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Abstract: The infrastructure and construction of roads are crucial for the 

economic and social development of a region, but traffic-related challenges like 

accidents and congestion persist. Artificial Intelligence (AI) and Machine 

Learning (ML) have been used in road infrastructure and construction, particularly 

with the Internet of Things (IoT) devices. Object detection in Computer Vision 

also plays a key role in improving road infrastructure and addressing traffic-related 

problems. This study aims to use You Only Look Once version 7 (YOLOv7), 

Convolutional Block Attention Module (CBAM), the most optimized object-

detection algorithm, to detect and identify traffic signs, and analyze effective 

combinations of adaptive optimizers like Adaptive Moment estimation (Adam), 

Root Mean Squared Propagation (RMSprop) and Stochastic Gradient Descent 

(SGD) with the YOLOv7. Using a portion of German traffic signs for training, the 

study investigates the feasibility of adopting smaller datasets while maintaining 

high accuracy. The model proposed in this study not only improves traffic safety 

by detecting traffic signs but also has the potential to contribute to the rapid 

development of autonomous vehicle systems. The study results showed an 

impressive accuracy of 99.7% when using a batch size of 8 and the Adam 

optimizer. This high level of accuracy demonstrates the effectiveness of the 

proposed model for the image classification task of traffic sign recognition. 

Keywords: Object detection; traffic sign detection; YOLOv7; convolutional block 

attention module; road sign detection; adam 

1 Introduction 

Infrastructure and construction of roads in any geographical area play a pivotal role in the economic 

and social development of the region, as it connects people to business and allows the movement of 

locomotives and services. One of the present-day primary challenges relating to road infrastructure is 

accidents, and other traffic-related concerns like traffic congestion, restricted infrastructure capacity, low 

maintenance of roads, etc. [1, 2]. Classically, human conception and past experiences have guided the 

progress of road infrastructure. However, as technology has become ubiquitous, and owing to advancements 

in automobile-related technologies such as self-parking systems, self-driving cars, fully autonomous 

systems, etc., all of which are essentially categorized under the umbrella of Autonomous Driving Systems 

(ADS). There has been a significant increase in the usage of AI, and its sub-domains in accomplishing some 

cardinal tasks in ADS. An evaluative study on Deep Neural Networks (DNN) for Traffic Sign Detection 

(TSD), throws some light on how the detection of traffic signs is an indispensable study because these 

detection systems encompass anchor components required for safety and support in ADS [3]. The IoT 

devices are utilized to gather the data from the environment, and ML analyses the data to solve the 
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challenges in traffic management systems. The traffic management system contains three layers such as data 

acquisition, network transmission, and application. The data acquisition is done via sensors, cameras, video 

monitoring, and online monitoring. The collected data is transmitted over the network using Bluetooth, Wi-

Fi (Wireless Fidelity), mobile network, etc. Finally, AI and ML play a major role in the analysis, visualize 

the analyzed outputs, and derive the systems based on the outputs like ADS [4]. The study using ML 

showcased the latest and most advanced techniques for monitoring construction progress, including methods 

for collecting data, retrieving information, estimating progress, and presenting the results visually. Along 

similar lines, AI and ML are used in many more traffic-related issues [5]. A review of traffic congestion 

prediction using AI described the probabilistic reasoning models like fuzzy logic, Hidden Markov Model 

(HMM), the Bayesian network, Support Vector Machine (SVM), Artificial Neural Networks (ANN), 

Decision Trees, etc., Deep Learning (DL) algorithms like Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM), are used for short-term traffic congestion prediction [6]. AI and ML-based 

incident detectors in Road Transport Systems (RTS) discussed dire problems and plausible solutions for 

reducing traffic accidents that enhanced the automatic incident system detectors [7]. 

The technology development in computer vision plays a key role with goals revolving around 

improving road infrastructure like road accidents, traffic congestion, etc. Object detection is a sub-field of 

computer vision that uses various DL architectures for recognizing and classifying objects. A comparative 

analysis of CNN-based object detection algorithms shows YOLOv3 is the fastest, and performs best overall 

outperforming Single-Shot Detector (SSD), and Faster Region-based CNN (R-CNN) [8]. However, it is also 

highlighted that the choice of the algorithm may be dependent upon the specific situation or problem that 

needs to be solved. For instance, R-CNN works best for small datasets that don't require real-time video 

outputs, whereas YOLO works best for object detection in the live environment. YOLOv4 runs twice as fast 

as EfficientNet, with an Average Precision (AP) of 14% more than YOLOv3. The YOLOv7 algorithm 

surpasses all the well-known real-time object-detection algorithms concerning AP at 56.8%, and speed with 

a maximum range of 160 FPS [9]. So far, research on the detection of traffic signs has been done using 

several versions of YOLO, and other object-detection algorithms.  

This study aims to use the fairly latest version of the most optimized object-detection algorithm 

YOLOv7 to detect and identify traffic signs. This study also tries to dive deep into analyzing effective 

combinations of adaptive optimizers like Adam and SGD along with YOLOv7. SGD has solid theoretical 

and mathematical support, along with an exhibition of enhanced stability and generality [10]. In most 

applications, the Adam optimizer is recommended as the default optimization method because it usually 

generates better results, is faster to compute, and requires fewer tuning parameters than conventional 

optimization methods [11]. Batch sizes 8 and 16 are used for the task of TSD. A portion of the German 

traffic signs is used for the training purpose. This study also explores the feasibility of adopting smaller 

datasets while keeping high accuracy to modify the application domain. Fig. 1 shows the various traffic sign 

classes that are pointed by red arrows for human reference.  

    

(a) Dangerous class (b) Other class (c) Prohibitory class (d) Mandatory class 

Figure 1: Input images of each class for prediction 

Traffic sign recognition is a primary factor for autonomous cars to make safe travel. However, traffic 

sign recognition system contains more challenges due to limitations that are shown by recent incidents 
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involving autonomous vehicles [12]. Conventional traffic sign recognition encounters numerous challenges, 

such as occlusion, lighting conditions, and the existence of several neighboring traffic signs [13]. 

1.1 Motivation 

The motivation for this research work is as follows: 

▪ Traffic sign recognition is essential for autonomous cars to navigate safely and efficiently. But there 

are severe worries regarding the limitations of traffic sign recognition systems and the methods 

they employ, as shown by recent incidents involving autonomous vehicles and research connected 

to recognition system failure. Therefore, it becomes even more crucial to create powerful 

algorithms that can get beyond these constraints and provide precise and trustworthy traffic sign 

detection to improve the performance and safety of autonomous cars. Effective traffic sign 

identification is essential for maximizing traffic flow and raising overall road safety in addition to 

lowering the likelihood of accidents. 

▪ Traditional techniques of traffic sign recognition, on the other hand, encounter various problems, 

such as occlusion, fluctuating lighting conditions, complicated backdrops, and the presence of 

multiple signs nearby. Due to these challenges, improved approaches must be proposed to manage 

these situations and provide precise and dependable traffic sign detection and identification. 

1.2 Contributions 

The contributions of this research work are as follows: 

▪ This research intends to improve the accuracy and speed of traffic sign detection by incorporating 

the CBAM into the YOLOv7 framework. The CBAM's potent attention mechanism enables the 

model to effectively acquire, and highlight key spatial and channel-wise information, enabling 

reliable detection of traffic signs even under difficult conditions like occlusion or complicated 

backdrops. 

▪ Investigate and compare the effectiveness of the proposed model with different optimizers and 

batch sizes. 

▪ The enhanced model proposed in this study exhibits improved feature representation, higher 

detection accuracy, and resilience by combining the characteristics of YOLOv7 and three CBAM 

modules in a complementary way, advancing the development of autonomous driving technology. 

▪ The significance of this study is to achieve high accuracy on a small-sized real-time dataset thereby 

applying the model proposed in this study to a larger, and more diverse dataset for real-time 

applications in autonomous vehicles.  

The remainder of this study is organized as follows: The second section gives an overview of existing 

literature on traffic sign recognition for autonomous vehicles, highlighting strengths, limitations, and 

extensions of current knowledge. The third section focuses on the description of the YOLOv7 with the 

CBAM framework, including its working principle, architecture, and loss function. The dataset used for 

training and evaluation is described in the fourth section. The fifth section describes the evaluation metrics, 

hyperparameters, and hardware/software configurations used in the experiments. The sixth section presents 

a detailed analysis of the results, including performance comparisons and visual representations of the 

model's capabilities. Finally, the conclusion and future scope are discussed in the seventh section. 

2 Literature Review 

There has been a positive trend toward applications in computer vision resulting in a substantial 

amount of research on TSD using various object-detection algorithms. Relevant to this study, an in-depth 

inspection and analysis of various machine vision-based traffic detection models divided into 5 categories 

viz. color, shape, color and shape, ML, and Light Detection and Ranging (LiDAR) based models [14]. A 

TSD system based on novel DL architectures used the YOLOv3, and Xception models along with Adam 

and RMSprop optimizers. These models are designed using the dataset with 3 classes such as “Yellow, 
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diamond-shaped pedestrian crossing sign", "Yellow, diamond-shaped other traffic signs" and "others". 

However, this study is processed with a lower frame rate of 4.5 fps, which could be increased to improve 

the processing time and performance accuracy [15].  

A study specifically focused on the detection of Indian traffic signs using YOLOv3, and CNN over 5 

classes, and attained an accuracy of 87%. However, the authors have not used a real-time traffic detection 

system to predict each frame in a video [16]. A study proposed a cascaded R-CNN to obtain the multi-scale 

features for TSD that resulted in an accuracy of 99.7%. Additionally, the study also proposed a multi-scale 

attention mechanism to improve the detection of true traffic signs and reduce false detections [17]. The 

YOLOv5 model is implemented on 8 classes of datasets viz.  "No U-turn", "Road bump", "Road works", 

"Watch for children crossing", "Crosswalk ahead", "Give way", "Stop", and "No entry", along with a 

thorough comparison between the YOLOv5 and SSD. The own dataset used for the model displayed an 

accuracy of 97.70%. The future scope of the study is to expand the existing dataset and apply newly 

developed models like Mask R-CNN, CapsNet, and Siamese Neural Networks [18]. An improved YOLOv5 

model is implemented for real-time multi-scale TSD over a massive size of 182 classes. Data augmentation, 

and Adaptive Feature Fusion Pyramid Network (AF-FPN) methods were implemented to increase the 

performance of the standard YOLOv5 model, which indeed increased the accuracy from 60.18% to 62.67%. 

The performance of the model is low due to the blurring of images captured by the high-speed motion of a 

vehicle [19]. An indigenous CNN architecture is used for TSD with the dataset having 16 classes viz. "green 

light", "speed limit", "no parking", "bicycle and pedestrians only", "crossroad 1", "red light", "crosswalk 

1", "straight ahead or left turn permitted", "crossroads 2", "traffic division", "no overtaking", "no turns", 

"stop", "one-way street" and "yellow light". This approach outperforms YOLOv2, and Fast R-CNN, with 

an average accuracy of 90% in all types of weather conditions. However, authors have developed a model 

with less training data that could be increased to improve performance in more environments [20]. A 

combination of Faster R-CNN, and Extreme Learning Machines (ELM) is used over 3 classes. However, 

the accuracy and performance of the model are not discussed quantitatively, but qualitatively it is stated 

that combining CNN with ELM increases the accuracy [21].  

A study on TSD and classification in the wild constructed a benchmark dataset “Tsinghua - Tencent 

100K” covering real-world conditions. The study trained two models CNN and Fast R-CNN which resulted 

in an accuracy of 88%, and 50% respectively. The study had been implemented with a minimum number 

of traffic sign classes that rarely appear in benchmark datasets [22]. Another study presented the YOLOv3 

model in detecting temporary traffic control detection for road construction projects. The mentioned study 

used a dataset containing 8 classes viz. "construction cones", "looper cones", "construction barrels", 

"construction barricades", "end construction signs", "road construction ahead signs", "right lane reduction 

signs", "right lane closed ahead signs". The training resulted in a mean Average Precision (mAP) of 90.82%. 

The proposed model in the mentioned study recognized more than 98% of the temporary traffic signs 

correctly and approximately 81% of temporary traffic control devices correctly [23]. A design for real-time 

TSD was implemented with CNN on 50,000 traffic-sign images and reached an accuracy of 97.3%. This 

model is designed by considering more traffic sign classes, and possible weather conditions affecting the 

visibility of the signs [24]. The “WAF-LeNet” (an upgraded version of LeNet) is developed to recognize 

and identify traffic signs for autonomous vehicles. The accuracy attained in the study was 96.4% among 43 

classes [25]. Though there is a fairly small amount of research studies revolving around TSD using 

YOLOv7, research work was carried out to collect, and label the road damage data using Google Street 

View. The YOLOv7 model is trained with the collected data and results in an F1 score of 81.7% [26]. A 

study focused on improving the performance of YOLOv5 for the detection of traffic signs in bad weather 

conditions made use of the Global Context (GC) block, which combined with YOLOv5’s results in an 

accuracy of 79.2% [27]. A study quantitatively demonstrates that the combination of YOLOv7 with a 

lightweight convolution-based Spatial Pyramidal Pooling Fusion (SPPF) module leads to a significant 

improvement in model accuracy. The study reports a precise increase of 6.7% in accuracy when 

incorporating the SPPF module into the YOLOv7 framework [28]. A portable image-based ADS system 

was developed using the YOLOv5 algorithm and Tesla P100 Graphics Processing Unit (GPU) system. It 
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achieved a remarkable speed of 43.59 frames per second [29]. Multiple studies have utilized a pre-trained 

model for TSD on large datasets, and have fine-tuned the respective models by using various optimizers 

[30, 31, 32]. Some studies have implemented multi-task learning to simultaneously detect objects like 

pedestrians and bicycles [33, 34]. The use of LiDAR and Radar sensors has come up as one of the ways to 

increase the accuracy of models for TSD in challenging conditions like low lighting [35]. A unique method 

is described in a study for analyzing Global Positioning System (GPS) trajectory data to detect vehicle turns, 

which involves converting the data to image-based data, post-conversion, a personalized CNN model is 

designed [36, 37].  

Previous approaches to TSD have used models like YOLOv5 [27], YOLOv7 [28], and CNN [36], 

which are popular and efficient models. However, these models do not have an attention mechanism, which 

can limit their performance. The model proposed in this study uses YOLOv7 with CBAM, which is an 

attention mechanism that helps to improve the model's performance. Specifically, CBAM helps to focus 

the model's attention on the most important features in an image, which can lead to better object detection, 

especially in cases where the objects in an image are small or have low contrast. 

3 Traffic Sign Detection Using YOLOv7 with CBAM 

YOLOv7 is the latest and state-of-the-art object detection model in the family of YOLO single-shot 

object detection models. YOLOv7 is currently the fastest and best-performing object detection model. 

YOLOv7 significantly enhances real-time object detection accuracy while lowering inference costs. By 

cutting around 40% of the parameters and 50% of the processing speed, YOLOv7 effectively beats other 

well-known object detectors with faster inference speeds, and higher recognition accuracy [38]. 

3.1 Working Principle 

The four components that the YOLO algorithm uses to operate are residual blocks, bounding box regression, 

Intersection Over Union (IOU), and Non-Maximum Suppression (NMS). The initial component of the 

residual block divides the original image (A) into N equal-sized grid cells, where N is a hyperparameter. 

Localizing and determining the object's class using the probability/confidence value is the responsibility of 

each grid cell. Bounding box regression is the second element that identifies the bounding boxes that 

correspond to rectangles highlighting all the objects in the image. There can be as many bounding boxes as 

there are objects within a given image. YOLO uses a single regression module to compute the 

characteristics of these bounding boxes. Y is the final vector of each bounding box as given in Eq. (1). 

Y = [ Pc, bx, by, bh, bw, C1, C2, C3, C4 ]                                                                         (1) 

Where, Pc is the grid's probability score for the cell that contains the object. The bounding box's center's 

x and y coordinates in relation to the surrounding grid cell are represented by bx, by. The height, and the 

width of the bounding box are represented by bh, bw respectively. The four classes namely prohibitory, 

dangerous, mandatory, and others are represented by C1, C2, C3, and C4 respectively. Despite not all of them 

being significant, a single object in an image might frequently have many grid box possibilities for 

prediction. Such grid boxes are to be discarded in order to retain the relevant grid boxes using the third 

component IOU. IOU always ranges from 0 and 1. The IOU selection threshold is initially set at 0.5. Fig. 2 

shows the intersection area divided by the union area which is then calculated for each grid cell by YOLO. 

Finally, it considers grid cells with an IOU > threshold rather than those predicted to have an IOU ≤ threshold. 

Intersection Over Union =
Area of Overlap

Area of Union
= 

 
Figure 2: Intersection over union 
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The final part NMS algorithm is a post-processing technique to remove duplicate and overlapping 

detections of the same object. When an object is detected, the YOLO algorithm generates multiple bounding 

boxes with confidence scores indicating the likelihood of an object being present in each box. However, 

some of these boxes may overlap or contain the same object, resulting in multiple detections for the same 

object. To address this issue, NMS is used to suppress all but the most confident detection of each object. 

The algorithm works by first sorting the detected bounding boxes by their confidence scores. Then for each 

box, it compares its overlap with all other boxes. If the overlap exceeds a certain threshold, the box with the 

lower confidence score is suppressed. The process is repeated until all boxes have been considered. The 

generated output helps to improve the overall performance and accuracy of the object detection algorithm. 

Establishing an IOU threshold is not always adequate since an item may contain several overlapping boxes. 

Noise might be included if many boxes are overlapped based on an IOU that exceeds the threshold and all 

those boxes are left unclosed. NMS can be used in these circumstances to keep only the boxes with the 

highest likelihood of being identified. Hence, the algorithm is designed by initializing the confidence 

threshold, and IOU threshold values. Then the bounding boxes are organized according to decreasing 

confidence. If any bounding box contains a confidence threshold 0 that is eliminated. The rest of the 

bounding boxes are iterated through in a loop beginning with the greatest confidence, and the IOU of the 

current box with every remaining box that belongs to the same class is calculated. If the IOU of the 2 boxes > 

IOU_Threshold, then the box with lower confidence is removed from the list of boxes. This operation is 

repeated until all the boxes are processed in the list. Here's an outline of the code for YOLO, a popular 

object detection algorithm. Table 1 shows the pseudocode of the steps involved in implementing YOLO. 

Table 1: YOLO Algorithm 

Input: Image of 640x640 pixels        Output: Image class ∈ {prohibitory, dangerous, mandatory, others} 

image = readInputImage() 

No_Cells = 7 

No_Classes = 4 

Th = 0.7 

Size_of_step = height(image)/ No_Cells 

pred_class_array = new_array(size(No_Cells, No_Cells, No_Classes)) 

pred_bound_box_array = new_array(size(No_Cells, No_Cells, No_Cells, No_Cells)) 

final_preds = [] 

for (i<0; i< No_Cells; i=i+1): 

 for (j<0; j< No_Cells;j=j+1): 

  cell = image(i:i+ Size_of_step,j:j+ Size_of_step)  

  pred_class_array[i,j] = predict_class(cell) 

  pred_bound_box_array[i,j] = predict_bound_box(cell) 

              if (pred_bound_box_array[i,j,0, 4] > pred_bound_box_array[i,j,1, 4]): 

                                      bestfit_bound_box = 1  

                           else: 

                                     bestfit_bound_box =  0 

  pred_class = max_value_index(pred_class_array[i,j]) 

 if (pred_bound_box_array[i,j,bestfit_bound_box,4]*max_value(pred_class_array[i,j])>  Th): 

   pred = [pred_bound_box_array[i,j,bestfit_bound_box, 0:4], pred_class] 

   final_preds.append(prediction) 

print final_preds 
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3.2 Architecture  

YOLOv7 can be used in many applications other than object detection, like instance segmentation, 

pose estimation, etc. In comparison to YOLOv4, YOLOv7 utilizes 36% less processing, reduces the number 

of parameters by 75%, and generates 1.5% higher AP. When compared to the edge-optimized version, 

YOLOv4-tiny, and YOLOv7-tiny reduce the number of parameters by 39% and computation by 49% while 

keeping the same AP. Hence, it can be stated that YOLOv7 is more optimized. A YOLO architecture is 

made up of various components, including a head, neck, and backbone. For the inference speed, the 

effectiveness of the YOLO network's backbone is essential. The full YOLOv7 architecture can be seen in 

Fig. 3. 

 

Figure 3: Proposed architecture of YOLOv7 with CBAM 

The Extended Efficient Layer Aggregation Network (E-ELAN) helps the model learn better while 

preserving its original gradient path. To increase the speed and accuracy of the model, E-ELAN considers 

several variables, including memory cost, input-output channel ratio, element-wise operation, activations, 

gradient routes, etc. [39]. The CSPDarknet53 serves as the backbone network for the YOLOv7 architecture 

that makes up the Efficient Layer Aggregation Network (ELAN) model. CSPDarknet53 was created to 

increase the precision and effectiveness of object detection models. On the other hand, E-ELAN is another 

YOLOv7 architecture that uses EfficientNet as the backbone network. A series of CNNs called EfficientNet 

is created to attain cutting-edge accuracy while keeping the model's computing cost to a minimum. The 

main difference between these two models is the backbone network i.e., ELAN uses CSPDarknet53, and E-
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ELAN uses EfficientNet. EfficientNet is more computationally efficient, but it may sacrifice some accuracy 

compared to CSPDarknet53. YOLOv7 uses an optimized compound model scaling approach that modifies 

the characteristics to produce suitable models for various application requirements. For instance, model 

scaling can improve the resolution of the model, the size of the input image, the depth, or the number of 

stages, and the width, or the number of channels. The compound scaling technique can keep the model's 

original design characteristics.  

After training, one way to improve the model is by re-parameterizing it. The inference process takes 

longer, but the outcomes are more substantial. The two forms of ensemble re-parameterizations used to 

complete models are model level and module level. Model level re-parameterization can be done in two 

ways. In the first method, distinct sets of data are used to train several models with the same architecture, 

and then average their weights to get the final model. The second method is to take the average of a model's 

weight at different epochs. But recently, module-level re-parameterization has been used in a lot of research 

works. The YOLOv7 contains several heads, including the Lead Head, which is accountable for all the 

output, and the Auxiliary Head, which helps with training middle layers. To enhance deep network training, 

a Label Assigner method was created that assigns soft labels after considering ground truth and network 

prediction results. Reliable soft labels employ optimization techniques to raise the standard and distribution 

of prediction output in addition to the accuracy of the prediction. However, conventional label assignment 

generates hard labels based on predetermined norms by directly referencing reality. The YOLOv7 

architecture shown above uses kernel sizes such as 3x3, and 1x1 in all its convolution layers with padding 

of 1 and 2.  

Fig. 4 shows a crucial component Cross-Branch Scalability (CBS). It is designed with a convolution 

layer, Batch Normalization (BN) layer, and a Sigmoid Linear Unit (SILU) activation function to extract 

images at various scales. Based on the CBS module, which makes up the upper and lower divisions, the 

MP1 module adds the max-pooling layer. Using max-pooling and the CBS module, the upper division 

reduces the image's length and width in half. The lower division uses the first CBS module to reduce the 

image channel in half, the second CBS layer reduces the image's width and length in half, and finally, the 

Concatenation (CAT) operation is used to combine the features retrieved from the top and lower branches, 

enhancing the network's ability for feature extraction. The upsampling and CBS modules make up the UP 

module. 

 
Figure 4: CBS, MP1, UP Modules 

  

Figure 5: ELAN Module Figure 6: SPPCSPC Module 

In Fig. 5, the ELAN module is made up of numerous CBS modules that have been piled on top of one 

another while maintaining the same input and output feature sizes. The learning capacity of the network is 

increased without deviating from the initial gradient path by directing the computing units of various feature 

groups to learn more diverse features. The Spatial Pyramid Pooling Concat Spatial Convolutional 
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(SPPCSPC) module shown in Fig. 6, ELAN-H (Extreme Low-latency Architecture for Network Heads) 

module, and UP module makes up the majority of the Path Aggregation Feature Pyramid Network (PAFPN) 

structure that makes up the Neck component of YOLOv7. The bottom-up approach makes it simple to move 

bottom-level data up to the top level, allowing for the effective fusion of various hierarchical aspects. The 

CBS module, CAT module, and max-pooling module make up the majority of the SPPCSPC module. 

SPPCSPC uses different pooling kernel sizes such as 5x5, 9x9, and 13x13. These modules obtain various 

perception fields through max-pooling. To predict confidence, category, and anchor frame, Head uses Re-

parameterization Visual Geometry Group Block (RepVGG) structure to adjust the number of image 

channels for the output of Neck at three distinct scales and then passes through 1x1 convolution. The model 

proposed in this study addresses the scale problem in TSD by utilizing the SPPCSPC module in the last 

layer of the proposed model. Spatial Pyramid Pooling (SPP) allows capturing features at different scales 

without reducing the input resolution, while Cross Stage Partial (CSP) connections reduce the number of 

parameters in the proposed model. By incorporating these modules, the model can effectively handle the 

large variations in object scales commonly encountered in TSD tasks, improving the accuracy of predictions 

and enhancing the overall performance of the proposed model. 

CBAM is a module used to enhance the performance of CNNs by incorporating spatial and channel 

attention mechanisms. It focuses on capturing both local and global context information from input feature 

maps, allowing the network to prioritize relevant image regions while suppressing irrelevant ones. The 

module consists of two components such as spatial attention and channel attention. The spatial attention 

module captures spatial dependencies among different channels by modeling interdependencies between 

spatial locations. This enables the network to focus on relevant regions and suppress background regions. 

The channel attention module captures interdependencies among channels by assessing the importance of 

each channel in conveying discriminative information. It emphasizes informative channels while 

suppressing less informative ones. The spatial and channel attention maps are combined to generate an 

attention map that captures both spatial and channel-wise information. This attention map is used to weigh 

the feature maps, allowing the network to selectively attend to relevant features. The YOLOv7 model is 

trained using the sum of the squared error between the predicted bounding boxes and the actual boxes, along 

with the cross-entropy loss for the class predictions. Its combination of a lightweight backbone network, 

effective neck, and multi-scale head make it a powerful tool for a variety of computer vision applications.  

The technical contribution of this study lies in the integration of three CBAM units before the three 

outputs of YOLOv7, a model that already detects objects at three different scales. By incorporating the 

CBAM module, weights are assigned to channel and spatial features of the feature map, which effectively 

increases the importance of useful features while suppressing irrelevant ones. This attention mechanism 

enables the proposed model to focus on target regions containing important information that improves 

accuracy in detecting objects of various sizes.  

3.3 Loss Function 

The loss function used in YOLOv7 is a mixture of different components, including: 

3.3.1 Localization Loss (LL)  

This component of the loss measures the difference between the predicted bounding box coordinates 

and the actual bounding box coordinates. It uses the Mean Squared Error (MSE) loss function to calculate 

the loss. 

LL= λcord ∑ ∑ lij
obj

[ (xi- x̂i)
2+ (y

i
- ŷ

i
)

2
]B

j=0
S

2

i=0 + λcord ∑ ∑ lij
obj

[ (√wi- √ŵi)
2
+ (√hi- √ĥi)
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S
2

i=0                (2) 

3.3.2 Confidence Loss  

This component of the loss measures how confident the model is in its predictions. It calculates the 

difference between the predicted confidence score and the actual confidence score. The confidence score 
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indicates whether the bounding box contains an object or not. The binary cross-entropy loss function is used 

to calculate this confidence. 

Confidence Loss= ∑ ∑ lij
obj

(CIi- CÎj)
2B

j=0
S

2

i=0 +  λno_obj ∑ ∑ lij
no_obj

(CIi- CÎj)
2B

j=0
S

2

i=0                                           (3) 

3.3.3 Classification Loss 

This component of the loss measures the difference between the predicted class probabilities and the 

actual class probabilities. The cross-entropy loss function is used to calculate this classification loss. 

Classification Loss= ∑ li
no_obj

 ∑ ( Pri(C) -Pr̂i(C) )
2

C ∈ Classes
S

2

i=0                                                                      (4) 

3.3.4 Total Loss 

The overall loss function is a weighted sum of these three components. The weights are 

hyperparameters that are tuned during training to balance the contributions of the different components. The 

loss function's ultimate goal is to reduce the difference between predicted, and ground truth bounding boxes, 

confidence scores, and class probabilities. 

Total Loss = LL + Confidence Loss + Classification Loss                                      (5)

     

Total Loss = λcord ∑ ∑ lij
obj

[ (xi- x̂i)
2+ (y

i
- ŷ

i
)

2
]B

j=0
S

2

i=0 + λcord ∑ ∑ lij
obj

[ (√wi- √ŵi)
2
+ (√hi-√ĥi)

2

]B
j=0

S
2

i=0 + 

∑ ∑ lij
obj

(Cli- CÎj)
2B

j=0
S

2

i=0 +  λno_obj ∑ ∑ lij
no_obj

(CIi- CÎj)
2B

j=0
S

2

i=0 + ∑ li
no_obj

 ∑ ( Pri(C) -Pr̂i(C) )
2

C ∈ Classes
S

2

i=0     (6) 

Where, lij
obj

 equals 1 only if box j, and cell i match, and otherwise it is 0. The variable li
obj

 equals 1 if 

cell i contains an object, and 0 if it doesn't. The variable lij
noobj

 equals 1 if the box j and cell i do not match 

and equals 0 otherwise. The hyperparameters λcord and  λno_obj control the weights of each loss term. YOLO 

makes a prediction in the form a S∗S∗(B∗5+Cl) vector. For each grid in the cell, there are B bounding box 

predictions and Cl class predictions. The five bounding box outputs for box j in cell i are the centre 

coordinates (xi , yi
), height (hi) and width (w

i
). The confidence index for the bounding box is represented 

by Clij . Pri(Cl) is the classification loss.  

4 Dataset Description 

The images in the dataset are part of the famous German traffic sign dataset and were pre-processed to 

ensure consistency in size, resolution, and color. The dataset consists of 741 images of traffic signs that are 

divided into three subsets like training set of 592 images (79.8920%), a validation set of 99 images 

(13.3606%), and a test set of 50 images (6.7476%) in a stratified method, ensuring that each subset had a 

proportional representation of each class. Table 2 shows the dataset with four classes such as prohibitory, 

dangerous, mandatory, and others with a total of 1,213 appearances of traffic signs. The prohibitory class 

(class 0) has 731 appearances of traffic signs accounting for 45.89% of the dataset. This class includes traffic 

signs that prohibit certain actions such as no trucks, speed limit, no traffic both ways, and no overtaking. 

The dangerous class (class 1) has 268 appearances of traffic signs accounting for 18.04% of the dataset. 

This class includes traffic signs that warn drivers of potential hazards or dangers, such as construction, 

priority at next intersection, bend left, bend right, bend, uneven road, slippery road, the road narrows, traffic 

signal, pedestrian crossing, school crossing, dangerous, cycles crossing, animals and snow. The mandatory 

class (class 2) has 211 appearances of traffic signs accounting for 13.44% of the dataset. This class includes 

traffic signs that indicate actions that drivers must take, such as a roundabout, go straight, go right, go left, 

go left or straight, go right or straight, keep right, and keep left. The other class (class 3) has 345 appearances 

of traffic signs accounting for 22.63% of the dataset. This class includes traffic signs that do not fall into the 
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prohibitory, dangerous, or mandatory categories such as no entry, stop, give way, priority road, and 

restriction ends. 

 

Table 2: Description of dataset 

Class number Classes 
No. of. Appearances 

Total Appearances 
Training Validation Testing 

0 Prohibitory 577 115 39 731 

1 Dangerous 219 40 9 268 

2 Mandatory 163 33 15 211 

3 Other 274 54 17 345 

5 Experimental Setup  

The objective of this study is to achieve high accuracy while keeping the model size and computational 

complexity low, making it suitable for deployment on embedded systems. The dataset contains 741 images 

of traffic signs with varying lighting conditions, occlusions, and backgrounds. The pre-processed version 

of the dataset is used, where images were cropped and resized to 416 x 416 x 3 pixels and annotated properly. 

The dataset was divided into training (79.89%), validation (13.36%), and test (6.747%) sets. The latest 

version YOLOv7 object detection model is used. The model has three components that predict the class, 

location, and confidence of the traffic sign detected. It was first trained using the SGD optimization 

algorithm with batch sizes 8 and 16. It had the following values of hyperparameter with a learning rate of 

0.001, weight decay of 0.0005, and momentum of 0.937. The model was trained for 100 epochs, and the 

total training time was 1.868 hours, and 1.845 hours for batch sizes 8, and 16 respectively. Then the model 

was trained using the Adam optimization algorithm with batch sizes 8, and 16. It had the following values 

of hyperparameter with a learning rate of 0.001, weight decay of 0.0005, and momentum of 0.937. The 

model was trained for 100 epochs, and the total training time was 1.916 hours, and 1.862 hours for batch 

sizes 8, and 16 respectively. At last, the model was trained using the AdamW optimization algorithm with 

batch sizes 8, and 16. It had the following values of hyperparameter with a learning rate of 0.001, weight 

decay of 0.0001, and momentum of 0.937. The model was trained for 100 epochs, and the total training 

time was 1.942 hours, and 1.857 hours for batch sizes 8, and 16 respectively. 

The evaluation metric mAP is used to measure the accuracy of the model in detecting traffic signs of 

different sizes, and aspect ratios. Precision, recall, and F1 score are used as secondary evaluation metrics 

[50,95]. The training was conducted on a single Tesla K80 GPU which is available for free version of 

Google Colab. The calculation of mAP involves calculating the AP for each class of the detected object 

and then averaging those AP values across all classes. AP is the area under the precision versus recall curve. 

mAP = 
1

N
 * ∑ APi

N
i=1                                                                                                                                      (7) 

The precision-recall curve shows how the precision and recall of the algorithm vary with the detection 

threshold. The precision is the fraction of detected objects that are correct. The recall is the fraction of true 

positive predictions among all the real positive cases. Precision and recall are calculated as follows:  

Precision =
True Positive

(True Positive + False Positive)
   and Recall = 

True Positive

 (True Positive + False Negative) 
                                         (8) 

The F1 score is the harmonic mean of precision and recall, calculated as follows:  

F1 score = 
(Precision + Recall)

2 * (Precision * Recall)
                                                                                                                                    (9) 

A good model should have a high F1 score, high recall, high accuracy, and high precision. Precision 

and recall, however, typically trade off against one another. To determine the ideal balance between 

precision and recall, use the F1 score. The precision-recall curve shows how accuracy and recall are traded 

off for different thresholds. While a low false negative rate is related to great recall, a low false positive 
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rate is related to superior accuracy. A large area under the precision-recall curve indicates that the precision 

and recall are high. 

6 Results and Discussion 

The approach used in this study is evaluated using the standard mAP metric which measures the 

accuracy of object detection by computing the AP over all possible levels of recall. Table 3 shows the 

YOLOv7 model's performance under different training configurations using four optimization algorithms 

such as Adam, SGD, AdamW, and RMSProp with batch sizes of 8, and 16. The outcomes demonstrated 

that both during training and testing, the YOLOv7 model was able to obtain high precision and recall values. 

This proved that the model has a low rate of FP and FN when identifying objects in images. The mAP 

metric measures the model's ability to detect objects at different IOU thresholds. In particular, mAP50 

evaluates the AP at an IOU threshold of .5 or 50 percent, while mAP [50,95] measures the AP across all 

IOU thresholds from .5 to .95, with increments of .05 or 5 percent. The YOLOv7 model achieves high mAP 

values for both mAP50 and mAP [50,95] indicating that the model can accurately detect objects at different 

IOU thresholds. 

Table 3: Results of all the combinations of YOLOv7 for TSD 

Configuration 

Training Testing 

Precision Recall mAP50 
mAP 

[50,95] 
Precision Recall mAP50 

mAP 

[50,95] 

Adam (batch-size 8) 0.998 1 0.997 0.89 1 1 1 0.894 

SGD (batch-size 8) 0.978 0.972 0.986 0.858 0.997 0.978 0.981 0.855 

AdamW (batch-size 8) 0.98 0.972 0.989 0.849 0.981 0.978 0.981 0.85 

Rmsprop (batch-size 8) 0.912 0.975 0.984 0.824 0.975 0.951 0.98 0.825 

Adam (batch-size 16) 0.994 1 0.996 0.88 1 1 1 0.884 

SGD (batch-size 16) 0.872 0.629 0.723 0.509 0.961 0.55 0.547 0.42 

AdamW (batch-size 16) 0.979 1 0.996 0.88 0.986 1 1 0.883 

Rmsprop (batch-size 16) 0.967 0.983 0.994 0.83 0.98 0.975 0.985 0.836 

The results show that Adam performs consistently better than SGD in terms of precision, recall, and 

mAP50, regardless of batch size. On the other hand, AdamW is similar to Adam in most cases but shows 

slightly lower performance in terms of mAP50 for batch size 8. In Table 3, it can be observed that the batch 

size significantly impacts the performance of the YOLOv7 model. For instance, SGD shows lower 

precision, recall, and mAP values compared to the other configurations for batch size 16. This suggests that 

SGD is less effective in handling larger batch sizes, possibly due to its inherent instability in noisy, and 

high-dimensional optimization spaces. 

Fig. 7 shows the predicted images for each class including dangerous, other, prohibitory, and 

mandatory signs, and each image is accompanied by the corresponding confidence level. Fig. 7 (a) inferred 

that the model accurately predicted dangerous class signs with high confidence levels, indicating its ability 

to detect, and classify potentially hazardous situations on the road. Fig. 7 (b) shows that the model was able 

to predict other class signs with high confidence levels, indicating its ability to accurately classify signs that 

do not fit into well-defined categories. Fig. 7 (c) tells that the model accurately predicted prohibitory class 

signs with high confidence levels, indicating its ability to detect and classify signs that restrict certain 

behaviors on the road. Similarly, Fig. 7 (d) indicates that the model was able to predict mandatory class 

signs with high confidence levels, indicating its ability to accurately detect and classify signs that require 

specific actions from drivers. 
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(a) Dangerous class (b) Other class 

  

(c) Prohibitory class (d) Mandatory class 

Figure 7: Predicted image for each class 

Fig. 8 (a) and Fig. 9 (a) illustrate that the YOLOv7 model performs well as it has high recall at low 

confidence, and as the confidence increases the recall values decrease, and finally confidence becomes 1 

when recall becomes zero. Fig 8. (b) and Fig. 9 (b) illustrate that the model is performing well as it has high 

precision at high confidence, and as the confidence threshold decreases, the precision also decreases. Fig. 8 

(c) and Fig. 9 (c) prove that the curve near the upper right corner indicates the increase in recall, the reduction 

in precision is not immediately apparent, and the overall performance of the model is better. Fig. 8 (d) and 

Fig. 9 (d) show that the model has a high F1 score at high confidence, and as the confidence threshold 

decreases, the F1 score also decreases. It proves that the model becomes less conservative and makes more 

predictions. Both the models Adam with batch sizes 8, and 16 are performing well in the dataset. However, 

the model with batch size 8 is performing slightly better than the one with 16. It can be inferred that the 

precision and the mAP50 of Adam with batch size 8 is more than the Adam with batch size 16. 

 
  

 

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 8: Adam optimizer with batch-size 8 
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a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 9: Adam optimizer with batch-size 16 

Fig. 10 (a) illustrates that the model performs well as it has high recall at low confidence, and as the 

confidence increases the recall values decrease, and finally confidence becomes 1 at recall is zero. Fig. 10 

(b) shows that the model is performing well but the performance is less than the Adam models as the class-

wise prediction is deviating from the overall prediction. By comparing Fig. 10 (c) and Fig. 8 (c), Fig. 9 (c) 

exhibited that the Adam optimizer performs better than the SGD optimizer. Fig. 10 (d) shows that the model 

has a high F1 score at high confidence, although not as high as the models with Adam, and as the confidence 

decreases, the F1 score also decreases. It showed that the model becomes less conservative.  

    

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 10: SGD optimizer with batch-size 8 

Fig. 11 conveys that the model is performing very poorly compared to the previous Adam models, and 

SGD with batch size 8. For instance, the precision versus recall curve in Fig. 11 (c) depicts much below at 

the top corner indicating the model has not learned properly and is struggling to predict the test images and 

in Fig. 11 (d) the model has a very low F1 score at high confidence, and as the confidence decreases, the F1 

score also decreases. 
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a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 11: SGD optimizer with batch-size 16 

Fig. 12 and Fig. 13 indicate that the models AdamW with batch-size 8 and 16 perform well but not as 

well as models with Adam. Although these models perform better than the SGD optimizer for this particular 

dataset. The AdamW with batch size 8 performs better than the AdamW with batch size 16. This results that 

the model with the less batch size performs better for this dataset. 

    

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 12: AdamW optimizer with batch-size 8 

    

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 13: AdamW optimizer with batch-size 16 
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Fig. 14 and Fig. 15 illustrate that the models RMSProp with batch-size 8 and 16 perform well but not 

as well as models with other optimizers. In comparison between the different batch sizes, RMSProp with 

batch size 16 performs better than the RMSProp with batch size 8. This results that the model with the more 

batch size performs better for this dataset. However, its performance is lesser than other all optimizers. 

    

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 14: RMSProp optimizer with batch-size 8 

    

a). Confidence vs recall b). Precision vs 

confidence 

c). Precision vs recall d). F1 vs confidence 

Figure 15: RMSProp optimizer with batch-size 16 

The results proved that Adam is a more effective optimization algorithm for training the YOLOv7 

model and that the performance of the model varies with batch size. This information can be useful for 

selecting the best configuration for their specific use case. Table 4 shows the comparison of the proposed 

model with existing models.  

Table 4: Comparison of Results 

Model Dataset Name Dataset Size mAP50 

YOLOv5 with AF-FPN [27] TT100K 100000 0.6514 

YOLOv5 [29] GTSRB 2500 0.765 

YOLOv7 [40] Europian Traffic Sign 

Dataset 
352 0.975 

Ours (YOLOv7 + CBAM) GTSRB 741 0.997 
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Overall, the results illustrate the effectiveness of the YOLOv7 model in object detection tasks and 

provide valuable insights into its performance under different training configurations. This study concluded 

that Adam with batch size 8 is the most effective of all the combinations above for the TSD use case. 

Considering the proposed model's effectiveness, it is important to acknowledge its potential limitations 

in extreme weather conditions and low-lighting scenarios. Since the model is trained on images captured 

under specific conditions, its performance may be compromised when exposed to diverse and challenging 

environments. To enhance the model's generalizability and improve its performance, a more diverse range 

of input images can be included that encompass varied conditions during the training process. This will 

enable the model to learn and adapt to different environmental factors, ultimately enhancing its robustness 

and reliability in real-world applications. 

7 Conclusion and Future Scope 

The proposed study is implemented with four optimization algorithms, namely Adam, SGD, AdamW, 

and RMSProp with different batch sizes for TSD using YOLOv7. The integration of CBAM improved the 

model’s performance by focusing on the spatial and channel regions in the input. The evaluation has been 

performed on both the training, and testing datasets by considering four different metrics namely Precision, 

Recall, mAP50, and mAP [50, 95].  The experimental results have shown that the Adam optimizer with 

batch-size 8 and 16 achieves the highest accuracy in terms of all four metrics for both training and testing 

datasets. Specifically, the precision and recall rates of the Adam optimizer are very high. It proved that the 

model can correctly identify traffic signs in the input images with high accuracy. Moreover, the results 

indicate that the choice of batch size can also have a substantial effect on the accuracy of the model. In 

general, the smaller batch size can lead to better performance, but it also increases the training time. Hence, 

the trade-off between accuracy, and training time should be considered while selecting the batch size.  

The results obtained in this research provide a strong basis for future work in the field of traffic sign 

detection. There are several directions in which this work can be extended. One prominent direction for 

future work is optimizing the performance of YOLOv7 specifically for real-time traffic sign detection on 

embedded systems like Raspberry Pi and NVIDIA Jetson. By enhancing the efficiency and speed of the 

model, its applicability in resource-constrained environments can be significantly expanded, enabling 

practical implementation in various settings. Another crucial aspect that holds great potential is the 

interpretability of deep learning models. In recent years, there has been a growing interest in understanding 

and visualizing the decision-making processes of such models. Hence, future research can delve into 

exploring the interpretability of YOLOv7 for traffic sign detection. This can involve visualizing saliency 

maps or activation patterns of the model to gain insights into how it makes predictions. These directions 

hold immense potential for advancing traffic sign detection systems, paving the way for improved road 

safety, efficient traffic management, and safer autonomous vehicles in the future. 
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