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 

Abstract—In this paper, the problems of output tracking 

control and filtering are investigated for Takagi-Sugeno fuzzy- 

approximation-based nonlinear descriptor systems in the 

discrete-time domain. Specially, the unreliability of the 

communication links between the sensor and actuator/filter is 

taken into account, and the phenomenon of packet dropouts is 

characterized by a binary Markov chain with uncertain transition 

probabilities, which may reflect the reality more accurately than 

the existing description processes. A novel bounded real lemma 

(BRL), which ensures the stochastic admissibility with H  

performance for fuzzy discrete-time descriptor systems despite 

the uncertain Markov packet dropouts, is presented based on a 

fuzzy basis-dependent Lyapunov function. By resorting to the 

dual conditions of the obtained BRL, a solution for the designed 

fuzzy output tracking controller is given. A design method for the 

full-order fuzzy filter is also provided. Finally, two examples are 

finally adopted to show the applicability of the achieved design 

strategies. 

 
Index Terms—Descriptor systems, output tracking control, 

filtering, packet dropouts, Takagi-Sugeno fuzzy approximation.  

 

I. INTRODUCTION 

HE dynamical models for many well-known systems 

including robotic systems, power systems, and economical 

systems are semi-state, and can be naturally described by 

descriptor systems. Compared with the standard state-space 

systems, the structures of descriptor systems contain infinite 

dynamical modes, which can generate undesired impulse 

behaviors. Analysis and synthesis of various linear descriptor 
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systems have been an active research topic in control 

community (see, e.g. [1], [2]). Meanwhile, to overcome the 

enormous difficulties in analyzing the highly nonlinear 

descriptor models, a lot of research attention has been devoted 

to Takagi-Sugeno (T-S) fuzzy descriptor systems (see e.g. 

[3]-[8]). In this case, the theory for linear descriptor models can 

be extended to a highly nonlinear descriptor system by 

resorting to the ability of the T-S fuzzy rules in approximating 

the nonlinearities [9]-[16].  

In some practical cases, the communication links between 

the nonlinear plant and controller/filter are unreliable and the 

phenomenon of stochastic packet dropouts may happen. The 

control system subject to continuous packet dropouts will 

degrade the performance of the traditional controller, and even 

lead to instability. In general, two main random processes have 

been utilized to depict the packet dropout process: Bernoulli 

distribution and Markov chain. The former treats the packet 

dropout process as a temporally independent process, which 

does not cover the cases of temporal correlated channels with 

“memory” [17]. The latter considers the temporal correlation 

among packet dropouts, which is more general and may reflect 

more reality [18]. In [19], the Markov process was adopted to 

describe the quantity of the multiple packet losses. A new 

Markov model of bounded packet dropouts was proposed in 

[20], where the late-arrival packets can be represented with 

fewer nonzero parameters in the transition probability (TP) 

matrix. The similar model was used to study the estimation 

problem for discrete-time T-S fuzzy systems [21]. Recently, the 

successive packet dropouts characterized by the binary Markov 

chains have received increasing research attention [22], [23]. 

Compared with the Markov models adopted in [19]-[21], only 

two TPs are needed in this model. Besides, the upper bound on 

the successive packet dropouts is not required to be known in 

advance. It is noted that the rates of packet dropouts or TPs in 

aforementioned results are known precisely a priori. In practice, 

it is hard to get the accurate estimation of the rates/TPs due to 

the complex environment [24]-[29]. In view of this point, the 

authors in [30] considered the uncertain rates of the packet 

losses under Bernoulli distribution, and studied the distributed 

filtering for sensor networks. However, there has been very 

little literature on Markov packet dropouts with uncertain TPs.  

Output tracking control and filtering are two important and 

fundamental problems in control filed, which have been 

extensively studied for various state-space fuzzy systems (see 
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e.g. [31]-[37]). For fuzzy descriptor systems, unfortunately, a 

literature search has shown that very few results have been 

reported on their output tracking control problems, not to 

mention the case of the random packet dropouts. Although 

several filtering results have been reported (see e.g. [38]-[40]), 

the issue of the random packet dropouts existed between plant 

and filter is not completely addressed. The above situation 

motivates this study. 

In this paper, we aim to investigate the output tracking 

control and filtering problems for fuzzy descriptor systems in 

the discrete-time domain. The communication links between 

the nonlinear plant and controller/filter are assumed to be 

unreliable, and suffers from random packet dropouts. The 

achieved contributions can be summarized as follows: 

   1) A binary Markov chain with uncertain TPs is proposed to 

characterize the random packet dropouts, which may reflect 

more reality than the existing description processes. Moreover, 

a dropout compensation mechanism is introduced to reflect the 

recent-arrival packet. 

   2) The dual systems for discrete-time descriptor systems 

with disturbance are established for the first time, where the 

corresponding dual conditions can avoid the matrix 

transformation and facilitate the synthesis of H
controller. 

3) A novel bounded real lemma (BRL) is presented for 

discrete-time fuzzy descriptor systems in the presence of 

uncertain Markov packet dropouts. 

4) Based on the dual conditions of the BRL, a solution for the 

designed fuzzy output tracking controller is given by 

constructing suitable matrix structures. An appropriate fuzzy 

filter solution method is further developed to tackle the 

uncertain Markov packet dropouts. 

The remainder of the paper is structured as follows. 

Preliminaries are provided in Section II. The main design 

procedure is presented in Section III. The verification of 

proposed output tracking and filtering methods is shown in 

Section IV. Concluding remarks are finally formulated in 

Section V.  

Notations: m n and n denotes, respectively, the set of 

 matrices and the n -dimensional Euclidean space. 

Symbol “ ” specifies the symmetric element of a symmetric 

matrix. Symbols “ ” and “  ” denote the equality signs 

concerning definitions and assignments, respectively. 

Superscript “ T ” denotes the transpose.  sym X represents 

TX X .  min A  stands for the minimum eigenvalue of the 

matrix A .   denotes the terms that are not relevant to the 

result. {} stands for the mathematical expectation. 

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. System Description 

Consider a discrete-time fuzzy descriptor system given by 

  

 

1

1

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

r

i i i i

i

r

i i

i

Ex k k A x k B u k D w k

y k k C x k

 

 






   



 





,      (1) 

where ( ) nx k   is the state vector, ( ) py k   is the 

measured output vector, ( ) mu k   denotes the control input,
 

( ) qw t   is the external disturbance belonging to the

 2 0, space, n nE   may be singular with 

rank( )E s n  , 
n n

iA  ,
n m

iB  , 
p n

iC  , 
n q

iD  , 

 ( ) 0i k    denote the membership functions satisfying

 
1

( ) 1
r

i

i

k 


 , ( )k denotes the premise vector. 

FailureSucceed
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Fig. 1.  Markov model for packet dropouts. 

Under the unreliable communication environment like 

network, the transmitted measurement signal may be randomly 

lost due to the unreliable link. In this paper, the packet dropout 

is characterized by the variable ( )kr  taking values in  0,1 , 

where  , 0kr k  a discrete-time Markov process  taking values 

in  1,2 , and is governed by a TP matrix 

 
1

1
 

   
 

   

   
         

, , 1,2   ,  (2) 

where    1Prob 2 | 1 0,1k kr r      denotes the recovery 

rate,    1Prob 1| 2 0,1k kr r     denotes the failure rate, 

1min 1max      and 
2min 2max     denote the 

uncertainties of the recovery rate and failure rate, respectively.  

Remark 1: In this paper, the binary Markov chain with 

uncertain TPs is adopted to characterize the random packet 

dropouts (illustrated in Fig. 1.), which is more realistic than the 

previous processes with certain TPs [19]-[23]. If 1  
 
and 

    , the corresponding TP matrix will change into 

1

1

   

   

   
       

. In this case, the uncertain binary 

Markov process will reduce to a Bernoulli process with 

uncertain rate proposed in [30]. 

B. Fuzzy Output Tracking Control 

Define ( )ry k as the output reference signal to be tracked and 

( ) ( ) ( )re k y k y k  as the tracking error. To remove the 

steady-state tracking error, the integral term 
1

0

( ) ( )
k

l

k e l





 

is 

introduced. Define ( ) ( ) ( )
T

T Tk k x k  x , then the 

corresponding augmented system is given by 

  

 
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1

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( )

r

i i i i
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m n





where ( )kZ  is the controlled output, 

0

0

pI

E

 
 
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E , 
0

p i

i

i

I C

A
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 

A , 
0

i

iB
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 
 

B , 
0

0

p

i

i

I

D

 
 
 

D ,  

0

0

p

i

i

I

C

 
 
 

C , 
( )

( )
( )

ry k
k

w k


 
 
 

. 

In this paper, based on the concept of parallel distributed 

compensation (PDC), the following state-feedback fuzzy 

output tracking controller (FOTC) is designed: 

 
1

( ) ( ) ( )
r

i i

i

u k k k 


 K x ,                           (4) 

where 
( )m n p

i

 K are the FOTC gain matrices to be solved. 

Due to the unreliable link, the control signal ( )u k suffers 

from uncertain Markov packet dropouts. To compensate the 

packet dropout, it is assumed that the actuator keeps the current 

value unless the control signal is successfully received, that is 

( ),       if  1
ˆ( )

ˆ( 1),  if  0

k

k

u k
u k

u k






 

 
, 

which can be further written as 

ˆ ˆ( ) ( ) ( ) ( ) ( 1)k ku k r u k r u k    ,                   (5) 

where  ( ) 1 ( )k kr r  . 

Based on (3)-(5), the augmented system can be obtained as a 

fuzzy Markov jump descriptor system (FMJDS) described by 

   
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1 1

1
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where  

( )
( )

ˆ( 1)

k
k

u k
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  

x
x , 

0

0 mI

 
 
 

E
E , 

20

T
T

i

i

m p

 
 
 

C
C , 

( ) ( )
( )

( ) ( )

i k i j k i

ij k

k j k m

r r
r

r r I

 

 

 
 
 
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0
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C. Fuzzy Filtering 

Let  
1

( ) ( ) ( )
r

l

i i

i

z k k L x k 


 be the signal to be 

estimated. Assuming that ( ) 0u t 
 
in (1), and designing the 

following fuzzy filter: 

 
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r
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Ex A x B

Z L x
,       (7) 

where ( ) n

f k x and ( ) l

f k Z  denote, respectively, the 

state and the estimated signal, 
f n n

i

A , 
f n p

i

B and 

f l n

i

L  are the filter parameters to be determined. 

To compensate the packet dropout, it is assumed that the 

filter keeps the recent value unless the measurement signal is 

successfully received, that is 

( ),       if  1
ˆ( )

ˆ( 1),  if  0

k

k

y k
y k

y k






 

 
, 

which can be further written as 

ˆ ˆ( ) ( ) ( ) ( ) ( 1)k ky k r y k r y k    .                     (8) 

Let ˆ( ) ( ) ( ) ( 1)
T

T T T

fk x k k y k  x x and ( ) ( )e k z k 

( )f kZ . Based on (1), (7), and (8), the augmented filtering error 

system (FES) can be written as 
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where 
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Remark 2: When E I , the fuzzy descriptor system (1) will 

reduce to a standard state-space fuzzy system. Thus, the 

obtained tracking control/filtering results can be further applied 

to regular T-S fuzzy systems.  

During the development of the main results, the following 

definition and lemmas will be adopted. 

Definition 1 [41]: The FMJDS (6) is referred to be  

1) Regular if  det ( )ij ks rE A are not identically zero, and 

causal if it is regular, and the term   deg det ( )ij ks rE A

=rank( )E . 

2) Stochastically stable if  2

00
( ) | (0),

k
k r




  x x

holds for any (0)x , and stochastically admissible if it is 

regular, causal and stochastically stable. 

Lemma 1 [42]: Given ( ) nk x , for any symmetric 

matrix 
T n n P P  and free matrix 

m nQ  such that 

rank( ) nQ , the following inequalities are equivalent: 

1) ( ) ( ) 0T k k x Px , ( ) 0,  ( ) 0k k  x Qx , 

2) 
n m R  such that 0T T  P RQ Q R .   

Lemma 2: The problem of stochastic admissibility with H

performance for system (6) is equivalent to the same problem 

for the following dual system: 
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Proof. Firstly, the regularity and causality between the pairs 

 , ij

E A and  ,,T T

ij

E A are equivalent due to the fact that 

   ,det det T T

ij ijs s   E A E A and   deg det ijs E A  

  ,deg det T T

ijs  E A . Moreover, from [43], if the pairs 
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E A  are regular and causal, there exist two nonsingular 
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A=T S , which means the stochastic stability of 

the pairs  , ij

E A is determined by ij

A  and equivalent to the 

stochastic stability of 
,T

ij

A . Furthermore, the equality

   
1 1

,T T T T

i ij i i ij is s 
 

 

  E A D D E AC C holds. So, 

the stochastic admissibility with H
performance between 

systems (6) and (10) is equivalent. The proof is completed. 

Remark 3: Up to date, only the dual conditions ensuring 

admissibility have been obtained for nominal discrete-time 

linear descriptor systems [1], which cannot be applied to the 

synthesis of H
controller. Lemma 2 provides a dual system 

for discrete-time fuzzy descriptor system (1) where the 

stochastic admissibility with H
performance is equivalent. 

The corresponding dual conditions can avoid the matrix 

transformation and facilitate the synthesis of H controller. 

III. MAIN RESULTS 

A. Admissibility Analysis 

 

The following BRL is firstly presented, which ensures the 

stochastic admissibility conditions with noise attenuation 

performance for system (6). 

Theorem 1: The FMJDS (6) is stochastically admissible with 

disturbance attenuation index  , if there exist symmetric 

matrix variables 0i

 P  , ijs

U , free matrix variables 
 js

M  ,

js

N , and js

G ,  , , 1,2, ,i j s r ,  such that the following 
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R is an arbitrary matrix satisfying 0RE  and 

rank( ) n s R . 
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system. By pre-multiplying and post-multiplying (11) and (12) 

by 

, 0

0 0

0

T

ijI

I

I I

 
 
 
 
 

A
   and its transpose, respectively, we get 

 

 

,

1,2 ,

, ,

1,2

( )

    0

T T T

i i i ij s s ij

T T T

ij s ij ij ijs ij

    



  

    









 



   

  





E P E A P P A

A P A A R U RA

C C

,   (13) 
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 For singular matrix E , there exist two nonsingular 

matrices S and T  such that 
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From 0RE  and rank( ) n s R , it can be concluded 
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which can be simplified as 
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  The above inequality implies that ,12ij

A  are nonsingular.  

Then, according to Definition 1, the FMJDS (6) is regular and 

causal. 

  Next, to prove the stochastic stability of the system, the 

following fuzzy stochastic Lyapunov function is constructed: 
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Moreover, it is straightforward that the following equation 
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From 0RE , for any symmetric matrices ijs

U , the 

following equation holds: 
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, , , 1,2, , , 1,2ijs i j s r     . Then, one 

can readily get     00

1
( ) ( ) (0),T

k
k k r






 x x V x . 

By Definition 1, the FMJDS (6) is stochastically admissible.  

Finally, we shall establish the H
 performance. In this case, 

the inequality (20) can be further written as 
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 Under zero initial condition,   0, | 0k k kr  V x , and in the 

light of condition (11) and (12), we have 
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where ( ) ( ) ( )
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Based on the initial condition and  , 0k kr V x , we readily 

obtain  2 22
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 Z . This completes 

the proof. 

Remark 4: Theorem 1 presents a BRL to ensure the 

stochastic admissibility with H  performance for FMJDS (6) 

despite the uncertain Markov packet dropouts. To reduce the 

design conservatism, the FBDLF (16) is introduced instead of 

the common Lyapunov function. Moreover, Lemma 1 is 

adopted to avoid the crossing terms between the system and 

Lyapunov matrices, and facilitate the controller/ filter 

synthesis. 

 

B. FOTC Design 
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 tracking performance for plant (1) 

despite the Markov packet dropouts. 
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 11 12R R R is an arbitrary matrix satisfying 0RE  and 

rank( ) n s R . Moreover, the gain matrices of the FOTC (4) 

are computed by 
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i i

K M K .                                   (29) 

Proof. Based on Lemma 2, the dual conditions of Theorem 1 

can be written as 
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R is an arbitrary matrix satisfying 0T RE  and 

rank( ) n s R .  

Denote the Lyapunov matrices i
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and their positivity is ensured by condition (26). To obtain the 

suitable stabilization conditions, the structures of matrix 

variables js

M , js

N  and js

G  are further defined as 
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where M  is nonsingular,  , 
( )

1

n p m J , 
( ) 2

2

n p p J   

are tuning parameters.  

In this case, we have 
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By substituting the expressions of 
js

M , 
js

N  and 
js

G  into 

(30) and (31), and defining i iK MK , we obtain the 

conditions (27) and (28). The proof is completed. 

Remark 5: Theorem 1 provides a computation method for 

the designed FOTC (4). The tuning parameters  , 
1J  and 

2J  

need to be given in advance. A simple choice for 
1J  and 

2J   

is 1 ( )0
T

m m n p mJ I   
    and 2 2 2 ( )0

T

p p n pJ I  
    . 

Remark 6: To obtain the gain matrices of the FOTC (4), a 

regular method is to make an equivalent matrix transformation 

for conditions (11) and (12). As a consequence, the dimensions 

of the matrix inequalities will be enlarged and more 

computational burden will be consumed. To overcome this 

issue, the dual conditions (30) and (31) are presented based on 

Lemma 2, which can avoid the matrix transformation and 

facilitate the controller synthesis. It is worth mentioning that 

the designed FOTC in (4) is off-line, so the computation cost in 

Theorems 2 does not affect its practical application. 

 

C. Fuzzy Filter Design 

Define 1 ( )0
T

n n n pI  
  I , 2 0 0

T

n n n pI 
  I , and 

3I  

20
T

p n p pI 
   . Based on the obtained BRL in Theorem 1, 

the following theorem specifies the fuzzy filter (7) to achieve 

estimation performance for plant (1) despite the Markov packet 

dropouts. 

Theorem 3: For specified  , 
1J , and 

2J , the FES (6) is 

stochastically admissible with disturbance attenuation index  , 

if there exist symmetric matrix variables ,11
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 11 12 13R = R R R is any arbitrary matrix satisfying 

0RE  and rank ( ) n s R . 

Moreover, the parameters of the fuzzy filter (7) are computed 

by 
1f f

j j

A M A , 1f f

j j

B M B , and f f

j jL L .      (37) 

Proof. Denote the Lyapunov matrices i
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, and their positivity is ensured by 

condition (34). The structures of matrix variables js

M , 
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and js

G  are specified as 
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where M  is nonsingular,  , 1

p nJ , 2

q nJ   are 

tuning parameters.  

Thus, we have 
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Replace R and 
iC by  11 12 13R R R and 

ijL , 

respectively. By substituting the expressions of system 

matrices and matrix variables into (11) and (12), and define 
f f

j jA MA , f f

j jB MB , f f

j jL L , we get the 

conditions (35) and (36). The proof is completed. 

Remark 7: Similar to Theorem 2, the tuning parameters  ,

1J  and 
2J
 
need to be set in advance. A simple choice for 

1J  

and 
2J
 
is 1 ( )0p p n pJ I  

    and 2 ( )0q q n qJ I  
    . 

IV. SIMULATION EXAMPLES 

Example 1 (fuzzy output tracking control). The inverted 

pendulum controlled by a dc motor via a gear train is adopted, 

and the physical system is illustrated in Figs. 2 and 3. The 

plant’s parameters 2g 9.8m s , 
mK 0.1Nm A , M=1kg ,

L=1 m , R 1 a   , N=10 , 
bK 0.1 Vs rad . Define the state 

variables
1 p( ) θ ( )x t t , 2 p( ) θ ( )x t t , 

3 a( ) I ( )x t t , the 

physical system and can be described by the following 

nonlinear equation: 

1 2

2 1 3

3 2 3

( ) ( )

( ) 9.8sin ( ) ( )

( ) 2 ( ) 2 ( ) 2 ( ) ( )

x t x t

x t x t x t

x t x t x t u t w t




 
     

,            (40) 

   Let T 0.1 be the fixed step of discretization and 

4 1( ) 9.8Tsin ( )x k x k . By applying the Euler’s discretization 

approach [44], the nonlinear equation (40) can be transformed 

into the following nonlinear discrete-time descriptor system: 

 

1 1 2

2 2 3 4

3 3 2

1 4

( 1) ( ) T ( )

( 1) ( ) T ( ) ( )

( 1) (1 2T) ( ) T 2 ( ) 2 ( ) ( )

0 T9.8sin ( ) ( )

x k x k x k

x k x k x k x k

x k x k x k u k w k

x k x k

  


   


      
  

.  (41) 

Then, under  1( )x k    , the plant (41) can be 

described by the following fuzzy descriptor system [45]: 

  
2

1

1

1

( 1) ( ) ( ) ( ) ( )

( ) ( )

i i i i

i

Ex k x k A x k B u k D w k

y k x k





   


 


,    (42) 

where 1 2 3 4( ) ( ) ( ) ( ) ( )
T

T T T Tx k x k x k x k x k    ,  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

E

 
 
 
 
 
 

, 1 2

0

0

0.2

0

B B

 
 
  
 
 
 

, 1 2

0

0

0.1

0

D D

 
 
  
 
 
 

, 

1

1 0.1 0 0

0 1 0.1 1

0 0.2 0.8 0

0.98 0 0 1

A

 
 
 
 
 

 

,  2

1 0.1 0 0

0 1 0.1 1

0 0.2 0.8 0

0 0 0 1

A

 
 
 
 
 

 

,  

and the normalized fuzzy weighting functions are depicted in 

Fig. 4. 

It is assumed that 0.9  , 0.1  , 0.01 0.02   , 



0.02 0.01     , by solving Theorem 2 with 1.2  , 

 1 1 41 0
T

J ,  2 2 2 30
T

I J ,  11 0 0 0 1R  and 

12 0R , and 25  , we obtain the gain matrix variables of the 

FOTC as 

 1 3.3013 68.1172 25.9659 3.9975 12.2256    K , 

 2 3.3539 68.4705 26.2373 4.0436 12.3473    K . 

  (43) 

The reference output tracking command is set as 

0.5,    10 20
( )

0,        otherwise
r

k
y k

 
 


,                      (44) 

Under the zero initial condition and the external disturbance
0.15( ) 8 sin(2 )kw k e k , the responses of output signal and the 

referenced signal are depicted in Fig. 5, the response of FOTC 

is shown in Fig. 6, and the situation of data packet dropouts is 

given in Fig. 7. The simulation results verify that, under the 

designed FOTC (4), the measurement output can effectively 

track the referenced output signal despite the uncertain Markov 

packet dropouts. 

 
( )u t

pθ
M

L

1 : N

 
Fig. 2. The schemetic diagram of controlled inverted pendulum. 
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Fig. 3. The schemetic diagram of armature-controlled dc motor. 
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Fig. 4. Fuzzy weighting functions. 

 
Fig. 5. Output tracking responses. 

 
Fig. 6. Response of the FOTC. 

 
Fig. 7. Data packet dropouts. 

Example 2 (fuzzy filtering). A nonlinear tunnel diode circuit 

is considered, and the diagram is provided in Fig. 8. The 

circuit’s parameters are chosen as C 20 mF , L 1000 mH , 

R 10   , and 3

D D Di 0.002V ( ) 0.01V ( )t t  . Defining the state 

variables 1 C( ) V ( )x t t and 
2 L( ) i ( )x t t , the nonlinear circuit 

can be described by 
3

1 1 1 2

2 1 2

( ) 0.1 ( ) 0.5 ( ) 50 ( )

( ) ( ) 10 ( ) ( )

x t x t x t x t

x t x t x t w t

    


   
.             (45) 

   Let T 0.1 be the fixed step of discretization and 
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3

3 1( ) 0.5T ( )x k x k  . By applying the Euler’s discretization 

approach [44], the nonlinear system (45) can be transformed 

into the following discrete-time model: 

 

 

 

1 1 1 2 3

2 2 1 2

3

1 3

( 1) ( ) T 0.1 ( ) 50 ( ) ( )

( 1) ( ) T ( ) 10 ( ) ( )
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x k x k x k x k x k

x k x k x k x k w k

x k x k

     


     


 

.   (46) 

Under  1( ) 3 3x k   , the plant (46) can be further 

described by 

  
2

1

1

1

( 1) ( ) ( ) ( )

( ) ( ) ( )

i i i

i

Ex k x k A x k D w k

y k z k x k





  


  


,    (47) 

where the normalized fuzzy weighting functions are depicted in 

Fig. 9, and 

1 2 3( ) ( ) ( ) ( )
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Fig. 8. Tunnel diode circuit. 
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Fig. 9. Fuzzy weighting functions. 

It is assumed that 0.4  , 0.7  , 0.1 0.2    , 

0.2 0.1    , by solving Theorem 3 with 1.2  , 

 1 2 1 21 0  J J , 11

0 0 1

0 0 0

 
  
 

R , 12

0 0 0

0 0 1

 
  
 

R , 

13

0

0

 
  
 

R , and 1  , we obtain the filter parameters as 

1

0.1513 1.6571 0.2832

0.0169 0.3787 0.0358

0.0231 0.1272 1.1990

f
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f
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B , 

 1 0.0109 0.0265 0.0047f  L , 

 2 0.0135 0.0105 0.0890f  L .               (48) 

With initial condition  (0) 2 1 0.4
T

x   and fuzzy filter 

(7), the filtering error under the external disturbance
0.15( ) 8 sin(2 )kw k e k  is demonstrated in Fig. 10, and the 

situation about data packet dropouts is given in Fig. 11. The 

simulation results verify that the system state can be estimated 

successfully by the designed fuzzy filter despite the uncertain 

Markov packet dropouts. 

 
Fig. 10. Response of filtering error. 

 
Fig. 11. Data packet dropouts. 

V. CONCLUSION 

This paper has investigated the problems of FOTC and filter 

design for discrete-time fuzzy descriptor systems, which are 

limited by unreliable communication links. The phenomenon 

of data packet dropouts has been characterized by a binary 

Markov chain with uncertain transition probabilities. A novel 

BRL has been given to guarantee the stochastic admissibility 

with noise attenuation performance. Based on the dual 

conditions of the BRL, a FOTC design approach has been 

provided by choosing the suitable structures of the specified 

variable matrices. A computational method for the designed 

fuzzy filter is further provided. Finally, two examples have 
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been adopted to demonstrate the effectiveness of the developed 

design strategies. In future work, we shall consider the problem 

of limited communication resources by introducing event- 

triggered transformation mechanism. The problem of tracking 

control based on output measurement only will also be studied 

by designing a suitable static output feedback fuzzy controller. 
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