
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XXXX 2023 1

Efficient Anchor Point Deployment for Low Latency
Connectivity in MEC-assisted C-V2X Scenarios
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Abstract—Next-generation cellular networks will play a key
role in the evolution of different vertical industries. Low latency
will be a major requirement in many related uses cases. This
requirement is specially challenging in scenarios with high
mobility of end devices, such as vehicular communications. The
Multi-Access Edge Computing (MEC) paradigm seeks to satisfy
it. In this paper we propose the dynamic deployment of anchor
point network functions at edge locations and the assignment
of terminals to these anchor points with the joint objective
of minimizing communications latency and reducing network
overhead. We formally define the problem as a multi-objective
optimization and also propose a novel heuristic greedy algo-
rithm for approximating the solution. This algorithm compares
favorably with baseline and state-of-the-art strategies for latency
minimization while reducing the overhead caused by network
reconfigurations.

Index Terms—5G, Cellular Vehicle-to-Everything (C-V2X),
Low-Latency, Multi-Access Edge Computing (MEC), Vehicular
communications

I. INTRODUCTION

5G networks are expected to support not only human-centric
communications but also different vertical use cases, which
pose significant requirements to 5G networks in terms of
throughput, latency and availability [1]. In order to satisfy
such requirements in a cost-effective manner, 5G networks
have been designed for flexibility and adaptability. To a
great extent, flexibility is provided by the softwarization and
virtualization paradigms, which enable novel approaches such
as network slicing and Multi-Access Edge Computing (MEC).
The requirements for 6G networks are even more challenging,
considering the use of cell-less access networks, or novel
usage scenarios such as ubiquitous mobile broadband, ultra-
reliable low-latency broadband communication, and massive
ultrareliable low-latency communications [2].

One of the verticals that may greatly benefit from next-
generation cellular networks is the automotive sector [3].
Vehicular communications or Vehicle-to-Everything (V2X)
have gained attention in the last few years on the path towards
connected and autonomous vehicles. Some applications using

vehicular communications are collision avoidance, road status
monitoring, vehicle traffic optimization and infotainment [4].
Cellular networks provide global and ubiquitous connectivity
to vehicles, supporting their mobility with guaranteed quality
of service leveraging the centralized orchestration of the
network. 3GPP standardized Cellular V2X (C-V2X) commu-
nications in release 14 [5] as LTE-V2X, evolving them to
5G New Radio (NR)-V2X [6]. In 6G networks, the role of
C-V2X will be even more relevant, addressing the challenges
of connected and autonomous vehicles [7].

The need for low latency in vehicular communications (e.g.,
safety-related applications) has been identified as a major
limiting factor for using LTE networks [8]. Therefore, recent
works on low-latency vehicular communications are being
focused on MEC solutions for 5G networks [9]–[12]. In this
line, in [13] we proposed a dynamic optimization framework
for the deployment of anchor points in MEC locations with the
sole objective of seamlessly minimizing the latency perceived
by the end users. Anchor points are the main data plane
network functions in cellular network architectures (i.e., S/P-
GWs in 4G and UPFs in 5G). The role of anchor points in the
MEC architecture is to support user plane traffic steering to
the intended MEC applications in the data network [14]. The
framework relies on our SDN solution for transparent Session
and Service Continuity (SSC) in dynamic MEC [15], which
allows relocating the serving MEC for each terminal without
disrupting its communications. Note that the deployment of
anchor points at MEC locations themselves is one of the most
common options for MEC architectures, as reported by ETSI
both for 4G [16] and 5G [14] scenarios. The connection
between the MEC host and the closest base stations will
typically take place through high-bandwidth low-latency wired
links (e.g., optical fiber).

In this work we extend that dynamic optimization frame-
work with the objective of not only minimizing the latency per-
ceived by the users, but also reducing the overhead introduced
by network reconfigurations. To this end, we study the problem
of determining at every moment the MEC locations where
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anchor points are deployed and which anchor point serves
each user. Specifically, we focus our study on Vehicle-to-
Infrastructure (V2I) scenarios, in which vehicles communicate
with MEC applications running on MEC hosts.

In detail, the contributions of this work are:
1) The analytical modeling of the joint problem of the

deployment of anchor point Network Functions (NFs)
and the assignment of user terminals to anchor points in
MEC-enabled scenarios, with the objective of minimizing
communications latency while also reducing the overhead
caused by network reconfigurations.

2) The proposal of a new heuristic algorithm for solving this
problem, and the evaluation of its performance through
simulations in a vehicular communications scenario, us-
ing publicly available traces of vehicular mobility and
base stations’ deployments.

3) A comparison of the performance of the newly proposed
algorithm with baseline strategies (both centralized and
static) and the latency reduction algorithms in [13].

The rest of the paper is organized as follows: Section II
summarizes related work. Section III defines the problem
that is investigated. Section IV presents the proposed solution
and the algorithms under evaluation. Section V describes the
methodology. Results are presented and discussed in Sec-
tion VI. Finally, Section VII concludes the paper.

II. RELATED WORK

The MEC paradigm brings computing resources closer
to end users. Two main approaches have been previously
proposed in the literature to handle user movement between
cells while using MEC services: Keeping the running MEC
service on the original MEC host [17] or migrating that
running service to the MEC host that is associated with the
new cell [18]. Even though the first approach is simpler regard-
ing service reconfiguration and migration, it introduces non-
negligible overhead in case of frequent handovers, for instance
in high-mobility scenarios (e.g. vehicular terminals). Besides,
the latency that the users perceive may grow substantially
when the served MEC applications do not run on the MEC
hosts of the active cells of those users but on the MEC hosts
of other cells; and MEC services’ migration itself is a costly
process that may interrupt these services. For these reasons,
some previous works have followed hybrid approaches, by
combining MEC service migrations with keeping some ser-
vices on previous MEC hosts [19].

Among the approaches that propose MEC service migra-
tions, we can identify two main appraches according to the
moment when the applications are replicated in the target
MEC host: proactive [20], [21] and reactive replication [22].
Some simple proactive approaches consider that the users will
move to any of the adjacent cells at some point [20]. More
sophisticated proactive strategies perform selective replications
to some adjacent cells based on terminal mobility predic-
tions [21]. On the one hand, the main drawback of proactive
approaches is the overhead in resource usage due to the
deployment of unused instances, which also increases energy
consumption. On the other hand, reactive approaches [22] start

the migration of a service for a terminal just after it gets
attached to the new cell, which minimizes resource usage, but
the service may be interrupted while the migration process
takes place.

MEC-enhanced vehicular communications have gained at-
tention in the last years [9]–[12], [23]. The benefits of MEC in
terms of end-to-end latency reduction are showcased in [10],
where the authors compare the performance of a conven-
tional cloud-based architecture with a MEC-assisted cellular
architecture through simulations of a freeway environment.
They report a latency reduction up to an 80% with MEC-
aware systems compared to a traditional cloud architecture.
The authors of [11] investigate the problem of migrating a
service instance from one MEC host to another by following
the movement of the vehicles movements to minimize latency.
They measure service migration times using Docker contain-
ers, and they state that prior knowledge of the trajectories of
the vehicles can further reduce service downtime. The work
in [9] shows the potential of MEC in C-V2X for cooperative
autonomous driving. It presents a system prototype for vehicle
groups based on Next Generation Radio Access Network (NG-
RAN) and MEC servers providing a High Definition (HD)
map service. It also presents two optimization tools based
on Artificial Intelligence (AI) to predict the number of users
and the network traffic in 5G-V2X cells. The work in [12]
focus on the estimation of vehicular mobility to predict cell
association changes and proactively deploy services using
Virtual Machines (VMs) on the destination MEC host. The
mobility predictions are based on a combination of Neu-
ral Networks (NN) and Markov chains, leveraging network-
based terminal Angle-of-Arrival (AoA) positioning supported
by Multiple-Input Multiple-Output (MIMO) technology. They
use an online Lyapunov algorithm to determine where and
when VMs are replicated. Simulation results show a reduction
of energy consumption by 50% compared to full proactive
replication strategies, with a bounded risk of continuity loss
in computation tasks. The authors of [24] also study latency-
critical services in vehicular networks supported by MEC
platforms. They consider a three-tiered system for computation
task offloading, where the tasks can be executed at vehicle,
MEC or backhaul network levels. They apply a Reinforcement
Learning (RL) algorithm for making offloading decisions,
which results in improved latency and energy consumption,
compared with static scenarios. In [23] the Follow Me edge-
Cloud (FMeC) architecture for V2I communications is pro-
posed. It ensures that the vehicles are always connected
to the closest MEC host by reactively responding to user
mobility. In [25], the authors explore dynamic MEC provision
of video delivery services to users inside a high speed train.
They implement a proof of concept based on a 5G network
architecture that dynamically and proactively populates video
chunks in MEC hosts based on mobility predictions for
improving cache hit ratios. The work in [26] studies joint
offloading and resource allocation decisions in vehicular fog-
edge scenarios. It formulates the offloading of computing tasks
involving vehicles, Road-Side Units (RSUs) and MEC servers
as a Stackelberg game and propose incentive mechanisms to
motivate vehicles to share their idle resources.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3297017

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XXXX 2023 3

In our previous work we proposed a dynamic optimization
framework for deploying anchor points that minimized the
latency perceived by end users [13], but it did not take into ac-
count the overhead introduced in the network. Moreover, that
previous work did not consider any analytical system model
and only focused on the deployment of anchor points, always
serving the users from the closest anchor point. In this work,
we enhace that framework to also select the serving anchor
point for each user with the joint objective of minimizing both
the latency and the network overhead.

Overall, most prior work on dynamic MEC has only an-
alyzed the cost of migrating computing resources (i.e. VMs
or containers) while neglecting network reconfiguration costs.
In this work, however, we take into account the overheads
incurred both when deploying anchor point NFs at edge
locations and when migrating user contexts to the desired
locations using our SDN-based solution for transparent SSC.
This solution consists in deploying anchor point NFs at edge
locations, by taking advantage of virtualization technologies,
and migrating the internal context of the anchor point to the
replicated edge instances. Then, SDN switches at the edge
are reconfigured to forward the traffic to the edge anchor
point. The solution is valid both for 4G and 5G networks,
in which the anchor point NF respectively corresponds to the
Serving/PDN Gateway (S/P-GW) and the User Plane Function
(UPF). The internal workings of the solution are described
in [15].

We first formulate the problem of joint anchor point deploy-
ment and terminal assignment, by considering the trade-off
between the latency perceived by the users and the overhead
introduced in the network, as an Integer Linear Programming
(ILP) multi-objective optimization model. Then, we propose a
novel heuristic greedy algorithm to solve it efficiently. Finally,
we compare the performance of this algorithm with baseline
strategies (centralized and static) and other state of the art
alternatives, such as the latency reduction approaches in [13].

III. PROBLEM STATEMENT

We consider a MEC-assisted vehicular communications
scenario with low latency and low throughput requirements.
This type of communication corresponds to safety-related
applications such as collision avoidance [8], among others.
This is a latency-critical scenario in which the contribution
of communication latency to overall task offloading time may
be significant. Safety applications can be pre-deployed on the
MEC hosts involved, so the deployment time for the MEC
applications can be neglected. Moreover, we consider that the
MEC applications do not execute complex calculations but
mainly gather the data sent by the vehicles, and thus processing
time of the MEC applications can also be neglected.

In this context, the vehicles communicate through a cellular
network with an application that can be deployed at the core
network or in a MEC host. This application can be migrated
to a different location during its execution. As vehicles move,
they get associated to new base stations and therefore the
latency of the communications with the application instance
varies. In order to ensure service continuity, we leverage our

solution for seamless anchor point migrations in dynamic
MEC environments [15]. As previously mentioned, the so-
lution allows deploying anchor point NFs in MEC hosts and
reconfiguring the SDN network to forward the traffic of each
individual vehicle to the desired location. Basically, the SDN
switches at the network edge redirect the traffic of each User
Equipment (UE) to the desired anchor point.

In this scenario, we seek to dynamically reconfigure the
network departing from current vehicle locations and UE
assignments to anchor points, to minimize communications
latency and network overhead. In detail, our proposal pre-
dicts vehicle mobility and then decides the deployment and
removal of anchor point NFs in the MEC hosts as well as the
assignment of UEs to anchor point locations. We remark that
reducing the number of anchor points is important to reduce
the computing overhead in terms of resource usage and energy
consumption caused by unused instances, as previously said.

We remark that the main difference with respect to ex-
isting works on MEC application deployment lies in the
consideration of the overheads introduced by a practical SDN-
based solution for session and service continuity. The analysis
and minimization of these overheads has been neglected in
previous works and therefore existing solutions cannot be
directly applied to the problem.

Fig. 1 illustrates the considered system architecture. Anchor
point network functions are deployed in MEC hosts, and UEs
are assigned to them according to the decisions of the anchor
point deployment and terminal assignment module.

Fig. 1. System architecture for the problem considered (UE assignments to
anchor points are marked in red or blue depending on the anchor point).

A. System model

We consider a time-slotted system model. At the beginning
of each time slot, given the current state, the network intelli-
gence determines the edge locations where the anchor points
must be deployed and which edge location should be used for
serving each user. The current state includes current vehicle
locations (i.e., which base station they are connected to), the
currently deployed anchor points and the current assignments
of anchor points to user terminals. The decisions consist of
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anchor points’ deployments at edge locations where no other
active anchor points were present beforehand, removal of
anchor points from edge locations that are no longer used,
and reconfiguration of the SDN switches of the network for
diverting the traffic of each user to the desired anchor point.
Changes are only made at the beginning of each time slot and
they remain valid for the duration of that slot.

We formulate the assignment problem at the beginning of
each time slot as an NP-hard ILP.

Input data of the problem:
We model the network topology as an undirected weighted

graph G = (N ,L), where N is a set of N nodes that represent
the forwarding devices in the network topology and L is a set
of L links that interconnect the nodes in N . Each link in L
from node i to node j is weighted with the latency wij of the
link. The core anchor point will be the root node c ∈ N of
the hierarchical network topology. A subset E ⊂ N , represents
the E edge locations where anchor points can be placed. We
consider that base stations are co-located with edge locations.
From the link latency values wij we can derive lij , the latency
value from node i to node j for i, j ∈ N , as the sum of the
link weights in the shortest path sp(i, j) from node i to node
j (1).

lij =
∑

k→l∈ sp(i,j)

wkl (1)

Set V represents the V vehicles in the scenario. Without
loss of generality, we only consider vehicles demanding low-
latency services (any other services are irrelevant to the
problem in this work, since they may be served through any
anchor point, such as the core anchor point itself). Current
vehicle locations are input data for our problem. We define
the current vehicle connection matrix X = (xij) as an V ×E
binary matrix, where xij is 1 if vehicle i ∈ V is connected to
the base station at edge location j ∈ E and 0 otherwise. Since
a vehicle can only be attached to a single base station (note
that by “assignment” we refer to the location of the anchor
point that is serving a vehicle terminal and by “connection”
to the location of the base station to which the terminal is
attached), input vehicle connections satisfy:∑

j∈E
xij = 1, ∀i ∈ V. (2)

To represent a more realistic scenario, our algorithm does
not directly work with the current real vehicle connection
matrix (X), but with a predicted vehicle connection matrix
based on previous vehicle positions, given by X̂ = (x̂ij),
which is analogous to X, but using predicted values.

Other input variables are a, the cost for deploying an anchor
point; b, the cost for removing an anchor point; and oij the
cost for relocating the communications of a vehicle between
the anchor points at locations i and j, which is the control-
plane information overhead introduced in the network for this
reason. Table I summarizes the input data of the problem.

Output decision variables:
The vector of the next deployments is a binary vector

y′ = (y′i) of dimension E such that y′i is 1 if an anchor

TABLE I
INPUT DATA OF THE PROBLEM

N Set of nodes in the network topology.
L Set of links in the network topology (with link

latency weights wij).
E Subset of network nodes E ⊂ N that are base

stations with edge nodes.
c Node corresponding to the core anchor point.
V Set of vehicles in the scenario.
xij Binary variable that is equal to 1 if vehicle i

is currently connected to base station j and 0
otherwise.

x̂ij Binary variable that is equal to 1 if vehicle i
is predicted to be currently connected to base
station j and 0 otherwise.

yi Binary variable that is equal to 1 if an anchor
point is currently deployed at edge location i
and 0 otherwise.

zij Binary variable that is equal to 1 if vehicle i is
currently assigned to the anchor point at edge
location j.

a Cost for deploying an anchor point.
b Cost for removing an anchor point.
oij Cost for relocating the communications of a

vehicle from the anchor point at location i to
the anchor point at location j.

Nanchor points Number of anchor points to be deployed.

point is scheduled to be deployed at edge location i ∈ E and
0 otherwise. The matrix of the next vehicle assignments is a
V × (E + 1) binary matrix Z′ = (z′ij) such that z′ij is 1 if
vehicle i ∈ V is scheduled to be served by the anchor point
at location j ∈ E ∪ {c}.

Note that the output decision variables of one slot (y′

and Z′) become the input data for the following slot (y
and Z). Initially, all vehicles are served by the core anchor
point when joining the network (i.e., Z = 0) and no anchor
point is deployed at any edge location (i.e., y = 0), as in a
realistic scenario. The same applies to new vehicles joining the
network: the first time slot they appear in, they are served by
the core anchor point. Table II summarizes the output decision
variables.

TABLE II
OUTPUT DECISION VARIABLES

y′
i Binary variable that is equal to 1 if an anchor point

is scheduled to be deployed at edge location i and 0
otherwise.

z′ij Binary variable that is equal to 1 if vehicle i is
scheduled to be served by the anchor point at edge
location j.

Objective functions:
1) Vehicle latency (90th-percentile):

f1 = P90%

 ∑
j∈E,k∈E∪{c}

xijz
′
ikljk

 , i ∈ V

 , (3)
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where P90% picks the latency marking the 90th per-
centile.

2) Deployment overhead:

f2 =
∑
i∈E

[max (y′i − yi, 0) · a

+max (yi − y′i, 0) · b].
(4)

3) Control-plane reassignment overhead introduced in the
network:

f3 =
∑
i∈V

∑
j∈E∪{c}

∑
k∈E∪{c}

zijz
′
ikojk. (5)

From expressions (3) - (5), the multi-objective optimization
goal is defined as:

Minimize (f1, f2, f3). (6)

This multi-objective optimization is converted to a single-
objective optimization with a linear weighted scalarization [27]
of normalized objective function components to [0, 1], using
weights α1, α2, α3 such that

∑3
i=1 αi = 1. The resulting

objective function is:

Minimize
(

α1f1
max(f1)

+
α2f2

max(f2)
+

α3f3
max(f3)

)
, (7)

where max(f1) = maxi,j∈N (lij) is the maximum latency
that can be perceived by any vehicle, which is given by
the graph diameter (i.e., the maximum distance between any
pair of vertices); max(f2) = N · max(a, b) is the maximum
deployment overhead; and max(f3) = V · max(oij) is the
maximum control-plane reassignment overhead that can be
introduced in the network. Note that the selection of αi values
allows for modulating the trade-off between the relevance
of the different objective functions in the multi-objective
optimization problem.

Note also that we have considered the overhead as part of
the objective function because this way we do not need to
set an arbitrary bound on the maximum network overhead
allowed. Instead, we let the algorithm find a minimal amount
of network overhead while also minimizing latency.

Constraints:
1) Assignment unicity: a vehicle can only be assigned to a

single anchor point.∑
j∈E∪{c}

z′ij = 1, ∀i ∈ V. (8)

2) Deployment of required anchor points: anchor points
should be deployed at every edge location with assigned
vehicles.

y′j = 1, ∀j ∈ E |
∑
i∈V

z′ij > 0. (9)

3) Resource usage: The number of anchor points that are
scheduled to be deployed must be Nanchor points.∑

i∈E
y′i = Nanchor points. (10)

Finally, note that our system model can be easily extended to
consider network link bandwidths or MEC node capacities by
adding vehicle throughput as problem input data and the corre-
sponding constraints to the model. In a real scenario, the actual
measurements of vehicle throughput can be directly obtained
from the flow counters of the SDN switches. However, we did
not include them in our model because they are not relevant
to our problem statement, since we are only considering
communications with low throughput requirements, which do
not saturate network links nor nodes.

We could have also considered computing resources on
MEC hosts with appropriate constraints in the system model.
However, we are approaching the problem from a net-
work layer perspective while abstracting computing resources,
which could be handled by complementary future work.

IV. PROPOSED SOLUTION

The architecture of the proposed solution extends the dy-
namic optimization framework presented in [13] to allow
selecting the serving MEC location for each UE. Let us recall
that the architecture includes SDN switches at the gNBs. These
switches are configured by the SDN controller to steer the
traffic of each UE to the desired anchor point. An anchor
point deployment and terminal assignment algorithm solves
the problem in Section III to determine the locations where
anchor points will be deployed and assign UEs to these anchor
points. The deployment decision is sent to the NFV Man-
agement and Orchestration (MANO) platform, which deploys
the corresponding anchor point VNFs at the requested MEC
hosts. The resulting assignments of UEs to anchor points are
also communicated to the SDN controller, which reconfigures
the network for relocating the UEs to the intended anchor
points. Taking this into consideration, in practice the algorithm
should be deployed at the operator’s core network for reducing
the signaling to interact with the NFV MANO and the SDN
controller. Note that these two entities also provide the input
data to the algorithm (Table I), except for the predicted vehicle
connection matrix, which is calculated using a Long Short-
Term Memory (LSTM) [28], following the same approach of
similar works [29]. The network reconfiguration for relocating
a UE involves the replication of the UE context from the previ-
ous anchor point to the new one and also the reconfiguration
of SDN flow rules at the corresponding edge switches. The
outputs of the algorithm are the decision variables in Table II,
which identify the MEC hosts where the anchor points are
deployed and the assignment of UEs to anchor points at the
current time slot.

We first present the latency minimization algorithms for
vehicular communication scenarios described in [13] for the
sake of clarity. These algorithms seek to minimize the latency
(i.e., f1) for a given level of resource usage (Nanchor points,
number of anchor points deployed), without considering the
overhead introduced in the network. Then, we present our
proposed novel overhead-aware greedy average heuristic to
solve the multi-objective optimization problem (7).

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3297017

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XXXX 2023 6

A. Latency-minimization algorithms

The latency-minimization algorithms in the following list
operate as follows: first, the anchor point deployment algo-
rithm determines the subset of edge nodes to deploy anchor
points for a given resource usage. Then, each UE is assigned
to the closest anchor point.

• Centralized: This is a first baseline strategy that only
considers the centralized static deployment of a single
anchor point in the core network. Therefore, it does not
involve any re-deployment of anchor points nor any UE
re-assignments.

• Static K-means: This is a second baseline strategy,
which ignores the distribution of the UEs and performs
a static deployment of anchor points at fixed locations
that are determined when the network is built. It first
clusters all the edge locations in the network with the
K-means algorithm. Then, the edge site that is closest to
each cluster center in Euclidean distance is chosen for
deploying an anchor point. Therefore, this strategy does
not re-deploy anchor points. However, as the UEs move,
their closest anchor point may change, and, as a result,
anchor point assignments to UEs may change.

• Random: This is a third baseline strategy that selects at
random the subset of edge sites for the deployment of
anchor points, uniformly across all available edge sites.

• Greedy percentile: This heuristic follows a greedy strat-
egy that determines edge sites iteratively. At each itera-
tion, the algorithm selects the edge site that would result
in the lower 90th-percentile latency. In case of multiple
sites providing the same value, the algorithm selects the
site that would provide the lowest average latency.

• Greedy average: Heuristic based on an iterative greedy
strategy that chooses the edge site providing the lowest
average latency.

• K-means: This strategy is based on a proposal in [30].
At each time slot, active edge sites (i.e., those with UEs
attached to them) are clustered with a K-means algorithm.
Then, anchor points are deployed at the closest edge sites
using the Euclidean distance.

• K-means greedy average: At each time slot, active edge
sites are clustered with a K-means algorithm. Then, each
cluster is independently considered and one anchor point
is deployed in each cluster. The edge site for deploying
the anchor point in each cluster is selected to minimize
the latency perceived by the UEs that are attached to the
nodes of the cluster.

• Modularity greedy average: At each time slot, the active
edge sites are clustered with a modularity maximization-
based strategy using the Louvain algorithm [31]. Then,
each cluster is independently considered and one anchor
point is deployed in each cluster. As in the previous
case, the edge site for deploying the anchor point in each
cluster is selected to minimize the latency perceived by
the UEs that are attached to the nodes of the cluster.

In the clustering algorithms, we set the number of clusters to
match the number of anchor points to be deployed. We remark
that, if a different MEC deployment strategy is used (e.g., with

one MEC host serving multiple base stations), the proposed
strategies can be generalized by introducing the corresponding
constraints (e.g., by only deploying anchor points at allowed
MEC locations).

B. Overhead-aware algorithm

We propose a latency-minimization algorithm to not only
minimize the latency, but also to reduce all the objective
functions defined in Section III, also including the deployment
overhead (f2) and the control-plane reassignment overhead
introduced in the network (f3). In detail, the algorithm works
as follows:

Overhead-aware greedy average: Heuristic algorithm based
on a greedy strategy that iteratively chooses the edge site that
results in the lowest objective function value in (7). In the
internal calculations of the algorithms, we consider the average
latency rather than the 90th-percentile in f1 for reducing the
computational complexity. The difference by considering the
average rather than the 90th-percentile is negligible in terms
of the actual latency values achieved, as we can observe in
the comparison between the greedy percentile and the greedy
average algorithms in Section VI. As previously said, UEs are
not necessarily assigned to the closest anchor point, but to
the anchor point that minimizes the objective function (e.g.,
in some situations, the algorithm chooses to maintain users in
their previous location to reduce the overhead introduced in the
network). The proposed algorithm is detailed in Algorithm 1.
The outer loop ensures that Nanchor points anchor points are
selected. At each iteration, one anchor point is incrementally
chosen. The anchor point producing the largest descent of the
objective function is selected to be deployed. In the inner
loop, we individually consider whether each vehicle should
be served by the current anchor point or stay assigned to
the previously selected anchor point. For speedup purposes,
rather than evaluating each vehicle individually, the algorithm
jointly evaluates all vehicles assigned to the same anchor
point in each base station. In this way, the computational
complexity of the algorithm is only O(N2

anchor points · E2)
instead of O(Nanchor points · E · V ), so that it is independent
of the number of vehicles (V ), which can be very large. Note
that this change does not introduce any difference in the output
produced by the algorithm, since the vehicles connected to the
same base station that were previously assigned to the same
anchor point will always be assigned to the same anchor point,
even if they are individually evaluated.

V. METHODOLOGY

This section describes the methodology we have followed to
evaluate and compare the algorithms for anchor point deploy-
ment and terminal assignment in a MEC-enabled vehicular
communications scenario.

We begin with a description of the datasets that we have
used for our experiments, and then we present the main metrics
we used to evaluate the performance of the different strategies.
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Algorithm 1: Overhead-aware greedy average algo-
rithm.

Input: Nodes {N , E , c}, Links {L, wij}, Vehicles V ,
Current vehicle connections {xij}, Current anchor
point deployments {yi}, Current vehicle assignments
{zij}, Deployment cost a, Removal cost b,
Relocation costs {oij}.

Output: Scheduled anchor point deployments {y′i},
Scheduled vehicle assignments {z′ij}.

Parameters: α1, α2, α3, Nanchor points.

lij ←
∑

k↔l∈sp(i,j) wk,l for all i, j;
y′i ← 0 for all i;
z′ij ← 0 for all i, j;
z′′ij ← 0 for all i, j;
repeat Nanchor points times

e′ ← −1;
f ′ ← +∞;
for each e in E such that y′i = 0 do

// Check tentative deployment of
anchor point at location e

y′e ← 1;
f2 ←∑

i∈E [max (y′i − yi, 0)·a+max (yi − y′i, 0)·b];
f2,norm ← α2f2

N ·max(a,b) ;
for each v in V do

// Check served vehicle v from
e

f1,keep ←
∑

j∈E,k∈E∪{c} xvj ·z′
vk·ljk

V ;
f3,keep ←

∑
j∈E∪{c}

∑
k∈E∪{c} zvjz

′
vkojk;

f1,relocate ←
∑

j∈E xvj ·lje
V ;

f3,keep ←
∑

j∈E∪{c} zvjoje;

f13,keep ← α1f1,keep

max∀i,j∈N (lij)
+

α3f3,keep

V ·max(oij)
;

f13,relocate ← α1f1,relocate
max∀i,j∈N (lij)

+
α3f3,relocate
V ·max(oij)

;

f ← f2,norm +min(f13,keep, f13,relocate);
if f13,relocate < f13,keep then

z′′vj ← 1 if j = e, otherwise 0;
end

end
if f < f ′ then

f ′ ← f ;
e′ ← e;

end
y′e ← 0;

end
// Apply best deployment and

assignment
y′e′ = 1;
z′ij ← z′′ij for all i, j;

end

return {y′, z′}

A. Dataset

The algorithms have been evaluated using two publicly
available urban mobility datasets [32], respectively, containing
traffic traces of realistic car trips and the location of real base
stations in the same urban environment.

This environment corresponds to an area of 400 km2 of
Cologne, Germany. The vehicular mobility dataset has a size
of ∼20GB and has 354 million entries describing more than
700 000 synthetic car trips during a 24-hour interval of a
typical workday. This realistic synthetic dataset captures both
the macroscopic and microscopic dynamics of road traffic in
an urban area. Each entry consists of a simulation timestamp,
the location of the vehicle in Cartesian coordinates and its
speed1. The base station deployment dataset contains the
Cartesian coordinates of 247 base stations retrieved from
public German databases2. This dataset contains information
about the real deployment of base stations belonging to all
operators in the area.

To create the network topology graph for our experiments,
we assumed that each base station is directly connected to
other base station in their neighborhood, so that a single
connected graph results. According to our problem formu-
lation, MEC sites are co-located with base stations, and
therefore operators can deploy anchor points and execute MEC
applications on them.

Each base station in the deployment dataset was considered
a node in our graph. Then, we employed the following
methodology to create undirected links between the nodes,
in the same way as in [13]:

• Initially, we connect each base station to the base station
in its neighborhood. We considered that two base stations
belong to the same neighborhood if their Euclidean
distance is less than DTHRESHOLD .

• Then, we take the set of connected components result-
ing from the previous step and incrementally build a
connected graph by iteratively joining the two largest
components. To do this, we set a link between the closest
two nodes (i.e., those separated by the shortest Euclidean
distance), such that one node belongs to the largest
component and the other belongs to the second largest
component.

This procedure creates an undirected connected graph. In
addition, we also set the weight of each link to 1 (i.e., wij =
1), which is equivalent to an unweighted graph.

The neighborhood threshold DTHRESHOLD was set to
500 meters in our experiments, resulting in a total of 293
edges. The minimum graph distance (i.e. in number of hops)
between every pair of nodes is normally distributed with
an average value of 18 hops. Note that the neighborhood
threshold is not a parameter of our proposed solution, but just
an auxiliar parameter used during the dataset preprocessing
step to generate a graph between the base stations. In our
experiments, after analyzing the dataset, we empirically chose

1The vehicular mobility dataset is publicly available at http://kolntrace.
project.citi-lab.fr/koln.tr.bz2.

2The base station deployment dataset is publicly available at http://
kolntrace.project.citi-lab.fr/koln bs-deployment-D1 fixed.log.
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the value of 500 meters to generate links between nearby base
stations.

Since our model is time-slotted, we jointly consider the
entries of the vehicular mobility dataset whose timestamps
lie within the same 5-second slot. For attaching UEs to base
stations, we followed the same methodology as in related
works in the literature [12]:

• If the UE was not present in the previous time slot, we
attach it to the base station that minimizes the path loss
(i.e., the closest base station). The path loss is calculated
using the formula for Non-Line-Of-Sight (NLOS) urban
environments [33]. Specifically:

PL(d)[dB] = α+ 10 · β · log(d) +Xσ, (11)

where α is the floating intercept and β is the slope,
both computed as least-squares fits; d corresponds to
the Euclidean distance between the UE and the base
station; and Xσ models the effect of shadowing as a
zero-mean Gaussian random variable with variance σ2.
According to [33], we have set α = 46.61, β = 3.63 and
σ = 9.83 dB.

• If the UE was already present in the previous time slot,
we compare the path loss between the vehicle UE and the
serving base station with the minimum path loss with any
other base station. A hysteresis margin ϵ was considered
to trigger the handover to the new base station. If the path
loss improvement is less than ϵ, the UE remains attached
to the previous base station during the current time slot.
We followed the recommendation in [34] to set ϵ = 2dB.

The same procedure has been applied to determine the
predicted connection matrix (X̂), but using predicted positions
instead of the real ones. The predicted positions have been
computed using an LSTM network composed of two stacked
LSTM cells with 50 hidden units each. This network has been
trained during 10 epochs and a batch size of 1000 samples.
We applied a 20%-80% split to the dataset to obtain the
training and testing sets, respectively. The LSTM network has
an RMSE prediction value of 46.19 compared with an RMSE
of 161.61 in the case of a baseline naive algorithm (using the
last value as the prediction).

B. Evaluation metrics

We have evaluated the different objective functions defined
in the problem statement (namely the latency perceived by the
UEs f1, the deployment overhead f2 and the control-plane
reassignment overhead f3) for different levels of resource
usage Nanchor points. In addition, we also checked the running
times of the algorithm.

• Latency perceived by the UEs: It measures the com-
munications latency from the UEs to their serving anchor
points as given by eq. (3). We calculate each UE latency
as the sum of the link latency values in the communica-
tion path between the UE and its serving anchor point.
The latency of each link in the backhaul network will
strongly depend on the technology of the link. In our
evaluations, we are assuming that all links between base

stations are equal and thus we use unitary latency links
(i.e., wij = 1). In this case, the communication latency
is equivalent to the number of hops between the user and
the serving anchor point. We consider the 90th-percentile
values perceived by all the UEs as an aggregate.

• Deployment overhead: It measures the overhead intro-
duced by removing and deploying anchor points. It is
given by f2 in eq. (4). To calculate it we set a = 1
and b = 0.1 for reflecting the relative magnitudes of the
times required for deploying and removing anchor points,
where the latter is usually lower.

• Control-plane reassignment overhead: It measures the
overhead introduced by changing the serving anchor point
for the UEs. It is given by f3 in eq. (5). To calculate it,
we set the cost for relocating the communications of a
UE as the number of links in the shortest path from the
location of the previous anchor point to the location of
the new anchor point. Formally, we thus set oij =| {k ←
l ∈ sp(i, j)} |.

• Algorithm running time: It is the elapsed time for the
execution of the anchor point deployment and terminal
assignment algorithm, since the algorithm receives the
input data until it generates the corresponding output. It
is related to the computational complexity of the decision
algorithm in each time slot.

VI. RESULTS AND DISCUSSION

We first evaluated the proposed overhead-aware greedy av-
erage algorithm for different values of α in the simulated urban
vehicular mobility scenario using the previously described
datasets. The code has been written in Python and is publicly
available in [35] under an open-source license, for the sake of
reproducibility of our results. We have used the PyPy Python
implementation [36] as running environment, executed on a
Intel Core i9-9900K CPU @ 3.60GHz desktop computer.

The trade-off between the different objective functions can
be fine-tuned by choosing the α1, α2 and α3 parameters of the
scalarization of the model. The first experiments studied the
effects of the selection of αi values in the different objective
functions. In these experiments we set α1 = α and α2 = α3 =
1−α
2 for α ∈ (0, 1) in order to give the same weight to both

overheads in the objective function. Then, we evaluated the
performance of the overhead-aware greedy average algorithm
for α ∈ [0.1, 0.9] for different resource usages Nanchor points =
{5, 10, 15, 20}.

Figs. 2- 5 show the 90th-percentile latency perceived by the
UEs (f1), deployment overhead (f2), control-plane reassign-
ment latency (f3) and algorithm running time, respectively, for
increasing values of α and different levels of resource usage,
by applying the overhead-aware greedy average algorithm. As
we could expect, increasing α results in lower latency but
higher overheads. However, we can distinguish two regions
in the figures: for α less than 0.35 the overhead is negligible
but there is no latency minimization at all; and for α higher
than 0.35, the latency is considerably lower and keeps slightly
decreasing with increasing α values, whereas the overheads
correspondingly increase. Interestingly, the two regions lead
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Fig. 2. 90th-percentile latency perceived by the UEs (f1, number of hops)
as α increases for different levels of resource usage using the overhead-aware
greedy average algorithm.
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levels of resource usage using the overhead-aware greedy average algorithm.
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Fig. 4. Control-plane reassignment overhead (f3, overhead in terms of the
cost for relocating vehicle communications) as α increases for different levels
of resource usage using the overhead-aware greedy average algorithm.

to substantially distinct running times and reveal a difference
in the actual computational complexity of the algorithm. In
the first region they seem to grow quadratically with resource
usage, while in the second region they grow almost linearly.

Overall, the first region is not valid for latency minimization,
since the algorithm degenerates into choosing the trivial solu-
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Fig. 5. Average algorithm running time as α increases for different levels of
resource usage using the overhead-aware greedy average algorithm.

tion of maintaining the first deployment and terminal assign-
ment throughout the whole simulation to avoid any overheads.
The inflection point at α = 0.35 causes an abrupt change in
the behavior of the algorithm, which reduces considerably the
latency perceived, while gradually increasing the overheads.
Consequently, α should be set in this second region to actually
consider latency into the minimization objective. Interestingly,
the reduction in the latency is small for increasing α values,
while the increase in the overheads is relatively higher. This
suggests that values of α around 0.5 achieve a satisfactory
trade-off for jointly minimizing the latency and the overheads.
Therefore, this setting was used in the rest of the simulations
in this work.

In the following experiments, we compare the proposed
overhead-aware greedy average algorithm (with α = 0.5) with
the latency minimization algorithms discussed in [13].
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Fig. 6. 90th-percentile latency perceived by the UEs (f1, number of hops)
as resource usage level (Nanchor points, number of anchor points deployed)
increases.

Fig. 6 depicts the 90th-percentile latency perceived by
the UEs as the resource usage (i.e., the number of anchor
points deployed) increased. As an indication of statistical
significance, the results include 95% confidence intervals.
First, we can notice that an increase in resource usage is
directly associated with a reduction in the latency that the
UEs perceive. We will reproduce here a thorough discussion
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of the latency and execution time results for the competing
latency-minimization algorithms, since the interested reader
can find it in [13]. If we focus on the novel overhead-aware
greedy average algorithm proposed in this paper, it provides
low latency values, in the same range as the greedy average
and greedy percentile latency-minimization algorithms.
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Fig. 7. Average algorithm running time as resource usage level (Nanchor points,
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Fig. 7 shows the average running time for the different
algorithms versus the number of anchor points considered.
Note that the static strategies (centralized and static K-means)
are not considered in this figure because they do not take
any decision at every time slot, but instead they maintain the
same initial deployment throughout all the time slots of the
simulation. We can first observe that the running time increases
linearly with the use of resources. A detailed discussion on
the execution time of the alternative latency minimization
algorithms is also provided in [13] and thus omitted here.
Focusing on the proposed overhead-aware greedy average
algorithm, it takes a longer execution time than the greedy
percentile algorithm, about 800ms for a resource usage of 30
anchor points, whereas the greedy percentile algorithm takes
500ms for the same resource usage. The main reason for
this behavior seems related to the computational complexity
of the worst-case scenario for the overhead-aware greedy
average algorithm, which is O(N2

anchor points · E2), whereas
the greedy percentile algorithm has a computational com-
plexity of O(Nanchor points ·E3). Despite the slight asymptotic
reduction of computational complexity, the increase in the
constant factors caused by the overhead calculations cannot be
neglected. Finally, note that despite the quadratic relationship
with resource usage Nanchor points in the worst-case scenario, the
typical relationship is indeed linear in our experimental results.
This is directly related to the fact that the UEs connected to
a given base station are previously assigned to a small set of
anchor points for α > 0.35, as previously discussed. Note that
this does not hold for α less than 0.35, because in that case
UEs stay assigned to the original anchor points throughout
most of the simulation to keep a low f3 overhead.

It is important to have in mind that the time to deploy
the required anchor points and reassign the vehicles’ UEs to
the desired locations should be shorter than the slot duration.
This time comprises the deployment of the anchor point, the

execution of the assignment algorithm and also the time to
deploy the anchor points and reconfigure the SDN network for
diverting the traffic of each UE to the new anchor point. As
shown by our results in [13], the deployment of anchor points
takes in the order of one second, while network reconfiguration
take is in the order of tens of milliseconds with our SDN-based
mechanism for transparent SSC. Taking this into consideration,
the the time slot should not last for less than a couple
of seconds for ensuring system stability. Indeed, this also
highlights the relevance of reducing the deployment overhead
(f2) and control-plane reassignment overhead (f3) metrics, to
avoid unnecessary overhead.
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Fig. 8. Deployment overhead (f2, overhead in terms of a combination of
the costs of deploying and removing an anchor point) as resource usage level
(Nanchor points, number of anchor points deployed) increases.

Fig. 8 shows the deployment overhead f2 in eq. (4) as
the resource usage increases. The static strategies (centralized
and static K-means) are not included in the figure, since they
do not involve any deployment overhead (the same anchor
points are permanently deployed throughout the simulation).
As expected, the random algorithm introduces the highest
overhead, by requiring almost a complete re-deployment of
the whole set of anchor points at each time slot. The K-means
strategy introduces the second highest deployment overhead,
by requiring a re-deployment of about 60% of the anchor
points in different locations. The K-means greedy average and
the modularity greedy average are slightly better than the K-
means strategy. These clustering-oriented strategies re-deploy
half of the anchor points in different locations at every time
slot. Next, the greedy average and greedy percentile strategies
introduce very low deployment overheads, less than 15% of
re-deployed anchor points with greedy average and about 5%
with greedy percentile. Finally, the overhead-aware greedy
average achieves an even greater reduction, lower than 2%
of the deployment overhead.

Fig. 9 shows the control-plane reassignment overhead f3
in eq. (5) as the resource usage increases. The centralized
algorithm is not shown in the figure because it does not involve
any reassignment (i.e., all the UEs are assigned to the single
core anchor point). We can observe that the random algorithm
leads to the highest control-plane reassignment overhead. The
curve for this algorithm decreases as the resource usage
increases. The reason for this behavior is also related to
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the deployment overhead: since most deployed anchor points
change at each time slot, all the users must be reassigned
to a different anchor point. Besides, when anchor points are
randomly selected, low resource usages imply that the distance
between the previously deployed anchor points and the newly
deployed ones will be large. As the resource usage increases,
the distance between the anchor points that were previously
deployed and the newly deployed ones decreases, and so
does the control-plane reassignment overhead. Regarding the
alternative algorithms, K-means introduces the higher values,
except for a resource usage of around 6 anchor points, for
which the overhead decreases notably, reflecting the higher
instability of this algorithm. The K-means greedy average and
the modularity greedy average algorithms are better than K-
means. However, for low resource usages (less than 15 anchor
points deployed), the modularity greedy average is comparable
to K-means. High fluctuations can also be appreciated in the
curve of the K-means greedy average algorithm for resource
usages of less than 10 anchor points. Clearly, the overhead-
aware greedy average provides the lowest control plane reas-
signment overhead, for a very stable behavior throughout the

simulation. The greedy average, greedy percentile and static
K-means provide are slightly worse and exhibit non-negligible
fluctuations, especially at low resource usages. Fig. 10 shows
a detailed view of the control-plane reassignment overhead,
for the static K-means, greedy percentile, greedy average and
overhead-aware greedy average algorithms.

In practical scenarios, a proper resource usage can be de-
rived from the latency results in Fig. 6, depending on the target
latency requirements. As an example, if we consider stringent
requirements for vehicular communications of 5ms [37], by
assuming link latencies of 1ms, the centralized deployment
would not be feasible, since the latency would exceed 20ms.
Other baseline strategies, the random and static K-means
baselines, would respectively require the deployment of 25
and 17 anchor points. The greedy average, greedy percentile
and overhead-aware greedy average algorithms can achieve the
goal by deploying 10 anchor points. Interestingly, the proposed
overhead-aware greedy average algorithm is able to attain
similar levels of latency performance while also reducing
the deployment and control-plane reassignment overheads. A
possible limitation of this algorithm is execution time, which
is almost 800ms for the studied scenario, while the greedy
average takes about 100ms. Moreover, αi parameters should
also be selected to attain the desired trade-off level between
the different objective functions. In our tests, values α1 = 0.5,
α2 = 0.25 and α3 = 0.25, achieved a balancing trade-off
between the latency and the overheads.

VII. CONCLUSIONS

Cellular networks are gaining attention in automotive sce-
narios such as connected vehicles. Low latency is one of their
major requirements, especially for safety-related applications.
The MEC paradigm is a key enabling technology for satisfying
this requirement in 5G and 6G cellular networks.

In this paper we have addressed the problem of dynamically
deploying anchor points in MEC hosts and assigning vehicular
UEs to them for jointly reducing the latency perceived by the
vehicles and the overhead introduced by network reconfigura-
tions, such as anchor point redeployments and vehicle UEs’
reassignments to anchor points. We have formally defined
the problem as a multi-objective ILP optimization model.
We have proposed a novel heuristic algorithm for solving it
and compared its performance with baseline strategies and
previous latency-minimization strategies. We have analyzed
the trade-off between resource usage, the latency perceived
by the UEs, the overhead introduced in the network and the
running time of the algorithms.

Our results show that our anchor point deployment and
terminal assignment algorithm achieves satisfactory trade-offs
between the goals of the optimization model. It attains latency
levels that are comparable to those of the competing latency
minimization algorithms while consistently reducing the net-
work overhead. Overall, our proposal can help to integrate
latency-sensitive vehicular applications into cellular networks
with few network reconfigurations. As future work, we will
study clustering-based strategies to improve the scalability of
the overhead-aware greedy average algorithm.
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