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E2CNN: An Efficient Concatenated CNN for
Classification of Surface EMG Extracted from

Upper-Limb
Muhammad Farrukh Qureshi, Zohaib Mushtaq, Muhammad Zia ur Rehman, and Ernest Nlandu

Kamavuako

Abstract— Surface electromyography are bioelectrical indicators
that emerge during muscle contraction and have been widely used
in a variety of clinical applications. Several prosthetic control ap-
plications can benefit from analysis based on the classification
of sEMG signals. However, for the real-time application of upper-
limb prosthesis, EMG-based systems need robust performance and
rapid response behaviour. In this study, we propose an efficient con-
catenated convolutional neural network (E2CNN) for classification
of sEMG extracted from upper-limb. We have tested and validated
the performance of the proposed E2CNN on two datasets: a lon-
gitudinal dataset comprised of ten able-bodied (healthy) subjects
as well as six transradial amputee subjects and spanned the data
collected for a period of seven days; and the publicly available NinaPro DB1 dataset. The raw sEMG signals are converted
to Log-Mel (LM) spectrograms. This model combines input layers with the output of each convolutional block using
concatenation layers. The proposed efficient concatenated CNN (E2CNN) when applied to log-Mel spectrogram-based
images, provides a good response time with high-performance accuracy of 98.31% ± 0.5% and 97.97% ± 1.41% for both
able-bodied and amputee subjects. When applied to NinaPro DB1, the proposed E2CNN has attained a mean accuracy
of 91.27%, an increase by 24.67% with respect to baseline CNN model. The results show that the achieved results are
comparable to those obtained using SSAE and other CNN models; however, E2CNN is associated with reduced training
and prediction time, making it a potential candidate for real-time classification of sEMG based on LM spectrogram images.

Index Terms— surface electromyography, convolutional neural network, concatenation, log-mel spectrogram, ninapro
db1,

I. INTRODUCTION

ELECTROMYOGRAPHY, also known as EMG, is a
biological signal that is frequently utilised for the purpose

of recognising human motor gestures. This is an essential
component of human-computer interaction systems. EMG
signals have been the subject of extensive research and have
been implemented as a control input for upper-limb prostheses,
assistive wheel chairs, assistive humanoid robots, and meal
assistive robots [1]–[4]. The control method used in the devel-
opment of a prosthesis determines the device’s functionality,
ease of use, and acceptability. EMG-based control systems
for upper-limb prosthesis have been widely studied, however
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implementing them in real-time with high multi-class accuracy
is still a challenge. Several studies have used offline machine
learning [5]–[7] and deep learning techniques [8]–[15] to
classify EMG signals for upper-limb prosthesis.

Rehman et al. [8] used a single-layered Convolutional
Neural Network (CNN) on a multiday sEMG dataset that
was captured for consecutive 15 days. The accuracy that was
attained with CNN was 97.60%±1.99. In [13], Convolutional
Neural Networks (CNN) and Multilayer Perceptron (MLP)
were applied in order to categorise the 9 predetermined
gestures. The average accuracy of CNN’s gesture recognition
is 99.47%, while the mean accuracy of MLP’s gesture recog-
nition is 98.42%. In their study, Huang and Chen [16] used
the Ninapro database, which included the sEMG data of forty
subjects with fifty gestures. The accuracy of their suggested
technique, which included a spectrogram, a convolutional
neural network (CNN), and a ling-short term memory (LSTM),
was 80.929% for the basic hand movements. Using a method
that is based on the Short Time Fourier Transform (STFT)
representation of EMG data and convolutional neural networks
(CNN), Sengur et al. [17] were able to attain an accuracy of
96.69%. In [18], the authors have suggested two streams-CNN
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(a)

(b)

Fig. 1. Gestures used in this study (a) Hand Gestures utilized from first dataset: Rest, Opened Hand, Closed Hand, Pronation, Supination, Fine
grasp, Side grip, Flex hand, Extend hand, Thumb up, and Pointer; (b) Hand gestures utilized from NinaPro DB1: Thumb up, Hand close, Hand open,
Pointer, Supination, Pronation, Flexion, Extension, and Wrist extension with closed hand.

(TS-CNN) to acquire significant features from raw EMG data
using multiple scales, as well as estimate the motion that is
created during elbow flexion and extension. The results that
were obtained were 81%±0.06, 71%±0.06, and 80%±0.13 for
the estimate of the joint angle, and 78%±0.05, 79%±0.07,
and 71%±0.13 for the estimation of the velocity, during
isotonic contractions, isokinetic contractions, and dynamic
contractions, respectively. In [19], the authors have tested
the performance of Deep Learning based Pattern Recogni-
tion (DLPR) framework on features extracted from publicly
available dataset NinaPro databases and achieved an accuracy
of 92.18%, 91.56%, and 84.98% on DB1, DB2, and DB3
respectively. The same work also experimented on Short-
Term Fourier Transform (STFT) spectrogram images from
publicly available dataset NinaPro databases and achieved an
accuracy of 70.14%, 74.89%, and 65.87% on DB1, DB2,
and DB3 respectively. In [20], the authors have identified
four hundred EMG spectrograms using hybrid deep-learning
approaches that were based on transfer learning models such as
AlexNet, GoogleNet, and ResNet18. The accuracy for hybrid
classification using AlexNet, GoogleNet, and ResNet18 were
99.17%, 95.83%, and 93.33%, respectively.

In this paper, we propose a rapid, responsive Deep Neu-
ral Network (DNN) that has been applied to surface EMG
(sEMG) spectrogram images. This DNN is based on the
Convolutional Neural Network (CNN) that takes Log-Mel
(LM) spectrogram images (extracted from EMG signals) as
an input. The significant contributions of this study are as

follows:
1) A custom non-sequential concatenated convolutional

neural network is proposed for classification of upper
limb.

2) Utilization of Log-Mel Spectrogram images for sEMG
signals for upper limb gesture classification.

3) Analysis of the proposed E2CNN on a longitudinal
sEMG dataset comprised of ten able-bodied and six
amputee subjects.

4) Validation of proposed technique on publicly available
NinaPro DB1 dataset.

5) Performance comparison of proposed E2CNN on previ-
ous studies implemented on both datasets.

The rest of the paper is organised as follows: we present
the methodology containing the description of datasets, pre-
processing steps, and details of proposed DNN applied for
classification in Sec. II, discuss the results in Sec. III, and
finally provide the conclusion and future work in Sec. V.

II. METHODOLOGY

A. Experimental Dataset and Setup Description

We have used two datasets in this study: (i) First dataset
based on longitudinal dataset from previous work [5]; and (ii)
Second dataset is publicly available NinaPro Dataset 1 (DB1).
Details of both datasets are discuss in next subsections:

1) First Dataset: The first dataset we utilize is from previous
work [5]. That dataset consists of 10 able-bodied (healthy) and
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(a)

(b) (c)

(d)

Fig. 2. Conversion of signals from first dataset to LM spectrogram
images: (a) A windowed signal from one channel (b) Short-Term Fourier
Transform (STFT) of the windowed signal (c) Logarithmic-Mel (LM)
Spectrogram (d) A combined image of all six channels as LM spectro-
gram image

6 trans-radial amputee subjects. All the subjects were male
and their mean ages were 24.5 ± 0.22 and 34.8±0.32 years
for able-bodied and amputee subjects, respectively. An ethical
approval was taken prior to data collection (Approval No.:
Ref No. Riphah/RCRS/REC/000121/20012016). The authors
simultaneously recorded the surface as well as intramuscular
EMG. Six surface and six intramuscular electrodes were
used. An 8 kHz sample rate is used to obtain data from
six channelled surface EMG signals. Eleven distinct gestures
(including rest) were performed by all subjects with four
repetition of each movement. The data was collected for seven
consecutive days. The hand gestures performed by participants
are: rest, open hand, closed hand, pronation, supination, fine
grasp, side grip, flex hand, extend hand, thumb up, and pointer;
and are illustrated in Fig. 1 (a). For the purpose of this study,
we have only utilized the surface EMG dataset.

2) Second Dataset: The first NinaPro database (DB1) in-
cludes 27 intact subjects [21]. This dataset includes 52 distinct
movements carried out by 27 subjects, with each movement
having been performed ten times. These movements are cat-
egorised into three distinct types of exercises: movements of

(a)

(b) (c)

(d)

Fig. 3. Conversion of NinaPro DB1 signals to LM spectrogram images:
(a) A windowed signal from one channel (b) Short-Term Fourier Trans-
form (STFT) of the windowed signal (c) Logarithmic-Mel (LM) Spec-
trogram (d) A combined image of all ten channels as LM spectrogram
image

the fingers; grasping and functional movements; and isometric,
isotonic hand configurations and basic wrist movements. The
data was collected using 10 surface EMG electrodes. For
cohesion with first dataset, we have only utilized 9 hand move-
ments from NinaPro DB1. The gestures utilized are: Thumb
up, Hand close, Hand open, Pointer, Supination, Pronation,
Flexion, Extension, and Wrist extension with closed hand. Fig.
1 (b) shows these gestures utilized from NinaPro DB1 for this
study.

B. Preprocessing Technique

The preprocessing technique is applied to both datasets.
EMG based pattern recognition techniques require smaller
intervals of signals to extract useful classification features.
However, when the processing window decreases, the per-
formance drops significantly [22]; hence optimum duration is
limited between 150ms to 250ms [23], [24]. We divide each
raw EMG signal into smaller intervals (windows) with a length
of 200ms and an overlapping increment of 29ms. For first
dataset, each EMG signal results in 4400×6 windowed signals
with data in six channels for 11 hand gestures. This was done
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paper

for all seven days for each subject and resulted in 30800× 6
windowed signals for each subject. For second dataset, each
EMG signal results in 1791× 10 windowed signals with data
in ten channels for 9 hand gestures. To get better interpretation
of one dimensional, stochastically distributed EMG signal,
the windowed sEMG signals were converted into Log-Mel
Spectrograms using librosa package in python.

C. Signals to Log-Mel Spectrograms
Let sw(n) be an windowed EMG signal, with the length L,

sampling frequency fsw in Hertz as shown in Fig. 2(a). Then
its Short-Term Fourier Transform (STFT) Sw will be:

Sw(x, y) =

N−1∑
n−0

sw(n+ xH) · w(n) · e−ι2πy n
N (1)

where, H ∈ N is hop length, w : [0 : N − 1] ∈ R is Hann
window w = 0.5 − 0.5 cos ( 2πn

N−1 ), N ∈ N is length of w,
x ∈ [0 : L−N

H ] and y ∈ [0 : N
2 ] indicates time and frequency

indices, respectively.
The STFT spectrogram of Sw as illustrated in Fig. 2(b) can

be achieved by 2:

SSTFT (x, y) = |Sw(x, y)|2. (2)

The relationship between the Mel spectrum and the fre-
quency is fmel = 2959 × log10(1 + f

700 ). The Log-Mel
spectrogram can be estimated using 3:

SLM (x, y) =

fc(x+1)∑
f(y)=fc(x−1)

log10(M(x, y) ·SSTFT (x, y)) (3)

where, M(x, y) is Mel filter banks and can be computed from
4:

M(x, y) =


f(y)−fc(x−1)
fc(x)−fc(x−1) for fc(x− 1) ≤ f(y) < fc(x)
f(y)−fc(x+1)
fc(x)−fc(x+1) for fc(x) ≤ f(y) < fc(x+ 1)

0 others.
(4)

where f(y) is linear frequency and fc(x) = x · δfmel

are centre frequencies on Mel-scale. Figure 2(c) illustrates an
image of LM spectrogram for the EMG windowed signal sw.

Each windowed signal is individually converted into a LM
spectrogram, this process is repeated for each channel resulting
in six LM spectrograms. These six LM spectrograms are then
combined vertically and converted into an image as shown
in Fig. 2(d). As a result, we get 30800 EMG images as LM
spectrograms as our input dataset to CNN for each subject.
The process for first dataset is illustrated in Fig. 2. Similar to
first dataset, the same technique is applied to second dataset
and we get 1791 EMG images as LM spectrograms for each
subject with ten LM spectrograms combined vertically in each
image. The process is depicted in Fig. 3.

D. Efficient Concatenated Convolutional Neural Network
(E2CNN) Architecture

The experimental process in this study involves a deep CNN
with max-pooling functions [25]. Let’s name our model as
Efficient-Concatenated CNN (E2CNN). The proposed E2CNN
is implemented on surface EMG based Log-Mel (LM) spec-
trogram images with the input size of 128× 128.

We have designed the proposed E2CNN to reduce the
number of parameters while maintaining performance. This is
achieved by employing convolutional layers with large kernel
sizes and max-pool layers with large pooling sizes. Conse-
quently, the number of parameters is reduced, but numerous
features are lost. Concatenation layers are used to mitigate with
feature loss. Concatenation layers append the original input to
the output of subsequent convolutional and max-pool layers.
This again combines the features that might be overlooked
during heavy padding and strides.

The total number of epochs in the network in E2CNN
is 100, and the batch size is 32. For optimization, Adam
optimiser is used. Except for the final layer, which uses the
Softmax activation function, all layers of the proposed E2CNN
use the Rectified Linear Unit (ReLU) activation function.
The model is divided into three sections: Feature Block A,
Feature Block B, and the Classification Block. Using the
rescaling layer (RL), the input images are resized to (0, 1). The
following is more information about the proposed E2CNN:

Feature Block A:
• Layer 1a: The image from RL is fed to the model’s

first layer (L1a) having 16 filters, each with a 7 × 7
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receptive field. It is followed by a 2 × 2 strided max-
pooling function with batch normalisation in between.
The activation function utilized in this layer is ReLU.

• Layer 2a: The 2nd layer (L2a) consists of double filters
(32) in comparison to L1a with a reduced receptive field
of 5×5 with a max-pooling with strides of 2×2 performed
using ReLU as the activation function. Similar to L1a,
batch normalisation is used.

• Layer 3a: The 3rd layer (L3a) is made up of double filters
(64) with respect to L2a with a further reduced receptive
field of 3 × 3. A max-pooling function with strides of
2 × 2 using ReLU as the activation function is applied
following a batch normalisation layer.

Feature Block B:
• Layer 1b+Concatenation: The input image passed through

RL is fed to this layer too. This layer (L1b) has the
same dimension and parameters as L1a. However, the
output from RL is passed through another max-pooling
layer, and combined with the output of L1b using a
concatenation layer (Concat1).

• Layer 2b+Concatenation: The output from Concat1 be-
comes the input to this layer (L2b). The layer has the
same dimensions as L2a. Similar to L1b, the output from
RL, Concat1, and output of L2b is combined using an-
other concatenation layer (Concat2). Max-pooling layers
are used to match the input requirement of Concat2.

• Layer 3b+Concatenation: The 3rd layer (L3b) has the
same parameters and dimensions as L3a. The output
of L3b, Concat1, Concat2, and RL are combined using
another concatenation layer (Concat3). The output of
Concat1, Concat2, and RL are passed through individual
max-pooling layers to match the input size required by
Concat3.

Classification Block:
• Concatenation Layer: The output of Concat3 and L3a is

concatenated using concatenation layer (Concat4) and the
output is provided to the next layers. Max-pooling is not
required for Concat4.

• Layer 4 & Layer 5: Both of these layers are fully
connected (fc) dense layers, and each consists of 12
hidden units. ReLU is again used as an activation function
for both of these layers.

• Layer 6: The final layer is the another fc dense layer with
Softmax activation function. The final layer is composed
of hidden units equal to the number of classes. Therefore,
it is composed of 11 hidden units for the first dataset.
This layer is modified for second dataset and made up of
9 hidden units.

E. Statistical Tests and Performance Evaluation Metric

The two-way layout of Friedman’s tests was used to evaluate
the performance comparison. Results from the classification
are shown as a mean accuracy and standard deviation. Kruskal-
Willis test is used to evaluate the performance comparison on
the second dataset due to different number of classes. All p-
values below 0.05 were deemed statistically significant.

TABLE I
ACCURACY ACHIEVED BY E2CNN ON ABLE-BODIED AND AMPUTEE

SUBJECTS FROM FIRST DATASET

Subject Accuracy Training Prediction
Time (s) Time (s)

Able-bodied 1 99.31 % 35.522 0.095
Able-bodied 2 97.57 % 39.967 0.084
Able-bodied 3 98.32 % 37.975 0.090
Able-bodied 4 98.41 % 38.772 0.097
Able-bodied 5 97.20 % 40.247 0.098
Able-bodied 6 97.50 % 38.246 0.100
Able-bodied 7 99.35 % 34.984 0.095
Able-bodied 8 98.78 % 38.784 0.089
Able-bodied 9 97.67 % 39.124 0.081
Able-bodied 10 99.23 % 40.285 0.088

Mean ± SD 98.31 %
± 0.77 %

38.062
± 1.781

0.0935
± 0.0050

Amputee 1 98.10% 39.732 0.097
Amputee 2 95.95% 40.45 0.083
Amputee 3 99.94% 41.278 0.102
Amputee 4 97.88% 37.158 0.113
Amputee 5 98.12% 39.901 0.100
Amputee 6 98.38% 36.814 0.116

Mean ± SD 97.97 %
± 1.41

39.655
± 1.541

0.0988
± 0.0107

Accuracy is used as the primary performance evaluation
factor. Accuracy for multi-class classification is provided by
5:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where, TP represents the True Positive and TN represents
True Negative values. FN and FP represents False positive
and False Negative values, respectively.

III. EXPERIMENTAL RESULTS

A. Performance Assessment of Proposed Method
1) First Dataset: The first dataset comprises of able-bodied

and amputee people; thus, the dataset is categorised based on
subject type. The data is then divided into an 80-20 structure,
with 80% of the data being used for training and 20% being
utilised for testing. For seven days, training and testing were
carried out on every subject, after which the mean accuracy,
training time, and prediction time were determined. Mean Ac-
curacy, Training Time, and Prediction Time are shown in Table
I for both able-bodied and amputee subjects, respectively.
E2CNN was able to attain an accuracy of 98.31% ± 0.77%
for able-bodied participants and 97.97% ± 4.41% for amputee
subjects, respectively. Fig. 6 (a) illustrates the confusion matrix
of the suggested model for able-bodied subjects, while Fig. 6
(b) illustrates the confusion matrix for amputee subjects. Here,
the True and Predicted labels refer to the real hand motions,
while the Predicted labels refer to the relevant labels that were
predicted using E2CNN.

2) Second Dataset (NinaPro DB1): The second dataset con-
sists of 27 able-bodied subjects; however, we have only
utilized 18 subjects to validate the performance of E2CNN.
Similar to first dataset, data is split into 80-20 format with
80% assigned for training and 20% used for testing. Training
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TABLE II
PERFORMANCE OF E2CNN ON NINAPRO DB1

Subject Accuracy Training Prediction
Time (s) Time (s)

Able-bodied 1 87.73 49.202 0.056
Able-bodied 2 90.38 43.510 0.062
Able-bodied 3 92.71 46.587 0.063
Able-bodied 4 88.63 45.582 0.069
Able-bodied 5 94.22 47.113 0.070
Able-bodied 6 93.34 44.576 0.071
Able-bodied 7 94.71 43.351 0.068
Able-bodied 8 95.73 45.277 0.062
Able-bodied 9 90.74 47.960 0.052
Able-bodied 10 90.31 44.327 0.069
Able-bodied 11 89.97 41.102 0.063
Able-bodied 12 91.04 49.579 0.059
Able-bodied 13 92.14 43.684 0.058
Able-bodied 14 93.02 41.039 0.060
Able-bodied 15 88.25 42.856 0.072
Able-bodied 16 91.72 46.981 0.069
Able-bodied 17 92.71 41.025 0.065
Able-bodied 18 91.26 40.513 0.062

Mean ± SD 91.2575 %
± 2.33 %

44.829
± 2.738

0.06415
± 0.005914

and testing were performed for each subject based on the mean
accuracy, training time, and prediction time. Table II show the
Accuracy, Training Time, and Prediction Time for able-bodied
subjects from NinaPro DB1. E2CNN achieved an accuracy
of 91.2757% ± 2.33% for this dataset. Figure 6 (c) shows
the confusion matrix of the proposed model on able-bodied
subjects from NinaPro DB1. Here, the True and Predicted
labels refer to the real hand motions, while the Predicted labels
refer to the relevant labels that were predicted using E2CNN.

B. Comparison of Results with Previous and Baseline
Methods

In this study, we have employed two datasets: (i) a lon-
gitudinal data set collected for seven consecutive days from
able-bodied and amputee subjects, and (ii) Publicly available
NinaPro DB1 dataset.

Since the first dataset was previously analysed with a
different CNN [9] and Stacked Sparse Autoencoders (SSAE)
[14], therefore we are comparing our results with these pre-
vious results based on the same dataset. E2CNN achieved a
higher mean classification accuracy than SSAE for able-bodied
and amputee subjects, with 98.31% ± 0.77% and 97.97% ±
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Fig. 5. Performance of E2CNN on Each Day for Able-bodied and
Amputee Subjects from first dataset
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Fig. 6. Confusion matrices for (a) Able-bodied and (b) Amputee
subjects from first dataset; (c) NinaPro DB1

1.41%, respectively. However, the number of parameters and
processing time for SSAE were not, however, calculated. In
addition, the same data set analysed by a different CNN [9]
by the same authors achieved a higher level of accuracy than
E2CNN. This CNN [9] performed worse in processing with a
longer training and prediction time. Furthermore, CNN [9] has
207,275 parameters, while E2CNN has only 86,119 parame-
ters. The table III compares the E2CNN model to the SSAE
and CNN [9] models. It can be seen that E2CNN provides
a better training prediction time with less computational cost
for the SSAE and CNN models. The training and prediction
time E2CNN took are 47.5ms and 116.25µs per sample fed
to E2CNN.

We have tested and validated the performance of our
proposed E2CNN on NinaPro DB1. Several studies have
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TABLE III
COMPARISON OF E2CNN (BOLD FONT) WITH PREVIOUS STUDIES IMPLEMENTED ON THE FIRST DATASET

Classifier Mean Accuracy ± SD Parameters Training Time (s) Prediction Time (s)
Able-bodied Amputee for 3600 samples for 800 samples

SSAE [14] 96.78 % ± 6.40 % 86.89 % ± 11.35 % - - -
CNN [9] 99.42 % ± 0.42 % 98.00 % ± 0.58 % 207,275 1042.355 ± 2.820 0.741 ± 0.050
E2CNN 98.31 % ± 0.77 % 97.97 % ± 1.41 % 86,119 38.062 ± 1.781 0.093 ± 0.005

TABLE IV
COMPARISON OF E2CNN (BOLD FONT) WITH PREVIOUS STUDIES

IMPLEMENTED ON THE SECOND DATASET (NINAPRO DB1)

Reference Year Classes Classifier Accuracy

[11] 2016 52 CNN 66.60%
[26] 2016 8 CNN 78.90%
[27] 2016 6 CNN 60.00%
[28] 2017 10 CNN 88.42%
[29] 2019 52 CNN 85.00%
[30] 2020 5 Compact CNN 66.90%
[31] 2021 17 Dual-View CNN 65.43%
[19] 2022 53 DLPR 92.18%
[32] 2022 29 Deformable CNN 81.80%
[33] 2022 12 Dual-View CNN 86.29%

This Work 2023 9 E2CNN 91.27%

used this dataset to validate their works. Table IV shows the
comparison of E2CNN with other well-known works. It can be
seen that E2CNN has achieved a mean accuracy of 91.27%
when averaged over 18 subjects. The proposed E2CNN has
increased the accuracy by 24.67% with respect to baseline
CNN model [11]. Furthermore, E2CNN and DLPR [19] has an
accuracy difference of less than 1% which suggests that both
models perform comparably well. DLPR requires extraction
of features from EMG signals, while E2CNN utilizes LMS
images. The work [19] also explored its performance on
STFT images and achieved an accuracy of 70.14%. LMS
representation enables E2CNN to capture both temporal and
spectral information from the input signal and achieved an
accuracy of 91.27%.

IV. DISCUSSION

The proposed model for sEMG gesture classification is
based on the Log-Mel Spectrogram (LMS) images generated
from the raw EMG signals. The LMS approach has been
widely used in speech and sound classification as it better
represents the human perception of sound. We have converted
the raw sEMG signals to LMS images. The LMS images
provide a more compact and informative representation of
the raw EMG signal. However, the utilization of images for
gesture classification also results in an increase in the number
of parameters of the model. This increase in the number of
parameters does lead to longer training and prediction times,
which can limit the practical application of the model. To
address this issue, the number of filters in the model was
reduced while the filter sizes were increased, which resulted
in a lower number of parameters and improved training and
prediction times. Despite the improvement in the training and
prediction times, the reduction in the number of filters resulted

in a decrease in accuracy. To mitigate this, the concatenation
layers were introduced to the model. These concatenation
layers combined the input images from all preceding layers to
each succeeding layer, resulting in a more comprehensive rep-
resentation of the data. The introduction of the concatenation
layers resulted in improved accuracy and reduced the trade-
off between training and prediction times, making the model
a suitable choice for real-time EMG gesture classification.

The results of the statistical analysis on the first dataset
showed that E2CNN outperformed previously published work
with faster training and prediction times, and comparable accu-
racy with a p-value of 0.014 from the Kruskal-Willis test and
an H-statistic of 14.19. This demonstrates the effectiveness and
efficiency of the E2CNN model in performing classification
tasks. In order to further validate the performance of the
model, we used the NinaPro DB1 dataset, which contains
53 movements, but we only used 9 movements that were
similar to the movements available in the first dataset. We
compared our results with earlier published works that used
DB1 and took into consideration that some studies used all
available movements while others used a lower number. The
statistical analysis on the NinaPro DB1 dataset was conducted
using the Kruskal-Willis test due to different pre-processing
and different numbers of movements. The results showed that
E2CNN outperformed other classifiers with an H-statistic of
25.92 and a p-value of 0.000002355 (p < 0.05), demonstrating
its superior performance. The results of the statistical analysis
on the first dataset and the NinaPro DB1 dataset show that the
proposed E2CNN model has improved performance compared
to previous work with faster training and prediction times and
high accuracy.

It is essential to consider that an increase in the number
of classes in a dataset has a direct impact on the accuracy
of the model. This issue will be the focus of future studies,
as the goal is to enhance the accuracy of the E2CNN model
even with an increased number of classes. These future studies
will provide a deeper understanding of the capabilities of the
E2CNN model in EMG gesture classification tasks and provide
valuable insights for future developments in the field.

V. CONCLUSION

In this study, the performance of a proposed E2CNN was
investigated for its application in sEMG classification based
on Log-Mel spectrogram images. We conducted tests on the
proposed E2CNN using two different datasets: a longitudinal
dataset that included ten able-bodied (healthy) subjects as
well as six transradial amputee subjects and spanned the data
collected for a period of seven days; and the NinaPro DB1
dataset. In this study, we were able to show that Log-Mel
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spectrogram EMG images provide much more information
and illustrate better results than a raw EMG signal does. The
achieved results are comparable to those obtained using SSAE
and other CNN models. Furthermore, E2CNN is associated
with reduced training and prediction time, making it a potential
candidate for real-time classification of sEMG based on LM
spectrogram images.
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