particularly, a design policy is successful only if it consists of both feasible

solutions of VNFs and virtual links. In addition, the computational complexity of the

proposed algorithm framework is O(K(T (1+ lgT)+ |E|)). To be specific, for each

network slice request qk(k ∈ K), the computational complexity is O(T) after the input

sequence is fed into the model, and the computational complexity of the virtual link

embedding processes is O(T lgT + |E|) when its VNFs are successfully deployed.

The performance of the present algorithm can be evaluated regarding several evalu-

ation criteria, including the energy consumption efficiency, the cumulative acceptance

ratio of network slice requests, and the resource utilization of physical nodes and links.

Specifically, the cumulative acceptance ratio is defined as the ratio of the accumulated

number of the network slice requests successfully deployed to the total number of

requests over time. The resource utilization of physical nodes indicates the CPU

resource utilization, which is represented by the ratio between the consumed CPU

resources and the total CPU capacity of physical nodes in the infrastructure. Besides,

the resource utilization of physical links denotes the bandwidth resource utilization.

Moreover, the energy consumption efficiency ∆ denotes the ratio of the required

energy by network slice requests to the total energy consumption of the network, which

is defined by:

5.6 Performance Evaluation 130

Algorithm 9 Algorithm of Testing Process
Input:

θ : the parameters of the policy network;
Γ: a set of network slice requests;

Output:
solutionSet

1: initialize a solutionSet = φ

2: for each network slice request qk ∈ Γ do
3: sample candidate solutions from the policy network;
4: select a design solution τ∗ of VNFs for qk based on Algorithm 2;
5: if τ∗ is feasible then
6: place the VNFs of qk onto the physical network;
7: obtain the design solution ϕ∗ of virtual links of qk based on the Dijkstra

Algorithm;
8: if the design policy (τ∗+ϕ∗) is feasible then
9: perform the mapping processes of virtual links;

10: update resource capacity of the physical network;
11: solutionSet.add(τ∗+ϕ∗);
12: return ‘Design Success’;
13: else
14: release the placed VNFs;
15: return ‘Design Failed’;
16: end if
17: else
18: return ‘Design Failed’;
19: end if
20: end for
21: return solutionSet.

∆ =[
∑k∈K{∑pi∈P{∑vs∈v(cvsaδ +ρpi)+opi ·Spi}}

limT→∞{∑T
tk=0 EN(qk)+EL(qk)}

+
∑k∈K{∑li j∈L ∑est∈e best zδ}

limT→∞{∑T
tk=0 EN(qk)+EL(qk)}

].

(5.30)

5.6 Performance Evaluation

In this section, we conduct a series of simulations to investigate the performance

of the proposed algorithm framework for the EA-NSDP. Besides, a classic heuristic

algorithm NodeRank [136] and a RL-based algorithm using Graph-Convolutional

5.6 Performance Evaluation 131

core layer

aggregation layer

edge layer

servers

OSS/BSS

VNF

EMS

NFV MANO

NFVO

VNFM

VIM

NFVI

Physical
Computing

Physical
Storage

Physical
Networking

Virtualization Layer

Virtual
Computing

Virtual
Storage

Virtual
Networking

16

16

16

16

16

16

16

16

Core Swtiches

Aggregation Layer

Edge Layer

Server Nodes

Fig. 5.5 Illustration of the structure of the physical network.

Networks (GCN) [116] are implemented as comparison algorithms to validate the

performance of the proposed algorithm.

5.6.1 Simulation Setup

The structure of the physical network is a data centre network with a tree network

topology. A similar setting up about the physical network can be found in Reference

[137]. The structure of the physical network is illustrated as Fig. 5.5.

Specifically, the physical network consists of 148 physical nodes, including 20

forwarding nodes and 128 host server nodes. The forwarding nodes consists of 4 core

switch nodes, 8 aggregation layer nodes and 8 edge layer nodes. The CPU resource

capacity of each host server node is set to 104. Besides, the physical network has 160

physical links, where there are 128 physical links between the host server nodes and

the edge forwarding nodes, and 32 physical links among the other types of forwarding

5.6 Performance Evaluation 132

nodes. The bandwidth capacity of the physical links between any host node and the

forwarding nodes in the edge layer is given as 104, the bandwidth capacity of the

physical links between any forwarding node in the edge layer and the forwarding nodes

in the aggregation layer is set to 4 ·104, and the bandwidth capacity of the physical

links between any core switch node and the forwarding nodes in the aggregation layer

is set to 16 ·104.

In addition, the simulations are performed to deploy 500 network slice requests

iteratively until all requests are fulfilled. For each network slice request, the number

of VNFs is uniformly distributed from 2 to 10. The connectivity of virtual links is

set to 0.5, that is to say, the average number of virtual links equals to (n2− n)/4

and n indicates the number of VNFs of each network slice request. The requirement

of CPU resources is uniformly distributed in U [2 ·102,2 ·103], and the requirement

of bandwidth resources is set to the uniform distribution U [5 ·102,3 ·103]. And the

Time-to-Live (TTL) of each network slice request is uniformly sampled from the

distribution U [10,103].

To implement the proposed algorithms for the energy-aware NSDP, the sizes of

the LSTM hidden layer and embedding layer are set to 128 respectively. The ADAM

optimizer [138] is employed to update the parameters θ of the policy network with a

learning rate 10−2, and β1 = 0.9, β2 = 0.999. Moreover, the discount factor γ is set

to 0.9 and the penalty parameter φ is adopted with 106. The learning parameter β of

the baseline estimator is set to 0.9. The parameters of energy consumption aδ and zδ

are both given as 1. Besides, the switching energy cost of host nodes and forwarding

nodes are set to 50 and 10, respectively. The basic energy consumption of host nodes

is set to 50, and the maximum time units of the simulation is 103. The performance

of the proposed algorithms are evaluated under different batch sizes K and iteration

times I. Specifically, the value of K is respectively set to 8,16,32,64,128,256,512.

And the value of I is given as 10,20,30,40,50,60,70, respectively.

Additionally, two comparison algorithms using the NodeRank algorithm and the

GCN architecture are validated with the same set of network slice requests to evaluate

the effectiveness of the proposed model. For the GCN model, we use the same training

5.6 Performance Evaluation 133

a. b.

Fig. 5.6 Energy efficiency with different iteration times of the batch size K = 32: a.
Energy efficiency under different time unit; b. Average energy efficiency for 1000 time
units.

parameters as those of the proposed model, specifically, its hidden units are also set to

128, and the learning rate and discount factor are given as the same value 10−2 and

0.9, respectively.

The simulations in the present work are executed on a laptop with an Intel Core

i7 CPU at 2.50 GHz with 32 GB of RAM. And the models are trained on a NVIDIA

RTX A3000 GPU with CUDA 10.1 to enhance the computational efficiency. The DRL

environments are built with Python 3.7 and PyTorch 1.6.

5.6.2 Evaluations Results

Firstly, the performance is investigated under different iteration times with the same

value of K = 32. The energy efficiency changing over time units is shown in Fig.

5.6-a under different iteration times, where it is reduced as the time units increase

since more energy is consumed over time. Besides, the energy efficiency rises as the

iteration times increase. Because the model can be optimized more thoroughly over

larger iteration times and the optimal policy with maximum reward has a great chance

5.6 Performance Evaluation 134

a. b.

Fig. 5.7 Resource utilization ratios with different iteration times of the batch size
K = 32: a. Node utilization ratio under different time unit; b. Link utilization ratio
under different time unit.

of being selected. The average energy efficiency of each iteration time for 1000 time

units is also illustrated in Fig. 5.6-b.

Furthermore, the utilization ratios of physical resources are shown in Fig. 5.7 under

different iteration times with K = 32. Fig. 5.7-a shows that the node utilization ratio is

enhanced over time before the time unit of 200 due to the increment of the number of

physical nodes hosting VNFs. Afterwards, it gradually decreases with the increase

of time units because the use of CPU resources is less than that of release over time.

Besides, the node utilization ratio for different iteration times has a similar trend since

the consumed CPU resources are the amount of the resources required by the network

slice requests. Additionally, in Fig. 5.7-b, the link utilization ratio gradually decreases

with the increase of iteration times from the overall trends. The shortest physical paths

can be more likely to be found as the quality of design policies enhances when the

iteration times are increased. The calculation of the energy efficiency is related to the

link occupancy, and it can be improved with the efficient utilization of physical link

resources.

Fig. 5.8-a shows the execution time of deploying a network slice request with

different iteration times of the batch size of K = 32. Obviously, the execution time

5.6 Performance Evaluation 135

a. b.

Fig. 5.8 Execution time with different iteration times of the batch size K = 32: a.
Execution time of deploying a network slice request under different time unit; b.
Average execution time for 1000 time units.

generally rises with the increment of the iterations even though some exceptions exist.

It gradually increases over time units since the network slice requests that failed to be

deployed will try again after the physical resources occupied by the expired requests

are released. In addition, the network slice requests with a relatively large number

of VNFs may have more complex topological attributes and need more time to be

deployed, they are more likely to be deployed successfully only when the physical

network is idle after resources are released. The average execution time with different

iteration times is shown in Fig. 5.8-b. As can be seen that the average execution time

under the iteration time of 70 is more 6% than that under the iteration time of 60,

however, its energy efficiency is not as good as that of 60 from Fig. 5.6. Thus, the

iteration time is selected as 60 to improve the energy efficiency.

Moreover, the performance can be validated under different batch sizes. From

Fig. 5.8, it can be seen that the execution time is shortest when the iteration time

I equals to 10. To save the simulation time, we set I as 10 when the differences

among various batch sizes are investigated. Specifically, from Fig. 5.9-a, the energy

efficiency increases as the increment of batch sizes when K is less than 128. Generally,

within a specific range of batch size, the quality of solutions is increased as the batch

5.6 Performance Evaluation 136

size increases since the ascending direction of the policy gradient is more accurate

and its oscillation is minor. And a small batch usually introduces more randomness,

which may make achieving convergence to better solutions more difficult. In addition,

the average energy efficiency for 1000 time units is illustrated in Fig. 5.9-b, where

the energy efficiency remains in a similar range when the batch size K is set to 128

and 256, respectively, at I = 10. To further investigate their differences, the energy

efficiencies of K = 128 and K = 256 are evaluated again when the iteration times I are

set to 60, which is shown in Fig. 5.10. As can be found that the energy consumption

of K = 256 is slightly more efficient than that of K = 128.

Fig. 5.11 shows the resource utilization of physical links with different batch sizes

under I = 10. We can see that less link resources are consumed as batch sizes increase,

which makes the deployment of network slice requests more efficient. Because small

batch sizes may make the loss function oscillate and cause it a slow convergence

to optimal solutions. Besides, it can be seen that the link utilization ratios with the

batch sizes of 256 and 512 are similar. Regarding the execution time of deploying a

network slice request, it is shown in Fig. 5.12-a when the iteration times equal to 10 for

different batch sizes. The execution time increases with the increment of batch sizes.

In particular, the execution time of the batch size K = 512 is dramatically increased

after the time unit of 900. In Fig. 5.12-b, the average execution time for 1000 time

units when K = 512 is 2.81 times as large as that of the batch size K = 256. However,

from Figs. 5.9-a and 5.11, it can be seen that the results of the energy efficiency and

the link utilization ratio are not enhanced significantly when the batch size is set to

512. Hence, the batch size is chosen as 256 to obtain a relatively efficient energy

consumption and enhance the execution efficiency under trade-offs.

Furthermore, the performance of the EA-NSDP can be verified by comparing that

of the GCN and NodeRank algorithms with respect to the cumulative acceptance ratio,

the energy efficiency and resource utilization of physical nodes and links, when the

batch size is set to 256 and the iteration time is given as 60. Regarding the acceptance

ratio in Fig. 5.13, it can be observed that the algorithm of the EA-NSDP performs

better than the other two comparison algorithms. For example, at 800 time unit, the

5.6 Performance Evaluation 137

a. b.

Fig. 5.9 Energy efficiency with different batch sizes of the iteration time I = 10: a.
Energy efficiency under different time unit; b. Average energy efficiency for 1000 time
units.

0 200 400 600 800 1000
Time Unit

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

E
ne

rg
y

E
ff

ic
ie

nc
y

K=128 I=60
K=256 I=60

Fig. 5.10 Energy efficiency with the batch sizes K = 128,256 of the iteration time
I = 60.

5.6 Performance Evaluation 138

0 200 400 600 800 1000
Time Unit

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Li
nk

 U
til

iz
at

io
n

R
at

io

BatchSize=8
BatchSize=16
BatchSize=32
BatchSize=64
BatchSize=128
BatchSize=256
BatchSize=512

Fig. 5.11 Resource utilization ratio of the physical link with different batch sizes of
the iteration time I = 10 under different time unit.

b.a.

Fig. 5.12 Execution time with different batch sizes of the iteration time I = 10: a.
Execution time of deploying a network slice request under different time unit; b.
Average execution time for 1000 time units.

5.6 Performance Evaluation 139

0 200 400 600 800 1000
Time Unit

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
um

ul
at

iv
e

Ac
ce

pt
an

ce
 R

at
io

EA-NSDP
GCN
NodeRank

Fig. 5.13 Cumulative acceptance ratio: a comparison between the proposed algorithms
of the EA-NSDP and two exiting algorithms GCN and NodeRank.

0 200 400 600 800 1000
Time Unit

0.5

0.6

0.7

0.8

0.9

E
ne

rg
y

E
ff

ic
ie

nc
y

EA-NSDP
GCN
NodeRank

Fig. 5.14 Energy efficiency: a comparison between the proposed algorithms of the
EA-NSDP and two exiting algorithms GCN and NodeRank.

5.6 Performance Evaluation 140

0 200 400 600 800 1000
Time Unit

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
od

e
U

til
iz

at
io

n

EA-NSDP
GCN
NodeRank

Fig. 5.15 Resource utilization ratio: a comparison between the proposed algorithms of
the EA-NSDP and two exiting algorithms GCN and NodeRank.

0 200 400 600 800 1000
Time Unit

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Li
nk

 U
til

iz
at

io
n

EA-NSDP
GCN
NodeRank

Fig. 5.16 Resource utilization ratio: a comparison between the proposed algorithms of
the EA-NSDP and two exiting algorithms GCN and NodeRank.

5.6 Performance Evaluation 141

0 200 400 600 800 1000
Time Unit

0
5

10
15
20
25
30
35
40
45
50
55
60

E
xe

cu
tio

n
Ti

m
e

(s
)

EA-NSDP
GCN
NodeRank

Fig. 5.17 Execution time: a comparison between the proposed algorithms of the
EA-NSDP and two exiting algorithms GCN and NodeRank.

cumulative acceptance ratio of the proposed algorithm is more 9.64% and 24.93%

than that of the GCN and NodeRank algorithms, respectively. Because its candidate

solutions are first sampled by the pointer network of a LSTM layer with the attention

mechanism, which leverages the historical experience to guide the policy network

to find the feasible solutions. On this basis, the near optimal design policy with

maximum reward can be obtained through an effective search strategy, which increases

the probability of successful mappings of slice requests. Besides, the cumulative

acceptance rate of network slice requests continues to increase over time. The reason

is that more slice requests are mapped successfully onto the physical network over

time even though some of them once failed to be deployed in the early stage.

Fig. 5.14 illustrates the impact of different algorithms on the energy consumption

of mapping network slice requests. Generally, the performance of algorithms based on

RL approaches is better than that based on heuristic algorithms. Heuristic algorithms

usually lack a holistic consideration of global characteristics of the physical network,

which may cause the failure and inefficiency of VNFs mapping. Specifically, the

energy consumption of the EA-NSDP and GCN algorithms is more efficient than

that of the NodeRank algorithm. Because the NodeRank algorithm cannot learn the

characteristics of the physical network by an intelligent agent as RL-based algorithms,

5.7 Conclusions 142

and it only mapped the VNFs according to the rank of local importance of the attributes

of physical nodes. Besides, the performance of the EA-NSDP algorithm is better than

that of the GCN algorithm in terms of the energy efficiency. The GCN algorithm failed

to leverage the previous experience to search for candidate solutions despite that it

considered the attention mechanism to map VNFs by computing the importance of the

adjacent nodes to a certain physical node.

In Fig. 5.15, the resource utilization of physical nodes is investigated compared

to the GCN and NodeRank algorithms. In the early stage, the resource utilization of

physical nodes increases over time since as many network slice requests are tried to

deploy onto the physical network, afterwards, it decreases gently when the resources

occupied by the VNFs in the expired network slice requests are gradually released. In

addition, it can be seen that the EA-NSDP algorithm performs better than the other

two algorithms most of the time in terms of the resource utilization of physical nodes.

The trend of the resource utilization of physical links remains correspondingly flat in

Fig. 5.16. Because the released resources and the reallocated resources of physical

links keep relatively balanced. The resource utilization of physical links of the EA-

NSDP algorithm is lower than that of the other two since the proposed algorithm can

search the solution with shortest physical paths from the candidate ones. The average

execution time of the three algorithms for 1000 time units is shown in Fig. 5.17. The

overall execution time of the EA-NSDP algorithm is relatively longer than the other

two algorithms since it takes more time to sample candidate solutions by the policy

network and determine the final solution by a set of search processes. In addition,

it can be seen that the heuristic NodeRank algorithm requires the least amount of

execution time.

5.7 Conclusions

In this chapter, we present an energy-aware network slicing design problem to im-

prove the energy efficiency of the deployment of network slices while improving the

acceptance ratio. Specifically, an energy-aware objective function of the problem is de-

signed in terms of the energy consumption of physical nodes and links. The proposed

5.7 Conclusions 143

problem is formulated as a MDP problem with a reward function considering the link

energy consumption. Moreover, the learning network is trained by leveraging the A2C

algorithm architecture, where the parameterized policy network is regarded as an actor

to sample candidate solutions under the guidance of a critic network. In particular, the

policy network is modeled based on the pointer network architecture with the attention

mechanism. The parameters of the policy network are optimized using the policy

gradient mechanism. A search strategy is presented to update the policy network and

determine the final design solution. Besides, compared to two existing RL-based and

heuristic approaches, the simulation results show that the proposed algorithm performs

better in terms of energy efficiency and cumulative acceptance ratio. We found that

the energy efficiency of the proposed algorithm can be enhanced to 69.7%, while the

accumulative acceptance ratio can be achieved at 99%. Overall, the present work may

further pave the way of optimizing the energy efficiency of network slices using DRL

in 5G or beyond technology.

In the next chapter, a comprehensive conclusion of the thesis and a brief introduc-

tion to future works are stated.

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In the present thesis, the network slicing design problem is proposed and stated in

Chapter 1, and the motivation for investigating the problem is also introduced. The

problem is studied with different design objectives for deploying various network slices

onto a shared physical infrastructure, which can satisfy diverse service requirements

of different use cases and enhance resource and energy efficiency.

Chapter 2 gives a comprehensive introduction to the technical background of

network slicing research. Specifically, the fundamental concepts in the End-to-End

network slicing technology are introduced, including the virtualization technique, the

differences between the virtual machines and containers, the basic knowledge of the

Network Function Virtualization and Software Defined Networking techniques, the

cloud and edge computing, and the isolation issues in network slices. The principles

for implementing network slices are also stated, and the overall framework of network

slices is introduced. Besides, the detailed characteristics of different service application

scenarios are given, especially the 5G use cases: eMBB, uRLLC and mMTC. In

addition, the proposed network slicing design problem is derived from two prerequisite

techniques: the Virtual Network Embedding and the Service Function Chaining

Placement. And the two techniques are introduced. Moreover, two critical enabling

6.1 Conclusions 145

technologies for solving the network slicing design problem are illustrated, including

the optimization methods and the deep reinforcement learning approaches.

In Chapter 3, a basic design policy of network slicing is proposed to deploy

different network slices in various 5G use cases, aiming to guarantee them coexist in

the same physical network. Firstly, the network slicing design problem is modeled

as an ILP problem with multiple objectives for eMBB, uRLLC and mMTC network

slices under the constraints of limited resources. And a heuristic algorithm is proposed

to solve the problem as a trade-off between the computational cost and the quality

of solutions since the formulated problem is a NP-hard problem. As a result, the

average occupancy ratios of the physical nodes and links illustrate that the proposed

algorithm can ensure a balanced utilization of the physical network. With the help

particle iterations, the resource efficiency of the proposed algorithm can achieve better

performance compared to existing approaches.

Moreover, different service requirements of network slices usually need to be

satisfied in various application scenarios. The traffic demands in the network may

fluctuate or burst over a period of time. Thus, in Chapter 4, a service-aware design

policy is proposed for various use cases, which can deploy network slices and satisfy

their resource requirements under the situation that the traffic demands fluctuate in the

network. The proposed service-aware problem is formulated as a robust optimization

model with the uncertain traffic demands, which allows network slices to provide

robust communication services. Using the ILP, the present optimization model can be

solved for small scale networks, and the impact on the objective function is verified in

terms of different values of robustness coefficients. Besides, a heuristic algorithm is

proposed to achieve efficient computation, and the simulation results show that the

present algorithms perform better in resource efficiency than the existing algorithm.

In addition, the energy consumption in the network has not been thoroughly con-

sidered during the deployment processes of network slices. Therefore, in Chapter 5,

an energy-aware design policy is studied to guarantee efficient energy consumption

while improving the number of network slices deployed onto the physical network.

Specifically, an energy-aware objective is designed according to the energy consump-

6.2 Future Works 146

tion of the physical nodes and links. The proposed energy-aware problem is modeled

as a MDP problem with a reward function of the energy consumption of physical

network links. Further, the problem is solved by proposing a design policy based on

the DRL approach. The learning network is trained by leveraging the Advantaged

Actor-Critic algorithm. The policy network is built as an actor network to sample

design policies based on the pointer network architecture of RNNs structure with

an attention mechanism, and its parameters are optimized using the policy gradient

method. A search strategy is proposed to generate final design solutions and refine the

parameters of the policy network. The simulation results validate that the performance

of the proposed algorithms is better than those of two exiting algorithms in terms of

the energy efficiency and cumulative acceptance ratio.

6.2 Future Works

Although this thesis covers some critical issues in the network slicing design problem,

there are still significant issues that have not been considered in the present thesis. In

the section, some insights and research directions for future works are stated.

5G networks are usually dynamic, which can lead to varying service requirements.

Thus, it is necessary to solve the network slicing design problem in dynamic scenarios.

However, the proposed design policies in this thesis are static, which are not effective

to deploy network slices dynamically.

One research direction would be investigating a reconfiguration scheme of network

slices. A reconfiguration scheme can migrate the previously deployed network slices

and reallocate the configured resources. It can utilize newly added resources for

accepting more network slices, and the resources can be utilized more efficiently

compared to static design policies. It can also greatly simplify the design, management

and deployment process of network slices and enhance the flexibility and adaptation

of the system for supporting services in dynamic situations [96]. Thus, the design

policies presented in Chapters 3, 4 and 5 can be further improved when network slices

can be reconfigured according to the variations in service requirements.

6.2 Future Works 147

Another research direction would be the study of a design policy of network

slicing based on a prediction mechanism. In this thesis, the network resources of

different network slices are allocated statically according to an expected amount

without considering the future of network slice requests and their resource requirements.

Besides, the fluctuations of traffic demands in Chapter 4 are modeled based on a simple

prediction mechanism, ignoring the prediction of future variations according to the

previous resource allocations. Thus, the impact of deploying a specific network slice

on future network slice requests and the prediction of resource requirements based on

historical experience have not been verified in a dynamic environment. Generally, a

prediction mechanism can be extracted from a large amount of historical data. The

machine learning technologies are appropriate to be applied to exploit the principles

behind raw data and derive predictions of new network slice requests. To sum up,

it will be helpful to design policies of network slicing by investigating a prediction

mechanism of future network slice requests, for instance, the work proposed in [99].

Additionally, it is worth exploring a feasible security mechanism in the design

policy of network slicing. The security challenges for network slicing mainly contain

inter-slice security and intra-slice security. To be specific, the inter-slice security refers

to the security issues related to other network slices, and intra-slice security is focused

on the security aspects of a network slice by itself [139]. An inter-security problem can

occur when a dedicated device is only authorized to access a specific network slice but

tries to obtain access to other unauthorized ones. Besides, an intra-security issue may

damage a network slice by attacking the service running on it. The more significant

number of virtual network functions shared by different network slices may lead to a

higher security vulnerability in a specific network slice. Thus, a proper isolation level

for network slices is essential to carry out their implementations, which can provide

a protection mechanism to defend individual network slices. Isolation of network

slices can be performed in two ways: physical isolation and virtual machine-based

isolation, which consists of different attributes, such as VNFs isolation, traffic isolation,

processing isolation and storage isolation. Providing a correct and required isolation

6.2 Future Works 148

level for deploying network slices is one of the most difficult challenges for the design

policy of network slicing. Thus, it is a topic of significant research value.

References

[1] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and

Hannu Flinck. Network slicing and softwarization: A survey on principles, en-

abling technologies, and solutions. IEEE Communications Surveys & Tutorials,

20(3):2429–2453, 2018.

[2] Shunliang Zhang. An overview of network slicing for 5g. IEEE Wireless

Communications, 26(3):111–117, 2019.

[3] Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool Asal. Nfv:

state of the art, challenges, and implementation in next generation mobile

networks (vepc). IEEE network, 28(6):18–26, 2014.

[4] Jose Ordonez-Lucena, Pablo Ameigeiras, Diego Lopez, Juan J Ramos-Munoz,

Javier Lorca, and Jesus Folgueira. Network slicing for 5g with sdn/nfv: Con-

cepts, architectures, and challenges. IEEE Communications Magazine, 55(5):80–

87, 2017.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,

et al. A view of cloud computing. Communications of the ACM, 53(4):50–58,

2010.

[6] Spyridon Vassilaras, Lazaros Gkatzikis, Nikolaos Liakopoulos, Ioannis N Sti-

akogiannakis, Meiyu Qi, Lei Shi, Liu Liu, Merouane Debbah, and Georgios S

Paschos. The algorithmic aspects of network slicing. IEEE Communications

Magazine, 55(8):112–119, 2017.

References 150

[7] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A com-

prehensive survey. IEEE Transactions on Network and Service Management,

13(3):518–532, 2016.

[8] NGMN Alliance. Description of network slicing concept. NGMN 5G P, 1(1),

2016.

[9] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De Meer,

and Xavier Hesselbach. Virtual network embedding: A survey. IEEE Commu-

nications Surveys & Tutorials, 15(4):1888–1906, 2013.

[10] Muntasir Raihan Rahman and Raouf Boutaba. Svne: Survivable virtual net-

work embedding algorithms for network virtualization. IEEE Transactions on

Network and Service Management, 10(2):105–118, 2013.

[11] Marouen Mechtri, Chaima Ghribi, Oussama Soualah, and Djamal Zeghlache.

Nfv orchestration framework addressing sfc challenges. IEEE Communications

Magazine, 55(6):16–23, 2017.

[12] Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. A scalable algorithm

for the placement of service function chains. IEEE transactions on network and

service management, 13(3):533–546, 2016.

[13] Deval Bhamare, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey

on service function chaining. Journal of Network and Computer Applications,

75:138–155, 2016.

[14] Matias Richart, Javier Baliosian, Joan Serrat, and Juan-Luis Gorricho. Resource

slicing in virtual wireless networks: A survey. IEEE Transactions on Network

and Service Management, 13(3):462–476, 2016.

[15] David Marshall. Understanding full virtualization, paravirtualization, and

hardware assist. VMWare White Paper, 17:725, 2007.

References 151

[16] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based

architecture for intrusion detection. In Ndss, volume 3, pages 191–206. Citeseer,

2003.

[17] James Turnbull. The Docker Book: Containerization is the new virtualization.

James Turnbull, 2014.

[18] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE

Cloud Computing, 1(3):81–84, 2014.

[19] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. ACM SIGOPS operating systems review, 37(5):164–177, 2003.

[20] Carl A Waldspurger. Memory resource management in vmware esx server.

ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[21] Roberto Morabito, Jimmy Kjällman, and Miika Komu. Hypervisors vs.

lightweight virtualization: a performance comparison. In 2015 IEEE Inter-

national Conference on Cloud Engineering, pages 386–393. IEEE, 2015.

[22] Mehmet Ersue. Etsi nfv management and orchestration-an overview. Presenta-

tion at the IETF, 88, 2013.

[23] Wei Yang and Carol Fung. A survey on security in network functions virtualiza-

tion. In 2016 IEEE NetSoft Conference and Workshops (NetSoft), pages 15–19.

IEEE, 2016.

[24] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-

teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined

networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76,

2014.

[25] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. Survey of

consistent software-defined network updates. IEEE Communications Surveys &

Tutorials, 21(2):1435–1461, 2018.

References 152

[26] Xin Li, Mohammed Samaka, H Anthony Chan, Deval Bhamare, Lav Gupta,

Chengcheng Guo, and Raj Jain. Network slicing for 5g: Challenges and

opportunities. IEEE Internet Computing, 21(5):20–27, 2017.

[27] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines.

5g network slicing using sdn and nfv: A survey of taxonomy, architectures and

future challenges. Computer Networks, 167:106984, 2020.

[28] Alisa Devlic, Ali Hamidian, Deng Liang, Mats Eriksson, Antonio Consoli, and

Jonas Lundstedt. Nesmo: Network slicing management and orchestration frame-

work. In 2017 IEEE International Conference on Communications Workshops

(ICC Workshops), pages 1202–1208. IEEE, 2017.

[29] Amal Kammoun, Nabil Tabbane, Gladys Diaz, Abdulhalim Dandoush, and

Nadjib Achir. End-to-end efficient heuristic algorithm for 5g network slic-

ing. In 2018 IEEE 32nd International Conference on Advanced Information

Networking and Applications (AINA), pages 386–392. IEEE, 2018.

[30] Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual

network embedding: substrate support for path splitting and migration. ACM

SIGCOMM Computer Communication Review, 38(2):17–29, 2008.

[31] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. Vineyard:

Virtual network embedding algorithms with coordinated node and link mapping.

IEEE/ACM Transactions on networking, 20(1):206–219, 2011.

[32] Xiang Cheng, Sen Su, Zhongbao Zhang, Kai Shuang, Fangchun Yang, Yan Luo,

and Jie Wang. Virtual network embedding through topology awareness and

optimization. Computer Networks, 56(6):1797–1813, 2012.

[33] Haipeng Yao, Sihan Ma, Jingjing Wang, Peiying Zhang, Chunxiao Jiang, and

Song Guo. A continuous-decision virtual network embedding scheme rely-

ing on reinforcement learning. IEEE Transactions on Network and Service

Management, 17(2):864–875, 2020.

References 153

[34] Zhongxia Yan, Jingguo Ge, Yulei Wu, Liangxiong Li, and Tong Li. Automatic

virtual network embedding: A deep reinforcement learning approach with graph

convolutional networks. IEEE Journal on Selected Areas in Communications,

38(6):1040–1057, 2020.

[35] Shidong Zhang, Chao Wang, Junsan Zhang, Youxiang Duan, Xinhong You,

and Peiying Zhang. Network resource allocation strategy based on deep re-

inforcement learning. IEEE Open Journal of the Computer Society, 1:86–94,

2020.

[36] Mahdi Dolati, Seyedeh Bahereh Hassanpour, Majid Ghaderi, and Ahmad Khon-

sari. Deepvine: Virtual network embedding with deep reinforcement learning.

In IEEE INFOCOM 2019-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pages 879–885. IEEE, 2019.

[37] Ruben Solozabal, Josu Ceberio, Aitor Sanchoyerto, Luis Zabala, Bego Blanco,

and Fidel Liberal. Virtual network function placement optimization with deep

reinforcement learning. IEEE Journal on Selected Areas in Communications,

38(2):292–303, 2019.

[38] Yansen Xu and Ved P Kafle. An availability-enhanced service function chain

placement scheme in network function virtualization. Journal of Sensor and

Actuator Networks, 8(2):34, 2019.

[39] Meng Wang, Bo Cheng, and Junliang Chen. An efficient service function

chaining placement algorithm in mobile edge computing. ACM Transactions

on Internet Technology (TOIT), 20(4):1–21, 2020.

[40] Insun Jang, Dongeun Suh, Sangheon Pack, and György Dán. Joint optimization

of service function placement and flow distribution for service function chaining.

IEEE Journal on Selected Areas in Communications, 35(11):2532–2541, 2017.

[41] Mohammad Ali Khoshkholghi, Michel Gokan Khan, Kyoomars Al-

izadeh Noghani, Javid Taheri, Deval Bhamare, Andreas Kassler, Zhengzhe

Xiang, Shuiguang Deng, and Xiaoxian Yang. Service function chain placement

References 154

for joint cost and latency optimization. Mobile Networks and Applications,

25(6):2191–2205, 2020.

[42] Marwa A Abdelaal, Gamal A Ebrahim, and Wagdy R Anis. Efficient placement

of service function chains in cloud computing environments. Electronics,

10(3):323, 2021.

[43] Racha Gouareb, Vasilis Friderikos, and A Hamid Aghvami. Delay sensitive

virtual network function placement and routing. In 2018 25th international

conference on telecommunications (ICT), pages 394–398. IEEE, 2018.

[44] Jalal Khamse-Ashari, Gamini Senarath, Irem Bor-Yaliniz, and Halim

Yanikomeroglu. An agile and distributed mechanism for inter-domain net-

work slicing in next-generation mobile networks. IEEE Transactions on Mobile

Computing, 2021.

[45] Francesca Fossati, Stefano Moretti, Patrice Perny, and Stefano Secci. Multi-

resource allocation for network slicing. IEEE/ACM Transactions on Networking,

28(3):1311–1324, 2020.

[46] Hassan Halabian. Distributed resource allocation optimization in 5g virtualized

networks. IEEE Journal on Selected Areas in Communications, 37(3):627–642,

2019.

[47] Mohammad M Tajiki, Stefano Salsano, Luca Chiaraviglio, Mohammad Shojafar,

and Behzad Akbari. Joint energy efficient and qos-aware path allocation and

vnf placement for service function chaining. IEEE Transactions on Network

and Service Management, 16(1):374–388, 2018.

[48] Urmila M Diwekar. Introduction to applied optimization, volume 22. Springer

Nature, 2020.

[49] Martin Aruldoss, T Miranda Lakshmi, and V Prasanna Venkatesan. A survey on

multi criteria decision making methods and its applications. American Journal

of Information Systems, 1(1):31–43, 2013.

References 155

[50] Gong Mao-Guo, Jiao Li-Cheng, Yang Dong-Dong, and Ma Wen-Ping. Evolu-

tionary multi-objective optimization algorithms. 2009.

[51] Mark Voorneveld. Characterization of pareto dominance. Operations Research

Letters, 31(1):7–11, 2003.

[52] Antonio López Jaimes, Saúl Zapotecas Martınez, Carlos A Coello Coello, et al.

An introduction to multiobjective optimization techniques. Optimization in

Polymer Processing, pages 29–57, 2009.

[53] Carlos A Coello Coello. A comprehensive survey of evolutionary-based multiob-

jective optimization techniques. Knowledge and Information systems, 1(3):269–

308, 1999.

[54] H Monsef, M Naghashzadegan, Ali Jamali, and Raziyeh Farmani. Comparison

of evolutionary multi objective optimization algorithms in optimum design of

water distribution network. Ain Shams Engineering Journal, 10(1):103–111,

2019.

[55] CA Coello Coello and Maximino Salazar Lechuga. Mopso: A proposal for

multiple objective particle swarm optimization. In Proceedings of the 2002

Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol-

ume 2, pages 1051–1056. IEEE, 2002.

[56] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.

Swarm intelligence, 1(1):33–57, 2007.

[57] Bram L Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. A practical guide to

robust optimization. Omega, 53:124–137, 2015.

[58] Zukui Li and Christodoulos A Floudas. Robust counterpart optimization: Un-

certainty sets, formulations and probabilistic guarantees. In proceedings of the

6th conference on foundations of computer-aided process operations, Savannah

(Georgia), 2012.

References 156

[59] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimiza-

tion, volume 1. Springer, 2011.

[60] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

Neural combinatorial optimization with reinforcement learning. arXiv preprint

arXiv:1611.09940, 2016.

[61] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances

in neural information processing systems, 28, 2015.

[62] Qiang Liu and Tao Han. When network slicing meets deep reinforcement

learning. In Proceedings of the 15th International Conference on emerging

Networking EXperiments and Technologies, pages 29–30, 2019.

[63] Haozhe Wang, Yulei Wu, Geyong Min, Jie Xu, and Pengcheng Tang. Data-

driven dynamic resource scheduling for network slicing: A deep reinforcement

learning approach. Information Sciences, 498:106–116, 2019.

[64] Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Deep reinforcement

learning: an overview. In Proceedings of SAI Intelligent Systems Conference,

pages 426–440. Springer, 2016.

[65] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-

thony Bharath. A brief survey of deep reinforcement learning. arXiv preprint

arXiv:1708.05866, 2017.

[66] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[67] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-

sentations using rnn encoder-decoder for statistical machine translation. arXiv

preprint arXiv:1406.1078, 2014.

References 157

[68] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network. Physica D: Nonlinear Phenomena,

404:132306, 2020.

[69] Zidong Zhang, Dongxia Zhang, and Robert C Qiu. Deep reinforcement learning

for power system applications: An overview. CSEE Journal of Power and

Energy Systems, 6(1):213–225, 2019.

[70] Forest Agostinelli, Guillaume Hocquet, Sameer Singh, and Pierre Baldi. From

reinforcement learning to deep reinforcement learning: An overview. Braver-

man readings in machine learning. key ideas from inception to current state,

pages 298–328, 2018.

[71] Wuhui Chen, Xiaoyu Qiu, Ting Cai, Hong-Ning Dai, Zibin Zheng, and Yan

Zhang. Deep reinforcement learning for internet of things: A comprehensive

survey. IEEE Communications Surveys & Tutorials, 2021.

[72] Richard Bellman. A markovian decision process. Journal of mathematics and

mechanics, pages 679–684, 1957.

[73] Richard Bellman. On the theory of dynamic programming. Proceedings of the

National Academy of Sciences of the United States of America, 38(8):716, 1952.

[74] Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The

Journal of Machine Learning Research, 4:1107–1149, 2003.

[75] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[76] Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learning.

Springer Science & Business Media, 2011.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

References 158

[78] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning

with double q-learning. In Proceedings of the AAAI conference on artificial

intelligence, volume 30, 2016.

[79] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and

Nando Freitas. Dueling network architectures for deep reinforcement learning.

In International conference on machine learning, pages 1995–2003. PMLR,

2016.

[80] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping

Wang, Ying-Chang Liang, and Dong In Kim. Applications of deep reinforce-

ment learning in communications and networking: A survey. IEEE Communi-

cations Surveys & Tutorials, 21(4):3133–3174, 2019.

[81] Chen Qi, Yuxiu Hua, Rongpeng Li, Zhifeng Zhao, and Honggang Zhang.

Deep reinforcement learning with discrete normalized advantage functions

for resource management in network slicing. IEEE Communications Letters,

23(8):1337–1341, 2019.

[82] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[83] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

[84] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural

information processing systems, 12, 1999.

[85] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[86] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,

Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

References 159

chronous methods for deep reinforcement learning. In International conference

on machine learning, pages 1928–1937. PMLR, 2016.

[87] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. Deterministic policy gradient algorithms. In International

conference on machine learning, pages 387–395. PMLR, 2014.

[88] Yizhen Xu, Zhengyang Zhao, Peng Cheng, Zhuo Chen, Ming Ding, Branka

Vucetic, and Yonghui Li. Constrained reinforcement learning for resource

allocation in network slicing. IEEE Communications Letters, 25(5):1554–1558,

2021.

[89] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon

Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.

Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,

2018.

[90] Rongpeng Li, Chujie Wang, Zhifeng Zhao, Rongbin Guo, and Honggang Zhang.

The lstm-based advantage actor-critic learning for resource management in

network slicing with user mobility. IEEE Communications Letters, 24(9):2005–

2009, 2020.

[91] Pavel Dvořák, Eduard Eiben, Robert Ganian, Dušan Knop, and Sebastian

Ordyniak. Solving integer linear programs with a small number of global

variables and constraints. arXiv preprint arXiv:1706.06084, 2017.

[92] David G Andersen. Theoretical approaches to node assignment. 2002.

[93] Tarik Taleb, Badr Mada, Marius-Iulian Corici, Akihiro Nakao, and Hannu

Flinck. Permit: Network slicing for personalized 5g mobile telecommunications.

IEEE Communications Magazine, 55(5):88–93, 2017.

[94] Xuan Zhou, Rongpeng Li, Tao Chen, and Honggang Zhang. Network slicing as

a service: enabling enterprises’ own software-defined cellular networks. IEEE

Communications Magazine, 54(7):146–153, 2016.

References 160

[95] Wanqing Guan, Xiangming Wen, Luhan Wang, Zhaoming Lu, and Yidi Shen.

A service-oriented deployment policy of end-to-end network slicing based on

complex network theory. IEEE access, 6:19691–19701, 2018.

[96] Gang Wang, Gang Feng, Tony QS Quek, Shuang Qin, Ruihan Wen, and Wei

Tan. Reconfiguration in network slicing—optimizing the profit and performance.

IEEE Transactions on Network and Service Management, 16(2):591–605, 2019.

[97] EL Hocine Bouzidi, Abdelkader Outtagarts, Abdelkrim Hebbar, Rami Langar,

and Raouf Boutaba. Online based learning for predictive end-to-end network

slicing in 5g networks. In ICC 2020-2020 IEEE International Conference on

Communications (ICC), pages 1–7. IEEE, 2020.

[98] Wesley da Silva Coelho, Amal Benhamiche, Nancy Perrot, and Stefano Secci.

On the impact of novel function mappings, sharing policies, and split settings

in network slice design. In 2020 16th International Conference on Network and

Service Management (CNSM), pages 1–9. IEEE, 2020.

[99] Shan Yin, Zhan Zhang, Chen Yang, Yaqin Chu, and Shanguo Huang. Prediction-

based end-to-end dynamic network slicing in hybrid elastic fiber-wireless net-

works. Journal of Lightwave Technology, 39(7):1889–1899, 2020.

[100] Uta Priss. Formal concept analysis in information science. Annu. Rev. Inf. Sci.

Technol., 40(1):521–543, 2006.

[101] Russ C Eberhart and Yuhui Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. In Proceedings of the 2000 congress

on evolutionary computation. CEC00 (Cat. No. 00TH8512), volume 1, pages

84–88. IEEE, 2000.

[102] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network

flows. Mathematical programming, 98(1):49–71, 2003.

References 161

[103] Stefano Coniglio, Arie Koster, and Martin Tieves. Data uncertainty in virtual

network embedding: robust optimization and protection levels. Journal of

Network and Systems Management, 24(3):681–710, 2016.

[104] Andreas Baumgartner, Thomas Bauschert, Fabio D’Andreagiovanni, and

Varun S Reddy. Towards robust network slice design under correlated demand

uncertainties. In 2018 IEEE International Conference on Communications

(ICC), pages 1–7. IEEE, 2018.

[105] Ruihan Wen, Gang Feng, Jianhua Tang, Tony QS Quek, Gang Wang, Wei Tan,

and Shuang Qin. On robustness of network slicing for next-generation mobile

networks. IEEE Transactions on Communications, 67(1):430–444, 2018.

[106] Thomas Bauschert, Christina Büsing, Fabio D’Andreagiovanni, Arie MCA

Koster, Manuel Kutschka, and Uwe Steglich. Network planning under de-

mand uncertainty with robust optimization. IEEE Communications Magazine,

52(2):178–185, 2014.

[107] Peng Yang, Xing Xi, Kun Guo, Tony QS Quek, Jingxuan Chen, and Xianbin

Cao. Proactive uav network slicing for urllc and mobile broadband service

multiplexing. IEEE Journal on Selected Areas in Communications, 39(10):3225–

3244, 2021.

[108] Haider D Resin Albonda and Jordi Pérez-Romero. An efficient ran slicing

strategy for a heterogeneous network with embb and v2x services. IEEE access,

7:44771–44782, 2019.

[109] Dimitris Bertsimas and David B Brown. Constructing uncertainty sets for robust

linear optimization. Operations research, 57(6):1483–1495, 2009.

[110] Sunday O Oladejo and Olabisi E Falowo. Profit-aware resource allocation for

5g sliced networks. In 2018 European Conference on Networks and Communi-

cations (EuCNC), pages 43–9. IEEE, 2018.

References 162

[111] Mojtaba Ahmadieh Khanesar, Mohammad Teshnehlab, and Mahdi Aliyari

Shoorehdeli. A novel binary particle swarm optimization. In 2007 Mediter-

ranean conference on control & automation, pages 1–6. IEEE, 2007.

[112] Joel Goh and Melvyn Sim. Robust optimization made easy with rome. Opera-

tions Research, 59(4):973–985, 2011.

[113] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski.

Sndlib 1.0—survivable network design library. Networks: An International

Journal, 55(3):276–286, 2010.

[114] Sen Su, Zhongbao Zhang, Alex X Liu, Xiang Cheng, Yiwen Wang, and Xinchao

Zhao. Energy-aware virtual network embedding. IEEE/ACM Transactions on

Networking, 22(5):1607–1620, 2014.

[115] Rongping Lin, Liu He, Shan Luo, and Moshe Zukerman. Energy-aware service

function chaining embedding in nfv networks. IEEE Transactions on Services

Computing, 2022.

[116] Anouar Rkhami, Tran Anh Quang Pham, Yassine Hadjadj-Aoul, Abdelkader

Outtagarts, and Gerardo Rubino. On the use of graph neural networks for virtual

network embedding. In 2020 International Symposium on Networks, Computers

and Communications (ISNCC), pages 1–6. IEEE, 2020.

[117] Ye Tian, Xingyi Zhang, Chao Wang, and Yaochu Jin. An evolutionary algorithm

for large-scale sparse multiobjective optimization problems. IEEE Transactions

on Evolutionary Computation, 24(2):380–393, 2019.

[118] Ramon A Gallego, Rubén Romero, and Alcir J Monticelli. Tabu search algo-

rithm for network synthesis. IEEE Transactions on Power Systems, 15(2):490–

495, 2000.

[119] Kyungjoo Suh, Sunwoo Kim, Yongjun Ahn, Seungnyun Kim, Hyungyu Ju,

and Byonghyo Shim. Deep reinforcement learning-based network slicing for

beyond 5g. IEEE Access, 2022.

References 163

[120] Taihui Li, Xiaorong Zhu, and Xu Liu. An end-to-end network slicing algorithm

based on deep q-learning for 5g network. IEEE Access, 8:122229–122240,

2020.

[121] Qiang Liu, Tao Han, Ning Zhang, and Ye Wang. Deepslicing: Deep reinforce-

ment learning assisted resource allocation for network slicing. In GLOBECOM

2020-2020 IEEE Global Communications Conference, pages 1–6. IEEE, 2020.

[122] Ying Wang, Naling Li, Peng Yu, Wenjing Li, Xuesong Qiu, Shangguang Wang,

and Mohamed Cheriet. Intelligent and collaborative orchestration of network

slices. IEEE Transactions on Services Computing, 2022.

[123] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[124] Rongpeng Li, Zhifeng Zhao, Qi Sun, I Chih-Lin, Chenyang Yang, Xianfu Chen,

Minjian Zhao, and Honggang Zhang. Deep reinforcement learning for resource

management in network slicing. IEEE Access, 6:74429–74441, 2018.

[125] Fengsheng Wei, Gang Feng, Yao Sun, Yatong Wang, Shuang Qin, and Ying-

Chang Liang. Network slice reconfiguration by exploiting deep reinforcement

learning with large action space. IEEE Transactions on Network and Service

Management, 17(4):2197–2211, 2020.

[126] Almuthanna Nassar and Yasin Yilmaz. Deep reinforcement learning for adaptive

network slicing in 5g for intelligent vehicular systems and smart cities. IEEE

Internet of Things Journal, 9(1):222–235, 2021.

[127] Yaser Azimi, Saleh Yousefi, Hashem Kalbkhani, and Thomas Kunz. Energy-

efficient deep reinforcement learning assisted resource allocation for 5g-ran

slicing. IEEE Transactions on Vehicular Technology, 2021.

References 164

[128] Yohan Kim and Hyuk Lim. Multi-agent reinforcement learning-based resource

management for end-to-end network slicing. IEEE Access, 9:56178–56190,

2021.

[129] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[130] Sen Wang, Jun Bi, Jianping Wu, Athanasios V Vasilakos, and Qilin Fan. Vne-td:

A virtual network embedding algorithm based on temporal-difference learning.

Computer Networks, 161:251–263, 2019.

[131] Martin L Puterman. Markov decision processes. Handbooks in operations

research and management science, 2:331–434, 1990.

[132] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[133] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network. Physica D: Nonlinear Phenomena,

404:132306, 2020.

[134] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. Advances in neural information processing systems, 27,

2014.

[135] Edsger W Dijkstra et al. A note on two problems in connexion with graphs.

Numerische Mathematik, 1(1):269–271, 1959.

[136] Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan

Luo, and Jie Wang. Virtual network embedding through topology-aware node

ranking. ACM SIGCOMM Computer Communication Review, 41(2):38–47,

2011.

References 165

[137] Ying Yuan, Zejie Tian, Cong Wang, Fanghui Zheng, and Yanxia Lv. A q-

learning-based approach for virtual network embedding in data center. Neural

Computing and Applications, 32(7):1995–2004, 2020.

[138] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[139] Ruxandra F Olimid and Gianfranco Nencioni. 5g network slicing: A security

overview. IEEE Access, 8:99999–100009, 2020.

	Table of contents
	List of figures
	List of tables
	List of glossary & acronyms
	1 Introduction
	1.1 Motivation
	1.2 Network Slicing Design Problem Statement
	1.3 Research Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Fundamental Concepts for End-to-End Network Slicing
	2.1.1 Virtualization
	2.1.2 Virtual Machines & Containers
	2.1.3 Network Function Virtualization
	2.1.4 Software Defined Networking
	2.1.5 Cloud & Edge Computing
	2.1.6 Isolation

	2.2 End-to-End Network Slicing Technology
	2.2.1 Network Slicing Principles
	2.2.2 Network Slicing Framework

	2.3 5G Use Cases
	2.3.1 Enhanced Mobile Broadband Communications
	2.3.2 Ultra Reliable & Low Latency Communications
	2.3.3 Massive Machine Type Communications

	2.4 Enabling Technologies of Network Slicing Design Problem
	2.4.1 Virtual Network Embedding
	2.4.2 Service Function Chain Placement
	2.4.3 Optimization Methods
	2.4.4 Deep Reinforcement Learning

	2.5 Conclusions

	3 A Basic Design Policy of End-to-End Network Slicing
	3.1 Introduction
	3.2 Related Works
	3.3 Network Model of Basic Network Slicing Design Problem
	3.3.1 Physical Network Model
	3.3.2 Network Slicing Request Model
	3.3.3 Problem Description

	3.4 Problem Formulation
	3.5 Algorithms of Basic Design Policy
	3.6 Performance Evaluation
	3.6.1 Simulation Setup
	3.6.2 Evaluations Results

	3.7 Conclusions

	4 Service-aware Design Policy of End-to-End Network Slicing For 5G Use Cases
	4.1 Introduction
	4.2 Network Model of Service-aware Network Slicing Design Problem
	4.2.1 Physical Infrastructure Model
	4.2.2 Network Slice Request Model

	4.3 Problem Formulation
	4.3.1 Service-aware Design Objectives
	4.3.2 Deterministic Formulation
	4.3.3 Robust Formulation

	4.4 Algorithms of Service-aware Design Policy
	4.4.1 Basic Concepts of Algorithms
	4.4.2 Detailed Description of Algorithms

	4.5 Performance Evaluation
	4.5.1 Simulation Setup
	4.5.2 Evaluations Results

	4.6 Conclusions

	5 Energy-aware Design Policy of End-to-End Network Slicing using Deep Reinforcement Learning
	5.1 Introduction
	5.2 Related Works
	5.2.1 Deep Q-Learning for Network Slicing
	5.2.2 Actor-Critic for Network Slicing

	5.3 Network Model of Energy-aware Network Slicing Design Problem
	5.3.1 Physical Infrastructure Model
	5.3.2 Network Slice Request Model

	5.4 Problem Formulation
	5.4.1 Energy-aware Design Objective
	5.4.2 MDP Formulation for the Energy-aware NSDP

	5.5 Algorithm Framework
	5.5.1 Learning Agent
	5.5.2 Optimization with Policy Gradient
	5.5.3 Leaning Algorithms of Energy-aware Design Policy

	5.6 Performance Evaluation
	5.6.1 Simulation Setup
	5.6.2 Evaluations Results

	5.7 Conclusions

	6 Conclusions and Future Works
	6.1 Conclusions
	6.2 Future Works

	References

