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ABSTRACT  

Cognitive changes occurring throughout the pathogenesis of neurodegenerative diseases are 

directly linked to synaptic loss. We have used in-depth proteomics to compare 32 post-mortem 

human brains in the prefrontal cortex of prospectively followed patients with Alzheimer`s disease, 

Parkinson`s disease with dementia, dementia with Lewy bodies and older adults without dementia. 

In total, we have identified 10325 proteins, out of which 851 were synaptic proteins. Levels of 25 

synaptic proteins were significantly altered in the various dementia groups. Significant loss of 

SNAP47, GAP43, SYBU, LRFN2, SV2C, SYT2, GRIA3 and GRIA4 were further validated on a 

larger cohort comprised of 92 brain samples using ELISA or Western blot. Cognitive impairment 

before death and rate of cognitive decline significantly correlated with loss of SNAP47, SYBU, 

LRFN2, SV2C and GRIA3 proteins. Besides differentiating Parkinson`s disease dementia, 

dementia with Lewy body and Alzheimer`s disease from controls with high sensitivity and 

specificity, synaptic proteins also reliably discriminated Parkinson`s disease dementia from 

Alzheimer`s disease patients. Our results suggest that these particular synaptic proteins have an 

important predictive and discriminative molecular fingerprint in neurodegenerative diseases and 

could be a potential target for early disease intervention.  

 

 

Keywords: synaptic proteins, cognitive impairment, Lewy body dementias, Alzheimer`s disease, 

mass spectrometry 

 

Abbreviations: SNAP47-synaptosomal associated protein 47; GAP43-neuromodulin;SYBU-

syntabulin; LRFN2-leucine-rich repeat and fibronectin type-III domain-containing protein 2; 

SV2C-synaptic vesicle 2C; GRIA-glutamate receptor; SYT2-synaptotagmin 2. 
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1. INTRODUCTION 

The pandemic increase of dementia, hampering daily living of many millions, carries 

serious implications for society (Wimo et al., 2017). Alzheimer’s disease and the Lewy body 

dementias, i.e. dementia with Lewy bodies and Parkinson`s disease dementia, are the most 

common forms of neurodegenerative dementias (Campbell et al., 2001, McKeith et al., 2005).  

Cognition gradually declines in Alzheimer`s disease, dementia with Lewy bodies and 

Parkinson`s disease dementia leading to loss of function in everyday life, reduced quality of life, 

and increased mortality (Aarsland et al., 2003, McKeith et al., 2005, Maalouf et al., 2011). Synapse 

and synaptic protein loss seems to be a universal element in the pathologic changes associated with 

dementia (DeKosky and Scheff, 1990) as it is directly linked to cognitive deficits from early stages 

of dementia and it is believed that synaptic changes precede neuronal degeneration (DeKosky and 

Scheff, 1990). It has been shown that synaptic loss is a better correlate of cognitive impairment in 

Alzheimer`s disease than the hallmark tau and amyloid beta pathologies (Blennow et al., 1996, 

Masliah et al., 2001). Several studies have shown that changes in synaptic function are associated 

with alterations in the concentration of synaptic proteins, (Gottschall et al., 2010) a characteristic 

feature in Alzheimer`s disease (Terry et al., 1991, Honer, 2003) and increasing attention is now 

being devoted to their role in synucleinopathies (Aarsland et al., 2005, Compta et al., 2011, 

Howlett et al., 2014, Bereczki et al., 2016). In a recent study we have reported changes in the 

concentration of presynaptic proteins SNAP25 and Rab3A as well as of postsynaptic protein 

neurogranin in post-mortem neocortical regions in Parkinson`s disease, dementia with Lewy 

bodies and Alzheimer`s disease patients. These changes correlated with the rate of cognitive 

decline in dementia with Lewy bodies and Alzheimer`s disease patients as well as with 

neuropathological markers (Bereczki et al., 2016). The development of biomarkers aiding early 
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differential diagnosis and predicting disease progression from its earliest stage is of major 

importance both for research and therapeutic development. The complex structural and functional 

organization of the brain regarding its morphology, connectivity and function warrants the 

application of systematic approaches. Recent advances in mass spectrometry based proteomics 

offer a reliable molecular phenotype comparison between diseased and control cases allowing in-

depth coverage of quantitative changes (Kim et al., 2014). These methods permit the identification 

of alterations in the cellular proteome and provide insight into disease aetiology and mechanisms. 

In addition, they aid the discovery of biomarkers for monitoring disease progression as well as 

assessment of drug effects (Portelius et al., 2015, Moya-Alvarado et al., 2016). Whereas some 

explorative proteomic studies have already been performed in Alzheimer`s disease and 

Parkinson`s disease, (Abdi et al., 2006, Blennow and Zetterberg, 2013, Brinkmalm et al., 2014, 

Halbgebauer et al., 2016) only very few studies have been conducted in dementia with Lewy body 

(Abdi et al., 2006, Barthelemy et al., 2016, Biemans et al., 2016).  

Our study is among the first in-depth quantitative proteome studies on pre-frontal post-mortem 

tissues where beside the whole proteome comparison we also aimed at profiling the entire synaptic 

proteome of Alzheimer`s disease, Parkinson`s disease dementia and dementia with Lewy bodies 

patients and compared them to non-demented control cases. Our in-depth analysis of the synaptic 

proteome identified key synaptic proteins underlying synaptic dysfunction in Alzheimer`s disease, 

Parkinson`s disease dementia and dementia with Lewy bodies suggesting shared mechanisms, with 

major implications for prognostic and diagnostic marker development as well as advancing future 

therapeutic interventions for improving the disease course.  

 

2. METHODS: 
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Brain tissue 

Post-mortem human brain tissues from prefrontal cortex, Brodmann area 9 (from 92 cases in total) 

were provided by the Brains for Dementia Research network. The prefrontal cortex was selected 

due to its role in cognition and executive functions involved across the three diseases(Fuster, 

2001). The cohort included cases from the Newcastle Brain Tissue Resource (3 cases), the Thomas 

Willis Oxford Brain Collections (7 cases), the London Neurodegenerative Diseases Brain Bank 

(56 cases) and the University Hospital Stavanger (26 cases). Autopsy protocols and sample 

collection was harmonized between centres. Detailed description of the diagnostic criteria has been 

previously published (Howlett et al., 2014). Final diagnoses for patients are clinic-pathological 

consensus diagnoses. In total, 24 Parkinson`s disease dementia patients (age 72–89 years), 26 

dementia with Lewy body patients (age 65–91 years), 18 Alzheimer`s disease patients (age 72–

103 years) and 24 elderly non-neurological controls (age 65–96 years) were included. Controls did 

not have significant neurological or psychiatric diseases and presented only mild age-associated 

neuropathological changes (e.g., neurofibrillary tangle Braak stage II). Semi-quantitative 

assessments of senile Aβ plaques, phosphotau and α-synuclein pathology were conducted by 

experienced neuropathologists blind to clinical diagnosis, using a four-tiered scale of 0 (none), 1 

(sparse), 2 (moderate) and 3 (severe/frequent) to score sections from each brain area, as described 

previously (Howlett et al., 2014). Hoehn and Yahr scale was available for 23 out of 24 Parkinson`s 

disease with dementia patients, and assessment from the last off phase was utilized. Alzheimer`s 

disease patients with low α-synuclein pathology were chosen to ensure distinction between 

Alzheimer`s disease and dementia with Lewy body patients. Lewy body dementia cases selected 

were of pathologically 'diffuse neocortical' stage, with a cortical Lewy body score of 13.2 (±3.6), 

incorporating the 1-year rule to differentiate between dementia with Lewy bodies and Parkinson`s 
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disease with dementia (McKeith et al., 2005).  Neuropathologic assessment was performed 

according to standardized neuropathologic scoring/grading systems; assessment and diagnostic 

criteria have been previously described (Howlett et al., 2014). Cognitive data was available for 

most patients and consisted of the last Mini-Mental State Examination (MMSE) scores, assessed 

in most cases within 1-2 years before death (Folstein et al., 1975) and MMSE decline calculated 

as average decline over a period of clinical observation of 8–10 years. All participants gave 

informed consent for their tissue to be used in research and the study was approved by the UK 

National Research Ethics Service (08/H1010/4), the Norwegian committee for medical and health 

research ethics (2010/633) and the Regional Ethical Review Board of Stockholm (2012/920-31/4). 

 

Sample preparation for HiRIEF LC-MS proteomics 

The tissues were lysed in SDS-lysis buffer (4% (w/v) SDS, 25mM HEPES pH 7.6, 1mM DTT). 

Lysates were then heated at 95ºC for 5min in a thermomixer, and were sonicated with a sonicator 

probe to shear DNA. Samples were centrifuged at 14000 g to remove cell debris, the supernatant 

was collected and protein concentration estimated by the DC-protein assay (BioRad). From each 

sample, 250µg of total protein were taken and processed according to the FASP (Filter Aided 

Sample Preparation) protocol (Wisniewski et al., 2009) with one modification, i.e. the samples 

were digested on the filter with Lys-C for 3 hours prior to trypsin digestion (16h). Peptide 

concentration was estimated by the DC-protein assay (BioRad), and 100µg of peptides from each 

sample were labelled with the respective TMT10plex reagent (Thermo Fisher Scientific) according 

to the manufacturer's instructions. 

 

HiRIEF (High resolution isoelectric focusing) separation 
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Peptide pre-fractionation was done using HiRIEF (Branca et al., 2014). Briefly, after pooling the 

samples that belong together in each TMT set, each TMT set was cleaned by strong cation 

exchange solid phase extraction (SCX-SPE, Phenomenex Strata-X-C, P/N 8B-S029-TAK). After 

drying in a SpeedVac (Thermo SPD111V with refrigerated vapor trap RVT400), the equivalent to 

400µg of peptides of each sample were dissolved in 250µl of 8M urea, 1% pharmalyte (broad 

range pH 3-10, GE Healthcare, P/N 17-0456-01), and this solution was used to rehydrate the IPG 

drystrip (pH 3-10, 24 cm, GE Healthcare, P/N 17-6002-44) overnight. Focusing was done on an 

Ettan IPGphor 3 system (GE Healthcare), ramping up the voltage to 500V in one hour, then to 

2000V in two more hours, and finally to 8000V in six more hours, after which voltage was held at 

8000V for additional 20h or until 150kVh were reached. After focusing was complete, a well-

former with 72 wells was applied onto each strip, and liquid-handling robotics (GE Healthcare 

prototype modified from a Gilson liquid handler 215), using three rounds of different solvents (i. 

milliQ water, ii. 35% acetonitrile, and iii. 35% acetonitrile, 0.1% formic acid), added 50µL of 

solvent to each well, waited 30 min incubating, and finally transferred the 72 fractions into a 

microtiter plate (96 wells, polypropylene, V-bottom, Greiner P/N 651201), which was then dried 

in a SpeedVac. 

 

LC-MS analysis 

For each LC-MS run of a HiRIEF fraction, the auto sampler (Ultimate 3000 RSLC nanoUPLC 

system, Thermo Scientific Dionex) dispensed 15µl of mobile phase A (95% water, 5% 

dimethylsulfoxide (DMSO), 0.1% formic acid) into the corresponding well of the microtiter plate, 

mixed by aspirating/dispensing 10µl ten times, and finally injected 7µl into a C18 guard desalting 

column (Acclaim pepmap 100, 75µm x 2cm, nanoViper, Thermo). After 5min of flow at 5µl/min 
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with the loading pump, the 10-port valve switched to analysis mode in which the NC pump 

provided a flow of 250nL/min through the guard column. The curved gradient (curve 6 in the 

Chromeleon software) then proceeded from 3% mobile phase B (90% acetonitrile, 5% DMSO, 5% 

water, 0.1% formic acid) to 45% B in 50min followed by wash at 99%B and re-equilibration. Total 

LC-MS run time was 74min. We used a nano EASY-Spray column (pepmap RSLC, C18, 2µm 

bead size, 100Å, 75µm internal diameter, 50cm long, Thermo) on the nano electrospray ionization 

(NSI) EASY-Spray source (Thermo) at 60ºC. Online LC-MS was performed using a hybrid Q-

Exactive mass spectrometer (Thermo Scientific). FTMS master scans with 70,000 resolution (and 

mass range 300-1600 m/z) were followed by data-dependent MS/MS (35,000 resolution) on the 

top 5 ions using higher energy collision dissociation (HCD) at 30% normalized collision energy. 

Precursors were isolated with a 2m/z window. Automatic gain control (AGC) targets were 1e6 for 

MS1 and 1e5 for MS2. Maximum injection times were 100ms for MS1 and 150ms for MS2. The 

entire duty cycle lasted ~1.5s. Dynamic exclusion was used with 60s duration. Precursors with 

unassigned charge state or charge state 1 were excluded. An underfill ratio of 1% was used. 

 

Proteomics database search 

All MS/MS spectra were searched by MSGF+/Percolator using a target-decoy strategy. Raw 

MS/MS files were converted to mzML format using msconvert from the ProteoWizard tool 

suite(Kessner et al., 2008). Spectra were then searched using MSGF+ (Kim and Pevzner, 2014) 

(v10072) and Percolator (Kall et al., 2007) (v2.08), where 8 subsequent search results were 

grouped for Percolator target/decoy analysis. The reference database that was used was the human 

subset of the Swiss-Prot database (version 2015_08, with 42122 canonical and isoform protein 

entries, downloaded from uniprot.org). MSGF+ settings included precursor mass tolerance of 
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10ppm, fully-tryptic peptides, maximum peptide length of 50 amino acids and a maximum charge 

of 6. Fixed modifications were TMT-10plex on lysine residues and N-termini, and 

carbamidomethylation on cysteine residues; a variable modification was used for oxidation on 

methionine residues. Peptide and PSM FDR were recalculated after merging the percolator groups 

of 8 search results into one result per TMT set. Quantification of TMT-10plex reporter ions was 

done using OpenMS project's IsobaricAnalyzer (Rost et al., 2016) (v2.0). PSMs found at 1% PSM- 

and peptide-level FDR (false discovery rate) were used to infer gene identities, whose respective 

protein products were quantified using the medians of PSM quantification ratios, which were 

subsequently normalized to the median protein value of each TMT channel ratio.  Only one unique 

peptide was required to identify a protein, but a protein level FDR cut-off of 1% (calculated using 

the picked-FDR method (Savitski et al., 2015)) was applied to the list of gene-centered proteins. 

Thus, all PSMs, peptides and proteins included in the final results were filtered through both a 1% 

peptide level FDR and a 1% protein level FDR. The mass spectrometry proteomics data have been 

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset 

identifier PXD006122. 

 

Gene ontology and pathway enrichment analyses 

Gene ontology (GO) terms were retrieved from uniprot.org for all proteins identified. Proteins with 

GO terms (in all ontologies: biological processes, molecular function, cellular component) 

containing the word “synapse” or “synaptic” were considered synaptic proteins and used for 

further enrichment analysis. T-tests comparing the sample groups using log2-transformed ratios 

were used to determine whether proteins were differentially accumulated (requirements: p<0.05 

and fold change <0.83 or >1.20, which is based on the 95% confidence interval of the variance 
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between the two replicate internal pooled standard TMT channels). The proteins deemed 

significant were then assigned to Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway 

enrichment analysis using DAVID Bioinformatics Resources version 6.8 (Huang da et al., 2009). 

An EASE score (a modified Fisher's exact test) <0.1 and p-value <0.05 were the criteria for 

significantly enriched biological pathways. The GOrilla (Gene ontology enrichment analysis and 

visualization) tool(Eden et al., 2009) was used for detailed data analyses with two unranked lists 

of genes, a target list and a background list (composed by all genes identified at protein level in 

the MS experiment), with a GO database from 2017-01-21. Results were categorized into the 

functional groups of cellular component, biological process or molecular function. FDR q-values 

of <0.5, representing the correction of p-values for multiple testing, were considered significant.  

 

Preparation of tissue samples for Western blotting and ELISA 

Preparation of tissue for western blotting and ELISA analyses was performed as previously 

described (Kirvell et al., 2006). Briefly, 500 mg of frozen tissue was homogenized in ice-cold 

buffer containing 50 mM Tris-HCL, 5 mM EGTA, 10 mM EDTA, protease inhibitor cocktail 

tablets (Roche, 1 tablet per 50 mL of buffer), and 2 mg/mL pepstatin A dissolved in 

ethanol:dimethyl sulfoxide 2:1 (Sigma). The buffer was used at a ratio of 2 mL to every 100 mg 

of tissue, and homogenization was performed using an IKA Ultra-Turrax mechanical probe (IKA 

Werke, Germany) until the liquid appeared homogenous. Protein concentration of each sample 

was measured by using BCA Protein Assay Kit (Pierce, Thermo Fisher Scientific). Samples for 

ELISA measurements were further diluted to 0.5 μg/ μL total protein in PBS buffer (phosphate 

buffer saline). Parts of Figure 1 and Figure 4 were crafted in the Mind the Graph platform. 
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Sandwich enzyme-linked immunosorbent assays 

Commercial sandwich ELISA kits for each of the selected synaptic proteins were purchased from 

Mybiosource. Assay procedures were followed according to the manufacturer`s protocol. 50 µl of 

standard samples for SV2C and SNAP47 and 100 µl in case of GRIA3, GRIA4 and GAP43 were 

incubated with the corresponding HRP-conjugate reagent for 1h at 37ºC, followed by thorough 

washing steps. Chromogen solution was then applied and after stopping the reaction, absorbance 

measured immediately at 450 nm on a SpektraMax Plus384 microplate reader (Molecular 

Devices). The sigmoidal standard was evaluated with non-linear four-parameter fit using SoftMax 

Pro 5.2 software and sample amounts were obtained using the fitted standard curve. Standards and 

samples were measured in duplicates. Samples of human brain were added in dilutions of 0.5 

μg/μL of total protein and standards were diluted so that the sample absorbance values would fall 

near 50% binding (the linear range) of the standard curve. Concentrations were calculated after the 

mean blank value had been subtracted. 

 

 Immunoblotting 

To minimize inter-blot variability, 20 μg of total protein per sample was loaded in each lane on 

7.5-10% SDS-polyacrylamide gels (Criterion) for protein separation and then transferred to 

nitrocellulose membrane (Immobilon-P, Millipore). Each gel contained a control lane of pooled 

brain homogenates used as an internal standard. After blocking non-specific binding, membranes 

were incubated with primary antibodies (Supplementary Table 1) followed by HRP conjugated 

secondary antibody. GAPDH was used as a reference protein assessing equal loading. Bands were 

visualized using Chemiluminescent substrate (Millipore) in a LAS-3000 luminescent image reader 
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(Fujifilm). Western blot data were evaluated and quantified using Multi Gauge Image Analyzer 

(version 3.0). 

 

Statistical analysis 

To compare synaptic protein levels between groups, Student's T-tests were applied on log2-

transformed data using SAM (Significance Analysis of Microarrays) under R (version 3.2.2, The 

R Foundation for Statistical Computing). SAM performs t-tests using permutation based 

corrections for multiple comparisons. Although originally designed for array data, SAM has been 

shown to be valid also for LC-MS/MS data (Roxas and Li, 2008, Sandberg et al., 2012). Additional 

univariate analyses were carried out using nonparametric statistical tests due to the irregular non-

Gaussian distribution of the samples in SPSS (IBM Statistics 22). To assess the relationship 

between synaptic proteins, and neuropathological and MMSE scores, Spearman correlations were 

performed. To compare protein levels between controls and the different patient groups we used 

Kruskal-Wallis tests, followed by Dunn's post hoc test. In all cases, differences were considered 

statistically significant at p≤ 0.05. Chi-squared tests (with Yates Continuity Correction) were used 

to explore differences in gender across diagnostic groups. A linear regression for the correlation 

studies was applied to synaptic proteins in order to regress out the effects of age. Prior to linear 

regression, logarithmic normalization was applied to synaptic proteins to achieve normality.   

Multivariate data analyses were performed in order to discriminate controls from the different 

patient groups using orthogonal partial least square analyses (OPLS in the program SIMCA, 

version 13.0; Umetrics AB, Sweden). Detailed description of the multivariate statistical analysis 

can be found in the supplementary methods section. We calculated the sensitivity, specificity, 
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positive predictive values and negative predictive values of the group separations from the Q2(Y) 

values obtained in each model. 

 

3. RESULTS 

Demographic characteristics of the samples 

Key cohort characteristics are shown in Table 1. In the mass spectrometry studies we have included 

a total of 32 (8 non demented/ 8 Parkinson`s disease dementia/ 7 dementia with Lewy bodies/ 9 

Alzheimer`s disease) patients, while in the validation studies a total of 92 (24 non-demented/ 24 

Parkinson`s disease dementia/ 26 dementia with Lewy bodies/ 18 Alzheimer`s disease) patients 

were included. There were no significant differences in the pH (Chi Square=6.147, df=3, p=0.105) 

or in the post-mortem delay between the groups (Chi Square=5.037, df= 3, p=0.169). In the larger 

cohort, Alzheimer`s disease patients were significantly older than all the other three groups (p 

=0.001 versus controls; p=0.019 versus Parkinson`s disease dementia; p=0.005 versus dementia 

with Lewy bodies) while Parkinson`s disease dementia and dementia with Lewy bodies patients 

did not differ significantly in age. dementia with Lewy body and Alzheimer`s disease had longer 

dementia duration than Parkinson`s disease dementia (p=0.006 Parkinson`s disease dementia 

versus dementia with Lewy body; p=<0.001 Parkinson`s disease dementia versus Alzheimer`s 

disease; p=0.002 versus Alzheimer`s disease). Correlations between age and MMSE decline scores 

were observed in Parkinson`s disease dementia (Rho=0.553, p=0.008, n=22). The last MMSE 

scores before death were lower and the rate of MMSE decline was higher in Alzheimer`s disease 

compared to Parkinson`s disease dementia or dementia with Lewy body. No significant association 

was observed between diagnosis and gender.  
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Proteome analyses 

In order to avoid large inter-individual variation, a confounding factor in previous comparative 

proteomic studies on clinical material, we included a large number of cases per disease type (7-9). 

The 32 prefrontal cortex samples were processed by Filter Aided Sample Prep (FASP)(Wisniewski 

et al., 2009) and cases were individually labelled at peptide level with four sets of isobaric tags 

(TMT10plex). Each TMT set contained eight channels with randomized samples (Supplementary 

Table 2) and two channels with the internal reference sample (made by pooling aliquots from all 

32 samples). Each TMT set was fractionated into 72 fractions by High Resolution IsoElectric 

Focusing (HiRIEF)(Branca et al., 2014) with the broad range IPG 3-10 strip prior to LC-MS 

analysis (Fig. 1a). 

A total of 10325 proteins (gene-centric) were identified (1% False Discovery Rate, protein level 

FDR) (of which 7033 were common to all 32 samples) as a result of the proteomic database search 

(Fig. 1a). The DAVID (The Database for Annotation, Visualization and Integrated Discovery) 

platform as well as the GOrilla (Gene ontology enrichment analysis and visualization) tool were 

used for detailed data analyses. Across the disease groups in total 102 proteins were commonly 

differentially regulated (Fig. 1b). In the dementia with Lewy body group, 1010 differentially 

expressed proteins (out of which 448 were up-regulated and 562 were down-regulated in dementia 

with Lewy body compared to non- demented controls) were introduced in the DAVID platform. 

Of these, 392 were assigned to 22 predicted KEGG pathways (Kyoto Encyclopaedia of Genes and 

Genomes), with the identified differentially accumulated proteins found to be enriched in pathways 

related to human diseases (40%), organismal systems (30.3%), cellular processes (10.6%), genetic 
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information processing (9.2%), metabolism (8.3%) and environmental information processing 

(1.9%) (Fig. 1c and Supplementary Table 3). Interestingly, pathways such as Parkinson`s disease 

(N=22), Alzheimer`s disease (N=24) and Huntington disease (N=27), dopaminergic synapses 

(N=17), protein processing in endoplasmic reticulum (N=27) and oxidative phosphorylation 

(N=23) were significantly enriched with the highest number of alterations (Fig. 1c and 

Supplementary Table 3). In Parkinson`s disease dementia, a total of 485 proteins (286 up-

regulated and 199 down-regulated compared to non-demented controls) were introduced in the 

DAVID platform, out of which 182 were assigned to 8 KEGG pathways. In Alzheimer`s disease, 

out of the 593 (255 up-regulated and 338 down-regulated compared to non-demented controls) 

proteins introduced, 241 were assigned to 12 KEGG pathways. Since there were generally fewer 

than 10 hits for the pathways, neither Parkinson`s disease dementia nor Alzheimer`s disease 

KEGG pathway enrichment was further scrutinized (data not shown). For the gene ontology (GO) 

analyses, in the case of dementia with Lewy body, 1003 proteins with GO terms were assigned to 

the annotated 1010 proteins using the GOrilla tool and classified into three groups (biological 

process, molecular function and cellular component) (Fig. 1d). Within the three main categories, 

only significant classifications were found in the cellular compartment (FDR, q<0.05), and these 

were related to organelles and mitochondria (Fig. 1d and Supplementary Table 4). In 

Alzheimer`s disease, the only significant hits were found for the molecular function category 

related to translation initiation and RNA binding, while in Parkinson`s disease dementia no 

significant classification was found (Supplementary Table 4). 

 

Synaptic dysfunction in Parkinson`s disease dementia, dementia with Lewy body and 

Alzheimer`s disease 
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Using gene ontology terminology we identified a total of 851 proteins related to synaptic 

transmission (Supplementary Table 5), out of which 25 synaptic proteins were significantly 

altered in the various dementias as shown by the SAM (Significance Analysis of Microarrays) 

analyses with low FDR (q<3.5 %). As the levels of CAMK2 and neurogranin have already been 

assessed in this cohort(Vallortigara et al., 2014, Bereczki et al., 2016), we selected eight additional 

differentially regulated synaptic proteins based on their function, fold change, and antibody 

availability, for further validation on a larger cohort (containing the mass spectrometry cohort) 

using ELISA or Western blot analyses. The synaptic protein with the most conspicuous drop in 

concentration (29%-33%) was LRFN2 in all three dementias (Table 3 and Fig. 2a). In Parkinson`s 

disease dementia, SNAP47 and SYT2 concentrations (Supplementary Fig. 1) also decreased 

compared to controls while GAP43 concentration decreased in comparison to the Alzheimer`s 

disease group. Five out of the eight measured synaptic proteins were decreased in dementia with 

Lewy body compared to non-demented controls. In addition to concentrations of LRFN2, SNAP47 

and SV2C, levels of SYBU and SYT2 were also decreased (Table 3, Fig. 2a and Supplementary 

Fig. 1). In Alzheimer`s disease, apart from LRFN2, only GRIA3 concentration was significantly 

decreased (Table 3 and Fig. 2a). Proteomic profiling revealed no significant differences in α-

synuclein levels (Supplementary Table 5). 

 

Panel of synaptic proteins discriminate between control and dementia diagnoses 

Multivariate analyses showed that synaptic protein levels were able to provide a clear separation 

between controls and the different patient groups however no synaptic protein alone was able to 

achieve clear discrimination between groups. In addition, a clear discrimination between 

Parkinson`s disease dementia and Alzheimer`s disease patients was also observed (77.8% 
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sensitivity with 80% specificity, Table 4). All models were statistically significant and showed 

sensitivity, specificity, positive and negative predictive values that were above 80% in the case of 

dementia with Lewy body versus control and Alzheimer`s disease versus control groups, and were 

close to 75% in Parkinson`s disease dementia patients versus controls (Table 4).  

The model comparing control with Parkinson`s disease dementia cases showed a modest predictive 

power of Q2(Y) = 0.173 in discriminating controls from patients with Parkinson`s disease 

dementia. With the exception of GRIA4 and SYBU, all variables contributed to the separation 

between these groups (Fig. 2b). The dementia with Lewy body model showed a good predictive 

power of Q2(Y) = 0.471 in discriminating controls from dementia with Lewy body patients. All 

synaptic proteins significantly contributed to the separation between groups, with the exception of 

GRIA4 and GAP43 (Fig. 2c). The Alzheimer`s disease model showed a good predictive power of 

Q2(Y) = 0.427 in the discrimination of controls from Alzheimer`s disease patients. The synaptic 

proteins that significantly contributed to the separation were LRFN2, GRIA3, SV2C and SYT2 

(Fig. 2d). A good predictive power of Q2(Y) = 0.438 reflected the capacity to distinguish 

Parkinson`s disease dementia and Alzheimer`s disease pathology based on the contribution of both 

GAP43 and SNAP47 (Fig. 2e). These results were still significant after correcting for the effects 

of age. Parkinson`s disease dementia and dementia with Lewy body patients could not be reliably 

discriminated from one another, supporting that they are part of the same disease spectrum. No 

significant differences were found between dementia with Lewy body and Alzheimer`s disease 

most likely attributed to the common amyloid related pathology.   

 

Associations between synaptic proteins and neuropathological scores  
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Correlations between the eight synaptic proteins validated on the larger cohort and Alzheimer`s 

disease and dementia with Lewy body regional pathologies were analysed. (Supplementary 

Table 6). In Parkinson`s disease dementia there were significant correlations between α-synuclein 

and SNAP47 (Rho=-0.539, p=0.008) and GRIA3 (Rho=-0.449, p=0.047) whereas in dementia 

with Lewy body α-synuclein correlated with SV2C (Rho=-0.441, p=0.035).  Amyloid β scores 

correlated significantly with GRIA4 both in Parkinson`s disease dementia (Rho=-0.471, p=0.031) 

and in dementia with Lewy body (Rho=-0.444, p=0.05). The only significant association we found 

between synaptic proteins and tangle scores was in the case of GRIA3 in Parkinson`s disease 

dementia (Rho=-0.460, p=0.041). No neuropathological associations were found in Alzheimer`s 

disease. 

Correlations between synaptic proteins and cognitive impairment 

We explored whether synaptic protein changes were associated with cognitive impairment. Due to 

the exploratory nature of these analyses and small number of patients per group, these correlations 

are presented without adjusting for multiple comparisons. Our calculations revealed that only 

results at p < 0.0087 would be considered statistically significant with FDR corrections, which is 

quite a stringent threshold. Significant associations between synaptic proteins and cognitive 

decline were found in Parkinson`s disease dementia, dementia with Lewy body and in Alzheimer`s 

disease (Fig. 3 and Supplementary Table 7). Synaptic vesicle protein SV2C was strongly 

associated with the rate of cognitive decline, i.e. reduced levels correlated with faster cognitive 

decline in Parkinson`s disease dementia (Rho=-0.486, p=0.022) and dementia with Lewy body 

(Rho=-0.889, p=0.0001) and low last MMSE score in dementia with Lewy body (Rho=0.759, 

p=0.0001) (Fig. 3a,b). Decrease in SNAP47 concentration was associated with worsening 
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cognition reflected both by last MMSE scores (Rho=0.480, p=0.027) and the rate of MMSE 

decline (Rho=-0.559, p=0.008) in Parkinson`s disease dementia. GRIA 3 also presented 

associations both with cognitive decline (Rho=-0.726, p=0.0001) and last MMSE scores 

(Rho=0.479, p=0.033) in dementia with Lewy body. Furthermore, in dementia with Lewy body 

lowered SYBU levels correlated with lower MMSE scores (Rho=0.493, p=0.023). In Alzheimer`s 

disease only LRFN2 presented strong associations with worsening cognition (Rho=-0.613, 

p=0.012) and the last MMSE scores (Rho=0.730, p=0.001) (Fig. 3c). No significant associations 

were found between MMSE scores and GRIA4, SYT2 or GAP43 proteins, however GAP43 was 

found to be associated to the total years of dementia in Alzheimer`s disease (Rho 0.499, p=0.035). 

No associations were found between motor symptoms and synaptic proteins in Parkinson`s disease 

with dementia patients (data not shown). The results remained significant after controlling for the 

effects of age (data not shown). 

 

4. DISCUSSION 

Both Alzheimer`s disease and Lewy body diseases are characterised by substantial synaptic loss 

which so far serves as the best correlate with cognitive impairment (Terry et al., 1991, Scheff et 

al., 2007, Pienaar et al., 2012). More than 1,000 proteins participate in the finely tuned process of 

synaptic transmission, a process which comprises interactions between synaptic vesicle membrane 

proteins as well as pre-synaptic and post- synaptic membrane proteins (Sudhof and Rothman, 

2009). While general synaptic loss is a common feature of dementia, specific pre and postsynaptic 

proteins such as Rab3A, SNAP25, synaptophysin crucial for vesicle trafficking, exo- and 

endocytosis have been found specifically altered in neurodegenerative diseases (Whitfield et al., 

2014, Bereczki et al., 2016) along with NMDA and AMPA receptors, PSD95 and neurogranin 
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(Whitfield et al., 2014, Bereczki et al., 2016) (Lipton and Rosenberg, 1994, Lee et al., 2008) 

playing a role in long-term potentiation (Fig. 4). Of note, in our current proteomics study we have 

not identified significant changes neither for SNAP25 nor for Rab3a, which could be due to the 

relative vulnerability of Rab3a to post mortem delay time (Ferrer et al., 2007). The potential use 

of key synaptic proteins as biomarkers has recently become in the spotlight of discussions in 

various dementias (Bereczki et al., 2016, Wellington et al., 2016). Worth mentioning that regional 

specific post-mortem synaptic protein profile might differ from the synaptic protein profile of 

cerebrospinal fluid (Bereczki et al., 2016, Remnestal et al., 2016, Bereczki et al., 2017). Although 

cerebrospinal fluid biomarkers are most informative in portraying the biochemical picture of the 

brain, blood-based biomarkers are more desired for large-scale screening (Mattsson et al., 2015). 

Of note, even if a biomarker has shown high specificity and sensitivity, its utility as a theragnostic 

biomarker is not guaranteed (Mattsson et al., 2015).  

The technological advance in proteomics analyses has provided high-throughput screening 

methods in the quest for biomarkers of neurodegenerative disorders in post-mortem as well as in 

cerebrospinal fluid or blood based samples. To our knowledge, we are the first to provide a 

systematic proteome profile comparison on post-mortem human brains (N=8 C, N=8 Parkinson`s 

disease dementia, N=7 dementia with Lewy body, N=9 Alzheimer`s disease, i.e. 32 samples in 

total) from the prefrontal cortex (Brodmann area 9), revealing a pattern of synaptic protein loss 

across different neurodegenerative diseases.  

We have adopted a proteomics-driven discovery approach and after identifying roughly half of the 

human proteome, we validated lead synaptic candidates in a larger post-mortem brain cohort of 92 

cases. Comparative proteomics highlighted significant loss of several synaptic proteins across 

dementias including presynaptic proteins (GRIK2, CAMK2A, BDNF, PDYN), synaptic vesicle 
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priming proteins (SNAP47) synaptic vesicle proteins (SV2C, SYT2), proteins found in both pre 

and postsynaptic terminus (GAP43, LRFN2) and postsynaptic proteins (GRIA3, GRIA4, ARC, 

CNIH2, PVRL3, NRGN). Among these proteins, SNAP47, SV2C, GRIA3, SYBU and LRFN2 in 

the prefrontal cortex correlated with cognitive decline in demented cases. The levels of 

apocalmodulin-binding proteins, NRGN and GAP43 diminished, which in turn might further 

contribute to the altered CAMK2 and AMPA receptor (GRIA3, GRIA4) mediated synaptic 

transmission. Their reduction reflects a selective alteration in a subset of synaptic proteins, 

suggesting that a decline in synaptic function rather than synaptic loss plays a more relevant role 

in contributing to dementia progression.  

However, the mechanisms leading to synapse destabilization and neuronal death remain elusive. 

There is evidence showing that synaptic plasticity underlying learning and memory often involves 

activity-dependent recruitment of synaptic AMPA receptors (GRIA) (Nicoll and Malenka, 1999, 

Kandel, 2001). During long-term potentiation, GRIA exocytosis is mediated by Q-SNARE 

proteins syntaxin-3 and SNAP-47 (Jurado et al., 2013). Dysregulation of AMPA receptors has also 

been implicated in numerous neurodegenerative and psychiatric disorders (Lipton and Rosenberg, 

1994). Likewise, deletion of LRFN2 (Leucine-rich repeat and fibronectin III domain-containing 

2) localized both to the presynaptic  and postsynaptic membrane has been linked to selective 

working memory and executive deficits, impaired intellectual functioning and auditory-verbal 

problems (Thevenon et al., 2016). Additional proteins with a potential role in cognitive impairment 

such as the members of the SNARE family, synaptotagmins (SYT), PSD95 and synaptic vesicle 2 

(SV2) proteins have also been incriminated in this captivatingly complicated process of synaptic 

plasticity (Bajjalieh et al., 1994, Xu et al., 2007, Dun et al., 2010, Whitfield et al., 2014) (Fig. 4). 
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In line with this, SYT2 levels have also been shown to be decreased in plasma neuronal-derived 

exosomes (Goetzl et al., 2016). Likewise, CSF levels of GAP43 were found to be altered in 

separate studies in PD (Sjogren et al., 2000) and in Alzheimer`s disease (Sjogren et al., 2001, 

Goetzl et al., 2016). Our observation of GRIA3 and its correlation with cognitive impairment 

supports previous observations of reductions of AMPA receptors trafficking, or anchoring into 

dendritic spines with synaptic and cognitive disturbances (Henley and Wilkinson, 2013). 

Interestingly, significant cognitive associations with GRIA3 were present only in dementia with 

Lewy body and Parkinson`s disease dementia with no apparent association found in Alzheimer`s 

disease. The marked reductions of synaptic proteins in dementia with Lewy body and Parkinson`s 

disease dementia patients could reflect a greater frontal degeneration in LBD in comparison with 

Alzheimer`s disease, which usually affects the prefrontal cortex less than other medial and lateral 

temporal areas (Burton et al., 2012). Together with previous findings showing alterations in levels 

of strategic synaptic proteins such as Rab3A, PSD95 and SNARE proteins, and their correlation 

to cognitive domains (Gottschall et al., 2010, Mukaetova-Ladinska et al., 2013, Howlett et al., 

2014, Vallortigara et al., 2014, Whitfield et al., 2014), our results provide support to the link 

between cognitive performance and synaptic protein loss in LBD. In line with our previous study, 

the current work confirms the power of synaptic proteins (Bereczki et al., 2016) in discriminating 

patients with neurodegenerative diseases from controls with good sensitivity and specificity 

(>80%). In addition, we also found that GAP43 together with SNAP47 contributed to a clear 

separation between Parkinson`s disease dementia and Alzheimer`s disease patients, highlighting 

the potential role of these proteins in disease discrimination.  

Alpha-synuclein is deeply involved in the synaptic vesicle trafficking required for a proper 

neurotransmitter release (Sidhu et al., 2004). Although we selected Alzheimer`s disease cases with 
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low alpha-synuclein pathology, we did not observe any difference in the overall levels of 

monomeric alpha-synuclein protein neither between Parkinson`s disease dementia and 

Alzheimer`s disease nor between dementia with Lewy body and Alzheimer`s disease which could 

be partly due to the relative vulnerability of alpha-synuclein to post mortem delay and storage 

temperature (Ferrer et al., 2007). This finding is in agreement with a previous proteomics study 

(Shi et al., 2009) carried out in PD patients while another proteomics study in patients with 

Parkinsonism-dementia complex of Guam reported accumulation of alpha- synuclein levels (Yang 

et al., 2007). The occasional correlations observed between synaptic proteins and alpha-synuclein 

scores in Parkinson`s disease dementia and dementia with Lewy body indicate that there is a 

potential association but more evidence is needed. 

There are some limitations related to the current study. Although we were able to validate our 

findings from the proteomic comparison study it is possible that some important synaptic protein 

level changes may have been missed due to the relatively small number of patients in the LC-MS 

analyses, or due to post mortem delay times. Due to the exploratory nature and the small sample 

size of the study, correlations with cognitive impairment are presented without adjustments for 

multiple comparisons; thus these findings should be interpreted with caution and require 

confirmation in larger samples. The Alzheimer`s disease group presented more severe cognitive 

impairment, with longer dementia duration time compared to dementia with Lewy body and 

Parkinson`s disease dementia, which may have influenced the findings. Another caveat to consider 

is that most patients had advanced disease and the levels of synaptic proteins may differ in the 

earlier stages of disease progression however, these changes are likely to start early on, which is 

supported by the association with cognitive impairment.  
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In spite of these limitations, our results suggest that synaptic proteins have an important predictive 

and discriminative value in neurodegenerative disorders, which needs to be explored further. 

Moreover, the independent validation by antibodies of the level alterations of several synaptic 

proteins revealed by proteomics highlights the robustness of this method. In vivo studies using 

imaging and CSF are needed to explore synaptic protein changes at early disease stages. We 

believe that pinpointing overall alterations of synaptic proteins occurring in dementia patients 

brings us one step closer to a disease-specific biological target for prevention and therapeutic 

strategies. We anticipate their importance as a treatment target and potential as a future biomarker 

of disease progression for clinical trials as the therapeutic intervention window based on synaptic 

repair and regeneration is considerably longer than the currently used toxin-clearance approaches. 
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7. TABLES AND FIGURES 

Figure 1. Proteomic data analyses. 32 post-mortem brain samples underwent proteome 

profile comparison. Samples were labelled at peptide level with four sets of isobaric tags 

(TMT10plex), each containing eight channels with randomized samples and two channels with the 

internal reference sample (Ref), followed by fractionation into 72 fractions by HiRIEF with the 

broad range IPG 3-10 strip prior to LC-MS analysis (a). Schematic representation of the number 

of differentially regulated proteins across disease groups (b). Differentially regulated proteins in 

dementia with Lewy body were further analyzed for KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathways (c) and gene ontology (GO) terms (d). From the significantly altered synaptic 

proteins GRIA3, SNAP47, LRFN2, SYBU, SYT2, GAP43, GRIA4 and SV2C were chosen for 
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further validation with ELISA or Western blot analyses in a larger cohort (e) (2 synaptic proteins 

neurogranin, and CAMK2 were previously found to be altered by us within the same cohort). 

Abbreviations: AD, Alzheimer`s disease; C, Non-demented controls; dementia with Lewy body, 

dementia with Lewy bodies; PDD, Parkinson`s disease with dementia; HiRIEF, High Resolution 

IsoElectric Focusing; LC-MS, liquid chromatography - mass spectrometry. 
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Figure 2. Changes in synaptic protein levels and their contribution to discriminating patient 

groups. Synaptic protein levels differed between the dementia groups (a). Univariate statistical 

analyses were performed using Kruskal-Wallis test followed by post hoc Dunn`s multiple 

comparison test. Multivariate analyses show the contribution of synaptic proteins to discriminate 

controls from the different patient groups (b-e). Plots showing the variables of importance and 

their corresponding jack-knifed confidence intervals for the separation between controls and 

Parkinson`s disease dementia patients (b), controls and dementia with Lewy body patients (c), 

controls and Alzheimer`s disease patients (d) and Parkinson`s disease dementia patients and 

Alzheimer`s disease Patients (e). A measure with high covariance is more likely to have an impact 

on group separation than a variable with low covariance. Measures with confidence intervals that 

include zero have low reliability. 
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Figure 3. Correlations between synaptic proteins and cognitive impairment in Parkinson`s 

disease dementia (A), dementia with Lewy body (B) and Alzheimer`s disease (C). Decreased 

SNAP47, SV2C and GRIA3 concentrations (a) correlated with cognitive impairment in 

Parkinson`s disease dementia. SV2C and GRIA3 concentrations are negatively correlated with the 

rate of MMSE decline in dementia with Lewy body (b) showing, along with SYBU levels, positive 

correlations with the last MMSE scores (b). Negative correlations between LRFN2 concentrations 

and the rate of MMSE decline as well as positive correlations with the last MMSE scores were 

observed in Alzheimer`s disease (c). Associations were analysed using Spearman correlations. 
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Figure 4. Schematic overview of synaptic proteins with altered levels in dementia. The 

diagram depicts the proteins involved in the synaptic vesicle cycle focusing on the docking and 

priming proteins (VAMP2, Syntaxin-1, SNAP, Munc18a), along with proteins involved in the 

recycling of synaptic vesicles (Rab3A, SV2C) as well as postsynaptic proteins (NRGN, PSD95, 

LRFN2) and receptor proteins (GRIA3, 4) found to be differentially regulated in the various 

dementias. Abbreviations used: NRGN, neurogranin; GAP43, neuromodulin; AMPAR, AMPA 

receptors/GRIA; NMDAR, N-Methyl-D-aspartic acid receptors; VDCC, voltage-dependent 

calcium channel.   
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Table 1. Demographics and clinical characteristics of the subjects included in this study  

  

  

C PDD DLB AD 

MS 

(N=8) 

ELISA 

(N=24) 

MS 

(N=8) 

ELISA 

(N=24) 

MS 

(N=7) 

ELISA 

(N=26) 

MS 

(N=9) 

ELISA 

(N=18) 

Age (Mean ±SD) 83 ±3.8 80.2 ±7.5 82.5 ±6 81.8 ±4.8 83.38 ±3.5 81.1 ±6.5 85.67 ±2.7 88.1 ±7.3 

Gender 4M/4F 14M/10F 3M/5F 10M/14F 3M/4F 17M/9F 3M/6F 6M/12F 

PMD (h) 

(Mean±SD) 

35.2 ±18.4 38.8 ±23.4 25.3 ±7.8 33.9 ±15.8 21.7 ±12.1 27.6 ±21.3 23.7 ±10 35.0 ±22.8 

pH (Mean ±SD) 6.45 ±0.3 6.46 ±0.3 6.61 ±0.3 6.53 ±0.3 6.45 ±0.5 6.43 ±0.4 6.28 ±0.3 6.30 ±0.3 

Years of dementia - - 3.8 ±2.5 2.78 ±2 4 ±1.5 5.9 ±3 9.1 ±2.1 9.7 ±2.8 

Hoehn&Yahr 

scale 

- - 4.75 ±0.46 4.57 ±1.08 NA NA - - 

Last MMSE NA NA 12.6 ±7.7 14.1 ±8.0 22 ±9.1 14.4 ±9.8 7.67 ±7.8 8.5 ±7.6 

MMSE decline (y) NA NA 2.1 ±1.2 1.8 ±1.2 2.5 ±3.3 2.9 ±2.8 4.2 ±4.5 3.5 ±3.5 

Aβ plaque 0.37 ±0.7 0.36 ±0.65 1.85 ±1.3 1.3 ±1.2 1.7 ±1.4 1.96 ±1.0 2.88 ±0.3 2.72 ±0.7 

Tangle 0 0.18 ±0.4 0.33 ±0.5 0.43 ±0.5 0.7 ±0.5 0.85 ±0.7 2.67 ±0.5 2.5 ±0.6 

α-synuclein - - 0.7 ±1.1 0.6 ±0.8 2.3 ±0.9 1.8 ±1.1 0.22 ± 0.4 0.18 ±0.4 

Mean values are shown followed by standard deviation. One-way ANOVA followed by 

Bonferroni post-hoc tests showed Alzheimer`s disease patients were older compared to the other 

diagnostic groups (ANOVA, F(3,91)=5.791, p=0.001 in control; p=0.019 in Parkinson`s disease 

dementia; p=0.05 in dementia with Lewy body). Dementia with Lewy body and Alzheimer`s 

disease had longer dementia duration than Parkinson`s disease dementia (ANOVA, F(2,44)=26.738 

p=0.006 Parkinson`s disease dementia versus dementia with Lewy body; p=<0.001 Parkinson`s 

disease dementia versus Alzheimer`s disease; p=0.002 dementia with Lewy body versus 

Alzheimer`s disease). There were no significant differences between diagnostic groups in other 

variables except cognition and pathology, which is further discussed in Fig. 3 and Supplementary 

Tables 4 and 5. Abbreviations: PMD, post-mortem delay; MMSE, mini-mental state examination; 

MS, mass spectrometry; C control; PDD, Parkinson`s disease with dementia; DLB, dementia with 

Lewy body; AD, Alzheimer`s disease. 
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Table 2. List of synaptic proteins differentially expressed between dementia cases and 

controls based on MS data analysis. 

  Gene ID 
Uniprot 

ID 
Protein name 

Fold change 

(min-max) 

q value 

(%) 

min. 

pep 

tides 

min. 

quant. 

PSMs 

 

PDD 

SV2C Q496J9 Synaptic vesicle glycoprotein 2C  0.6 (1.7-0.3) 12 3 5  

NRGN§# Q92686  Neurogranin 0.42 (1.5-0.2) 0 1 5  

CBLN4§ Q9NTU7 Cerebellin-4  0.7 (0.9-0.5) 0 1 1  

BDNF§ P23560 Brain-derived neurotrophic factor  0.73 (1.0-0.6) 0 1 1  

GAP43§ P17677 Neuromodulin 0.74 (1.1-0.6) 0 57 714  

DLB 

GRIA3 P42263 Glutamate receptor 3 0.56 (1.3-0.3) 3.5 7 9  

CAMK2A# Q9UQM7 
 Calcium/calmodulin-dependent 

protein kinase type II subunit alpha  
0.6 (1.4-0.4) 3.5 24 100  

SYBU Q9NX95  Syntabulin  0.61 (1.1-0.4) 3.5 2 2  

VDAC2 P45880 
Voltage-dependent anion-selective 

channel protein 2  
0.62 (1.6-0.4) 3.5 14 90  

ARC Q7LC44 
Activity-regulated cytoskeleton-

associated protein  
0.62 (1.0-0.4) 3.5 1 1  

RAB11A P62491 Ras-related protein Rab-11A  0.63 (1.0-0.4) 3.5 1 1  

PDYN P01213 Proenkephalin-B  0.64 (1.3-0.4) 3.5 1 1  

GRIA4 P48058 Glutamate receptor 4  0.64 (1.3-0.3) 3.5 2 2  

SYT2 Q8N9I0 Synaptotagmin-2  0.64 (1.4-0.4) 3.5 7 9  

CAMK2G Q13555 
Calcium/calmodulin-dependent protein 

kinase type II subunit gamma 
0.64 (1.4-0.5) 3.5 19 32  

CNIH2 Q6PI25 Protein cornichon homolog 2  0.65 (1.3-0.4) 3.5 1 1  

KCNIP2 Q9NS61  Kv channel-interacting protein 2  0.65 (1.4-0.4) 3.5 1 1  

SNAP47 Q5SQN1 Synaptosomal-associated protein 47  0.66 (0.9-0.4) 3.5 2 2  

TECR Q9NZ01 Very-long-chain enoyl-CoA reductase 0.67 (1.2-0.4) 3.5 5 8  

CACNG2 Q9Y698 
Voltage-dependent calcium channel 

gamma-2 subunit  
0.67 (1.0-0.5) 3.5 2 2  

PVRL3 Q9NQS3 Nectin-3 0.68 (1.1-0.4) 3.5 1 1  

LRFN2 Q9ULH4 
Leucine-rich repeat and fibronectin 

type-III domain-containing protein 2  
0.68 (1.1-0.5) 3.5 3 3  

GRIK2 Q13002 
Glutamate receptor ionotropic, kainate 

2 
0.68 (1.2-0.5) 3.5 2 2  

CACNG3 O60359 
Voltage-dependent calcium channel 

gamma-3 subunit  
0.7 (1.0-0.5) 3.5 1 1  

TNK2 Q07912 Activated CDC42 kinase 1  0.71 (1.1-0.5) 3.5 2 2  

CAMKK1 Q8N5S9 
Calcium/calmodulin-dependent protein 

kinase kinase 1  
0.73 (1.1-0.6) 3.5 12 18  
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Differences were assessed with respect to the control group. The exceptions are denoted by §, 

which refers to differences between Parkinson`s disease dementia and Alzheimer`s disease. 

Proteins in bold were chosen for further analyses with ELISA or Western blot. # Denotes proteins 

previously measured in this cohort, which are discussed in the results and discussion sections. In 

addition to fold change, including minimum and maximum fold change values in parenthesis, q-

value, the minimal number of unique peptides and the minimal number of quantified PSMs per 

TMT set is shown. 

Table 3. Differences in synaptic protein levels between control and dementia groups using 

WB and ELISA data 

  C (N=24) PDD (N=24) DLB (N=25) AD (N=18) 

SNAP47(pg/mL) 156.9 ±48.6 118.8 ±29.2 p=.005 121.9 ±39.1 p=.022 139.5 ±26.5 p=.848  

SV2C (ng/mL) 9.9 ±2.7 8.3 ±1.9 p=0.068  7.5 ±1.9 p=.01 8.3 ±1.5 p=.085 

GRIA3 (ng/mL) 6.68 ±2.1 6.16 ±2.1 p=1.00 5.3 ±1.3 p=.109 4.9 ±1.6 p=.036 

GRIA4 (ng/mL) 14.1±2.1 13.1±2.0 p=1.00 12.8±2.9 p=.721 12.5±2.8 p=.358 

LRNF2 (ng/mL) 6.1±2 4.3±1.8 p=.032 4.1±1.9 p=.01 4.3±2.2 p=.05 

GAP43 (pg/mL) 931.5±282 747.4±202 #p=.004  842.8±148 p=1.00 972.8±156 p=1.00 

SYBU 1.88±0.75 1.71±0.67 p=1.00 1.18±0.54 
p=.002, 

§p=.033  1.4±0.61 p=.799 

SYT2 2.03±0.43 1.64±0.36 p=.037 1.55±0.48 p=.006 1.74±0.70 p=.330 

 

Differences in protein levels between disease groups and controls were determined using Kruskal–

Wallis test followed by Dunn’s post hoc test. ELISA values are expressed in pg/mL or ng/mL 

(means ±standard deviation). Western blot changes are expressed in relative units. p values 

represent statistically significant differences between dementia and non-demented control groups. 

# Denotes significant differences between Parkinson`s disease dementia and Alzheimer`s disease 

groups. § Denotes significant differences between dementia with Lewy body and Parkinson`s 

disease dementia groups.  
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Table 4. Sensitivity, specificity, positive and negative predictive values for each model 

 

C, controls; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive 

value. 

 

 

 

Models Sensitivity 

 (95% CI) 

Specificity 

 (95% CI) 

PPV  

(95% CI) 

NPV  

(95% CI) 

C vs PDD 73.7 (48.8-90.9) 73.9 (51.6-89.8) 70.0 (45.7-88.1) 77.3 (54.6-92.2) 

C vs DLB 83.3 (62.6-95.3) 80.0 (59.3-93.2) 80 (59.3-93.2) 83.3 (62.6-95.3) 

C vs AD 81.3 (54.4-95.6) 80.8 (60.7-93.5) 72.2 (46.5-90.3) 87.5 (67.6-97.3) 

PDD vs AD 77.8 (52.4-93.6) 80.0 (56.3-94-3) 77.8 (52.4-93.6) 80.0 (56.3-94.3) 


