
Citation: Golightly, L.; Modesti, P.;

Chang, V. Deploying Secure

Distributed Systems: Comparative

Analysis of GNS3 and SEED Internet

Emulator. J. Cybersecur. Priv. 2023, 3,

464–492. https://doi.org/10.3390/

jcp3030024

Academic Editor: Rodrigo

Román-Castro

Received: 6 June 2023

Revised: 24 July 2023

Accepted: 31 July 2023

Published: 3 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Deploying Secure Distributed Systems: Comparative Analysis
of GNS3 and SEED Internet Emulator
Lewis Golightly 1 , Paolo Modesti 1 and Victor Chang 2,*

1 Department of Computing and Games, Teesside University, Middlesbrough TS1 3BX, UK;
l.golightly@tees.ac.uk (L.G.); p.modesti@tees.ac.uk (P.M.)

2 Department of Operations and Information Management, Aston University, Birmingham B4 7ET, UK
* Correspondence: v.chang1@aston.ac.uk or victorchang.research@gmail.com

Abstract: Network emulation offers a flexible solution for network deployment and operations,
leveraging software to consolidate all nodes in a topology and utilizing the resources of a single host
system server. This research paper investigated the state of cybersecurity in virtualized systems,
covering vulnerabilities, exploitation techniques, remediation methods, and deployment strategies,
based on an extensive review of the related literature. We conducted a comprehensive performance
evaluation and comparison of two network-emulation platforms: Graphical Network Simulator-3
(GNS3), an established open-source platform, and the SEED Internet Emulator, an emerging platform,
alongside physical Cisco routers. Additionally, we present a Distributed System that seamlessly
integrates network architecture and emulation capabilities. Empirical experiments assessed various
performance criteria, including the bandwidth, throughput, latency, and jitter. Insights into the
advantages, challenges, and limitations of each platform are provided based on the performance
evaluation. Furthermore, we analyzed the deployment costs and energy consumption, focusing on
the economic aspects of the proposed application.

Keywords: secure distributed systems; network emulation; GNS3; SEED Internet Emulator; Cisco
routers; performance evaluation; cybersecurity

1. Introduction

Network emulation is an effective approach to network deployment for various
use-cases by offering a dynamic, programmable, and efficient configuration, along with
significant performance and monitoring advantages. This method has gained popularity
as an alternative and addition to traditional network solutions, providing enhanced busi-
ness agility through improved flexibility, scalability, and security in particular areas [1].
Organizations, including Small- and Medium-sized Enterprises (SMEs), can adopt network-
emulation technology to enhance or expand their existing network systems. By dividing
the network into physical and emulated devices using both vendor proprietary and open-
source communication protocols, greater control over network device management and
overall intelligence can be achieved, leading to efficient resource utilization and improved
security, ultimately helping organizations achieve their business objectives [2]. Energy
efficiency is a major benefit of implementing network emulation, with potential savings
of up to sixty percent compared to physical network infrastructure [3]. This is due to the
optimization of underutilized networking components through emulation.

Server consolidation is another approach to minimize the number of physical ma-
chines and makes use of virtual machines, contributing to energy efficiency. Additionally,
network optimization and resource reusability from previous work can lead to further
energy savings [4]. By considering these factors, organizations can significantly reduce
energy consumption and costs while enhancing the overall sustainability of their network
infrastructure through emulation implementation. However, scalability remains a signifi-

J. Cybersecur. Priv. 2023, 3, 464–492. https://doi.org/10.3390/jcp3030024 https://www.mdpi.com/journal/jcp

https://doi.org/10.3390/jcp3030024
https://doi.org/10.3390/jcp3030024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcp
https://www.mdpi.com
https://orcid.org/0000-0002-2189-335X
https://orcid.org/0000-0002-2523-1847
https://orcid.org/0000-0002-8012-5852
https://doi.org/10.3390/jcp3030024
https://www.mdpi.com/journal/jcp
https://www.mdpi.com/article/10.3390/jcp3030024?type=check_update&version=1

J. Cybersecur. Priv. 2023, 3 465

cant challenge in emulation alone, as it heavily relies on host system resources and can face
bottlenecks, particularly when scaling the network size and node quantity [5].

Hybrid network emulation solutions, which combine a physical network infrastructure
with a software-based emulation architecture, present significant opportunities. One of
the main benefits is the cost reduction compared to a complete migration to an emulation
architecture [6]. However, the hybrid model also introduces an expanded attack surface
and increased security concerns. To address these concerns, integrating security solutions
and adopting a security-by-design approach are essential for maximum mitigation [7].

Furthermore, the use of emulated environments, such as the SEED Internet Emulator [8],
can improve deployment efficiency and provide value for large-scale deployments in a
short period [6]. Recent studies have explored the communication architecture of network
emulation and conducted performance testing to assess the technology’s capabilities under
diverse conditions. These network emulators can also be utilized to run security software
such as access control for information security [9].

1.1. Research Motivations

Several motivations drove this research, including:

1. The investigation of how network emulation and hybrid systems can provide ad-
vanced control and flexibility when integrated with existing infrastructure, enabling
organizations to adapt to changing business needs and network demands.

2. To explore the ability to use network emulation and hybrid systems for offering a
cost-effective and efficient solution for businesses, particularly SMEs, by combining
existing physical infrastructure with an emulation architecture.

1.2. Research Contributions

In this study, we present the experimental results of a proof-of-concept network and
analyze the performance of various solutions, including physical (Cisco infrastructure),
emulated (GNS3, SEED Internet Emulator), and a hybrid network model (hybrid emulated).
We begin by conducting comparative testing of the performance between GNS3 the SEED
Internet Emulator based on predefined performance criteria, such as the bandwidth, latency,
throughput, as well as some other relevant metrics. The hybrid system is developed by
integrating physical Cisco devices and emulated (GNS3) Cisco appliances, enabling us to
evaluate the performance and quality of the hybrid emulation integration through similar
experiments. Finally, we assess the economic benefits of a specific network implementation
in energy consumption and cost.

The main contributions of our research are:

1. Providing a comprehensive analysis of cybersecurity in virtualization technology,
networking, and hybrid systems, including cryptographic mechanisms, and a security
evaluation through an exploration of evidence-based related literature (Section 2).

2. Conducting a performance comparison of network emulation systems and a hybrid
system, considering specific benchmarks such as the bandwidth, latency, throughput,
and other relevant metrics (Section 5), as well as evaluating the energy consump-
tion and cost-effectiveness through data analysis and addressing the reliability and
usability considerations around the platforms (Section 6).

3. Analyzing the deployment and application of hybrid emulation systems, combining
physical Cisco infrastructure with emulated (GNS3) components, and conveying an
evaluation, including identifying the strengths, challenges, and notable findings of
hybrid emulation (Section 4), as well as providing specific recommendations for its
implementation, optimization, and further enhancements (Section 6).

2. Background

This section explores the cybersecurity vulnerabilities of deploying virtualized net-
work emulation platforms focused on exploiting low-level mechanisms. A Virtual Machine
(VM) is a file that contains an emulated platform or operating system. A hypervisor

J. Cybersecur. Priv. 2023, 3 466

is a software solution that runs these files through resource allocation on the physical
machine [10].

2.1. Emulated and Virtualized Systems

Network emulation refers to the use of software to replicate a network environment
and nodes using specific files, such as Docker containers, that utilize the resources of a
server’s host system. On the other hand, network virtualization involves the utilization
of virtual devices to replace physical devices in a production network [11]. Two varia-
tions of packaged computing environments are commonly used: containers and Virtual
Machines (VMs).

Containers are isolated sets of one or more processes that have limited access to
specified resources. They leverage copy-on-write layered file systems and version control,
enabling continuous integration and delivery in software development. The SEED Internet
Emulator utilizes Docker integration, making it an efficient network-emulation platform.
Containers generally outperform VMs in terms of performance and scalability, making
them well-suited for application deployment. However, in multi-tenant scenarios, where
performance interference may occur, VMs offer enhanced security and root privilege,
making them preferable for handling business-critical data [12].

2.1.1. Network Emulation vs. Virtualization

Network emulation involves emulating a virtual equivalent of a production device
for a specific application domain. In contrast, virtualization refers to the software-based
division of a physical system into various components [13].

2.1.2. Hypervisors and Data Privacy

A hypervisor, also known as a Virtual Machine Monitor (VMM), is a software, hard-
ware, or firmware system that enables the execution of virtual machines. Two types of
hypervisors exist: Type 1 (hardware) and Type 2 (software) [14].

VMware ESXi is an enterprise-grade virtualization system that provides a kernel and
other operating system components. An open-source alternative, VMware Workstation
Player, similar to VirtualBox, can be employed for private cloud deployments, offering
a cost-effective data security solution [15]. KVM is a virtualization model integrated into
the Linux kernel. It supports secure multi-processor hypervisor cores, thereby enhancing
data integrity and confidentiality in cloud computing, making it a suitable choice for
businesses and SMEs [16]. Hyper-V , a Microsoft virtualization solution, has been found to
be vulnerable to DoS attacks, allowing users running malicious code on a guest VM to cause
a disruption. To ensure data confidentiality in multi-client environments, encryption can
be integrated to prevent unauthorized data access [17]. While VirtualBox, an open-source
hosted hypervisor, is useful for educational and research purposes, it presents security
risks, such as being a potential single point of failure and being susceptible to DoS attacks,
access takeover by low-privileged users, and unauthorized access to the entire VirtualBox
data [18]. QEMU, another open-source hosted hypervisor used in this study for GNS3
network emulation, demonstrates robustness and unexploitability when subjected to a TCP
amplification attack that targets the three-way handshake (SYN/SYN-ACK/ACK) [19].

Sgandurra et al. [20] investigated the threat modeling of virtualized systems, high-
lighting the vulnerabilities of hypervisors and the significant impact that cyber-attacks
targeting hypervisors can have by allowing hackers to control all hosted VMs. They dis-
cussed different levels of attack, including application-level, kernel-level, virtualization
layer, hypervisor, and lower-level attacks. Win et al. [21] proposed a security solution
based on Mandatory Access Control (MAC) to defend guest VMs and hypervisors from
cyber-attacks. Their solution assigns MAC policies reflecting the intended purpose of the
VM and notifies the monitoring VM if access is denied, protecting the virtual environment
from unauthorized access. They also suggested future opportunities for implementing
MAC policies for guest VMs using the least privilege principle and Extensible Markup

J. Cybersecur. Priv. 2023, 3 467

Language (XML) to enforce access control across VM migration. Che et al. [22] introduced
a Behavior-Based Access Control (BABAC) solution that combines Attribute-Based Access
Control (ABAC) and Behavior-Based Access Control (BBAC) for network virtualization
environments. This solution captures dynamic user behaviors and attributes to determine
access rights, providing identity and authorization management within VMs.

2.2. Vulnerabilities, Exploitation, and Remediation Techniques in Emulated Networks and
Virtualized Systems

In this subsection, we highlight the vulnerabilities, exploitation, and remediation
techniques of emulated networks and virtualized systems which can be observed in Table 1.

Pearce et al. [23] discussed security issues in virtualization, highlighting the significant
risk of implicit trust placed in Virtual Machines (VMs). They also emphasized the dangers
associated with VM cloning, stressing the importance of accounting for all VM instances
to ensure security. Additionally, the abstraction of VMs from the underlying hardware
introduces vulnerabilities that can be exploited by cyber threats. Wu et al. [24] investigated
vulnerabilities in virtualized computer networks, particularly the breach of isolation that
allows a VM to monitor and access other VMs and the host machine. They also identified a
Denial of Service (DoS) vulnerability arising from the sharing of resources, including the
CPU, memory, disk, and network, between the VM and the host.

Hyde and Doug [25] highlighted the emergence of a new DoS attack vector in virtual-
ization technology, particularly in cases where excessive resource allocation to a VM has
been permitted. Such attacks can lead to the crash of the physical machine hosting the
hypervisor and VM files.

Althobaiti et al. [26] focused on cross-VM side channel attacks that exploit vulnera-
bilities in VMs. They identified specific attack types, including VM hopping, which results
in DoS by making resources unavailable to the user; VM escape, enabling a guest-level VM
to attack itself; and VM mobility, allowing a VM to move between physical hosts.

Brooks et al. [27] addressed security risks in Cloud Computing, including exploita-
tion techniques such as footprinting, to analyze the OS platform remotely, botnets for
DoS/DDoS attacks on virtualized systems, traversal attacks that compromise data in-
tegrity by modifying VM library contents, and malicious code injections through MITM
attacks or redirection of communication within the virtualization management agent on
the host platform.

Chelladhurai et al. [28] discussed cybersecurity and privacy considerations in Docker-
based virtualization and containerization technology. They explored various existing
techniques, such as Sockets and the API, Security Hardening, MAC policies, Type En-
forcement, Multi-Category Security, and Docker Security Policies, which can mitigate
vulnerabilities to cyber-attacks, including DoS.

Lombardi et al. [29] proposed a security architecture for kernel-based VMs that
safeguards guest integrity against malware such as viruses and worms. They concluded
that implementing their security model can serve as an effective cybersecurity measure for
distributed systems based on virtualization architecture.

Wu et al. [30] demonstrated the Prevent Virtual Machine Escape (PVME) solution,
which integrates an adaptation of the Bell–LaPadula Access Control (AC) model with
virtualization technology to secure and prevent VM Escape Attacks. This solution protects
VMs on the same host through a core component in the hypervisor, containing an Access
Matrix, and another component in the host OS. The VM Escape Attack consists of two
phases: “Placement”, where attackers place malicious VMs as files on the same physical
machine as the hypervisor, and “Information Extraction”, where the attacker extracts
information from other VMs using the access key permissions of the hypervisor. The
malicious applications aid the attacker in privilege escalation within VMs in IaaS, SaaS, or
PaaS solutions.

J. Cybersecur. Priv. 2023, 3 468

Table 1. Cyber Attack Landscape in Virtualization Technologies.

Literature Reviewed Vulnerability Exploitation Remediation Techniques

Pearce et al., 2013 [23]

Overloading network interface
cards using a two-layer bridge,
resulting in all traffic passing
through it.

Compromised VMs used to
launch attacks against other
VMs or the hypervisor,
spreading attacks across
networks (Hyperjacking,
Hyperjumping).

Host intrusion detection system:
monitors specific activities and
communications, audits file integrity,
identifies insider threats, and detects
modifications of file permissions.

Wu et al., 2010 [24] Virtual network sniffing and
virtual network spoofing.

“Bridge Mode” creates a virtual
hub for network
communication, allowing VMs
to sniff the virtual network
using tools such as Wireshark,
leading to denial of
service attacks.

Firewall and shared network layer:
firewalls prevent spoofing attacks by
identifying the network ID specified
in the configuration file. A Shared
Network Layer can block
communication between shared VMs.

Hyde and Doug 2009 [25]

Unauthorized access to VM
contents through file-level
vulnerabilities and unrestricted
resource allocation, resulting in
VM crashes.

Unauthorized users with
inappropriate file permissions
can steal and observe VM
contents. Improper resource
allocation during VM creation
can lead to theft and denial of
service attacks.

Restricting file permissions and
implementing appropriate resource
allocation can secure against
these attacks.

Althobaiti et al., 2017 [26]
Software-based vulnerabilities
in VMs, including VM hopping,
VM Escape, and VM mobility.

VM hopping can cause denial of
service by blocking user access
to resources. VM Escape allows
a Guest VM to attack the host.
VM mobility across physical
machines can result in data
breaches.

Access control solutions can restrict
access to the VCCI by implementing
Mandatory Access Control (MAC),
Discretionary Access Control (DAC),
Role-Based Access Control (RBAC),
and virtual firewalls that provide
packet filtering and
monitoring services.

Brooks et al., 2012 [27]

Footprinting, botnets,
hypervisor traversal attacks,
and virtual code injection
attacks.

Footprinting identifies
virtualized operating systems.
Botnets can be exploited in VMs
for DDoS attacks. Hypervisor
traversal attacks modify
contents of VM image libraries.
Malicious code can be injected
into VMs through MITM
attacks.

Security wrappers and application
firewalls: reject packets incoming
from the Internet containing internal
IP addresses in the header and
outgoing packets with external IP
addresses in the header.

Chelladhurai et al.,
2016 [28]

ARP Spoofing and MAC
Flooding Attacks due to the
bridge forwarding all incoming
packets without filtering.

Containers’ direct
communication with the host
kernel facilitates attacks on the
host system.

Sockets and API, security hardening,
Mandatory Access Control (MAC),
Type Enforcement (TE),
Multi-Category Security (MCS),
Docker security policies, and best
practices. Security mechanisms for
enhanced security for Docker
containers include process, file,
system, device, IPC, and network
isolation to defend the virtualized
environment from denial of service.

Lombardi et al., 2010 [29] Malware vulnerabilities creating
backdoors in the system.

Malware provides remote
control of the system through
malicious code execution.

Kernel-based virtual machine
intrusion detection system: secures
VMs by checking data integrity and
detecting modification of critical
system files and data structures.

J. Cybersecur. Priv. 2023, 3 469

Table 1. Cont.

Literature Reviewed Vulnerability Exploitation Remediation Techniques

Wu et al., 2017 [30]

VM Escape attacks conducted at
the Infrastructure-as-a-Service
(IaaS), Software-as-a-Service
(SaaS), and
Platform-as-a-Service (PaaS)
layers. Malicious applications
aid attackers in gaining the
highest privilege of VMs.

Attack steps include “Placement”
(placing malicious VMs on the
same physical machine as the
hypervisor) and “Extracting
Information” (accessing key
permissions of the hypervisor or
hosts and extracting information
from other VMs, host, and
hypervisor).

Bell–LaPadula adaptation for Prevent
Virtual Machine Escape (PVME):
applies basic security principles and
adapts security axioms to prevent VM
Escape attacks.

Dong et al., 2019 [31]
VM hopping attacks, where the
attacker gains access to VMs on
the same hypervisor.

The attacker uses a malicious
VM to discreetly access or
control other VMs on the
hypervisor through
communication between them.
The attacker may also try to
access the host OS, potentially
destroying other VMs.

Bell–LaPadula adaptation for PVMH:
secures and prevents VM hopping
attacks.

Dong et al. [31] proposed the Prevent VM Hopping (PVMH) solution, which also
adapts the Bell–LaPadula AC model with virtualization technology to secure and prevent
VM hopping attacks between different VMs in operation. By significantly reducing the risk
of attacks, this solution enhances the overall reliability of the computing platform. The
Access Matrix is stored as a binary file in the hypervisor, with a backup file stored in the
privileged VM.

2.3. Related Work

In this section, we review related works that explore the use of network emulation in
different integration approaches, presenting studies similar to our own research.

2.4. Network Performance Comparison

Jimenez et al. [32] compared the performance of network emulation using Mininet
with physical networks in terms of bandwidth and jitter. The study found no significant
difference in bandwidth between physical and emulated networks, both reaching a maxi-
mum value of 10MB/s. However, the jitter results showed a significant improvement in
the emulated Mininet model compared to the physical network, with maximum values of
0.028 ms for Mininet and 0.908 ms for the physical topology. Kh et al. [33] compared two
network emulators, GNS3 and Mininet, in a data center topology. Their analysis showed
that Mininet provided a more-stable and higher bandwidth compared to the GNS3 network.
Mininet also demonstrated better resource utilization, resulting in higher speed and service
accessibility. Gelberger et al. [34] compared the throughput, latency, and jitter capabilities
of OpenFlow and Linux ProGFE. The results indicated that Linux ProGFE had enhanced
throughput performance compared to OpenFlow, with similar latency, but lower jitter. The
study also showed that a more-complex network with increased flexibility, functionality,
and capability did not always result in performance degradation.

2.5. Hybrid System Deployment

Amin et al. [35] observed a growing interest in using network emulation as a replace-
ment for a physical architecture, but some researchers are exploring the combination of both
to create a distributed solution. In our study, we conducted experiments on both network
emulation and physical networks to understand the potential of replacing physical network
nodes and explore this area for businesses. Wang et al. [36] emphasized the technological
considerations in deploying an emulated solution, such as coordinating centralized control

J. Cybersecur. Priv. 2023, 3 470

and distributed routing. Despite the configuration complexities, utilizing hybrid systems
offers advantages, including maximizing network throughput in traffic engineering. In
our research, we designed and configured a Distributed System that combines a physical
and emulated network with Quality of Service (QoS), capable of running business systems
and services.

Galan et al. [37] demonstrated how hybrid systems could provide energy consump-
tion advantages through flexible centralized control. They achieved this by selectively
shutting down idle links and switches in the deployed emulation architecture, which can
be powered on later when needed. Our Distributed System also offers similar flexibility,
allowing specific nodes and network connections to be easily shut down without causing
interruptions or affecting the rest of the network. The user-friendly interface of the GNS3
platform facilitates the implementation of this feature. Incremental deployment has been
identified as the most-effective approach in deploying a distributed solution. Xu et al. [38]
discussed the use of a heuristic algorithm for implementing a Distributed System under
budget constraints. Incremental deployment has shown a forty percent improvement in
throughput compared to other deployment solutions with a small number of emulated
nodes. Our work included a cost matrix that compares network emulation and the physical
architecture, enabling interchangeability in the application of a Distributed System model.

Saadeh et al. [39] proposed combining hybrid systems with IoT technology, highlight-
ing it as a promising solution. Their study focused on a privacy-aware IoT architecture that
leverages the advantages of network emulation, enabling distributed control functionalities
across different planes, including operational, data, and tactical planes. Integrating network
emulation and the IoT provides benefits such as enhanced forwarding, caching, security,
and integration with legacy IT infrastructure. Our research demonstrated the scalability
and interchangeability of devices in a distributed solution through a simple configuration
or adding previously configured devices via the GNS3 VM and NIC card on the host server.
Additionally, Vissicchio et al. [40] addressed the challenges of incremental deployment,
robustness, and scalability in emulated network solutions. These challenges make achiev-
ing a fully emulated network solution difficult, which can pose future problems. Hybrid
network emulation offers a compromise by combining the benefits of both strategies to
mitigate these challenges and provide a robust and scalable architectural solution.

3. Methodology

This section presents the six-step methodology (Figure 1) used in this research:

1. Literature review: Firstly, we conducted a comprehensive review of recent and rel-
evant academic literature in the field of network emulation. We explored emerging
network emulation platforms and identified opportunities for hybrid emulation con-
figuration and deployment.

2. Network design and development: We built and configured a six-node network on
different platforms: physical, GNS3, the SEED Internet Emulator, and hybrid, creating
a data center topology. To maintain consistency, we utilized Cisco CLM appliances as
routers in GNS3, programmatic nodes in the SEED Internet Emulator, and physical
devices in the physical network using the OSPF protocol. The data center architecture
was chosen for its widespread use and relevance in data center network construction,
as highlighted by Luo et al. [41]. This model consisted of three layers: the core layer,
distribution layer, and access layer.
We employed a NAT node to provide outside Internet connectivity using one of the
Network Interface Cards (NICs) on the host server. The host server connects to the
Internet Service Provider (ISP) through a TP-Link Powerline. When connecting the
hybrid system, we used the Cloud Node to connect to other devices using the OSPF
protocol for dynamic routing. Additionally, we developed the same network topology
in Python using the Internet Emulator platforms and Docker containers. This allowed
us to build a six-node emulated network that uses the OSPF protocol, designed to
the same specification as the GNS3 network. Once completed, we created a solution

J. Cybersecur. Priv. 2023, 3 471

using physical Cisco routers and the GNS3 network with the OSPF protocol, along
with a bridged network adapter supporting Network Address Translation (NAT).
The network design is shown in Figure 2, representing a data center model that
can be further expanded into a Campus Area Network (CAN) model consisting of
conceptually different locations across a campus.

3. Data collection and analysis: In this step, we employed automated scripts for data
collection: using bash for the Internet Emulator under Linux and the proprietary
Cisco TCLsh for the GNS3 network and the physical Cisco appliances. These scripts
enable systematic and reliable data collection while minimizing measurement errors.
We executed the scripts by repeating the measurements 1000 times. Once completed,
we conducted a statistical analysis to compute latency metrics such as the minimum,
maximum, average, median, and standard deviation, as well as jitter.

4. Energy efficiency and cost analysis: In this step, we considered two additional crite-
ria for the networks regarding economic benefits. We compared the energy consump-
tion of all network models and performed a cost analysis to understand the economic
implications of adopting these networks in a business context.

5. Network comparison: In this step, we compared the performance of the network
models and platforms to identify their advantages, constraints, and limitations. By
analyzing and presenting the performance criteria, we can make comparisons to the
SEED Internet Emulator, GNS3, physical, and hybrid solutions to begin identifying
meaningful adoption based on the results.

6. Evaluation and recommendations: After completing the experiments and the net-
work comparison, we performed an overall evaluation and provide recommendations
based on the comparison of the various network models.

Literature review

Network design

Data collection

Energy and
cost analysis

Network comparison

Evaluation and
recommendations

Review of literature on similar solutions.

Build and configure physical, emulated, and hybrid network models.

Collect network performance data using automated scripts.

Measure energy consumption and perform cost analysis.

Compare all network platforms against the pre-defined criteria.

Evaluate network architectures and provide recommendations.

Figure 1. Research Methodology.

J. Cybersecur. Priv. 2023, 3 472

Figure 2. Logical Network Topology.

4. Network Models under Test

This section describes the network models used in the study, all configured in a data
center topology and utilizing the OSPF protocol for dynamic routing.

The emulated (GNS3) model (Figure 2) consisted of six nodes, emulated Cisco routers
running IOSv Version 15.5, built using Cisco Modeling Labs (CML). The configuration was
performed using the CLI and node support shell processing. The routers employed the
OSPF protocol for dynamic routing and established neighbor relationships by utilizing the
same Autonomous System (AS) number.

The Physical (Cisco) network model followed the same structure as the emulated
(GNS3) model, utilizing Cisco 1841 routers and adhering to the data center topology with
the OSPF protocol for dynamic routing.

The SEED Internet Emulator model also consisted of six nodes. This platform pro-
vides essential Internet elements as Python classes, generating Docker containers and
necessary files to set up the network. In Figure 2, circles represent routers and squares
represent subnets. The SEED client is required to interact with the system. Once the
network is bootstrapped, events are logged to a file for the verification of successful net-
work instantiation. To modify the emulated network, users must adapt the Python code
before re-emulating.

The hybrid network combines the emulated (GNS3) model (Figure 3) with three physi-
cal Cisco routers (1841) using a bridged network adapter on the host server to demonstrate
the integration of different network models through GNS3 functionality. The system in-
cludes a cloud node representing physical Network Interface Cards (NICs). The cloud
node, labeled as Cloud1, provides access to the physical network to build a distributed
solution once the physical equipment is configured and operational.

J. Cybersecur. Priv. 2023, 3 473

Figure 3. Hybrid System (Physical and GNS3) Network Model.

In Table 2, we present the IP addresses for all of our network models.

Table 2. IP Addresses and Network Interface of Routers.

Router P. NICs Physical E. NICs GNS3|SEED Internet Emulator

R1 1 10.180.1.1 3 10.150.0.254|10.150.6.254|10.150.10.254
R2 2 10.180.1.2/10.180.2.1 4 10.150.0.253|10.150.1.254|10.150.8.254|10.150.9.253
R3 2 10.180.2.2/10.180.3.1 3 10.150.1.253|10.150.2.254|10.150.7.253
R4 N/A 3 10.150.2.253|10.150.3.254|10.150.8.253
R5 N/A 4 10.150.3.253|10.150.4.254|10.150.10.253|10.150.7.254
R6 N/A 3 10.150.4.253|10.150.6.253|10.150.9.254

5. Network Performance Comparison

In this section, we discuss the network performance parameters which can be ob-
served in Table 3 of different emulated network models and the hybrid system model.
We compared all network platforms based on performance benchmarks, including the
maximum, minimum, average, median, and standard deviation in latency, as well as jitter.
These measurements for network performance can be further understood through the work
of Gelberger et al. [34], which provides insights into the maximum rate at which data can
be transferred, the actual rate at which data are being transferred, any delays between the
sender and receiver, and the variation in packet delays. This helped us understand the
advantages and disadvantages of each solution and approach, allowing us to assess the
efficiency, flexibility, and opportunities associated with each approach.

We list below some established parameters that are typically used to measure network
performance.

Table 3. Performance Benchmark Comparison Criteria.

System Benchmarks Explanation

Bandwidth Measured in bits/second, it represents the maximum rate at which data
can be transferred.

Throughput The actual rate at which data are being transferred.

Latency
The delay between the sender and receiver in a transmission, which is a
function of the signal’s travel and processing time at any nodes the
information traverses.

Jitter Variation in packet delay at the receiver end of the communication.

Energy Consumption The energy consumed when running different network models.

Routing Protocols A set of defined rules that allow different devices on the network to
communicate with each other.

J. Cybersecur. Priv. 2023, 3 474

Bandwidth

Bandwidth is the maximum amount of data that can be transmitted over a connection
within a specific time frame, measured in bits per second (bps). It is often referred to as the
“pipe width” for Internet traffic [42].

Bandwidth (bps) =
Number Packets Transmissible × Packet Size (bit)

Transmission Time (s)
(1)

Throughput

Throughput is the rate at which data are actually transmitted over a connection,
measured by dividing the amount of information successfully delivered to the destination
over a specific time by the duration of the time interval [43].

Throughput (bps) =
Number Packets Received × Packet Size (bit)

Delivery Time (s)
(2)

Latency

Latency is the time it takes for data to travel from the sender to the destination across
a network, measured in seconds (s). The overall latency consists of three components:
propagation, transmission, and queuing [44].

Latency (s) = Propagation + Transmit + Queuing (3)

Propagation is the time it takes for a signal to travel from the sender to the receiver
and is a function of the distance between the endpoints and the speed in the given commu-
nication medium.

Propagation (s) =
Distance (m)

Speed (m/s)
(4)

Transmission delay considers the actual size of the data and the available bandwidth.

Transmit (s) =
Packet Size (bit)
Bandwidth (bps)

(5)

Queuing delay considers the waiting times for packets before they can be transmitted.

Jitter

Jitter is the variation in packet delay at the receiver end of the communication. It is
computed by measuring n samples of ping time between two endpoints and computing
the difference Di between the individual pings and the average value. As every packet
can be routed to different paths to reach the destination, jitter measures the consistency in
transmission delay. Therefore, lower jitter values are preferred [45].

Jitter (s) = ∑n
1 |Di|

n
(s) (6)

Energy Consumption

Energy consumption is calculated as the product of power in Watts (W) and the time
of use in hours (hrs), divided by 1000 to obtain kilowatts (kWh) [46].

Energy (kWh) =
Power (W) × Time (hrs)

1000
(7)

J. Cybersecur. Priv. 2023, 3 475

5.1. Routing Protocols

This subsection provides an overview and comparison of two established routing
protocols for achieving dynamic routing: OSPF and EIGRP. It also explains the rationale
behind choosing OSPF for adoption.

OSPF vs. EIGRP

The OSPF protocol analyzes the speed, cost, and path congestion, while the Enhanced
Interior Gateway Routing Protocol (EIGRP) combines the features of link state routing. The
OSPF protocol uses Dijkstra’s shortest path algorithm and relies only on bandwidth to
calculate the cost of a specific link, whereas the EIGRP uses the Diffusing Update Algorithm
(DUAL), which incorporates bandwidth and delay in a composite metric calculation with
a complex formula [47]. For our network models, we chose to use the OSPF protocol for
the dynamic routing and neighbor relationship. This decision was based on the avail-
ability of open-source protocols that can be used across different platforms and facilitates
result comparison.

5.2. Methods for Controlling Network Performance

One method to control latency and reduce traffic delay was to deploy Quality of
Service (QoS) on networks. This approach has been demonstrated to improve network
performance by prioritizing and allocating resources based on specific criteria [48].

There are various ways to reduce delay of a network:

• Subnetting: Grouping together endpoints that communicate most frequently can
reduce latency across the network.

• Traffic shaping: By utilizing the QoS, traffic shaping, and bandwidth allocation, it is
possible to improve latency for specific network segments.

• Load balancing: Load balancing distributes traffic to areas of the network with the
capacity to handle the additional activity.

Applying the QoS enables control over network bandwidth by priority, which can
significantly reduce latency on the network in terms of delay time (ms) [49]. To achieve
this, the following actions can be taken to control network traffic [50]:

• Class-map: Categorize traffic into groups.
• Policy-map: Allocate the quantity of bandwidth and priority to the traffic from the

class-map.

5.3. Energy Consumption

We conducted energy efficiency measurements on all of our network models to com-
pare their economic benefits for adoption in SME environments. By providing cost analyses,
we can identify variables that can be compared to make strategic decisions regarding the
network architecture for the organization.

6. Results and Evaluation

In this section, we present the results of evaluating different network software plat-
forms and hybrid models against the benchmark criteria. These evaluations were based
on the state-of-the-art in the academic literature. When testing the network nodes, we
followed a systematic sequence of distances between the nodes to demonstrate both close
and distant proximity.

6.1. Bandwidth and Throughput

In this subsection, we present the results for the bandwidth and throughput of the
network models. Figure 4 illustrates that the SEED Internet Emulator exhibited significantly
higher bandwidth and throughput compared to the other models. This can be attributed to
the model’s design, which utilizes Docker containers and tightly integrates all resources.
To measure bandwidth and throughput, we employed industry-leading tools in network

J. Cybersecur. Priv. 2023, 3 476

monitoring, namely Wireshark and Iperf. When conducting these measurements, we
considered the farthest pair of endpoints and repeated the measurement five times.

0 2000 4000 6000 8000

Bandwidth

throughput

Emulated (SEED IE)
emulated (GNS3)

hybrid

Figure 4. Bandwidth and Throughput Comparison.

6.2. Latency and Jitter

In this subsection, we present and discuss the results of the latency and jitter of the
network models (Figure 5). While GNS3 and the hybrid model showed comparable results,
it should be noted that the values for the SEED Internet Emulator were so small that can
barely be noticed in the chart.

0 10 20 30 40 50

Latency

Jitter

ms

Emulated (SEED IE)
emulated (GNS3)

hybrid

Figure 5. Latency and Jitter Comparison (6 Hops).

6.2.1. GNS3 Network

Table 4 presents the results based on the internal communication paths of the GNS3
platform. The paths chosen were to reflect and observe a variety of distances between the
nodes in the network.

Table 4. GNS3 Latency and Jitter (ms).

Nodes Min Hops Max Min Avg StdDev Median Jitter

R1-R2 1 119.00 13.00 41.45 21.39 35.00 16.99
R1-R3 2 183.00 26.00 70.39 32.79 66.00 24.97
R3-R2 1 134.00 15.00 52.75 23.62 50.00 29.73
R3-R6 2 132.00 21.00 59.55 24.65 54.50 19.41
R1-R6 1 127.00 16.00 48.22 21.24 44.00 15.86
R2-R5 2 138.00 18.00 55.97 23.54 48.50 17.94
R4-R5 1 150.00 15.00 49.62 28.73 43.00 20.57
R4-R6 2 147.00 9.00 50.17 27.62 42.00 20.65
R6-R1 1 155.00 10.00 49.88 27.01 45.50 20.10

The average latency results were around 20 ms for all variations of node communi-
cation, which can be observed in Table 5. In the study by Masruroh et al. [51], the OSPF

J. Cybersecur. Priv. 2023, 3 477

protocol produced the minimum value for packet loss in their emulated (GNS3) network
compared to a variety of other routing protocols. The results in our emulated (GNS3)
model were acceptable for network delay. In the study by Nugroho et al. [52], similar
experiments were performed in our paper, measuring against the same criteria. They found
that the issues in communication based on the link state can be mitigated by using the
OpenDaylight controller instead of OSPF to remove reliance on link state principles as
the result of a link failure. Moreover, Baggan et al. [53] conducted performance evalu-
ation tests in GNS3 similar to the one conveyed in this paper. Their results concluded
that OSPF, compared to other interior gateway protocols such as the Routing Information
Protocol (RIP), EIGRP, and iBGP, had the minimum amount of latency while having the
maximum amount of latency; in the study, they used eight nodes—a similar quantity to
our study. Different network protocols can produce different results in performance [54].
Compared to the RIP and OSPF, the EIGRP demonstrated the minimum delay time for the
most-effective communication.

Table 5. SEED Internet Emulator Latency and Jitter (ms).

Nodes Min Hops Max Min Avg StdDev Median Jitter

R1-R2 1 0.304 0.054 0.110 0.025 0.107 0.016
R1-R3 2 0.579 0.052 0.108 0.030 0.104 0.018
R3-R2 1 0.393 0.053 0.109 0.029 0.104 0.019
R3-R6 2 0.420 0.054 0.109 0.031 0.105 0.020
R1-R6 1 1.040 0.054 0.112 0.042 0.105 0.020
R2-R5 2 0.332 0.052 0.109 0.027 0.105 0.018
R4-R5 1 1.250 0.054 0.118 0.053 0.105 0.026
R4-R6 2 1.980 0.074 0.148 0.071 0.136 0.031
R6-R1 1 0.255 0.055 0.111 0.027 0.107 0.019

6.2.2. SEED Internet Emulator Network

In Table 5, we can observe the results based on the internal communication of the
Internet Emulator platform.

The latency results demonstrated excellent delay times, all being around 1 ms on
average. Although there have been limited studies performed using the SEED Internet
Emulator, a study by Kundel et al. [55] using Programming Protocol-independent Packet
Processors (P4) as an emulated SDN model demonstrated achieving active queue manage-
ment in the data plane, allowing for low latency at the edge and core levels. Additionally,
Sedar et al. [56] highlighted achieving low latency and high availability using P4 through
programmable data planes in SDN. Moreover, Kaur et al. [57] conveyed that low jitter
results were achievable through programmable data planes in the P4 model for the data
center application, following the same structure as the models in this paper. Furthermore,
we can observe that Mininet [58] can also provide low latency and jitter results through
programmability in the data plane, as shown in our results.

6.2.3. Hybrid System

Table 6 presents the results based on the external communication of the GNS3 platform
and physical Cisco equipment in our distributed model, where “c” represents physical
equipment in the topology.

The study [59] compared OSPF routers and OpenFlow switches for providing the least
delay in communication for the Distributed System and found that the OSPF protocol had
increased delay times due to the protocol having to calculate the shortest path route in
the model. However, our results demonstrated that the average latency delay was around
or below 20 ms for all our node communication combinations, which is acceptable. In a
study by [60], a Distributed System was presented combining GNS3 and the Open Network
Operating System (ONOS), where the latency was observed to be very good, demonstrating
the scalability and flexibility to incorporate GNS3 into various other distributed models

J. Cybersecur. Priv. 2023, 3 478

while still achieving meaningful results. The future concept of a distributed architecture
was conveyed, where the core layer will use physical devices and the edge layer will
comprise SD-LANs [61]. Despite the possible opportunity of eventually migrating all
networks into network emulation technology, one of the significant issues around this is
the significant cost of the infrastructure needed to host the system. The distributed network
technology aims to overcome this limitation, as demonstrated in Appendix A. Hybrid
systems do provide a reasonable solution for cost-effective integration to solve particular
use cases [62].

Table 6. Hybrid System Latency and Jitter (ms).

Nodes Min Hops Max Min Avg StdDev Median Jitter
R1-cR1 3 192.00 11.00 50.69 29.43 42.00 20.91
R1-cR2 4 171.00 22.00 65.86 26.45 63.00 19.59
R1-cR3 5 107.00 23.00 51.52 17.07 47.50 13.01
R2-cR1 2 162.00 6.00 33.38 27.28 25.50 18.55
R2-cR2 3 147.00 9.00 37.26 19.64 32.00 13.59
R2-cR3 4 141.00 10.00 40.76 23.83 35.00 16.23
R3-cR1 2 201.00 16.00 59.96 30.26 56.50 20.73
R3-cR2 3 78.00 14.00 37.97 14.96 35.50 11.46
R3-cR3 4 149.00 22.00 47.51 23.72 40.50 17.09
R4-cR1 1 197.00 18.00 59.05 29.88 54.50 21.50
R4-cR2 2 156.00 4.00 29.56 26.26 19.00 16.78
R4-cR3 3 105.00 5.00 30.02 18.66 25.50 13.97
R5-cR1 2 165.00 12.00 62.15 29.66 56.00 23.16
R5-cR2 3 168.00 8.00 40.76 23.63 36.00 15.96
R5-cR3 4 152.00 9.00 40.89 20.27 38.00 13.71
R6-cR1 3 248.00 13.00 59.13 37.67 50.50 25.41
R6-cR2 4 159.00 19.00 58.52 25.75 54.00 17.27
R6-cR3 5 144.00 19.00 51.97 22.34 47.50 17.05

While configuring hybrid systems, we noted that emulated networks require a signifi-
cant amount of time for the initial setup due to additional software configuration, including
setting up the network emulation platforms. To expand on this work, we could build
a larger-scale hybrid network consisting of both physical and emulated components to
observe the results on a larger scale. Additionally, we can explore a more-comprehensive
performance comparison of GNS3 and the SEED Internet Emulator, considering different
performance criteria such as scalability, flexibility, and security. Future research can also
focus on programmable automatic emulation technologies and incorporating security-by-
design architectures to explore the opportunities provided by these technologies [63]. One
approach to implementing the security architecture into network emulation during the
development phase is to use vulnerability assessment tools that can be run simultaneously
and automatically in the program configuration, providing enhanced operational security
management before the architecture is released and deployed within an organization [64].

6.3. Energy Consumption Comparison

Energy consumption is a significant concern for organizations, and emulated net-
works have the potential to reduce consumption by efficiently utilizing existing hardware
resources. Energy efficiency is a significant advantage, and consolidating all network
devices onto a single server can aid in space management.

We collected energy consumption data for all of our network models and observed that
the physical network architecture uses significantly less energy than the emulated networks.
However, we also collected data on the host server’s consumption for the emulation. The
consumption was nearly the same as the emulated configuration, indicating that most of
the consumption occurs on the host server. The emulation itself does not require a high
level of energy. Similar studies have been conducted [65], where they evaluated the energy
efficiency of a data center model using the NS-3 platform, yielding positive results.

J. Cybersecur. Priv. 2023, 3 479

We used energy monitoring equipment to measure energy consumption which can be
observed in Figure 6. Table 7 presents the energy measurements and compares the physical,
emulated, and hybrid approaches. We considered a base system (x1) and estimated the
consumption of a network twice (x2) the size with the same components. The physical
network had the lowest energy consumption for the base system, while the emulated
network consumed approximately 2.4–2.6-times more energy than the physical architecture
(1.2–1.5-times for the x2 system). We also tested the host server without the emulated
network running, which produced almost identical results to the physical system, indicating
that the host system absorbs most of the energy. Despite the host system consuming more
energy than the physical network, if the server has available capacity, it can be utilized to
run additional services for the organization. Therefore, the overall energy balance could
still favor the emulated solution. Finally, we tested the hybrid emulated system, which
uses both physical and emulated networks.

We found that both network models consume a similar amount of energy. The em-
ulated SEED Internet Emulator model consumed slightly less energy (kWh) than the
emulated GNS3 model.

Table 7. Energy Consumption.

Network Energy (kWh)

(Base System) x1 x2

Physical (3 Nodes) 0.037 0.074
Physical (6 Nodes) 0.074 0.148

Emulated (GNS3) 0.151 0.302
Host Server 0.143 0.286

Emulated (Net) 0.008 0.016

Hybrid Emulated System (Emulated/Physical) 0.196 N/A
Emulated/Physical Ratio 0.077 0.154

Emulated (SEED Internet Emulator) 0.146 0.292
Host Server 0.143 0.286

Emulated (Net) 0.003 0.006
Internet Emulator/Physical Ratio 0.071 0.145

Energy Data Collection

To measure the energy data, we used the following methods:

1. Defining energy consumption measurement: We measured energy consumption
in kilowatt-hours (kWh), as it is the universal standard for measuring electricity
consumption.

2. Defining the data collection scope: We measured the energy consumption of all
variations of the network technology used in the study.

3. Defining the rationale of measuring device choice: We used the Anglerfish Smart
Meter Energy Monitor for data collection.

4. Defining device implementation: We simply installed the device in the electric out-
put socket and used an extension cable (consisting of twelve outlets) to provide power
to the devices.

5. Data analysis We recorded the collected data through the device in Table 7 to observe
the variations in network consumption.

J. Cybersecur. Priv. 2023, 3 480

Server

Console Cable

Power Cable

Ethernet Cable

Power Grid

Power Adapter

Physical Cisco Routers

Energy Consumption Measuring Device

Figure 6. Energy Consumption Measurement Configuration.

6.4. Cost Evaluation

In this subsection, we provide quantitative results based on an estimated price range
for Small- and Medium-sized Enterprises (SMEs) to plan their network architecture strategy,
adopting an emulated and hybrid architecture.

The cost analysis (Table A2 in Appendix A) compares the network emulation and
physical architectures using physical Cisco devices and the GNS3 platform. It is important
to note that prices can change over time and are subject to various factors such as the
vendor, model, and time of purchase. Our considerations were based on reasonable
business application needs for a network similar to the one considered in this paper. Due to
financial constraints, we implemented the network using second-hand devices. Comparing
physical network architectures is challenging due to the many models, use cases, and time
factors involved. For this comparison, we considered new state-of-the-art devices with
prices taken from Amazon (U.K.) in November 2022.

In this comparison, the main component of network emulation was the host server
(see Table A3 for the detailed configuration), which included two 22-core CPUs with
64 GB of RAM. Theoretically, the network emulation can support up to approximately
35 networking devices, allowing each device one logical core and 1–2 GB of RAM depending
on the device’s needs. This allows for significant scalability at a total maximum cost of
GBP 2899. In contrast, the price for the physical Cisco equipment is GBP 4461. This cost
comparison showed that purchasing and deploying the physical Cisco network architecture
is significantly more expensive than an emulation solution such as GNS3 and Cisco CLM
in this study. One of the most-impactful conclusions from the table is that physical devices
are priced for a single item, unlike the Cisco CLM, which provides unlimited devices as
long as the host server can provide the resources needed for emulation. This demonstrates
a more-scalable and cost-effective solution for SMEs.

6.4.1. Infrastructure

We can observe the economic benefit of network emulation where, when a node
reaches its end-of-life stage, it can be deleted from the program rather than physically
discarded. Throughout the research, we provided recommendations for an organizational
adoption strategy for their future networking architectural strategy. This work considered
the challenges and opportunities of deploying a distributed architecture for businesses,
either in the startup stages or moving forward with their networking strategy. Through
testing the physical, emulated, and hybrid networks, we assessed the benefits and chal-
lenges of each option and showed that network emulation technology does not necessarily
replace physical infrastructure, but can enhance existing physical networks. Based on
our performance criteria, we observed that the physical infrastructure yielded signifi-

J. Cybersecur. Priv. 2023, 3 481

cantly better results; however, hybrid systems can allow for enhanced management and
cost-effectiveness [66].

6.4.2. Depreciation

From a cost analysis perspective, when using emulated networks, the depreciation
of value only needs to be considered for the host server. As time progresses, the server’s
specification and model will depreciate as newer state-of-the-art technology is developed.
In the case of network emulation, this could include factors such as the number of CPU
cores, RAM, and more-contemporary releases. Regarding physical networks, as all nodes
were physically deployed, we will observe the physical depreciation of models over time
as newer variations are released, which can occur as frequently as every three years. When
emulating specific network nodes, such as specific Cisco routers in our GNS3 model, as
the nodes depreciate, we can simply delete them from the topology, install new appliance
images, and add them to the network [67].

6.4.3. Maintenance and Reliability

Computer network maintenance involves monitoring, updating, and running the net-
work to prevent issues from arising. However, it is important to consider the cost implica-
tions associated with network maintenance. The cost considerations include the following:

• Network security: Ensuring a secure network environment by implementing contem-
porary and robust defense systems and mechanisms, such as access control, intrusion
detection, and firewalls. The cost of acquiring and maintaining security solutions, as
well as the associated personnel required to manage them, should be considered. In
GNS3, these security measures can be implemented by integrating specific appliances
such as pfSense, which can be attached to the network to provide firewall functionality
and other security features. Similarly, the SEED Internet Emulator allows the use of
programmable code integrated into the emulated network, which enables the deploy-
ment of various firewall software and other security solutions. Both platforms offer
flexibility in choosing appropriate security solutions to protect the emulated networks
effectively. By investing in robust security measures, potential threats can be mitigated,
and the overall network resilience and data protection can be significantly enhanced.

• Network performance: Ensuring the optimal network speed and reliability of devices,
which includes managing bandwidth usage and minimizing delay times.

• Network scalability: Ensuring that the network design and nodes can accommodate
the operational demands, such as the number of users, locations, and business func-
tions. To achieve this, it is essential to design the networks with scalability in mind.
For instance, using open-source communication protocols such as OSPF can facilitate
multi-vendor networking, and in GNS3 and the SEED Internet Emulator, designing the
network to allow for the easy attachment of additional nodes contributes to scalability.

• Hardware and software updates: Regularly updating both the hardware and soft-
ware elements of the network is crucial for maintaining security, performance, and
compatibility. This involves ensuring all hypervisors and Virtual Machines (VMs) are
kept up-to-date, along with the platforms running the emulated network.

• Infrastructure compliance: Ensuring that the network adheres to relevant policies
and legislative requirements. This includes meeting security standards, data pro-
tection regulations, and any other compliance obligations applicable to the specific
network environment.

• Network repairs: Proactively identifying and resolving problems before they escalate
is essential for network stability. This can involve implementing measures such as
regularly backing up GNS3 project files to prevent data corruption and creating copies
of the code used for SEED Internet Emulator deployments, allowing for easy recovery
in case of issues.

Computer reliability is a crucial characteristic of any computer-related component,
encompassing software, hardware, and networks. A reliable system should demonstrate

J. Cybersecur. Priv. 2023, 3 482

dependability, characterized by high uptime, low downtime, and minimal system failure
rates. To ensure this, the following metrics can be monitored:

• System availability: This metric represents the ratio of the system’s actual operating
time to the total time it is expected to be available. Ensuring availability in GNS3
requires attention to various factors, such as the GNS3 VM (GNS3 server)—which
stores and runs all virtual devices, VMs providing services, and network nodes.
Regular audits should be conducted to ensure all components of the emulated network
are in optimal condition. On the other hand, the SEED Internet Emulator does not
depend on decentralized factors such as external VMs. However, it is essential to
take precautions to secure all the relevant files required for emulation. Any accidental
removal, corruption, or unauthorized access to these files could potentially lead to
system unavailability.

• Mean time between failures (MTBF): The MTBF is the average time between system
or component failures. To calculate this, we divide the system’s total operating time
by the number of downtime incidents that occur. Both GNS3 and the SEED Internet
Emulator offer software-based appliances, eliminating the risk of specific device
failures that were common in physical appliances. However, since both platforms rely
on a single host system for emulation, there is a potential single point of failure. In
the event of a server breakdown, whether due to natural causes or a cyber-attack, the
entire emulation system could become unavailable. To mitigate this risk, it is crucial
to have proper backup and redundancy measures in place to ensure the continuity of
operations and minimize downtime.

• Mean Time To Repair (MTTR): This is the measurement of how long it will take for a
failed or disabled system component to return to operational. This is calculated by the
time period of system downtime and dividing it by the number of downtime incidents.
Both GNS3 and the SEED Internet Emulator can suffer from having a particular device
failing despite it being in logical rather than physical format; in the case of a broken
node, this can be simply fixed by restarting the node virtually or deleting the node and
dragging in a new one. One of the significant benefits of doing this is that the logistical
element is removed as there is no need to wait for a new device to be delivered; this
can be performed in a matter of seconds.

• Mean Time To Failure (MTTF): The MTTF represents the average lifetime period
of a system or component that cannot be repaired. It is calculated by adding the
total operating time before failure and dividing that by the quantity of these assets
in use. Both GNS3 and the SEED Internet Emulator do not face this concern with
their network nodes, as more nodes can be easily added to the network, ready to take
over from a failing node. However, it is worth noting that the host server itself can be
susceptible to this issue.

6.5. Network Security

We now examine the security of the platforms considered in this research by review-
ing reported vulnerabilities and the product developers’ recommendations for secure
deployment. We also considered best practices when using such platforms.

6.5.1. Vulnerabilities

As of May 2023, the GNS3 documentation [68] reported a single vulnerability (CVE-
2015-2667) in GNS3 Version 1.2.3. This vulnerability is a search path vulnerability that can
allow local users to gain privileges through Trojan horse malware in an unspecified directory.
The severity score for this vulnerability is 7.2 out of 10, with complete confidentiality,
integrity, and availability impact and low access complexity. Exploiting this vulnerability
can result in the disclosure of all files on the system, compromising system integrity, and
the complete unavailability of the affected resource. The exploit does not allow an attacker
to gain access to the system.

J. Cybersecur. Priv. 2023, 3 483

To improve security for GNS3, the developers recommend changing the default
password for the GNS3 VM, adding authentication to the GNS3 server, avoiding running
GNS3 as the root user or through the Windows administrator, and carefully risk-assessing
remote server deployments to mitigate the risk of brute force attacks. They also suggest
using a VPN tunnel for information security when running GNS3 remotely, along with
SSL or SSH. Additional security measures include rate limiting authentications, disabling
unused features, running the server in a container, providing quotas for users, enforcing
strict user access privileges, limiting possible binaries for Qemu, using the API instead of
Telnet, and binding virtual networks to a specific IP address.

Regarding the SEED Internet Emulator, which uses Docker as the underlying tech-
nology, the Docker documentation [69] reports 34 vulnerabilities as of May 2023. These
vulnerabilities fall into several categories, including denial of service (4 vulnerabilities),
directory traversal (8), code execution (7), bypassing security mechanisms (10), gaining
information (2), and gaining privileges (5).

In terms of severity, two are in the range of 9–10 (CVE-2014-9357 and CVE-2019-5736
both exploiting code execution) and 7 in the range of 7–8, covering directory traversal
(1), code execution (1), bypassing security mechanisms (1), gaining information (1), and
gaining privileges (2).

In detail, the two most-serious vulnerabilities reported are: CVE-2014-9357 (score 10.0)
and CVE-2019-5736 (score 9.3). These vulnerabilities are related to code execution, and
their exploitation can have a complete impact on confidentiality, integrity, and availability,
resulting in the disclosure of all file systems. It also leads to a complete compromise of
the system’s protection, resulting in the system being fully compromised. Furthermore, it
causes a complete shutdown of the affected resource, rendering it completely unusable. To
perform these exploits, certain preconditions must be satisfied, and authentication is not
required to exploit the vulnerability.

To improve security for Docker, developers recommend focusing on securing the
kernel, securing the Docker daemon, eliminating loopholes in the configuration file, and
strengthening the security features of the kernel and its interactions with the containers.
This can be achieved by using security features such as GRSEC or PAX, which provide
additional safety checks at both compile and runtime, and using security model templates
and custom policies for Docker containers.

6.5.2. Security Evaluation

We also discuss the best practices for evaluating the security when using the network
emulation platforms in this study:

• Software version: Ensure that all platform software, including any Virtual Machines
(VMs) and hypervisors used, are running the latest and most-stable versions. Regu-
larly updating software helps to address security vulnerabilities and improve overall
system performance.

• Platform security and configuration analysis: Conduct a thorough evaluation of the
platform’s configuration settings, network settings, node configurations, and security
features. Identify any weak or misconfigured settings that could potentially create
vulnerabilities in the system. Addressing these issues will enhance the platform’s
overall security condition.

• Access and identity management: Analyze and assess the effectiveness of the access
control mechanisms and identity management processes used by the platform. This
includes evaluating username and password combinations, as well as integration
with external authentication systems to ensure only authorized users can access the
network resources.

• Analysis of emulated network nodes: Perform security analysis on emulated compo-
nents within the platform, such as routers, switches, and VMs. Pay specific attention
to the security of different node models, such as Cisco equipment, to identify potential
vulnerabilities and address them proactively.

J. Cybersecur. Priv. 2023, 3 484

• Traffic analysis: Monitor network traffic for anomalies during the testing and pro-
duction phases. Identify unencrypted communication, unauthorized network traffic,
and potentially malicious network activity. Timely detection and response to such
incidents can prevent security breaches and data compromises.

• Vulnerability testing: Conduct vulnerability testing and analysis by scanning the
emulated network for open ports, services, and potential weaknesses. Assess the
severity of identified vulnerabilities and take appropriate measures to remediate
them promptly.

• Compliance: Evaluate relevant industry standards and regulations that the platform
should comply with, such as PCI-DSS [70], GDPR [71,72], ISO 27000 Series [73],
NIST 800 Series [74], and Network Security Design (SS-018) [75]. Ensure the platform
adheres to these standards and assess any vulnerabilities that could impact compliance.
Maintaining compliance helps to protect sensitive data and maintain a high level of
security within the network.

6.5.3. Cryptographic Mechanisms

There are also specific cryptographic protocols and mechanisms that can be used with
both network emulation platforms, at the host and VM/container level, including:

• Secure Shell (SSH): Host Systems: Secure Shell (SSH) should be used to secure remote
access to the host systems where GNS3 and the SEED Internet Emulator are installed.
Ensure that the host systems have been configured to allow SSH connections only
from trusted sources and strong authentication methods are enforced. VMs/containers:
Within GNS3 and the SEED Internet Emulator, SSH can be used to securely access
and manage VMs and containers. By connecting to the VMs/containers through
SSH commands and using IP address filtering, you can control access and protect
sensitive configurations.

• Internet Protocol Security (IPsec): Built-in capabilities: Both host systems, GNS3, and
the SEED Internet Emulator, support IPsec as a suite of protocols for securing com-
munication at the IP layer. Ensure that IPsec is correctly configured on the emulated
network devices and VMs/containers to encrypt and authenticate network packets,
maintaining confidentiality, and integrity.

• Transport Layer Security (TLS): Built-in capabilities: GNS3 and the SEED Internet
Emulator enable secure communication using TLS. In GNS3, TLS can be utilized
for encrypted communication between compatible virtual appliances and machines
within the environment. SEED Internet Emulator and TLS: Although the SEED Internet
Emulator does not natively provide support for TLS, you can manually configure TLS
on the operating system that the SEED Internet Emulator is installed on. This ensures
secure communication within the emulator environment.

• Virtual Private Network (VPN): Both platforms can be configured with either Open-
VPN or IPsec VPN to establish secure network connections between physical and
virtual locations. A VPN server can be set up on a virtual appliance to simulate secure
communications between virtual clients and locations.

6.5.4. Summary

In summary, both GNS3 and Docker have reported vulnerabilities that require at-
tention for a secure deployment. By following the recommendations provided by the
developers and implementing best practices, these vulnerabilities can be mitigated, leading
to an enhanced overall security of the network emulation platforms. Taking proactive steps
to address potential security risks will ensure a safer and more-reliable environment for
network emulation.

6.6. Usability

According to Nielsen [76], software usability can be assessed by considering the
following attributes:

J. Cybersecur. Priv. 2023, 3 485

• Learnability: The system should be simple to understand, allowing users to start
working immediately.

• Efficiency: The system should be efficient to use, enabling a high level of productivity
once learned.

• Memorability: Users should be able to retain their knowledge of the system, allowing
for easy re-use after a period of time.

• Errors: The system’s error rate should be low, preventing users from encountering
errors during usage.

• Satisfaction: The system should provide a pleasant experience for users and generate
satisfaction during interactions.

In the context of network emulation platforms, the usability of GNS3 and the SEED
Internet Emulator differs in terms of their interface and intuitiveness. Both platforms can
be run on Windows, Linux, and Mac OS, making them versatile options that cater to a
wide range of user needs and preferences. Considering Nielsen’s attributes, the following
observations can be made:

• Learnability: GNS3 is known for its ease of use and intuitive interface, making it
suitable for professional training programs, such as Cisco certificates or university
studies in network specialties. It features a graphical user interface that is simple and
similar to Cisco Packet Tracer. On the other hand, the SEED Internet Emulator requires
a deeper understanding of Linux system administration, including version control
systems (e.g., Git), file permissions, Python programming, and Docker. However,
once the initial setup is completed, the web client of the SEED Internet Emulator is
straightforward and easy to navigate.

• Efficiency: The SEED Internet Emulator provides the opportunity for efficiency
through a programmable environment, allowing for the automation of many tasks.
This can be a requirement for adding more network nodes or changing communication
protocols, which can be achieved through additional or different lines of code.

• Memorability: GNS3 presents a more-memorable platform for a casual user, in con-
trast to the SEED Internet Emulator, which is more relevant to an experienced IT
professional [8].

• Errors: Challenges can arise when setting up and troubleshooting the GNS3 VM
in a hypervisor environment. The software allows for a great amount of user ac-
cessibility, depending on how the user wants to configure it. The SEED Internet
Emulator presents challenges around correct file permissions, programmable code,
and issues with Docker. While most of the errors that can be encountered are trivial
and can be mitigated easily, it does require a good knowledge of the Linux OS system
administration [77].

• Satisfaction: In the short term, GNS3 can provide a more-pleasant experience for
learners as it is presented in a GUI for all phases and is generally easy to use for all
aspects, including design, development, and configuration [78]. The SEED Internet
Emulator can initially be more difficult and complex as there is more system admin-
istration, programming, and understanding involved. However, this platform can
provide enhanced satisfaction in the long term, as it has the ability to be used for a
high variety of use-cases due to the nature of the platform using programming.

However, these general usability considerations for users when choosing between
GNS3 and the SEED Internet Emulator need to take into account their specific requirements
and expertise level.

7. Conclusions and Future Research Directions

In this study, we conducted a comparison between two emerging network emulation
platforms: GNS3 and the SEED Internet Emulator. Our evaluation focused on performance
criteria such as the bandwidth, throughput, latency, and jitter. While both platforms share a
common concept, they differ significantly in terms of design, development, and execution.

J. Cybersecur. Priv. 2023, 3 486

Through this research, Sections 2 and 6 are linked to the first research contribution,
which highlights related literature studies around virtualization technologies, networking,
and cybersecurity applications. Sections 5 and 6 are linked to the second research con-
tribution, demonstrating the network performance comparison of the systems. Section 4
demonstrates the third research contribution, showcasing the network models under test.

GNS3, being more heavyweight, offers greater integration flexibility and mimics a
typical network environment. It facilitates easy connections of external nodes and services
from multiple vendors. Conversely, the SEED Internet Emulator is more lightweight,
flexible, and efficient in its development approach.

By exploring the integration of network emulation platforms into the data center ar-
chitecture and creating a hybrid emulation system, we utilized the SEED Internet Emulator
and GNS3 to emulate networks using the host system’s resources. Our results indicated
that, while GNS3 possesses certain advantages as a platform, there are notable bottlenecks
to consider when incorporating it into a company’s infrastructure strategy.

GNS3 encounters issues with low bandwidth and throughput speeds, even when the
Internet Service Provider (ISP) allows for higher speeds. Additionally, due to the platform’s
nature and its method of achieving network emulation, one of its main drawbacks is
the challenges associated with allocating a large number of CPU cores to the network
appliances. Furthermore, our observations revealed that the high energy consumption
of the host system poses a significant constraint to energy efficiency, which should be
considered during the design phase. In fact, our study demonstrated that, for small
networks, the energy consumption of the host system alone can outweigh the physical
energy consumption.

On the other hand, the SEED Internet Emulator provides a lightweight emulation
platform that exhibits flexibility in development and performs impressively across all
performance criteria.

Author Contributions: Conceptualization, L.G. and P.M.; methodology, L.G. and P.M.; software, L.G.
and P.M.; validation, L.G., P.M. and V.C.; formal analysis, L.G. and P.M.; investigation, L.G. and P.M.;
resources, L.G., P.M. and V.C.; data curation, L.G. and P.M.; writing—original draft preparation, L.G.
and P.M.; writing—review and editing, L.G., P.M. and V.C.; visualization, L.G. and P.M.; supervision,
P.M. and V.C.; project administration, L.G. and P.M.; funding acquisition, L.G., P.M. and V.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by VC Research (VCR 0000203).

Data Availability Statement: No new data was created, apart from the one presented in this paper.

Acknowledgments: This paper contributes to part of Lewis Golightly’s Ph.D. thesis.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CML Cisco Modeling Labs
WAN Wide Area Network
QoS Quality of Service
GNS3 Graphical Network Simulator-3
SEED IE SEED Internet Emulator
BGP Border Gateway Protocol
iBGP internal Border Gateway Protocol
eBGP external Border Gateway Protocol
NAT Network Address Translation
ICMP Internet Control Message Protocol
SME Small–Medium Enterprise
GUI Graphical User Interface
OOP Object-Oriented Programming

J. Cybersecur. Priv. 2023, 3 487

OSPF Open Shortest Path First
IMUNES Integrated Multiprotocol Network Emulator/Simulator
NIC Network Interface Cards
RIP Routing Information Protocol
P4 Programming Protocol-independent Packet Processors
OPOS Open Network Operating System
DUAL Diffusing Update Algorithm
EIGRP Enhanced Interior Gateway Routing Protocol
AS Autonomous System
IOS (Cisco) Internetworking Operating System
kWh kilowatt-hour
DoS Denial of Service
VM Virtual Machine
XML Extensible Markup Language
XACML Extensible Access Control Markup Language
AC Access Control
MAC Mandatory Access Control
MITM Man-In-The-Middle
SSH Secure Shell
IPsec Internet Protocol Security
ISP Internet Service Provider
TLS Transport Layer Security
VPN Virtual Private Network
MTBF Mean Time Between Failures
MTTR Mean Time To Repair
MTTF Mean Time To Failures

Appendix A. Requirements and Cost Analysis

Table A1. GNS3 Software and Hardware Requirements.

CPU CPU RAM HDD Network Other

Windows 7
(64-bit)

2 or more
logical cores 4 GB 1 GB Cisco CLM

Appliances
Virtualbox
VMware

Table A2. Physical vs. Emulated Infrastructure Cost Analysis (November 2022).

Emulation Components Cost (GBP) Physical Components Cost (GBP)

Physical Server (Dell R610 Spec) 1995.60 Cisco Firewall (ASA 5512-X) 2510.33
Windows Server 2019 OS 729.58 Cisco Router (C1111-4P) 939.75

CLM Appliances 173.71 Cisco Switch (WS-C2960S-48TS-S) 1000.00
GNS3 Software and Virtual Machine FOSS 0.00 Console Cable 6.99

VMware Hypervisor FOSS 0.00 Cat 6 Ethernet Cable 4.04
Putty Software FOSS 0.00

Total (£) 2898.89 Total (£) 4461.11

Table A3. Physical Server Specification and Cost (November 2022).

Component Description Cost (GBP)

Processor (x2) Intel Xeon E5-2699v4 (2.2 GHz/22-core/55 MB/145 W) 1080.00
Memory (RAM) 64 GB (4 × 16 GB) PC4-17000R Dual Rank Memory 206.40
NIC 1 Dell Qlogic QLE2526 8 GB Fibre Channel Dual Port PCIe 61.20
NIC 2 Dell Intel Pro/1000 VT Quad Port 1 Gbit RJ45 Ethernet PCIe 90.00
Hard Drive (x2) Dell 2 TB 7.2K 3G SATA 3.5” Hotswap Hard Drive 134.40
Other Power Supply + Case + Monitor + Mouse + Keyboard 369.90

Total 1995.60

J. Cybersecur. Priv. 2023, 3 488

Appendix B. Python Code—OSPF10.py

#!/usr/bin/env python3
encoding: utf -8

from seedemu.layers import Base , Routing , Ebgp , PeerRelationship , Ibgp , Ospf
from seedemu.services import WebService
from seedemu.core import Emulator , Binding , Filter
from seedemu.compiler import Docker

emu = Emulator ()

base = Base()
routing = Routing ()
ebgp = Ebgp()
ibgp = Ibgp()
ospf = Ospf()
web = WebService ()
##

Create and set up the transit AS (AS -10)

as150 = base.createAutonomousSystem (150)

Create 6 internal networks
as150.createNetwork(’net1’)
as150.createNetwork(’net2’)
as150.createNetwork(’net3’)
as150.createNetwork(’net4’)
as150.createNetwork(’net5’)
as150.createNetwork(’net6’)
##

Create routers and link the routes in a Data Centre structure:

r1 <--> r2 <--> r6 <--> r5
r2 <--> r3 <--> r1 <--> r4 <--> r6
r3 <--> r4 <--> r2 <--> r5
r4 <--> r5 <--> r3 <--> r2
r5 <--> r6 <--> r4 <--> r3 <--> r1
r6 <--> r1 <--> r5 <--> r2

as150.createRouter(’r1’).joinNetwork(’net1’).joinNetwork(’net2’).joinNetwork(
’net6’).joinNetwork(’net5’)

as150.createRouter(’r2’).joinNetwork(’net2’).joinNetwork(’net3’).joinNetwork(
’net1’).joinNetwork(’net4’).joinNetwork(’net6’)

as150.createRouter(’r3’).joinNetwork(’net3’).joinNetwork(’net4’).joinNetwork(
’net2’).joinNetwork(’net5’)

as150.createRouter(’r4’).joinNetwork(’net4’).joinNetwork(’net5’).joinNetwork(
’net3’).joinNetwork(’net2’)

as150.createRouter(’r5’).joinNetwork(’net5’).joinNetwork(’net6’).joinNetwork(
’net4’).joinNetwork(’net3’).joinNetwork(’net1’)

as150.createRouter(’r6’).joinNetwork(’net6’).joinNetwork(’net1’).joinNetwork(
’net5’).joinNetwork(’net2’)

##

emu.addLayer(base)
emu.addLayer(routing)
emu.addLayer(ebgp)
emu.addLayer(ibgp)
emu.addLayer(ospf)
emu.addLayer(web)

##
Save the emulation as a component (can be reused by other emulation)

emu.dump(’base -component.bin’)

##

J. Cybersecur. Priv. 2023, 3 489

Generate the docker file

emu.render ()
emu.compile(Docker (), ’./ output ’)

References
1. Tancevski, L. SDN concept: From theory to network implementation. In Optical Fiber Communication Conference; Optica Publishing

Group: Washington, NW, USA, 2014; p. W1E–3.
2. Kreutz, D.; Ramos, F.M.; Verissimo, P.E.; Rothenberg, C.E.; Azodolmolky, S.; Uhlig, S. Software-defined networking: A

comprehensive survey. Proc. IEEE 2014, 103, 14–76. [CrossRef]
3. Fernandez-Fernandez, A.; Cervello-Pastor, C.; Ochoa-Aday, L. Achieving Energy Efficiency: An Energy-Aware Approach in SDN.

In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016;
pp. 1–7. [CrossRef]

4. Assefa, B.G.; Özkasap, Ö. A survey of energy efficiency in SDN: Software-based methods and optimization models. J. Netw.
Comput. Appl. 2019, 137, 127–143. [CrossRef]

5. Ahmad, S.; Mir, A.H. Scalability, consistency, reliability and security in SDN controllers: A survey of diverse SDN controllers.
J. Netw. Syst. Manag. 2021, 29, 1–59. [CrossRef]

6. Khorsandroo, S.; Sánchez, A.G.; Tosun, A.S.; Arco, J.M.; Doriguzzi-Corin, R. Hybrid SDN evolution: A comprehensive survey of
the state-of-the-art. Comput. Netw. 2021, 192, 107981. [CrossRef]

7. Blake, S.; Zhang, Q.; Birkner, R.; Hahm, O.; Jarray, M. Security in Software-Defined Networking: A Survey. IEEE Commun. Surv.
Tutor. 2016, 18, 623–646.

8. Du, W.; Zeng, H.; Won, K. SEED emulator: An Internet Emulator for research and education. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, Austin, TX, USA, 14–15 November 2022; pp. 101–107.

9. Zhang, K.; Zhao, X.; Peng, Y.; Yan, K.; Sun, P. Analysis of Mobile Communication Network Architecture Based on SDN. J. Grid
Comput. 2022, 20, 28. [CrossRef]

10. Daniels, J. Server virtualization architecture and implementation. XRDS Crossroads Acm Mag. Stud. 2009, 16, 8–12. [CrossRef]
11. Lai, J.; Tian, J.; Zhang, K.; Yang, Z.; Jiang, D. Network emulation as a service (neaas): Towards a cloud-based network emulation

platform. Mob. Netw. Appl. 2021, 26, 766–780. [CrossRef]
12. Sharma, P.; Chaufournier, L.; Shenoy, P.; Tay, Y. Containers and virtual machines at scale: A comparative study. In Proceedings of

the 17th International Middleware Conference, Trento, Italy, 12–16 December 2016; pp. 1–13.
13. Blenk, A.; Basta, A.; Reisslein, M.; Kellerer, W. Survey on network virtualization hypervisors for software defined networking.

IEEE Commun. Surv. Tutor. 2015, 18, 655–685. [CrossRef]
14. Bauman, E.; Ayoade, G.; Lin, Z. A survey on hypervisor-based monitoring: Approaches, applications, and evolutions. ACM

Comput. Surv. (CSUR) 2015, 48, 1–33. [CrossRef]
15. Sharma, K. An alleviated model for private cloud deployment using VMware. In Proceedings of the 2017 International Conference

on Information, Communication, Instrumentation and Control (ICICIC), Indore, India, 17–19 August 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–3.

16. Li, S.W.; Li, X.; Gu, R.; Nieh, J.; Hui, J.Z. A secure and formally verified Linux KVM hypervisor. In Proceedings of the 2021
IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 24–27 May 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1782–1799.

17. Durrani, A. Analysis and prevention of vulnerabilities in cloud applications. In Proceedings of the 2014 Conference on
Information Assurance and Cyber Security (CIACS), Rawalpindi, Pakistan, 12–13 June 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 43–46.

18. Khan, R.; AlHarbi, N.; AlGhamdi, G.; Berriche, L. Virtualization Software Security: Oracle VM VirtualBox. In Proceedings of the
2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia,
28–29 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 58–60.

19. Nguyen, S.D.; Mimura, M.; Tanaka, H. SVTester: Finding DoS vulnerabilities of virtual switches. J. Inf. Process. 2021, 29, 581–591.
[CrossRef]

20. Sgandurra, D.; Lupu, E. Evolution of attacks, threat models, and solutions for virtualized systems. ACM Comput. Surv. (CSUR)
2016, 48, 1–38. [CrossRef]

21. Win, T.Y.; Tianfield, H.; Mair, Q. Virtualization security combining mandatory access control and virtual machine introspection. In
Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, London, UK, 8–11 December
2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1004–1009.

22. Che, Y.; Yang, Q.; Wu, C.; Ma, L. BABAC: An access control framework for network virtualization using user behaviors and
attributes. In Proceedings of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing, Hangzhou, China, 18–20 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 747–754.

23. Pearce, M.; Zeadally, S.; Hunt, R. Virtualization: Issues, security threats, and solutions. ACM Comput. Surv. (CSUR) 2013, 45, 1–39.
[CrossRef]

http://doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/GLOCOM.2016.7841561
http://dx.doi.org/10.1016/j.jnca.2019.04.001
http://dx.doi.org/10.1007/s10922-020-09575-4
http://dx.doi.org/10.1016/j.comnet.2021.107981
http://dx.doi.org/10.1007/s10723-022-09617-y
http://dx.doi.org/10.1145/1618588.1618592
http://dx.doi.org/10.1007/s11036-019-01426-0
http://dx.doi.org/10.1109/COMST.2015.2489183
http://dx.doi.org/10.1145/2775111
http://dx.doi.org/10.2197/ipsjjip.29.581
http://dx.doi.org/10.1145/2856126
http://dx.doi.org/10.1145/2431211.2431216

J. Cybersecur. Priv. 2023, 3 490

24. Wu, H.; Ding, Y.; Winer, C.; Yao, L. Network security for virtual machine in cloud computing. In Proceedings of the
5th International Conference on Computer Sciences and Convergence Information Technology, Seoul, Republic of Korea, 30
November–2 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 18–21.

25. Hyde, D. A Survey on the Security of Virtual Machines. 2009. Available online: http://www.cse.wustl.edu/~jain/cse571-09/
ftp/vmsec/index.html (accessed on 3 June 2023).

26. Althobaiti, A.F.S. Analyzing security threats to virtual machines monitor in cloud computing environment. J. Inf. Secur. 2017, 8, 1.
[CrossRef]

27. Brooks, T.T.; Caicedo, C.; Park, J.S. Security vulnerability analysis in virtualized computing environments. Int. J. Intell. Comput.
Res. 2012, 3, 277–291. [CrossRef]

28. Chelladhurai, J.; Chelliah, P.R.; Kumar, S.A. Securing docker containers from denial of service (dos) attacks. In Proceedings
of the 2016 IEEE International Conference on Services Computing (SCC), San Francisco, CA, USA, 27 June–2 July 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 856–859.

29. Lombardi, F.; Di Pietro, R. A security management architecture for the protection of kernel virtual machines. In Proceedings of
the 2010 10th IEEE International Conference on Computer and Information Technology, Bradford, UK, 29 June–1 July 2010; IEEE:
Piscataway, NJ, USA, 2010; pp. 948–953.

30. Wu, J.; Lei, Z.; Chen, S.; Shen, W. An access control model for preventing virtual machine escape attack. Future Internet 2017, 9, 20.
[CrossRef]

31. Dong, Y.; Lei, Z. An access control model for preventing virtual machine hopping attack. Future Internet 2019, 11, 82. [CrossRef]
32. Jimenez, J.M.; Romero Martínez, J.O.; Rego Máñez, A.; Lloret, J. Analyzing the performance of software defined networks vs real

networks. Int. J. Adv. Netw. Serv. 2016, 9, 107–116.
33. Kh, D.R.; Botirov, S.; Juraev, F. A simulation model of a cloud data center based on traditional networks and Software-defined

network. In Proceedings of the 2021 International Conference on Information Science and Communications Technologies
(ICISCT), Tashkent, Uzbekistan, 3–5 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4.

34. Gelberger, A.; Yemini, N.; Giladi, R. Performance analysis of software-defined networking (SDN). In Proceedings of the 2013
IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems,
San Francisco, CA, USA, 14–16 August 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 389–393.

35. Amin, R.; Reisslein, M.; Shah, N. Hybrid SDN networks: A survey of existing approaches. IEEE Commun. Surv. Tutor. 2018, 20,
3259–3306. [CrossRef]

36. Wang, W.; He, W.; Su, J. Boosting the benefits of hybrid SDN. In Proceedings of the 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2165–2170.

37. Galán-Jiménez, J.; Polverini, M.; Lavacca, F.G.; Herrera, J.L.; Berrocal, J. Joint energy efficiency and load balancing optimization in
hybrid IP/SDN networks. Ann. Telecommun. 2022, 78, 13–31. [CrossRef]

38. Xu, H.; Li, X.Y.; Huang, L.; Deng, H.; Huang, H.; Wang, H. Incremental deployment and throughput maximization routing for a
hybrid SDN. IEEE/ACM Trans. Netw. 2017, 25, 1861–1875. [CrossRef]

39. Saadeh, H.; Almobaideen, W.; Sabri, K.E.; Saadeh, M. Hybrid SDN-ICN architecture design for the Internet of things. In
Proceedings of the 2019 Sixth International Conference on Software Defined Systems (SDS), Rome, Italy, 10–13 June 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 96–101.

40. Vissicchio, S.; Vanbever, L.; Bonaventure, O. Opportunities and research challenges of hybrid software defined networks. ACM
SIGCOMM Comput. Commun. Rev. 2014, 44, 70–75. [CrossRef]

41. Luo, S.; Xing, H.; Li, K. Near-optimal multicast tree construction in leaf-spine data center networks. IEEE Syst. J. 2019, 14,
2581–2584. [CrossRef]

42. Jimson, E.R.; Nisar, K.; bin Ahmad Hijazi, M.H. Bandwidth management using software defined network and comparison of the
throughput performance with traditional network. In Proceedings of the 2017 International Conference on Computer and Drone
Applications (IConDA), Kuching, Malaysia, 9–11 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 71–76.

43. Basagni, S.; Petrioli, C.; Petroccia, R.; Stojanovic, M. Choosing the packet size in multi-hop underwater networks. In Proceedings
of the OCEANS’10 IEEE SYDNEY, Sydney, NSW, Australia, 24–27 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–9.

44. Kuzlu, M.; Pipattanasomporn, M.; Gurses, L.; Rahman, S. Performance analysis of a hyperledger fabric blockchain framework:
Throughput, latency and scalability. In Proceedings of the 2019 IEEE international conference on blockchain (Blockchain), Atlanta,
GA, USA, 14–17 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 536–540.

45. Balestrieri, E.; Picariello, F.; Rapuano, S.; Tudosa, I. Review on jitter terminology and definitions. Measurement 2019, 145, 264–273.
[CrossRef]

46. Matthews, H.S.; Hendrickson, C.T.; Chong, H.M.; Loh, W.S. Energy impacts of wired and wireless networks. In Proceedings
of the Conference Record 2002 IEEE International Symposium on Electronics and the Environment (Cat. No. 02CH37273),
San Francisco, CA, USA, 6–9 May 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 44–48.

47. Vetriselvan, V.; Patil, P.R.; Mahendran, M. Survey on the RIP, OSPF, EIGRP routing protocols. Int. J. Comput. Sci. Inf. Technol.
2014, 5, 1058–1065.

48. de Souza, F.R.; Miers, C.C.; Fiorese, A.; de Assunção, M.D.; Koslovski, G.P. Qvia-sdn: Towards qos-aware virtual infrastructure
allocation on sdn-based clouds. J. Grid Comput. 2019, 17, 447–472. [CrossRef]

49. Held, G. Quality of Service in a Cisco Networking Environment; John Wiley & Sons: New York City, NY, USA, 2002.

http://www.cse.wustl.edu/~jain/cse571-09/ftp/vmsec/index.html
http://www.cse.wustl.edu/~jain/cse571-09/ftp/vmsec/index.html
http://dx.doi.org/10.4236/jis.2017.81001
http://dx.doi.org/10.20533/ijicr.2042.4655.2012.0034
http://dx.doi.org/10.3390/fi9020020
http://dx.doi.org/10.3390/fi11030082
http://dx.doi.org/10.1109/COMST.2018.2837161
http://dx.doi.org/10.1007/s12243-022-00921-y
http://dx.doi.org/10.1109/TNET.2017.2657643
http://dx.doi.org/10.1145/2602204.2602216
http://dx.doi.org/10.1109/JSYST.2019.2918446
http://dx.doi.org/10.1016/j.measurement.2019.05.047
http://dx.doi.org/10.1007/s10723-019-09479-x

J. Cybersecur. Priv. 2023, 3 491

50. Shukla, V.H.; Deshmukh, S.B. Implementing QOS Policy in MPLS Network. Int. J. Comput. Appl. 2015, 975, 8887.
51. Masruroh, S.U.; Fiade, A.; Iman, M.F.; Amelia. Performance evaluation of routing protocol RIPv2, OSPF, EIGRP with BGP.

In Proceedings of the 2017 International Conference on Innovative and Creative Information Technology (ICITech), Salatiga,
Indonesia, 2–4 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7.

52. Nugroho, A.S.; Safitri, Y.D.; Setyawan, T.A. Comparison analysis of software defined network and OSPF protocol using virtual
media. In Proceedings of the 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat),
Semarang, Indonesia, 5–7 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 106–111.

53. Baggan, V.; Chaturvedi, S.P.; Snehi, J.; Snehi, M. An Efficient Model of IGP for Network-based Communication: A Comparison.
In Proceedings of the 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART),
Moradabad, India, 10–11 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 223–228.

54. Biradar, A.G. A comparative study on routing protocols: RIP, OSPF and EIGRP and their analysis using GNS-3. In Proceedings
of the 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India, 1–3
December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

55. Kundel, R.; Blendin, J.; Viernickel, T.; Koldehofe, B.; Steinmetz, R. P4-codel: Active queue management in programmable
data planes. In Proceedings of the 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Verona, Italy, 27–29 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4.

56. Sedar, R.; Borokhovich, M.; Chiesa, M.; Antichi, G.; Schmid, S. Supporting emerging applications with low-latency failover in
P4. In Proceedings of the 2018 Workshop on Networking for Emerging Applications and Technologies, Budapest, Hungary, 20
August 2018; pp. 52–57.

57. Kaur, S.; Kumar, K.; Aggarwal, N. A review on P4-Programmable data planes: Architecture, research efforts, and future directions.
Comput. Commun. 2021, 170, 109–129. [CrossRef]

58. Rezaee, M.; Moghaddam, M.H.Y. SDN-based quality of service networking for wide area measurement system. IEEE Trans. Ind.
Inform. 2019, 16, 3018–3028. [CrossRef]

59. Khan, A.A.; Zafrullah, M.; Hussain, M.; Ahmad, A. Performance analysis of OSPF and hybrid networks. In Proceedings of
the 2017 International Symposium on Wireless Systems and Networks (ISWSN), Lahore, Pakistan, 19–22 November 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–4.

60. Arifwidodo, B.; Oktavian, D.A.; Ginting, J.G.A. The Performance Analysis of Hybrid SDN–IP Reactive Routing on ONOS
Controller in Tree Topologies. In Proceedings of the 2022 IEEE International Conference on Communication, Networks and
Satellite (COMNETSAT), Solo, Indonesia, 3–5 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 118–122.

61. Salman, O.; Elhajj, I.H.; Chehab, A.; Kayssi, A. QoS guarantee over hybrid SDN/non-SDN networks. In Proceedings of the 2017
8th International Conference on the Network of the Future (NOF), London, UK, 22–24 November 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 141–143.

62. Al-Harbi, A.; Bahnasse, A.; Louhab, F.E.; Talea, M. Towards an efficient resource allocation based on software-defined networking
approach. Comput. Electr. Eng. 2021, 92, 107066. [CrossRef]

63. Shirmarz, A.; Ghaffari, A. Automatic Software Defined Network (SDN) performance management using topsis decision-making
algorithm. J. Grid Comput. 2021, 19, 16. [CrossRef]

64. Ur-Rehman, A.; Gondal, I.; Kamruzzaman, J.; Jolfaei, A. Vulnerability modelling for hybrid industrial control system networks.
J. Grid Comput. 2020, 18, 863–878. [CrossRef]

65. Dhiab, I.; Barouni, Y.; Khalfallah, S.; Ben Hadj Slama, J. Performance evaluation of a hybrid IP/SDN network in data centre
network architectures. IET Commun. 2019, 13, 1185–1191. [CrossRef]

66. De Oliveira, R.L.S.; Schweitzer, C.M.; Shinoda, A.A.; Prete, L.R. Using mininet for emulation and prototyping software-defined
networks. In Proceedings of the 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota,
Colombia, 4–6 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6.

67. Chen, Y.; Chen, Y.; Cao, Q.; Yang, X. PacketCloud: A cloudlet-based open platform for in-network services. IEEE Trans. Parallel
Distrib. Syst. 2015, 27, 1146–1159. [CrossRef]

68. GNS3. GNS3 Security. 2023. Available online: https://docs.gns3.com/docs/using-gns3/administration/gns3-security (accessed
on 2 June 2023).

69. Docker. Docker Docs. 2023. Available online: https://docs.docker.com/engine/security (accessed on 2 June 2023).
70. PCI Security Standards Council. Payment Card Industry Data Security Standard. Available online: https://docs-prv.

pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf (accessed on 20 July 2023).
71. European Parliament; Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the

Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free
Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). 2016. Available online:
https://data.europa.eu/eli/reg/2016/679/oj (accessed on 20 July 2023).

72. UK Government. Data Protection Act 2018. 2018. Available online: https://www.legislation.gov.uk/ukpga/2018/12/pdfs/
ukpga_20180012_en.pdf (accessed on 20 July 2023).

73. International Organization for Standardization. ISO/IEC 27001:2022(en) Information Security, Cybersecurity and Privacy
Protection. 2022. Available online: https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-3:v1:en (accessed on 20 July 2023).

http://dx.doi.org/10.1016/j.comcom.2021.01.027
http://dx.doi.org/10.1109/TII.2019.2893865
http://dx.doi.org/10.1016/j.compeleceng.2021.107066
http://dx.doi.org/10.1007/s10723-021-09557-z
http://dx.doi.org/10.1007/s10723-020-09528-w
http://dx.doi.org/10.1049/iet-com.2018.5715
http://dx.doi.org/10.1109/TPDS.2015.2424222
https://docs.gns3.com/docs/using-gns3/administration/gns3-security
https://docs.docker.com/engine/security
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://docs-prv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0.pdf
https://data.europa.eu/eli/reg/2016/679/oj
https://www.legislation.gov.uk/ukpga/2018/12/pdfs/ukpga_20180012_en.pdf
https://www.legislation.gov.uk/ukpga/2018/12/pdfs/ukpga_20180012_en.pdf
https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-3:v1:en

J. Cybersecur. Priv. 2023, 3 492

74. National Institute of Standards and Technology. Security and Privacy Controls for Information Systems and Organizations. 2022.
Available online: https://doi.org/10.6028/NIST.SP.800-53r5 (accessed on 20 July 2023).

75. Chief Security Office, Department of Work and Pensions (UK). Security Standard Network Security Design (SS-018). 2020.
Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/88
2774/dwp-ss018-security-standard-network-security-design-v1.4.pdf (accessed on 20 July 2023).

76. Nielsen, J. Usability Engineering; Morgan Kaufmann: Cambridge, MA, USA, 1994.
77. Zeng, H. SEEDEMU: The SEED Internet Emulator. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2021.
78. Wangchuk, T. Study on the usability of GNS3 for teaching and learning system and network administration. Int. J. Sci. Technol.

Eng. 2018, 4, 34–37.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.6028/NIST.SP.800-53r5
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882774/dwp-ss018-security-standard-network-security-design-v1.4.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/882774/dwp-ss018-security-standard-network-security-design-v1.4.pdf

	Introduction
	Research Motivations
	Research Contributions

	Background
	Emulated and Virtualized Systems
	Network Emulation vs. Virtualization
	Hypervisors and Data Privacy

	Vulnerabilities, Exploitation, and Remediation Techniques in Emulated Networks and Virtualized Systems
	Related Work
	Network Performance Comparison
	Hybrid System Deployment

	Methodology
	Network Models under Test
	Network Performance Comparison
	Routing Protocols
	Methods for Controlling Network Performance
	Energy Consumption

	Results and Evaluation
	Bandwidth and Throughput
	Latency and Jitter
	GNS3 Network
	SEED Internet Emulator Network
	Hybrid System

	Energy Consumption Comparison
	Cost Evaluation
	Infrastructure
	Depreciation
	Maintenance and Reliability

	Network Security
	Vulnerabilities
	Security Evaluation
	Cryptographic Mechanisms
	Summary

	Usability

	Conclusions and Future Research Directions
	Requirements and Cost Analysis
	Python Code—OSPF10.py
	References

