
UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

Applications of information theory and artificial intelligence
to software testing

Aplicaciones de la teoría de la información y la inteligencia

artificial al testing de software

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Alfredo Ibias Martínez

Director

Manuel Núñez García

Madrid

© Alfredo Ibias Martínez, 2022

UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE INFORMÁTICA

TESIS DOCTORAL

Applications of Information Theory and Artificial Intelligence to Software Testing

Aplicaciones de la Teoría de la Información y la Inteligencia Artificial al Testing de Software

MEMORIA PARA OPTAR AL GRADO DE DOCTOR

PRESENTADA POR

Alfredo Ibias Martínez

DIRECTOR

Manuel Núñez García

Applications of Information Theory
and Artificial Intelligence

to Software Testing

Aplicaciones de la Teoría de la Información
y la Inteligencia Artificial
al Testing de Software

Ph.D. Thesis

Alfredo Ibias Martínez

Facultad de Informática
Universidad Complutense de Madrid

December 2021

Document layout with TEXiS v.1.0+.

This document is ready to be printed double-sided.

Applications of Information Theory
and Artificial Intelligence

to Software Testing

Aplicaciones de la Teoría de la Información
y la Inteligencia Artificial
al Testing de Software

Thesis presented to qualify for the title of Computer Science Doctor
Alfredo Ibias Martínez

Directed by
Manuel Núñez García

Facultad de Informática
Universidad Complutense de Madrid

December 2021

To my family
and my supervisor,

for their invaluable help.

To the memory of my father.

Acknowledgements

Every genius stands on the shoulders
of a Social Network,

not the shoulders of Giants.

Sal Restivo

I would like to thank my thesis supervisor for his invaluable help and
advice and for all the work he did to help me during this thesis. I would also
like to thank Professor Robert M. Hierons for his support and his revisions
of the work, he could be considered a co-director of this work due to his
inestimable help. Additionally, I would like to thank Professor David Clark
for his help during my stay at UCL. I would also like to thank all my co-
authors for their help during our research. Finally, I would like to thank my
family for his moral and economical support.

This thesis has been developed within the Design and Testing of Reliable
Systems research group of the Complutense University of Madrid (group
number 910606 of the catalogue of groups recognised by the UCM) and has
been supported by the following research projects:

• UK EPSRC (grant number InfoTestSS EP/P006116/2).

• Spanish MINECO-FEDER (grant numbers DArDOS TIN2015-65845-
C3-1-R and FAME RTI2018-093608-B-C31).

• The Region of Madrid (grant numbers SICOMORo-CM ICE/3006 and
FORTE-CM S2018/TCS-4314).

• The Santander – Complutense University of Madrid grant (CT63/19-
CT64/19).

xiii

Abstract

The art and science of asking questions
is the source of all knowledge.

Thomas Berger

Software Testing is a critical field for the software industry, as it has the
main tools used to ensure the reliability of the produced software. Currently,
more than 50% of the time and resources for creating a software product are
diverted to testing tasks, from unit testing to system testing. Moreover, there
is a huge interest into automatising this field, as software gets bigger and the
amount of required testing increases. However, Software Testing is not only
an industry oriented field; it is also a really interesting field with a noble goal
(improving the reliability of software systems) that at the same time is full of
problems to solve. Therefore, it leaves space for imagination to dream and try
to address such problems through the application of tools from other fields.
In this thesis, such fields are Information Theory and Artificial Intelligence.
Information Theory is a field with a strong mathematical basis. Its main
goal is to measure the information of a string based on the commonality
of its components. Artificial Intelligence is an algorithmic field that tries
to approximate solutions for exponentially complex problems. Both fields
are full of tools and methodologies that could help addressing some of the
problems that Software Testing arise. Moreover, although both fields can
seem disparate, with tools that would be better fitted to solve different kinds
of problems, in fact that is not always the case. Along the research carried
out during this thesis we found multiple situations where the use of tools
from Information Theory improves an Artificial Intelligence-based solution
and vice versa. Actually, these synergies make this thesis a compact work
more than a compilation of methods.

The main goal of this thesis is, therefore, to address different problems
from the Software Testing field and devise ways of solving (or approximate
a solution for) such problems using tools and results coming from the In-
formation Theory and Artificial Intelligence fields. Specifically, this thesis
addresses the Failed Error Propagation (FEP) problem, the test case gen-
eration problem, the Integration Testing of Software Product Lines (SPLs)

xv

xvi Abstract

problem, and the selection of hard-to-kill mutants for Mutation Testing prob-
lem. These four problems are addressed from different perspectives, looking
for the best method to try to solve each of them.

This way, for the test case generation problem we propose both an evol-
utionary method based on a Grammar-Guided Genetic Programming Al-
gorithm and an Information Theory-based measure (initially developed to
choose between test cases) to guide such algorithm, with the goal of gener-
ating test cases with high fault finding capability. This is one of those cases
where both fields join forces to obtain really good solutions. Additionally,
we develop a Grammar-Guided Genetic Programming Algorithm to gener-
ate test cases guided by coverage metrics, with the goal of increasing the
coverability of the produced test cases.

For the Failed Error Propagation problem our work focuses on the use of
Information Theory-based measures to address it. Specifically, we focus on
a previously proposed information theoretic measure called Squeeziness that
measures the likelihood of FEP in a System Under Test (SUT), and we adapt
it to work in a black-box scenario, in a non-deterministic one, and even to
work with notions of entropy different from the original Shannon’s entropy.
Additionally, we develop a tool to automatically compute this last version.
It is inside this tool where another case of these two fields helping each other
can be found: we implement an Artificial Neural Network to automatically
estimate the best notion of entropy to use for the given SUT.

In another line of work, our research to address the selection of hard-to-
kill-mutants problem delves in the idea of using swarm intelligence to solve
a complex problem. Specifically, with the goal of reducing the amount of
useful mutants, we develop a swarm intelligence algorithm, inspired in the
Particle Swarm Optimisation one, to decide which mutants are the harder-
to-kill ones. Finally, in order to solve the Integration Testing of SPLs problem
we use an Ant Colony Optimisation algorithm to select features either with
a low testing cost or with a high probability of being requested. The goal
is to simplify the testing processes through the reduction of the number of
feature combinations needed to test an SPL.

The outcomes of all these proposals are relevant, improve the state-of-
the-art and set new precedents for future work. Moreover, they open new
lines of work for further development of the proposals and for improving the
obtained solutions. Thus, this thesis makes its humble contribution to the
aforementioned fields, for the enjoyment of whoever find it interesting.

Key Words: Software Testing, Information Theory, Artificial Intelli-
gence, Evolutionary Algorithms, Machine Learning, Failed Error Propaga-
tion (FEP), Test Case Generation, Software Product Lines, Mutation Test-
ing.

Resumen

La ciencia y el arte de hacer preguntas
es la fuente de todo conocimiento.

Thomas Berger

El Testing de Software es un campo crítico para la industria del software,
ya que éste contiene las principales herramientas que se usan para asegurar
la fiabilidad del software producido. Hoy en día, más del 50% del tiempo
y recursos necesarios para crear un producto software son dirigidos a tareas
de testing, desde el testing unitario al testing a nivel de sistema. Más aún,
hay un gran interés en automatizar este campo, ya que el software cada vez
es más grande y la cantidad de testing requerido crece. Sin embargo, el
Testing de Software no es solo un campo orientado a la industria; también
es un campo muy interesante con un objetivo noble (mejorar la fiabilidad
de los sistemas software) que al mismo tiempo está lleno de problemas por
resolver. Por tanto, éste deja espacio a la imaginación para soñar e intentar
afrontar dichos problemas a través de la aplicación de herramientas de otros
campos. En esta tesis, dichos campos son la Teoría de la Información y la
Inteligencia Artificial. La Teoría de la Información es un campo con una
fuerte base matemática. Su principal objetivo es medir la información de
una cadena de caracteres basándose en lo común de sus componentes. La
Inteligencia Artificial es un campo algorítmico que intenta aproximar solu-
ciones para problemas exponencialmente complejos. Ambos campos están
llenos de herramientas y metodologías que pueden ayudar a afrontar algunos
de los problemas que el Testing de Software presenta. Más aún, aunque am-
bos campos puedan parecer dispares, con herramientas que están preparadas
para solucionar problemas de distintos tipos, este no es siempre el caso. A
lo largo de la investigación realizada durante esta tesis hemos encontrado
múltiples situaciones donde el uso de herramientas de la Teoría de la Inform-
ación mejoran una solución basada en Inteligencia Artificial y viceversa. De
hecho, estas sinergias hacen de esta tesis un trabajo compacto más que una
compilación de métodos.

El principal objetivo de esta tesis es, por tanto, afrontar diferentes pro-
blemas provenientes del campo del Testing de Software y divisar formas de

xvii

xviii Resumen

solucionar (o de aproximar una solución a) dichos problemas usando he-
rramientas y resultados provenientes de los campos de la Teoría de la In-
formación y la Inteligencia Artificial. Específicamente, esta tesis afronta
el problema del Fallo en la Propagación de Errores (FEP por sus siglas en
inglés), el problema de la generación de casos de test, el problema del Testing
de Integración de Lineas de Producción de Software (SPLs por sus siglas en
inglés), y el problema de la selección de mutantes difíciles-de-matar para el
Testing de Mutación. Estos cuatro problemas son afrontados desde distintas
perspectivas, buscando el mejor método para intentar solucionar cada uno
de ellos.

De esta forma, para el problema de la generación de casos de test pro-
ponemos tanto un método evolutivo basado en un Algoritmo de Programa-
ción Genética Guiado por Gramática como una medida basada en la Teoría
de la Información (inicialmente desarrollada para elegir entre casos de test)
para guiar dicho algoritmo, con el objetivo de generar casos de test con una
gran capacidad para encontrar fallos. Este es uno de esos casos en los que
ambos campos unen fuerzas para obtener soluciones muy buenas. Adicion-
almente, también desarrollamos un Algoritmo de Programación Genética
Guiado por Gramática para generar casos de test guiado por medidas de
cobertura, con el objetivo de aumentar la cobertura de los casos de test
producidos.

Para el problema del Fallo en la Propagación de Errores nuestro trabajo
se centra en el uso de medidas basadas en la Teoría de la Información para
afrontarlo. Específicamente, nos centramos en una medida de la Teoría de
la Información propuesta previamente llamada Squeeziness que mide la po-
tencialidad de tener FEP en un Sistema Bajo Test (SUT por sus siglas en
inglés), y la adaptamos para funcionar en un escenario de caja negra, en uno
no determinista, e incluso para trabajar con nociones de entropía diferentes
de la entropía original de Shannon. Adicionalmente, desarrollamos una he-
rramienta para calcular automáticamente esta última versión. Es dentro de
esta herramienta donde podemos encontrar otro caso de ambos campos ay-
udándose el uno al otro: implementamos una Red Neuronal Artificial para
estimar automáticamente la mejor noción de entropía a usar para la SUT
dada.

En otra línea de trabajo, nuestra investigación para afrontar el problema
de la selección de mutantes difíciles-de-matar ahonda en la idea de usar in-
teligencia de enjambre para resolver un problema complejo. Específicamente,
con el objetivo de reducir la cantidad de mutantes útiles, desarrollamos un
algoritmo de inteligencia de enjambre, inspirado por la Optimización de En-
jambre de Partículas, para decidir qué mutantes son los más difíciles de
matar. Finalmente, para resolver el Testing de Integración de SPLs usamos
un Algoritmo de Colonia de Hormigas para seleccionar los artículos que o
bien tienen un bajo coste de testing o bien tienen una alta probabilidad de

Resumen xix

ser requeridos. El objetivo es simplificar el proceso de testing a través de la
reducción del número de combinaciones de artículos necesarias para testear
una SPL.

Los resultados de todas estas propuestas son relevantes, mejoran el estado
del arte y sientan nuevos precedentes para trabajo futuro. Es más, abren
nuevas lineas de trabajo para un mayor desarrollo de las propuestas y para
mejorar las soluciones obtenidas. Por todo esto, esta tesis hace su humilde
contribución a los campos antes mencionados, para el disfrute de quien la
encuentre interesante.

Palabras Clave: Testing de Software, Teoría de la Información, Inteli-
gencia Artificial, Algoritmos Evolutivos, Aprendizaje Automático, Fallo en
la Propagación de Errores (FEP), Generación de Casos de Test, Lineas de
Producción de Software, Testing de Mutación.

Contents

Acknowledgements xiii

Abstract xv

Resumen xvii

I Introduction 1

1 Introduction 3

II State of the Art 11

2 Software Testing Background 13
2.1 General Overview of the Field 13
2.2 State-of-the-Art . 15

2.2.1 Test Case Generation 16
2.2.2 The Detection of Failed Error Propagation 20

3 Information Theory Background 21
3.1 General Overview of the Field 21
3.2 State-of-the-Art . 25

3.2.1 Generic Theories . 26
3.2.2 Using Markov Chains 26
3.2.3 Test Case Generation and Selection 27
3.2.4 Software Quality . 28
3.2.5 Failed Error Propagation 29

4 Artificial Intelligence Background 31
4.1 General Overview of the Field 31
4.2 State-of-the-Art . 34

4.2.1 Machine Learning for Software Testing 34

xxi

xxii Resumen

4.2.2 Evolutionary Algorithms 36

III Integrative Discussion 37

5 The Detection of Failed Error Propagation 39
5.1 Theoretical Background . 39
5.2 The Deterministic Case . 42

5.2.1 Maximum Entropy Principle 43
5.2.2 Maximum Loss of Information 43

5.3 The Generic Deterministic Case 44
5.3.1 Maximum Entropy Principle 46
5.3.2 Maximum Loss of Information 47

5.4 The Non-Deterministic Case 48
5.4.1 Maximum Entropy Principle 52
5.4.2 Maximum Information Balance (Loss and Gain) 52

5.5 Associated Papers . 53

6 Test Case Generation 55
6.1 Theoretical Background . 56
6.2 Using Test Set Diameter . 59

6.2.1 Encoding . 60
6.2.2 Initial population . 61
6.2.3 Fitness function . 61
6.2.4 Stopping criterion . 61
6.2.5 Selection method . 61
6.2.6 Crossover method . 61
6.2.7 Mutation method . 61
6.2.8 Replacement method 62

6.3 Using Biased Mutual Information 63
6.3.1 Fitness Function . 67
6.3.2 Crossover Method . 67
6.3.3 Mutation Method . 67

6.4 Using Coverage-Based Metrics 68
6.5 Associated Papers . 70

7 Integration Testing of Software Product Lines 71
7.1 Theoretical Background . 72
7.2 Software Product Lines with Probabilities 73
7.3 Software Product Lines with Costs 75
7.4 Associated Papers . 78

Resumen xxiii

8 Detecting Hard-to-Kill Mutants 79
8.1 Associated Papers . 82

IV Conclusions 83

9 Conclusions 85

V Publications 89

10 Publications 91
10.1 Using Squeeziness to test component-based systems defined

as Finite State Machines . 93
10.2 Estimating fault masking using Squeeziness based on Rényi’s

entropy . 111
10.3 SqSelect: Automatic assessment of Failed Error Propagation

in state-based systems . 121
10.4 GPTSG: A Genetic Programming test suite generator using

Information Theory measures 139
10.5 Using mutual information to test from Finite State Machines:

Test suite selection . 153
10.6 Coverage-Based Grammar-Guided Genetic Programming Gen-

eration of Test Suites . 175
10.7 Feature Selection using Evolutionary Computation Techniques

for Software Product Line Testing 185
10.8 Using Ant Colony Optimisation to Select Features having As-

sociated Costs . 195
10.9 Using a swarm to detect hard-to-kill mutants 213

VI Bibliography 221

List of Figures

3.1 Entropy values for a random variable with two elements. . . . 22
3.2 Relationship between different entropy formulas. 23
3.3 Rényi’s entropy values for a random variable with two elements. 25

5.1 Definition of SM (top) and S ′M (bottom). 49
5.2 Definition of NDSqk(M) under maximum entropy (top) and

under maximum information balance (loss and gain) (bottom). 51

6.1 Comparison plot between mutual information and biased mu-
tual information. 65

7.1 Examples of translation from FODA Diagrams into SPLA. . . 72

xxv

List of Algorithms

1 Genetic algorithm: general scheme. 59
2 Crossover algorithm. 62
3 Improved Crossover Algorithm. 68

4 Ant Colony Optimisation algorithm: general scheme. 73

5 Hard-to-kill mutants heuristic: general scheme. 80

xxvii

Part I

Introduction

This part presents a brief introduction to the thesis. Such introduction
includes a brief overview of the importance of the fields addressed in this
thesis, the motivation of the research presented in this thesis, and the goals
that this thesis tries to achieve. Additionally, this introduction will include
the general lines, scenarios and assumptions that the research presented in
this thesis uses.

Chapter 1

Introduction

Every story has
a beginning, a middle, and an end.

Not necessarily in that order.

Tim Burton

Software Testing [9, 194] addresses a problem inherent to humans: the
generation of errors (or bugs, as they are commonly known) through their
imperfection. As we are working with Turing machines, the space of possible
doable programs is infinite. In such infinite space is really hard to code the
desired one. Most of the time, we code an approximation of such desired
program and with the use of testing and debugging tools we improve it,
hoping to get as near as possible to our goal. It is in this approximation
process where the Software Testing field rises its problems.

Software Testing focuses on how to assess the reliability and correctness
of a system, without being able to ensure that such system is correct. As a
validation field, it focuses on finding as many faults as possible, but it can
never ensure that there are no more faults (maybe hidden, maybe in the non-
tested code, etc.). This nature gives a huge complexity to the problems that
we have to address when testing software. Moreover, Software Testing is not
only an abstract field for academic minds hungry for a challenge; it is also a
very experimental field with a lot of work involving the industry. Currently,
testing is a time consuming phase of software development, with costs that
exceed the 50% of the development budget [194]. Thus, the funding of new
research able to devise methodologies that reduce the cost and time taken
without notably decreasing effectiveness has raised a lot of interest in the
industry.

This duality in the Software Testing field is easily observable looking at
how different researchers approach one of its main problems: test case gen-
eration. On the one hand, the more theoretical research brought approaches
that focused on completeness, that is, approaches that generate test cases

3

4 Chapter 1. Introduction

that will detect all possible faults. The paradigmatic case in this scenario
is the W-Method [52] (and its improvement, the Wp-Method [86]), able to
completely test a given System Under Test (SUT). However, a big problem
of these approaches are that, although they can ensure the conformance of
the SUT with its specification in a systematic way, they are infeasible in real-
ity due to the amount of executions needed to prove all the generated test
cases. On the other hand, the more practical research brought approaches
focused on practicality, that is, approaches that manage to generate a limited
number of test cases, but trying that such test cases will be the ones that
reveal more faults. Actually, there exist many approaches dealing with this
problem using simulations or representative benchmarks and datasets, but
we also have reports on the real application of testing to industrial cases.
For example, we have applications of testing to industrial protocols such
as the Path Computation Element Communication Protocol (PCEP) [126]
(an industrial protocol for constraint-based path computation), to games
like Hearthstone [87], to entire industrial sectors like the railway sector [23]
(with multiple, different individual applications), and to end user systems
like videoconferencing systems [7].

The innate nature of the Software Testing field as a validation field
brought some caveats to the early research: such research was more fo-
cused on practicality and therefore was not formalised. This led to what
we could call informal testing, that is, the development of ad-hoc method-
ologies for specific systems and rules of thumb that helped practitioners to
find faults in their Systems Under Test (SUTs), but that were not formalised
in any sense, neither reproducible in multiple different systems. From that
initial research, a huge effort has been made to formalise testing techniques
to show that testing can be formal [88]. With this effort, the field of formal
approaches to testing arose [45, 115], including many tools supporting the
theoretical frameworks [174, 235].

Due to the complex nature of the problems presented in the Software
Testing field, researchers have resorted to not only use the tools of the field,
but also to use tools coming from other fields that have been used in mul-
tiple scenarios. This is how we can observe the intersection of Software
Testing with fields as diverse as state base systems [69] and evolutionary
algorithms [101]. Following this aim of finding tools that can help to solve,
or at least address, the problems that arise from the Software Testing field is
why this thesis focuses on the application of two different but complementary
fields: Information Theory and Artificial Intelligence.

Information Theory is a mathematical field that aims to measure the
concept of information. To that end, it defines a measure, called entropy,
that provides an information value for each element of a random variable.
Specifically, the entropy measures the amount of information of the elements
of a random variable based on their probability, with the elements with

5

higher probability having lower information than the more uncommon ones.
However, there is not always a random variable at hand and, therefore, one
has to be constructed. The most common way to do so is through the use
of a bag (or multiset) of elements as the random variable and defining a
probability distribution based on how frequent each element is in the bag to
complete it. This way, the information comprised in each element of a bag is
based on its commonality. Finally, the entropy formula gives the information
in bits as its basic measure unit.

Information theory has been originally used to measure the amount of
information a channel can transfer, given its size in number of bits. However,
since its initial conceptualisation for solving such problem, it has been used in
multiple scenarios, including software. Moreover, it has been used in multiple
Artificial Intelligence algorithms to discriminate the amount of information
a given data provides to the model. Therefore, its application to a field
like Software Testing is very appropriate because it can really benefit from
managing information in a more meaningful way. Moreover, there is previous
applications of this field to Software Testing for a couple of problems, like
Failed Error Propagation (FEP) [56] and test case generation [80].

Artificial Intelligence is a broad field widely recognised in the Computer
Science world for its usefulness. However, it starts with an apparently simple
although really complex goal: the generation of a real artificial intelligence,
either creating a consciousness or by simulating an intelligent behaviour. In
the search for an artificial consciousness, a lot of researchers have given their
best years and a lot of alternatives have been provided to solve the diffi-
cult problems that this task arises. However, we still have not managed to
get it. It is in the second approach where the best results have been ob-
tained: simulating the intelligent behaviour we have managed to produce
really intelligent programs that can perform (in a relatively intelligent way)
a specific task. It is from this approach where things as diverse as facial re-
cognition [76], autonomous robots [138], film reconstruction [153], and music
generation [193] come, and for which Artificial Intelligence is currently a
trending field. Following this more practical approach, the Artificial Intelli-
gence field has developed a lot of useful tools for different goals, like dealing
with complex data, learning patterns from data, generating new data, and
representing data in a meaningful way. Among such tools arise the Machine
Learning and Evolutionary Algorithms fields, both of them with a lot of
experience in the application of their tools to new, sometimes unexpected
problems.

Machine Learning is a statistical field focused on the learning of patterns
from (a huge amount of) data. Usually, these patterns are used to classify the
data in different classes, with the goal of being able to differentiate between
data that apparently does not have a clear division in classes. Alternatively,
they can be used to obtain a value for each data point, which can be inter-

6 Chapter 1. Introduction

preted later. Additionally, lately some new methods have arose that not only
classify data, but that can modify (in a meaningful way) or even generate
them. Therefore, Machine Learning is a useful toolbox to have when facing
new problems. Actually, its use for addressing Software Testing problems is
not new.

Evolutionary Algorithms is an evolutionary field that focuses on the it-
erative optimisation of a solution. As such, all of its tools are based on
nature-inspired iterative processes, either for evolution or for exploration.
The trick of these tools is that they can easily handle huge search spaces
with low computational cost. Thus, their suitability for solving exponen-
tially complex problems has no discussion. Due to their iterative nature,
they are approximation methods and as such they do not always (in fact,
rarely) find the optimal solution for a problem. However, they usually obtain
solutions near such optima that are enough for addressing the problem in a
real context. All of these properties make Evolutionary Algorithms a really
useful toolbox for solving search problems in huge search spaces. Thus, they
have been applied to multiple different problems, including Software Testing
ones, as the only requisite is to be able to present them as a search in a
definite (but not necessarily finite) search space.

Given the suitability of the tools provided by the Artificial Intelligence
field to solve complex problems, it is of no surprise that one of the goals of
this thesis would be to apply them to try to solve, or at least to address,
problems from the Software Testing field. Moreover, given their nature,
such tools rely a lot in the management of information. Thus, there is an
intrinsic relationship between Artificial Intelligence and Information Theory.
It is from this relationship from where new synergies between both fields can
arise to better solve certain problems. Specifically, the synergies between
both fields could reach solutions for certain problems that were not at reach
when using only one field. Finally, Information Theory is a field that can
solve some Software Testing problems due to its own nature. Summing this
all up, there is a strong motivation to try to use the tools from these fields
to solve, or at least address, some of the complex problems that arise from
the Software Testing field and that is the main goal of this thesis. More
specifically, the goal of this thesis is to study how to use the tools available
in these different fields to solve problems from the Software Testing field.
Additionally, if possible, the search for synergies between the Information
Theory and Artificial Intelligence fields would be a critical goal, with the aim
of improving the results of the proposed solutions. However, knowing that
this synergy is not always possible to obtain, the application of individual
tools will not be relegated to a lower priority.

In the first stages of this thesis, a basic framework is established: SUTs
will be black boxes. That means that we do not know their internal struc-
ture, neither their current running state. Therefore, we have to work with

7

specifications and the input/output behaviour of the system. Another im-
portant assumption is that the specification of the SUT is given by a Finite
State Machine (FSM). This is not always the case, but we can usually trans-
form a state-based formalism into an FSM. All the research performed in this
thesis follows these assumptions as they allow us to abstract our results from
any implementation formalism and therefore contribute to the generality of
our solutions.

After carefully studying the open problems from Software Testing, some
proposals to apply tools from Information Theory and Artificial Intelligence
arose. From them, along the process of researching for this thesis only a
couple could be developed. For that reason, in this thesis there are only
four problems from Software Testing that are addressed (some with multiple
solutions): Failed Error Propagation (FEP), test case generation, Integra-
tion Testing of Software Product Lines (SPLs), and detection of hard-to-kill
mutants.

Failed Error Propagation (FEP) is a fundamental problem in Software
Testing: if a fault is masked, then it is hard to find it and fix it. Therefore,
a lot of research has focused in the detection and assessment of the presence
of FEP in an SUT. To achieve such goal, a line of work defined measures such
that, given an SUT, they estimate the likelihood of having cases of FEP. In
that line, previous work presented an information-theoretic measure called
Squeeziness, which measured the likelihood of having cases of FEP in a white-
box SUT with high success. In this thesis this work is adapted to deal with
black-box SUTs. In addition, the work is expanded in two directions: the
improvement of the measure and the reduction of the requirements of the
measure. In the first direction, Squeeziness is extended to deal with new no-
tions of entropy: Squeeziness was defined using Shannon’s entropy but in this
thesis it is extended to use Rényi’s entropy, a parametric generic notion of
entropy such that when the parameter tends to 1, Rényi’s entropy converges
into Shannon’s one. Additionally, a tool that automatically computes the
best value of the parameter to assess the likelihood of having cases of FEP is
developed. In the second direction, Squeeziness relaxes one of its prerequis-
ites (that the SUT should be deterministic) and it is adapted to deal with
non-deterministic systems, giving raise to Non-Deterministic Squeeziness.

Test case generation is a common issue in Software Testing, as the ex-
ecution of test cases is one of the main ways to find faults. The easiest
method to generate test cases is to randomly traverse the specification, an-
notating the input/output pairs that appear. In this case, the efficacy of the
generated test cases is also random. A way to improve the efficacy of the
generated test cases to find faults is through the generation of test cases in
an intelligent way, that is, generating them with the goal of achieving some
properties. In this line, this thesis presents three different approaches to this
problem. First a Grammar-Guided Genetic Programming Algorithm to gen-

8 Chapter 1. Introduction

erate test suites that maximise (or minimise) a certain measure is devised.
Such measure will guide the evolution of the algorithm and, therefore, will be
the proxy to measure the fault finding capability of the generated test suites.
The first approach consists in the use of the Test Set Diameter (TSDm) [80]
measures as measures based on the diversity of the generated test suites.
The second approach is to define an improved measure for diversity, based
on the concept of Mutual Information, that outperforms the TSDm ones.
This measure is called Biased Mutual Information (BMI). Finally, the third
approach changes a bit the orientation and focuses on the coverage of cer-
tain elements of the SUT’s specification, defining some measures based on the
t-way coverage ones.

The Integration Testing of Software Product Lines (SPLs) is a combinat-
orial explosion related problem. The idea of testing SPLs is that the tester
should ensure that each feature of the SPL can correctly function when com-
posed with any other feature of the SPL. This simple definition hides a really
complex problem: once the number of features starts to increase, the num-
ber of feature combinations exponentially rises. Therefore it is of the upmost
importance to find methods able to reduce the number of feature combina-
tions to test. In this thesis, two of such methods are proposed: the first one
focuses on finding the feature combination that has the highest probability
(under the assumption that such probability represents the probability of
such feature of being selected by a user), while the second method focuses
on finding the combination of features that require less testing when adding
a new feature to the SPL. Both methods use an Ant Colony Optimisation
(ACO) algorithm to achieve their goals.

Finally, the detection of hard-to-kill mutants is an efficiency focused prob-
lem. In Mutation Testing, not all the mutants are killed in the same pro-
portion by the test cases. Under the assumption that the number of killed
mutants is a proxy for the capability of a test suite to finding faults, it is
easily understandable that a test case that kills mutants harder to kill will
be more efficient detecting faults. Therefore, finding which mutants are the
hardest to kill can help in the use of Mutation Testing to assess the gener-
ation of test cases with high fault finding capability. In this thesis a swarm
approach is developed to find such mutants in an efficient way.

As reported in the following chapters, all of these new ways to apply
Information Theory and Artificial Intelligence to Software Testing led to
satisfactory results. All of them achieve their goals, setting new state-of-
the-art in their respective fields. The code for the experiments of all the
research presented in this thesis can be found inside different repositories at
https://github.com/Colosu.

To present this work, the rest of this thesis is organised as follows: in
Part II the State-of-the-Art of the different fields used in this thesis is presen-
ted, with Chapter 2 focusing on the situation in the Software Testing field,

https://github.com/Colosu

9

Chapter 3 focusing on the Information Theory field and Chapter 4 on the
Artificial Intelligence field. In Part III, an integrative discussion is presented
to organise the research performed in this thesis, with four chapters focusing
on the four problems addressed in this thesis: Chapter 5 considers the FEP
problem, Chapter 6 focuses on the test case generation problem, Chapter 7
focuses on the Integration Testing of SPLs problem and Chapter 8 focuses on
the detection of hard-to-kill mutants problem. Finally, in Part IV, Chapter 9
presents the conclusions that derive from the work performed in this thesis
as well as some lines of future work.

Part II

State of the Art

This part presents the thesis revision of the current state-of-the-art in the
research fields relevant for it. Specifically, those fields are Software Test-
ing, Information Theory and Artificial Intelligence. To better organise the
presentation of these state-of-the-arts, each chapter provides a general over-
view of the field with the goal of getting acquainted to the terminology of
the field. In addition, a brief summary of the research performed in the
corresponding field will follow, focused on the research that will be relevant
to put into perspective the contributions of this thesis.

Chapter 2

Software Testing Background

It’s more about good enough
than it is about right or wrong.

James Bach

Software Testing is the main application field of this thesis. This chapter
includes an overview of the field, in Section 2.1, together with a brief explan-
ation of its main concepts. Section 2.2 presents the state-of-the-art in the
field for the problems addressed in this thesis.

2.1 General Overview of the Field

Software Testing [9, 194] is a broad field whose main goal is to assess the
correctness of a System Under Test (SUT) through the detection of faults. In
Software Testing, a fault is a static defect in the software and its execution
produces an error. An error is the incorrect internal state of an SUT that is
the manifestation of the executed fault. It usually produces a failure, that is,
an external, incorrect behaviour with respect to a description of the expected
behaviour.

This definition of the Software Testing goal is what leads the testing
process. This process starts by defining the requirements and scenario in
which it will work. The process follows by producing test cases that will be
applied to the SUT. It continues with the application of these test cases to the
SUT, obtaining outputs, and concludes with the comparison of the obtained
outputs and the expected ones to determine if a failure is identified. It is
important to note that in all this process we only have evaluated the SUT by
observing its execution: we have not searched for the faults that produced
the observed failures. This goal corresponds to the debugging process where
we search for the detected faults and try to fix them. However, this process
is not part of the testing process and it is not considered in this thesis.

13

14 Chapter 2. Software Testing Background

The first step of the testing process is to define the requirements and
scenario in which we will work. There are two main categories in which each
scenario can fall: white-box testing and black-box testing. In a white-box
testing scenario we have access to the SUT code and/or internal state values
(during execution). On the contrary, in a black-box scenario we do not have
access to any of these. In this case, we can only observe the introduced
inputs and the obtained outputs. Additionally, we can have a specification
of the expected behaviour of the SUT. This specification can be used as an
oracle, and will define the requirements of the SUT. As an oracle, it should
determine if an observed input/output pair is an expected behaviour. As
some SUTs can be really huge, sometimes there is no oracle available or it
is extremely expensive to produce one [257, 48]. This situation is called the
Oracle Problem and can appear in multiple situations, like when the software
is designed to solve a complex problem and there is no alternative solution.

An approach that was developed to address the Oracle Problem is Meta-
morphic testing [49, 232]. It focuses on checking properties that should hold
between different test case executions, comparing the outputs corresponding
to different inputs instead of checking whether, given an input, the observed
output is the expected one. A clear example arises with the sine function: it
is hard to know the sine of an arbitrary number, but we know some relations
between the expected outputs. For example, we know that for the same
input with an offset of 180 degrees we expect that the outputs will be the
opposite (negation) of one another. These kind of properties (that should
hold over multiple executions) are called metamorphic relations.

The second step of the testing process is to generate test cases. In testing,
a test case is an input to be given to the SUT, together with an oracle to
check whether the obtained output represents a correct behaviour. If the
observed output does not represent a correct behaviour, then we say that
we have found a failure. This failure has been observed due to a fault in the
code being executed (and if we are in a white-box scenario we should also
observe errors in the internal state of the SUT). A formal explanation of this
phenomenon is outlined in the RIPR model [9], where Reachability denotes
the situation when a test case reaches the location or locations where the
fault resides, that is, executing a fault; Infection denotes the internal state of
the program being incorrect after the location is executed, that is, having an
error; Propagation denotes the infected state propagating through the rest
of the execution and causing some output or final state of the program to
be incorrect, that is, having a failure; and, finally, Revealability denotes the
tester observing part of the incorrect portion of the final program state, that
is, observing such failure.

Generating test cases randomly is usually easier than generating them in
an intelligent way, as we only need to pair inputs with their expected outputs
and feed them to the SUT. However, executing test cases has an associated

2.2. State-of-the-Art 15

cost, usually higher than the cost of generating test cases. Therefore, in
order to reduce such cost, it is important to generate test cases with high
fault finding capability, that is, good test cases. There are multiple propos-
als on how to generate such test cases, ranging from random generators to
exhaustive methods [86, 52], passing through evolutive or expert (informed)
generators. However, it is not enough to generate a lot of test cases: we also
need a way to know which ones are good. To that end, a lot of measures have
been proposed, like the TSDm ones [80], and also some methods, like Muta-
tion Testing [63, 116, 147, 205]. This last one provides a widely employed
method to estimate how good a test case is. It uses modifications (mutants)
of the SUT to check how many of these seeded faults are found (killed) by
the test case, with the idea that the more mutants are killed, the better a
test case is.

A set of test cases, or test suite, is the main element used in the following
steps of the testing process. These steps usually are very straightforward
and, therefore, there is much less research dealing with them. The third step
consists in executing the SUT with the test inputs and observing the resultant
outputs, while the fourth step is to decide whether the obtained outputs are
product of a correct program or a faulty one. However, after all this process,
we cannot ensure the correctness of the SUT because it can still be faulty and
we have not detected such faults either due to not executing them, or due to
their errors being masked in the execution. This last situation corresponds to
another big problem of Software Testing: Failed Error Propagation [160, 263]
(FEP). FEP occurs if a fault has been executed, this leads to an error, but the
error does not propagate to incorrect output. In terms of the RIPR model
previously mentioned, this is the case where the fault has been reached,
infection has occurred, but there is a failure to propagate this infection to
the output.

The testing process can be modified depending on the specific problem
that we are addressing. For example, if we have multiple versions of the same
system released over time, we can take advantage of such versions. That is
the case of regression testing [267, 222, 170], an approach that consists in
testing the new versions of an SUT using the previous ones as a kind of oracle,
checking that the new changes have not introduced new faults. Sometimes,
this approach involves the use of a regression test suite to check that the
new version of the SUT behaves in the same way as the previous one for the
inputs of the test suite.

2.2 State-of-the-Art

In the previous section five problems were identified in Software Testing: the
oracle problem, test case generation, determining which test cases are good,
the detection of Failed Error Propagation and the testing process as a whole.

16 Chapter 2. Software Testing Background

Although this is not a comprehensive list, this state-of-the-art will only focus
on the problems that are addressed in this thesis: test case generation and
detection of Failed Error Propagation. These are two of the most relevant
in the field and this section will present the state-of-the-art to solve them.

2.2.1 Test Case Generation

The literature around test case generation is really broad but it can be di-
vided into five categories [10]: test case generation by symbolic execution,
test case generation in model-based testing, test case generation in combin-
atorial testing, test case generation by adaptive random testing, and test
case generation in search-based Software Testing. This thesis contributes
to two of these categories: model-based testing and search-based Software
Testing.

With respect to the test case generation in model-based testing category,
three main branches can be identified [10]: axiomatic approaches, Finite
State Machine (FSM) approaches and Labelled Transition Systems (LTS) ap-
proaches. This thesis only contributes to the FSM approaches branch, so the
state-of-the-art with respect to model-based testing will be limited to it.

Regarding test case generation in search-based Software Testing, it is
possible to identify ten main branches [106]: structural testing, model based
testing, Mutation Testing, temporal testing, exception testing, regression
testing, configuration and interaction testing, stress testing, Integration Test-
ing and other testing-based applications. This thesis mainly contributes to
Mutation Testing and Integration Testing. So, the state-of-the-art with re-
spect to search-based Software Testing will be limited to them.

2.2.1.1 Test Case Generation in Model-Based Testing: FSM Ap-
proaches

FSM approaches use an FSM, formalised as a Mealy machine [181], to model
the SUT. In this formalisation, the input and output of each transition are
paired and the transitions are directed from one state to another. The idea
is that FSM approaches derive sequences from that machine by using some
kind of coverage criteria. Most of them only deal with deterministic FSMs,
what can be considered a restriction if those FSM are supposed to represent
reactive or under-specified systems.

This research area started with a seminal paper about experiments in
sequential machines [192] and continued with the introduction of the first
FSM-based test case generation algorithm [112]. From them, many FSM-based
test case generation algorithms have been proposed [52, 125, 155, 213]. These
algorithms were initially used to address problems arising in functional test-
ing of hardware circuits. Later on, the theory was adapted to be used in the
context of communication protocols, where FSMs were used to reason about

2.2. State-of-the-Art 17

behaviour. The interested reader can found a survey on this area in [162].
More recently, FSMs have been used to test a wide variety of systems, includ-
ing embedded systems [33, 209] and parts of operating systems [95, 96]. Due
to the limitations of the FSMs to model data, an FSM is usually generated
from a model by either applying an abstraction or expanding out the data
(possibly after applying an abstraction).

Test case selection from FSMs is an area of study that has been extensively
researched. It focus on discovering assumptions that would make testing
exhaustive. In this line, it has been shown that completeness can be achieved
if the number of states of the SUT has a known maximum [52, 252, 162]. Also,
a common assumption to limit the size of fault domains is that the FSM that
represents the behaviour of the SUT cannot have more than a certain number
of states [121, 139, 240]. This helps to overcome the fact that the SUT is
a black-box with unknown characteristics, from which the only observable
behaviour is its I/O one. Additionally to the completeness methods, a lot
of work was done regarding the optimisation of test cases using its length,
overlap, and other goals. This work resulted in methods like Transition-
Tour [195] and Unique-Input-Output [5].

In contrast to the completeness methods, there is a huge amount of work
in practical FSM approaches that do not aim at completeness. Instead, they
use structural coverage criteria (like transition coverage, state coverage, path
coverage, etc.) as a test case selection strategy [6, 198, 85]. A good over-
view of these coverage criteria (and more) for FSMs can be found in the
book Practical model-based testing [251]. Additionally, there are research
lines regarding the intelligent generation of test cases to increase automa-
tion and limit the test suite size. Some of these lines consider evolution-
ary computation [41, 97] and Genetic Algorithms [220]. In particular, ge-
netic algorithms have used state-based formalisms to guide test case gener-
ation [164, 68, 197, 24, 25, 271]. Other lines consider diversity as a proxy
for test case quality [81, 44, 108, 109]. Most of them consider only input di-
versity, but there is also some work regarding output diversity [8]. It is also
important to note that some work found that both white-box and black-box
notions of diversity are effective when ordering a test suite [110], that is,
when addressing the test case prioritisation problem.

Finally, there have been some proposals to refine the FSM approach and
problems have been studied based on them. For example, some work in-
vestigated the implications of the SUT using queues for buffering inputs and
outputs [124] as a way to deal with systems that are not input and output
enabled. Other work investigated distributed testing [117, 123, 122]. In par-
ticular, it is undecidable to know whether there is a strategy for each local
tester that guarantees that it will force the SUT into a particular model state
when testing from an FSM [114].

18 Chapter 2. Software Testing Background

2.2.1.2 Test Case Generation in Search-Based Software Testing:
Mutation Testing

Mutation Testing is a technique where mutants of the original program are
created with the goal of improving the testing of such program. Mutants
are created through the insertion of a single fault in the original SUT. A test
case kills a mutant if it distinguishes the behaviour of both the mutant and
the original program (i.e. they produce different outputs for the same in-
put). The idea is that a test case that kills multiple mutants is supposed
to be good at detecting faults (either real or artificially inserted) and ex-
perimental evidence corroborates that test suites produced using Mutation
Testing approaches were significantly better than the (high quality) manually
written ones [84].

Initially, Mutation Testing was used to assess the quality of a test suite,
but soon it was used as a mechanism to generate test cases through the
generation of test cases for killing mutants [154]. Some of these approaches
include using Genetic Programming to generate and evaluate test cases for
Mutation Testing [78], using data state mutation (i.e. mutating the state
of the computation instead of the SUT) for test cases generation [236], us-
ing Ant Colony Optimisation (ACO) to generate test input data in auto-
matic Mutation Testing [17], using Genetic Algorithms for co-evolution (i.e.
evolving both the mutants and the test cases that can kill the mutants) of
mutants and test cases [2], using Genetic Algorithms for test case generation
in Mutation Testing [189], and using Model-Checkers to generate test cases
for Mutation Teting [83].

Additional applications of techniques closely related to evolutionary ap-
proaches have been tried. Some of these applications included using Bacteri-
ological Algorithms (i.e. Genetic Algorithms that retain a population and
remove the cross-over operation) for test case generation for mutation-based
testing [22, 19, 20, 21], using Artificial Immune Systems (i.e. a technique
inspired by the behaviour of animal immune system responses) to Muta-
tion Testing [176], and using an Artificial Immune System-based test case
evolution approach to compare it with Genetic Algorithms in Mutation Test-
ing [177].

Finally, some work has been done in higher order approaches to Mutation
Testing [146]. These approaches consist in inserting multiple faults to the
same mutant, considering therefore exponentially more mutants than if we
consider only first order mutants. Some of these approaches focus on finding
high quality mutants (i.e. those that subsume their first order constituents)
under the assumption that this way the explosion in size can become man-
ageable [145].

Regarding mutant quality, research has been done in the problem of
mutant selection with the goal of minimising execution cost and time while
still generating meaningful mutants that can be used to generate test cases

2.2. State-of-the-Art 19

with high fault finding capabilities. Classically, the solution to this problem
come from the reduction of the amount of mutants used in the process,
using mutant reduction strategies such as selective mutation [199, 262] and
random mutant selection [1]. However, the classification of mutants into two
categories (hard-to-kill and easy-to-kill) brought a new research field focused
on finding the hardest to kill mutants. The hard-to-kill mutants are usually
defined as those killed by a small fraction of the considered test cases, but
some work also defines them based on the internal structure of the code of
the given SUT [253]. Also, multiple mutant classification criteria (hard to
kill, subsuming, hard to propagate and fault revealing) have been compared
and shown to classify different mutants as the preferable ones for Mutation
Testing [204].

2.2.1.3 Test Case Generation in Search-Based Software Testing:
Integration Testing

Integration testing focus on finding faults produced by the interaction of
multiple components that have been integrated into an SUT [141]. Regarding
Search-Based Software Testing, Integration Testing has not been explored
very much. There is some work in comparing Integration Testing strategies,
either using a Genetic Algorithm to minimise the stubs and optimise test-
ing resources allocation [105], or using a Genetic Algorithm to optimise the
orders of test cases with the goal of minimising the complexity of stubbing
in Integration Testing [35]. There is also some work that looks at testing
systems that are composed of components for which we have FSM mod-
els [14, 77, 214].

Regarding the work presented in this thesis, Integration Testing is used
within a Software Product Line (SPL) framework. A Software Product Line
(SPL) is, as defined by The Carnegie Mellon Software Engineering Institute,
“a set of software-intensive systems that share a common managed set of
features satisfying the specific needs of a particular market segment or mis-
sion and that are developed from a common set of core assets in a prescribed
way” [178]. In the literature there are different approaches to represent SPLs,
such as FODA [149], RSEB [99], PLUSS [79] and SPLA [11]. This last one
has been extended to deal with probabilities [39] (SPLAP) and costs [38]
(SPLA-CRIS).

There is some work dealing with testing for SPLs [58], including some evol-
utionary approaches for test case selection and prioritisation in SPLs [111,
169]. Regarding Integration Testing, there is some work for SPLs [43], in-
cluding the use of Model-Based Testing [218] and using compositional sym-
bolic execution [238]. In Integration Testing, independently testing all pos-
sible (sometimes redundant) products is impossible [159], and the complexity
(and costs) of the testing process depends on the order of the selected fea-
tures [245]. That implies that this kind of testing has its own idiosyncrasy,

20 Chapter 2. Software Testing Background

with its own challenges.

2.2.2 The Detection of Failed Error Propagation

The literature around the detection of Failed Error Propagation (FEP) is
relatively limited. Empirical studies have been conducted to show that many
systems suffer from FEP [160, 263, 255, 229, 13, 175]. Specifically, one study
showed that in 13% of the examined programs, 60% or more of the test cases
suffered from FEP [175].

There is some work on FEP and fault masking for both white-box test-
ing [15, 175, 255, 263] and black-box testing [102, 211, 212, 256], including
some studies that propose different alternatives to measure FEP [175, 13, 56,
263] and to generate test suites that avoid it [102, 211, 255]. Finally, in the
measuring of FEP there is some interesting work [13, 56, 263]. Most of this
work focuses on Squeeziness [13, 56], a measure that uses Information Theory
to assess FEP. Squeeziness has been found to have a rank correlation of close
to 0.95 with the likelihood of FEP [13]. Additionally, it has been checked that
Squeeziness correlates to the likelihood of having FEP more strongly than the
Domain to Range Ratio [56]. Therefore, Squeeziness can be considered the
state-of-the-art regarding FEP assessment.

Finally, there is an important study regarding the incidence of FEP in
real programs [142]. This study measured FEP on Defects4J, the reference
benchmark for Java programs with real faults. It found that the prevalence
of FEP is negligible when testing is performed at the unit level. However,
when system-level inputs are provided, the prevalence of FEP substantially
increases. This indicates that it is enough for method post-conditions to
consider only the externally observable state/data and that intermediate
steps should be checked when testing at system level.

Chapter 3

Information Theory
Background

For Wiener, entropy was
a measure of disorder;

for Shannon,
of uncertainty.
Fundamentally,

as they were realizing,
these were the same.

James Gleick

Information Theory is the mathematical toolbox that will be used in
this thesis. In Section 3.1 we include a brief overview of the field, together
with the presentation of the main concepts, and in Section 3.2 we review the
state-of-the-art for the problems addressed in this thesis.

3.1 General Overview of the Field

Information Theory is a field that tries to measure information through the
probability distribution of a random variable. The first relevant concept is
called entropy, which is a measure of the average uncertainty of a random
variable.

Definition 1. The entropy of a discrete random variable X with a probability
mass function p(x) is defined with the following formula:

H(X) = −
∑
x∈X

p(x) · log2 p(x)

Note that logarithms in base 2 are used because entropy is measured in bits.

21

22 Chapter 3. Information Theory Background

Figure 3.1: Entropy values for a random variable with two elements.

Given a random variable with two elements, we can observe the entropy of
such random variable depending on the probability of one of them (versus the
other) in Figure 3.1. As we can observe, the maximum entropy (and there-
fore, the maximum information) happens when both elements have the same
probability because in such situation there is maximum uncertainty. Mean-
while, the minimum entropy (and therefore minimum information) happens
when one of the elements has probability 1 and the other has probability 0.
In this case the entropy is 0 because there is no uncertainty.

Using this simple formula, the information of different combinations of
random variables can be computed. For example, using their joint entropy
we can measure the information of two random variables together, while
using conditional entropy we can measure the information that one random
variable provides conditioned to the knowledge of another one.

Definition 2. Let X and Y be two discrete random variables with a join
distribution p(x, y). The joint entropy of X and Y is defined by the following
formula:

H(X,Y) = −
∑

x∈X,y∈Y
p(x, y) · log2 p(x, y)

The conditional entropy of X conditioned to the knowledge of Y is defined
by the following formula:

H(X|Y) = −
∑

x∈X,y∈Y
p(y, x) · log2 p(x|y)

In order to compute the information shared by two variables, the concept
of mutual information is introduced. It is a measure of the dependence
between variables. Therefore, it is symmetric in X and Y and it is equal

3.1. General Overview of the Field 23

Figure 3.2: Relationship between different entropy formulas.

to 0 if and only if both random variables are independent (otherwise, it is
always positive).

Definition 3. Let X and Y be two discrete random variables with a join
distribution p(x, y). The mutual information between X and Y is defined by
the following formula:

I(X;Y) = H(X)−H(X|Y) =
∑

x∈X,y∈Y
p(x, y) · log2

p(x, y)

p(x) · p(y)

An easy way of understanding these formulas can be found in Figure 3.2,
where a Venn diagram representing the relationship between the different
entropy formulas explains them at a glance. There, we can observe how the
mutual information is the entropy of the intersection between random vari-
ables. Therefore, it only considers the values that are shared. Joint entropy
is the entropy of the union of random variables. Therefore, it considers all
the values of all random variables. Finally, conditional entropy is the entropy
of the difference between random variables. Therefore, it considers only the
values that are not affected by the dependence with respect to the other
random variable, that is, the values that are not shared.

There are other interesting concepts coming from the Information Theory
field. One of them is relative entropy, also known as the Kullback-Leibler
distance between two probability mass functions. It is always non-negative

24 Chapter 3. Information Theory Background

and it is equal to 0 if and only if both probability mass distributions are the
same, but it is not a true distance because it is not symmetric (and therefore
it does not satisfy the triangle inequality). This “distance” is sometimes
called Cross-Entropy.

Definition 4. Let p(x) and q(x) be two probability mass functions. The
relative entropy, or Kullback-Leibler distance, between p and q is defined by
the following formula:

D(p||q) =
∑
x∈X

p(x) · log2

p(x)

q(x)

Another interesting concept is Kolmogorov Complexity, which measures
the complexity of a string (of data) based on the size of the shortest binary
computer program that computes it. In order to model a computer, this
concept uses a Universal Turing Machine. Briefly, a Universal Turing Ma-
chine has a program tape containing a binary program, which is fed left to
right to an FSM; an FSM modelling its behaviour; and an empty work tape.
The machine then reads from the program tape, writes to the work tape,
changes its state according to the FSM model, and calls for more program.

Definition 5. Let x be a finite-length binary string and let U be a universal
computer. Let l(x) denote the length of the string x. Let U(p) denote the
output of the computer U when presented with a program p. The Kolmogorov
complexity KU (x) of x with respect to U is defined as

KU (x) = min
p:U(p)=x

l(p)

that is, the minimum length over all programs that print x and halt. Thus,
KU (x) is the shortest description length of x over all descriptions interpreted
by computer U .

A final interesting general concept that we can find when working within
Information Theory is Markov Chain, which is a sort of sequence of con-
ditional random variables. Random variables X, Y , Z are said to form a
Markov chain in that order if the conditional distribution of Z depends only
on Y and is conditionally independent of X.

Definition 6. Random variables X, Y , Z are said to form a Markov chain
in that order, denoted by X −→ Y −→ Z, if the joint probability mass
function can be written as

p(x, y, z) = p(x) · p(y|x) · p(z|y)

As a final note, it is important to mention that the classical notion of en-
tropy introduced by Shannon (i.e. the one previously defined) is not the only

3.2. State-of-the-Art 25

Figure 3.3: Rényi’s entropy values for a random variable with two elements.

existing one. In fact, there are multiple notions of entropy proposed along
the years, for multiple different goals. Over all of them, there is a proposal of
a general notion that contains all of the others thanks to a parameterisation:
Rényi’s entropy.

Definition 7. The Rényi’s entropy of a discrete random variable X with a
probability mass function p(x) is defined by the following formula:

Hα(X) =
1

1− α
· log2

(∑
x∈X

p(x)α

)

In the previous definition, α ∈ IR+\{1} is the parameter that will define
which specific notion of entropy is used. Setting this parameter to different
values, we can obtain different entropy notions, being the most relevant the
ones displayed at Figure 3.3. There, we can observe how different notions
approach the concept of information, and how all of them give the maximum
entropy value to the uniform distribution and 0 entropy to both ends, when
there is no uncertainty. Finally, note that if α tends to 1, then we have
Shannon’s entropy.

3.2 State-of-the-Art

The research regarding the use of Information Theory in Software Testing
can be divided into multiple fields. However, this state-of-the-art presents
only the five that are more important for the research performed in this
thesis, namely: generic theories, use of Markov chains, test case generation
and selection, software quality and Failed Error Propagation assessment.

26 Chapter 3. Information Theory Background

3.2.1 Generic Theories

Some of the research dealing with Information Theory and Software Test-
ing focuses on the development of frameworks and theories about how to
join both fields. These theories include: modelling the Software Testing
process as a Markov decision process to optimise it, using a Cross-Entropy
based learning method with the goal of getting an optimal testing profile
for the SUT [269]; comparing different software complexity measures for the
different stages of the testing process (including some based on Information
Theory) [28]; mining software defect data to support Software Testing man-
agement, using entropy-based discretisation to discretise the obtained data
(so it can be used by machine learning classifiers) [113]; using word entrop-
ies for the classification of software traces, in order to be able to compare
them [188]; studying the relationship between entropy, information gain and
the uncertainty regarding the random generation of test cases [62]; and us-
ing entropy region graphs to triage crash-types, that is, a group of similar
unexpected terminations of an application [151]. There is also work on the
development of information-theoretic frameworks for Software Testing. For
example, it is possible to define a syntax-independent coverage criterion for
Software Testing (modelling the SUT as a random variable) [266, 264] and
use different alternative ways to introduce Information Theory into Software
Testing [55].

Finally, there is some work in testing campaigns, where entropy and
statistical methods are used to determine how probably is to find another
program branch or (crashing) path in the future using new inputs, so that
the campaign should continue [30]. A campaign consist in the execution
of random inputs to find new program branches or (crashing) paths until
a statistical measure determines that the probability of finding such new
elements is lower than a threshold.

3.2.2 Using Markov Chains

Research focusing on the use of Markov chains mainly propose methods to
model either the software system [259] or its usage through Markov chains.
For example, there is research in producing test cases using Markov chains
that model the software’s usage [258]; in introducing Software Testing tech-
niques improved using Markov chain usage models of the program [231];
in using entropy-based methods to define the probability distributions of a
Markov chain modelling the usage model of the SUT [216]; and in the genera-
tion of Markov usage models of software systems for their use in the software
reliability process [272].

3.2. State-of-the-Art 27

3.2.3 Test Case Generation and Selection

The main body of work regarding the application of Information Theory to
Software Testing focuses on the development of information-theoretic meas-
ures to prioritise between test cases, to generate test cases, to determine how
many test cases are needed for testing and to guide the test case application
process.

Regarding research in the prioritisation of test cases, there is work dealing
with Kolmogorov complexity to define a measure (Normalized Compression
Distance) to prioritise between two test cases based on their diversity [81]
and in the use of such measure to devise another one (Test Set Diameter)
to determine the diversity of sets of test cases [80]. There is also work in
using conditional entropy for profile reduction for test case selection [167];
in fuzzy entropy-based multi-faceted measurement frameworks for test cases
classification and fitness evaluation [157]; in comparing information-theoretic
measures as a guide to select test cases from a pool of test cases [110]; in de-
fining distances based on entropy to measure the diversity of a test set [239];
and in using Rough Set Theory-Similarity Relation to reduce the size of the
test cases and Conditional Entropy-Based Similarity Measure to obtain a
minimum subset of requirements for minimising test cases and requirement
attributes of a testing process [196]. There is also work in the use of In-
formation Theory to select test cases based on the amount of information
gained (or the reduction of the uncertainty) after the application of a test
case [93, 92, 265, 275]. Finally, an interesting research line introduced the
Fault Localisation Prioritisation problem, which combines fault prioritisa-
tion and fault localisation, and proposed a Fault Localisation Prioritisation
technique that uses the entropy of the structural elements executed by a test
suite to order the test cases that are going to be executed [268].

Regarding the generation of test cases, there are multiple proposals in the
literature: use of conditional entropy to generate a heuristic for sequencing
a test case [207]; the generation of an information-theoretic tool for auto-
matic test case sequencing and testability analysis of complex, hierarchically-
described modular systems [208]; and the use of entropy as the fitness func-
tion for a search based test suite generation focused on minimising the un-
certainty of the diagnostic ranking of candidate fault locations [40]. Addi-
tionally, there is a body of work focused on the use of TREE (a bivariate
estimation of a distribution algorithm based on an adaptation of the Com-
bining Optimizers with Mutual Information Trees algorithm [210]), which is
based on mutual information, for either evolutionary testing [225], the auto-
matic generation of test suites (combined with scatter search) [226], or the
generation of test cases for object oriented programs (specifically, for contain-
ers) [224]. Finally, some of the applications where the generation of test cases
using Information Theory has been applied include the validation of machine
learning-based systems [250], the improvement of the quality of web service

28 Chapter 3. Information Theory Background

composition test cases through the search of paths that lead to the greatest
probability of service combination failure (using Cross-Entropy) [242], and
the automatically generation of software test cases based on user interaction
data (using the Kullback-Leibler “distance”) [203].

Regarding the search for a limit in the number of required test cases,
the literature provides little research. We can mention the use of Shannon’s
source coding theorem and binary entropy to set the lower bound on the
number of test cases in an optimal test plan for a system [261] and the use of
Shannon’s source coding theorem to detect the lower bound of the order of
the number of test cases required to perform group testing over a system [31].

Finally, regarding the guidance of the test case application process, there
is some work around the ideas of measuring the difficulty (for a computer) to
generate test cases based on a Markov model of the SUT [82] and of measuring
the robustness of different test set categories through the comparison of the
possible compression of the generated error messages (using Kolmogorov
complexity) [217].

3.2.4 Software Quality

Assessing the quality of software using Information Theory is another of the
main bodies of work in the intersection between Information Theory and
Software Testing. We can find from direct measures of the quality of a soft-
ware in an abstract sense to more concrete measures of the maintainability
or reliability of a system.

In this line of work, the research focused on devising abstract software
quality measures include: the use of entropy to measure the quality of a sys-
tem’s design [191]; the use of statistical testing, based on usage models, to
test and evaluate software intensive systems, using source entropy to meas-
ure how many test cases are needed to obtain a sample path representative
of usage as defined by the model, and using trajectory entropy to measure
the complexity of the specification [215]; the use of entropy to quantify the
uncertainty of the operational profile, uncertainty of the overall system re-
liability, and component uncertainties [94]; devise the Concept Coherence
Metric (based on Mutual Information) to measure the quality of software
modularisation [230]; the use of Kolmogorov Complexity to measure the in-
formation shared between two artefacts, to quantify the software’s evolution
in terms of quantified change, that is, lack of similarity [16]; and the use of
entropy as a formal approach to software measurement [163]. There is also
work in the characterisation of software structures and systems as either
uncertainty products, where the design process consists in reducing such un-
certainty [66], or as probability distributions, with the goal of finding the
probability distribution that yields the best probability distribution for a
particular object [34].

3.2. State-of-the-Art 29

Research focused on devising measures for maintainability and/or reli-
ability of a system include: the use of relative entropy to combine the initial
assessments of the software development manager with past development
data for predicting software reliability [36]; the use of the Maximum-Entropy
Principle to quantify the uncertainties (of the parameters) in the software
reliability modelling of a single software component with correlated para-
meters and in a large system with numerous components [61]; devise some
advanced parametric models for assessment and prediction of software reli-
ability (based on statistics of bugs at the initial stage of testing) and the use
of Cross-Entropy Global Optimisation Methods to support the optimisation
of such complex models [29]; rank Software Reliability Growth Models (for
assessing the reliability of the SUT) using a weighted entropy-distance based
approach [103]; and the use of the concept of complexity based on entropies
to estimate the maintainability of a system [274].

Finally, there is a body of work using Akaike Information Criterion (based
on Information Theory). Specifically, it is used to select the best model for a
system in order to predict the number of remaining errors [152]; to evaluate
the validity of the software reliability model obtained through the mix of
different ones using the Expectation-Maximisation principle [202]; to prove
the efficiency of a proposal of multi-factor software reliability model based on
logistic regression [200]; and to evaluate the logistic regression-based software
reliability growth models generated to quantify the effectiveness of testing
efforts on software fault detection [201].

3.2.5 Failed Error Propagation

The last body of work to consider is the use of Information Theory to es-
timate or detect Failed Error Propagation. This body of work was small at
the start of the thesis, but since then it has attracted some attention from
researchers. Originally, there were two proposals to measure the likelihood
of having FEP in a SUT: the use of Squeeziness [56] and the use of condi-
tional entropy [13]. Squeeziness has received more attention, both in this
thesis [129, 132, 134] and outside of it, with the normalisation of Squeezi-
ness to allow for the comparison of the likelihood of FEP from two SUTs with
different input domains [57].

Chapter 4

Artificial Intelligence
Background

People worry that computers
will get too smart

and take over the world,
but the real problem is that

they’re too stupid
and they’ve already

taken over the world.

Pedro Domingos

Artificial Intelligence is the algorithmic toolbox that will be used in this
thesis. This chapter includes a brief overview of the field in Section 4.1,
with a brief explanation of the main concepts of the field, and in Section 4.2
presents the state-of-the-art in the field for the problems addressed in this
thesis.

4.1 General Overview of the Field

Artificial Intelligence is a broad field and highly researched since the origin
of computers. Its main goal is to solve complex problems in an intelligent
and automatic way. Its applications range from the use of statistical tools
or expert systems to solve specific decision problems, to the use of databases
and ontologies to store and depict knowledge. Given the broad nature of
this field, this overview is going to be limited to the subfields that provided
the tools used along this thesis. In particular, the overview is going to focus
on Machine Learning and Evolutionary Algorithms.

Machine Learning is a field strongly supported by statistical methods for
the discovery of patterns that solve complex problems, through the iterative

31

32 Chapter 4. Artificial Intelligence Background

learning over a bunch of data. Machine Learning algorithms can be divided,
depending on the learning framework they use, into supervised learning,
semi-supervised learning, reinforcement learning, and unsupervised learning.
The different frameworks operate as follows: they start with a learning phase
where the algorithm takes data from the training set and tries to return the
correct label for such data. In the supervised learning case the data has the
expected label and the algorithm only has to learn based on how far from the
expected label it felt; in the semi-supervised learning case only part of the
data has the expected label (so the previous framework applies) and then
the rest of the data should be carefully used to improve the performance of
the algorithm; in the reinforcement learning case we do not have any labelled
data but we have a formula or reward function that would guide the learning;
and finally in the unsupervised learning we do not have any kind of guide
about what is the correct label of the data and we rely in mathematical
tools to cluster the data. After the training phase, the frameworks that have
labelled data have a testing phase where new, previously unseen, but labelled
data is feed to the algorithm to compute how well the algorithm has learned
the desired model instead of the individual training data.

Depending on the task, this labelled data would represent values or
classes. In a classification task, the labels are the classes in which the data is
classified, and the algorithm learns to differentiate data from different classes
in order to correctly classify new data. In a regression task, the labels are
real values that represent the regression value of the data, and the algorithm
learns to obtain the regression value of new data. As these are two totally
different kinds of tasks, there are few algorithms that can be tweak to solve
both of them, although any regression can be transformed into a classific-
ation using a sigmoid function. In fact, most algorithms usually solve only
one kind of tasks and, therefore, we have a subdivision of all the learning
frameworks into classification and regression methods.

Inside supervised learning, there are a myriad of algorithms and meth-
ods for classification and for regression. First, there are simple mathematical
models like linear regression (where we use straight lines to either model the
data or to divide the data into classes) and its derivatives (polynomial re-
gression, Lasso regression, Ridge regression, etc...), and logistic regression
(where we model the probability of a certain event happening given the in-
puts). Next, there are tree inspired methods like decision trees (where a
tree is generated with classes as leaves and probabilities in its edges and at
each level a different value of the input determines which branch it would
follow) and random forest (where multiple classification methods are used
to “democratically” determine the class of a new data). Finally, there are
matrix based methods like Artificial Neural Networks (ANNs) (where per-
ceptrons are used to try to simulate the brain behaviour) and Support Vector
Machines (SVMs) (where kernels are used to non-linearly classify between

4.1. General Overview of the Field 33

different classes, trying to maximise the spatial gap between them to improve
generality).

ANNs [143, 223] are one of the most successful Machine Learning tech-
niques, having recently develop its own field called Deep Learning. The basic
concept behind ANNs is that using perceptrons (a compressed linear classi-
fier unit that makes the weighted sum of the received values) and activation
functions (a non-linear function) and stacking them into layers would allow
for a better fit of the training data, specially data with many dimensions.
Depending on the number of layers we can talk about shallow ANNs (with
few layers) and deep ANNs (with multiple layers). Finally, the learning
algorithm used by the ANNs is back-propagation, a gradient-descent step al-
gorithm that updates the perceptrons weights in an appropriate and efficient
manner.

Regarding unsupervised learning, there are several methods that can be
further divided between parametric and non-parametric. Parametric meth-
ods assume that the data has been generated from a mixture of probability
distributions of a given shape (usually normal distributions) and try to es-
timate the parameters of such distributions using different measures. Two
of these methods are the maximum-likelihood, where the mixture of distri-
butions that maximise the likelihood function is computed, and expectation
maximisation, where the mixture of distributions that maximise the expect-
ation of the likelihood function is computed. Non-parametric methods do
not assume anything about the data and try to gather the points based on
a similarity measure. Most of these methods are clustering methods, where
the data points are gathered in classes. One of such methods is k-means,
where the most common class between the k nearest neighbours is the one
selected for each point.

Evolutionary Computation is a field composed by iterative optimisation
methods where a pool of randomly generated solutions (individuals) is con-
sidered a population and, in each iteration, that population evolves through
different “natural selection” methods that improve the most promising solu-
tions and discard the less promising ones. They are also called bioinspired
algorithms because they are usually inspired in the evolution or behaviour of
biological populations. The main three algorithms of this field are Genetic
Algorithms (GAs), Particle Swarm Optimisation (PSO) and Ant Colony Op-
timisation (ACO).

A Genetic Algorithm (GA) [89, 244] consists in the evolution of a pop-
ulation through the crossover of its individuals and their random mutation.
The idea is that the crossover of individuals will exploit the best solutions
already found, while random mutations will explore the search space looking
for new elements that could improve the existing solutions. Additionally to
these two fundamental operations, GAs also need to choose a proper rep-
resentation for its solutions. In the basic case, a solution will be an array

34 Chapter 4. Artificial Intelligence Background

of numbers, but that is not always enough to solve a problem. Some al-
ternatives include representing the solutions as trees (and hence the Genetic
Programming Algorithms [156]) and limiting the structure of such trees us-
ing a grammar (and hence the Grammar-Guided Genetic Programming Al-
gorithms [59, 171, 180]).

A Particle Swarm Optimisation (PSO) [150, 254] algorithm consists in
the evolution of a swarm of points by moving them towards the most prom-
ising solution, with a certain velocity and momentum. This velocity and
momentum will help to avoid local optima allowing for a more extensive ex-
ploration of the search space, while the direction of the movement towards
the most promising solution allows for the exploitation of the obtained know-
ledge. Additionally, this movement is performed in two levels: individual and
global. In the individual level, the individual moves towards the best solu-
tion that it has found, while in the global level the individual moves towards
the best solution found by the swarm. The sum of these two movements will
be the total movement of the individual in the current iteration. This also
helps to avoid local optima.

An Ant Colony Optimisation (ACO) [71, 72, 73] algorithm consists in
a swarm of ants that explore a graph following random paths and leaving
behind pheromones. Such pheromones will be stronger if the path was a
successful solution and closer to the optimal one. This way, in successive it-
erations the ants will give more probability of being chosen to the paths with
stronger pheromones, allowing for a balance between exploring the search
space and exploiting the acquired knowledge.

4.2 State-of-the-Art

As explained before, this state-of-the-art will be limited to applications of
Machine Learning and Evolutionary Computation to Software Testing.

4.2.1 Machine Learning for Software Testing

According to a recent survey [74], we can divide the applications of Machine
Learning to Software Testing into the following topics: test case design,
the oracle problem, test case evaluation, test case prioritisation, test case
refinement, test cost estimation, and Mutation Testing automation. The
ones that are more relevant for this thesis are test case design, test cost
estimation, and Mutation Testing automation.

4.2.1.1 Test Case Design

There has been a lot of interest in applying Machine Learning to auto-
mate test case generation [234]. The research performed in this line in-

4.2. State-of-the-Art 35

cluded a test case generation approach based on the inductive learning of
programs from finite sets of input/output pairs [26]; a test case generation
approach for Android applications for which there is no existing model of the
GUI [51, 173, 221], where Machine Learning was used to learn a model of
the application; a test case generation approach for web-applications [228],
where Machine Learning is used to turn the user session data into a model of
the web application; and a test case generation approach through test suite
reduction using k-means clustering [50].

4.2.1.2 Test Cost Estimation

As Software Testing accounts for a significant proportion of the total cost
of software development, testers have managed to effectively test software
systems within the allotted time and budget. Some Machine Learning ap-
proaches have been proposed to help testers to better estimate what can
affect the cost of Software Testing efforts. For example, some research has
been done to estimate the effort of executing test suites [75, 273]. Other
research has focused into determining which attributes that influenced test-
ing time were the most important ones to predict testing time [46]. Finally,
some research focused into predicting test case code size for object-oriented
software in terms of test case lines of code [18], which is a key indicator of
testing effort.

4.2.1.3 Mutation Testing Automation

Mutation Testing is a costly and time-consuming technique for which auto-
mation did not ease enough its resource needs. Therefore, some research
effort has focused into overcoming these hurdles by using Machine Learning
algorithms to expedite some steps of the process. The most common step re-
searchers tried to make it faster was mutant execution, with approaches that
either run a subset of randomly selected mutants and compute the result for
the non-selected ones based on their similarity to the executed ones [246],
approaches that predict the effectiveness of a given test suite based on a com-
bination of source code and test suite metrics [144], and, finally, approaches
that predict whether a test suite will kill a mutant based on a previously
generated model based on features related to mutants and test cases [270].
There is also another line of research focusing on selecting the most mean-
ingful mutants for the mutant execution phase, including the development
of a Machine Learning approach named FaRM [47] and the development of
algorithms to predict where defects may appear [148, 182].

36 Chapter 4. Artificial Intelligence Background

4.2.2 Evolutionary Algorithms

The application of Evolutionary Algorithms to Software Testing can be di-
vided [172] into Coverage Testing, test case generation, testing program dy-
namics, black box testing and software quality categories. For this thesis,
the relevant categories are Coverage Testing and test case generation.

4.2.2.1 Coverage Testing

Coverage Testing focuses on executing different elements of an SUT, like
traces, states, transitions, statements, etc. For that end, it is necessary
to generate test cases and test suites that execute such elements and Evol-
utionary Algorithms attracted attention given their evolutive nature. For
example, some researchers focused on studying test case coverage through
the use of a hybrid version of a Genetic Algorithm and hill-climbing local
search [241], others on condition/decision coverage proposing tools like the
genetic algorithm data generation tool [186, 185], others on statement and
branch coverage, using a control-dependence graph to guide optimisation [206],
and, finally, others on detecting the potentially infeasible program paths [37].

4.2.2.2 Test Case Generation

The use of Evolutionary Algorithms for test case generation is a widely
researched application of Evolutionary Algorithms [27, 100, 233, 260]. Some
researchers use a Genetic Algorithm to estimate the parameters of a so-called
“hyper-geometric distribution software reliability growth model”, where the
increase of the number of errors is observed as a function of time [187].
Others use Evolutionary Algorithms to automatically generate test cases for
testing a chosen subpath of the SUT [161, 168], for testing FSMs [24], for
testing Extended FSMs [165, 247, 248, 249], for testing temporal systems [67,
68, 197], for testing IoT with recorded and generated events [104], for testing
Event-B models [70], for passive testing [12], for Mutation Testing [64], and
for search-based testing [107, 164]. Finally, there is also research in using
Evolutionary Algorithms for unit test case generation [41], for state-based
test case generation [164], and for coverage-based test case generation [227].

Part III

Integrative Discussion

This part presents the thesis integrative discussion. This discussion aims
to briefly explain the achievements of the research presented in this thesis,
explaining the aim and goal of it, the theoretical development performed on
it, and the experimental results that corroborate such theory. Additionally,
this discussion will include a brief resume of the debates raised by the results
of such research.

This discussion is divided into four chapters, one for each problem that
is addressed in this thesis.

Chapter 5

The Detection of Failed Error
Propagation

An error does not become truth
by reason of multiplied propagation,

nor does truth become error
because nobody sees it.

Mahatma Gandhi

Addressing the detection of Failed Error Propagation (FEP) is a research
line focused on the quality of the generated programs. This problem tackles
the quality of an SUT in the sense of how easy it is for a fault to be masked
in such SUT in a way that a tester could easily miss it. This problem is
fundamental in Software Testing, as the quality of any solution that finds
faults is hampered by the presence of this phenomenon.

In Section 5.1 we present the theoretical background common to this
research line. Then, in Section 5.2 we adapt Squeeziness to work in a black-
box scenario, in Section 5.3 we extend Squeeziness to use a new notion of
entropy (Rényi’s entropy), and in Section 5.4 we extend Squeeziness to be
used in a non-deterministic scenario. Finally, in Section 5.5 we list the papers
related to the work presented in this chapter.

5.1 Theoretical Background

An information-theoretic measure was proposed to address the FEP problem:
Squeeziness [56]. This measure considered the entropy of the inputs of the
program and the entropy of the outputs of the program and measured the
difference in entropy or entropy loss. Then, they used this entropy loss as
the proxy to assess how likely was that the SUT suffered from cases of FEP,
with the idea that FEP appears due to a loss of information in the system.

39

40 Chapter 5. The Detection of Failed Error Propagation

In an empirical study [13] where 30 programs and more than 7 · 106 test
cases were used, the authors concluded that the Spearman rank correlation
of Squeeziness with FEP is close to 0.95.

In order to introduce the concept of Squeeziness, first it is important to
remember the concept of entropy of a set.

Definition 8. Let S be a set and ξS be a random variable over S. We denote
by σξS the probability distribution induced by ξS. The entropy of the random
variable ξS, denoted by H(ξS), is defined as:

H(ξS) = −
∑
s∈S

σξS (s) · log2(σξS (s))

Using this entropy, Squeeziness is easily defined as the difference between
the entropy of two sets. Specifically, the input and output sets of a total
function.

Definition 9. Let f : S −→ Θ be a total function and consider two random
variables ξS and ξΘ ranging, respectively, over S and Θ. The Squeeziness of
f , denoted by Sq(f), is defined as the loss of information after applying f to
S, that is, H(ξS)−H(ξΘ).

This definition presents Squeeziness as the amount of information lost
between the sets S and Θ through the function f . However, in our case we
are working with SUTs, not functions. Moreover, Squeeziness was defined for
a white-box scenario in which we could access the code during runtime and
this is easily transform into a function. Luckily, in a black-box scenario the
SUTs can be represented as Finite State Machines (FSMs) and FSMs can be
seen as functions that transform sequences of input actions into sequences
of output actions.

Definition 10. A Finite State Machine (FSM) is represented by a tuple M =
(Q, qin, I, O, T) in which Q is a finite set of states, qin ∈ Q is the initial
state, I is a finite set of input actions, O is a finite set of output actions,
and T ⊆ Q × (I × O) × Q is the transition relation. The meaning of a
transition (q, (i, o), q′) ∈ T , also denoted by (q, i/o, q′), is that if M receives
input action i when in state q then it can move to state q′ and produce output
action o.

We say that M is deterministic if for all q ∈ Q and i ∈ I there exists at
most one pair (q′, o) ∈ Q × O such that (q, i/o, q′) ∈ T ; otherwise, we say
that M is non-deterministic.

Although the previous definition of Squeeziness could be applied to the
function induced by an FSM, this approach is not practical in most cases.
The size of the SUTs usually limits the applicability of this formula and, for
that end, a limited version was defined. First, we present some auxiliary
concepts.

5.1. Theoretical Background 41

Definition 11. Let M = (Q, qin, I, O, T) be an FSM. We use the following
notation:

1. Let σ = (i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence of input/output
actions and q be a state. We say that M can perform σ from q if
there exist states q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have
(qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this by either q σ

==⇒ qk
or q σ

==⇒. If q = qin then we say that σ is a trace of M .

2. Let s = i1 . . . ik ∈ I∗ be a sequence of input actions and q be a state.
We define outM (q)s as the set

{o1 . . . ok ∈ O∗|q
(i1,o1)...(ik,ok)

==========⇒}

Note that if M is deterministic then this set is either empty or a
singleton.

3. Let q ∈ Q be a state. We define domM (q) as the set

{s ∈ I∗|outM (q)s 6= ∅}

If q = qin then we simply write domM . Similarly, we define imageM (q)
as the set

{o1 . . . ok ∈ O∗|∃i1 . . . ik ∈ I∗ : q
(i1,o1)...(ik,ok)

==========⇒}

If q = qin then we simply write imageM . We denote by domM,k the set
domM ∩ Ik. Similarly, We denote by imageM,k the set imageM ∩Ok.

4. We define fM : domM −→ P(imageM) as the function such that for
all s ∈ domM we have fM (s) = {t ∈ O∗|t ∈ outM (qin)s}. Note that
if M is deterministic then this set is a singleton and we could define
fM : domM −→ imageM .

5. Let k > 0. We define fM,k to be the function fM ∩ (Ik×Ok), where fM
denotes the associated set of pairs. Let t ∈ imageM . We define f−1

M (t)
as {s ∈ I∗|t ∈ fM (s)}.

Now we can define the limited version of Squeeziness that will be used
along this work [129].

Definition 12. Let M = (Q, qin, I, O, T) be an FSM and k > 0. Let us
consider two random variables ξdomM,k and ξimageM,k ranging, respectively,
over the domain and image of fM,k. The Squeeziness of M at length k is
defined as

Sqk(M) = H(ξdomM,k)−H(ξimageM,k)

42 Chapter 5. The Detection of Failed Error Propagation

Squeeziness for FSMs has some unexpected properties. For example, it
is not monotonic with respect to k. That is, there exist FSMs where longer
sequences can loss less information than shorter ones. Another interesting
property is that bijective functions have a null Squeeziness.

Lemma 1. Let M = (Q, qin, I, O, T) be an FSM and k > 0. If fM,k is
bijective then Sqk(M) = 0.

Additionally, this limited version of Squeeziness gives us a potential to
inform the choice of test cases. For example, we can use the Squeeziness
values to determine, for a given test case length, if the likelihood of having
FEP (once all the possible inputs of such length have been tested) is greater
than 0.

5.2 The Deterministic Case

Focusing now in the deterministic case, some interesting properties of Squeez-
iness arise. Among them, a fundamental one states that given and FSM M
and k > 0, the probability distribution of the random variable ξimageM,k is
completely determined by the probability distribution of the random vari-
able ξdomM,k . This is based on the fact that for each element t ∈ imageM,k it
is true that

σξimageM,k (t) =
∑

s∈f−1
M (t)

σξdomM,k (s) (5.1)

Using this property and the entropy partition property [60], we can re-
write Squeeziness in terms of the inverse images partition of the input space,
that is, using only the probability distribution on inputs given by ξdomM,k .

Corollary 1. LetM = (Q, qin, I, O, T) be an FSM and k > 0. Let us consider
a random variable ξdomM,k ranging over the domain of fM,k. We have that

Sqk(M) = −
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

σξdomM,k (s)

 · RM (t) (5.2)

where the term RM (t) is equal to ∑
s∈f−1

M (t)

σξdomM,k (s)

σξdomM,k (f−1
M (t))

· log2

(
σξdomM,k (s)

σξdomM,k (f−1
M (t))

) (5.3)

This new formulation of Squeeziness is totally parameterised by the dis-
tribution over the inputs of the function. The optimal situation would be to
know which distribution is that one (for example, using user behaviour data).

5.2. The Deterministic Case 43

However, if we do not know the distribution then we have to set it. Between
all the possible distributions, there are two that arise interesting values: the
uniform distribution over the inputs (that maximises entropy [60]) and the
distribution uniformly distributed in the largest inverse image of an element
of the outputs and zero elsewhere (that maximises entropy loss [56]).

5.2.1 Maximum Entropy Principle

Using a uniform distribution over the inputs maximises the entropy value of
the set of inputs. In this case, the weight of a single element of σξdomM,k is

1
|domM,k| . Thus, the weight of the inverse image of an output t ∈ imageM,k is

equal to |f
−1
M (t)|
|domM,k| . Finally, Squeeziness under this assumption is equal to

Sqk(M)= −
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

1

|domM,k|


·

 ∑
s∈f−1

M (t)

1
|domM,k|
|f−1
M (t)|
|domM,k|

· log2

 1
|domM,k|
|f−1
M (t)|
|domM,k|




=
1

|domM,k|
·
∑

t∈imageM,k

|f−1
M (t)| · log2(|f−1

M (t)|)

5.2.2 Maximum Loss of Information

Using the distribution that is uniformly distributed in the largest inverse
image of an element of the outputs and zero elsewhere maximises the loss
of information, that is, it gets the maximum possible value for Squeeziness.
This case is considered the worst case scenario, as we are assuming that we
are losing as much information as possible. In this case, we have to consider
t′ ∈ imageM,k such that for all t ∈ imageM,k we have that |f−1

M (t′)| ≥
|f−1
M (t)|. Then,

σξdomM,k (s) =


1

|f−1
M (t′)| if s ∈ f−1

M (t′)

0 otherwise

44 Chapter 5. The Detection of Failed Error Propagation

Using this probability distribution, Squeeziness is defined as follows:

Sqk(M)= −

 ∑
s∈f−1

M (t′)

1

|f−1
M (t′)|


·

 ∑
s∈f−1

M (t′)

1

|f−1
M (t′)|

· log2

(
1

|f−1
M (t′)|

)
= log2(|f−1

M (t′)|)

It is important to remark that this distribution maximises Squeeziness be-
cause for any other possible distribution ξdomM,k we have Sqk(M) ≤ log2(|f−1

M (t′)|).
This result is an immediate consequence of the following result [56].

Lemma 2. Let us consider 2·n non-negative real numbers a1, . . . , an, p1, . . . , pn ∈
IR+. If for all 1 ≤ i ≤ n we have that a1 ≥ ai and

∑
i pi ≤ 1, then∑

i(pi · ai) ≤ a1.

To finalise with the deterministic case, it is important to mention that
we used two types of experiments to assess the suitability of this notion of
Squeeziness as a proxy for the likelihood of having cases of FEP, in a black-
box scenario. Specifically, we performed simulated experiments in the same
fashion as those presented in [56], and also we performed real experiments
with automatically generated FSMs. In both cases, we observed a strong
correlation between the likelihood of FEP and Squeeziness. Moreover, in the
experiments with FSMs we observed a slight improvement when increased the
number of states.

5.3 The Generic Deterministic Case

One limitation of Squeeziness is that it was defined using Shannon’s en-
tropy [237]. However, there are many alternative notions to define what is
intended as entropy. Rényi’s entropy [219] is not only one of such alternative
notions, but it also provides an infinite family of entropies due to the para-
meterisation of its definition by a positive real value α. Moreover, Rényi’s
entropy includes Shannon’s entropy (as well as other notions appearing in
the literature) as one of its notions, specifically, the notion corresponding to
α = 1.

Definition 13. Let S be a set and ξS be a random variable over S. Let
α ∈ IR+\{1}. The Rényi’s entropy of the random variable ξS with respect to
α, denoted by Hα(ξS), is defined as:

Hα(ξS) =
1

1− α
· log2

(∑
s∈S

σξS (s)α

)

5.3. The Generic Deterministic Case 45

It is well-known that when α tends to 1, Rényi’s entropy becomes Shan-
non’s entropy, that is,

lim
α→1
Hα(ξS) = H(ξS) = −

∑
s∈S

σξS (s) · log2(σξS (s))

It is easy to expand the notion of Squeeziness to take into account this
new notion of entropy [132].

Definition 14. Let S and Θ be sets and f : S −→ Θ be a total function.
Let us consider two random variables ξS and ξΘ ranging, respectively, over S
and Θ, and α ∈ IR+\{1}. Rényi’s Squeeziness of f with respect to α, denoted
by Sqα(f), is defined as the loss of information after applying f to S taking
into account α, that is, Hα(ξS)−Hα(ξΘ).

Now, we can also define the limited version of Rényi’s Squeeziness of an
FSM in the same fashion than in Definition 12

Definition 15. Let M = (Q, qin, I, O, T) be an FSM and k > 0. Let us
consider two random variables ξdomM,k and ξimageM,k ranging, respectively,
over the domain and image of fM,k. Let α ∈ IR+\{1}. Rényi’s Squeeziness
of M at length k with respect to α is defined as

Sqα,k(M) = Hα(ξdomM,k)−Hα(ξimageM,k)

Using again the total definition of the probability distribution over the
outputs by the one over the inputs presented in Equation 5.1, we can define
Rényi’s Squeeziness in the following way

Lemma 3. Let M = (Q, qin, I, O, T) be an FSM, k > 0 and α ∈ IR+\{1}.
Let us consider a random variable ξdomM,k ranging over the domain of fM,k.
We have that

Sqα,k(M) =
1

1− α
· log2



∑
s∈domM,k

(
σξdomM,k (s)

)α
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

σξdomM,k (s)


α


If α tends to 1 then we obtain Shannon’s entropy [219] and we have

Sq1,k(M) = −
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

σξdomM,k (s)

 · RM (t)

46 Chapter 5. The Detection of Failed Error Propagation

where the term RM (t) is equal to∑
s∈f−1

M (t)

σξdomM,k (s)

σξdomM,k (f−1
M (t))

· log2

(
σξdomM,k (s)

σξdomM,k (f−1
M (t))

)

If α tends to ∞ then we obtain min-entropy [219] (that is, H∞(X) =
− log2(maxi pi)) and we have

Sq∞,k(M)= log2


max

t∈imageM,k

∑
s∈f−1

M (t)

σξdomM,k (s)

max
s∈domM,k

σξdomM,k (s)


This definition of Rényi’s Squeeziness keeps some of the interesting prop-

erties of the original Squeeziness definition. For example, the nullification of
the value when the function is bijective remains.

Lemma 4. Let M = (Q, qin, I, O, T) be an FSM and k > 0. If fM,k is
bijective then Sqα,k(M) = 0.

Similar to the original formulation, this extension of Squeeziness is totally
parameterised by the distribution over the inputs of the function. Therefore,
we present the cases for maximum entropy and maximum information loss.

5.3.1 Maximum Entropy Principle

The distribution that maximises entropy is the uniform distribution over
the inputs. Then, under this distribution, the weight of a single element of

domM,k is
1

|domM,k|
and the weight of the inverse image of an output t ∈

imageM,k is equal to
|f−1
M (t)|
|domM,k|

. Finally, the formula for Rényi’s Squeeziness

becomes:

Sqα,k(M)=
1

1− α
· log2

 |domM,k|∑
t∈imageM,k

(
|f−1
M (t)|

)α


As usual, we have two special cases: α tending to 1 and to∞. If α tends
to 1, then we are using Shannon’s entropy and we are in the case of the
previous section. If α tends to ∞, then we are using min-entropy and we
obtain the following formulation:

Sq∞,k(M)= log2

(
max

t∈imageM,k
|f−1
M (t)|

)

5.3. The Generic Deterministic Case 47

5.3.2 Maximum Loss of Information

The distribution that maximises information loss (and therefore, that con-
siders the worst case scenario) is the one uniformly distributed over the
largest inverse image of an element of the outputs and zero elsewhere. In
this case we have to consider t′ ∈ imageM,k such that for all t ∈ imageM,k

we have that |f−1
M (t′)| ≥ |f−1

M (t)|. Then,

σξdomM,k (s) =


1

|f−1
M (t′)| if s ∈ f−1

M (t′)

0 otherwise

Using this probability distribution, Rényi’s Squeeziness is defined as fol-
lows:

Sqα,k(M)= log2

(
|f−1
M (t′)|

)
In this case, unlike the previous ones, Squeeziness does not depend on

the value of α. In particular, the two special cases (α tending to 1 and α
tending to ∞) have the same formulation.

To finalise with the generic deterministic case, it is important to note that
we explored the effectiveness of this new notion of Squeeziness with multiple
experiments. We computed the correlations between Rényi’s Squeeziness and
the likelihood of having cases of FEP for a set of randomly generated FSMs with
different number of states. Moreover, we computed correlation for different
values of α, specifically, we computed the extreme cases (α ∈ {0, 1,∞}) and
uniformly distributed values in the ranges [0, 1], [1, 10] and [10, 100]. All the
correlations fall in the range 0.5 − 0.9, with the best correlations achieved
for values of α ∈ (2, 3). Moreover, we also observed a slight improvement
when increasing the number of states of the generated FSMs while keeping
the value of α constant.

Additionally, after observing that the best α value for different FSMs was
different, we considered the development of a tool to determine which α value
is the one that will correlate more with the likelihood of FEP for a specific
FSM. This tool should receive a set of parameters from the FSM (for example,
the number of states, the input alphabet size, etc...) or an FSM in a valid
format and return the best α to assess the likelihood of FEP, or even Rényi’s
Squeeziness of the FSM for such α. To that end, we created a tool that used
an Artificial Neural Network (ANN) to perform the selection of α for the
given FSM [134].

This is one of the cases where the union of Information Theory and
Artificial Intelligence helps to solve a problem. In this case, through the use
of an ANN we are improving the use of Rényi’s Squeeziness to assess the
likelihood of FEP for a given FSM. Moreover, we are facilitating its use to a
wide range of users that otherwise would not use Rényi’s Squeeziness due to
the complexities associated to select a proper value for α.

48 Chapter 5. The Detection of Failed Error Propagation

5.4 The Non-Deterministic Case

Another limitation of Squeeziness was that it was defined to deal only with
deterministic systems. This limits its applicability as using it for systems
with non-determinism returns nefarious results. Therefore, an extension of
Squeeziness to deal with non-deterministic systems was much needed.

In order to define this extension, it is important to analyse the new scen-
ario: up until now we considered that FEP was produced due to a loss of in-
formation in the system. However, in the non-deterministic case an increase
of information (produced by the inputs leading to multiple outputs) also
generates FEP. Specifically, the fact that multiple outputs can be produced
by the same input produces that a fault can be masked as one of the valid
outputs. Also, it is important to notice that the Squeeziness formulation
previously presented (in Equation 5.2) is simplified assuming a determin-
istic situation. Therefore, the definition of an appropriate non-deterministic
version of Squeeziness needs to derive again the formula from Definition 9.
Using the following result [129]

H(ξimageM,k) +H(ξdomM,k |ξimageM,k)

‖

H(ξdomM,k) +H(ξimageM,k |ξdomM,k)

we can rewrite Squeeziness as

Sqk(M) = H(ξdomM,k |ξimageM,k)−H(ξimageM,k |ξdomM,k)

and using some auxiliary results [129] and the total definition of the prob-
ability distribution over the outputs by the one over the inputs presented in
Equation 5.1 we can finally rewrite Squeeziness as

Sqk(M) = −
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

σξdomM,k (s)

· RM (t) + SM (5.4)

where the term RM (t) is equal to

∑
s∈f−1

M (t)

σξdomM,k (s)

σξdomM,k (f−1
M (t))

· log2

(
σξdomM,k (s)

σξdomM,k (f−1
M (t))

)
(5.5)

and the term SM is given in Figure 5.1.
The equivalent formulation of Squeeziness presented in Equation 5.2 was

possible due to the fact that SM is equal to 0 if the FSM is deterministic.
However, as we are in a non-deterministic scenario, SM 6= 0 and we have
to start from Equation 5.4. In that equation, the term SM accounts for

5.4. The Non-Deterministic Case 49

SM =
∑

s∈domM,k

σξdomM,k (s)·
∑

t∈fM (s)

∑
s∈f−1

M (t)

σξdomM,k (s)

∑
t∈fM (s)

∑
s∈f−1

M (t)

σξdomM,k (s)
·log2


∑

s∈f−1
M (t)

σξdomM,k (s)

∑
t∈fM (s)

∑
s∈f−1

M (t)

σξdomM,k (s)



S ′M =
∑

t∈imageM,k

σξimageM,k (t)·
∑

s∈f−1
M (t)

∑
t∈fM (s)

σξimageM,k (t)

∑
s∈f−1

M (t)

∑
t∈fM (s)

σξimageM,k (t)
·log2


∑

t∈fM (s)

σξimageM,k (t)

∑
s∈f−1

M (t)

∑
t∈fM (s)

σξimageM,k (t)


Figure 5.1: Definition of SM (top) and S ′M (bottom).

the increase of information introduced by non-determinism and, since it is
subtracted, it is reducing the total loss of information of the FSM.

This new formulation of Squeeziness measures the loss of information
produced by the FSM. However, in a non-deterministic scenario we also ob-
tain FEP from the increase of information generated by non-determinism.
Therefore, we need to measure such increment and the most natural way to
do this is to use an alternative Squeeziness.

Definition 16. Let M = (Q, qin, I, O, T) be an FSM and k > 0. Let us
consider two random variables ξdomM,k and ξimageM,k ranging, respectively,
over the domain and image of fM,k. The Alternative Squeeziness of M at
length k is defined as

AlSqk(M) = H(ξimageM,k)−H(ξdomM,k)

For this notion, we can also define an alternative definition of the prob-
abilities for inputs and outputs. Specifically, in the same fashion as Equa-
tion 5.1, we can set that the probabilities of the inputs of the FSM are totally
defined by the probabilities of their corresponding outputs, that is,

σξdomM,k (s) =
∑

t∈fM (s)

σξimageM,k (t) (5.6)

Using this fact, we can provide the following formulation for Alternative
Squeeziness.

Corollary 2. LetM = (Q, qin, I, O, T) be an FSM and k > 0. Let us consider

50 Chapter 5. The Detection of Failed Error Propagation

a random variable ξimageM,k ranging over the image of fM,k. We have that

AlSqk(M) = −
∑

s∈domM,k

 ∑
t∈fM (s)

σξimageM,k (t)

 · R′M (s) + S ′M (5.7)

where the term R′M (s) is equal to∑
t∈fM (s)

σξimageM,k (t)

σξimageM,k (fM (s))
· log2

(
σξimageM,k (t)

σξimageM,k (fM (s))

)
(5.8)

and the term S ′M is given in Figure 5.1.

Similarly to what happened with Equation 5.4, in this equation the term
S ′M accounts for the decrease of information introduced by determinism and,
as it is subtracted, it is reducing the total gain of information of the FSM.
Additionally, this factor is equal to 0 when each output is produced by only
one input, that is, when there is no possible loss of information.

Obviously, Squeeziness and Alternative Squeeziness are the opposite of
one another. Therefore, their addition is always equal to 0. However, there
is a trick that we can use to obtain a useful value. First, it is important
to note that the correcting factors (SM and S′M) are diminishing the effect
of the source of FEP that we are evaluating with each formula. Therefore,
a quick fix would be to eliminate such terms and work with the rest of
the formulas. This way, we are obtaining, on the one hand, the maximum
possible information loss due to determinism and, on the other hand, the
maximum possible information gain due to non-determinism.

However, this quick fix is not the only option. Other options are to use
the full Squeeziness formula (see Equation 5.4) or add, instead of subtract,
the correction factor (SM) in such formula. However, after some experiments,
we found that neither of these options obtained better solutions than to erase
the correction factors and add the remaining formulas. We think that this
difference is due to how the probability distributions are handled in each
option, but further research is needed. An extended discussion about this
concern can be found in [135]. Then, using these considerations, we defined
the notion of Non-Deterministic Squeeziness as follows.

Definition 17. Let M = (Q, qin, I, O, T) be an FSM and k > 0. Let us
consider two random variables ξdomM,k and ξimageM,k ranging, respectively,
over the domain and image of fM,k. We have that

NDSqk(M) =−
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

σξdomM,k (s)

 · RM (t)

−
∑

s∈domM,k

 ∑
t∈fM (s)

σξimageM,k (t)

 · R′M (s)

5.4. The Non-Deterministic Case 51

NDSqk(M) =−
∑

t∈imageM,k

 ∑
s∈f−1

M (t)

1

|domM,k|

 ·
 ∑
s∈f−1

M (t)

1
|domM,k|
|f−1
M (t)|
|domM,k|

· log2

 1
|domM,k|
|f−1
M (t)|
|domM,k|




−
∑

s∈domM,k

 ∑
t∈fM (s)

1

|imageM,k|

 ·
 ∑
t∈fM (s)

1
|imageM,k|
|fM (s)|
|imageM,k|

· log2

 1
|imageM,k|
|fM (s)|
|imageM,k|


=

1

|domM,k|
·
∑

t∈imageM,k

|f−1
M (t)| · log2(|f−1

M (t)|)+

+
1

|imageM,k|
·
∑

s∈domM,k

|fM (s)| · log2(|fM (s)|)

NDSqk(M) =−

 ∑
s∈f−1

M (t′)

1

|f−1
M (t′)|

 ·
 ∑
s∈f−1

M (t′)

1

|f−1
M (t′)|

· log2

(
1

|f−1
M (t′)|

)

−

 ∑
t∈fM (s′)

1

|fM (s′)|

 ·
 ∑
t∈fM (s′)

1

|fM (s′)|
· log2

(
1

|fM (s′)|

)
=log2(|f−1

M (t′)|) + log2(|fM (s′)|)

Figure 5.2: Definition of NDSqk(M) under maximum entropy (top) and under
maximum information balance (loss and gain) (bottom).

where the terms RM (t) and R′M (s) are given in Equations 5.5 and 5.8, re-
spectively.

Now, same as with previous cases, this formulation of Non-Deterministic
Squeeziness is parameterised by the distribution over the inputs. However,
unlike previous cases, it is also parameterised by the distribution over the
outputs. Therefore, in case we do not have the real distributions, it is ne-
cessary to set ones manually. Moreover, it is also necessary to decide if the
distribution of the outputs will be fixed by the one of the inputs (or viceversa)
or if we will set a different distribution for each set. Due to preliminary ex-
periments, we decided to set a different distribution for each inputs and
outputs, as this configuration gives the best results. Here, we present the
distributions that maximise entropy (for both inputs and outputs) and that
generate the maximum balance (maximum information loss and gain).

52 Chapter 5. The Detection of Failed Error Propagation

5.4.1 Maximum Entropy Principle

The maximisation of entropy is achieved by setting both distributions to
follow the uniform one. This way, the weight of a single element of σξdomM,k
would be 1

|domM,k| and of σξimageM,k would be 1
|imageM,k|

. Thus, the weight of

the inverse image of an output t ∈ imageM,k would be equal to |f
−1
M (t)|
|domM,k| and

the weight of the image of an input s ∈ domM,k would be equal to |fM (s)|
|imageM,k|

.
Taking into account these values, the Non-Deterministic Squeeziness for-

mula can be found in Figure 5.2 (top).

5.4.2 Maximum Information Balance (Loss and Gain)

In order to maximise information balance, it is necessary to set the distribu-
tion over the inputs to the one that is uniformly distributed over the largest
inverse image of an element of the outputs and zero elsewhere, and the one
over the outputs to the one that is uniformly distributed over the largest
image of an input and zero elsewhere.

Formally, consider t′ ∈ imageM,k such that for all t ∈ imageM,k we have
that |f−1

M (t′)| ≥ |f−1
M (t)|. Then,

σξdomM,k (s) =


1

|f−1
M (t′)| if s ∈ f−1

M (t′)

0 otherwise

Similarly, consider s′ ∈ domM,k such that for all s ∈ domM,k we have that
|fM (s′)| ≥ |fM (s)|. Then,

σξimageM,k (t) =


1

|fM (s′)| if t ∈ fM (s′)

0 otherwise

After using these probability distributions in the definition of Non-Deterministic
Squeeziness, the formulation can be found in Figure 5.2 (bottom).

Finally, it is important to mention that two types of experiments were
used to assess the suitability of this Non-Deterministic Squeeziness notion
as a proxy for the likelihood of having cases of FEP in a non-deterministic
system. Specifically, there was a set of simulated experiments, in the same
fashion as those presented in [56], and a set of experiments using FSMs ob-
tained from a benchmark. In both cases, there was a strong correlation
between the likelihood of FEP and Squeeziness, with only few cases with
not so strong correlation. After a careful analysis, it was possible to con-
clude that the source of those cases were FSMs with a high number of input
sequences and low potential non-determinism. This happens due to the log-
arithmic nature of the formula, but we do not consider it a big flaw, although

5.5. Associated Papers 53

further research is needed. An extended discussion about this concern can
be found in [135].

We also explored how Non-Deterministic Squeeziness compares to the
classical Squeeziness in non-deterministic systems and found that Non-Deterministic
Squeeziness clearly outperforms Squeeziness, with only a negligible increment
in computation time. Moreover, as Non-Deterministic Squeeziness is conser-
vative with respect to Squeeziness when facing deterministic systems, it can
also be applied to deterministic systems without effectiveness loss.

5.5 Associated Papers

• Alfredo Ibias, Robert M. Hierons and Manuel Núñez. Using
Squeeziness to test component-based systems defined as Finite State
Machines. Information and Software Technology 112, pages: 132-147.
([129])

• Alfredo Ibias and Manuel Núñez. Estimating fault masking using
Squeeziness based on Rényi’s entropy. 35th ACM/SIGAPP Symposium
on Applied Computing, SAC ’20, pages: 1936-1943, ACM. ([132])

• Alfredo Ibias and Manuel Núñez. SqSelect: Automatic assessment
of Failed Error Propagation in state-based systems. Expert Systems
With Applications 174, pages: 114748. ([134])

• Alfredo Ibias and Manuel Núñez. Squeeziness for Non-Deterministic
Systems. Unpublished. ([135])

Chapter 6

Test Case Generation

Program testing can be
a very effective way

to show the presence of bugs,
but is hopelessly inadequate
for showing their absence.

Edsger Dijkstra

Test case generation is a research line focused on the performance of
the tools used to test a given SUT. Generating test cases is a fundamental
problem of Software Testing as executing test cases is the main way of finding
faults. Therefore, it is important to generate test cases with high fault finding
capability. Usually, in order to measure the fault finding capability of a test
case, a proxy measure is used.

There exist many algorithms and measures to address the test case gen-
eration problem. Among them, the measures based on the Test Set Diameter
(TSDm) [80] measures are the state-of-the-art. This is a family of Informa-
tion Theory based measures focused on diversity. The idea of diversity-based
measures is that obtaining test cases as diverse as possible in the test suite
will lead to a higher fault finding capability. Following this idea, in the re-
search conducting to this thesis, a new Information Theory based measure,
also focused on diversity, was introduced: Biased Mutual Information (BMI).

In Section 6.1 we present the theoretical background underlying this re-
search line. Then, in Section 6.2 we propose an algorithm to generate test
suites guided by the Test Set Diameter measures, in Section 6.3 we propose
a new measure called Biased Mutual Information and an algorithm to gen-
erate test suites guided by such measure, and in Section 6.4 we propose an
algorithm to generate test suites guided by coverage-based measures. Fi-
nally, in Section 6.5 we list the papers related to the work presented in this
chapter.

55

56 Chapter 6. Test Case Generation

6.1 Theoretical Background

The context in which test case generation will be addressed is a black-box
approach: the tester does not have access to the source code of the SUTs.
Fortunately, the tester has access to a specification of the SUT in the form of
an FSM, a finite labelled transition system in which input/output pairs label
transitions.

Definition 18. We say that M = (Q, qin, I, O, T) is a Finite State Machine
(FSM), where Q is a finite set of states, qin ∈ Q is the initial state, I is a
finite set of inputs, O is a finite set of outputs, and T ⊆ Q×(I×O)×Q is the

transition relation. A transition (q, (i, o), q′) ∈ T , also denoted by q
i/o
−−→ q′

or by (q, i/o, q′), means that from state q after receiving input i it is possible
to move to state q′ and produce output o.

We say that M is deterministic if for all q ∈ Q and i ∈ I there exists at
most one pair (q′, o) ∈ Q×O such that (q, i/o, q′) ∈ T .

We let FSM(I,O) denote the set of finite state machines with input set I
and output set O.

In our work, we assume that the FSMs that specify our SUTs are determin-
istic. Moreover, we assume the test hypothesis [140]: the SUT can be modelled
as an object described in the same formalism as its specification (in our case,
an FSM). As we are in a black-box framework, we do not need to have access
to such model, we only need to assume that it exists. Actually, it would be
enough to assume that the SUT reacts with an outputs sequence to an inputs
sequence.

In order to compare the behaviour of the SUT with respect to its specific-
ation we need to define such behaviours. We can do so with the concept of
trace.

Definition 19. Let M = (Q, qin, I, O, T) be an FSM, q ∈ Q be a state and
σ = (i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence of pairs. We say that M
can perform σ from q if there exist states q1 . . . qk ∈ Q such that for all
1 ≤ j ≤ k we have (qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this by
either q σ

==⇒ qk or q σ
==⇒. If q = qin then we say that σ is a trace of M .

We denote by traces(M) the set of traces of M . Note that for every state q
we have that q ε

==⇒ q holds. Therefore, ε ∈ traces(M) for every FSM M .

The notion of trace can be used to define the notion of test case: a (input
action, output action) pairs sequence. A test suite will be a set of test cases.

Definition 20. Let M = (Q, qin, I, O, T) be an FSM. We say that a sequence
τ = (i1, o1) . . . (ik, ok) ∈ (I×O)+ is a test case forM if τ ∈ traces(M). We
define the length of τ as the length of the sequence, that is, |τ | = k. We define
the sequence of inputs of τ as α = i1 . . . ik and the sequence of outputs of τ as

6.1. Theoretical Background 57

β = o1 . . . ok (we will sometimes use the notation τ = (α, β) ∈ (I+ × O+)).
We write (i, o) ∈ τ to denote that the pair (i, o) appears in the test case τ ;
(i, o) ∈n τ denotes that the pair (i, o) appears n times in the test case τ .

A test suite for M is a set of test cases for M . Given a test suite
T = {τ1, . . . , τn}, we define the length of the test suite as the sum of the
lengths of its test cases, that is, |T | =

∑
i=1,...,n |τi|.

Let τ = (α, β) be a test case for M . We say that the application of τ to
an FSM M ′ fails if there exists β′ such that (α, β′) ∈ traces(M ′) and β 6= β′.
Similarly, let T be a test suite for M . We say that the application of T to
an FSM M ′ fails if there exists τ ∈ T such that the application of τ to M ′

fails.

The idea is that given a test case (α, β) for M , the application of the
inputs sequence α to a correct system with respect to M should return the
outputs sequence β.

When generating test cases, it is not enough to generate any test case.
We are usually looking for a test case that fulfils some properties (ideally,
properties that are a proxy of having a high fault finding capability). To
assess these properties, a common tool is to define a measure notion that
would tell how much a test case fulfils a property. We can define the concept
of measure as a function that receives an FSM and a test suite and returns
a real number representing how good the test suite is considered by the
measure.

Definition 21. A measure is a function

f : FSM(I,O)× P(I+ ×O+)→ R+ ∪ {0}

Although this definition of measure needs the information of both the
test suite and the specification, we can also define measures that only use
the test suite.

Generating a test case or a test suite that obtains a high score for a
measure is usually an NP-hard problem (due to a combinatorial explosion).
An useful tool to find approximations to NP-hard problems (that comes from
the Artificial Intelligence field) is the Genetic Algorithm. Therefore, in our
work we decided to rely on Genetic Algorithms to address this problem. A
genetic algorithm is composed by:

• An encoding of the population in genes.

• An initial population, that is, randomly generated individuals expressed
in the selected codification.

• A fitness function to evaluate the population.

• A stopping criterion.

58 Chapter 6. Test Case Generation

• A next population selection method, which pairs the individuals for the
next steps.

• A crossover method that generates new individuals from the mixture
of the genes of the existing ones.

• Amutation method that can modify some individuals in order to obtain
new genes that might have not been present before.

• A replacement method, which usually keeps the best individuals and
discards the worst ones (with respect to the fitness function values).

The structure of a genetic algorithm is given in Algorithm 1. This al-
gorithm is divided into the following steps:

• Initialisation step: generates the initial population, acting as a seed for
the whole process. This initialisation is usually random, in order not
to bias the behaviour of the algorithm.

• Selection step: focus on obtaining the most suited individuals to per-
form the following steps and achieving a better solution in next gener-
ations.

• Crossover step: pairs the individuals obtained in the selection step and
exchanges parts of the structure within each couple.

• Mutation step: considers each individual after the crossover step and,
with a small probability, performs slight variations. This process, al-
though might seem counter-intuitive, tends to avoid obtaining local
optima solutions by possibly substituting the negative-impact elements
of the individual for new ones.

• Replacement step: takes the current population and its offspring and
decides which individuals amongst them conform the following gener-
ation.

The Genetic Algorithm iterates these steps to evolve the population to
produce a better solution. Therefore, it requires a termination criteria, which
usually considers a bound on the number of iterations.

Due to the graph nature of the FSM formalism, we need an expressive
Genetic Algorithm. Specifically, we need a Genetic Programming Algorithm
in which the codification of the population in genes does not use a linear
structure (as a vector) but a tree-like structure [156]. Additionally, in order
to ensure the correctness of the generated test suites, the population will
be constructed from a grammar that can build all the valid test cases and
only valid test cases. This grammar will be generated from the specification
of the SUT. This way, along this research line we will use Grammar-Guided
Genetic Programming Algorithms.

6.2. Using Test Set Diameter 59

Initialise population;
Evaluate population;
while termination criterion not reached do

Select next population;
Perform crossover;
Perform mutation;
Evaluate population;
Replace population for next iteration;

end
Algorithm 1: Genetic algorithm: general scheme.

6.2 Using Test Set Diameter

The first approach that we explored to measure the fault finding capability
of a test suite was based on Test Set Diameter (TSDm) [80], a measure
based on Kolmogorov complexity [166] and focused on the diversity of the
test cases conforming the test suite. The Kolmogorov complexity of a string
is the length of the shortest program that produces such string. It can be
approximated using Normalised Compression Distance [54].

Definition 22. Let x and y be two strings and C(x) be the length of the string
x after being compressed by a chosen compression program. We denote by
ncd(x, y) the Normalised Compression Distance of x and y and we define it
as

C(xy)−min{C(x), C(y)}
max{C(x), C(y)}

where xy denotes the concatenation of x and y.

This measure is easily extendable to deal with bags (multi-sets) of strings.

Definition 23. Let X be a bag of strings with at least two elements and
C(x) be the length of the string x ∈ X after being compressed by a chosen
compression program. We denote by NCD(X) the Normalised Compression
Distance of X and we define it as{

ncd(x1, x2) if X = {|x1, x2|}

max{NCD1(X),maxY⊂X{NCD(Y)}} otherwise

where
NCD1(X) =

C(X)−minx∈X{C(x)}
maxx∈X{C(X\{x})}

and where C(X) is the length of the compression of the concatenation of the
strings belonging to X in any specific order as long as we use it for all the
concatenations.

60 Chapter 6. Test Case Generation

Finally, we define the Test Set Diameter of a test suite as the NCD of
a bag of elements of a test case. For example, such bag could be the one
of test inputs (Input-TSDm), the one of test outputs (Output-TSDm), or
even the bag of execution traces (Trace-TSDm). In our work, as we are
working in a black-box scenario, we compare between the bag of test inputs
(Input-TSDm), the one of test outputs (Output-TSDm), and the bag of test
input/test output pairs (Input/Output-TSDm).

Test Set Diameter is the current baseline for the generation of test suites
in black-box testing. In an extensive study [110] it was shown that it out-
performed many black-box alternatives and even some white-box ones. It is
for this reason that we developed a framework to generate the best test suite
with respect to their TSDm value. For this framework, we use a Grammar-
Guided Genetic Programming Algorithm with the subsequent configuration.

6.2.1 Encoding

We use a tree structure to encode test suites. This tree will be generated
from a grammar that conforms to the FSM, so that we ensure the correctness
of the produced test cases. This grammar has the following components:

• A start non-terminal symbol S that starts the grammar.

• A non-terminal symbol T that introduces each test case of the test
suite.

• A non-terminal symbol N for each state, where N ∈ IN is the state
number.

• A terminal symbol ′a/b′ for each input/output pair present on the FSM,
where a is the input and b is the output.

• A terminal symbol ′null′ to represent the end of a test case.

• A production rule S −→ T to generate the initial test case.

• A production rule T −→ T + T to introduce a new test case.

• A production rule T −→ 0 to start each test case in the FSM initial
state.

• A production rule N −→ ′a/b′ +M for each transition from the state
N to a state M with input/output pair (a, b).

• A production rule N −→ ′null′ for each state N to a terminal to
represent the end of the test case.

Note that, given an FSM, this grammar can be automatically generated.

6.2. Using Test Set Diameter 61

6.2.2 Initial population

For the initial population, we randomly generate 100 test suites of the desired
length, using the grammar previously derived from the FSM. Each rule from
the grammar can be triggered with the same probability, with the goal of
having a uniform random initialisation.

6.2.3 Fitness function

The fitness function will be a Test Set Diameter (TSDm) measure, defined
as a function that receives the FSM and a test suite and computes the TSDm
value of the test suite. It will return a real value representing how good is the
test suite according to the measure. In this case, the best test suites will be
those that have a higher TSDm value. We implemented the Input-TSDm,
the Output-TSDm and the InputOutput-TSDm measures.

6.2.4 Stopping criterion

We stop our algorithm after 100 epochs at most and at least after 20 epochs.
We stop before the epoch 100 if the best test suite is the same along 0.2 ·
NumberOfPassedEpochs epochs.

6.2.5 Selection method

As selection method we simply take the individuals of this iteration and pair
them for the following steps. We do this simple selection method because we
aim at an exploratory goal. Therefore, we consider that our selection method
should take in account all the population to avoid losing genetic diversity.

6.2.6 Crossover method

We need a grammatical crossover to keep the population inside the space
of the test suites generated by the grammar. We use a mixture between
the Whigham crossover [180] and the standard grammatical crossover [59].
Additionally, we need all the test suites to have the same length. With all
these requisites, we generated the crossover presented in Algorithm 2.

The probability of crossover is set to 90% due to the difficulty to find a
pair of valid points where to cut the parents and create an offspring.

6.2.7 Mutation method

The mutation method consist in erasing one test case of the test suite and
generating a new one with the same length. The probability in this case is
set to 5% for each test case of each test suite, what is a common value in
the literature [190].

62 Chapter 6. Test Case Generation

Data: TS1, TS2 test suites
Result: Crossover of TS1 and TS2
match = false;
while !match do

Select a random node t1 from TS1;
for each node t2 of TS2 do

if t2 non-terminal == t1 non-terminal and t2 length == t1
length then

Set t2 as valid node.
end

end
if valid nodes > 0 then

match = true;
end

end
Select a random valid node t2;
Get parent p1 of t1;
Get parent p2 of t2;
Set t2 as child of p1;
Set t1 as child of p2;

Algorithm 2: Crossover algorithm.

6.2.8 Replacement method

Finally, as replacement method we use a variant of elitist reduction [190].
First, we directly pass to the next epoch those test suites with a fitness
score over the mean. Then, for those that fall under the mean we give them
a second chance of passing them to the next epoch if their score is higher
than the mean minus a random number (modulo the distance between the
mean and the best score). This replacement method aims at keeping both
the information from the best test suites and some of the information of
the worst ones, with the idea that not loosing all the genetic information
comprised in the worst test suites will improve the results in next iterations.

We performed multiple experiments to compare the results of the TSDm
measures with respect to using a random algorithm and also between them.
In general, we found that a genetically generated test suite kills more mutants
than a randomly generated test suite (this was the case in a 75.3% of the
cases), both with the same length. The genetically generated test suite killed
an average of 47.1% of the mutants, while the randomly generated test suite
killed an average of 43.9% of the mutants.

6.3. Using Biased Mutual Information 63

6.3 Using Biased Mutual Information

In order to improve the results obtained when using Test Set Diameter, we
need to devise new measures that better approximate the fault finding cap-
ability of a test case. Following the trend of measures based on a diversity
approach, we propose a new measure inspired by the notion of mutual in-
formation [237].

Definition 24. Let A and B be two sets and ξA and ξB be two discrete ran-
dom variables ranging, respectively, over A and B. We denote by I(ξA; ξB)
the mutual information of ξA and ξB and we define it as∑

b∈B

∑
a∈A

σξA,B (a, b) · log2

σξA,B (a, b)

σξA(a) · σξB (b)

where ξA,B is the joint probability distribution of ξA and ξB.

We expect that a measure based on mutual information increases di-
versity by penalising the similarity between test cases. This way, we should
obtain test suites with as low mutual information as possible. In this work
we consider both the input and the output of a test case for the mutual
information computation, with the goal of increasing input and output di-
versity [8]. Note that we have access to both the inputs and outputs of the
SUT because we have a specification (in the form of an FSM).

Maximising diversity is a good proxy for fault detection. If we are testing
an FSM with a set of input/output pairs labelling its transitions, whenever
we take two input/output pairs we can have two scenarios. In the first scen-
ario, both pairs are different and we know that they correspond to different
transitions. This is the desired scenario. In the second scenario, both pairs
are equal and we are in a situation where we do not know if they correspond
to different transitions or not. In this last scenario, the probability that
both pairs correspond to the same transition is equal to 1

m , where m is the
number of transitions of the FSM labelled with that same input/output pair.
Therefore, even although for high values of m the probability tends to 0, it
is never 0, but the difference between a low value or a high value of m is im-
portant. This also implies that we cannot automatically discard test suites
where a pair is repeated, but instead we have to consider the probability of
such pair of corresponding to the same transition.

In order to compute the mutual information of two test cases, we have to
transform each of them into a set of pairs abstracting their position in the
sequence. Additionally, given two test cases τ1 and τ2, we need a definition
of the probability distribution σξτ (x) to compute the mutual information
I(ξτ1 ; ξτ2). After multiple considerations (that are explained in [136]), the
best solution for computing these probabilities is to use a formula that does
not arise a probability distribution over the elements of the test case, but

64 Chapter 6. Test Case Generation

that instead uses the probability presented before (that ranges over the set
of transitions of the FSM with the same input/output pair). In order to re-
tain the structure of the original formulation, we will keep the notation σ
although we should be aware that it does not refer to a probability distribu-
tion. Moreover, we will use the term στ (x), with τ as an implicit parameter,
to represent that στ (x) is only defined for x if x ∈ τ . Finally, it is important
to mention that we write (i, o) ∈m M to denote that the pair (i, o) appears
in m transitions of M and (i, o) ∈n τ denotes that the pair (i, o) appears n
times in the test case τ .

Definition 25. Let M = (Q, qin, I,O, T) be an FSM, τ be a test case for M
and x ∈ I ×O be an input/output pair such that x ∈ τ . We let:

στ (x) =


1

m
if x ∈m M, m ≥ 1

0 otherwise

We define the composition of two test cases τ1, τ2 of M , for input/output
pairs x1 ∈ τ1, x2 ∈ τ2, as:

στ1,τ2(x1, x2) =


1

m1
· 1

��m2
·��m2 if x1 = x2

1

m1
· 1

m2
otherwise

where x1 ∈m1 M and x2 ∈m2 M . In the first case, note that m1 = m2

because we are looking for the same input/output pair in M . Also note that
m1 and m2 are greater than zero because we request x1 ∈ τ1 and x2 ∈ τ2 to
appear in M .

Finally, we redefine the mutual information of two test cases as:

I(τ1; τ2) =
∑
x1∈τ1

∑
x2∈τ2

στ1,τ2(x1, x2) · log2

στ1,τ2(x1, x2)

στ1(x1) · στ2(x2)

It is important to remark that we are assuming a uniform distribution
over the set of transitions of the FSM with the same input/output pair. We
could choose another distribution for those probabilities, but preliminary
experiments did not show any improvement and it would only complicate
the computation. Therefore, we keep the uniform distribution unless a real
distribution is known. Thanks to this uniform distribution, we can simplify
the formulation in the following way.

Lemma 5. Let M be an FSM and τ1, τ2 be test cases for M . We have

I(τ1; τ2) =
∑
x∈τ2

nx ·
log2(mx)

mx

where mx is such that x ∈mx M and nx is such that x ∈nx τ1.

6.3. Using Biased Mutual Information 65

Figure 6.1: Comparison plot between mutual information and biased mutual
information.

However, this formulation has some undesirable properties. Specifically,
it is not monotonic and it is equal to 0 if all the transitions of the specification
have different input/output pairs. For this formula to be useful we would like
it to be monotonic and that it avoids “division by zero”. Therefore, we need
to slightly modify it. Specifically, we decided to perform a small translation
in the X axis of the logarithm of the formula. To observe the difference
between both options, Figure 6.1 shows the behaviour of the un-translated
formula as a dashed curve, and of the translated one as a solid curve. Using
this translated version we define biased mutual information.

Definition 26. Let M be an FSM and τ1, τ2 be test cases for M . We say that
the biased mutual information (bmi) of τ1 and τ2 is given by

bmi(τ1; τ2) =
∑
x∈τ2

nx ·
log2(mx + 1)

mx

where mx is such that x ∈mx M and nx is such that x ∈nx τ1.

We will use the biased mutual information of two test cases as the basis
of a measure for a test suite. Specifically, we will compute the bmi of each
pair of test cases of the test suite. That is, given a specification M and a
test suite T = {τ1, . . . , τk}, we apply

α(T) =
∑

i=1,...,k

∑
j=i+1,...,k

∑
x∈τi

nx ·
log2(mx + 1)

mx

where mx is such that x ∈mx M and nx is such that x ∈nx τj . We will call
this formula α(T) in the definition of the Biased Mutual Information of T .

In addition to the biased mutual information between two test cases, it
is also desirable to account for the repetitions inside each test case of the
test suite. The goal is to penalise test suites having test cases with many
repeated input/output pairs, even if these pairs do not appear in other test

66 Chapter 6. Test Case Generation

cases of the test suite. This way, given a specification M and a test suite
T = {τ1, . . . , τk}, for each test case τ ∈ T we have:

β(τ) =
∑
x∈τ

(nx − 1) · nx
2

· log2(mx + 1)

mx

where mx is such that x ∈mx M and nx is such that x ∈nx τ . β(τ) will be
the self-redundancy factor in the definition of the Biased Mutual Information
of a test suite T .

In the definition of this self-redundancy factor, (nx−1)·nx
2 is the sum of

the first nx − 1 integers, what represents the number of input/output pairs
(x1, x2) such that x1 and x2 are both in the test case and x1 6= x2. Addi-
tionally, log2(mx+1)

mx
is the biased mutual information between those pairs.

Finally, combining these two factors, we obtain the formula for the Biased
Mutual Information (BMI) of a test suite.

Definition 27. Let M be an FSM and T = {τ1, . . . , τk} be a test suite for
M . We have

BMI(T) = α(T) +
∑

i=1,...,k

β(τi)

Before generating test suites using BMI, we evaluated its performance
selecting between two test cases in multiple experiments. Specifically, we
compared it with a random selection approach and with the Test Set Dia-
meter (TSDm). In both cases BMI outperformed the selection performed
by the other measures. Moreover, we found a (negative) correlation between
the fault detecting ability of a test suite and the BMI of such test suite.
These results suggest that the diversity of a test suite can be improved using
knowledge about the specification. An additional result was that transition
coverage was (slightly) more effective than BMI, although its computation
time is higher than the one of BMI. Moreover, BMI can be used only with
the information about the input/output pairs frequency, what means that
there is potential to use BMI without having a specification, something that
transition coverage cannot do. Therefore, BMI is more widely applicable
than transition coverage.

During the development of BMI there were two major decisions that
raised some concerns. The first one was the translation performed over
the original mutual information formula, where other transformations were
possible. In this case, we performed an exhaustive exploration of possible
alternatives and concluded that the one that we choose contained the best
balance between intuition, simplicity and being faithful to the original In-
formation Theory formulas. The second decision was the definition of a
probability distribution for the elements of the test cases, where real distri-
butions were possible options. In this case we considered multiple approaches
to define such probability distributions, but none of them was better than

6.3. Using Biased Mutual Information 67

our non-probability option (by an appreciable margin). This behaviour can
be explained because the weight (probability) of each element of a test case
does not change with the length of the test case, while any probability dis-
tribution will be influenced by the length of the test case over which it is
defined. An extended discussion about these concerns can be found in [136].

In order to generate test suites using BMI we devise an improved ver-
sion of the Grammar-Guided Genetic Programming Algorithm used in the
previous section. Specifically, this version uses a new fitness function (BMI),
an improved crossover method, and new probabilities for both the crossover
and the mutation methods.

6.3.1 Fitness Function

The fitness function will be the BMI measure, defined as a function that
receives the FSM and a test suite, and computes the BMI value of the test
suite. It will return a real value representing how good is the test suite
according to the measure. In this case, the best test suites will be those that
have a lower BMI value.

6.3.2 Crossover Method

We need a grammatical crossover to keep the population inside the space
of the test suites generated by the grammar. We improved the crossover
method presented in Section 6.2.6 by increasing its facility to be performed.
Specifically, the new crossover generates two offspring and then crops the
longer one to the desired size and randomly extends the shorter one to the
same size. This crossover is presented in Algorithm 3.

The probability of this crossover is set to 75% due to the increased facility
to happen in comparison with the previous crossover.

6.3.3 Mutation Method

The mutation method still consists in erasing one test case of the test suite
and generating a new one with the same length. However, in this case, the
probability is set to 10% because, in preliminary experiments, this was the
probability that better worked with the new crossover.

We performed multiple experiments to compare the performance of the
new approach with previous state-of-the-art measures for generating test
suites. Specifically, we compared our Grammar-Guided Genetic Program-
ming Algorithm guided by BMI with a random generation algorithm and
with the algorithm from the previous section guided by the TSDm measures.
In both cases BMI obtained test suites with higher fault finding capability,
outperforming both alternatives. Additionally, we compared our methodo-
logy with the classical W [52] and Wp [86] methods and found that ours is

68 Chapter 6. Test Case Generation

Data: TS1, TS2 test suites
Result: Crossover of TS1 and TS2
match = false;
while !match do

Select a random node t1 from TS1;
for each node t2 of TS2 do

if t2 non-terminal == t1 non-terminal then
Set t2 as valid node;

end
end
if valid nodes > 0 then

match = true;
end

end
Select a random valid node t2;
Get parent p1 of t1;
Get parent p2 of t2;
Set t2 as child of p1;
Set t1 as child of p2;
if t2 size > t1 size then

Crop t2 to t1 size;
Extend t1 to t2 size;

end
else

Crop t1 to t2 size;
Extend t2 to t1 size;

end
Algorithm 3: Improved Crossover Algorithm.

preferable in a realistic scenario where time and resources are scarce.

6.4 Using Coverage-Based Metrics

Following the point raised in the previous section about the coverage metrics
outperforming BMI, we decided to explore how to use them to generate test
suites in a reasonable time. To that end, we have to fix the notion of coverage.
In other words, we have to define how much of the FSM a test suite traverses.
We used as a basis the t-way coverage criterion and defined four different
coverage criteria:

• t-way transition coverage: the percentage of sets of t consecutive trans-
ition labels that the test suite traverses. We define transition label as
an input/output pair of the FSM (that is, an input/output pair that

6.4. Using Coverage-Based Metrics 69

corresponds to the execution of a transition).

• t-way extended transition coverage: the percentage of sets of t consec-
utive transitions that the test suite traverses. We define transition as
the origin and target states and the input/output pair corresponding
to the transition of the FSM between those states.

• t-way state coverage: the percentage of sets of t consecutive states that
the test suite visits. We define state as a state of the FSM.

• t-way action coverage: the percentage of sets of t consecutive actions
that the test suite executes. We define action as an input of the FSM.

We decided to use these four types of coverage because they are widely
used in the literature [179, 243]. Each one of them focuses on a different com-
ponent of the FSM and, therefore, a comparison between them is necessary. It
is important to remark that state coverage can only be used in a white-box
scenario, due to it needing the information about internal states. Action and
transition coverage, in contrast, can be used in a black-box scenario as they
only use observable information. Finally, the extended transition coverage
that includes the initial and target states is also only possible in a white-box
scenario.

t-way coverage groups the elements of the FSM in sets with exactly t con-
secutive elements, that is, elements such that there is a sequence of trans-
itions of the FSM starting with one of them and ending with another one such
that all the elements in between are in the set. We can check how many of
these groups appear (without repetitions) in a test suite. We will use the
percentage of the groups that appear in a test suite as the t-way coverage
score, representing how much coverage such test suite provides.

Definition 28. Given an FSM M , a grouping G (with |G| elements) of its
transition labels/transitions/states/actions in sets of t consecutive elements,
and a test suite that traverses s of these sets (without repetitions), the t-way
transition/extended transition/state/action coverage score is s

|G| .
We call G set to the grouping G of the transition labels/transitions/states/ac-

tions in sets of t consecutive elements of an FSM.

In our work we have used values of t ranging from 1 to 3. In order to
generate test suites using these coverage notions we used the same Grammar-
Guided Genetic Programming Algorithm as in the previous section with
BMI. The only difference is the change in the fitness function. In this case,
we use one of the coverage criteria previously defined. Specifically, we define
12 fitness functions using t-way coverage criterion: we mixed t ∈ {1, 2, 3}
with transition, extended transition, state and action t-way coverage.

We performed multiple experiments to compare the measures between
them and with using mutation score as a guide of the Genetic Algorithm. In

70 Chapter 6. Test Case Generation

these comparisons, we found that 1-way transition coverage is the preferable
choice when generating test suites if we are in a black-box scenario and 2-
way state coverage if we are in a white-box scenario. However, some of our
results raised some questions. Specifically, some coverage criteria had a very
low computation time compared to the others. After a careful analysis we
concluded that this was the effect of the difference in orders of magnitude
between the G sets of different coverage criteria. These differences produce
that some criteria have a G set so huge that the difference between two test
suites is minimal, while others have a G set so small that all the test suites
cover them. In either case, the lack of improvement from a test suite to
another generates the stopping criterion to activate and thus the evolution
is stopped sooner. Therefore, we can conclude that not all the coverage
notions that we propose are useful as some will arise pointless results.

Regarding the choices performed during this research, there are some
concerns. First, we choose to use coverage metrics that include all the ele-
ments that a test case traverses because using the ones that consider only the
last element (or set of elements) of each test case would produce that all the
test cases have the same score. Second, we compared with mutation score
because it is the classical measure that is used to determine the fault finding
capability of a test suite. Therefore, this looks like a useful baseline measure.
However, for future work we would have to compare them to our previously
proposed measure BMI. An extended discussion about these concerns can
be found in [137].

6.5 Associated Papers

• Alfredo Ibias, David Griñán and Manuel Núñez. GPTSG: A
Genetic Programming test suite generator using Information Theory
measures. 15th International Work-Conference on Artificial Neural
Networks, IWANN’19, LNCS 11506, pages: 716-728, Springer. ([128])

• Alfredo Ibias, Manuel Núñez and Robert M. Hierons. Us-
ing mutual information to test from Finite State Machines: Test suite
selection. Information and Software Technology 132, pages: 106498.
([136])

• Alfredo Ibias. Using mutual information to test from Finite State
Machines: Test suite generation. Unpublished. ([127])

• Alfredo Ibias, Pablo Vazquez-Gomis and Miguel Benito-Parejo.
Coverage-Based Grammar-Guided Genetic Programming Generation
of Test Suites. 2021 IEEE Congress on Evolutionary Computation,
CEC’21, pages: 2411-2418, IEEE Computer Society. ([137])

Chapter 7

Integration Testing of Software
Product Lines

Most software today
is very much like an Egyptian pyramid

with millions of bricks piled
on top of each other,

with no structural integrity,
but just done by brute force

and thousands of slaves.

Alan Kay

Addressing the Integration Testing of Software Product Lines (SPLs) is
a research line focused on the quality of the interaction between multiple
components. As such, it is an important problem when dealing with SPLs,
because SPLs generate SUTs by composing features (that is, smaller programs
or components). Therefore, testing how different features interact with each
other is a classical case of Integration Testing. Improving and optimising this
scenario is usually fulfilled by selecting a feature product with some specific
characteristics. In order to produce such product, we proposed a special kind
of Ant Colony Optimisation Algorithm (ACO).

In Section 7.1 we present the theoretical background common to this
research line. Then, in Section 7.2 we propose a solution to the problem of
selecting a feature combination with high probability and in Section 7.3 we
propose a solution to the problem of selecting a feature combination with
low testing cost. Finally, in Section 7.4 we list the papers related to the work
presented in this chapter.

71

72 Chapter 7. Integration Testing of Software Product Lines

A

B

 A; B;X

A

B

 A; B;X

A

B C

 A; (B;X ∨ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 B 6⇒ C in A; (B;X ∧ C;X)

A

B C

 B⇒ C in A; (B;X ∧ C;X)

Figure 7.1: Examples of translation from FODA Diagrams into SPLA.

7.1 Theoretical Background

We decide to represent SPLs using a formal framework. There are multiple
approaches to represent SPLs: FODA [149], RSEB [99], PLUSS [79] and SPLA [11].
In our case, we are going to use the SPLA framework, as it represents SPLs
as a process algebra. SPLA is a formal language capable to express FODA
diagrams (Figure 7.1 shows some examples). For our two contributions in
this area, we will use two of the SPLA extensions: one that has probabilities
(SPLAP [39]) whenever we find a choice in the representation of the SPL, and
another one that has costs (SPLA-CRIS [38]) for the full product.

In order to work with the SPLA process algebra, a set of features will be
considered, denoted by F , and the elements A, B, C, . . . will stand for elements
of F . A special feature X 6∈ F will mark the end of a product.

We will use an Ant Colony Optimisation algorithm [71] (ACO). This
algorithm finds solutions in a combinatorial optimisation problem.

Definition 29. A model P = (S,Ω, f) of a combinatorial optimisation prob-
lem consists of:

• A search space S defined over a finite set of discrete decision variables
Xi, i = 1, . . . , n.

• A set Ω of constraints among the variables.

• An objective function f : S→ R+
0 to be minimised.

The generic variable Xi takes values in Di = v1
i , . . . , v

|Di|
i . A feasible solu-

tion s ∈ S is a complete assignment of values to variables that satisfies all

7.2. Software Product Lines with Probabilities 73

Set parameters;
Initialise pheromone trails;
while termination criterion not reached do

Construct Ant Solutions;
Update Pheromones;

end
Algorithm 4: Ant Colony Optimisation algorithm: general scheme.

constraints in Ω. A solution s∗ ∈ S is called a global optimum if and only if
f(s∗) ≤ f(s) ∀s ∈ S.

As explained in Chapter 4, in an ACO algorithm a set of agents (or
ants) will explore a search space (defined as a graph) and will incrementally
build a partial solution. Additionally, they will deposit a certain amount of
pheromone on the edges of the graph, the amount depending on the quality
of the solution found. In next iterations, the ants will use this pheromone
information as a guide toward promising regions of the search space. The
ACO general scheme is presented in Algorithm 4, and next we present a
more detailed explanation of each step:

Construct Ant Solutions: In each iteration, a set of ants generates solu-
tions exploring a path of the graph. They sequentially construct the path,
adding one edge at a time, and selecting such edge using a stochastic mech-
anism biased by the pheromone associated with each of the possible edges.

Update Pheromones: After the ants have generated a solution, the pher-
omones of such solutions are modified, increasing those associated with good
or promising solutions, and decreasing those that are associated with bad
ones. Usually, all the pheromone values are decreased through pheromone
evaporation. Later on, the pheromone levels associated with a chosen set of
good solutions are increased.

7.2 Software Product Lines with Probabilities

We use the SPLAP process algebra to represent SPLs with probabilities. In
this formalism, all the considered probabilities are non-degenerated, that is,
for all probability p we have 0 < p < 1. Next, we define the SPLAP syntax.

Definition 30. A probabilistic Software Product Line is a term generated
by the following grammar:

P ::= X | nil | A;P | A;p P | P ∨p Q | P ∧Q |
A 6⇒ B in P | A⇒ B in P | P\A | P ⇒ A

where A, B ∈ F , X /∈ F y p ∈ (0, 1). The set of all software product lines is
denoted by SPLAP .

74 Chapter 7. Integration Testing of Software Product Lines

The probabilities of an SPLAP expression usually represent the probability
of each feature to be chosen. However, this does not need to be the case, as
probabilities can represent any interesting and/or useful information. In our
scenario we will assume that probabilities represent the likelihood of each
feature of being chosen by a user, with the idea that looking for the feature
combination with the higher probability will provide us with the one that
needs more testing focus when testing the SPL.

SPLAP has an operational semantics to guide how to interpret the ex-
pressions of the process algebra. This operational semantics produces a
tree structure for each SPLAP expression P . Traversing such tree, the set of
products of P is computed. However, computing this tree is computationally
expensive and can be infeasible in some cases.

Definition 31. Let P,Q ∈ SPLAP . We write P s
==⇒p Q if there exists a

sequence of consecutive transitions

P = P0
a1−−→p1 P1

a2−−→p2 P2 · · ·Pn−1
an−−→pn Pn = Q

where n ≥ 0, s = a1a2 · · · an and p = p1 · p2 · · · · pn. We say that s is a trace
of P .

Let s ∈ F∗ be a trace of P . We define the product bsc ⊆ F as the set
consisting of all features belonging to s.

Let P ∈ SPLAP . We define the set of probabilistic products of P , denoted
by prodP(P), as the set

prodP(P) =
{

(pr, p) | p > 0 ∧ p =
∑
{q | P sX

==⇒q Q ∧ bsc = pr}
}

We propose a new ACO algorithm to explore this tree. The goal of this
exploration is to find a combination of features that have a high enough
probability for a given SPL. This algorithm needs three elements:

• A Software Product Line in the form of an SPLAP expression. It will
be the system that we are working with.

• An SPLAP interpreter that allows us to explore the search space gen-
erated by the SPLAP expression without fully computing it.

• An Ant Colony Optimisation algorithm. It leads the search for a fea-
ture combination with high probability.

The main point of this algorithm is that the SPLAP interpreter will allow
us to avoid the computation of the full SPLAP expression tree. Therefore,
this interpreter will return, for a given SPLAP expression, its probability
computed using the operational semantics of the SPLAP algebra.

The ACO algorithm was developed to solve combinatorial optimisation
problems. Therefore, we have to express our problem as a combinatorial
optimisation one, using the following structure:

7.3. Software Product Lines with Costs 75

• Search space S: the full SPLAP tree, whose decision variables are the
feature to choose next.

• Set of constraints Ω: It is composed by

– a constraint stating that a valid path should end in a X feature
and

– a constraint stating that a valid path should fulfil the SPLAP ex-
pression constraints.

• Objective Function f : the function assigning to each set of features
their probability in the SPLAP expression. In this case, we look to
maximise it.

Having set the combinatorial optimisation problem, the ACO algorithm
only needs to follow the general scheme presented in Algorithm 4. The only
divergence with respect to the original algorithm is the fact that the ants
generate the search space when exploring it. For that task, the SPLAP in-
terpreter will provide to the ACO algorithm the distances (in this case, the
probabilities). Also, as the distances are probabilities, the total travelled dis-
tance is the product of the distance of each step (instead of its summation),
so the final value is still a probability.

The proposal was evaluated by comparing the ACO approach with a
brute force approach. Our experiments showed that we were able to save
67.33% of the computation time while obtaining products with 18.23% less
probability than the optimal one. These results confirm that our approach
could be very useful to work with SPLs with a huge number of features,
that is, those for which a brute force algorithm could not be used due to
the combinatorial explosion problem. Additionally, there are some interest-
ing remarks about the results: first, there are some cases where the ACO
algorithm saves more than 97% of the time while obtaining the optimal solu-
tion. Second, there is around 40% of the cases where the optimal solution is
found and in these cases at least 30% of the execution time is saved.

7.3 Software Product Lines with Costs

When considering SPLs with costs, first we need to explain what we mean by
cost. In our work, costs will represent the cost of testing a specific feature
of the product, with the idea that reducing such cost will lead us to feature
combinations that are easier to test. This situation is ideal when we are
considering the addition of a feature to an existing SPL and we need to
test whether this feature will not introduce new faults. In general, testing
cost can refer to multiple different measures: monetary cost of testing such
feature, time needed to test the product, or even the amount of resources

76 Chapter 7. Integration Testing of Software Product Lines

needed to perform such testing. In our work we will consider the testing cost
in a broad sense and we will not fix which specific cost it is. Moreover, we
assume that such costs are already included in the SPL, either produced by
estimation, approximation or empirical methods. Finally, it is important to
emphasise that in this work we are not focusing on finding a product that
will arise a lot of faults, but instead we are looking for a product that will
be easier to test. In other words, the testing cost is not a proxy for fault
detection effectiveness.

We use the SPLA-CRIS process algebra to represent SPLs with costs. In
this algebra, all the costs are positive.

Definition 32. We will assume that we have a finite set of features F and
we will use A, B, C. . . to denote single features. A Software Product Line is
a term generated by the following Extended BNF-like expression:

P ::= X | nil | A;P | A;P | P ∨Q | P ∧Q
A 6⇒ B in P | A⇒ B in P

where A, B ∈ F . We denote the set of terms of this algebra by SPLA.
Finally, given P ∈ SPLA, we define the products of P , denoted by prod (P),

as prod (P) = {[s] | s ∈ traces(P)}.

Our cost model is a cost function such that for each sequence of features
(the already defined product) and a single feature (the new feature that we
are adding) returns the cost of testing the addition of this new feature in
the given product. In our case, we assume that costs can be represented by
natural numbers. Note that we have to consider products without defined
cost because they are incompatible with the definition of the SPL. For these
products, we have to extend the set of costs with a new symbol ⊥ to represent
indefiniteness.

Definition 33. The set of costs is given by IN⊥ = IN ∪ {⊥}. We extend
arithmetic operations in the expected way: for any x ∈ IN⊥ we have x+⊥ =
⊥+ x = ⊥ and x ≤ ⊥.

A cost function is a function c : F∗ ×F 7→ IN⊥.

Finally, it is important to remark that the position of the features in the
trace will impact the cost of the product. In other words, the same product
but with features chosen in different orders will have different testing costs.
Therefore, we have to consider a set of costs for each product, one for each
valid order of the product.

Definition 34. Let c be a cost function. We consider the function cSPLA :
SPLA× P(F∗) 7→ P(IN⊥) defined as follows:

cSPLA(P, p) = {tc(P, s) ∈ IN⊥|∃s trace of P : [s] = p}

7.3. Software Product Lines with Costs 77

The exploration of an SPL, defined as an SPLA-CRIS expression, with
the goal of finding a combination of features that have a low testing cost
will be done with an ACO algorithm similar to one presented in the previous
section. This algorithm needs three elements:

• A Software Product Line in the form of an SPLA-CRIS expression. It
will be the system that we are working with.

• An SPLA-CRIS interpreter that allows us to explore the search space
generated by the SPLA-CRIS expression without fully computing it.

• An Ant Colony Optimisation algorithm. It leads the search for a fea-
ture combination with high probability.

The main point of this algorithm is that the SPLA-CRIS interpreter will
allow us to avoid the computation of the full SPLA-CRIS expression tree.
Therefore, this interpreter will return, for a given SPLA-CRIS expression,
its cost computed using the SPLA-CRIS operational semantics.

Same as before, the ACO algorithm needs that we express our problem
as a combinatorial optimisation one. We have the following structure:

• Search space S: the full SPLA-CRIS tree, whose decision variables are
the feature to choose next.

• Set of constraints Ω: It is composed by:

– a constraint stating that a valid path should end in a X feature,

– a constraint stating that a valid feature combination should con-
tain the previously selected feature and

– a constraint stating that a valid path should fulfil the SPLA-CRIS
expression constraints.

• Objective Function f : the function assigning to each set of features
their cost in the SPLA-CRIS expression. In this case, we look to min-
imise it.

Having set the combinatorial optimisation problem, the ACO algorithm
only needs to follow the general scheme presented in Algorithm 4. Again,
the only divergence with respect to the original formulation is the fact that
ants generate the search space by using distances (in this case, the costs)
provided by the SPLA-CRIS interpreter. In this case, as the distances are
costs, the total travelled distance is the sum of the distance of each step, as
it is done in the original algorithm.

We compared the ACO approach with a brute force approach: we saved
99.14% of the computation time while obtaining products a 25.42% more
expensive than the optimal one. These results confirm that our approach

78 Chapter 7. Integration Testing of Software Product Lines

could be very useful to work with SPLs with a huge number of features,
that is, those for which a brute force algorithm could not be used due to
the combinatorial explosion problem. However, in this case the brute force
algorithm was only able to obtain the solution for part of the experimental
subjects, as the combinatorial explosion problem made it impossible to be
executed in the bigger SPLs. Therefore we also performed a comparison
with a random selection algorithm. In this case our algorithm obtained, for
the same execution time, solutions that are, on average, 14.87% cheaper.
Moreover, in the worst cases the obtained solution is at least as expensive
as the one obtained by the random selection algorithm.

Finally, it is worth to mention a recurrent question in this line of work:
Is the ACO algorithm the best option to solve this problem? Although
a thorough evaluation should be a matter of future work, there is some
fundamental arguments to use ACO versus other Evolutionary Algorithms.
First, it is important to note that we are searching in a search space that is
an SPLA expression and such expression is easily transformed into a graph
whose final states represent all the possible feature combinations that fulfil
the expression restrictions. This implies that for applying algorithms like
Particle Swarm Optimisation (PSO) we would need to transform such graph.
This transformation is not trivial and would increase the complexity of the
approach. Moreover, our graph can have cycles and, therefore, we would need
to unfold such cycles if we want to apply a Genetic Programming Algorithm,
that can deal only with acyclic graphs. This would increase the complexity of
the approach too. Finally, our main task, after all, is to find a path in a graph
and ACO was especially designed for this kind of problems. Therefore, ACO
is easy to apply in this scenario, in contrast to the other main Evolutionary
Algorithms, and it is optimised for such scenario. An extended discussion
about this concern can be found in [131].

7.4 Associated Papers

• Alfredo Ibias and Luis Llana. Feature Selection using Evolution-
ary Computation Techniques for Software Product Line Testing. 2020
IEEE Congress on Evolutionary Computation, CEC’20, pages: 1-8,
IEEE Computer Society. ([130])

• Alfredo Ibias, Luis Llana and Manuel Núñez. Using Ant Colony
Optimisation to Select Features having Associated Costs. 33rd IFIP
International Conference on Testing Software and Systems, ICTSS’21,
pages: —, Lecture Notes in Computer Science, Springer (to appear).
([131])

Chapter 8

Detecting Hard-to-Kill
Mutants

There are two methods
in software design.

One is to make the program so simple,
there are obviously no errors.

The other is to make it so complicated,
there are no obvious errors.

Tony Hoare

Mutation Testing helps to differentiate between test cases with higher
fault finding capabilities and those with lower ones. To that end, it uses
mutants, that is, modifications of the SUT, and the quality of such mutants
can affect the classification of the test cases. Specifically, using the mutants
that are harder-to-kill will allow for a finer grain classification of test cases,
as less mutants will be killed by multiple test cases.

We proposed a swarm algorithm to detect hard-to-kill mutants. This kind
of algorithms base their intelligent behaviour in their interactions as a swarm.
They start with a swarm of agents (with little or not at all intelligence) that
perform basic and repetitive tasks until the join work of all of them generates
enough information to allow the swarm to perform intelligent decisions. This
behaviour is the so called emergency property. We work in a scenario where
we have m mutants and t test cases. The goal is to determine which mutants
are hard to kill by this set of test cases. We have to take in account that
our approach should keep a balance between computing time and results
quality (in terms of the proportion of (un-)detected interesting mutants).
Our swarm heuristic satisfies these requirements, as it avoids the application
of the full set of test cases to all the mutants while, at the same time, gives
more flexibility than a fixed cap (a fixed percentage of test cases that kill
such mutant).

79

80 Chapter 8. Detecting Hard-to-Kill Mutants

Set parameters;
Initialise kill matrix (all zeros);
Initialise iteration-hard-to-kill list (all mutants);
Initialise final-hard-to-kill list (empty);
while iteration-hard-to-kill list is not empty do

Assign a mutant and a set of test cases to each agent ;
Each agent applies its set of test cases to its mutant ;
Each agent updates the kill matrix ;
Update iteration-hard-to-kill list ;

end
Return final-hard-to-kill list;
Algorithm 5: Hard-to-kill mutants heuristic: general scheme.

This heuristic uses three elements:

• Agents: they conform the swarm that performs the evaluation.

• The Kill Matrix : it is the matrix where the agents store the informa-
tion. It encodes for each pair mutant/test case if such test case killed
the mutant, did not killed it, or it was not executed against it.

• The hard-to-kill mutants lists: they store the promising hard-to-kill
mutants and are updated after each iteration of the algorithm. The
algorithm needs two hard-to-kill mutants lists: one for storing the con-
sidered hard-to-kill mutants in the current iteration (to guide the al-
gorithm) and one for storing the final solution.

Algorithm 5 presents a high-level view of the heuristic. For each iteration,
our heuristic has four steps:

• For each agent, a mutant is chosen from the iteration-hard-to-kill list
and n << t test cases are chosen1 to be applied to that mutant. Note
that these test cases should not have been previously applied to this
mutant. If a mutant cannot be removed from the iteration-hard-to-kill
list with the remaining test cases, then it is added to the final-hard-to-
kill list immediately and another mutant is taken.

• Each agent applies its set of n test cases to its mutant.

• Each agent updates the kill matrix using the following convention:

– 1: the mutant has been killed by that test case.

– 0: the test case has not been applied to the mutant.

– −1: the mutant has not been killed by that test case.
1Note that n is chosen by the user.

81

• The iteration-hard-to-kill list is updated.

Updating the iteration-hard-to-kill list is how the emergency property
arises, as it is where the list of mutants considered hard-to-kill is updated.
This step is performed after each iteration as a way to guide the develop-
ment of the algorithm. After each iteration, the values of how many test
cases killed each mutant are computed, storing the highest (max) and the
lowest (min) ones. Then, the mutants whose value is less than or equal to
min +max−min

4 are marked as hard-to-kill. It is important to note that this
bound is somewhat arbitrary. We selected this bound to try to get as hard-
to-kill mutants those in the lower quarter of the obtained values, but it can
be modified to any desired bound. Finally, the iteration-hard-to-kill list is
purged of the mutants that are already in the final-hard-to-kill list and of
those that have already been tested with all the test cases (and we add them
to the final-hard-to-kill list).

Interestingly, our heuristic does not force the max value to be equal to
the maximum number of test cases that kill a mutant because not all of
these test cases will be executed on that mutant. For example, if a mutant
is killed by all the test cases, then it will be frequently removed from the
iteration-hard-to-kill list. Therefore, it will be hard that all the test cases will
be executed over such mutant. Therefore, the max value will be lower than
t (the total number of test cases) in most cases. Moreover, the difference
between max and min will be lower or equal to 4

3 · n and, therefore, we can
have max < min +4

3 · n < t (and that will be usually the case).
Due to this behaviour, the heuristic is able to overcome the main prob-

lems when deciding which mutants are hard-to-kill. The first problem is the
one regarding the application of all the test cases to all the mutants. Our
heuristic does not necessarily apply all the test cases to all the mutants (this
rarely happens). Therefore, it avoids the associated costs of other algorithms
based on brute force. The second problem is the flexibility when deciding
whether a mutant is hard-to-kill or not. Our heuristic is a more flexible
approach than fixed percentages because it avoids extreme situations like
empty hard-to-kill mutants sets or sets with all the mutants.

We performed several experiments where we compared our heuristic and
a brute force approach, a cap (fixed percentage) approach, and a random
approach. We found that our heuristic saves the 61.97% of the execution of
test cases with respect to a brute force approach and needs a similar number
of execution of test cases as a cap algorithm. Moreover, the sets produced
by our heuristic have a good quality, far better than the quality of a random
solution, and somewhat close to the quality of a cap approach. Finally, the
last conclusion is that our heuristic is better than a cap approach because
it avoids the extreme cases (from both sides) that the cap approach can
produce, what makes our heuristic a more reliable solution.

82 Chapter 8. Detecting Hard-to-Kill Mutants

8.1 Associated Papers

• Alfredo Ibias and Manuel Núñez. Using a swarm to detect hard-
to-kill mutants. 2020 IEEE International Conference on Systems, Man,
and Cybernetics, SMC’20, pages: 2190-2195, IEEE Computer Society.
([133])

Part IV

Conclusions

This part presents the thesis conclusions and lines of future work. Such
conclusions include a review of the goals of the thesis and their level of
achievement, a recapitulation of the research performed and their inclusion
into the state-of-the-art (including a brief review of how the field has been
improved), and a resume of the open lines that this thesis leaves as future
work.

Chapter 9

Conclusions

Every story has an end, but in life every
end is just a new beginning.

Annonymous

This thesis has contributed to the Software Testing field, addressing four
big problems and proposing new state-of-the-art solutions. Specifically, this
thesis addresses the following problems: the Failed Error Propagation prob-
lem, the test case generation problem, the Integration Testing of Software
Product Lines problem, and the detection of hard-to-kill mutants for Muta-
tion Testing problem. The main goal of this thesis was to study how to use
the available methods from Information Theory and Artificial Intelligence
to solve Software Testing problems. This task needed of researching previ-
ous work, carefully studying alternatives and a several iterations when an
alternative was considered to have potential to outperform current state-of-
the-art. Following this procedure, after a lot of experiments, we produced
the proposals presented in this thesis. Therefore, we can conclude that the
main goal has been fulfilled substantially.

The secondary goal was to find synergies between Information Theory
and Artificial Intelligence to better solve the problems addressed in this
thesis. This goal has been fulfilled to some extent. Specifically, there are
two problems for which some of the solutions mix tools coming from both
fields: Failed Error Propagation and test case generation. In the Failed
Error Propagation problem we found a problem generated by an Information
Theory measure (Rényi’s Squeeziness) that could be resolved thanks to the
application of an Artificial Neural Network, a useful tool from the Artificial
Intelligence field. In the test case generation problem the synergy is even
more intricate, as we developed a Genetic Algorithm that needed a fitness
function to guide its evolution, and we defined an Information Theory-based
measure (TSDm) and an Information Theory-inspired measure (BMI) to be
such fitness function. However, for the other problems we were not able to

85

86 Chapter 9. Conclusions

find synergies and that would be matter of future work.
Regarding the Failed Error Propagation (FEP) problem, in the beginning

of this thesis its state-of-the-art was a novel measure called Squeeziness whose
application was limited to deterministic programs in a white-box scenario.
In this thesis we took such measure and extended it to be able to deal with
deterministic programs but in a black-box scenario. After that, we further
develop it in two directions: improving its performance and improving its ap-
plicability. To improve its performance we focused on improving its suitabil-
ity as a proxy for the likelihood of FEP by extending it to deal with different
notions of entropy, including those that actually improve its performance.
Additionally, we developed a tool to simplify its application to real pro-
grams. To improve its applicability, we relaxed its restrictions by developing
a new conservative formulation that allows to apply it to non-deterministic
systems. These new developments would be the new state-of-the-art for dif-
ferent situations, while its union in a concept of Non-Deterministic Rényi’s
Squeeziness would be matter of future work.

Regarding the test case generation problem, the state-of-the-art was a set
of measures called Test Set Diameter (TSDm) that were used to generate
a test suite from a predefined set of test cases. In this thesis we improved
the applicability of such measures by developing a Grammar-Guided Genetic
Programming Algorithm to automatically generate test suites guided by such
measures. With this development, the test suites generated by the TSDm
measures will not be limited to choose between the test cases present in the
predefined set of test cases. The TSDm measures use Information Theory
measures to increase diversity inside the test suite. In order to improve them,
we developed a new measure that also looks to increase diversity inside the
test suite. However, this new measure uses not only the information from
the test suite, but also the one from the specification of the SUT. This way
we created the concept of Biased Mutual Information (BMI). This measure
outperformed the TSDm measures by a margin. Moreover, during its devel-
opment we improved the Genetic Algorithm previously developed. As a side
research in this line, and following some hints, we also explored the use of
the Genetic Algorithm previously presented to generate test suites guided
by coverage-based measures, but its comparison with BMI is left for future
work.

Regarding the Integration Testing of Software Product Lines (SPLs) prob-
lem, we started with the formal definition of an SPL using a process algebra
named SPLA. During the development of this thesis, we took this process
algebra and used it (specifically, two of its derivations) to choose a feature
combination useful to test the integration of the different features of the SPL.
The first approach used the version with probabilities (SPLAP) to select the
feature combination that was more probable to be chosen by a user, with the
goal of giving more testing time to such configuration. The second approach

87

used the version with costs (SPLA-CRIS) to select the feature combination
that had a lower testing cost and a given feature, with the goal of being able
to cheaply test the integration of a new feature that we want to include in the
SPL. For both problems, we developed an Ant Colony Optimisation (ACO)
algorithm that required small tweaks to properly work in these scenarios,
in which the computation of all the possible feature combinations of an SPL
falls quickly into a combinatorial explosion problem. Both solutions obtained
good results, showing how they can be properly used by any practitioner.

Finally, regarding the detection of hard-to-kill mutants, the main method
was to use hard cap values, setting that such mutants would be those killed
by less than a fixed percentage of test cases. In this thesis we improved
this approach by using a soft cap and developing a swarm algorithm to
implement and compute such cap. This way, the mutants regarded as hard-
to-kill would be the hardest to kill by the set of test cases given to the
algorithm. Therefore, some extreme cases (like empty hard-to-kill mutant
sets or those with all the mutants) are avoided. This new approach gave
really good results.

This thesis leaves some open lines that can be matter of future work.
Regarding the Failed Error Propagation (FEP) problem, additionally to the
already mentioned lines, we would like to explore approximations to compute
Squeeziness (and its improvements) more efficiently. We would also like to
generalise Squeeziness (and its improvements) to deal with models of asyn-
chronous [118, 183, 184] and distributed [120, 119] systems. We would like to
integrate the tool developed to compute Rényi’s Squeeziness with other tools
that automatise testing, like those that incorporate the efficient and system-
atic generation and processing of mutants [65, 42, 90, 91, 104]. It would be
desirable to refine the definition of Non-Deterministic Squeeziness to solve
its problems in limit cases and implement Non-Deterministic Squeeziness in
a tool that automatises its application (similar to the one we developed for
Rényi’s Squeeziness).

Regarding the test case generation problem, in addition to the already
mentioned lines, we would like to extend our Genetic Algorithm to gener-
ate test suites for systems represented by Extended Finite State Machines
(EFSMs) (that is, FSMs with data), or even for other kind of systems, like
Binary Decision Diagrams [4]. Also, we would like to explore the applica-
tion of BMI in situations with no specification but with the knowledge of
the frequency of the input/output pairs, or even without it but using some
mechanism (like random testing) to estimate such frequencies. A second line
of work might consider to devise measures like BMI for non-deterministic
specifications. It is worth to extend the comparison between BMI and the
TSDm measures, and explore a wider range of coverage notions, specifically
t-way coverage with t > 3 should be considered. We would like to explore
the coverage notions of Petri Nets [3] too. We would like to explore the

88 Chapter 9. Conclusions

significance of the relation between the size of the G set and the length of
the test suites. Finally, we would like to use another kind of evolutionary
computation algorithms, instead of a Genetic Programming one, like Tree
Swarm Optimisation [98, 97].

Regarding the Integration Testing of Software Product Lines (SPLs), we
would like to explore the use of our framework for SPLs with confidences
instead of probabilities. A more practical line of work would analyse the
performance of our proposals with bigger and more complex SPLs with the
goal of checking whether our techniques scales well. We would like to com-
pare our ACO approach with other evolutionary algorithms. We would like
to consider SPLs with existing feature selections produced by an expert and
compare their quality to the quality of the feature combinations generated by
our approaches. Finally, we would like to integrate our proposals to existing
tools such as ProFeat [53], to represent product lines, PRISM [158], to ana-
lyse probabilistic systems, and MEdit4CEP-CPN [32], to represent complex
events.

Regarding the detection of hard-to-kill mutants, we would like to assess
how the chosen bound modifies the hard-to-kill mutants set. We would like
to explore the performance of our algorithm in a weak mutation scenario.
Next, we would like to compare our swarm approach to other evolution-
ary algorithms and, finally, explore the relationship between the hard-to-
kill mutants set produced by our algorithm and the set of fault revealing
mutants [204].

Part V

Publications

This part presents the articles that were published during the development
of this thesis.

Chapter 10

Publications

In this chapter I present the publications that conform the corpus of this
thesis. All the publications are included with the approval of all the co-
authors, as well as the authorisation to publish from the publishers. The
papers presented in this chapter are (in order):

• Alfredo Ibias, Robert M. Hierons and Manuel Núñez. Using
Squeeziness to test component-based systems defined as Finite State
Machines. Information and Software Technology 112, pages: 132-147.
([129])

• Alfredo Ibias and Manuel Núñez. Estimating fault masking using
Squeeziness based on Rényi’s entropy. 35th ACM/SIGAPP Symposium
on Applied Computing, SAC ’20, pages: 1936-1943, ACM. ([132])

• Alfredo Ibias and Manuel Núñez. SqSelect: Automatic assessment
of Failed Error Propagation in state-based systems. Expert Systems
With Applications 174, pages: 114748. ([134])

• Alfredo Ibias, David Griñán and Manuel Núñez. GPTSG: A
Genetic Programming test suite generator using Information Theory
measures. 15th International Work-Conference on Artificial Neural
Networks, IWANN’19, LNCS 11506, pages: 716-728, Springer. ([128])

• Alfredo Ibias, Manuel Núñez and Robert M. Hierons. Us-
ing mutual information to test from Finite State Machines: Test suite
selection. Information and Software Technology 132, pages: 106498.
([136])

• Alfredo Ibias, Pablo Vazquez-Gomis and Miguel Benito-Parejo.
Coverage-Based Grammar-Guided Genetic Programming Generation
of Test Suites. 2021 IEEE Congress on Evolutionary Computation,
CEC’21, pages: 2411-2418, IEEE Computer Society. ([137])

91

92 Chapter 10. Publications

• Alfredo Ibias and Luis Llana. Feature Selection using Evolution-
ary Computation Techniques for Software Product Line Testing. 2020
IEEE Congress on Evolutionary Computation, CEC’20, pages: 1-8,
IEEE Computer Society. ([130])

• Alfredo Ibias, Luis Llana and Manuel Núñez. Using Ant Colony
Optimisation to Select Features having Associated Costs. 33rd IFIP
International Conference on Testing Software and Systems, ICTSS’21,
pages: —, Springer (to appear). ([131])

• Alfredo Ibias and Manuel Núñez. Using a swarm to detect hard-
to-kill mutants. 2020 IEEE International Conference on Systems, Man,
and Cybernetics, SMC’20, pages: 2190-2195, IEEE Computer Society.
([133])

10.1. Using Squeeziness to test component-based systems defined as Finite
State Machines 93

10.1 Using Squeeziness to test component-based sys-
tems defined as Finite State Machines

Authors Alfredo Ibias, Robert M. Hierons and Manuel
Núñez

Title Using Squeeziness to test component-based
systems defined as Finite State Machines

Publication Type Journal
Venue Information and Software Technology
Number 112
Year 2019
DOI/URL https://doi.org/10.1016/j.infsof.

2019.04.012
Pages 16
Authors’ Contributions Hierons and Núñez developed the theory.

Ibias and Núñez designed the experiments.
Ibias developed and executed the experi-
ments. Ibias, Hierons and Núñez wrote the
manuscript. Hierons and Núñez reviewed the
manuscript.

https://doi.org/10.1016/j.infsof.2019.04.012
https://doi.org/10.1016/j.infsof.2019.04.012

Information and Software Technology 112 (2019) 132–147

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Using Squeeziness to test component-based systems defined as Finite State

Machines

Alfredo Ibias a , Robert M. Hierons b , Manuel Núñez a , ∗

a Departamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid, Madrid, 28040, Spain
b Department of Computer Science, The University of Sheffield, Sheffield, S1 4DP, United Kingdom

a b s t r a c t

Context: Testing is the main validation technique used to increase the reliability of software systems. The effectiveness of testing can be strongly reduced by Failed

Error Propagation . This situation happens when the System Under Test executes a faulty statement, the state of the system is affected by this fault, but the expected

output is observed. Squeeziness is an information theoretic measure designed to quantify the likelihood of Failed Error Propagation and previous work has shown

that Squeeziness correlates strongly with Failed Error Propagation in white-box scenarios. Despite its usefulness, this measure, in its current formulation, cannot be

used in a black-box scenario where we do not have access to the source code of the components.

Objective: The main goal of this paper is to adapt Squeeziness to a black-box scenario and evaluate whether it can be used to estimate the likelihood that a component

of a software system introduces Failed Error Propagation.

Method: First, we defined our black-box scenario. Specifically, we considered the Failed Error Propagation that a component introduces when it receives its input

from another component. We were interested in this since such fault masking makes it more difficult to find faults in the previous component when testing. Second,

we defined our notion of Squeeziness in this framework. Finally, we carried out experiments in order to evaluate our measure.

Results: Our experiments showed a strong correlation between the likelihood of Failed Error Propagation and Squeeziness.

Conclusion: We can conclude that our new notion of Squeeziness can be used as a measure that estimates the probability of Failed Error Propagation being introduced

by a component. As a result, it has the potential to be used as a measure of testability, allowing testers to assess how easy it is to test either the whole system or a

single component. We considered a simple model (Finite State Machines) but the notions and results can be extended/adapted to deal with more complex state-based

models, in particular, those containing data.

1. Introduction

Software testing [3,35] is the main validation technique used to in-
crease the reliability of complex software systems. Software testing has
traditionally been considered to be an informal technique [18] . How-
ever, it is now known that testing activities can have a formal basis.
Formal testing is an active research area [7,10,25] and the existence of
several tools that support formal testing has led to the recognition that
the combination of formal methods and testing facilitates test automa-
tion [42] .

Failed Error Propagation (FEP) is a situation in which a faulty state-
ment in the System Under Test (SUT) is executed during testing, the
fault corrupts the internal state of the SUT, but the expected output
is observed. Naturally, in order for a statement to be a fault there
must be at least one input under which FEP does not occur. FEP is
a form of fault masking and can reduce the effectiveness of testing:
we might fail to find a fault despite executing the faulty statement in
testing. Empirical studies have shown that many systems suffer from

∗ Corresponding author.

E-mail addresses: aibias@ucm.es (A. Ibias), r.hierons@sheffield.ac.uk (R.M. Hierons), manuelnu@ucm.es , mn@sip.ucm.es (M. Núñez).

FEP [4,33] . For example, Masri et al. [33] found that in 13% of the pro-
grams that they examined, a total of 60% or more of the tests suffered
from FEP.

Recent work introduced the notion of Squeeziness [4,13] to capture
FEP, with Squeeziness being a measure of the information (entropy)
lost by a channel (the SUT) that takes input and returns output. The
essential idea is that if the SUT maps two or more inputs to the same
output then this channel (the SUT) can lead to a loss of information:
if we know the program output then we may not know the program

input that caused this (this is the loss of information). The motivation
for looking at Squeeziness was that FEP can be caused by two program

states, a correct program state and a faulty program state, being mapped
to the same output, which is exactly this type of loss of information.
In experiments, there was a rank correlation of close to 0.95 between
measures of Squeeziness and the likelihood of FEP [4] . In addition, it
has been found that the likelihood of FEP more strongly correlates with
Squeeziness than with the Domain to Range Ratio [13] .

https://doi.org/10.1016/j.infsof.2019.04.012

Received 5 September 2018; Received in revised form 29 March 2019; Accepted 23 April 2019

Available online 24 April 2019

0950-5849/© 2019 Elsevier B.V. All rights reserved.

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Fig. 1. Representation of our testing scenario.

The goal of this paper is to adapt the notion of Squeeziness to a
black box testing scenario in which a software system is composed of
components and we have models of these components. We consider
the situation in which we have a component C with model M and this
component receives a sequence of inputs from another component C P .

1

The sequence received by C is an input sequence for C and an out-
put sequence for C P and might result, for example, from communica-
tions through an internal network, a sequence of method/function calls,
or shared storage/memory. We assume that these values (sent by C P

to C) are not directly observed by the tester. Further, C produces a
sequence of outputs that are either observed during testing or are re-
ceived by another component. A graphical representation of this type
of systems can be found in Fig. 1 . It is entirely possible that C P pro-
duces an unexpected sequence but component C maps the expected
and unexpected sequences to the same output sequence. If this occurs,
C introduces a form of FEP that makes it more difficult to find faults
in C P .

In this paper we concentrate on a particular type of model, the Fi-
nite State Machine (FSM). An FSM has a finite set of states and tran-
sitions between the states, with each transition having a label: an in-
put/output pair. The behaviour represented by an FSM is the set of in-
put/output sequences that label paths from the initial state of the FSM .
One of the main reasons for our interest in the FSM formalism is that it
has been widely used as the basis for model-based testing (MBT). This
line of work (MBT from FSM specifications) started in the 1950s with
Moore’s seminal paper [34] , with Hennie [23] later (in the 1960s) intro-
ducing the first FSM based test generation algorithm. Many FSM based
test generation algorithms have since been devised (see, for example
[12,30,31,39]). The initial work was largely in the context of testing
hardware, since processors are typically specified as FSMs. Since the
1980s FSMs have also been used in the testing of communications pro-
tocols. More generally, FSMs are used as the basis for testing a wide
variety of systems including embedded systems [9,36] and parts of op-
erating systems [19,20] . Although FSM s do not directly model data, an
FSM is typically extracted from a model (in a richer language) by ei-
ther applying an abstraction or expanding out the data (possibly after
applying an abstraction).

In this paper we assume that we have an FSM specification of the
component C being analysed. In this setting, component C can intro-
duce FEP, and so potentially make testing more difficult, if there is a
case where a component C P should send sequence 𝛼 to C , instead C P

sends 𝛼′ ≠ 𝛼 to C , and C produces the same output sequence 𝛽 in response
to 𝛼 and 𝛼′ . Since an FSM receives a sequence of inputs and produces
a sequence of outputs, in our setting, 𝛼 and 𝛼′ will be potential inputs
of C and 𝛽 will be a potential output of C . Naturally, since 𝛼 and 𝛼′ are
sent to C , and as we already mentioned, they are not directly observed
by the tester. This situation is illustrated in Fig. 2 . Assume that we want
to implement the component C p given in the upper part of Fig. 2 and
that this component will be paired with component C . In this setting, it
will be difficult to unmask a faulty implementation of C p , such as the
one shown in the lower part of Fig. 2 , because C returns the same re-
sponse, the sequence z 1 z 1 , to the sequences y 1 y 1 (produced by a correct
implementation of C p receiving x 1 x 1) and y 2 y 2 (produced by a faulty
implementation of C p also receiving x 1 x 1). Note, as we already said,
that a tester will not be able to observe whether the sequence provided
to C is y 1 y 1 or y 2 y 2 .

1 C might actually receive input from multiple components; allowing this will

not affect the underlying approach but complicates the exposition.

Fig. 2. A case of fault masking.

Unfortunately, we cannot simply reuse the previous ap-
proach [13] and results; we are considering a different scenario and
also a different source of FEP. The following are the key differences.

1. We are interested in a different type of FEP . Previous work looked at
the FEP within a program: the potential for a program to mask faults
within itself. In contrast, we are interested in the potential for one
program (component) C to mask faults in another component C P .

2. We are interested in programs that are state-based . In contrast, previ-
ous work looked at programs that retain no state information (after
processing an input). As a result, the input domain of an SUT is the
set of all possible input sequences. This complicates the underlying
theory since:
(a) The input domain is infinite (previous work assumed finite input

domains [4]).
(b) We cannot consider arbitrary probability distributions over the

set of input sequences.
Regarding the second point, we need to carefully consider how we
can assign probabilities to input sequences since, for example, it may
not make sense to have input sequences 𝜎1 and 𝜎2 such that 𝜎1 is a
prefix of 𝜎2 and 𝜎2 is given a higher probability than 𝜎1 .

3. Previous work considered the source code of a program and we in-
stead base the analysis on models . This brings a number of benefits,
including the potential to apply the analysis at an earlier stage.

There were several reasons for us reconsidering the previous decision
to base the analysis on the source code. A first practical concern is that
approaches that analyse the source code are less likely to scale to situ-
ations in which there are multiple components. There is also the issue
that for state-based systems there is a need to reason about the change
in state caused when we execute the SUT with an input: state-based
models make this explicit. Moreover, the source code of a component
might not be available (e.g. if the development of a component has been
outsourced). Finally, analysis based on models might be applied at an
earlier stage of the development process. Note that detailed state-based
models are used in a number of important application domains such
as automotive and avionic systems; here the models are typically suffi-
ciently detailed to be executable and also for code to be automatically
generated from them

2 As a result, we chose to consider the case where
we have models of the components and wish to analyse these models.
Note that, as explained above, this means that our scenario (and source
of FEP) differs from the previous work, as does the entity being analysed.

2 There are a number of widely used tools such as STATEMATE and STATE-

FLOW that support this.

133

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Although the FSM formalism is relatively simple, we establish the
basis of a framework to test in more complex black-box contexts be-
cause the basis of testing is similar: we apply a sequence of inputs and
decide whether the observed sequence of outputs is consistent with the
specification of the system [20] . Further, an FSM might represent the
semantics of a model written in a more expressive language. In addition
to extending the notion of Squeeziness to a black box scenario, we eval-
uated this through two types of experiments. The first approach used
was to model the component C in terms of the sizes of the inverse im-
ages of the possible output sequences; this was used to compare the
probability of FEP with our proposed metrics and also the Domain To
Range Ratio of C . A weakness of this approach, however, is that we can-
not guarantee that the simulations correspond to potential FSM models.
As a result, we also carried out experiments using randomly generated
FSM s.

The overall results were encouraging, with there being a high corre-
lation between our proposed measures and the probability of FEP. As a
result, the proposed measures could act as testability measures for state-
based testing and have the potential to help direct testing. There are two
practical reasons for the interest in measures associated with FEP. First,
there may be potential to generate test cases that achieve a given test
purpose, such as testing a component C P , and that have a low probabil-
ity of FEP. Second, such measures might be used to estimate testability;
we might expect it to be particularly difficult for testing to find a fault
in a component C P that sends its output to another component C that is
likely to introduce FEP. Measures of testability might be used to direct
additional testing towards difficult to test areas of a system.

As we have explained, there are several differences between the orig-
inal scenario [13] and ours and these include the type of FEP considered
and the entity being analysed. These differences introduced a number of
technical challenges. First, we had to reshape the definition of Squeezi-
ness because inputs and outputs have a different treatment in each sce-
nario. In the previously considered white-box case, a program receives
an input (a tuple of values) and returns an output (again, a tuple of val-
ues). Inputs and outputs were drawn from finite sets allowing, for ex-
ample, the use of uniform distributions. In the scenario that we consider
in this paper, an input is a sequence of input actions while an output is
also a sequence, in this case of output actions. This leads to two issues,
the first of which is that the ‘input set’ is infinite (it is the set of all input
sequences), as is the ‘output set’. The second issue is that, even if we
bound sequences to make the sets finite, we cannot define a uniform

distribution over the sets of inputs and outputs because, for example, a
prefix of a sequence should have a higher probability than the whole
sequence.

There is a significant body of work on FEP and fault masking for
white-box testing [6,33,44,46] and black-box testing [21,37,38,45] . As
mentioned, previous work has also defined Squeeziness in a white-box
scenario [4,13] . However, we are not aware of any work that uses an In-
formation Theory foundation for addressing FEP in a black-box context.
Naturally, there is work that looks at testing systems that are composed
of components for which we have FSM models [5,15,41] but this previ-
ous work has considered rather different concerns. There has also been
previous work that uses information theoretic measures in testing. For
example, Information Theory has been used to devise new measures of
test diversity [16,17] , with the potential to either direct test generation
towards diverse test suites or facilitate the development of new test crite-
ria. Another line of work, though not one that uses Information Theory,
aims to find diverse tests where diversity refers to the test outputs [2] . It
is interesting to note that recent work found that white-box and black-
box notions of diversity were both effective when searching for a good
order of the test cases in a given test suite (the test prioritisation prob-
lem) [22] .

The rest of the paper is organised as follows. In Section 2 we
introduce concepts and terminology used in the rest of the paper.
Section 3 develops our novel information theoretic measures for FSM s.
Section 4 then describes the empirical evaluation carried out and the re-

sults of the different sets of experiments. Finally, in Section 5 we present
our conclusions and some lines of future work.

2. Preliminaries

In this section we present the main definitions and concepts, regard-
ing Finite State Machines (FSM s), that we use throughout this paper. The
material presented in this section is based on classical work on testing
from FSM s [32] . Most of the concepts are based on the original sources
while some notation is adapted to facilitate the formulation of subse-
quent definitions.

Given a set A , we let A

∗ denote the set of finite sequences of elements
of A ; 𝜖 ∈A

∗ denotes the empty sequence. We let 𝐴

+ denote the set of non-
empty sequences of elements of A. A

k denotes the set of sequences with
length k ≥ 1. We let | A | denote the cardinal of set A . Given a sequence
𝜎 ∈A

∗ , we have that | 𝜎| denotes its length. Given a sequence 𝜎 ∈A

∗ and
a ∈A , we have that 𝜎a denotes the sequence 𝜎 followed by a and a 𝜎
denotes the sequence 𝜎 preceded by a .

Throughout this paper we let I be the set of input actions and O be
the set of output actions. It is important to differentiate between input
actions and inputs of the system. In our context an input of a system

will be a non-empty sequence of input actions, that is, an element of 𝐼 +

(similarly for outputs and output actions).
A Finite State Machine is a (finite) labelled transition system in which

transitions are labelled by an input/output pair. We use this formalism

to define processes.

Definition 1. We say that 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) is a Finite State Machine

(FSM), where Q is a finite set of states, q in ∈Q is the initial state, I
is a finite set of input actions, O is a finite set of output actions, and
T ⊆Q × (I ×O) ×Q is the transition relation. A transition (q , (i, o), q ′) ∈T ,

also denoted by 𝑞
𝑖 ∕ 𝑜
←← ← ← ← ← ← ← ← ← ← ← → 𝑞 ′ or by (q, i / o, q ′), means that from state q after

receiving input i it is possible to move to state q ′ and produce output o .
We say that M is deterministic if for all q ∈Q and i ∈ I there exists at

most one pair (q ′ , o) ∈Q ×O such that (q, i / o, q ′) ∈T . In this paper we
consider deterministic FSM s.

We say that M is input-enabled if for all q ∈Q and i ∈ I there exists (q ′ ,
o) ∈Q ×O such that (q, i / o, q ′) ∈T .

We let FSM (𝐼, 𝑂) denote the set of FSM s with input set I and output
set O .

A process can be identified with its initial state and we can define
a process corresponding to a state q of M by making q the initial state.
Thus, we use states and processes and their notation interchangeably.
An FSM can be represented by a diagram in which nodes represent states
of the FSM and transitions are represented by arcs between the nodes.
We use a double circle to denote the initial state.

As usual, we assume that the System Under Test (SUT) is input-
enabled: the SUT should be able to react, somehow, to any external
stimulus. In particular, if the tester applies an input action at a certain
stage, then the system should be able to provide a response (that is, an
output action). Actually, if an input cannot be applied in a state of the
SUT, then we can assume that there is a response to the input that re-
ports that this input is blocked and so an FSM that is not input-enabled
can be converted into one that is. In addition, it has been shown that the
problem of testing from an FSM that is not input-enabled can be mapped
to the problem of testing from an input-enabled FSM [24,40] . As a re-
sult, the assumption that FSM s are input-enabled is not a significant re-
striction. However, we do not force specifications to be input-enabled.
In particular, all the definitions and results concerning Squeeziness will
not assume input-enableness. As stated in the previous definition, we
consider the case where both specifications and SUTs are determinis-
tic. This is similar to the previously explored white-box scenario that
assumed that programs are deterministic.

Our main goal while testing is to decide whether the behaviour of
an SUT conforms to the specification of the system that we would like

134

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

to build. In order to detect differences between specifications and SUTs,
we need to compare the behaviours of specifications and SUTs and the
main notion to define such behaviours is given by the concept of trace .

Definition 2. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM . We use the following
notation.

1. Let 𝜎 = (𝑖 1 , 𝑜 1) …(𝑖 𝑘 , 𝑜 𝑘) ∈ (𝐼 × 𝑂) ∗ be a sequence of input/output
actions and q be a state. We say that M can perform 𝜎 from q

if there exist states 𝑞 1 … 𝑞 𝑘 ∈ 𝑄 such that for all 1 ≤ j ≤ k we have

(𝑞 𝑗−1 , 𝑖 𝑗 ∕ 𝑜 𝑗 , 𝑞 𝑗) ∈ 𝑇 , where 𝑞 0 = 𝑞. We denote this by either 𝑞
𝜎

⇒ 𝑞 𝑘

or 𝑞
𝜎

⇒. If 𝑞 = 𝑞 𝑖𝑛 then we say that 𝜎 is a trace of M . We denote by
𝚝𝚛𝚊𝚌𝚎𝚜 (𝑀) the set of traces of M . Note that for every state q we have

that 𝑞
𝜖

⇒ 𝑞 holds. Therefore, 𝜖 ∈ 𝚝𝚛𝚊𝚌𝚎𝚜 (𝑀) for every FSM M .
2. Let 𝛼 = 𝑖 1 … 𝑖 𝑘 ∈ 𝐼 ∗ be a sequence of input actions and q be a state.

We define 𝚘𝚞𝚝 𝑀

(𝑞 , 𝛼) as the set

{

𝑜 1 … 𝑜 𝑘 ∈ 𝑂

∗ |𝑞 (𝑖 1 ,𝑜 1)…(𝑖 𝑘 ,𝑜 𝑘)
⟹

}

Note that if M is deterministic then this set is either empty or a single-
ton. In the last case we will sometimes write 𝚘𝚞𝚝 𝑀

(𝑞 , 𝛼) = 𝑜 1 , … , 𝑜 𝑘 .
3. Let q ∈Q be a state. We define 𝚍𝚘𝚖 𝑀

(𝑞) as the set

{ 𝛼 ∈ 𝐼 ∗ |𝚘𝚞𝚝 𝑀

(𝑞 , 𝛼) ≠ ∅}

If 𝑞 = 𝑞 𝑖𝑛 then we simply write 𝚍𝚘𝚖 𝑀

. Similarly, we define 𝚒𝚖𝚊𝚐𝚎 𝑀

(𝑞)
as the set

{

𝑜 1 … 𝑜 𝑘 ∈ 𝑂

∗ |∃𝑖 1 … 𝑖 𝑘 ∈ 𝐼 ∗ ∶ 𝑞
(𝑖 1 ,𝑜 1)…(𝑖 𝑘 ,𝑜 𝑘)

⟹
}

If 𝑞 = 𝑞 𝑖𝑛 then we simply write 𝚒𝚖𝚊𝚐𝚎 𝑀

. We denote by 𝚍𝚘𝚖 𝑀,𝑘 the set
𝚍𝚘𝚖 𝑀

∩ 𝐼 𝑘 . Similarly, We denote by 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 the set 𝚒𝚖𝚊𝚐𝚎 𝑀

∩ 𝑂

𝑘 .

Note that if M is input-enabled then for all k > 0 we have that
𝚍𝚘𝚖 𝑀,𝑘 = 𝐼 𝑘 and, therefore, for all 𝛼 ∈ I k we have that 𝚘𝚞𝚝 𝑀

(𝑞 , 𝛼) ≠ ∅.

3. Squeeziness for FSM s

In this section we show how the notion of Squeeziness can be adapted
to the situation in which we would like to reason about the FEP intro-
duced by a component C that has FSM specification M . As previously
discussed, such FEP affects the testing of previous components (com-
ponents that send output to C) since it might lead to a faulty sequence
from a previous component C P being mapped to the expected output
sequence by C .

An FSM M can be seen as a function transforming sequences of input
actions belonging to 𝚍𝚘𝚖 𝑀

into sequences of output actions belonging to
𝚒𝚖𝚊𝚐𝚎 𝑀

. Therefore, we could say that M receives an input (an element
of I ∗) and returns an output (an element of O

∗ , with the same length as
the input). We define projections of this function: for a natural number
k , we restrict the function to the set of sequences of input actions that
are of length k . In particular, these projections will allow us to consider
finite sets of inputs (all the sequences of inputs of a certain length). We
also introduce the notion of collision : two inputs collide if they produce
the same output.

Definition 3. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM . We define 𝑓 𝑀

∶
𝚍𝚘𝚖 𝑀

⟶ 𝚒𝚖𝚊𝚐𝚎 𝑀

as the function such that for all 𝛼 ∈ 𝚍𝚘𝚖 𝑀

we have
𝑓 𝑀

(𝛼) = 𝛽 for 𝛽 such that 𝚘𝚞𝚝 𝑀

(𝑞 𝑖𝑛 , 𝛼) = { 𝛽} .
Let k > 0. We define f M,k to be the function f M

∩ (I k ×O

k), where we
use the function f M

to denote the associated set of pairs. Let 𝛽 ∈ 𝚒𝚖𝚊𝚐𝚎 𝑀

.
We define 𝑓 −1

𝑀

(𝛽) to be the set { 𝛼 ∈ 𝐼 ∗ |𝑓 𝑀

(𝛼) = 𝛽} .
Let 𝛼1 , 𝛼2 ∈ I ∗ . We say that 𝛼1 and 𝛼2 collide for M if 𝛼1 ≠ 𝛼2 and

𝑓 𝑀

(𝛼1) = 𝑓 𝑀

(𝛼2) .

Note that if two sequences of input actions collide then they must
have the same length (otherwise, the returned sequences of output ac-
tions would have different length and, therefore, cannot be equal). Next
we introduce some notation for random variables and recall the con-
cept of entropy [43] associated with a random variable and Squeezi-
ness [13] of a function. The concept of entropy is a “measure of the
average uncertainty in the random variable. It is the number of bits on
average required to describe the random variable ” [43] . In other words,
entropy is a measure of the amount of information of a given set with a
random variable ranging over it. The concept of Squeeziness then is de-
fined as the amount of information lost after the application of a given
function, that is, the difference between the amount of information (en-
tropy) of the domain of the function and the amount of information
(entropy) of the range of the function. In a broader sense, we can con-
sider it to measure the difference between the amount of information
that we have before applying the function and the amount of informa-
tion that remains after applying the function. We are interested in total
functions since we consider input-enabled FSMs 3

Definition 4. Let A be a set and 𝜉A be a random variable over A . We
denote by 𝜎𝜉𝐴

the probability distribution induced by 𝜉A . The entropy of
the random variable 𝜉A , denoted by (𝜉𝐴) , is defined as:

(𝜉𝐴) = −

∑
𝑎 ∈𝐴

𝜎𝜉𝐴
(𝑎) ⋅ log 2 (𝜎𝜉𝐴

(𝑎))

Let 𝑓 ∶ 𝐴 ⟶ 𝐵 be a total function and consider two random vari-
ables 𝜉A and 𝜉B ranging, respectively, over A and B . The Squeeziness of
f , denoted by 𝚂𝚚 (𝑓) , is defined as the loss of information after applying
f to A , that is, (𝜉𝐴) − (𝜉𝐵) .

As we said, Squeeziness represents the amount of information lost
by a given function. Since we have shown that FSM s can be seen as
functions from a set of sequences of input actions to a set of sequences
of output actions, we can adapt Squeeziness to deal with FSM s. First,
we need to define how inputs are chosen and outputs are returned. We
consider a probabilistic view where a random variable associated with
each set of relevant inputs/outputs is taken into account. We studied
two possible alternatives:

• We associate a random variable with the whole set of inputs/outputs
(that is, a random variable induces a probability distribution over I ∗

and O

∗ , respectively).
• We associate a random variable with the set of inputs/outputs of a

certain length (that is, there are different random variables associ-
ated with I 1 , I 2 , ..., O

1 , O

2 , ...).

In this paper we consider the second approach because it gives us an
incremental procedure to compute a sequence of consecutive values of
Squeeziness so that we can analyse how the series is evolving . Actually,
the input sequence length used will depend on the amount of testing
to be carried out since this will determine the lengths of the input se-
quences that a component is likely to receive. Note also that there is po-
tential to use Squeeziness values, for different input sequence lengths, to
inform the choice of test cases. In other words, we use these values with
the aim of using test cases that minimise the likelihood of FEP occur-
ring, that is, this approach provides a way to know, for a given length,
if the probability of having FEP, once we have tested all the possible
inputs with the given length, will be greater than 0 or not. Despite con-
centrating on the second approach, we believe that the first approach
is also interesting. We consider the development of the first approach,
and a comparison with the second approach, to be an interesting line of
future work.

We have that 𝚍𝚘𝚖 𝑀,𝑘 represents the possible inputs of length equal
to k that M can perform (therefore, other elements of I k have prob-
ability equal to zero) and 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 represents the possible outputs

3 Recall that a partial FSM can be mapped to an input-enabled FSM .

135

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

of length equal to k that M can produce after receiving an element
of 𝚍𝚘𝚖 𝑀,𝑘 . Therefore, defining the random variables that range over
each set as 𝜉𝚍𝚘𝚖 𝑀,𝑘

and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
, we have that the entropy will be the

amount of information of each set, and the difference of entropy (that
is, (𝜉𝚍𝚘𝚖 𝑀,𝑘

) − (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
)) represents the amount of information de-

stroyed by M . This is the notion of Squeeziness that we use in this paper.

Definition 5. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0. Let us con-
sider two random variables 𝜉𝚍𝚘𝚖 𝑀,𝑘

and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
ranging, respectively,

over the domain and image of f M,k . The Squeeziness of M at length k is
defined as

𝚂𝚚 𝑘 (𝑀) = (𝜉𝚍𝚘𝚖 𝑀,𝑘
) − (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

)

Squeeziness for FSM s is an interesting notion that has some unex-
pected properties. For example, it is not monotonic with respect to k .
That is, there exist FSM s where using longer sequences can solve a loss
of information produced by shorter sequences.

Example 1. Consider M , depicted below, where q 0 is the initial state.

We have that the value of Squeeziness for 𝑘 = 1 , assuming a uniform

distribution of probabilities, is computed by the following expression

2 ⋅
(
−

1
2
⋅ log 2

(1
2

))
−

(
−1 ⋅ log 2 (1)

)
= log 2 (2) = 1

because we have |𝚍𝚘𝚖 𝑀, 1 | = 2 and each input of 𝚍𝚘𝚖 𝑀,𝑘 has probability
1
2 while |𝚒𝚖𝚊𝚐𝚎 𝑀, 1 | = 1 and this output has probability 1. Meanwhile,
for 𝑘 = 2 we have

4 ⋅
(
−

1
4
⋅ log 2

(1
4

))
− 4 ⋅

(
−

1
4
⋅ log 2

(1
4

))
= 0

because we have |𝚍𝚘𝚖 𝑀, 2 | = 4 and |𝚒𝚖𝚊𝚐𝚎 𝑀, 2 | = 4 and each input or out-

put has probability 1 4 due to the uniform distribution assumption.
Note that obtaining a value of Squeeziness equal to zero for a cer-

tain value of k does not imply that Squeeziness will be equal to zero for
greater values of k . For example, if we add to q 3 , q 4 , q 5 and q 6 two out-
going transitions labelled, respectively, by i 1 / o 1 and i 2 / o 1 and reaching
a new state q 7 , then we obtain a value of Squeeziness greater than 0 for
𝑘 = 3 .

An important remark concerning random variables associated with
inputs and outputs is that given an FSM M, k > 0 and a random variable
𝜉𝚍𝚘𝚖 𝑀,𝑘

we have that the probability distribution of the random variable
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

is completely determined. This is because for each element 𝛽 ∈
𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 we have that

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽) =

∑
𝛼∈𝑓 −1

𝑀

(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

The following result is immediate from the definition of entropy and
the previous explanation concerning how the random variable associ-
ated with outputs is determined by the one corresponding to inputs.

Lemma 1. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0 . If f M,k is bijective

then 𝚂𝚚 𝑘 (𝑀) = 0 .

Next, we present an alternative formulation of Squeeziness. The
proof of the following result, given in the appendix, follows from the par-
tition property of entropy [14] and the definition of 𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

in terms

of 𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
. First, we give an auxiliary result concerning conditional dis-

tributions of random variables (the proof is also in the appendix). In the
following, 𝜉1 | 𝜉2 denotes the conditional random variable 𝜉1 given 𝜉2 .

Lemma 2. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0 . Let us consider

two random variables 𝜉𝚍𝚘𝚖 𝑀,𝑘
and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

ranging, respectively, over the

domain and image of f M,k . We have that (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) = 0 .

Proposition 1. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0 . Let us con-

sider two random variables 𝜉𝚍𝚘𝚖 𝑀,𝑘
and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

ranging, respectively, over

the domain and image of f M,k . We have that

(𝜉𝚍𝚘𝚖 𝑀,𝑘
) = (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

) − (𝑀, 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
)

where the term (𝑀, 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
) is equal to

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽)⋅

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

𝜎𝜉
𝑓 −1
𝑀

(𝛽)
(𝛼) ⋅ log 2 (𝜎𝜉

𝑓 −1
𝑀

(𝛽)
(𝛼))

⎞ ⎟ ⎟ ⎠
A trivial corollary of the previous result provides an alternative defi-

nition of Squeeziness where the value is computed in terms of the inverse
images partition of the input space taking into account, as previously ex-
plained, that we have

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽) =

∑
𝛼∈𝑓 −1

𝑀

(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

Therefore, we only use the probability distribution on inputs given by
𝜉𝚍𝚘𝚖 𝑀,𝑘

.

Corollary 1. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0 . Let us consider

a random variable 𝜉𝚍𝚘𝚖 𝑀,𝑘
ranging over the domain of f M,k . We have that

𝚂𝚚 𝑘 (𝑀) = −

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

⎞ ⎟ ⎟ ⎠ ⋅ 𝑀

(𝛽)

where the term  𝑀

(𝛽) is equal to

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝑓 −1

𝑀

(𝛽))
⋅ log 2

⎛ ⎜ ⎜ ⎝
𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘

(𝛼)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝑓 −1

𝑀

(𝛽))

⎞ ⎟ ⎟ ⎠
⎞ ⎟ ⎟ ⎠

The above notion of Squeeziness is parameterised by the distribution
over inputs to the function (and so input sequences). If we know the ac-
tual distribution then we can use this. If we do not know the distribution
then there is a need to choose one and we now discuss two approaches
to this.

3.1. Maximum entropy principle

In general, it is not possible to know the probability distribution that
ranges over the inputs. Therefore, if we want to have an estimation of
the different values of Squeeziness for a given FSM , then we need to
make an assumption about this distribution. There are different possibil-
ities. For example, we can assume maximum entropy , that is, we choose
a probability distribution that maximises the entropy. If there are no
further restrictions, then maximum entropy is obtained with a uniform

distribution [14] . In this case, the weight of a single element of 𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
is

1 |𝚍𝚘𝚖 𝑀,𝑘 | . Thus, the weight of the inverse image of an output 𝛽 ∈ 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

is equal to
|𝑓 −1

𝑀

(𝛽) ||𝚍𝚘𝚖 𝑀,𝑘 | . Finally, Squeeziness under the assumption of having

136

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

a uniform distribution over inputs is equal to

𝚂𝚚 𝑘 (𝑀) = −

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

1 |𝚍𝚘𝚖 𝑀,𝑘 |
⎞ ⎟ ⎟ ⎠

⋅

⎛ ⎜ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

1 |𝚍𝚘𝚖 𝑀,𝑘 ||𝑓 −1
𝑀

(𝛽) ||𝚍𝚘𝚖 𝑀,𝑘 |
⋅ log 2

⎛ ⎜ ⎜ ⎜ ⎝
1 |𝚍𝚘𝚖 𝑀,𝑘 ||𝑓 −1

𝑀

(𝛽) ||𝚍𝚘𝚖 𝑀,𝑘 |
⎞ ⎟ ⎟ ⎟ ⎠
⎞ ⎟ ⎟ ⎟ ⎠

= −

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝑓 −1
𝑀

(𝛽) ||𝚍𝚘𝚖 𝑀,𝑘 |
⋅

(|𝑓 −1
𝑀

(𝛽) ||𝑓 −1
𝑀

(𝛽) | ⋅ log 2
(

1 |𝑓 −1
𝑀

(𝛽) |
))

= −

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝑓 −1
𝑀

(𝛽) ||𝚍𝚘𝚖 𝑀,𝑘 | ⋅ log 2
(

1 |𝑓 −1
𝑀

(𝛽) |
)

=

1 |𝚍𝚘𝚖 𝑀,𝑘 | ⋅ ∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝑓 −1
𝑀

(𝛽) | ⋅ log 2 (|𝑓 −1 𝑀

(𝛽) |)
3.2. Maximum loss of information

Another strategy considers the worst case scenario, that is, we may
suppose that the chosen probability distribution induces the maximum

loss of information. In other words, we look for a probability distri-
bution that maximises Squeeziness. This distribution is uniformly dis-
tributed in the largest inverse image of an element of the outputs and
zero elsewhere [13] . Formally, consider 𝛽′ ∈ 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 such that for all
𝛽 ∈ 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 we have that |𝑓 −1

𝑀

(𝛽′) | ≥ |𝑓 −1
𝑀

(𝛽) |. Then,

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼) =

⎧ ⎪ ⎨ ⎪ ⎩
1 |𝑓 −1

𝑀

(𝛽′) | if 𝛼 ∈ 𝑓 −1
𝑀

(𝛽′)

0 otherwise

Using this probability distribution, Squeeziness is defined as fol-
lows:

𝚂𝚚 𝑘 (𝑀) = −

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽′)

1 |𝑓 −1
𝑀

(𝛽′) |
⎞ ⎟ ⎟ ⎠

⋅
⎛ ⎜ ⎜ ⎝

∑
𝛼∈𝑓 −1

𝑀

(𝛽′)

1 |𝑓 −1
𝑀

(𝛽′) | ⋅ log 2
(

1 |𝑓 −1
𝑀

(𝛽′) |
) ⎞ ⎟ ⎟ ⎠

[2 𝑒𝑚] = −

|𝑓 −1
𝑀

(𝛽′) ||𝑓 −1
𝑀

(𝛽′) | ⋅
(|𝑓 −1

𝑀

(𝛽′) ||𝑓 −1
𝑀

(𝛽′) | ⋅ log 2
(

1 |𝑓 −1
𝑀

(𝛽′) |
))

[1 . 2 𝑒𝑚] = − log 2

(

1 |𝑓 −1
𝑀

(𝛽′) |
)

[1 . 2 𝑒𝑚] = log 2 (|𝑓 −1 𝑀

(𝛽′) |)
Let us remark that this probability distribution maximises Squeezi-

ness because for any other possible distribution 𝜉𝚍𝚘𝚖 𝑀,𝑘
we have

𝚂𝚚 𝑘 (𝑀) ≤ log 2 (|𝑓 −1 𝑀

(𝛽′) |) . This result is an immediate consequence of the
following result [13] .

Lemma 3. Let us consider 2 · n non-negative real numbers

𝑎 1 , … , 𝑎 𝑛 , 𝑝 1 , … , 𝑝 𝑛 ∈ ℝ

+ . If for all 1 ≤ i ≤ n we have that a 1 ≥ a i and

Σi p i ≤ 1, then Σi (p i · a i) ≤ a 1 .

An important consequence of this result is that it allows us to de-
fine a normalisation of the value of Squeeziness, if needed, so that we
can have a concept of normalised Squeeziness . Later we will see that in
the experiments we explored this normalised Squeeziness, which was
obtained by dividing Squeeziness by the size of the maximum inverse
domain of any output.

3.3. Domain to Range Ratio vs. Squeeziness

It is difficult to compare Squeeziness with other notions to compute
fault masking because the literature is very scarce. One of the few no-
tions in this line is the Domain to Range Ratio (DRR) [46] . In this section
we explore how Squeeziness and DRR relate. In the next section we re-
port on results of experiments that compared DRR with our notion of
Squeeziness. First, we give the original definition.

Definition 6. Let 𝑓 ∶ 𝐼 ⟶ 𝑂 be a total and surjective function. We
define the Domain to Range Ratio of f , denoted by 𝙳𝚁𝚁 (𝑓) , as |𝐼||𝑂| .

Next, we adapt this notion to our framework. Note that our functions

are total and surjective because we restrict ourselves to their domains
and ranges.

Definition 7. Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0. Let us con-
sider 𝑓 𝑀,𝑘 ∶ 𝚍𝚘𝚖 𝑀,𝑘 ⟶ 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 . We define the Domain to Range Ratio

for M and k , denoted by 𝙳𝚁𝚁 (𝑓 𝑀,𝑘) , as
|𝚍𝚘𝚖 𝑀,𝑘 ||𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 | .

The next result, whose proof is in the appendix, shows that this mea-
sure is inconsistent with Squeeziness.

Lemma 4. There exist FSM s M 1 and M 2 and k > 0 such that 𝙳𝚁𝚁 (𝑓 𝑀 1 ,𝑘
) =

𝙳𝚁𝚁 (𝑓 𝑀 2 ,𝑘
) but 𝚂𝚚 𝑘 (𝑀 1) ≠ 𝚂𝚚 𝑘 (𝑀 2) .

There exist FSM s M 1 and M 2 and k > 0 such that 𝙳𝚁𝚁 (𝑓 𝑀 1 ,𝑘
) <

𝙳𝚁𝚁 (𝑓 𝑀 2 ,𝑘
) but 𝚂𝚚 𝑘 (𝑀 1) > 𝚂𝚚 𝑘 (𝑀 2) .

4. Empirical evaluation

In this section we outline the different experiments carried out to
evaluate the proposed measure. First, we describe the experiments that
used simulations, that is, instead of FSM 𝑠 we consider sequences of in-
put/output actions. Next we explain the experiments that used FSM s.
We conclude the section with an evaluation of the threats to validity,
and how they were addressed, and a discussion about the obtained re-
sults and some of their implications.

4.1. Evaluation via simulations

We outline an evaluation in which we simulated an FSM by randomly
generating the sizes of the inverse images of the output sequences. We
designed the simulation in this way since it represents the notion of FEP
that we consider in this paper: one in which one component C masks
a fault in another component C P by mapping two potential output se-
quences 𝛼 and 𝛼′ for C P (and so input sequences for C) to the same output
sequence 𝛽. This scenario corresponds to FEP if, for example, 𝛼 is an ex-
pected (correct) output sequence for C P and 𝛼′ is a possible faulty output
sequence (for C P). Observe that this type of FEP occurs if and only if 𝛼
and 𝛼′ are both in the inverse image of the same output sequence 𝛽. As
a result, in order to reason about the probability of FEP it is sufficient to
retain only the information about the sizes of the inverse images of out-
put sequences and so we simulate these values (the sizes of the inverse
images of output sequences).

In this section we first introduce a collision measure, which is the
probability of FEP occurring. Although this collision measure could po-
tentially be used to reason about FEP, as usual for this type of measure,
it is computationally expensive to compute it. Therefore, it is impor-
tant to study alternative measures, based on Information Theory, that
are either less computationally expensive or that can be efficiently esti-
mated. Having defined the collision measure, we then use experiments
with randomly generated scenarios in order to compare this with our
information theoretic measure and the Domain to Range Ratio.

Research Question 1. Is there a correlation between the measures de-
fined in this paper and the probability of a component introducing FEP
through masking incorrect output produced by earlier components?

137

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

4.1.1. Collisions and FEP

In our context, fault masking (FEP) happens when the expected and
faulty input sequences, received from another component, produce the
same sequence 𝛽 of output actions. If given an FSM M and k > 0 we have
that there exist 𝛽 ∈ 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 such that 𝛼, 𝛼′ ∈ 𝑓 −1

𝑀,𝑘
(𝛽) , with 𝛼 ≠ 𝛼′ , then

there is a collision and this might hide a fault. Next we provide a notion
to compute the probability of having a collision.

Definition 8. Let M be an FSM and k > 0. Let 𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘 = { 𝛽1 , … , 𝛽𝑛 }
and for all 1 ≤ i ≤ n let 𝐼 𝑖 = 𝑓 −1

𝑀,𝑘
(𝛽𝑖) and 𝑚 𝑖 = |𝑓 −1

𝑀,𝑘
(𝛽𝑖) |. We have that

𝑑 =

∑𝑛

𝑖 =1 𝑚 𝑖 is the size of the input space.
Given a uniform distribution over the inputs, the probability of 𝛼

and 𝛼′ both being in the set I i is equal to 𝑝 𝑖 =

𝑚 𝑖 ⋅(𝑚 𝑖 −1)
𝑑 ⋅(𝑑 −1) . We have that the

probability of having a collision in M for sequences of length k , denoted
by 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) , is given by

𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) =

𝑛 ∑
𝑖 =1

𝑚 𝑖 ⋅ (𝑚 𝑖 − 1)
𝑑 ⋅ (𝑑 − 1)

Observe that there is potential to use this measure, 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) , in-
stead of Squeeziness. The problem with using 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) is that it is
computationally hard to compute. While this also applies to Squeezi-
ness, it has the advantage of being an information theoretic measure. As
a result, there is potential to draw on Information Theory research that
has devised techniques that either estimate or bound measures [8,11] .
Note that estimates and bounds will suffice as long as they are useful -
they do not need to be precise. This is in contrast to some applications of
Information Theory, such as security, in which we require guarantees.
We therefore expect that much smaller samples should suffice.

Previous work [13] states that PColl can be seen as a probability
of collisions when the probability distribution over the inputs is uni-
form. However, it is worth to mention that the relationship between
𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) and 𝚂𝚚 𝑘 (𝑀) is not, in general, monotonic. The proof of the
following result is given in the appendix.

Lemma 5. There exist FSM s M 1 and M 2 and k > 0 such that 𝚂𝚚 𝑘 (𝑀 1) <

𝚂𝚚 𝑘 (𝑀 2) but 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀 1) > 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀 2) .

4.1.2. Experimental results

We now report on simulations that compared PColl , Sq and DRR .
The three measures are defined (assuming uniform distributions over the
inputs) in terms of the sizes of the subdomains (𝑓 −1

𝑀,𝑘
(𝛽)) . Our methodol-

ogy to perform simulations followed the approach used in the original
work on Squeeziness [13] but used a much wider range of scenarios.

First, we fixed the size of the input space (denoted by d) and a max-
imum subdomain size (denoted by m). Next, we generated random in-
tegers between 1 and m until the values summed to d ; if the sum of
the values exceeded d then the last value was suitably reduced. Once
we had these partitions, we computed the three measures. This way, d
represents the number of different inputs of a fixed length k that the sim-

ulated FSM has and each partition (each random number) represents one
output, whose value is the number of inputs that are in the inverse image
of this output (i.e. the number of inputs that generate this output). This
process was repeated 200 times for each pair (d, m) and we computed
the Pearson correlation coefficient between these 200 values of PColl
and the other two measures. We used 120 pairs with d ranging between
10 4 and 2 · 10 9 and m ranging between 10 2 and 10 4 . We also computed
the Spearman Rank correlation coefficient, but the results were almost
identical, so we will not discuss these correlation coefficients. For each
pair (d, m) we performed the entire process twice.

The main result is that there is a strong correlation between PColl
and Sq , with all of the values being greater than 0.96.

We obtained a not so strong correlation between PColl and DRR ,
with all correlations being between 0.86 and 0.67. Interestingly, the cor-
relation between PColl and DRR , appears not to change as we increase
the size of the input domain. This is in contrast to the previous white-box
work, which found that increases in input-domain size led to a reduction

Table 1

Representative results from the simulation.

Input set size Maximum size Correlation of Sq Correlation of DRR

10,000 100 0.968366 0.763623

10,000 100 0.973918 0.783759

10,000 200 0.973016 0.823959

10,000 200 0.967349 0.77492

10,000 10,000 0.967281 0.71496

10,000 10,000 0.966184 0.670497

100,000 500 0.980028 0.836659

100,000 500 0.972878 0.769055

500,000 5000 0.95885 0.743651

500,000 5000 0.969437 0.765643

2,000,000 5000 0.978818 0.810967

2,000,000 5000 0.964455 0.698505

200,000,000 2000 0.974498 0.799512

200,000,000 2000 0.980097 0.843219

1,000,000,000 200 0.978771 0.859822

1,000,000,000 200 0.968844 0.759952

2,000,000,000 5000 0.970575 0.807333

2,000,000,000 5000 0.965495 0.781112

2,000,000,000 10,000 0.969172 0.79843

2,000,000,000 10,000 0.972477 0.783512

in the effectiveness of all measures used [13] . This is promising since it
suggests that effectiveness may be more robust in the context considered
in this paper and so the measures may be effective in a wider range of
scenarios.

A number of the most representative results can be found in Table 1
while the full set of results can be found in the appendix of the paper.
Specifically, we have given the cases that obtain the highest Sq corre-
lation, the highest DRR correlation, the lowest Sq correlation and the
lowest DRR correlation. Also, we give the cases corresponding to the
smallest scenario (that is, input set size of 10,000 and maximum sub-
domain size of 100) and the largest scenario (that is, input set size of
2,000,000,000 and maximum subdomain size of 10,000). Finally, we
have given some cases in which the Sq and/or DRR values are around
the mean of the values of each measure (Sq and DRR). It is important
to note that when we show a case, we display the result of both runs,
although the result of interest need not appear on both runs.

As a side note, we performed an additional experiment but the results
were worse than expected. Specifically, we computed the results also for
the normalised version of Squeeziness that we mentioned in Section 3.2 ,
which is obtained by dividing Squeeziness by the size of the maximum

inverse domain of any output. However, some of the correlations ob-
tained were relatively small (see Table 2). Interestingly, we found very
poor correlations for some of the small input sets, while the correspond-
ing correlations for Squeeziness were good. Therefore, we decided to no
longer consider this form of normalised Squeeziness during the rest of our
experiments.

4.2. Empirical evaluation using FSM s

In the previous section we reported on the results of simulations that
showed that Squeeziness is related to the probability of FEP. The simula-
tions represented general functions, with finite input domains, by giving
the sizes of the inverse images of outputs. However, it is unclear whether
these simulations correspond to functions that can be described using
FSM s and so in this section we report on the results of experiments that
used FSM models. The experiments were driven by one research ques-
tion that assessed whether the measure can be used as intended when
we have FSM s.

Research Question 2. When using FSM s, is there a correlation between
the measures defined in this paper and the probability of a component
introducing FEP through masking incorrect output produced by earlier
components?

138

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table 2

Representative results from the simulation with normalized

Squeeziness.

Input set Maximum Correlation of

lenght size Normalized Squeeziness

10,000 100 0.958346

10,000 100 0.961652

10,000 200 0.950883

10,000 200 0.926334

10,000 5000 0.469301

10,000 5000 0.471505

10,000 10,000 0.427412

10,000 10,000 0.470961

20,000 10,000 0.415143

20,000 10,000 0.515837

100,000 500 0.972534

100,000 500 0.96534

500,000 5000 0.926782

500,000 5000 0.949692

2,000,000 5000 0.971917

2,000,000 5000 0.958095

200,000,000 2000 0.974498

200,000,000 2000 0.980097

1,000,000,000 200 0.978771

1,000,000,000 200 0.968844

2,000,000,000 5000 0.970575

2,000,000,000 5000 0.965495

2,000,000,000 10,000 0.969172

2,000,000,000 10,000 0.972477

Next we report on the results of an experiment that assessed this
research question. First, we briefly explain how we generated the (FSM s)
used in our experiments.

4.2.1. FSM generator

In order to perform our experiments we need to generate FSM s. We
developed an FSM generator that randomly generates FSM s given some
parameters. 4 The first issue we solved was to fix the internal represen-
tation of FSM s. Since our work is not the first one dealing with FSM s
we decided to review the literature and found the OpenFST library [1] .
This library is intended to work with Finite State Transducers (as its
name indicates). These are a kind of FSM s with an input/output pair in
each transition and a weight. Therefore, we simply ignored the weight.
This library also provides shell commands that we can use, in particular,
to generate the associated binary files and to generate the topological
representation of each FSM as an image.

Once we had a proper representation for our FSM s, we developed the
tool for generating those FSM s. The main reason for developing this tool
was to generate a wide range of different FSM s that have some specific
properties. In order to have a general tool that can be used in a range
of experiments, we included some basic parameters:

• #Rep : the number of FSM s we want to generate.
• Max_States : the maximum number of states an FSM can have.
• Min_States : the minimum number of states an FSM must have.
• Max_Transitions : the maximum number of transitions each state of

an FSM can have.
• Min_Transitions : the minimum number of transitions each state of an
FSM must have.

• #Inputs : the number of inputs.
• #Outputs : the number of outputs.

4 All the tools developed to perform the experiments of this paper are freely

available at https://github.com/Colosu/FSTGenerator .

After setting these basic parameters, the program can be executed.
The execution flow for generating an FSM using #Rep is given in
Algorithm 1 . Note that, by construction, the tool returns connected (all
states are reachable from the initial state) and deterministic FSM s. Also
note that the algorithm allows the construction of FSM s that have loops.

Algorithm 1: FSM generation algorithm.

Result : # Rep FSMs.
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 0 ;
while 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 < # 𝑅𝑒𝑝 do

Create a folder to save the FSM files;
Set a random number 𝑆 of states between
Min_States and Max_States for the FSM;
Choose the state 0 as initial state;
for each state 0 ≤ 𝑖 < 𝑆 − 1 of the machine do

Set a random number 𝑇 of transitions
between Min_Transitions and
Max_Transitions for the state;
for each transition 0 ≤ 𝑗 < 𝑇 of the state do

if 𝑗 == 0 then

Set the state 𝑖 + 1 as the end of the transition;
else

Set a random state as the end of the transition;
end

Set a random input label for the
transition not previously used for another
transition of the state (so FSMs are
deterministic);
Set a random output label for the
transition;
Save this transition to the FSM file;

end

end

Create the binary file that the OpenFST library
uses to interpret FSMs using the FSM file we
created;
Create a pdf image with the FSM topology;
𝑚𝑎𝑐ℎ𝑖𝑛𝑒 + + ;

end

In order to create input-enabled FSM s with our tool, as used in our
experiment, we simply set Min_Transitions = Max_Transitions = #Inputs .

4.2.2. Experimental results

This section describes the results of experiments that addressed the
research question. Similar to Section 4.1 , we compared our measure
with the probability of collision, but this time for the specific FSM s be-
ing considered. Recall that the probability of collision is given by the
following expression:

𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀) =

𝑛 ∑
𝑗=1

𝑚 𝑗 ⋅ (𝑚 𝑗 − 1)
𝑑 ⋅ (𝑑 − 1)

where m j is the cardinality of the inverse image of the j -th output (i.e.
the number of inputs that lead to this output) and d is the cardinality
of the inputs (i.e. the total number of inputs). Squeeziness was designed
to compare models with the same input domains. In order to facilitate
this task, we used input-enabled FSM s but the results are essentially the
same if we use non input-enabled FSM s (as long as we consider the same
number of input sequences in all the FSM s). We generated 500 machines
with 25 states and 5 outgoing transitions from each state. We considered
sets of 5 inputs and 5 outputs.

Having generated the FSM s, we computed Squeeziness and PColl
for each FSM . The next step was to randomly partition the set of FSM s

139

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table 3

Results from the experiment with 500 FSM s with 25 states.

Run Pearson Pearson Spearman Spearman

Number Sq DRR Sq DRR

1 0.878449 0.789925 0.915152 0.835599

2 0.769163 0.577342 0.709091 0.527583

3 0.926841 0.836864 0.939394 0.69347

4 0.919335 0.843178 0.890909 0.811444

5 0.888474 0.85478 0.733333 0.71462

6 0.779444 0.56354 0.842424 0.67769

7 0.899583 0.87125 0.927273 0.885083

8 0.895344 0.792316 0.854545 0.877186

9 0.683355 0.46901 0.842424 0.610832

10 0.906801 0.909021 0.830303 0.887425

11 0.56845 0.483205 0.721212 0.592422

12 0.838746 0.834886 0.672727 0.544839

13 0.630317 0.531773 0.793939 0.551174

14 0.410659 0.504509 0.272727 0.355335

15 0.640715 0.56302 0.151515 8.36862e-18

16 0.73553 0.601444 0.757576 0.549532

17 0.272227 0.160886 0.333333 0.113904

18 0.679269 0.577716 0.50303 0.449199

19 0.505532 0.276551 0.684848 0.334363

20 0.866044 0.856532 0.854545 0.877186

21 0.899159 0.832556 0.890909 0.830399

22 0.273041 0.0300172 0.224242 0.012975

23 0.635755 0.635614 0.830303 0.740844

24 0.907813 0.853587 0.854545 0.889898

25 0.804562 0.694005 0.660606 0.563845

26 0.438958 0.299874 0.6 0.375029

27 0.75262 0.577602 0.563636 0.394771

28 0.900993 0.911372 0.939394 0.885657

29 0.909105 0.863749 0.842424 0.805143

30 0.88053 0.818995 0.527273 0.644304

31 0.864043 0.782816 0.709091 0.664867

32 0.782251 0.763869 0.69697 0.846658

33 0.891232 0.815343 0.709091 0.660696

34 0.707623 0.522515 0.709091 0.486655

35 0.608514 0.549941 0.648485 0.589186

36 0.89894 0.824825 0.963636 0.806406

37 0.680069 0.520374 0.648485 0.555997

38 0.718919 0.528805 0.866667 0.761549

39 0.803944 0.857559 0.575758 0.71462

40 0.749198 0.46362 0.818182 0.635946

41 0.841066 0.416991 0.830303 0.341882

42 0.871523 0.699391 0.709091 0.661358

43 0.841827 0.606074 0.939394 0.905111

44 0.783823 0.706252 0.684848 0.552679

45 0.156226 -0.0418695 0.0545455 -0.12975

46 0.911163 0.819401 0.806061 0.793018

47 0.883863 0.780593 0.878788 0.774176

48 0.711095 0.516978 0.866667 0.603382

49 0.76034 0.434219 0.806061 0.568535

50 0.710906 0.75102 0.672727 0.742155

into groups of 10 and compute the (Pearson and Spearman) correlations
(between Squeeziness and PColl) for each group. We used multiple
groups in order to obtain insights into the consistency of the results.
Therefore, we obtained 50 values for each correlation coefficient. Note
that the number of input sequences that we have to consider grows ex-
ponentially with the input sequence length. As a result of this exponen-
tial growth, and memory limits, we computed the measures for input
sequences of length 10.

Similar to the simulations, we obtained positive experimental results.
The results of this experiment can be found in Table 3 . In most cases,
the results show a high correlation between Squeeziness and PColl ,
with a mean of 0.745468 for Pearson and 0.715152 for Spearman. This
fact supports the results from the simulations. It is interesting to see that
there were a few relatively small values but it seems likely that these
were simply the result of the randomness in the experiments (we also
observe some higher correlations, up to 0.96). Also, we can see that in
most of the cases the correlation values of Squeeziness are higher than
the ones of DRR, as we saw in the simulations. Specifically, the mean for

Table 4

Results from the experiment with 900 FSM s with 25 states.

Run Pearson Pearson Spearman Spearman

Number Sq DRR Sq DRR

1 0.856654 0.759691 0.839822 0.718795

2 0.799091 0.691343 0.803782 0.710352

3 0.83536 0.720232 0.901224 0.809638

4 0.812958 0.809717 0.733037 0.667405

5 0.637571 0.565636 0.474972 0.439789

6 0.628766 0.550766 0.573304 0.468414

7 0.78118 0.662821 0.829143 0.722609

8 0.648335 0.563561 0.689433 0.607159

9 0.651849 0.52149 0.599555 0.452153

10 0.890877 0.84885 0.866518 0.83724

11 0.822498 0.745911 0.78109 0.776184

12 0.756156 0.648846 0.788654 0.674843

13 0.705051 0.628704 0.751724 0.733294

14 0.812525 0.539454 0.85673 0.580215

15 0.750044 0.522172 0.699221 0.548734

16 0.794857 0.677268 0.866963 0.742223

17 0.761287 0.696498 0.739711 0.695613

18 0.711764 0.700859 0.676085 0.626331

19 0.874628 0.85356 0.777976 0.775392

20 0.916858 0.897105 0.874527 0.792335

21 0.871061 0.902461 0.811791 0.814555

22 0.896291 0.867035 0.822469 0.733963

23 0.815214 0.79039 0.599555 0.478928

24 0.731722 0.642186 0.721913 0.593555

25 0.764644 0.677635 0.826029 0.77864

26 0.624603 0.626964 0.618687 0.585576

27 0.731404 0.558051 0.879422 0.838548

28 0.727717 0.659671 0.725918 0.601497

29 0.828107 0.716817 0.823359 0.673092

30 0.544259 0.319727 0.630256 0.430179

DRR is equal to 0.634677 for Pearson and equal to 0.611338 for Spear-
man. These values are noticeably lower than the ones corresponding to
the correlations between Squeeziness and PColl .

In order to check the flexibility of our results, we decide to repeat
the experiment with a different configuration. We generated 900 ma-
chines with the same characteristics: 25 states, 5 outgoing transitions
from each state and sets of inputs and outputs with 5 elements. We
grouped the machines in 30 groups of 30 machines per group and re-
peated the experiment. Previously we used groups of 10 FSM s and using
larger groups of FSM s allows us to check our intuition that there should
be greater consistency in the results. The results are shown in Table 4 .
These results are slightly better than the previous ones, with a higher
similarity between Pearson and Spearman correlations. In this case, the
means of the correlations between Squeeziness and PColl are equal
to 0.766111 for Pearson and equal to 0.752762 for Spearman; the ones
corresponding to DRR are equal to 0.678847 for Pearson and equal to
0.663575 for Spearman. Therefore, the conclusions of the experiment
are similar to the ones obtained in the previous experiment.

4.3. Threats to validity

In this section we discuss the possible threats to the validity of the
results of our experiments.

First, we explore threats to internal validity, which consider uncon-
trolled factors that might be responsible for the obtained results. In our
work, the main threat to internal validity is associated with the possible
faults in the developed tools, which could lead to misleading results. In
order to reduce the impact of this threat we tested our code with care-
fully constructed examples for which we could manually check the re-
sults. In addition, we repeated each experiment that used FSM s in order
to check that the results were consistent and there was no randomisation
involved.

Second, we consider threats to external validity, which concern con-
ditions that allow us to generalise our findings to other situations. In
our work, the main external threat is the different possible represen-

140

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table 5

Results from the experiment with FSM s be-

tween 10 and 25 states.

Run number Pearson Sq Spearman Sq

1 0.279452 0.333333

2 0.55035 0.309091

3 0.0716533 − 0.151515

4 0.77656 0.890909

5 0.622 0.890909

6 0.66114 0.660606

7 0.655833 0.757576

8 0.317683 0.321212

9 0.87951 0.818182

10 0.798106 0.878788

11 0.834614 0.781818

12 0.732538 0.733333

13 0.27344 0.406061

14 0.583361 0.478788

15 0.580003 0.769697

16 0.892117 0.939394

17 0.166601 − 0.0909091

18 0.455388 0.50303

19 0.843653 0.660606

20 0.551302 0.672727

21 0.901526 0.927273

22 0.89004 0.842424

23 0.442546 0.393939

24 0.683401 0.50303

25 0.931557 0.757576

26 0.52448 0.321212

27 0.600394 0.539394

28 0.323964 0.284848

29 0.698155 0.684848

30 0.61123 0.672727

31 0.559464 0.745455

32 0.765045 0.454545

33 0.570081 0.430303

34 0.859868 0.878788

35 0.917171 0.878788

36 0.837555 0.721212

37 0.539043 0.490909

38 0.704665 0.660606

39 0.740488 0.878788

40 0.552796 0.527273

41 0.717961 0.757576

42 0.634331 0.6

43 0.563094 0.672727

44 0.749326 0.587879

45 0.877225 0.866667

46 0.584465 0.587879

47 0.716488 0.10303

48 0.392777 0.563636

49 0.866184 0.890909

50 0.597951 0.672727

tations of a black-box component as an FSM . Such a threat cannot be
entirely addressed since the population of such FSM s is unknown and
it is not possible to sample from this (unknown) population. In order to
reduce the impact of this threat we used both a large number of sim-
ulations and of randomly generated FSM s. Note also that the simula-
tions provided significant diversity in terms of experimental subjects,
with the role of the FSM -based experiments primarily being to check
that the results extend to the class of functions that can be represented
by FSM s.

Last, we consider threats to construct validity. This is related to the
reality of our experiments, that is, whether our experiments reflect real-
world situations. In our work, the main construct threat is whether the
FSM s used in the experiments correspond to possible system compo-
nents. In order to reduce the impact of this threat, we restricted our
range of FSM samples to connected deterministic machines. In future
work we intend to test with real-world cases and/or non-deterministic
FSM s.

Table 6

Results from the experiment with FSM s be-

tween 25 and 50 states.

Run number Pearson Sq Spearman Sq

1 0.962624 0.951515

2 0.770315 0.624242

3 0.861972 0.769697

4 0.806692 0.660606

5 0.782762 0.745455

6 0.582544 0.842424

7 0.777772 0.781818

8 0.848743 0.793939

9 0.282844 0.309091

10 0.749289 0.660606

11 0.815693 0.587879

12 0.465784 0.527273

13 0.854386 0.866667

14 0.514125 0.478788

15 0.94217 0.90303

16 0.956262 0.90303

17 0.556821 0.539394

18 0.658927 0.478788

19 0.423597 0.478788

20 0.927198 0.866667

21 0.225621 0.515152

22 0.800149 0.769697

23 0.732404 0.769697

24 0.964573 0.90303

25 0.693287 0.563636

26 0.904747 0.612121

27 0.797333 0.684848

28 0.950163 0.842424

29 0.874851 0.793939

30 0.547064 0.709091

31 0.81926 0.866667

32 0.783165 0.878788

33 0.872504 0.866667

34 0.576504 0.50303

35 0.827418 0.915152

36 0.894726 0.781818

37 0.814328 0.406061

38 0.76672 0.890909

39 0.829572 0.648485

40 0.92247 0.951515

41 0.913127 0.806061

42 0.804393 0.781818

43 0.786996 0.866667

44 0.643162 0.612121

45 0.72758 0.721212

46 0.781083 0.757576

47 0.823419 0.915152

48 0.807975 0.818182

49 0.728113 0.793939

50 0.731225 0.769697

4.4. Discussion

The two sets of results presented in this section were encouraging.
The simulations showed that there is a strong positive correlation be-
tween our notion of Squeeziness and a measure of the probability of
collisions if we simulate the function computed by a component. As ex-
pected, this correlation was higher than the one that we obtained with
DRR, with this being consistently seen across the 24,000 simulation ex-
periments.

The simulations addressed the suitability of our measures for a gen-
eral framework, in which we have a function that represents the (in-
put/output) behaviour of the component of interest. Since we devel-
oped the details of the framework for FSM models we also had ex-
periments that explored whether similar results hold for functions that
can be represented by FSM s. The results of these experiments were
similar to those previously observed, supporting the results that used
simulations.

Interestingly, the correlations returned were slightly lower when us-
ing FSM s. There are at least three possible explanations for the differ-

141

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table 7

Results from the experiment with FSM s with

75 states.

Run number Pearson Sq Spearman Sq

1 0.872409 0.915152

2 0.744849 0.527273

3 0.910456 0.951515

4 0.943024 0.854545

5 0.828649 0.927273

6 0.837167 0.757576

7 0.797805 0.866667

8 0.89309 0.745455

9 0.46309 0.478788

10 0.94864 0.951515

11 0.951563 0.745455

12 0.973901 0.878788

13 0.973626 0.951515

14 0.991222 0.915152

15 0.862179 0.721212

16 0.92241 0.915152

17 0.796633 0.587879

18 0.991884 0.721212

19 0.649892 0.684848

20 0.897328 0.90303

21 0.783819 0.721212

22 0.653267 0.648485

23 0.865528 0.878788

24 0.819458 0.769697

25 0.829544 0.745455

26 0.800867 0.612121

27 0.764609 0.890909

28 0.896245 0.769697

29 0.738119 0.672727

30 0.893021 0.90303

31 0.91068 0.818182

32 0.937707 0.963636

33 0.834563 0.818182

34 0.750709 0.793939

35 0.564428 0.490909

36 0.937426 0.975758

37 0.936632 0.90303

38 0.89141 0.975758

39 0.745184 0.818182

40 0.835685 0.854545

41 0.847526 0.830303

42 0.961247 0.951515

43 0.890352 0.951515

44 0.951611 0.927273

45 0.944342 0.951515

46 0.870518 0.890909

47 0.913673 0.927273

48 0.545525 0.551515

49 0.741032 0.587879

50 0.896819 0.915152

ences. First, the experiments that used FSM s considered a smaller set
of scenarios; it may be that we would observe results similar to those
found in the simulations if we ran many more experiments with a wider
range of FSM s. Second, the simulations may have used functions that
are rather different from those found when using FSM s. If this is the
case then the results might be better if we use more general types of
models as specifications of components (rather than FSM s). Third, the
differences may result from the simulations using larger sample sizes
(sample size 200) than the experiments with FSM s (sample size 10).
Note that the smaller sample size used in the FSM experiments (for prac-
tical reasons) could also explain the greater variability observed in the
results.

In order to explore the two first possibilities, we repeated the FSM
experiment with three new sets of FSM s. This allowed us to consider
more scenarios (exactly, 1,500 additional ones) and to test if increasing
or reducing the generality of the functions represented by the FSM s has
any effect on the correlations.

The first set of samples included FSM s that had between 10 and 25
states, so we place even stronger limits on the generality of the functions

Table 8

Results from the experiment with sample size

of 20 FSM s of 25 states.

Run number Pearson Sq Spearman Sq

1 0.827858 0.798496

2 0.895008 0.792481

3 0.58499 0.810526

4 0.707372 0.78797

5 0.837989 0.929323

6 0.885698 0.857143

7 0.76128 0.711278

8 0.84805 0.700752

9 0.767311 0.694737

10 0.880905 0.899248

11 0.722467 0.658647

12 0.834103 0.778947

13 0.880195 0.891729

14 0.874195 0.696241

15 0.57377 0.607519

16 0.736536 0.669173

17 0.733254 0.702256

18 0.846274 0.861654

19 0.765341 0.783459

20 0.784864 0.843609

21 0.678806 0.700752

22 0.914889 0.809023

23 0.813506 0.735338

24 0.742288 0.769925

25 0.668486 0.696241

represented. As expected, we got slightly worse correlations, with only
77% of samples having correlations greater than 0.5 instead of the 93%

that we got with the initial experiment. That leads to a mean of 0.6376
for the Pearson correlation and of 0.6092 for the Spearman one. The full
results can be found in Table 5 .

The second set of samples considered FSM s that had between 25 and
50 states, slightly increasing the generality of the functions represented.
The results were reasonably similar to the initial FSM results, in that
91% of samples had correlations greater than 0.5. However, the results
were arguably a little better since the lowest value was greater than
0.2 (instead of being negative as in the initial experiment). That leads
to a mean of 0.7577 for the Pearson correlation and of 0.7297 for the
Spearman one. The full results can be found in Table 6 .

In order to increase the confidence on the validity of our results when
the number of states increase, we performed an additional experiment
where all the FSM s have the same number of states (75). The values
show that 98% of the results have correlations greater than 0.5, and the
lowest correlation is greater than 0.4. That leads to a mean of 0.844027
for the Pearson correlation and of 0.810182 for the Spearman one. The
full results are provided in Table 7 .

The results suggest that correlations will be better if we increase
the generality of the functions represented by the FSM s, that is, as we
consider bigger FSM s. This allows us to hypothesise that the results cor-
responding to FSM s will tend towards the results from the simulations.
Also, as we considered many more scenarios, we can observe that even
after taking into account the bad results of the experiment with FSM s
between 10 and 25 states, 88% of the cases showed correlations greater
than 0.5.

We also performed a small experiment to test what happens if we
increase the sample size, that is, to explore the third possibility. We
increased the sample size from 10 to 20 samples, using FSM s with 25
states from the initial (FSM) experiments. As expected, we got better
correlations, with all the correlations being greater than 0.5. The full
results can be found in Table 8 .

These results suggest that the correlations will improve if we use
larger sample sizes and, in particular, this will reduce the variability of
the results. So, again, we can expect that the results will tend towards

the results from the simulations. Overall, our experiments with FSM s

142

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table 9

Results from the experiment with Maximum

Loss of Information approach.

Run number Pearson Sq Spearman Sq

1 0.710801 0.791365

2 0.749008 0.701602

3 0.624626 0.713539

4 0.670041 0.646195

5 0.642364 0.496048

6 0.452779 0.525309

7 0.463446 0.646934

8 0.525565 0.613348

9 0.703414 0.589675

10 0.878989 0.792566

11 0.830456 0.75203

12 0.651943 0.772191

13 0.776044 0.582555

14 0.714373 0.733645

15 0.865138 0.738564

16 0.648421 0.828883

17 0.684968 0.647903

18 0.695542 0.57537

19 0.684215 0.679355

20 0.531623 0.502392

21 0.485815 0.505174

22 0.707509 0.637446

23 0.613067 0.495327

24 0.534643 0.478087

25 0.703643 0.75153

26 0.35483 0.373817

27 0.78047 0.66548

28 0.617858 0.523026

29 0.517789 0.567646

30 0.571259 0.560303

indicate that the measures perform well with FSM s and not just with
simulated functions.

Finally, we did an experiment to show what happens if we do not
assume a uniform distribution over the inputs of the FSM . In order to
do so, we considered the same setup of our main experiment with 900
FSM s, but this time we used the Maximum Loss of Information approach
explained in Section 3.2 for computing Squeeziness.

The results of this experiment showed lower correlations and can
be found in Table 9 . The results are unsurprising since PColl assumes
a uniform distribution over the inputs of the FSM , that is, these two
measures used different distributions. However, they are still relatively
good, with a mean of 0.646355 for Pearson and of 0.629577 for Spear-
man. Note that the lower correlations suggest that techniques that use
Squeeziness may be most effective when we know the true distribution
of values.

To conclude, the results suggest that Squeeziness can be used to esti-
mate the probability of the FEP introduced by a component. As a result,
there is potential to use it to direct testing in order to avoid components
that have a high probability of FEP. It might also be used as a measure
of testability, with the tester potentially choosing to use more test cases
in situations in which FEP is particularly likely. It would be interesting
to explore this further through additional experiments.

5. Conclusions and future work

It is known that failed error propagation (FEP) can have a significant
effect on testing. Recent work has shown that an information theoretic
measure called Squeeziness strongly correlates with the likelihood of
FEP [13] . However, this work only considered the white-box scenario in
which the SUT simply receives input and returns output; there is no per-
sistent state. In this paper we adapted the Squeeziness measure to work
with situations in which we are interested in fault masking. Specifically,
we adapted Squeeziness to the scenario in which we are interested in
the FEP that a component C introduces when it receives its input from

another component C P . We are interested in this since such FEP makes
it more difficult to find faults in C P when testing. The work also con-
sidered the black-box scenario, in which we base the computations on
models. This has the advantage that the approach is applicable at an
earlier stage (for example, as a notion of testability that can help inform

test planning) and also that the approach can be used in situations in
which the source code is not available (for example, when development
has been outsourced).

It was not possible to directly reuse the previous notion of Squeezi-
ness [13] since we considered a different scenario and also a different
source of FEP. In addition, we argued that in our scenario it makes
sense to base the analysis on models of components rather that the
source code: this should aid scalability and also address the issue that
we might not have access to the source code of a component. As a
result, we addressed a different type of FEP and also used a differ-
ent source of information (an FSM specification rather than the source
code).

Having devised a new notion of Squeeziness, for black-box
component-based systems, we carried out experiments in order to eval-
uate this measure. These experiments focused on the capability of the
second component to hide faulty inputs from the first component by
giving the expected outputs. In the experiments, we compared our
measure with a measure of the probability of this hiding/FEP hap-
pening (PColl). We used two types of experiments: simulations and
experiments with FSM s. In both cases, we observed a strong corre-
lation between the likelihood of FEP and our measure (Squeeziness).
Interestingly, in the experiments with FSM s we observed a slight im-
provement when we increased the number of states. This supports our
original hypothesis: our new notion of Squeeziness can be used as a
measure that estimates the probability of FEP being introduced by a
component.

The results in this paper have two potential uses. First, the measure
defined might be used as a measure of testability, allowing one to assess
how easy it is to test a system or part of a system. This might be used
as part of the process of deciding how much testing is required. In addi-
tion, there is potential to use Squeeziness to direct testing. For example,
we might want to execute a part of the system with a test case where
the probability of FEP (introduced by another component) is relatively
low.

We have several lines for future work. First, we will explore the pre-
viously mentioned potential uses, develop tools, and evaluate these on
case studies. We plan to explore approximations, most likely based on
sampling, and the trade-off between the cost of sampling (sample size)
and the effectiveness of the estimates. We also intend to generalise the
framework and measures to introduce data into the models. Finally,
we would like to adapt Squeeziness to systems with other features. It
is natural to consider how Squeeziness works in systems where deci-
sions are probabilistically quantified and we will take as initial step our
previous work on formally testing this kind of systems [28,29] . Simi-
larly, we would like to consider distributed systems and how Squeezi-
ness predicts FEP induced by different distributed components. Again,
we will take as initial step our work on the distributed test architecture
[26,27] .

Conflict of Interest

No conflict of interest

Acknowledgements

We would like to thank the anonymous reviewers for the careful
reading of the paper and the many constructive comments, which have
helped us to further strengthen the paper.

This work has been supported by the Spanish MINECO-FEDER (grant
number DArDOS, TIN2015-65845-C3-1-R); the Region of Madrid (grant

143

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

number FORTE-CM , S2018/TCS-4314); and the UK EPSRC (grant num-
ber InfoTestSS, EP/P006116/2).

Appendix A. Proofs of the results

Lemma 2 Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0. Let us con-
sider two random variables 𝜉𝚍𝚘𝚖 𝑀,𝑘

and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
ranging, respectively,

over the domain and image of f M,k . We have that (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) =

0 .

Proof. Consider the entropy of the conditional random variable
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
. We have that (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
) is equal to ∑

𝛼∈𝚍𝚘𝚖 𝑀,𝑘

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼) ⋅(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
= 𝛼)

If we unfold the second term of the sum we have that the previous ex-
pression is equal to

∑
𝛼∈𝚍𝚘𝚖 𝑀,𝑘

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼) ⋅

⎛ ⎜ ⎜ ⎝
∑

𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

𝛾(𝛽|𝛼) ⋅log 2 (𝛾(𝛽|𝛼)) ⎞ ⎟ ⎟ ⎠
where 𝛾(𝛽|𝛼) = 𝜎(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
) (𝛽|𝛼) . We will prove that all the sum-

mands of the previous expression are equal to zero. Taking into account
that M is deterministic we have that 𝜎(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
) can be either 0 or

1. Using this fact in the previous expression, we have two cases:

• If 𝜎(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) (𝛽|𝛼) = 0 then the result obviously holds.

• Otherwise, that is, 𝜎(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) (𝛽|𝛼) = 1 , we have that

log 2 (𝜎(𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) (𝛽|𝛼)) = 0 and, again, the result holds.

We finally conclude that (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
|𝜉𝚍𝚘𝚖 𝑀,𝑘

) = 0 . □

Proposition 1 Let 𝑀 = (𝑄, 𝑞 𝑖𝑛 , 𝐼, 𝑂, 𝑇) be an FSM and k > 0. Let us
consider two random variables 𝜉𝚍𝚘𝚖 𝑀,𝑘

and 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
ranging, respec-

tively, over the domain and image of f M,k . We have that

(𝜉𝚍𝚘𝚖 𝑀,𝑘
) = (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

) − (𝑀, 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
)

where the term (𝑀, 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
) is equal to

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽) ⋅

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

𝜎𝜉
𝑓 −1
𝑀

(𝛽)
(𝛼) ⋅ log 2 (𝜎𝜉

𝑓 −1
𝑀

(𝛽)
(𝛼))

⎞ ⎟ ⎟ ⎠
Proof. By the definition of conditional entropy [14] we have that
(𝜉𝚍𝚘𝚖 𝑀,𝑘

|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
) is equal to ∑

𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽) ⋅(𝜉𝚍𝚘𝚖 𝑀,𝑘

|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
= 𝛽)

Next, we apply the notion of conditional probability and take into
account that 𝜉𝚍𝚘𝚖 𝑀,𝑘

restricted to 𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
= 𝛽 is the random variable

𝜉
𝑓 −1
𝑀

(𝛽) ranging over 𝑓 −1
𝑀

(𝛽) and whose probabilities are equal to

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝑓 −1

𝑀

(𝛽))

Therefore, we we have that

(𝜉𝚍𝚘𝚖 𝑀,𝑘
|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

= 𝛽)

= (𝜉
𝑓 −1
𝑀

(𝛽))

= −

∑
𝛼∈𝑓 −1

𝑀

(𝛽)

𝜎𝜉
𝑓 −1
𝑀

(𝛽)
(𝛼) ⋅ log 2 (𝜎𝜉

𝑓 −1
𝑀

(𝛽)
(𝛼))

= −

∑
𝛼∈𝑓 −1

𝑀

(𝛽)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝑓 −1

𝑀

(𝛽))
⋅ log 2

(

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝛼)

𝜎𝜉𝚍𝚘𝚖 𝑀,𝑘
(𝑓 −1

𝑀

(𝛽))

)

Therefore, the term (𝜉𝚍𝚘𝚖 𝑀,𝑘
|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

) is equal to

−

∑
𝛽∈𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

𝜎𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘
(𝛽) ⋅

⎛ ⎜ ⎜ ⎝
∑

𝛼∈𝑓 −1
𝑀

(𝛽)

𝜃(𝛼) ⋅ log 2 (𝜃(𝛼))
⎞ ⎟ ⎟ ⎠ (A.1)

where 𝜃(𝛼) = 𝜎𝜉
𝑓 −1
𝑀

(𝛽)
(𝛼) . If we apply the Chain rule then we have



(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

, 𝜉𝚍𝚘𝚖 𝑀,𝑘

)
= 

(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

)
+ 

(
𝜉𝚍𝚘𝚖 𝑀,𝑘

|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

)
where (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

, 𝜉𝚍𝚘𝚖 𝑀,𝑘
) is the joint probability of the two random

variables. Taking into account that, applying again the Chain rule , we
also have



(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

, 𝜉𝚍𝚘𝚖 𝑀,𝑘

)
= 

(
𝜉𝚍𝚘𝚖 𝑀,𝑘

)
+ 

(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘

)
Combining the previous equalities we obtain



(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

)
+ 

(
𝜉𝚍𝚘𝚖 𝑀,𝑘

|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

)
‖



(
𝜉𝚍𝚘𝚖 𝑀,𝑘

)
+ 

(
𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘

)
Finally, by Lemma 2 , we have (𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

|𝜉𝚍𝚘𝚖 𝑀,𝑘
) = 0 and taking

into account the value of (𝜉𝚍𝚘𝚖 𝑀,𝑘
|𝜉𝚒𝚖𝚊𝚐𝚎 𝑀,𝑘

) , given in Eq. (A.1) , we
obtain the desired reformulation of (𝜉𝚍𝚘𝚖 𝑀,𝑘

) . □

Lemma 4 There exist FSM s M 1 and M 2 and k > 0 such that
𝙳𝚁𝚁 (𝑓 𝑀 1 ,𝑘

) = 𝙳𝚁𝚁 (𝑓 𝑀 2 ,𝑘
) but 𝚂𝚚 𝑘 (𝑀 1) ≠ 𝚂𝚚 𝑘 (𝑀 2) .

There exist FSM s M 1 and M 2 and k > 0 such that 𝙳𝚁𝚁 (𝑓 𝑀 1 ,𝑘
) <

𝙳𝚁𝚁 (𝑓 𝑀 2 ,𝑘
) but 𝚂𝚚 𝑘 (𝑀 1) > 𝚂𝚚 𝑘 (𝑀 2) .

Proof. First, let us note that in this proof we assume uniform distribu-
tions over inputs (and outputs) of the FSM s. However, the result holds
for any probability distribution: we would only need to slightly modify
the definition of the given machines.

In order to prove the first part of the result, we define two machines
M 1 and M 2 , both with initial state q 0 , fulfilling the conditions. Let M 1

be the following FSM :

We have that 𝚍𝚘𝚖 𝑀 1 , 2 is equal to

{(𝑖 1 , 𝑖 1) , (𝑖 2 , 𝑖 1) , (𝑖 2 , 𝑖 2) , (𝑖 2 , 𝑖 3) , (𝑖 3 , 𝑖 1) , (𝑖 3 , 𝑖 2)}

and 𝚒𝚖𝚊𝚐𝚎 𝑀 1 , 2 is equal to {(o 1 , o 1), (o 2 , o 2)}. On the one hand we
have 𝙳𝚁𝚁 (𝑓 𝑀 1 , 2) = 6∕2 = 3 while, on the other hand, we have 𝚂𝚚 2 (𝑀 1) =

5 ⋅𝑙 𝑜𝑔 2 (5)+1 ⋅𝑙 𝑜𝑔 2 (1)
6 ≈ 1 . 9349 .

Now, let M 2 be the following FSM :

We have that 𝚍𝚘𝚖 𝑀 2 , 2 is equal to

{(𝑖 1 , 𝑖 1) , (𝑖 1 , 𝑖 2) , (𝑖 1 , 𝑖 3) , (𝑖 2 , 𝑖 1) , (𝑖 2 , 𝑖 2) , (𝑖 2 , 𝑖 3)}

and 𝚒𝚖𝚊𝚐𝚎 𝑀 2 , 2 = {(𝑜 1 , 𝑜 1) , (𝑜 2 , 𝑜 2)} . We have, on the one hand, that

𝙳𝚁𝚁 (𝑓 𝑀 2 , 2) = 6∕2 = 3 while, on the other hand, 𝚂𝚚 2 (𝑀 2) =

2 ⋅3 ⋅𝑙𝑜𝑔 2 (3)
6 ≈

1 . 5849 .

144

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

In order to prove the second part of the result, let us consider again
two machines M 1 and M 2 , with initial state q 0 , and we will show that
they fulfil the required conditions. In these machines, we consider that
𝑥 1 , … , 𝑥 𝑛 ∕ 𝑦 is a shorthand for n different transitions labelled, respec-
tively, by 𝑥 1 ∕ 𝑦, 𝑥 2 ∕ 𝑦, … , 𝑥 𝑛 ∕ 𝑦 . Let M 1 be:

We have that 𝚍𝚘𝚖 𝑀 1 , 1 = { 𝑖 0 , … , 𝑖 15 } and 𝚒𝚖𝚊𝚐𝚎 𝑀 1 , 1 =

{ 𝑜 0 , … , 𝑜 8 } . Therefore, 𝙳𝚁𝚁 (𝑓 𝑀 1 , 1) = 16∕9 ≈ 1 . 778 while 𝚂𝚚 1 (𝑀 1) =

7 ⋅2 ⋅𝑙 𝑜𝑔 2 (2)+2 ⋅1 ⋅𝑙 𝑜𝑔 2 (1)
16 = 0 . 875 .

Finally, let M 2 be the FSM :

We have that 𝚍𝚘𝚖 𝑀 2 , 1 = { 𝑖 0 , … , 𝑖 15 } and 𝚒𝚖𝚊𝚐𝚎 𝑀 2 , 1 =

{ 𝑜 0 , … , 𝑜 9 } . Therefore, 𝙳𝚁𝚁 (𝑓 𝑀 2 , 1) = 16∕10 = 1 . 6 while 𝚂𝚚 1 (𝑀 2) =

1 ⋅7 ⋅𝑙 𝑜𝑔 2 (7)+9 ⋅1 ⋅𝑙 𝑜𝑔 2 (1)
16 ≈ 1 . 2282 . □

Lemma 5 There exist FSM s M 1 and M 2 and k > 0 such that 𝚂𝚚 𝑘 (𝑀 1) <

𝚂𝚚 𝑘 (𝑀 2) but 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀 1) > 𝙿𝙲𝚘𝚕𝚕 𝑘 (𝑀 2) .

Proof. First, let us note again that, similar to the proof of Lemma 4 , in
this proof we assume uniform distributions over inputs (and outputs) of
the FSM s. Again, if we have a different probability distribution then we
only need to adapt the definition of the machines so that the result still
holds.

First, we consider M 1 with initial state q 0 :

Second, let M 2 , again with initial state q 0 , be:

On the one hand 𝙿𝙲𝚘𝚕𝚕 3 (𝑀 1) = 0 . 5 and 𝙿𝙲𝚘𝚕𝚕 3 (𝑀 2) = 0 . 4 while, on
the other hand, we have 𝚂𝚚 3 (𝑀 1) = 1 . 1887 and 𝚂𝚚 3 (𝑀 2) = 1 . 5849 . □

Appendix B. Simulation Results

Here we show the results for the simulation performed on
Section 4.1 .

Table B1

First part of the results from the simulation.

Input set size Maximum size Correlation of Sq Correlation of DRR

10,000 100 0.968366 0.763623

10,000 100 0.973918 0.783759

10,000 200 0.973016 0.823959

10,000 200 0.967349 0.77492

10,000 500 0.973849 0.828911

10,000 500 0.973267 0.803445

10,000 1000 0.963235 0.744021

10,000 1000 0.973658 0.804282

10,000 2000 0.969764 0.787121

10,000 2000 0.966409 0.753929

10,000 5000 0.968639 0.778538

10,000 5000 0.968937 0.768205

10,000 10,000 0.967281 0.71496

10,000 10,000 0.966184 0.670497

20,000 100 0.969669 0.780648

20,000 100 0.975364 0.824959

20,000 200 0.969587 0.778449

20,000 200 0.971707 0.771526

20,000 500 0.971942 0.798243

20,000 500 0.974174 0.792043

20,000 1000 0.971248 0.786153

20,000 1000 0.967574 0.769014

20,000 2000 0.967758 0.770978

20,000 2000 0.975119 0.819613

20,000 5000 0.972733 0.823052

20,000 5000 0.970411 0.780216

20,000 10,000 0.960576 0.728561

20,000 10,000 0.961688 0.724022

50,000 100 0.963278 0.74568

50,000 100 0.975731 0.817716

50,000 200 0.974623 0.795574

50,000 200 0.969418 0.746002

50,000 500 0.966153 0.777624

50,000 500 0.975947 0.84295

50,000 1000 0.967855 0.76079

50,000 1000 0.967894 0.789061

50,000 2000 0.96735 0.764992

50,000 2000 0.969433 0.804356

50,000 5000 0.97278 0.797072

50,000 5000 0.971647 0.792316

50,000 10,000 0.970928 0.779042

50,000 10,000 0.963673 0.723346

100,000 100 0.97475 0.797906

100,000 100 0.972203 0.799384

100,000 200 0.972457 0.788938

100,000 200 0.969988 0.78341

100,000 500 0.980028 0.836659

100,000 500 0.972878 0.769055

100,000 1000 0.976104 0.817482

100,000 1000 0.974571 0.820023

100,000 2000 0.971424 0.779667

100,000 2000 0.975182 0.787567

100,000 5000 0.96594 0.762143

100,000 5000 0.96303 0.73042

100,000 10,000 0.970134 0.757703

100,000 10.000 0.96836 0.778925

200,000 100 0.970841 0.801076

200,000 100 0.974049 0.798232

200,000 200 0.971829 0.776558

200,000 200 0.973847 0.79645

200,000 500 0.978293 0.822944

200,000 500 0.96523 0.748004

200,000 1000 0.968757 0.768184

200,000 1000 0.972733 0.808345

200,000 2000 0.971834 0.798966

200,000 2000 0.969003 0.749107

200,000 5000 0.970825 0.760313

200,000 5000 0.969484 0.76873

200,000 10,000 0.970044 0.792676

200,000 10,000 0.972554 0.788373

145

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table B2

Second part of the results from the simulation.

Input set Maximum Correlation of Correlation of

size size Sq DRR

500,000 100 0.97668 0.836037

500,000 100 0.977493 0.809851

500,000 200 0.963671 0.743951

500,000 200 0.974121 0.807426

500,000 500 0.971647 0.774395

500,000 500 0.973467 0.800447

500,000 1000 0.976121 0.820915

500,000 1000 0.97081 0.769445

500,000 2000 0.976695 0.803875

500,000 2000 0.973124 0.787502

500,000 5000 0.95885 0.743651

500,000 5000 0.969437 0.765643

500,000 10,000 0.971292 0.786862

500,000 10,000 0.975993 0.819747

1,000,000 100 0.976936 0.811867

1,000,000 100 0.971048 0.775681

1,000,000 200 0.970973 0.782711

1,000,000 200 0.977552 0.839242

1,000,000 500 0.972066 0.783899

1,000,000 500 0.974367 0.770392

1,000,000 1000 0.973926 0.79526

1,000,000 1000 0.974027 0.830407

1,000,000 2000 0.969736 0.780849

1,000,000 2000 0.97408 0.805192

1,000,000 5000 0.970854 0.809975

1,000,000 5000 0.970388 0.787131

1,000,000 10,000 0.967924 0.778203

1,000,000 10,000 0.970411 0.769844

2,000,000 100 0.975097 0.814434

2,000,000 100 0.968371 0.768775

2,000,000 200 0.974395 0.809679

2,000,000 200 0.97463 0.800698

2,000,000 500 0.97177 0.790358

2,000,000 500 0.970945 0.809109

2,000,000 1000 0.978102 0.826712

2,000,000 1000 0.971722 0.810432

2,000,000 2000 0.969418 0.755382

2,000,000 2000 0.970523 0.779241

2,000,000 5000 0.978818 0.810967

2,000,000 5000 0.964455 0.698505

2,000,000 10,000 0.96991 0.776906

2,000,000 10,000 0.963563 0.781282

5,000,000 100 0.971105 0.801428

5,000,000 100 0.975811 0.806359

5,000,000 200 0.965705 0.734183

5,000,000 200 0.975194 0.787636

5,000,000 500 0.965762 0.78538

5,000,000 500 0.977868 0.816896

5,000,000 1000 0.970797 0.782857

5,000,000 1000 0.974245 0.807752

5,000,000 2000 0.973636 0.783586

5,000,000 2000 0.972639 0.782383

5,000,000 5000 0.977712 0.793327

5,000,000 5000 0.963994 0.708333

5,000,000 10,000 0.972559 0.773815

5,000,000 10,000 0.975021 0.788634

10,000,000 100 0.972085 0.801643

10,000,000 100 0.96267 0.74051

10,000,000 200 0.973476 0.814127

10,000,000 200 0.978724 0.817254

10,000,000 500 0.968369 0.755809

10,000,000 500 0.976646 0.784194

10,000,000 1000 0.97411 0.792697

10,000,000 1000 0.970658 0.782375

10,000,000 2000 0.973856 0.793005

10,000,000 2000 0.974945 0.782697

10,000,000 5000 0.975649 0.814614

10,000,000 5000 0.9663 0.780145

10,000,000 10,000 0.974921 0.808942

10,000,000 10,000 0.974783 0.821714

Table B3

Third part of the results from the simulation.

Input set Maximum Correlation of Correlation of

size size Sq DRR

20,000,000 100 0.976361 0.816832

20,000,000 100 0.969996 0.785402

20,000,000 200 0.966911 0.773231

20,000,000 200 0.975891 0.830111

20,000,000 500 0.975834 0.80509

20,000,000 500 0.971753 0.761665

20,000,000 1000 0.970692 0.800126

20,000,000 1000 0.972765 0.780929

20,000,000 2000 0.975548 0.79739

20,000,000 2000 0.97661 0.790627

20,000,000 5000 0.975512 0.81321

20,000,000 5000 0.969801 0.778989

20,000,000 10,000 0.97061 0.79285

20,000,000 10,000 0.974807 0.823849

50,000,000 100 0.972157 0.775908

50,000,000 100 0.97394 0.744055

50,000,000 200 0.977712 0.825954

50,000,000 200 0.964124 0.754767

50,000,000 500 0.976058 0.824369

50,000,000 500 0.971696 0.792425

50,000,000 1000 0.968602 0.773925

50,000,000 1000 0.975643 0.813831

50,000,000 2000 0.972101 0.80533

50,000,000 2000 0.96896 0.763188

50,000,000 5000 0.967312 0.733459

50,000,000 5000 0.970914 0.792814

50,000,000 10,000 0.974186 0.831489

50,000,000 10,000 0.97075 0.794533

100,000,000 100 0.967785 0.791843

100,000,000 100 0.973939 0.79906

100,000,000 200 0.970936 0.797435

100,000,000 200 0.971179 0.792618

100,000,000 500 0.965457 0.764338

100,000,000 500 0.967388 0.749111

100,000,000 1000 0.967278 0.762974

100,000,000 1000 0.975128 0.816993

100,000,000 2000 0.976852 0.809661

100,000,000 2000 0.973916 0.811798

100,000,000 5000 0.964856 0.752126

100,000,000 5000 0.975177 0.804654

100,000,000 10,000 0.97333 0.797859

100,000,000 10,000 0.979012 0.839706

200,000,000 100 0.974298 0.793441

200,000,000 100 0.974201 0.817327

200,000,000 200 0.973198 0.79773

200,000,000 200 0.969628 0.752662

200,000,000 500 0.979169 0.843415

200,000,000 500 0.975039 0.830218

200,000,000 1000 0.975452 0.842656

200,000,000 1000 0.973656 0.81612

200,000,000 2000 0.974498 0.799512

200,000,000 2000 0.980097 0.843219

200,000,000 5000 0.97596 0.81765

200,000,000 5000 0.973072 0.794025

200,000,000 10,000 0.972525 0.790124

200,000,000 10,000 0.975228 0.812101

500,000,000 100 0.97099 0.788888

500,000,000 100 0.971083 0.798639

500,000,000 200 0.967438 0.779869

500,000,000 200 0.977179 0.832308

500,000,000 500 0.965965 0.778361

500,000,000 500 0.968144 0.764191

500,000,000 1000 0.974112 0.800833

500,000,000 1000 0.973997 0.779971

500,000,000 2000 0.971501 0.782711

500,000,000 2000 0.970228 0.743784

500,000,000 5000 0.976165 0.825479

500,000,000 5000 0.973031 0.779755

500,000,000 10,000 0.969547 0.772517

500,000,000 10,000 0.966348 0.773234

146

A. Ibias, R.M. Hierons and M. Núñez Information and Software Technology 112 (2019) 132–147

Table B4

Last part of the results from the simulation.

Input set Maximum Correlation of Correlation of

size size Sq DRR

1,000,000,000 100 0.96974 0.779927

1,000,000,000 100 0.974667 0.824957

1,000,000,000 200 0.978771 0.859822

1,000,000,000 200 0.968844 0.759952

1,000,000,000 500 0.975528 0.799788

1,000,000,000 500 0.972865 0.806221

1,000,000,000 1000 0.966998 0.742382

1,000,000,000 1000 0.970395 0.795114

1,000,000,000 2000 0.96474 0.784384

1,000,000,000 2000 0.966843 0.768588

1,000,000,000 5000 0.966975 0.753142

1,000,000,000 5000 0.969392 0.777797

1,000,000,000 10,000 0.970387 0.78255

1,000,000,000 10,000 0.966483 0.741448

2,000,000,000 100 0.968286 0.797514

2,000,000,000 100 0.974423 0.78976

2,000,000,000 200 0.97463 0.779878

2,000,000,000 200 0.969308 0.776731

2,000,000,000 500 0.97068 0.77233

2,000,000,000 500 0.964814 0.741365

2,000,000,000 1000 0.977148 0.802956

2,000,000,000 1000 0.972999 0.824011

2,000,000,000 2000 0.966897 0.756296

2,000,000,000 2000 0.967144 0.731439

2,000,000,000 5000 0.970575 0.807333

2,000,000,000 5000 0.965495 0.781112

2,000,000,000 10,000 0.969172 0.79843

2,000,000,000 10,000 0.972477 0.783512

References

[1] C. Allauzen , M. Riley , J. Schalkwyk , W. Skut , M. Mohri , OpenFst: a general and ef-
ficient weighted finite-state transducer library, in: 9th Int. Conf. on Implementation
and Application of Automata, CIAA’07, LNCS 4783, volume 4783, Springer, 2007,
pp. 11–23 .

[2] N. Alshahwan , M. Harman , Coverage and fault detection of the output-uniqueness
test selection criteria, in: 24th ACM SIGSOFT Int. Symposium on Software Testing
and Analysis, ISSTA’14, ACM Press, 2014, pp. 181–192 .

[3] P. Ammann , J. Offutt , Introduction to Software Testing, 2nd, Cambridge University
Press, New York, NY, USA, 2017 .

[4] K. Androutsopoulos , D. Clark , H. Dan , R.M. Hierons , M. Harman , An analysis of
the relationship between conditional entropy and failed error propagation in soft-
ware testing, in: 36th Int. Conf. on Software Engineering, ICSE’14, ACM Press, 2014,
pp. 573–583 .

[5] R. Anido , A.R. Cavalli , L.A. Paula Lima Jr. , N. Yevtushenko , Test suite minimization
for testing in context, Softw. Test. Verificat. Reliab. 13 (3) (2003) 141–155 .

[6] T. Apiwattanapong , R.A. Santelices , P.K. Chittimalli , A. Orso , M.J. Harrold , MA-
TRIX: maintenance-oriented testing requirements identifier and examiner, in: 1st
Testing: Academia and Industry Conference - Practice And Research Techniques,
TAIC PART’06, IEEE Computer Society, 2006, pp. 137–146 .

[7] R.V. Binder , B. Legeard , A. Kramer , Model-based testing: where does it stand? Com-
mun. ACM 58 (2) (2015) 52–56 .

[8] M. Boreale , M. Paolini , On formally bounding information leakage by statistical es-
timation, in: 17th Int. Conf. on Information Security, ISC’14, LNCS 8783, Springer,
2014, pp. 216–236 .

[9] C. Braunstein , A.E. Haxthausen , W.L. Huang , F. Hübner , J. Peleska , U. Schulze ,
L.V. Hong , Complete model-based equivalence class testing for the ETCS ceiling
speed monitor, in: 16th Int. Conf. on Formal Engineering Methods, ICFEM’14, LNCS
8829, Springer, 2014, pp. 380–395 .

[10] A.R. Cavalli , T. Higashino , M. Núñez , A survey on formal active and passive testing
with applications to the cloud, Annal. Telecommun. 70 (3–4) (2015) 85–93 .

[11] T. Chothia , Y. Kawamoto , C. Novakovic , Leakwatch: estimating information leak-
age from java programs, in: 19th European Symposium on Research in Computer
Security, ESORICS’14, LNCS 8713, Springer, 2014, pp. 219–236 .

[12] T.S. Chow , Testing software design modeled by finite state machines, IEEE Trans.
Softw. Eng. 4 (1978) 178–187 .

[13] D. Clark , R.M. Hierons , Squeeziness: an information theoretic measure for avoiding
fault masking, Inf. Process. Lett. 112 (8–9) (2012) 335–340 .

[14] T.M. Cover , J.A. Thomas , Elements of Information Theory, Wiley Interscience, Hobo-
ken, NJ, USA, 1991 .

[15] K. El-Fakih , A. Petrenko , N. Yevtushenko , FSM test translation through context,
in: 18th Int. Conf. on Testing Communicating Systems, TestCom’06, LNCS 3964,
Springer, 2006, pp. 245–258 .

[16] R. Feldt , S.M. Poulding , D. Clark , S. Yoo , Test set diameter: quantifying the diversity
of sets of test cases, in: 9th IEEE Int. Conf. on Software Testing, Verification and
Validation, ICST’16, IEEE Computer Society, 2016, pp. 223–233 .

[17] R. Feldt , R. Torkar , T. Gorschek , W. Afzal , Searching for cognitively diverse tests:
towards universal test diversity metrics, in: 1st IEEE Int. Conf. on Software Testing
Verification and Validation Workshops, IEEE Computer Society, 2008, pp. 178–186 .

[18] M.C. Gaudel , Testing can be formal, too!, in: 6th Int. Joint Conf. CAAP/FASE, Theory
and Practice of Software Development, TAPSOFT’95, LNCS 915, Springer, 1995,
pp. 82–96 .

[19] W. Grieskamp , Y. Gurevich , W. Schulte , M. Veanes , Generating finite state machines
from abstract state machines, in: ACM SIGSOFT Symposium on Software Testing and
Analysis, ISSTA’02, ACM Press, 2002, pp. 112–122 .

[20] W. Grieskamp , N. Kicillof , K. Stobie , V. Braberman , Model-based quality assurance
of protocol documentation: tools and methodology, Softw. Test. Verificat. Reliab. 21
(1) (2011) 55–71 .

[21] Q. Guo , R.M. Hierons , M. Harman , K. Derderian , Improving test quality using robust
unique input/output circuit sequences (UIOCs), Inf. Softw. Technol. 48 (8) (2006)
696–707 .

[22] C. Henard , M. Papadakis , M. Harman , Y. Jia , Y.L. Traon , Comparing white-box and
black-box test prioritization, in: 38th Int. Conf. on Software Engineering, ICSE’14,
ACM Press, 2016, pp. 523–534 .

[23] F.C. Hennie , Fault-detecting experiments for sequential circuits, in: 5th Annual Sym-
posium on Switching Circuit Theory and Logical Design, IEEE Computer Society,
1964, pp. 95–110 .

[24] R.M. Hierons , Testing from partial finite state machines without harmonised traces,
IEEE Trans. Softw. Eng. 43 (11) (2017) 1033–1043 .

[25] R.M. Hierons , K. Bogdanov , J.P. Bowen , R. Cleaveland , J. Derrick , J. Dick , M. Ghe-
orghe , M. Harman , K. Kapoor , P. Krause , G. Luettgen , A.J.H. Simons , S. Vilkomir ,
M.R. Woodward , H. Zedan , Using formal specifications to support testing, ACM Com-
put. Surv. 41 (2) (2009) . 9:1–9:76

[26] R.M. Hierons , M.G. Merayo , M. Núñez , Implementation relations and test generation
for systems with distributed interfaces, Distribut. Comput. 25 (1) (2012) 35–62 .

[27] R.M. Hierons , M.G. Merayo , M. Núñez , Bounded reordering in the distributed test
architecture, IEEE Trans. Reliab. 67 (2) (2018) 522–537 .

[28] R.M. Hierons , M. Núñez , Using schedulers to test probabilistic distributed systems,
Formal Aspect. Comput. 24 (4–6) (2012) 679–699 .

[29] R.M. Hierons , M. Núñez , Implementation relations and probabilistic schedulers in
the distributed test architecture, J. Syst. Softw. 132 (2017) 319–335 .

[30] I. Hwang , A.R. Cavalli , Testing a probabilistic FSM using interval estimation, Com-
put. Netw. 54 (7) (2010) 1108–1125 .

[31] Z. Kohavi , Switching and Finite State Automata Theory, McGraw-Hill, 1978 .
[32] D. Lee , M. Yannakakis , Principles and methods of testing finite state machines: a

survey, Proc. IEEE 84 (8) (1996) 1090–1123 .
[33] W. Masri , R. Abou-Assi , M. El-Ghali , N. Al-Fatairi , An empirical study of the fac-

tors that reduce the effectiveness of coverage-based fault localization, in: 2nd Int.
Workshop on Defects in Large Software Systems, DEFECTS’09, ACM Press, 2009,
pp. 1–5 .

[34] E.P. Moore , Gedanken experiments on sequential machines, in: C. Shannon, J. Mc-
Carthy (Eds.), Automata Studies, Princeton University Press, 1956 .

[35] G.J. Myers , C. Sandler , T. Badgett , The Art of Software Testing, 3rd, John Wiley &
Sons, Hoboken, NJ, USA, 2011 .

[36] J. Peleska , Model-based avionic systems testing for the airbus family, in: 23rd IEEE
European Test Symposium, ETS’18, IEEE Computer Society, 2018, pp. 1–10 .

[37] A. Petrenko , Fault model-driven test derivation from finite state models: Annotated
bibliography, in: 4th Summer School on Modeling and Verification of Parallel Pro-
cesses, MOVEP’00, LNCS 2067, Springer, 2001, pp. 196–205 .

[38] A. Petrenko , S. Boroday , R. Groz , Confirming configurations in EFSM testing, IEEE
Transactions on Software Engineering 30 (1) (2004) 29–42 .

[39] A. Petrenko , N. Yevtushenko , Testing from partial deterministic FSM specifications,
IEEE Transactions on Computers 54 (9) (2005) 1154–1165 .

[40] A. Petrenko , N. Yevtushenko , G. von Bochmann , Testing deterministic implemen-
tations from their nondeterministic FSM specifications, in: 9th IFIP Workshop on
Testing of Communicating Systems, IWTCS’96, Chapman & Hall, 1996, pp. 125–140 .

[41] A. Petrenko , N. Yevtushenko , G. von Bochmann , R. Dssouli , Testing in context:
framework and test derivation, Computer Communications 19 (1996) 1236–1249 .

[42] M. Shafique , Y. Labiche , A systematic review of state-based test tools, Int. J. Softw.
Tool.Technol. Transf. 17 (1) (2015) 59–76 .

[43] C.E. Shannon , A mathematical theory of communication, Bell Syst. Tech. J. 27
(1948) 623–656 . 379–423

[44] X. Wang , S.C. Cheung , W.K. Chan , Z. Zhang , Taming coincidental correctness: cov-
erage refinement with context patterns to improve fault localization, in: 31st Int.
Conf. on Software Engineering, ICSE’09, IEEE Computer Society, 2009, pp. 45–55 .

[45] Y. Wang , M.U. Uyar , S.S. Batth , M.A. Fecko , Fault masking by multiple timing faults
in timed EFSM models, Comput. Netw. 53 (5) (2009) 596–612 .

[46] M.R. Woodward , Z.A. Al-Khanjari , Testability, fault size and the domain-to-range
ratio: an eternal triangle, in: 12th Int. Symposium on Software Testing and Analysis,
ISSTA’00, ACM Press, 2000, pp. 168–172 .

147

10.2. Estimating fault masking using Squeeziness based on Rényi’s entropy111

10.2 Estimating fault masking using Squeeziness based
on Rényi’s entropy

Authors Alfredo Ibias and Manuel Núñez
Title Estimating fault masking using Squeeziness

based on Rényi’s entropy
Publication Type Conference
Venue 35th ACM/SIGAPP Symposium on Applied

Computing
Year 2020
DOI/URL https://doi.org/10.1145/3341105.

3373920
Pages 8
Authors’ Contributions Ibias and Núñez developed the theory. Ibias

and Núñez designed the experiments. Ibias
developed and executed the experiments.
Ibias and Núñez wrote the manuscript.
Núñez reviewed the manuscript.

https://doi.org/10.1145/3341105.3373920
https://doi.org/10.1145/3341105.3373920

Estimating fault masking using Squeeziness based on Rényi’s
entropy

Alfredo Ibias
Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid

Madrid, Spain

aibias@ucm.es

Manuel Núñez
Departamento de Sistemas Informáticos y Computación,

Universidad Complutense de Madrid

Madrid, Spain

mn@sip.ucm.es

ABSTRACT
Squeeziness is an Information Theory notion that has been proven

to strongly correlate with the likelihood of Failed Error Propaga-

tion (FEP). This allows us to estimate the FEP of a certain system

by computing its Squeeziness. The original notion of Squeeziness

is based on the classical notion of entropy defined by Shannon.

In this paper we study alternative notions of Squeeziness based

on a more general notion of entropy introduced by Rényi. In con-

trast to Shannon’s entropy, which is univocally defined, Rényi’s

entropy depends on a parameter α . We define Squeeziness by us-

ing Rényi’s entropy and analyse the correlation of the different no-

tions of Squeeziness with the likelihood of FEP. Our experiments

showed that although α = 1, corresponding to Shannon’s entropy,

induces good correlations, there are values of α showing better

correlations.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; •Mathematics of computing→ Information theory; •

Theory of computation→Abstract machines;

KEYWORDS
Formal approaches to testing; Information Theory; Failed Error

Propagation; Rényi’s entropy

ACM Reference Format:
Alfredo Ibias and Manuel Núñez. 2020. Estimating fault masking using

Squeeziness based on Rényi’s entropy. In The 35th ACM/SIGAPP Sympo-

sium onApplied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Re-

public.ACM,NewYork, NY, USA, 8 pages. https://doi.org/10.1145/3341105.3373920

1 INTRODUCTION
Software Testing [2, 26] is the main validation technique to detect

faults in software systems. Traditionally, Software Testing was a

repertory of informal techniques. However, it has been shown that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/10.1145/3341105.3373920

it is possible to formalise it [9, 16] and there are many tools support-

ing the theoretical frameworks [23, 29]. One of the main scenar-

ios where formal methods for testing are fundamental is black-box

testing. In this scenario, the tester observes the reaction of the Sys-

tem Under Test (SUT) to the provided inputs without having access

to the internal structure of the SUT. Many formal approaches have

been developed for black-box testing but there are some shortcom-

ings difficult to overcome. Among them, we can stand out Failed

Error Propagation (FEP).

In terms of the RIP model [2] (stating that three conditions must

be present for a failure to be observed: Reachability, Infection and

Propagation), we might reach a fault such that the infection is not

propagated to the final (observable) state. The lack of access to the

internal structure of the SUT negates the tester the possibility to

detect these faults in a black-box scenario.1

It might be thought that if the previous faults do not alter the

outputs, then we should not worry about them. However, more

complex forms of FEP consist in faults whose errors do not prop-

agate to the outputs in some cases, but they generate wrong out-

puts in other cases. These forms of FEP are specially dangerous

because their detection depends on executing the right test, the

one that propagates the error to the output. However, if the right

test is not in the selected test suite (maybe because it will only de-

tect this fault and the other tests could detect more than one fault

at the same time), then the error will remain undetected. Finally,

one last dangerous form of FEP appears in systems where the first

execution of the faulty code does not generate the wrong output,

but it still corrupts the internal state of the system. This can lead

to a wrong output after some time.

An example of FEP is illustrated in Figure 1 (this is the scenario

that we consider in this paper). We have a component C receiving

a sequence of inputs from another component CP . C and CP can

be modelled as Finite State Machines (FSMs). We assume that these

values (sent byCP toC) are not directly observed by the tester and

thatC produces a sequence of outputs that are either observed dur-

ing testing or are received by another component. In this context,

CP could produce an unexpected sequence but componentC could

map the expected and unexpected sequences to the same output

sequence:C would introduce a form of FEP that makes it more dif-

ficult to find faults in CP . These faults could be unleashed if we

composeCP with a different componentC ′. Assume that we want

to implement the component Cp given in the middle part of Fig-

ure 1 and that this component will be paired with componentC . In

this setting, it will be difficult to unmask a faulty implementation

1These faults can be detected in a white-box scenario because the code is available
and then we can follow the produced error.

1936

Figure 1: Representation of our testing scenario.

ofCp , such as the one shown in the lower part of Figure 1, because

C returns the same response, the sequence z1z1, to the sequences

y1y1 (produced by a correct implementation of Cp receiving x1x1)

and y2y2 (produced by a faulty implementation of Cp also receiv-

ing x1x1). Note, as we already said, that a tester will not be able to

observe whether the sequence provided to C is y1y1 or y2y2.

Since FEP cannot be directly detected, it is important to estimate

its likelihood. Squeeziness [3, 11] was used to estimate FEP in a

white-box scenario because there is a strong rank correlation be-

tween Squeeziness and FEP. Specifically, Squeeziness is a measure

of the loss of information (entropy) that happens in a channel (in

this case, the SUT) that takes inputs and return outputs. The idea

behind it is that if the SUT maps two or more inputs to the same

output then this channel (the SUT) can lead to a loss of informa-

tion: if we know the program output then we may not know the

program input that caused this. In recent work, and this is the no-

tion that we consider in this paper, Squeeziness has been adapted

to a black-box scenario [21], where the specification of the SUT is

given as a FSM. The observable behaviour of an FSM is given by

the set of input/output sequences, usually called traces, that label

paths from the initial state of the system.

Squeeziness was always defined using Shannon’s entropy [30],

although there are many alternative notions to define what is in-

tended as entropy. Rényi’s entropy [28] provides an infinite fam-

ily of entropies because its definition is parameterised by a posi-

tive real value α . A good property of this general notion is that

Shannon’s entropy, as well as other notions appearing in the liter-

ature, are specific cases of this generalisation (Shannon’s entropy

corresponds to α = 1). The main goal of this paper is to gener-

alise Squeeziness to deal with Rényi’s entropy and explore how it

improves the performance of Squeeziness. We compute the correla-

tions between Squeeziness based on Rényi’s entropy and the likeli-

hood of FEP, for FSMs with different number of states. First, we con-

sider the values for the extreme cases (α ∈ {0, 1,∞}). Afterwards,

we use uniformly distributed values in the ranges [0, 1], [1, 10] and

[10, 100]. The obtained results were very promising. There is a cor-

relation between FEP and Rényi’s Squeeziness that ranges between

0.5 and 0.9. Furthermore, the best correlations are obtained with

α ∈ (2, 3), where the correlations range between 0.75 and 0.9.

The rest of the paper is organised as follows. In Section 2 we

explain some basic concepts on FSMs and present the main defini-

tions of previous work. In Section 3 we develop the adaptation of

the previously explained theory to the new concept of entropy. In

Section 4 we explain the experiments performed to evaluate our

newly developed theory. In Section 5 we present our conclusions

and some lines of future work.

2 PRELIMINARIES
In this section we will present some concepts that are required to

understand the work presented in this paper. These concepts are

standard in classical work on testing from FSMs [22]. Most of them

are based on the original sources, while some notation is adapted

to facilitate the formulation of subsequent definitions.

2.1 Basic concepts
Given a set A, we let A∗ denote the set of finite sequences of ele-

ments of A. ϵ ∈ A∗ denotes the empty sequence. We let A+ denote

the set of non-empty sequences of elements of A. Ak denotes the

set of sequences with length k ≥ 1. We let |A| denote the cardinal

of set A. Given a sequence σ ∈ A∗, we have that |σ | denotes its

length. Given a sequence σ ∈ A∗ and a ∈ A, we have that σa de-

notes the sequence σ followed by a and aσ denotes the sequence σ

preceded by a.

Throughout this paper we let I be the set of input actions andO

be the set of output actions. It is important to differentiate between

input actions and inputs of the system. In our context, an input of

a system will be a non-empty sequence of input actions, that is, an

element of I+ (similarly for outputs and output actions).

A Finite State Machine is a (finite) labelled transition system in

which transitions are labelled by an input/output pair. We use this

formalism to define processes.

Definition 2.1. We say that M = (Q,qin, I ,O,T) is a Finite State

Machine (FSM), where Q is a finite set of states, qin ∈ Q is the ini-

tial state, I is a finite set of input actions,O is a finite set of output

actions, and T ⊆ Q × (I ×O) ×Q is the transition relation. A tran-

sition (q, (i, o),q′) ∈ T , also denoted by q
i/o

−−−−→ q′ or by (q, i/o,q′),

means that from stateq after receiving input i it is possible to move

to state q′ and produce output o.

We say that M is deterministic if for all q ∈ Q and i ∈ I there

exists at most one pair (q′,o) ∈ Q ×O such that (q, i/o,q′) ∈ T . In

this paper we consider deterministic FSMs.

An FSM can be represented by a diagram in which nodes repre-

sent states of the FSM and transitions are represented by arcs be-

tween the nodes. We use a double circle to denote the initial state.

As stated in the previous definition, we consider that FSMs are

deterministic. This restriction is taken to mimic the white-box sce-

nario where Squeeziness was originally introduced and considered,

as usual, that programs are deterministic.

Definition 2.2. Let M = (Q,qin, I ,O,T) be an FSM. We say that

(i1,o1) . . . (ik , ok) ∈ (I × O)∗ is a trace of M if there exist states

1937

q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have (q j−1, i j/oj ,q j) ∈

T , where q0 = qin . Let s = i1 . . . ik ∈ I ∗ be a sequence of input

actions. We define outM (s) as the set

{o1 . . . ok ∈ O∗ |(i1/o1) . . . (ik , ok) trace of M}

Note that if M is deterministic, then this set is either empty or

a singleton. In the last case we will sometimes write outM (s) =

o1, . . . ,ok .

We define domM as the set {s ∈ I ∗ |outM (s) , ∅}. Similarly, we

define imageM as the set

{o1 . . . ok ∈ O∗ |∃s ∈ I ∗ : o1 . . . ok ∈ outM (s)}

We denote by domM ,k the set domM ∩ Ik . Similarly, we denote by

imageM ,k the set imageM ∩Ok .

2.2 Shannon-based Squeeziness in a black-box
setting

Squeeziness has been used to estimate the existence of FEP in a

black-box scenario [21]. In order to do that, FSMs represent specifi-

cations as functions that transform sequences of input actions into

sequences of output actions. Those inputs will belong to domM ⊆

I ∗, while outputs will belong to imageM ⊆ O∗. Projections of these

functions restrict the function to sequences of input actions of

length k > 0. Finally, we review the notion of collision, which hap-

pens when two different inputs produce the same output.

Definition 2.3. Let M = (Q,qin, I ,O,T) be an FSM. We define

fM : domM −→ imageM as the function such that for all s ∈ domM
we have fM (s) = outM (s).

Let k > 0. We define fM ,k to be the function fM ∩ (Ik × Ok),

where we use the function fM to denote the associated set of pairs.

Let t ∈ imageM . We define f −1
M

(t) to be the set {s ∈ I ∗ | fM (s) = t}.

Let s1, s2 ∈ I ∗. We say that s1 and s2 collide for M if s1 , s2 and

fM (s1) = fM (s2).

Squeeziness represents the amount of information lost by a func-

tion. Thus, Squeeziness for an FSM was defined as the Squeeziness

of the function that represents this FSM. In order to properly com-

pute it, it was necessary to define how inputs are chosen and out-

puts are returned. A probabilistic view, where a random variable

is associated with each set of relevant inputs/outputs, was consid-

ered. Specifically, a random variable was associated with the set of

inputs/outputs of a certain length (that is, there are different ran-

dom variables associated with I 1, I 2, . . . ; O1,O2, . . .). Since domM ,k

includes the inputs of length equal to k that M can perform and

imageM ,k includes the outputs of length equal to k that M can

produce after receiving an element of domM ,k , random variables

ranging over each set are defined as ξdomM ,k
and ξimageM ,k

, respec-

tively. With these random variables, the concept of Squeeziness for

FSMs was defined.

Definition 2.4. Let S be a set and ξS be a random variable over

S . We denote by σξS the probability distribution induced by ξS .

Let M = (Q,qin, I ,O,T) be an FSM and k > 0. Let us consider

two random variables ξdomM ,k
and ξimageM ,k

ranging, respectively,

over the domain and image of fM ,k . The Squeeziness ofM at length

k is defined as

Sqk (M) = H(ξdomM ,k
) − H(ξimageM ,k

)

whereH(ξS) denotes the (Shannon’s) entropy of the random vari-

able ξS that ranges over the set S , which is defined as

H(ξS) = −
∑
s ∈S

σξS (s) · log2(σξS (s))

There is an important remark concerning random variables as-

sociated with inputs and outputs: given an FSM M , k > 0 and a

random variable ξdomM ,k
, we have that the probability distribution

of the random variable ξimageM ,k
is completely determined. This is

because for each element t ∈ imageM ,k we have that

σξimageM ,k

(t) =
∑

s ∈f −1
M

(t)

σξdomM ,k

(s)

Therefore, the formulation of Squeeziness is

Sqk (M) = −
∑

t ∈imageM ,k

©­­
«

∑
s ∈f −1

M
(t)

σξdomM ,k

(s)
ª®®
¬
· RM (t)

where the term RM (t) is equal to

∑
s ∈f −1

M
(t)

σξdomM ,k

(s)

σξdomM ,k

(f −1
M

(t))
· log2

©­
«

σξdomM ,k

(s)

σξdomM ,k

(f −1
M

(t))

ª®
¬

Finally, the last concept that we will recall from previous work

is probability of collisions (PColl [11]). In our context, fault mask-

ing (FEP) happens when the expected and faulty input sequences,

received from another component, produce the same sequence t

of output actions. If given an FSM M and k > 0 we have that there

exists t ∈ imageM ,k such that s, s ′ ∈ f −1
M ,k

(t), with s , s ′, then

there is a collision. Note that collisions are a precondition of FEP.

Definition 2.5. Let M be an FSM and k > 0. Let imageM ,k =

{t1, ..., tn} and for all 1 ≤ i ≤ n let Ii = f −1
M ,k

(ti) and mi =

| f −1
M ,k

(ti)|. We have that d =
∑n
i=1mi is the size of the input space.

Given a uniform distribution over the inputs, the probability of s

and s ′ both being in the set Ii is equal to pi =
mi ·(mi−1)
d ·(d−1)

. We have

that the probability of having a collision in M for sequences of

length k , denoted by PCollk (M), is given by

PCollk (M) =

n∑
i=1

mi · (mi − 1)

d · (d − 1)

With regard to this definition, a topic that has been already ad-

dressed is the potential to use PCollk (M) instead of Squeeziness.

The problem with using PCollk (M) is that it is hard to compute.

While this also applies to Squeeziness, the latter has the advantage

of being an information theoretic measure. As a result, we can use

Information Theory to either estimate or bound measures [6, 10],

what will suffice for our task.

3 RÉNYI’S ENTROPY AND SQUEEZINESS
Previous work on Squeeziness used Shannon’s entropy, but there

exist alternative definitions of entropy that are worth exploring.

In fact, there exists a general definition of entropy, dependent on

a parameter α , called Rényi’s entropy [28].

1938

Definition 3.1. Let S be a set and ξS be a random variable over S .

Let α ∈ IR+\{1}. The Rényi’s entropy of the random variable ξS
with respect to α , denoted byHα (ξS), is defined as:

Hα (ξS) =
1

1 − α
· log2

(∑
s ∈S

σξS (s)
α

)

Let S andT be sets and f : S −→ T be a total function. Let us con-

sider two random variables ξS and ξT ranging, respectively, over S

and T , and α ∈ IR+\{1}. The Rényi’s Squeeziness of f with respect

to α , denoted by Sqα (f), is defined as the loss of information after

applying f to S taking into account α , that is, Hα (ξS) − Hα (ξT).

It is well-known that when α tends to 1, Rényi’s entropy be-

comes Shannon’s entropy, that is,

lim
α→1

Hα (ξS) = H(ξS) = −
∑
s ∈S

σξS (s) · log2(σξS (s))

Next, we can define the Squeeziness of an FSM using Rényi’s

entropy in the same way as it was defined in Definition 2.4.

Definition 3.2. LetM = (Q,qin, I ,O,T) be an FSM and k > 0. Let

us consider two random variables ξdomM ,k
and ξimageM ,k

ranging,

respectively, over the domain and image of fM ,k . Let α ∈ IR+\{1}.

Rényi’s Squeeziness of M at length k with respect to α is defined

as

Sqα ,k (M) = Hα (ξdomM ,k
) − Hα (ξimageM ,k

)

We can provide an alternative definition of Rényi’s Squeeziness

taking into account, as previously explained, that we have

σξimageM ,k

(t) =
∑

s ∈f −1
M

(t)

σξdomM ,k

(s)

Therefore, we only need to use the probability distribution on in-

puts given by ξdomM ,k
. The proof of the following result is straight-

forward.

Lemma 3.3. Let M = (Q,qin, I ,O,T) be an FSM, k > 0 and α ∈

IR+\{1}. Let us consider a random variable ξdomM ,k
ranging over the

domain of fM ,k . We have that

Sqα ,k (M) =
1

1 − α
· log2

©­­­­­­­­­
«

∑
s ∈domM ,k

(
σξdom

M ,k

(s)
)α

∑
t ∈imageM ,k

©­­«
∑

s ∈f −1
M

(t)

σξdomM ,k

(s)
ª®®
¬

α

ª®®®®®®®®®¬
If α tends to 1 then we obtain Shannon’s entropy [28] and we have

Sq1,k (M) = −
∑

t ∈imageM ,k

©­­
«

∑
s ∈f −1

M
(t)

σξdomM ,k

(s)
ª®®
¬
· RM (t)

where the term RM (t) is equal to

∑
s ∈f −1

M
(t)

σξdomM ,k

(s)

σξdomM ,k

(f −1
M

(t))
· log2

©­
«

σξdomM ,k

(s)

σξdomM ,k

(f −1
M

(t))

ª®
¬

If α tends to∞ then we obtain min-entropy [28] (that is,H∞(X) =

− log2(maxi pi)) and we have

Sq∞,k (M) = log2

©­­­­­«

max
t ∈imageM ,k

∑
s ∈f −1

M
(t)

σξdomM ,k

(s)

max
s ∈domM ,k

σξdomM ,k

(s)

ª®®®®®
¬

The proof of the previous result when α tends to 1 uses the for-

mulation of Squeeziness given in previous work [21].

The definition of Rényi’s Squeeziness keeps some of the inter-

esting properties of the notion of Squeeziness based on Shannon’s

entropy [21]. The first result corresponds to the relation of the bi-

jectivy of a function and the nullity of its Squeeziness.

Lemma 3.4. LetM = (Q,qin, I ,O,T) be an FSM andk > 0. If fM ,k

is bijective then Sqα ,k (M) = 0.

The second result corresponds to the non-monotoniticy of the

relationship between Squeeziness and PColl.

Lemma 3.5. There exist FSMs M1 and M2 and k > 0 such that,

for all α ∈ IR+\{1}, Sqα ,k (M1) ≤ Sqα ,k (M2) but PCollk (M1) >

PCollk (M2). In fact, the result also holds when α tends to 1 and when

it tends to∞.

The previously defined notion of Squeeziness is parameterised

by the distribution over the inputs of the function (that is, over

the input sequences that the FSM can perform). If we know the

actual distribution, then we can use this. If we do not know the

distribution, then there is a need to choose one and we now discuss

two approaches to do this.

3.1 Maximum entropy principle
We can select the distribution that maximises the entropy. If there

are no further restrictions, maximum entropy is obtained with a

uniformdistribution [1, 12]. Then, under this distribution, theweight

of a single element of domM ,k is
1

|domM ,k |
and the weight of the

inverse image of an output t ∈ imageM ,k is equal to
| f −1
M

(t)|

|domM ,k |
.

Under these assumptions, and after some algebraic manipula-

tions, the formula for Rényi’s Squeeziness becomes:

Sqα ,k (M) =
1

1 − α
· log2

©­­­­­
«

|domM ,k |∑
t ∈imageM ,k

(
| f −1M (t)|

)α
ª®®®®®¬

As usual, we have two special cases: α tending to 1 or to∞. If α

tends to 1, then we are using Shannon’s entropy and we have the

following simplified formulation [21]:

Sq1,k (M) =
1

|domM ,k |
·

∑
t ∈imageM ,k

| f −1M (t)| · log2(| f
−1
M (t)|)

1939

If α tends to∞, then we are using min-entropy and, after some

algebraic manipulations, we obtain the following formulation:

Sq∞,k (M) = log2

(
max

t ∈imageM ,k

| f −1M (t)|

)

3.2 Maximum loss of information
Another option is to consider the worst case scenario, that is, the

scenario where the probability distribution induces the maximum

loss of information. In order to maximize the loss of information,

we need to maximize Squeeziness. Then, the probability distribu-

tion will be the one that is uniformly distributed in the largest in-

verse image of an element of the outputs and zero elsewhere [11].

Formally, consider t ′ ∈ imageM ,k such that for all t ∈ imageM ,k

we have that | f −1
M

(t ′)| ≥ | f −1
M

(t)|. Then,

σξdomM ,k

(s) =




1
|f −1
M

(t ′) |
if s ∈ f −1

M
(t ′)

0 otherwise

Using this probability distribution, the formulation of Rényi’s

Squeeziness can be transformed into the following one:

Sqα ,k (M) = log2

(
| f −1
M

(t ′)|
)

In this case, unlike the previous ones, Squeeziness does not de-

pend on the value of α . In particular, the two special cases (α tend-

ing to 1 and α tending to∞) have the same formulation.

4 EMPIRICAL EVALUATION
In order to explore the convenience of Rényi’s Squeeziness, we will

use the same reference measure that has been used in previous

work [11, 21]: the probability of collisions (PColl as introduced in

Definition 2.5). Then, our experiments will essentially compute the

correlation between Rényi’s Squeeziness, for different values of α ,

and the corresponding values of PColl.

With this methodology in mind, we asked ourselves the follow-

ing research questions.

4.1 Research Questions
In order to decidewhether a notion of Squeeziness based on Rényi’s

entropy has some scientific interest, our first research question

considers whether we obtain an improvement with respect to the

framework where Shannon’s entropy is used.

Research�estion 1. Does there exist α ∈ IR+\{1} whose cor-

responding Squeeziness correlates better with FEP than α = 1? Is it

unique?

Then, in order to evaluate how the size of the FSM affects the

capability of Squeeziness to detect FEP, we propose the following

research question.

Research �estion 2. Is there an improvement in the capabil-

ity of Squeeziness to detect cases of FEP when the size of the FSM

increases?

Figure 2: Initial hypothesis of the Pearson and Spearman
correlations.

4.2 Experiments
In order to answer the research questions, we performed several

experiments. We used 3 different sets of experimental subjects:

• Set1: 500 randomly generated FSMs with 50 states, 5 outgo-

ing transitions from each state, and input and output alpha-

bets of size 5.

• Set2: 3500 randomly generated FSMs with 5 outgoing tran-

sitions from each state, and input and output alphabets of

size 5. This set is divided in 7 subsets, each one with 500

FSMs with the same number of states: 10, 20, 30, 40, 50, 60

and 70 states respectively.

• Set3: 241 deterministic FSMs coming from a recently collected

benchmark [27], which represent real systems.

The code developed to perform these experiments can be found at

the repositories https://github.com/Colosu/RenyiSqueeziness and

https://github.com/Colosu/RenyiSqueezinessReal.

Our initial hypothesis was that α = 1 could be the best possible

value to use in the computation of Squeeziness based on Renyi’s

entropy. If we were able to show evidence of this hypothesis, then

we could discard Renyi’s entropy and stick to the original work

on Squeeziness where Shannon’s entropy was used. Therefore, we

did a preliminary experiment where we computed the values of

Squeeziness for Set1 and the extreme cases: α ∈ {0, 1,∞}. The

best correlation between Sqα ,10(M) and PColl10(M)was obtained

when α = 1. Thus, we hypothesised that the curves showing cor-

relation values versus α will be like the ones given in Figure 2.

In order to explore if our initial hypothesis was correct, we had

to explore how the correlations perform for more values of α ∈

IR+\{1} (specifically, we considered values of α uniformly distrib-

uted in the ranges [0, 1], [1, 10] and [10, 100]). In addition, we varied

the number of states of the FSMs so that the results did not depend

on a specific structure of the considered systems. In order to do

that we set the following experiment. We decided to explore the

correlations for FSMs with 10, 20, 30, 40, 50, 60 and 70 states (that

is, Set2). Then, for each number of states we used 500 FSMs with the

selected number of states, 5 outgoing transitions from each state,

and input and output alphabets of size 5. Those parameters where

1940

FSM size 10 20 30 40 50 60 70

α = 0 0.486431 0.648953 0.701338 0.769901 0.762446 0.796774 0.795541

α = 0.1 0.494168 0.657132 0.707142 0.776037 0.768796 0.802761 0.801591

α = 0.2 0.502264 0.665466 0.712918 0.782091 0.775042 0.808578 0.807555

α = 0.3 0.510699 0.673913 0.718639 0.788036 0.781146 0.814196 0.813402

α = 0.4 0.51945 0.682431 0.724282 0.793846 0.787073 0.819592 0.819105

α = 0.5 0.528487 0.690979 0.729829 0.7995 0.792791 0.824745 0.82464

α = 0.6 0.537774 0.699512 0.735264 0.804978 0.798272 0.829641 0.829985

α = 0.7 0.547273 0.70799 0.740575 0.810265 0.803492 0.834269 0.835126

α = 0.8 0.556945 0.71637 0.745755 0.815351 0.808431 0.838623 0.840049

α = 0.9 0.566748 0.724615 0.750799 0.820227 0.813072 0.8427 0.844744

α → 1 0.576644 0.732685 0.755706 0.824886 0.817402 0.8465 0.849204

α = 2 0.666551 0.796947 0.79693 0.858781 0.842322 0.86988 0.879998

α = 3 0.6879 0.814853 0.80419 0.856621 0.827749 0.85593 0.867284

α = 4 0.668366 0.796306 0.769726 0.816314 0.768392 0.8129 0.81342

α = 5 0.646528 0.771592 0.734235 0.778553 0.702129 0.768647 0.768431

α = 6 0.629883 0.751551 0.706872 0.751479 0.652932 0.729861 0.734089

α = 7 0.617827 0.736731 0.686756 0.732532 0.619978 0.699701 0.707358

α = 8 0.609014 0.725885 0.671986 0.719035 0.59767 0.677549 0.686398

α = 9 0.602426 0.717853 0.660975 0.709193 0.581985 0.661496 0.66999

α = 10 0.597385 0.711794 0.652614 0.701865 0.570544 0.649774 0.657148

α = 20 0.578372 0.690007 0.62309 0.677375 0.532961 0.612142 0.61089

α = 30 0.573687 0.68491 0.617039 0.672633 0.525918 0.605177 0.601954

α = 40 0.571616 0.682788 0.614691 0.670875 0.523325 0.602808 0.598745

α = 50 0.570441 0.681663 0.613478 0.670023 0.522039 0.601727 0.597174

α = 60 0.569685 0.680978 0.612748 0.669539 0.521291 0.601131 0.596266

α = 70 0.569159 0.680523 0.612263 0.669233 0.520809 0.600758 0.595689

α = 80 −nan 0.6802 0.611919 0.669024 0.520477 0.600504 0.595297

α = 90 −nan 0.679959 0.611664 0.668872 0.520235 0.600319 0.595018

α = 100 −nan −nan −nan −nan 0.520052 0.600178 −nan

α → ∞ 0.566197 0.678277 0.609975 0.667912 0.518761 0.599138 0.593596

Table 1: Pearson correlations between Rényi’s Squeeziness
and PColl.

selected in the same way as the ones used in previous work [21]

so that we could properly compare the results.2

Then, we took each set of 500 FSMs with the same number of

states and computed, for each α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,∞},

the values of Sqα ,10(M) and PColl10(M), that is, we considered

sequences of 10 inputs for each FSM M . Afterwards, we computed

the Pearson and Spearman correlations between these values. The

full results are displayed in Tables 1 and 2. Interestingly, but some-

how expected, although the Pearson and Spearman correlations

are different in all the cases, the difference between both correla-

tions strongly decreases when the size of the FSMs increases.

In order to analyse all these values, we performed, for each set of

FSMs with the same number of states, the cubic interpolation of the

correlations that those FSMs will have for an α ∈ [0, 101]. The in-

terpolation of the Pearson correlations is displayed in Figure 3 and

the one corresponding to the Spearman correlations is displayed in

Figure 4, with each curve corresponding to the different number of

states of the FSMs.

All the curves have a peak in the range (2, 4). Therefore, we

decided to reproduce the experiment but using α ∈ {2, 2.1, 2.2, 2.3,

2.4, 2.5, 2.6, 2.7, e , 2.8, 2.9, 3, 3.1, π , 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,

3.9, 4}. Then, we obtained the interpolations presented in Figures 5

and 6. From the plots we can observe that, for each number of

states, we have a different α that gives the highest correlation but

we can bound these values in the interval (2, 3).

2We performed some experiments with different sizes of inputs and outputs alphabets

and the results were essentially the same.

FSM size 10 20 30 40 50 60 70

α = 0 0.665932 0.726231 0.755532 0.750096 0.762307 0.777202 0.788155

α = 0.1 0.671902 0.732722 0.762912 0.756609 0.769409 0.782764 0.793699

α = 0.2 0.678459 0.739066 0.769426 0.762733 0.776362 0.789153 0.798919

α = 0.3 0.684373 0.744736 0.776493 0.769181 0.783407 0.794884 0.804108

α = 0.4 0.691055 0.751285 0.782856 0.775335 0.790109 0.800489 0.809323

α = 0.5 0.696784 0.756789 0.789381 0.781042 0.797739 0.805876 0.813798

α = 0.6 0.702745 0.762747 0.79492 0.786539 0.804071 0.811034 0.818569

α = 0.7 0.708673 0.769094 0.799407 0.792022 0.8099 0.816104 0.822752

α = 0.8 0.714102 0.774626 0.804144 0.797834 0.81562 0.820327 0.826531

α = 0.9 0.720631 0.780229 0.809282 0.80226 0.820262 0.824522 0.830042

α → 1 0.726016 0.785447 0.812757 0.806145 0.824706 0.828592 0.833766

α = 2 0.764498 0.823818 0.842291 0.837653 0.853455 0.851616 0.857426

α = 3 0.764927 0.830047 0.837677 0.844951 0.846256 0.850812 0.852832

α = 4 0.746544 0.818795 0.813882 0.827714 0.816204 0.833841 0.829668

α = 5 0.730784 0.799161 0.783527 0.801646 0.776347 0.802588 0.79919

α = 6 0.717461 0.779128 0.753262 0.777588 0.742974 0.771497 0.765878

α = 7 0.707339 0.762354 0.728659 0.754509 0.715904 0.744383 0.734198

α = 8 0.699611 0.748681 0.710361 0.737043 0.693262 0.724578 0.706547

α = 9 0.693184 0.737617 0.696699 0.723698 0.675814 0.709165 0.682964

α = 10 0.688319 0.729412 0.685111 0.713579 0.663306 0.696883 0.664693

α = 20 0.668653 0.700691 0.648802 0.677524 0.614724 0.650798 0.595545

α = 30 0.663651 0.693924 0.640996 0.670478 0.605531 0.639959 0.583053

α = 40 0.660772 0.691046 0.637872 0.667504 0.602163 0.636674 0.578645

α = 50 0.65943 0.689444 0.636246 0.666404 0.60056 0.635238 0.576823

α = 60 0.658432 0.688849 0.635403 0.66581 0.599142 0.634257 0.575432

α = 70 0.657831 0.688425 0.634893 0.665391 0.598497 0.633749 0.57483

α = 80 0.657283 0.6882 0.634572 0.665172 0.59808 0.633143 0.574501

α = 90 0.656874 0.687997 0.634294 0.664936 0.597839 0.632637 0.574192

α = 100 0.655963 0.687767 0.634214 0.664901 0.597719 0.632636 0.573859

α → ∞ 0.652587 0.685688 0.63173 0.662879 0.595149 0.629928 0.571167

Table 2: Spearman correlations betweenRényi’s Squeeziness
and PColl.

Figure 3: Interpolation of the Pearson correlations.

As a safety check, we decided to explore if the results are sim-

ilar in a real scenario. In order to do that, we performed our ex-

periments over a recently collected benchmark [27]. This bench-

mark has 241 deterministic FSMs, which represent real systems (the

previously mentioned Set3). We took those FSMs and repeated the

experiment: we computed, for each α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80,

90, 100, ∞}, the values of Sqα ,3(M) and PColl3(M) for each FSM

M . Then, we computed the Pearson and Spearman correlations be-

tween these values. With these correlations, we interpolated the

correlations for α ∈ [0, 101]. Due to space limitations, we do not

present the results in the paper, but the conclusion is that the in-

terpolation curves behave similarly to the curves that we obtained

with the randomly generated FSMs, that is, we obtain again peaks

1941

Figure 4: Interpolation of the Spearman correlations.

Figure 5: Interpolation of the Pearson correlations at their
peak.

Figure 6: Interpolation of the Spearman correlations at their
peak.

in the values of correlation for values of α belonging to the inter-

val (2, 3). Therefore, we have an empirical confirmation that the

results obtained for randomly generated FSMs can be extrapolated

to real FSMs.

4.3 Answers to the research questions
As a recap of all the results that we obtained from our experiments,

we can answer the Research Questions we performed at the begin-

ning of this section.

Research�estion 1. Does there exist α ∈ IR+\{1} whose cor-

responding Squeeziness correlates better with FEP than α = 1? Is it

unique?

The answer to this question is positive. There exist values of α

whose corresponding Squeeziness are better suited to detect FEP

than α = 1. However, this value is not unique. Although in all our

experiments we can bound this α in the interval (2, 3), the actual

peak depends on the specific FSM. In any case, we conclude that

using Renyi’s entropy with values of α in this interval produces

better notions of Squeeziness than the original notion where Shan-

non’s entropy was used.

Research �estion 2. Is there an improvement in the capabil-

ity of Squeeziness to detect cases of FEP when the size of the FSM

increases?

The answer to this question is that, in general, there is an im-

provement. However, this improvement is not continuous and some-

times there is a deterioration of the results.

4.4 Threats to validity
We have to explore the threats to internal (related to uncontrolled

factors), external (related to generalisation factors) and construct

(related to reality factors) validity.

Themain threat to the internal validity of our work is associated

with the possible faults in the developed tools, which could lead to

misleading results. In order to reduce the impact of this threat we

tested our code with carefully constructed examples for which we

couldmanually check the results. Luckily, once the FSMs have been

(randomly) generated, our experiments had no randomisation fac-

tor involved. Therefore, there is no need to repeat the experiments.

Themain external validity threat is the different representations

of black-box components FSMs. Such a threat cannot be entirely ad-

dressed since this population is unknown and it is not possible to

sample from an unknown population. In order to reduce the im-

pact of this threat, we used a large number of randomly generated

FSMs and checked our results with the results of repeating the ex-

periment in a set of benchmark FSMs that represent real systems.

The main threat to the construct validity of our work is whether

the FSMs used in the experiments correspond to possible system

components. In order to reduce the impact of this threat, we re-

stricted our range of FSM samples to connected deterministic ma-

chines. Also, we checked our results with the results of repeating

the experiment in the set of already mentioned benchmark FSMs.

Finally, we have computed (many) results for α ∈ [0, 100] and

have concluded that the peak of the correlations always belongs to

the interval (2, 3). Actually, all the curves were strictly decreasing

from α = 3. However, and this is an important threat to our re-

sults, we cannot claim that for a certain size of the analysed FSMs,

there do not exist α ∈ (100,∞) producing better correlations. We

were sampling different values ofα in the interval (100,∞) and con-

firmed that the correlationswere decreasing. We have a strong con-

fidence in this trend but it is not possible to prove that there does

1942

not exist a better correlation for a value (or values) of α ∈ (100,∞).

Note that even if this value exists, but we claim again that this is

very unlikely, our experimental results show that it will be difficult

to compute sensible correlations. In fact, the results of the Pearson

correlation for α = 100 already show that five out of seven cor-

relations could not be computed (see penultimate row of Table 1).

Therefore, the potential small gain would be mitigated by the prob-

lems associated with the computation of the measure.

5 CONCLUSIONS AND FUTURE WORK
It is known that FEP can have a significant effect on testing. Re-

cent work has shown that an information theoretic measure called

Squeeziness strongly correlates with the likelihood of FEP both in

white-box [11] and black-box [21] scenarios. However, this work

only considered Squeeziness based on Shannon’s entropy. In this

paper we adapted the Squeeziness measure to be based in a more

general notion: Rényi’s entropy.

Once we defined our new notion of Squeeziness, we carried out

experiments in order to evaluate this measure. In the experiments,

we compared our measure with PColl, a measure that has been

shown to be very good in estimating the likelihood of FEP. We

observed a strong correlation between PColl and our notion(s) of

Squeeziness (formally, one notion for each α ∈ IR+ ∪ {∞}). Also,

we observed better results when we chose values of α belonging to

(2, 3). In particular, all these values return better correlations than

α = 1. Interestingly, our experiments also showed an improvement

of the correlations when we were increasing the number of states

of the generated FSMs and kept the value of α constant.

For future work, we have several lines of research. We plan to

explore approximations, most likely based on sampling, and the

trade-off between the cost of sampling (sample size) and the effec-

tiveness of the estimates. We will extend our tool GPTSG [20] with

the different pieces of software that we have developed to perform

our experiments. Among other features, the toolwill automatically

choose an a priori very good value of α by taking into account the

characteristics of the models. The new tool will also generate and

process big amounts of mutants [8, 13–15]. Finally, we would like

to take previous research as initial step to generalise the frame-

work and measures to deal with asynchronous [17, 24, 25], dis-

tributed [7, 18, 19] and cloud [4, 5] systems.

ACKNOWLEDGMENTS
Thiswork is supportedby theMINECO-FEDERunder Grant No.: RTI2018-

093608-B-C31 and by the Region ofMadrid underGrant No.: S2018/TCS-

4314 co-funded by EIE Funds of the European Union.

REFERENCES
[1] J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi. 2017. Estimating Renyi En-

tropy of Discrete Distributions. IEEE Transactions on Information Theory 63, 1
(2017), 38–56.

[2] P. Ammann and J. Offutt. 2017. Introduction to Software Testing (2nd ed.). Cam-
bridge University Press.

[3] K. Androutsopoulos, D. Clark, H. Dan, R.M. Hierons, and M. Harman. 2014. An
analysis of the relationship between conditional entropy and failed error prop-
agation in software testing. In 36th Int. Conf. on Software Engineering, ICSE’14.
ACM Press, 573–583.

[4] A. Bernal, M. E. Cambronero, A. Núñez, P. C. Cañizares, and V. Valero. 2019. Im-
proving cloud architectures using UML profiles and M2T transformation tech-
niques. The Journal of Supercomputing 75, 12 (2019), 8012–8058.

[5] A. Bernal, M. E. Cambronero, V. Valero, A. Nú nez, and P. C. Ca nizares. 2019.
A Framework for Modeling Cloud Infrastructures and User Interactions. IEEE
Access 7 (2019), 43269–43285.

[6] M. Boreale and M. Paolini. 2014. On Formally Bounding Information Leakage
by Statistical Estimation. In 17th Int. Conf. on Information Security, ISC’14, LNCS
8783. Springer, 216–236.

[7] J. Boubeta-Puig, Gregorio Díaz, H. Macià, V. Valero, and G. Ortiz. 2019.
MEdit4CEP-CPN: An approach for complex event processing modeling by pri-
oritized colored Petri nets. Information Systems 81 (2019), 267–289.

[8] P. C. Cañizares, A. Núñez, and M. G. Merayo. 2018. Mutomvo: Mutation testing
framework for simulated cloud and HPC environments. Journal of Systems and
Software 143 (2018), 187–207.

[9] A. R. Cavalli, T. Higashino, and M. Núñez. 2015. A survey on formal active and
passive testing with applications to the cloud. Annales of Telecommunications
70, 3-4 (2015), 85–93.

[10] T. Chothia, Y. Kawamoto, and C. Novakovic. 2014. LeakWatch: Estimating Infor-
mation Leakage from Java Programs. In 19th European Symposium on Research
in Computer Security, ESORICS’14, LNCS 8713. Springer, 219–236.

[11] D. Clark and R.M.Hierons. 2012. Squeeziness: An information theoretic measure
for avoiding fault masking. Inform. Process. Lett. 112, 8-9 (2012), 335–340.

[12] T. M. Cover and J. A. Thomas. 1991. Elements of Information Theory. Wiley
Interscience.

[13] P. Delgado-Pérez, LouisM. Rose, and I. Medina-Bulo. 2019. Coverage-basedqual-
ity metric of mutation operators for test suite improvement. Software Quality
Journal 27, 2 (2019), 823–859.

[14] P. Gómez-Abajo, E. Guerra, Juan de Lara, and M. G. Merayo. 2018. A tool for
domain-independent model mutation. Science of Computer Programming 163
(2018), 85–92.

[15] L. Gutiérrez-Madroñal, A. García-Domínguez, and I. Medina-Bulo. 2019. Evolu-
tionary mutation testing for IoT with recorded and generated events. Software -
Practice & Experience 49, 4 (2019), 640–672.

[16] R. M.Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J. Dick,M. Ghe-
orghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A.J.H Simons, S. Vilkomir,
M.R. Woodward, and H. Zedan. 2009. Using formal specifications to support
testing. Comput. Surveys 41, 2 (2009), 9:1–9:76.

[17] R. M. Hierons, M. G. Merayo, and M. Núñez. 2017. An extended framework
for passive asynchronous testing. Journal of Logical and Algebraic Methods in
Programming 86, 1 (2017), 408–424.

[18] R. M. Hierons, M. G. Merayo, and M. Núñez. 2018. Bounded reordering in the
distributed test architecture. IEEE Transactions on Reliability 67, 2 (2018), 522–
537.

[19] R. M. Hierons and M. Núñez. 2017. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and Software
132 (2017), 319–335.

[20] A. Ibias, D. Griñán, and M. Núñez. 2019. GPTSG: a Genetic Programming Test
Suite Generator using Information Theory measures. In 15th Int. Work-Conf. on
Artificial Neural Networks, IWANN’19, LNCS 11506. Springer, 716–728.

[21] A. Ibias, R. M. Hierons, and M. Núñez. 2019. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information & Soft-
ware Technology 112 (2019), 132–147.

[22] D. Lee and M. Yannakakis. 1996. Principles and methods of testing finite state
machines: A survey. Proc. IEEE 84, 8 (1996), 1090–1123.

[23] R. Marinescu, C. Seceleanu, H. Le Guen, and P. Pettersson. 2015. A Research
Overview of Tool-Supported Model-based Testing of Requirements-based Designs.
Advances in Computers, Vol. 98. Elsevier, Chapter 3, 89–140.

[24] M. G. Merayo, R. M. Hierons, and M. Núñez. 2018. Passive Testing with Asyn-
chronous Communications and Timestamps. Distributed Computing 31, 5 (2018),
327–342.

[25] M. G. Merayo, R. M. Hierons, and M. Núñez. 2018. A tool supported methodol-
ogy to passively test asynchronous systems with multiple users. Information &
Software Technology 104 (2018), 162–178.

[26] G. J. Myers, C. Sandler, and T. Badgett. 2011. The Art of Software Testing (3rd ed.).
John Wiley & Sons.

[27] D. Neider, R. Smetsers, F. W. Vaandrager, and H. Kuppens. 2019. Benchmarks
for Automata Learning and Conformance Testing. In Models, Mindsets, Meta:
The What, the How, and the Why Not? - Essays Dedicated to Bernhard Steffen on
the Occasion of His 60th Birthday, T. Margaria, S. Graf, and K. G. Larsen (Eds.).
Springer, 390–416.

[28] A. Rényi. 1961. On Measures of Entropy and Information. In 4th Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 1: Contributions to the
Theory of Statistics. University of California Press, 547–561.

[29] M. Shafique and Y. Labiche. 2015. A systematic review of state-based test tools.
International Journal on Software Tools for Technology Transfer 17, 1 (2015), 59–
76.

[30] C. E. Shannon. 1948. AMathematical Theory of Communication. The Bell System
Technical Journal 27 (1948), 379–423, 623–656.

1943

10.3. SqSelect: Automatic assessment of Failed Error Propagation in
state-based systems 121

10.3 SqSelect: Automatic assessment of Failed Er-
ror Propagation in state-based systems

Authors Alfredo Ibias and Manuel Núñez
Title SqSelect: Automatic assessment of Failed Er-

ror Propagation in state-based systems
Publication Type Journal
Venue Expert Systems With Applications
Number 174
Year 2021
DOI/URL https://doi.org/10.1016/j.eswa.2021.

114748
Pages 17
Authors’ Contributions Ibias and Núñez developed the theory. Ibias

and Núñez designed the experiments. Ibias
developed and executed the experiments.
Ibias and Núñez wrote the manuscript.
Núñez reviewed the manuscript.

https://doi.org/10.1016/j.eswa.2021.114748
https://doi.org/10.1016/j.eswa.2021.114748

Expert Systems With Applications 174 (2021) 114748

Available online 26 February 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

SqSelect: Automatic assessment of Failed Error Propagation in
state-based systems

Alfredo Ibias a, Manuel Núñez a,b,*

a Design and Testing of Reliable Systems research group, Universidad Complutense de Madrid, Madrid, Spain
b Institute of Knowledge Technology, Universidad Complutense de Madrid, Madrid, Spain

A R T I C L E I N F O

Keywords:
Software testing
Failed error propagation
Expert systems
Information theory

A B S T R A C T

Current software systems are inherently complex and this fact strongly complicates, and makes more expensive,
to validate them. Therefore, it is a must to provide methodologies, supported by tools, that can direct validation
activities so that they focus on specific aspects of the system (e.g. its critical parts, common errors produced by
developers, components that are expensive to fix after deployment, etc). Among the different validation tech
niques, testing is the most widely used. In this paper we focus on one of the main problems when testing systems
with many components: the likelihood of Failed Error Propagation (FEP). FEP appears when we have faulty
components such that their wrong behaviour is not revealed when isolatedly testing them but that might produce
an error when they are combined with other components. Given a component, it is not possible to automatically
assess the likelihood of FEP. However, previous work has shown that there is a strong correlation between the
likelihood of FEP and an Information Theory notion called Squeeziness . Recent work has shown that it is
possible to compute different values of Squeeziness (essentially, Squeeziness depends on a positive real value)
and some of them are more suitable to estimate FEP. In this paper we present our tool SqSelect. Our tool
receives either a specific system or its more important characteristics (number of states, maximum and minimum
number of outgoing transitions from a state, size of the input and output alphabets) and returns interesting data
that can help the tester to estimate the presence of FEP. In particular, our tool provides the most promising value
(s) of the parameter associated with Squeeziness so that the likelihood of FEP can be more accurately estimated.
In order to compute these values, our tool relies on an artificial neural network that has been extensively trained
(compressing the information from around 250,000 systems and around 1, 500,000 executions).

1. Introduction

The main goal of an expert system is to replace a human expert in the
process of providing a decision or verdict. Usually, expert systems have
to deal with big amounts of information so that they are indeed more
effective than the replaced human experts because they will not be able
to process all the needed information. Expert systems currently deal
with very heterogeneous systems: they can assess the risks of cost
overruns in real power plants (Islam, Nepal, Skitmore, & Kabir, 2019),
rank hockey players according to difference performance metrics (Gu,
Foster, Shang, & Wei, 2019), deal with different environments in the
Health domain (Díaz, Macià, Valero, Boubeta-Puig, & Cuartero, 2020;

García de Prado, Ortiz, & Boubeta-Puig, 2017), or detect security attacks
(Roldán, Boubeta-Puig, Martínez, & Ortiz, 2020), among many others.
The goal of this paper is to introduce an expert system such that given a
state-based system, and using an artificial neural network (ANN) pre
viously trained, provides relevant information, in a structured and
comprehensive way, that will help testers by guiding some of the testing
activities.

Software Testing (Ammann & Offutt, 2017; Myers, Sandler, &
Badgett, 2011) is the main validation technique to detect faults in
software systems. Although Software Testing was traditionally consid
ered to be mainly informal, this situation has changed. Actually, from the
1990s it is well-known and understood that testing can be formalised

This work has been supported by the Spanish MCIU-FEDER (grant number FAME, RTI2018-093608-B-C31), the Region of Madrid (grant number FORTE-CM,
S2018/TCS-4314), the Region of Madrid – Complutense University of Madrid (grant number PR65/19-22452) and the Santander – Complutense University of
Madrid (grant number CT63/19-CT64/19).

* Corresponding author.
E-mail addresses: aibias@ucm.es (A. Ibias), mn@sip.ucm.es (M. Núñez).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.114748
Received 21 February 2020; Received in revised form 17 June 2020; Accepted 16 February 2021

Expert Systems With Applications 174 (2021) 114748

2

(Gaudel, 1995). Thus, formal approaches to testing is a flourishing field
of study (Cavalli, Higashino, & Núñez, 2015; Hierons et al., 2009) and
there are many tools supporting the theoretical frameworks (Marinescu,
Seceleanu, Guen, & Pettersson, 2015; Shafique & Labiche, 2015). One of
the main scenarios where formal methods for testing are fundamental is
black-box testing: the tester provides inputs to the system under test
(SUT), without having access to its internal structure, observe its reac
tion (outputs) and analyse whether these reactions are expected or not.

Testing a complex system consists of many strands. For example,
depending on the amount of resources available for testing, we can
perform activities such as analyse the isolated behaviour of different
components, assess the robustness of a system or check whether a system
is using more resources than expected. However, one facet is unavoid
able: current software systems are composed of many components and
an appropriate testing plan must assess how different units/components
work together. One of the main problems that can appear when testing
components that are working together is Failed Error Propagation
(Laski, Szermer, & Luczycki, 1995; Woodward & Al-Khanjari, 2000)
(FEP). Suppose that we execute a faulty statement of a component, so
that the resulting internal state becomes faulty, but the differences be
tween the faulty and correct state are not reflected in the output pro
vided by the component. If this component works alone, then FEP does
not represent a problem but if we transfer the (faulty) state to a different
component, then an unforeseen error might appear.

In Fig. 1 we graphically show the scenario where FEP can appear. We
use Finite State Machines (FSMs) to represent components but any other
state-based formalism could be used and the adaption of our framework
would be straightforward. We have two components, CP and C. The
former receives a sequence of inputs. In particular, this sequence can be

provided by the tester. Then, CP performs some computations and sends
a sequence of inputs to C. In order to not violate the assumption con
cerning a black-box framework, we assume that the actions sent from CP
to C cannot be observed by the tester. C will produce a sequence (they
will represent outputs of the whole system) that can be observed by the
tester. In this context, the component CP could produce an unexpected
sequence, this is the one received by C, but C might produce the same
result from the expected and unexpected sequences: C would introduce a
form of FEP that makes it more difficult to find faults in CP. These faults
could be revealed if CP is combined with another component C′.

Assume that we want to implement the component Cp given in the
middle part of Fig. 1 and that this component will be paired with
component C. In this setting, it will be difficult to unmask a faulty
implementation of Cp, such as the one shown in the lower part of Fig. 1,
because C returns the same response, the sequence z1z1, to the sequences
y1y1 (produced by a correct implementation of Cp receiving x1x1) and
y2y2 (produced by a faulty implementation of Cp also receiving x1x1).
Note, as we already said, that a tester will not be able to observe whether
the sequence provided to C is y1y1 or y2y2.

Several empirical studies have shown that FEP hampers testing
(Masri, Abou-Assi, El-Ghali, & Al-Fatairi, 2009; Santelices & Harrold,
2011; Wang, Cheung, Chan, & Zhang, 2009): in 13% of the examined
programs, a total of 60% or more of the tests suffered from FEP (Masri
et al., 2009). Although it is not clear how Software Testing could be
better designed to ameliorate the problems caused by FEP, it is impor
tant to reduce the probability that test cases will suffer from FEP and,
therefore, it is useful to have different metrics that can help us to identify
parts of a system that are more likely to lead to FEP (Androutsopoulos,
Clark, Dan, Hierons, & Harman, 2014). There is a line of research

Fig. 1. Representation of our testing scenario.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

3

looking for measures to indirectly estimate FEP and it seems that an
Information Theory measure called Squeeziness (Clark & Hierons, 2012;
Clark, Hierons, & Patel, 2019) is a good candidate. Actually, an empir
ical study (Androutsopoulos et al., 2014) of 30 programs and more than
7⋅106 tests showed that the Spearman rank correlation of Squeeziness
with FEP is close to 0.95. Squeeziness was adapted to a black-box testing
framework (Ibias, Hierons, & Núñez, 2019) and the correlation with FEP
was also very high (around 0.80 for both Pearson and Spearman
correlations).

The original notion of Squeeziness relies on Shannon’s entropy
(Shannon, 1948). Although this is a standard notion, it is not the only
possibility. Actually, it is possible to define an infinite number of notions
of entropy, one for each α ∈ R+: Rényi’s entropy (Rényi, 1961). Shan
non’s entropy corresponds to Rényi’s entropy when α = 1. Recent work
(Ibias & Núñez, 2020) has studied the different notions of Squeeziness
induced by each value of α and, interestingly enough, has shown that for
each system there is a different best value of α. By best value we mean the
value such that the corresponding notion of Squeeziness has the highest
rank correlation with FEP. In particular, even though α = 1 always
provides good correlations, all the experiments revealed that the best
value was never reached with this value. Therefore, given a system, it
would be interesting to know the optimum value of α so that the FEP of
the system can be estimated with a higher precision. In order to compute
this value, there are two important facts that must be taken into account.
First, the computation of this value for a specific system needs a non-
negligible amount of computing power. Second, it has been observed
(Ibias & Núñez, 2020) that similar systems obtain similar values. Thus, it
would be enough to have an approximate method to compute a good
enough approximation of the desired value. We have developed a tool,
called SqSelect, that receives either a specific system or its defining
characteristics (among others, number of states, maximum and mini
mum number of outgoing transitions, size of the input and output al
phabets) and provides several interesting data that can help the tester to
decide the amount of testing that should be used to evaluate FEP. Spe
cifically, SqSelect provides the value of Squeeziness that more accu
rately estimates the likelihood of having cases of FEP in the system. In
order to compute our solution, integrated in SqSelect, we rely on an
ANN that we have extensively trained using 249,000 different systems
and a total of 1,494,000 executions, obtaining a mean loss of only
1.280935.

Concerning related work, there is plenty of work on Information
Theory and testing (Androutsopoulos et al., 2014; Clark, Feldt, Pould
ing, & Yoo, 2015; Clark & Hierons, 2012; Feldt, Poulding, Clark, & Yoo,
2016; Feldt, Torkar, Gorschek, & Afzal, 2008; Ibias et al., 2019; Ibias,
Núñez, & Hierons, 2021; Miranskyy, Davison, Reesor, & Murtaza, 2012;
Pattipati & Alexandridis, 1990; Pattipati, Deb, Dontamsetty, & Maitra,
1990; Sagarna, Arcuri, & Yao, 2007; Yoo, Harman, & Clark, 2013) where
theoretical frameworks, sometimes supported by empirical evidence,
are presented and discussed. However, to the best of our knowledge,
there do not exist frameworks where relevant Information Theory
measures are automatically (and using a small computing power) esti
mated. There is a recent proposal to use expert systems in testing
(Cañizares, Núñez, & Lara, 2019) but their focus is on memory systems
and the underlying testing approach is Metamorphic Testing. It is nat
ural that expert and recommender systems use artificial neural net
works, and we may mention some recent work (de Mesquita Sá et al.,
2019; Ayala, Borrego, Hernández, & Ruiz, 2020), but their goal is not
related to testing and their field of application are very far from ours.
Finally, it is worth mentioning that artificial neural networks are a good
tool to confront testing activities (Serna et al., 2019) but they have never
been used to estimate Information Theory measures. There is some work
in the field of profiling tools for error propagation but our work diverges
in several aspects and, therefore, it is difficult to compare it with them.
PROPANE (Hiller, Jhumka, & Suri, 2002) needs the source code to work,
that is, it can be classified as a white-box approach. EPIC (Hiller,

Jhumka, & Suri, 2004) considers a running system. Therefore, it can be
considered to be a black-box approach. A similar consideration applies
to later work dealing with the analysis of operating systems (Coppik,
Schwahn, Winter, & Suri, 2017; Johansson & Suri, 2005), multi-
threaded programs (Chan, Winter, Saissi, Pattabiraman, & Suri, 2017),
automotive systems (Piper, Winter, Schwahn, Bidarahalli, & Suri, 2015)
and software architecture (Abdelmoez et al., 2004). Although SqSe
lect also works with a black-box, the abstract representation of the
systems that we consider, represented as FSMs, is very far from the
systems studied in these profiling approaches. However, the most
important difference between the previously mentioned approaches and
ours concerns how error propagation is studied. The former ones analyse
error propagation of the system with the goal of detecting dependencies
between components and determine which components can have the
most harmful errors for the whole system (because their errors propa
gate more than others). In our case, our goal is to determine which
components can hide errors from being detected, that is, which com
ponents do not propagate errors. In Fig. 2 we sketch the main features of
our tool and of the tools and studies more related to ours. Specifically,
we mention whether the study uses Information Theory, is tool-
supported, works with a white/black box or considers error propaga
tion or failed error propagation.

The rest of the paper is structured as follows. In Section 2 we intro
duce the notations and concepts that we will use. Section 3 provides a
high level description of the behaviour of SqSelect and explains how
our ANN was designed, trained and tested. In Section 4 we present the
different modes that are available in our tool. In Section 5 we discuss
some design decisions and justify the chosen options. In Section 6 we
give some representative case studies to show the behaviour of our tool.
Finally, in Section 7 we present our conclusions and some lines for future
work.

2. Background

In this section we present the basic concepts and notions that are
required to understand the work presented in this paper.

2.1. Basic concepts

Given a set A, we let A* denote the set of finite sequences composed
from elements of A; as usual, we consider that ∊ ∈ A* denotes the empty
sequence. We let A+ denote the set of non-empty sequences of elements
of A. Ak denotes the set of sequences with length k⩾1. We let |A| denote
the cardinal of set A. Given a sequence σ ∈ A*, we have that |σ| denotes
its length. Given a sequence σ ∈ A* and a ∈ A, we have that σa denotes
the sequence σ followed by a and aσ denotes the sequence σ preceded by
a.

Throughout this paper we let I be the set of input actions and O be the
set of output actions. In our context, it is important to distinguish be
tween input actions and inputs of the system. Specifically, an input of a
system is a non-empty sequence of input actions, that is, an element of
I+. We have a similar situation concerning output actions and outputs of
the system. A Finite State Machine is a (finite) labelled transition system
in which transitions are labelled by an input/output pair.

Definition 1. A tuple M = (Q, qin, I,O,T) is a Finite State Machine
(FSM), where Q is a finite set of states, qin ∈ Q is the initial state, I is a
finite set of input actions, O is a finite set of output actions, and T⊆Q ×

(I × O) × Q is the transition relation. A transition (q, (i, o), q′) ∈ T, also
denoted by (q, i/o,q′), means that from state q after receiving the input
action i it is possible to move to state q′ and produce the output action o.
We say that M is deterministic if for all q ∈ Q and i ∈ I there exists at most
one pair (q′, o) ∈ Q × O such that (q, i/o, q′) ∈ T. In this paper we
consider deterministic FSMs.

In this paper we use this simple formalism to define processes but our

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

4

methodology can be easily adapted to deal with any other state-based
formalism as long as it provides notions of inputs and outputs. Note
that FSMs, despite their simplicity, are frequently used to represent a
wide variety of systems: state-based software systems, logic circuits,
communication protocols, etc. An FSM can be seen as a diagram where
nodes denote states of the FSM and transitions are represented by arcs
between the nodes. We use a double circle to denote the initial state.

As stated in the previous definition, we consider that FSMs are
deterministic. This restriction is taken to mimic the white-box scenario
where Squeeziness was originally introduced and considered, as usual,
that programs are deterministic.

Definition 2. Let M = (Q, qin, I,O,T) be an FSM. We say that (i1, o1)…
(ik, ok) ∈ (I × O)

* is a trace of M if there exist states q1…qk ∈ Q such that
for all 1⩽j⩽k we have (qj− 1, ij/oj,qj) ∈ T, where q0 = qin. We denote by
traces(M) the set of traces of M. Note that ∊ ∈ traces(M). Let s = i1…
ik ∈ I* be a sequence of input actions. We define outM(s) as the set

{o1…ok ∈ O*|(i1/o1)…(ik, ok)trace ofM}

Note that if M is deterministic, then this set is either empty or a
singleton. In the last case we will simply write outM(s) = o1,…,ok.

We define domM as the set {s ∈ I*|outM(s) ∕= ∅}. Similarly, we
define imageM as the set

{o1…ok ∈ O*|∃s ∈ I* : o1…ok ∈ outM(s)}

We denote by domM,k the set domM ∩ Ik. Similarly, we denote by
imageM,k the set imageM ∩ Ok. Next we present a simple example to
illustrate the previous concepts.

Example 1. In Fig. 3 we have an FSM with 10 states, S0 is its initial
state (the double circle), a set of inputs I = {a, b, c} and set of outputs
O = {x, y, z}. For example, (a, z)(a, x) is a trace that takes the system
from state S0 to state S4; outM(aa) = zx while outM(ba) = ∅. We have

domM = {a, b, c, aa, ab, bb, ca, cb, cc}
imageM = {z, y, zx, zz, yz}

Moreover, domM,1 = {a, b, c} and imageM,2 = {zx,zz,yz}. Finally, we
review the concept of Failed Error Propagation. This kind of error appears
when we have a fault in the program but the error associated with this
fault does not have an effect in the output of the program. Using the RIP
model (Ammann & Offutt, 2017) (stating that three conditions must be
present for a failure to be observed: Reachability, Infection and Propa
gation), we might reach a fault such that the infection is not propagated to

the final (observable) state. The lack of access to the internal structure of
the SUT negates the tester the possibility to detect these faults in a black-
box scenario.1 As we have already mentioned in the introduction of this
paper, empirical studies have shown that many systems suffer from FEP
(Masri et al., 2009): in 13% of the analysed programs, a total of 60% or
more of the tests suffered from FEP.

It might be thought that if the previous faults do not alter the outputs,
then we should not worry about them. However, complex forms of FEP
include faults whose errors do not propagate to the outputs in some
cases, but they generate wrong outputs in other cases. These forms of
FEP are especially dangerous because their detection depends on
executing the right test, the one that propagates the error to the output.
Due to resources, time and budget restrictions this could be a hard work,
because the testing process has to be restricted to the application of some
selected cases: the ones that are more promising at detecting faults.
However, if the right test is not in the selected test suite (maybe because
it will only detect this fault and the other tests could detect more than
one fault at the same time), then the error will remain undetected.

2.2. Shannon-based Squeeziness in a black-box setting

Before we introduce the notion of Squeeziness, we define some
auxiliary concepts. First, note that FSMs can be seen as functions that
transform inputs into outputs. Projections of these functions restrict the
function to inputs of a certain length. Finally, we review the notion of
collision, which happens when two different inputs produce the same

Fig. 2. Comparison of SqSelect with other (failed) error propagation tools and frameworks.

Fig. 3. FSM example.

1 Note that these faults can be observed in a white-box scenario because the
tester has access to the code and, therefore, it is possible to follow the produced
error.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

5

output.

Definition 3. Let M = (Q, qin, I,O,T) be an FSM. We define fM :

domM⟶imageM as the function such that for all s ∈ domM we have
fM(s) = outM(s). Given k > 0, we define fM,k as the function fM ∩ (Ik ×

Ok), where fM denotes the associated set of pairs. Let t ∈ imageM. We
define f − 1

M (t) to be the set {s ∈ I*|fM(s) = t}. Let s1,s2 ∈ I*. We say that s1

and s2 collide for M if s1 ∕= s2 and fM(s1) = fM(s2).

Example 2. Consider again the FSM depicted in Fig. 3. For example, fM
maps aa→zx, ab→zz and bb→yz, among others. The inputs aa, ca and cb
collide; the inputs a and c also collide.

Squeeziness has been successfully used to estimate the existence of
FEP in white-box (Clark & Hierons, 2012; Clark et al., 2019) and black-
box (Ibias et al., 2019) scenarios. It represents the amount of informa
tion lost by a function. Thus, Squeeziness for an FSM can be defined as
the Squeeziness of the function that represents this FSM. In order to
properly compute it, it was necessary to define how inputs are chosen
and outputs are returned. A probabilistic view, where a random variable
is associated with each set of relevant inputs/outputs, can be considered.
Specifically, a random variable can be associated with the set of inputs/
outputs of a certain length (that is, there are different random variables
associated with I1,I2, …; O1,O2, …). Since domM,k includes the inputs of
length equal to k that M can perform and imageM,k includes the outputs
of length equal to k that M can produce after receiving an element of
domM,k, random variables ranging over each set are defined as ξdomM,k

and
ξimageM,k

, respectively.

Definition 4. Let S be a set and ξS be a random variable over S. We
denote by σξS the probability distribution induced by ξS.

Let M = (Q, qin, I,O,T) be an FSM and k > 0. Let us consider two
random variables ξdomM,k

and ξimageM,k
ranging, respectively, over the

domain and image of fM,k. The Squeeziness of M at length k is defined as

Sqk(M) = H (ξdomM,k
) − H (ξimageM,k

)

where H (ξS) denotes the (Shannon’s) entropy of the random variable ξS
that ranges over the set S, which is defined as

H (ξS) = −
∑

s∈S
σξS (s)⋅log2(σξS (s))

There is an important remark concerning random variables associ
ated with inputs and outputs: given an FSM M, k > 0 and a random
variable ξdomM,k

, we have that the probability distribution of the random
variable ξimageM,k

is completely determined. This is because for each
element t ∈ imageM,k we have that

σξimageM,k
(t) =

∑

s∈f − 1
M (t)

σξdomM,k
(s)

Therefore, the formulation of Squeeziness is

Sqk(M) = −
∑

t∈imageM,k

⎛

⎝
∑

s∈f − 1
M (t)

σξdomM,k
(s)

⎞

⎠⋅R M(t)

where the term R M(t) is equal to

∑

s∈f − 1
M (t)

σξdomM,k
(s)

σξdomM,k
(f − 1

M (t))
⋅log2

(
σξdomM,k

(s)

σξdomM,k
(f − 1

M (t))

)

Example 3. Consider again the FSM given in Fig. 3. If we assume that
inputs are uniformly distributed (later we will explain why this is a
reasonable assumption), then we have that

Sq1(M) == 3⋅
(

−
1
3

⋅log2(
1
3
)

)

−

(

−
1
3
⋅log2(

1
3
) −

2
3
⋅log2(

2
3
)

)

≈ 1.585 − 0.918 = 0.667

Using similar computations we have that

Sq2(M) ≈ 2.585 − 1.459 = 1.126

2.3. Rényi’s-based Squeeziness in a black-box setting

The original work on Squeeziness used Shannon’s entropy, but there
exists a general definition of entropy, depending on a parameter α,
called Rényi’s entropy (Rényi, 1961).

Definition 5. Let S be a set and ξS be a random variable over S. Let
α ∈ R+⧹{1}. The Rényi’s entropy of the random variable ξS with respect
to α, denoted by H α(ξS), is defined as:

H α(ξS) =
1

1 − α⋅log2

(
∑

s∈S
σξS (s)

α

)

We have that when α tends to 1, Rényi’s entropy becomes Shannon’s
entropy (Rényi, 1961), that is,

lim
α→1

H α(ξS) = H (ξS) = −
∑

s∈S
σξS (s)⋅log2(σξS (s))

Squeeziness of an FSM using Rényi’s entropy has been recently defined
(Ibias & Núñez, 2020) in the same way as (Shannon’s) Squeeziness was
defined in Definition 4.

Definition 6. Let M = (Q, qin, I,O,T) be an FSM and k > 0. Let us
consider two random variables ξdomM,k

and ξimageM,k
ranging, respectively,

over the domain and image of fM,k. Let α ∈ R+⧹{1}. Rényi’s Squeeziness
of M at length k with respect to α is defined as

Sqα,k(M) = H α(ξdomM,k
) − H α(ξimageM,k

)

In the Appendix I of the paper we provide an equivalent, but simpler
to compute, formulation of Rényi’s Squeeziness (see Lemma 1).

The previously defined notion of Squeeziness is parameterised by the
distribution over the inputs of the function (that is, over the input se
quences that the FSM can perform). If we know the actual distribution,
then we can use this. If we do not know the distribution, then there is a
need to choose one and we now discuss two approaches to do this.

2.3.1. Maximum entropy principle
We can select the distribution that maximises entropy. If there are no

further restrictions, maximum entropy is obtained with a uniform dis
tribution (Acharya, Orlitsky, Suresh, & Tyagi, 2017; Cover & Thomas,
1991). Then, under this distribution, the weight of a single element of
domM,k is 1

|domM,k |
and the weight of the inverse image of an output t ∈

imageM,k is equal to |f
− 1
M (t)|

|domM,k |
.

Under these assumptions, and after some algebraic manipulations,
the formula for Rényi’s Squeeziness becomes:

Sqα,k(M) =
1

1 − α⋅log2

⎛

⎜
⎝

|domM,k|
∑

t∈imageM,k

(⃒
⃒f − 1

M (t)|
)α

⎞

⎟
⎠

As usual, we have two special cases: α tending to 1 and tending to ∞. If α
tends to 1, then we are using Shannon’s entropy and we have the
following simplified formulation (Ibias et al., 2019):

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

6

Sq1,k(M) =
1

|domM,k|
⋅
∑

t∈imageM,k

|f − 1
M (t)|⋅log2(|f

− 1
M (t)|)

If α tends to ∞, then we are using min-entropy and, after some algebraic
manipulations, we obtain the following formulation:

Sq∞,k(M) = log2

(

max
t∈imageM,k

|f − 1
M (t)|

)

2.3.2. Maximum loss of information
Another option is to consider the worst case scenario, that is, the

scenario where the probability distribution induces the maximum loss of
information. In order to maximise the loss of information, we need to
maximise Squeeziness. In this case, the probability distribution is the
one that is uniformly distributed in the largest inverse image of an
element of the outputs and zero elsewhere (Clark & Hierons, 2012).
Formally, consider t′ ∈ imageM,k such that for all t ∈ imageM,k we have
that |f − 1

M (t′)|⩾|f − 1
M (t)|. Then,

σξdomM,k
(s) =

⎧
⎪⎨

⎪⎩

1
|f − 1

M (t′)|
if s ∈ f − 1

M (t′)

0 otherwise

Using this probability distribution, Rényi’s Squeeziness becomes:

Sqα,k(M) = log2
(⃒
⃒f − 1

M (t′)|
)

In this case, unlike the previous ones, Squeeziness does not depend on
the value of α. In particular, the two special cases (α tending to 1 and α
tending to ∞) have the same formulation.

2.4. Probability of collisions

FEP happens when the expected and faulty inputs, received from
another component, produce the same output. Therefore, a collision (see
Definition 3) is an indication of FEP and it is useful to compute the
probability of having collisions in the FSM under study. This probability
is given by PColl (Clark & Hierons, 2012).

Definition 7. Let M be an FSM and k > 0. Let imageM,k = {t1,…, tn}
and for all 1⩽i⩽n let Ii = f − 1

M,k(ti) and mi = |f − 1
M,k(ti)|. We have that d =

∑n
i=1mi is the size of the input space.
Given a uniform distribution over the inputs, the probability of s and

s′ both being in the same set Ii is equal to pi =
mi⋅(mi − 1)
d⋅(d− 1) . We have that the

probability of having a collision in M for sequences of length k, denoted
by PCollk(M), is given by

PCollk(M) =
∑n

i=1

mi⋅(mi − 1)
d⋅(d − 1)

With regard to this definition, a topic that has been already
addressed is the potential to use PCollk(M) instead of Squeeziness. The
problem with using PCollk(M) is that it is hard to compute. While this
also applies to Squeeziness, the latter has the advantage of being an
information theoretic measure. As a result, we can use Information
Theory to either estimate or bound measures (Boreale & Paolini, 2014;
Chothia, Kawamoto, & Novakovic, 2014), what will suffice for our final
goal.

2.5. Artificial Neural Networks

We review the main concepts around Artificial Neural Networks
(ANN). They try to mimic the brain behaviour. We use them to infer the
value of α that more appropriately asses the likelihood of the presence of
cases of FEP. There are two types of ANNs: classification and regression.
The former ones classify the input in one of many predefined classes

while the latter ones return a real number that represents the value
associated to the input in a one dimensional space.

An ANN is composed of different layers, where each layer has an
associated activation function and a set of neurons. The layers of an ANN
are commonly grouped in three types:

• Input layer: the layer that receives the input. It has as many neurons
as the dimension of the input.

• Hidden layers: the layers inside the ANN that are not accessible from
outside. They have various sizes and activation functions.

• Output layer: the last layer of the ANN. It has as many neurons as
classes for classification ANNs, or one neuron in the case of regres
sion ANNs.

A neuron is a simple agent that performs the following steps:

• Compute the weighted sum of the outputs of the previous layer. For
each neuron of the previous layer, the agent has an associated weight
that multiplies the output value of that neuron. Then, the agent sums
all the weighted output values.

• Apply the activation function. The agent applies the activation
function associated to its layer to the result of the previous step.
These activation functions are non-linear.

Activation functions are non-linear because if they were linear, then
the ANN would be equivalent to a single neuron with the proper weights.
There are many activation functions (the interested reader is referred to
classical material on ANNs (Goodfellow, Bengio, & Courville, 2016;
Jain, Mao, & Mohiuddin, 1996)). In this paper we consider the linear
activation function for the output layer (because we use a regression
ANN) and the leaky ReLU activation function, that we will explain later,
for the hidden layers. Note that using a linear activation function is
equivalent to not using any activation function at all.

Finally, ANNs use the back-propagation algorithm (Rumelhart, Hinton,
& Williams, 1986) to learn the values of the weighs of each neuron. This
learning method needs a set of examples given as input/output pairs (do
not confuse with our inputs and outputs), which we call the training set.
This algorithm performs, for each element of the training set, the
following steps:

• Compute the result of the ANN for the given input.
• Compute the loss of the ANN result with respect to the expected

result. The loss function usually is the mean squared error (squared
L2 norm) between both values.

• Compute the gradient of the loss function with respect to each weight
by the chain rule, trying to minimise the loss. This computation is
done from the last layer to the previous ones, in an incremental way.

Using this method the ANN updates its weights, efficiently learning
the hidden function that associates the inputs to the outputs of each
element of the training set.

After the learning, a common practice is to test how well the ANN
performs on previously unseen examples. In order to perform this check,
it is necessary to have another set of examples which we call the test set.
With this test set, the accuracy of the ANN is computed. For classification
ANNs the accuracy is defined as the ratio between the number of ele
ments of the test set that have been well classified and the cardinal of the
tests set. For regression ANNs there is no such concept of accuracy; the
performance of the ANN is given by the mean loss of the examples of the
test set. This concept of accuracy/mean loss can be extended to the
performance of the ANN on the training set, although in this case it only
measures how well the ANN learned the elements of the training set.

3. Methodology

In this section we review the main concepts behind the construction

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

7

of our tool SqSelect.2 In particular, we will explain how the ANN
driving the behaviour of SqSelect was designed, trained and tested.

Squeeziness is useful to asses the likelihood of FEP in a system. Be
sides, PColl (see Definition 7) is a reference measure of FEP in a system.
Therefore, for a given system, we would like to know the best value of α
to compute Rényi’s Squeeziness, that is, the value of α that better assess
the likelihood of having cases of FEP. In other words, the value whose
associated Rényi’s Squeeziness has a higher correlation with PColl. In
order to compute these correlations (one for each α) we consider families
of systems, that is, we grouped the FSMs according to their characteris
tics. Then, we compute the different Rényi’s Squeeziness values (for
different values of α) for all the systems of a family and measure the
correlation, for each α, between those values of Rényi’s Squeeziness and
the values of PColl.

There are two standard options to compute correlations: Pearson
correlation, which focuses on the proportionality between the variables,
and Spearman correlation, which focuses on the monotony between the
variables. We will focus on the first option and during the rest of the
paper when we simply say correlation we are referring to Pearson cor
relation (we will sometimes use Spearman correlation and we will
clearly identify it). A discussion about this decision and its implications
is given in Section 5.

If we are able to compute the best value of α for a family of systems,
then each time that our tool receives a system belonging to the family we
only need to compute its Rényi’s Squeeziness using this α. However, the
number of different system families is infinite, even if we use a few
parameters to define each family. Therefore, it is impossible to compute
this best notion for each potential family. In order to circumvent this
restriction, SqSelect implements an approximation method to
compute a good enough value of α for any system provided to the tool,
even if its family has not been analysed before. SqSelect uses an ANN
as approximation method. We decided to rely on this machine learning
technique because our preliminary experiments showed that the best
values of α, for different families, have low correlation to the parameters
that codify those families. Therefore, we need an approximation tech
nique that could deal with this lack of correlation. In Fig. 4 we give this
distribution for the entries of the dataset that we used to train our ANN.
Each point corresponds to a different family of systems and depth: the
points to the right of each value in the x-axis represent different search
depths. We can observe how, for the same parameter, the distribution of
the points along the possible values of α is almost uniform for each of its
values, showing no correlation between α and the considered parameter.

After training the ANN using a huge number of cases, we can use it to
approximate the value of α that will be better for a given system. In order
to do so, we need this system to be modelled as an FSM, from where we
can obtain their characteristic parameters. These parameters will be the
inputs of the ANN underlying the behaviour of SqSelect.

Finally, knowing the value of α whose Rényi’s Squeeziness will
approximate better the likelihood of having a case of FEP in a system,
the only remaining step is to compute the actual Squeeziness of the
system. In order to do so we implement the methodology defined in our
previous work (Ibias & Núñez, 2020). First of all, we assume that the
probability distribution of the inputs follows a uniform distribution.
With this choice we know that we are maximising entropy. In addition,
we can use the simplified formulation given in Lemma 1. Second, we
need to fix a search depth k. This value will indicate the maximum length
of the input sequences that we will be used for testing (and therefore, the
expected output sequences). Once we have set the search depth, we must
obtain two values in order to compute Rényi’s Squeeziness:

• Number of inputs: the number of input sequences of length k of the
FSM. This number is stored in a variable inputs.

• Inverse image of the outputs: the number of input sequences that
lead to the same output sequence. These values are stored in a dic
tionary mapOtoI that keeps, for each output sequence of length k, the
number of inputs that lead to it.

In order to compute these values, we have to collect the traces of the
FSM until the desired depth is reached. If a trace reaches the desired
depth (or a deadlock), then the inputs count is increased by 1 and the
output obtained is searched in the mapOtoI dictionary to increase by 1
the count of inputs that lead to that output. Once we processed all these
values, we only need to apply the formula given in Lemma 1.

3.1. The ANN underlying SqSelect

In order to infer the α value that will return the better approximation
of the likelihood of the presence of cases of FEP in the system, we have
developed an ANN using PyTorch (Paszke et al., 2019). We may consider
that this ANN is the core of SqSelect. During the rest of this section we
review the different phases involved in the creation of the ANN.

3.1.1. The dataset
First of all, we need a dataset to train the ANN. In order to obtain this

dataset, we developed a program such that given a family of FSMs and a
search depth, it computes the value of α such that Rényi’s Squeeziness
values have a higher correlation with PColl values. We execute this
program for different families and different depths. For each family and
depth we added a row to the dataset with the family parameters, the
depth and the best value of α.

In order to get examples of each family, we developed a java script
that generates, using the parameters of the family, a given number of
FSMs of each of them. This script uses the automatalib (Isberner, Howar,
& Steffen, 2015) library to represent and manipulate FSMs and saves the
newly randomly generated FSMs in.dot files. With this script, we
generated 100 examples of each family. The different families were
defined by combining the following parameter values:

• Number of states: 10,20,30,40,50,60,70,80,90,100.
• Maximum number of transitions: 5,10,15,20.
• Minimum number of transitions: 1,5,10.
• Input alphabet size: 10,20,30,40,50.
• Output alphabet size: 10,20,30,40,50.

Let us remind that, as we said before, our experiments showed that
there is no correlation between each single parameter and the computed
best α. This is the reason why we combine them into an ANN.

3.1.2. The structure of the ANN
Our ANN implemented a regression ANN because we want to obtain

an approximation of the best α without restraining the results to some
predefined classes.

Since we are dealing with a problem of dimensionality, versus
complexity, our ANN is quite simple while being very effective. It has 4
layers:

• An input layer of size 6.
• A hidden layer of size 12, with a leaky ReLU activation function.
• A hidden layer of size 3, with a leaky ReLU activation function.
• An output layer of size 1, with a linear activation function.

Our input layer has six neurons because it receives the five param
eters that determine the family of FSMs and a sixth parameter: the search
depth. We consider this additional parameter because our first experi
ments showed that the best α strongly depends on the established search
depth.

We use leaky ReLU activation functions because they improve the
actual ReLU activation function by avoiding the so called dying ReLU 2 Our tool is freely available at https://github.com/Colosu/SqSelect/.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

8

problem and speeding up the learning (He, Zhang, Ren, & Sun, 2015).
We can compare both activation functions in Fig. 5.

The dying ReLU problem happens because the ReLU activation
function returns zero for all negative inputs. This evolves into some
neurons dying because they always return a zero value and, therefore,
they do not help to discriminate the input. Also, it is unlikely that the
neuron will ever output again non-zero values. The leaky ReLU activa
tion function solves this problem by returning a small negative value,
instead of zero, what allows the neuron to add something to the
discrimination of the input. In addition, it will be able in the future to
output non-zero values.

3.1.3. The learning process
Having the ANN and the dataset, we normalised the data in the

dataset, we shuffled the entries of the dataset and divided it into two
sets: a set containing 70% of the entries, for training, and a set with 30%
of the entries, for testing. Following this procedure we ensure that in the

test set there is a representative of each FSM class that conforms the
dataset, and of each search deep. This will ensure that we can assess the
generalisation capability of our ANN with the test set. We set the loss
function to the mean square error and the optimisation algorithm to the
standard gradient descend with learning rate 0.01. With this setting, we

Fig. 4. Correspondence between parameters and α of elements of the dataset: states (a), maximum transitions (b), minimum transitions (c), input alphabet size (d)
and output alphabet size (e).

Fig. 5. ReLU vs leaky ReLU.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

9

trained our ANN to approximate the α values with the training set,
obtaining a mean loss of 1.280935 (1.333986 for Spearman). This loss is
small enough to claim that our ANN learned really well the training
dataset.

We used the test set to assess how good the training has been. In this
case, we obtained a mean loss of 1.326940 (1.368981 for Spearman).

4. The SqSelect tool

In this section we present our tool to facilitate the assessment of the
FEP of a system by computing relevant values associated with the
Squeeziness of the system. SqSelect has four different modes,
depending on what input parameters are available and what results are
requested. These modes are:

• Alpha mode. The tool receives a set of parameters (see below)
profiling the system of interest, and the search depth, and returns the
α value providing a Squeeziness that is closer to the true likelihood of
the presence of cases of FEP.

• Alpha file mode. The tool receives a search depth and a system and
computes the corresponding α value.

• Squeeziness file mode. SqSelect receives a search depth and a
system and computes the best α value and reports the likelihood of
the presence of cases of FEP in the form of a Squeeziness value.

• Squeeziness range mode. The tool receives a search depth and a
system and computes the Squeeziness of the system for different
values of α. Then, it gives back a graph with the likelihood of the
presence of cases of FEP in the system associated to each value of α.

The tool also provides the best value of α for smaller search depths in
alpha and alpha file modes. In Squeeziness file mode, SqSelect pro
vides Rényi’s Squeeziness for smaller search depths. These values might
be useful if the tester, in view of additional information, decides to
reduce the search depth associated with testing.

Note that in the first two modes we only compute the value of α. If the
tester wants to obtain the value of Rényi’s Squeeziness for that α, then it
is enough to use the third mode. The rationale is that computing
Squeeziness, even for medium-size search depths, needs an important
amount of computing time. If a tester either only needs the value of α or
desires to use an alternative measure (for this α), then he does not need
to consume those computing resources.

The set of parameters used in the Alpha mode is given by:

• Number of states of the FSM.
• Maximum number of transitions outgoing from a state of the FSM.
• Minimum number of transitions outgoing from a state of the FSM.
• Input alphabet size of the FSM.
• Output alphabet size of the FSM.

In the second and third modes, SqSelect computes these values
from the actual system.

The system received in the Alpha file mode, the Squeeziness file mode
and the Squeeziness range mode should be a.dot file (the standard for
representing graphs in plain text), where the first node is marked with
the red colour (Isberner et al., 2015).

In each mode (except in the Squeeziness range mode) there is an
option called Use Spearman correlation that tells the tool to use the best
value of α according to the Spearman correlation instead of the default
Pearson correlation.

Finally, all modes have an option to save the generated plot to a file,
in case it is needed.

Next, we analyse the main characteristics of each mode.

4.1. Alpha mode

SqSelect receives a set of parameters corresponding to the system

and the search depth. Then, SqSelect calls the ANN that computes the
best α for assessing the likelihood of the presence of cases of FEP in the
system. The tool shows this value in its results panel. An example of
execution is shown in Fig. 6.

This mode is intended for users that do not have the description of
their systems in the format used by our tool, so that they cannot use
other modes. Therefore, with this mode they can still get a generic best α
for their system. Afterwards, they can compute Rényi’s Squeeziness, for
that α, of their system using their own algorithm.

4.2. Alpha file mode

SqSelect receives an actual FSM and the search depth. Then,
SqSelect computes the same parameters as the ones that are needed
for the Alpha mode and works as in that mode. An example of execution
is shown in Fig. 7.

This mode is intended for users that, although having the system in a
valid format, do not want our tool to compute Rényi’s Squeeziness. This
is the case when they have a faster, cheaper or in general better
implementation of the formula from Lemma 1. SqSelect will obtain
the best α for their system and then the users will compute its Rényi’s
Squeeziness using either another tool or their own algorithm.

4.3. Squeeziness file mode

SqSelect receives a system and the search depth. Then, SqSelect
computes the same parameters as the ones that are needed for the Alpha
mode. After the best α is obtained, the tool proceeds to compute Rényi’s
Squeeziness for the selected search depth and this α. As an additional
information, SqSelect computes values of α for smaller depths and the
corresponding Rényi’s Squeeziness. All the values are shown as a graph,
while the value corresponding to the selected search depth appears in
the results panel. An example of execution is shown in Fig. 8.

This is the main mode of SqSelect. We expect that most users will
have their system in the valid format, they will give it to the tool and
they will get the value of Rényi’s Squeeziness that better assess the
likelihood of having cases of FEP for that system. If the users develop
different versions of their system, then they can compare the Rényi’s
Squeeziness values obtained for each version and select the one having a
lower Rényi’s Squeeziness, because it is the one with smaller likelihood
to suffer cases of FEP. If the users only have one version of the system,
and similar to the previous mode, they still can use the results displayed
in the graph to decide the search depth that they want to use for testing.

4.4. Squeeziness range mode

SqSelect receives a system and the search depth. In contrast to the
previous modes, SqSelect does not compute the best α. Instead, it
computes all the values of Rényi’s Squeeziness for a selected number of
values α ∈ [0,5]. This interval is predefined and was chosen because in
our experiments we never obtained a best value of α greater than 5 and
the selected values are representative of the best α values for the families
of systems appearing in the dataset. The tool shows these values in its
graph panel. An example of execution is shown in Fig. 9.

This mode is intended for users that do not want to know only
Rényi’s Squeeziness for the best α, but that want to know it for a huge
range of values of α.

5. Discussion

In this section we discuss some decisions we took along the devel
opment of SqSelect.

The first decision was which correlation to use as a reference for the
selection of α. Pearson correlation focuses on the linearity of the points
that are being correlated. Therefore, higher (in absolute value) corre
lations imply that the points maintain a proportionality while correla

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

10

Fig. 6. Alpha mode example: Coffee machine case study.

Fig. 7. Alpha file mode example: TCP case study.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

11

tions near 0 imply that the points are distributed more in a point cloud
way. Meanwhile, Spearman correlation focuses on the monotony of the
points that are being correlated. Therefore, higher (in absolute value)
correlations imply that the points maintain monotony while correlations
near 0 imply that many points break the monotony. The main goal of our
research is to find values of α whose Rényi’s Squeeziness has a higher
similarity to the likelihood of the appearance of FEP. In order to have
higher similarity, it is not enough to keep monotony; it is also necessary
to have some kind of proportionality. Therefore, we think that it is better
to stick to Pearson but if users prefer to use Spearman, then we allow
them to choose it. In order to implement this duality, we obtained two
datasets, one for the best values of α according to Pearson correlation
and another one according to Spearman correlation. We used the same
ANN structure with both datasets, obtaining one ANN that learned the

Pearson dataset and another one that learned the Spearman dataset. In
any case, our experiments showed that the difference between the
Pearson and Spearman correlations is minimal.

The second decision was which machine learning technique to use.
Currently, there are a myriad of options, from a classical decision tree
algorithm to complex deep learning algorithms or even reinforcement
learning algorithms. However, not all these techniques would perform
well in our scenario. For example, reinforcement learning techniques
require that the problem can be expressed as a Markov Decision Process
(MDP), what in fact is a 1 1

2 game (Chatterjee, de Alfaro, & Henzinger,
2004). However, our problem cannot be redefined (at least, in an easy
and intuitive way) as an MDP. Decision trees and the linear regression
techniques cannot be applied to our problem due to the small correlation
between the elements of the dataset, that we explained before. There
fore, we were left with methods that were complex enough to manage
the apparent non-correlation between the elements of the dataset. From
this set of methods, we chose a simple one, because we wanted to avoid
using approaches that were overpowered for the task at hand. That is
why we decided to use artificial neural networks. However, we would
like to justify with empirical evidence that this was the right choice.

During the development of SqSelect we considered the use of a
more complex (deep) neural network. However, our preliminary ex
periments did not show any improvement over the shallow ANN that we
are using. Actually, we usually obtained cases of overfitting while
experimenting with deep neural networks. Next we give the details of
one of the (representative) settings that we used. We considered a deep
neural network with six hidden layers and with the following neurons
per layer: 6 neurons for the input layer, 100 for the first hidden layer, 75,
50, 25, 12 and 3 for the subsequent hidden layers, and 1 neuron for the
output layer (remind we are training a regression ANN). With this deep
ANN we obtained the following results for the Pearson dataset: training
loss equal to 1.236317 and test loss equal to 1.372902. The results for the
Spearman dataset were considerably worse: 2.396616 and 2.387157,
respectively. Another example is a neural network with eight hidden

Fig. 8. Squeeziness file mode example: Logic circuit case study.

Fig. 9. Squeeziness range mode example: Banckard case study.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

12

layers and with the following neurons per layer: 6 neurons for the input
layer, 12 for the first hidden layer, 48, 128, 75, 50, 25, 12 and 3 for the
subsequent hidden layers, and 1 neuron for the output layer. With this
deep ANN we obtained the following results for the Pearson dataset:
training loss equal to 1.284181 and test loss equal to 1.381884. The re
sults for the Spearman dataset were also considerably worse: 2.400117
and 2.383044, respectively. Therefore, the results are slightly worse
than the ones corresponding to our shallow ANN (in both Pearson and
Spearman datasets and in both training and test sets). In addition, this
kind of networks needs extra computation resources and this extra
complexity does not pay back with an increase on performance. After
this comparison we considered that our shallow neural network was a
better option.

A second experiment allowed us to compare the results provided by
our ANN and a multi-variable linear regression model (Kutner, Nacht
sheim, Wasserman, & Neter, 2003). We trained an sklearn (Pedregosa
et al., 2011) linear regression model, which automatically adapts to the
multivariable case, with our datasets. Then, we computed model loss
using the same method as we used for our ANN network, the mean
square error, and obtained the following results for the Pearson dataset:
training loss equal to 1.523924 and test loss equal to 1.575762. The re
sults for the Spearman dataset were very similar: 1.547626 and
1.527375, respectively. Therefore, the results show that our ANN out
performs the LNR that we implemented. We also trained 4 different
Ridge regression models and 4 different Lasso regression models. In all
the cases we computed the model loss as the mean square error between
the predictions and the real values. The results corresponding to all these
experiments are displayed in Fig. 10.

As a further exploration of these alternatives, we computed the
confidence boundaries for each one, using Fixed-Width bands (Mac
skassy & Provost, 2004) (see Figs. 11 and 12). We decided to compute
these confidence boundaries for the first 100 elements of the test dataset
because, although including more elements would affect the shape of the
confidence bands, we want to address the differences between different
models instead of generate good bands for a given model (Macskassy &
Provost, 2004). The red line presents the real value of α; the blue line
presents the value of α obtained using the regression model; and the light
blue zone presents the confidence interval in which we can assure, from
the answer of our regression model, that the true value of α will be with a
95% of confidence.

These confidence boundaries show that our shallow ANN gets fitter
confidence boundaries and that the obtained values of α fit better the
real values. Specifically, there are some alternatives like Ridge Regres
sion (alpha = 5) and Lasso Regression (alpha = 0.01) that are consid
erably worse, but the other alternatives are not better than ours.

6. Case studies

In this section we present some case studies where we use our tool in
order to assess the likelihood of FEP in some FSMs. In order to ensure
that these FSMs are representative, we used a recently collected
benchmark (Neider, Smetsers, Vaandrager, & Kuppens, 2019) of FSMs
modelling real-world systems. We explore how to apply our tool to 4
FSMs: the classical coffee machine, the TCP protocol, a logic circuit, and
a bankcard system. We hope that this section will be a useful reference
for anyone that wants to use SqSelect.

6.1. The coffee machine

This system represents the classical coffee machine that has been
extensively used as an example of FSM. We use this system to show how
to use the alpha mode. In this case, we need some assumptions: we only
want to get the best α and we do not have the FSM modelled in an
appropriate format for the tool. Therefore, we have to use the system to
obtain the different parameters that SqSelect uses for computing the
best α. We obtained the following parameters:

• Number of states: 6.
• Maximum number of transitions: 4.
• Minimum number of transitions: 4.
• Input alphabet size: 4.
• Output alphabet size: 3.

Finally, setting that we want to explore the FSM up to a depth of 5, we
have to introduce these values in the tool. We obtained a value of α equal
to 0.106380135, as it is displayed in Fig. 6.

6.2. The TCP protocol

This system represents the widely known TCP protocol, massively
used in the communications through internet. Specifically, it represents
the TCP protocol from the perspective of the server, what is an FSM with
55 states. We use this system to show how to use the Alpha file mode. In
this case, we assume that we only want to get the best α and that we have
the protocol modelled as an FSM in dot format. We also set that we want
to explore the FSM up to a depth of 50.

Therefore, we load the file in SqSelect and set the search depth to
50. The tool computes a value of α equal to 0.346357, as it can be seen in
Fig. 7.

Fig. 10. Comparison of regression models (sorted by model complexity).

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

13

6.3. A logic circuit

This system represents a dk27 logic circuit (Yang, 1991). We use this
system to show how to use the Squeeziness file mode. We assume that we
have the system in the appropriate format and that we set a search depth
equal to 10. This system has 7 states and 14 transitions and SqSelect
returns the results displayed in Fig. 8.

From these results, we get that the best α for a search depth of 10 was
α = 0.045744844 and it gives a Rényi’s Squeeziness value equal to
2.4884. However, if we carefully analyse the plot, then we observe that
using inputs of length 10 is not the optimal option concerning a trade-off
between amount of testing and likelihood of suffering from FEP. As seen
in the plot, inputs of length greater than 6 will suffer more FEP than
inputs of the said length. Inputs of lengths 4 and 5 will also suffer more
FEP than inputs of length 6. In contrast, inputs of length smaller than 4
will be less prone to have FEP than inputs of length 6. However, these
last inputs will hardly explore more than half of the system (at least, in
this case). Therefore, if resources are scarce and the tester might have to

reconsider whether to explore the SUT up to a smaller depth, then a
better option is to test using inputs of length 6.

6.4. The bankcard

This system represents the behaviour of an ATM when authenticating
a debit or credit card. We use this system to show how to use the
Squeeziness range mode. In order to do so, we assume that we want to
know how Squeeziness evolves for different alphas, so that we can have
a global vision of how likely is that our system is affected by cases of FEP
without having to stick to only one α. Since this system has only 7 states,
we set the search depth to 5. We obtained the result displayed in Fig. 9.

7. Conclusions

We have developed the tool SqSelect that can be used to assess the
likelihood of the presence of FEP in a system. It relies in the concept of
Squeeziness, which has been previously proven to be useful for this task.

Fig. 11. Confidence boundaries plots (part 1).

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

14

Moreover, SqSelect implements an extended version of Squeeziness
based on Rényi’s notion of entropy, instead of the classical Shannon’s
entropy notion. This general version relies on a parameter, named α, to
perform the computation. In previous work we empirically showed that
the election of the α parameter is not an easy task. This is due to the fact
that the reliability of the assessment of the likelihood of the presence of
FEP strongly varies among different values of α. Therefore, we have to
develop a method to obtain the best value of α to assess the likelihood of
the presence of FEP in the system. In SqSelect we used this method to
get data for training an artificial neural network that infers the best α for
a given system. Then, the tool uses this α to compute Rényi’s Squeezi
ness, so that the user can have an idea of how prone the system is to have
cases of FEP. Moreover, SqSelect implements another three modes, so
it can be used by a wider kind of users.

As future work, there are some open research lines that can improve
the efficiency and usefulness of SqSelect. One line of future work is
the improvement of the computation of Rényi’s Squeeziness, so that
SqSelect can be more efficient and quick. Second, we would like to

integrate SqSelect with other tools that automatise testing, so that it
can be used as a previous step to assess how much testing should be
performed. In particular, we would like to incorporate the efficient and
systematic generation and processing of mutants (Cañizares, Núñez, &
Merayo, 2018; Delgado-Pérez, Rose, & Medina-Bulo, 2019; Gómez-
Abajo, Guerra, de Lara, & Merayo, 2018; Gómez-Abajo, Guerra, de Lara,
& Merayo, 2021; Gutiérrez-Madroñal, García-Domínguez, & Medina-
Bulo, 2019) so that we can offer mutation testing features. Finally, we
would like to extend our tool to deal with other FSM-based formalism.
We are particularly interested in distributed systems where communi
cations can be asynchronous (Hierons, Merayo, & Núñez, 2017; Hierons,
Merayo, & Núñez, 2018; Merayo, Hierons, & Núñez, 2018; Merayo,
Hierons, & Núñez, 2018).

CRediT authorship contribution statement

Alfredo Ibias: Conceptualization, Software, Validation, Formal
analysis, Data curation, Writing - original draft, Writing - review &

Fig. 12. Confidence boundaries plots (part 2).

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

15

editing, Visualization. Manuel Núñez: Conceptualization, Methodol
ogy, Writing - original draft, Writing - review & editing, Supervision,
Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Alternative definition of Rényi’s Squeeziness

.

Lemma 1. Let M = (Q, qin, I,O,T) be an FSM, k > 0 and α ∈ R+⧹{1}. Let us consider a random variable ξdomM,k
ranging over the domain of fM,k. We have

that

Sqα,k(M) =
1

1 − α⋅log2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

s∈domM,k

(
σξdomM,k

(s)
)α

∑

t∈imageM,k

(
∑

s∈f − 1
M (t)

σξdomM,k
(s)

)α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

If α tends to 1 then we obtain Shannon’s entropy (Rényi, 1961) and we have

Sq1,k(M) = −
∑

t∈imageM,k

⎛

⎝
∑

s∈f − 1
M (t)

σξdomM,k
(s)

⎞

⎠⋅R M(t)

where the term R M(t) is equal to

∑

s∈f − 1
M (t)

σξdomM,k
(s)

σξdomM,k
(f − 1

M (t))
⋅log2

(
σξdomM,k

(s)

σξdomM,k
(f − 1

M (t))

)

If α tends to ∞ then we obtain min-entropy (Rényi, 1961) (that is, H ∞(X) = − log2(maxipi)) and we have

Sq∞,k(M) = log2

⎛

⎜
⎝

max
t∈imageM,k

∑

s∈f − 1
M (t)

σξdomM,k
(s)

max
s∈domM,k

σξdomM,k
(s)

⎞

⎟
⎠

Proof.
Sqα,k(M) = H α(ξdomM,k

) − H α(ξimageM,k
) =

=
1

1 − α⋅log2

(
∑

s∈domM,k

σξdomM,k
(s)α

)

−
1

1 − α⋅log2

(
∑

t∈imageM,k

σξimageM,k
(t)α

)

=

=
1

1 − α⋅log2

⎛

⎜
⎝

∑

s∈domM,k

σξdomM,k
(s)α

∑

t∈imageM,k

σξimageM,k
(t)α

⎞

⎟
⎠ =

=
1

1 − α⋅log2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

s∈domM,k

(
σξdomM,k

(s)
)α

∑

t∈imageM,k

(
∑

s∈f − 1
M (t)

σξdomM,k
(s)

)α

⎞

⎟
⎟
⎟
⎟
⎟
⎠

When α→1, the result has been proven in previous work (Ibias et al., 2019). Finally, if α→∞, then the proof is the following:

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

16

Sq∞,k(M) = H ∞(ξdomM,k
) − H ∞(ξimageM,k

)

= − log2

(

max
s∈domM,k

σξdomM,k
(s)
)

+log2

⎛

⎝ max
t∈imageM,k

∑

s∈f − 1
M (t)

σξdomM,k
(s)

⎞

⎠

= log2

⎛

⎜
⎝

max
t∈imageM,k

∑

s∈f − 1
M (t)

σξdomM,k
(s)

max
s∈domM,k

σξdomM,k
(s)

⎞

⎟
⎠

Appendix B. Deployment of the tool

In this appendix we briefly analyse some issues related to the deployment of SqSelect. Specifically, we will discuss the inclusion of our ANN,
developed using PyTorch (therefore, written in python), in SqSelect, a tool that has been developed using java. Although we found some libraries
that claim to (easily) perform this integration, we were unable to make them work. We contemplated several alternatives: deploy the ANN in a
controlled server, execute the python code from java, integrate the python code in java and use another library for the ANN. The second and third
options, in addition to being more complex than the first one, have the problem of dealing with the communication between the java virtual machine
and the python libraries, what is a really complex task. The last option has the problem of having to refactor the entire ANN, without being sure that
the new library will be able to being properly integrated into java. Finally, the first option, despite of being not so complex, has the security risks
associated to having a server running in the background. Luckily, those risks could be easily overcome using some tricks: we execute the server only in
localhost, avoiding the possibility of accessing it from outside the computer; we use an uncommon port in order to both avoid collision with other
server utilities and make it difficult to find the correct port; and we use a specific kind of message so that the server does not read any other type of
message. Therefore, we decided to perform a small workaround: we set up a Flask server in python that receives the ANN input parameters by using a
JSON form and returns the ANN output (the best α value) in a JSON response. SqSelect has to set up this server in localhost, avoiding any call from
outside the computer.

This option arises a potential security concern: whether deploying a server each time that SqSelect is initialised is secure. In other words, we
have to evaluate whether this action will be a backdoor to execute python code in the host computer. We are aware of this concern but discard it
because the server is deployed in localhost, without access to internet. So, it will not be an open port for potential external attackers. Also, it does not
use a common port, so it will be difficult to find the open port from inside the own computer. Finally, the Flask application only accepts one type of
messages, rejecting any other input.

References

Abdelmoez, W., Nassar, D.E.M., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar,
H. H., Yu, B. & Mili, A. (2004). Error propagation in software architectures. In 10th
IEEE International software metrics symposium, METRICS’04 (pp. 384–393). IEEE
Computer Society.

Acharya, J., Orlitsky, A., Suresh, A. T., & Tyagi, H. (2017). Estimating Renyi entropy of
discrete distributions. IEEE Transactions on Information Theory, 63(1), 38–56.

Ammann, P., & Offutt, J. (2017). Introduction to software testing (2nd Ed.). Cambridge
University Press.

Androutsopoulos, K., Clark, D., Dan, H., Hierons, R. & Harman, M. (2014). An analysis of
the relationship between conditional entropy and failed error propagation in
software testing. In Int 36th Int. Conf. on Software Engineering, ICSE’14 (pp.
573–583). ACM Press.

Ayala, D., Borrego, A., Hernández, I., & Ruiz, D. (2020). A neural network for semantic
labelling of structured information. Expert Systems with Applications, 143, Article
113053.

Boreale, M. & Paolini, M. (2014). On formally bounding information leakage by
statistical estimation. In 17th Int. Conf. on Information Security, ISC’14, LNCS 8783
(pp. 216–236). Springer.

Cañizares, P. C., Núñez, A., & Lara, J. (2019). An expert system for checking the
correctness of memory systems using simulation and metamorphic testing. Expert
Systems with Applications, 132, 44–62.

Cañizares, P. C., Núñez, A., & Merayo, M. G. (2018). Mutomvo: Mutation testing
framework for simulated cloud and HPC environments. Journal of Systems and
Software, 143, 187–207.

Cavalli, A. R., Higashino, T., & Núñez, M. (2015). A survey on formal active and passive
testing with applications to the cloud. Annales of Telecommunications, 70(3–4),
85–93.

Chan, A., Winter, S., Saissi, H., Pattabiraman, K. & Suri, N. (2017). IPA: Error
propagation analysis of multi-threaded programs using likely invariants. In 10th Int.
Conf. on Software Testing, Verification and Validation, ICST’17 (pp. 184–195). IEEE
Computer Society.

Chatterjee, K., de Alfaro, L. & Henzinger, T. A. (2004). Trading memory for randomness.
In 1st Int. Conf. on Quantitative Evaluation of Systems, QEST’04 (pp. 206–217).

Chothia, T., Kawamoto, Y., & Novakovic, C. (2014). Leakwatch: Estimating information
leakage from java programs. In 19th European symposium on research in computer
security (pp. 219–236). Springer.

Clark, D., Feldt, R., Poulding, S. M. & Yoo, S. (2015). Information transformation: An
underpinning theory for software engineering. In 37th IEEE/ACM international
conference on software engineering, ICSE’15 (pp. 599–602).

Clark, D., & Hierons, R. M. (2012). Squeeziness: An information theoretic measure for
avoiding fault masking. Information Processing Letters, 112(8–9), 335–340.

Clark, D., Hierons, R. M., & Patel, K. (2019). Normalised squeeziness and failed error
propagation. Information Processing Letters, 149, 6–9.

Coppik, N., Schwahn, O., Winter, S. & Suri, N. (2017). TrEKer: tracing error propagation
in operating system kernels. In 32nd IEEE/ACM Int. Conf. on Automated Software
Engineering, ASE’17 (pp. 377–387). IEEE Computer Society.

Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. Wiley Interscience.
de Mesquita Sá Junior, J. J., Correia Ribas, L. & Martinez Bruno O. (2019). Randomized

neural network based signature for dynamic texture classification. Expert Systems
with Applications 135, 194–200.

Delgado-Pérez, P., Rose, L. M., & Medina-Bulo, I. (2019). Coverage-based quality metric
of mutation operators for test suite improvement. Software Quality Journal, 27(2),
823–859.

Díaz, G., Macià, H., Valero, V., Boubeta-Puig, J., & Cuartero, F. (2020). An intelligent
transportation system to control air pollution and road traffic in cities integrating
CEP and colored petri nets. Neural Computing and Applications, 32(2), 405–426.

Feldt, R., Poulding, S. M., Clark, D. & Yoo, S. (2016). Test set diameter: Quantifying the
diversity of sets of test cases. In 9th IEEE Int. Conf. on Software Testing, Verification
and Validation, ICST’16 (pp. 223–233). IEEE Computer Society.

Feldt, R., Torkar, R., Gorschek, T., & Afzal, W. (2008). Searching for cognitively diverse
tests: Towards universal test diversity metrics. In 1st IEEE Int. Conf. on Software
Testing Verification and Validation Workshops (pp. 178–186). IEEE Computer Society.

García de Prado, A., Ortiz, G., & Boubeta-Puig, J. (2017). COLLECT: COLLaborativE
ConText-aware service oriented architecture for intelligent decision-making in the
Internet of Things. Expert Systems with Applications, 85, 231–248.

Gaudel, M. -C. (1995). Testing can be formal, too! In 6th Int. Joint Conf. CAAP/FASE,
Theory and Practice of Software Development, TAPSOFT’95, LNCS 915 (pp. 82–96).
Springer.

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G. (2018). A tool for domain-
independent model mutation. Science of Computer Programming, 163, 85–92.

A. Ibias and M. Núñez

Expert Systems With Applications 174 (2021) 114748

17

Gómez-Abajo, P., Guerra, E., de Lara, J., & Merayo, M. G. (2021). Wodel-Test: A model-
based framework for language-independent mutation testing. Software and Systems
Modeling. in press.

Goodfellow, I. J., Bengio, Y. & Courville, A. C. (2016). Deep Learning. Adaptive
computation and machine learning. MIT Press.

Gu, W., Foster, K., Shang, J., & Wei, L. (2019). A game-predicting expert system using big
data and machine learning. Expert Systems with Applications, 130, 293–305.

Gutiérrez-Madroñal, L., García-Domínguez, A., & Medina-Bulo, I. (2019). Evolutionary
mutation testing for IoT with recorded and generated events. Software – Practice &
Experience, 49(4), 640–672.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 15th IEEE Int. Conf. on
Computer Vision, ICCV’15 (pp. 1026–1034). IEEE Computer Society.

Hierons, R. M., Bogdanov, K., Bowen, J., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Luettgen, G., Simons, A.,
Vilkomir, S., Woodward, M., & Zedan, H. (2009). Using formal specifications to
support testing. ACM Computing Surveys, 41(2), 9:1–9:76.

Hierons, R. M., Merayo, M. G., & Núñez, M. (2017). An extended framework for passive
asynchronous testing. Journal of Logical and Algebraic Methods in Programming, 86(1),
408–424.

Hierons, R. M., Merayo, M. G., & Núñez, M. (2018). Bounded reordering in the
distributed test architecture. IEEE Transactions on Reliability, 67(2), 522–537.

Hiller, M., Jhumka, A., & Suri, N. (2002). PROPANE: An environment for examining the
propagation of errors in software. In 13th Int. Symposium on Software Testing and
Analysis (pp. 81–85). ACM Press.

Hiller, M., Jhumka, A., & Suri, N. (2004). EPIC: Profiling the propagation and effect of
data errors in software. IEEE Transactions on Computers, 53(5), 512–530.

Ibias, A., Hierons, R. M., & Núñez, M. (2019). Using squeeziness to test component-based
systems defined as Finite State Machines. Information & Software Technology, 112,
132–147.

Ibias, A., & Núñez, M. (2020). Estimating fault masking using Squeeziness based on
Rényi’s entropy. In 35th ACM symposium on applied computing (pp. 1936–1943). ACM
Press.

Ibias, A., Núñez, M., & Hierons, R. M. (2021). Using mutual information to test from
Finite State Machines: Test suite selection. Information & Software Technology, 132,
Article 106498.

Isberner, M., Howar, F. & Steffen, B. (2015). The open-source learnlib. In: 27th Int. Conf.
on Computer Aided Verification, CAV’15, LNCS 9206 (pp. 487–495). Springer.

Islam, M. S., Nepal, M. P., Skitmore, R. M., & Kabir, G. (2019). A knowledge-based expert
system to assess power plant project cost overrun risks. Expert Systems with
Applications, 136, 12–32.

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial.
IEEE Computer, 29(3), 31–44.

Johansson, A., & Suri, N. (2005). Error propagation profiling of operating systems. In
35th Int. Conf. on Dependable Systems and Networks (pp. 86–95). IEEE Computer
Society.

Kutner, M. H., Nachtsheim, C. J., Wasserman, W., & Neter, J. (2003). Applied linear
regression models (4th Ed.). McGraw-Hill.

Laski, J. W., Szermer, W., & Luczycki, P. (1995). Error masking in computer programs.
Software Testing, Verification and Reliability, 5(2), 81–105.

Macskassy, S. A. & Provost, F. J. (2004). Confidence bands for ROC curves: Methods and
an empirical study. In 1st Int. Workshop on ROC analysis in Artificial Intelligence,
ROCAI’04 (pp. 61–70).

Marinescu, R., Seceleanu, C., Guen, H. L. & Pettersson, P. (2015). A Research Overview
of Tool-Supported Model-based Testing of Requirements-based Designs. Vol. 98 of
Advances in Computers. Elsevier, Ch. 3, pp. 89–140.

Masri, W., Abou-Assi, R., El-Ghali, M., & Al-Fatairi, N. (2009). An empirical study of the
factors that reduce the effectiveness of coverage-based fault localization. In 2nd Int.
Workshop on Defects in Large Software Systems (pp. 1–5). ACM Press.

Merayo, M. G., Hierons, R. M., & Núñez, M. (2018). Passive testing with asynchronous
communications and timestamps. Distributed Computing, 31(5), 327–342.

Merayo, M. G., Hierons, R. M., & Núñez, M. (2018). A tool supported methodology to
passively test asynchronous systems with multiple users. Information & Software
Technology, 104, 162–178.

Miranskyy, A. V., Davison, M., Reesor, R. M., & Murtaza, S. S. (2012). Using entropy
measures for comparison of software traces. Information Sciences, 203, 59–72.

Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of software testing (3rd Ed.). John
Wiley & Sons.

Neider, D., Smetsers, R., Vaandrager, F. W., & Kuppens, H. (2019). Benchmarks for
automata learning and conformance testing. In T. Margaria, S. Graf, & K. G. Larsen
(Eds.), Models, Mindsets, Meta: The What, the How, and the Why Not? - Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday (pp. 390–416). Springer.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S., 2019. PyTorch:
An imperative style, high-performance deep learning library. In 32nd Annual Conf.
on Neural Information Processing Systems, NeurIPS’19 (pp. 8024–8035). Curran
Associates Inc.

Pattipati, K. R., & Alexandridis, M. G. (1990). Application of heuristic search and
information theory to sequential fault diagnosis. IEEE Transactions on Systems, Man,
and Cybernetics, 20(4), 872–887.

Pattipati, K. R., Deb, S., Dontamsetty, M., & Maitra, A. (1990). START: System testability
analysis and research tool. In IEEE Conference on Systems Readiness Technology
‘Advancing Mission Accomplishment’ (pp. 395–402).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Piper, T., Winter, S., Schwahn, O., Bidarahalli, S., & Suri, N. (2015). Mitigating timing
error propagation in mixed-criticality automotive systems. In Int. Symposium on Real-
Time Distributed Computing, ISORC’15 (pp. 102–109). IEEE Computer Society.

Rényi, A. (1961). On measures of entropy and information. In 4th Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of
Statistics (pp. 547–561). University of California Press.

Roldán, J., Boubeta-Puig, J., Martínez, J. L., & Ortiz, G. (2020). Integrating complex
event processing and machine learning: An intelligent architecture for detecting iot
security attacks. Expert Systems with Applications, 149(113251), 1–22.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323, 533–536.

Sagarna, R., Arcuri, A. & Yao, X. (2007). Estimation of distribution algorithms for testing
object oriented software. In 9th IEEE Congress on Evolutionary Computation,
CEC’07 (pp. 438–444). IEEE Computer Society.

Santelices, R. A. & Harrold, M. J. (2011). Applying aggressive propagation-based
strategies for testing changes. In 4th Int. Conf. on Software Testing, Verification and
Validation, ICST’11 (pp. 11–20). IEEE Computer Society Press.

Serna M. E., Acevedo M. E. & Serna A. A. (2019). Integration of properties of virtual
reality, artificial neural networks, and artificial intelligence in the automation of
software tests: A review. Journal of Software: Evolution and Process 31 (7), 2159.

Shafique, M., & Labiche, Y. (2015). A systematic review of state-based test tools.
International Journal on Software Tools for Technology Transfer, 17(1), 59–76.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System
Technical Journal, 27(379–423), 623–656.

Wang, X., Cheung, S. -C., Chan, W. K. & Zhang, Z. (2009). Taming coincidental
correctness: Coverage refinement with context patterns to improve fault localization.
In 31st Int. Conf. on Software Engineering, ICSE’09 (pp. 45–55). IEEE Computer
Society.

Woodward, M. R., & Al-Khanjari, Z. A. (2000). Testability, fault size and the domain-to-
range ratio: An eternal triangle. In 12th Int. Symposium on Software Testing and
Analysis (pp. 168–172). ACM Press.

Yang, S. (1991). Logic synthesis and optimization benchmarks user guide: Version 3.0. Tech.
rep. Microelectronics Center of North Carolina

Yoo, S., Harman, M., & Clark, D. (2013). Fault localization prioritization: Comparing
information-theoretic and coverage-based approaches. ACM Transanctions on
Software Enginnering and Methodology, 22(3), 19: 1–29.

Alfredo Ibias received B.A. degrees in Computer Science and in
Mathematics from Complutense University of Madrid, Spain,
and an M.A. degree in Formal Methods in Computer Science
from the same university. He is currently working on a Ph.D.
degree in Computer Science at the same university.

Manuel Núñez received a Ph.D. degree in Mathematics and an
M.S. degree in Economics. He is a Professor of Computer Sci
ence with the Complutense University of Madrid, Spain. He
belongs to the IEEE SMC Technical Committee on Computa
tional Collective Intelligence, he is a member of several Edito
rial Boards and has served on more than 130 Program
Committees of international events in Computer Science.

A. Ibias and M. Núñez

10.4. GPTSG: A Genetic Programming test suite generator using
Information Theory measures 139

10.4 GPTSG: A Genetic Programming test suite
generator using Information Theory measures

Authors Alfredo Ibias, David Griñán and Manuel
Núñez

Title GPTSG: A Genetic Programming test suite
generator using Information Theory measures

Publication Type Conference
Venue 15th International Work-Conference on Arti-

ficial Neural Networks
Year 2019
DOI/URL https://doi.org/10.1007/

978-3-030-20521-8_59
Pages 13
Authors’ Contributions Ibias and Núñez developed the theory. Ibias,

Griñán and Núñez designed the experiments.
Ibias and Griñán developed and executed the
experiments. Ibias and Núñez wrote the ma-
nuscript. Núñez reviewed the manuscript.

https://doi.org/10.1007/978-3-030-20521-8_59
https://doi.org/10.1007/978-3-030-20521-8_59

GPTSG: A Genetic Programming Test
Suite Generator Using Information

Theory Measures

Alfredo Ibias1, David Griñán2, and Manuel Núñez1(B)

1 Complutense University of Madrid, 28040 Madrid, Spain
{aibias,manuelnu}@ucm.es

2 Polytechnic University of Madrid, 28223 Madrid, Spain
david.grinanm@alumnos.upm.es

Abstract. The automatic generation of test suites that get the best
score with respect to a given measure is costly in terms of computational
power. In this paper we present a genetic programming approach for gen-
erating test suites that get a good enough score for a given measure. We
consider a black-box scenario and include different Information Theory
measures. Our approach is supported by a tool that will actually gener-
ate test suites according to different parameters. We present the results
of a small experiment where we used our tool to compare the goodness
of different measures.

Keywords: Testing · Genetic programming · Test generation ·
Information Theory

1 Introduction

Software testing [2,20] is an important research topic because it helps to ensure
that the systems work as expected. Specially important have been the efforts to
define testing in a formal way, which is still an active research area [3]. There
are two orthogonal approaches to test a system: Consider that the system is a
white-box or consider that it is a black-box. In this paper, we will focus on the
latter as it poses a higher challenge because we have to rely on a model of the
system, but we cannot see how the implementation of the system works. One
of the main components of black-box testing consists in generating test suites
that find the maximum number of faults. Actually, this is a critical part when
we are talking about systems that require a lot of time to process an input or
that have a small time window where you can test them. As it is a critical task,
a lot of work around generating and selecting test suites and constructing tools
supporting the theoretical frameworks has been performed [23].

Research partially supported by the Spanish project DArDOS (TIN2015-65845-C3-1-
R) and the Comunidad de Madrid project FORTE-CM (S2018/TCS-4314).

c© Springer Nature Switzerland AG 2019
I. Rojas et al. (Eds.): IWANN 2019, LNCS 11506, pp. 716–728, 2019.
https://doi.org/10.1007/978-3-030-20521-8_59

GPTSG 717

Genetic programming has been a successful technique to find good enough
solutions to NP-hard problems. Specifically, genetic programming was developed
to solve the restrictions of genetic algorithms [15]. Instead of representing each
solution as a vector, each element of the solutions space is coded as a tree, with
no size limitations. In order to ensure that these trees always represent feasible
solutions, the grammar-based genetic programming paradigm was proposed [18].
Trees according to this paradigm are produced as derivations from a grammar
that is specifically designed so that every solution is feasible. This approach has
been used to search for neural net structures [4], Bayesian network structures [21]
and rule-based systems [17]. Another field that has been applied to find good
test suites is Information Theory [6]. There are several approaches proposing
different measures to select the better test suites from a given set and comparing
them [9,11] and the ones that show better performance are measures based on
Information Theory.

In order to find the best test suite, up to a given size, to test a certain system
we confront the classical combinatorial explosion: we have to check how good are
all the subsets (up to a given size) of the set of available test cases. Previous work
has automatically generated test suites (or test cases) using genetic algorithms
[7,8,16,22]. Most of these approaches usually consider the basic conception of
a genetic algorithm, with the risk of losing the correctness of the test suite, or
needing to introduce some special items (as a do not care element [10]) in order
to preserve it. Finally, although there are some work using genetic programming,
we are not aware of any work that uses genetic programming ensuring at the
same time the correctness and length of the test suite.

In this paper we propose a genetic programming algorithm to generate test
suites, guided by a grammar that ensures their correctness. The algorithm gen-
erates test suites that get a good score for a given measure, and with a fixed
length, in order to avoid the generation of extremely long and computationally
heavy (or short and useless) test suites. This algorithm is supported by a tool
that implements it, using already proved Information Theory based measures.
This tool also allows users to compare the test suites generated by the algorithm
using two different measures and see how well each of them performs. Finally,
the tool allows to include measures defined by the user.

The rest of the paper is organized as follows. In Sect. 2 we introduce the main
concepts that we will use along the paper. In Sect. 3 we introduce the core of our
genetic programming algorithm. In Sect. 4 we present the main features of our
tool and the results of an experiment. Finally, in Sect. 5 we give the conclusions
of our work.

2 Preliminaries

In this section we present the main definitions and concepts that we use through-
out this paper. Most of the concepts are based on the classical notions while some
notation is adapted to facilitate the formulation of subsequent definitions.

718 A. Ibias et al.

Given a set A, we let:

– A∗ denote the set of finite sequences of elements of A.
– ε ∈ A∗ denote the empty sequence.
– A+ denote the set of non-empty sequences of elements of A.
– |A| denote the cardinal of set A.

Given a sequence σ ∈ A∗, we have that |σ| denotes its length. Given a sequence
σ ∈ A∗ and a ∈ A, we have that σa denotes the sequence σ followed by a and
aσ denotes the sequence σ preceded by a.

Throughout this paper we let I be the set of input actions and O be the
set of output actions. In our context an input of a system will be a non-empty
sequence of input actions, that is, an element of I+ (similarly for outputs and
output actions).

A Finite State Machine is a (finite) labelled transition system in which tran-
sitions are labelled by an input/output pair. We use this formalism to define
specifications.

Definition 1. We say that M = (Q, qin, I, O, T) is a Finite State Machine
(FSM), where Q is a finite set of states, qin ∈ Q is the initial state, I is a finite
set of inputs, O is a finite set of outputs, and T ⊆ Q × (I × O) × Q is the

transition relation. A transition (q, (i, o), q′) ∈ T , also denoted by q
i/o−−−−→ q′

or by (q, i/o, q′), means that from state q after receiving input i it is possible to
move to state q′ and produce output o.

We say that M is deterministic if for all q ∈ Q and i ∈ I there exists at most
one pair (q′, o) ∈ Q × O such that (q, i/o, q′) ∈ T .

We say that M is input-enabled if for all q ∈ Q and i ∈ I there exists
(q′, o) ∈ Q × O such that (q, i/o, q′) ∈ T .

We let FSM(I,O) denote the set of finite state machines with input set I and
output set O.

In this paper we assume that FSMs are deterministic. We make this assump-
tion because most Information Theory measures are applied to code and code
is usually deterministic. We do not impose that FSMs are input-enabled. We will
assume the test hypothesis [14]: the System Under Test (SUT) can be modelled
as an object described in the same formalism as the specification (in our case,
an FSM). Note that we do not need to have access to this description; we are
indeed in a black-box testing framework because we only assume the existence
of such FSM. Actually, it would be enough to assume that each time that the SUT
receives a sequence of input actions, it returns a sequence of output actions. As
usual, we do need access to the specification.

Our main goal while testing is to decide whether the behaviour of an SUT
conforms to the specification of the system that we would like to build. In
order to detect differences between specifications and SUTs, we need to com-
pare the behaviours of specifications and SUTs and the main notion to define
such behaviours is given by the concept of trace.

GPTSG 719

Definition 2. Let M = (Q, qin, I, O, T) be an FSM, q ∈ Q be a state and σ =
(i1, o1) . . . (ik, ok) ∈ (I ×O)∗ be a sequence of pairs. We say that M can perform
σ from q if there exist states q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we have
(qj−1, ij/oj , qj) ∈ T , where q0 = q. We denote this by either q

σ==⇒ qk or q
σ==⇒ .

If q = qin then we say that σ is a trace of M . We denote by traces(M) the set
of traces of M . Note that for every state q we have that q

ε==⇒ q holds. Therefore,
ε ∈ traces(M) for every FSM M .

Using the notion of trace, we can introduce the notion of test: a test is a
sequence of (input action, output action) pairs. A test suite will be a set of tests.

Definition 3. Let M = (Q, qin, I, O, T) be an FSM. We say that a sequence
t = (i1, o1) . . . (ik, ok) ∈ (I × O)+ is a test for M if t ∈ traces(M). We define
the length of t as the length of the sequence, that is, |t| = k. We define the
sequence of inputs of t as α = i1 . . . ik and the sequence of outputs of t as
β = o1 . . . ok (we will sometimes use the notation t = (α, β) ∈ (I+ × O+)). A
test suite for M is a set of tests for M . Given a test suite T = {t1, . . . , tn}, we
define the length of the test suite as the sum of the lengths of its tests, that is,
|T | =

∑
i=1,...,n |ti|.

Let t = (α, β) be a test for M . We say that the application of t to an FSM M ′

fails if there exists β′ such that (α, β′) ∈ traces(M ′) and β �= β′. Similarly, let
T be a test suite for M . We say that the application of T to an FSM M ′ fails if
there exists t ∈ T such that the application of t to M ′ fails.

Intuitively, a test (α, β) for M denotes that the application of the sequence
of input actions α to a correct system (with respect to M) should show the
sequence of output actions β. Note that if we would allow non-determinism,
then the previous inequality must be appropriately replaced to express that the
behaviours of the SUT must be a subset of those of the specification. For now,
we will assume the determinism of the FSMs.

In order to select the tests that can detect the higher amount of fails in the
program, it is useful to have a measure on the goodness of a test suite. Let us
emphasize that measures will be, in general, heuristics to find good solutions and
that each measure should be validated with experiments. Usually, higher values
of a measure will be associated with better solutions, but this relation need not
be monotonic. The measures that we use in this paper have been introduced
in previous work and it has been shown that they are useful to find good test
suites. We introduce a general notion of measure.

Definition 4. A measure is a function

f : FSM(I,O) × P(I+ × O+) → R
+ ∪ {0}

Intuitively, a measure is a function that receives an FSM and a test suite
and returns a real number representing how good the measure considers that
this test suite is to detect fails in an SUT. This notion of measure allows us
to use information both from the specification and the test suite that we are

720 A. Ibias et al.

evaluating, although it not necessarily has to use information from both, that
is, a measure could work only with the information from the test suite and not
use the specification at all. Finding the best test suite according to a measure
(that is, the test suite that gets the best score) is usually an NP-hard problem
(due to the combinatorial explosion). Therefore, we decided to rely on genetic
programming in order to obtain relatively good test suites. A genetic algorithm
is composed by:

Initialize population;
Evaluate population;
while termination criterion not reached do

Select next population;
Perform crossover;
Perform mutation;
Evaluate population;

end
Algorithm 1. Genetic algorithm: general scheme

– An encoding of the population in genes.
– An initial population, that is, randomly generated individuals expressed in

the selected codification.
– A fitness function to evaluate the population.
– A stopping criterion.
– A next population selection method, which usually keeps the best individuals

and discards the worst ones (with respect to the fitness function values).
– A crossover method that generates new individuals from the mixture of the

genes of the existing ones.
– A mutation method that can modify some individuals in order to obtain new

genes that might have not been present before.

The structure of a genetic algorithm is given in Algorithm1. A basic genetic
programming algorithm is a genetic algorithm where the codification of the pop-
ulation in genes does not use a linear structure (as a vector) but a tree-like
structure [15]. Most of the work using genetic algorithms to generate test suites
rely on a linear structure to represent the test suite. Specially, they use to rely
on a vector of the inputs of the test suite [7,8,16,22]. This encoding of a test
suite presents a problem: if the FSM is not input-enabled, then the algorithm
could generate invalid tests that will always fail when applied to the SUT, even
if this is totally equivalent to the FSM. As we are working with deterministic
but not necessarily input-enabled FSMs, we have to face this problem and using
a grammar-guided genetic programming algorithm allows us to ensure the cor-
rectness of the generated test suites. This approach also allows us to use the
information from the output that each input generates in each state of the FSM
(as the inputs do not have to generate the same output in all the states).

GPTSG 721

3 The Genetic Programming Algorithm

In this section, we will present all the components of our genetic algorithm.

3.1 Encoding

The first and most important choice of a genetic approach is to select a good
encoding. As we are working with test suites generated from an FSM, we need
to preserve the structure of the FSM in order to generate correct tests for it.
Therefore, we decided to use a tree structure as an encoding of our tests and we
use a genetic programming algorithm. Specifically, we decided to use a grammar-
guided genetic programming approach, which solves the correctness issues from
just using genetic programming. This implies that the first step of our genetic
programming algorithm will be to generate the grammar that the FSM produces.
We have the following components:

– A start non-terminal symbol S that starts the grammar.
– A non-terminal symbol T that introduces each test of the test suite.
– A non-terminal symbol N for each state, where N ∈ N is the state number.
– A terminal symbol ′a/b′ for each input/output pair present on the FSM, where

a is the input and b is the output.
– A terminal symbol ′null′ to represent the end of a test.
– A production rule S −→ T to generate the initial test.
– A production rule T −→ T + T to introduce a new test.
– A production rule T −→ 0 to start each test in the FSM initial state.
– A production rule N −→ ′a/b′ + M for each transition from the state N to

a state M with input/output pair (a, b).
– A production rule N −→ ′null′ for each state N to a terminal to represent

the end of the test.

Given an FSM, the generation of the associated grammar is automatic (and
it has been implemented as part of our tool).

3.2 Initial Population

As an initial population we randomly generate 100 test suites of the length given
by the user using the grammar previously derived from the FSM. Each rule in
the grammar has the same probability of being triggered. This allows a uniform
random initialization.

3.3 Fitness Function

The fitness function of our genetic programming algorithm will be the available
measures. As previously defined, they will receive the test suite and the FSM and
will return a real value that represents how good is this test suite according to
the measure. An important remark about fitness functions is that they should

722 A. Ibias et al.

be easy to compute, as they will be invoked many times during the execution
of the algorithm. Therefore, fitness functions with high computational cost will
lead to a higher computational cost of the algorithm.

We decided to give the users the capability to select the fitness function
that better suites their problem, along with the decision on whether the score
should be maximized or minimized. As we explained before, fitness functions
should have similar performances and this is the case for the measures based on
Information Theory that we include in our tool. Among them, we can mention,
due to the big improvement with respect to previous measures, the Test Set
Diameter (TSDm) based measures [9]. We implemented the Input-TSDm, the
Output-TSDm and the InputOutput-TSDm. Also, we implemented a measure
that we have developed in our research group and that it is called Biased Mutual
Information. Note that users of our tool can add their own measures. So, our
tool can be use to evaluate the usefulness of new proposals because they can be
compared with existing ones.

3.4 Stopping Criterion

The algorithm performs at most 100 epochs and at least 20 epochs. Once we
have passed the 20 epochs, the stop criterion will be fulfilled if the best test
suite is the same along 0.2 × NumberOfPassedEpochs epochs.

3.5 Selection Method

We use a variant of elitist reduction [19]. First, the test suites that got a fitness
score over the mean (or under the mean if we want to minimize) go directly
to the next epoch. In addition, the ones that are under the mean can pass to
the next epoch if their score is higher than the mean minus a random number
modulo the distance between the mean and the best score.

3.6 Crossover Method

The choice of crossover method depends on our encoding and the characteristics
we want the produced test suites to have. As we use a grammatical encoding,
we need to use a grammatical crossover. We have considered a mixture between
the Whigham crossover [18] and the standard grammatical crossover [5]. Also,
as we want all our test suites to have the same length (as previously defined),
we need to slightly modify crossovers in order to achieve a crossover that keeps
the length fixed. Algorithm 2 shows how crossover is performed.

Finally, we need to set the probability of producing the crossover. In our case,
giving how hard is to perform a crossover, we decided to set this probability to
90%, so that we favour the mixture between test suites.

GPTSG 723

3.7 Mutation Method

A mutation consists in generating a new test with the same length. The proba-
bility of performing a mutation will be, as usual [19], equal to 5% for each test
of each test suite of the population.

4 GPTSG

We have implemented a tool1 supporting our framework. The tool has two main
uses: generate a test suite with a giving length according to a selected measure
and compare different measures. In order to develop the tool, we looked for
libraries dealing with FSMs and we decided to use the OpenFST library [1].
Therefore, input files must be in OpenFST format, with the .fst extension. The
tool will have two kind of calls generate and compare. The syntax of the two
calls is:

gptsg generate inputFile length {max|min} fitness
gptsg compare length {max|min} fitness {max|min} fitness

1 The tool can be downloaded from https://github.com/Colosu/gptsg.

724 A. Ibias et al.

and two examples of calls are:

gptsg generate ./test/binary.fst 50 max ITSDm
gptsg compare 50 max ITSDm min OTSDm

Currently, our tool supports the following fitness functions:

– BMI: Biased Mutual Information.
– ITSDm: Input Test Set Diameter.
– OTSDm: Output Test Set Diameter.
– IOTSDm: Input-Output Test Set Diameter.
– Own: For your own developed measure.
– random: generates a totally random test suite.

Let us emphasize that an important feature of our tool is that it is possible
to define new measures, so that they can be compared with the already existing
ones. The user only needs to open the src/Measures.cpp file and modify the
OwnFunction method. Once the code is compiled, the inserted measure can be
called as the Own fitness function.

4.1 Test Suite Generation

In order to generate a good enough test suite, we implemented the genetic pro-
gramming algorithm explained in the previous section, giving some configuration
to the user. The tool needs that the input FSM is in OpenFST format (in a .fst
file). This format is easy to use and can be learned quickly. Also, the tool needs
to know the length of the expected test suite, in terms of input actions, and the
measure to use as a fitness function. Then, the user will receive a .txt file with the
generated test suite, with each test conformed by a succession of input/output
pairs.

4.2 Test Suite Comparison

The tool allows users to compare two measures. It needs to know the length
of the desired test suite, the two measures to be compared and if it should
maximize or minimize each measure. Essentially, the tool takes the set of 100 FSMs
that are shipped with the tool, representing different and diverse scenarios and
characteristics, and for each one of them it generates two test suites according
to the corresponding measures. Then, the tool produces 1000 mutants of the
corresponding FSM and checks which test suite kills more mutants. With the
results for each FSM, the tool produces an output telling the percentage of cases
where each test suite has killed more mutants, along with a percentage of how
many mutants where killed by each test suite. This process is repeated 50 times,
getting 50 results, and at the end, the program gives a mean of all the results
obtained for the 50 repetitions. This process is given in Algorithm3.

GPTSG 725

Data: length,measure1,measure2
Result: .txt file with the values
REP = 50;
FSM = 100;
for each REP do

Set control values to 0;
for each FSM F do

Generate TS1 genetic test suite using measure measure1;
Generate TS2 genetic test suite using measure measure2;
Generate 1000 mutants of F ;
Check which test suite kills more mutants;

end
Output the percentage of runs TS1 killed more mutants;
Output the percentage of runs TS2 killed more mutants;
Output the percentage of mutants killed by TS1;
Output the percentage of mutants killed by TS2;

end
Output the average percentage of runs TS1 killed more mutants;
Output the average percentage of runs TS2 killed more mutants;
Output the average percentage of mutants killed by TS1;
Output the average percentage of mutants killed by TS2;

Algorithm 3. Test suite comparison algorithm

4.3 Experiment

Next we show the results of a small experiment to evaluate our genetic program-
ming algorithm and tool. First, we compared the Input Test Set Diameter mea-
sure, used as fitness function, and a random test suite generation. We observed
that the genetically generated test suite killed more mutants than the randomly
generated test suite in a 75.3% of the cases, killing an average of 47.1% of the
mutants, while the randomly generated test suite killed more mutants the 24.7%
of the cases, killing an average of 43.9% of the mutants. We can see the full
comparison in Fig. 1 (left), where each of the first 50 rows shows the result of
an iteration of the experiment. In order to see how two measures are compared,
we rerun the comparison algorithm to compare the maximization of the Input
Test Set Diameter and the maximization of the Output Test Set Diameter. The
results can be seen in Fig. 1 (right). As expected, they obtain similar results,
getting better results the Output TSDm due to the randomization involved in
the genetic algorithm. On average, the Input TSDm killed more mutants the
49% of the cases, killing 47.3% of the mutants, while Output TSDm killed more
mutants the 51% of the cases, killing 47.5% of the mutants.

726 A. Ibias et al.

Fig. 1. Results of ITSDm vs random (left) and ITSDm vs OTSDm (right).

5 Conclusions

The automatic generation of good test suites is a fundamental task when limita-
tions in testing complex systems come into play. In this paper we have presented
a genetic programming algorithm to generate these test suites. We have imple-
mented a tool to support our algorithm so that any potential user can apply
it. The tool allows users to compare genetically generated test suites that out-
perform different measures, so that we can compare the performance of each
measure. We have relied on Information Theory to define the measures that will
work as fitness functions of our genetic programming algorithm. Finally, we have
performed several experiments with our tool and report on two of them. There
are some lines for future work.

GPTSG 727

We are considering several lines of future work. First, it would be interesting
to find and define new measures so that we can extend the catalogue of our tool.
Second, we are working on extending our algorithm to deal with the generation
of test suites to test systems with distributed interfaces [12,13].

References

1. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst: a general
and efficient weighted finite-state transducer library. In: Holub, J., Žd’árek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-76336-9 3

2. Ammann, P., Offutt, J.: Introduction to Software Testing, 2nd edn. Cambridge
University Press, Cambridge (2017)

3. Cavalli, A.R., Higashino, T., Núñez, M.: A survey on formal active and passive
testing with applications to the cloud. Ann. Telecommun. 70(3–4), 85–93 (2015)

4. Couchet, J., Manrique, D., Porras, L.: Grammar-guided neural architecture evolu-
tion. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 437–446.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73053-8 44

5. Couchet, J., Manrique, D., Rios, J., Rodŕıguez-Patón, A.: Crossover and mutation
operators for grammar-guided genetic programming. Soft Comput. 11(10), 943–
955 (2007)

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

7. Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.: Aiding test case gener-
ation in temporally constrained state based systems using genetic algorithms. In:
Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS,
vol. 5517, pp. 327–334. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02478-8 41

8. Derderian, K., Merayo, M.G., Hierons, R.M., Núñez, M.: A case study on the use
of genetic algorithms to generate test cases for temporal systems. In: Cabestany,
J., Rojas, I., Joya, G. (eds.) IWANN 2011. LNCS, vol. 6692, pp. 396–403. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21498-1 50

9. Feldt, R., Poulding, S.M., Clark, D., Yoo, S.: Test set diameter: quantifying the
diversity of sets of test cases. In: 9th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2016, pp. 223–233. IEEE Computer
Society (2016)

10. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Computing unique
input/output sequences using genetic algorithms. In: Petrenko, A., Ulrich, A. (eds.)
FATES 2003. LNCS, vol. 2931, pp. 164–177. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24617-6 12

11. Henard, C., Papadakis, M., Harman, M., Jia, Y., Traon, Y.L.: Comparing white-
box and black-box test prioritization. In: 38th International Conference on Software
Engineering, ICSE 2014, pp. 523–534. ACM Press (2016)

12. Hierons, R.M., Merayo, M.G., Núñez, M.: Bounded reordering in the distributed
test architecture. IEEE Trans. Reliab. 67(2), 522–537 (2018)

13. Hierons, R.M., Núñez, M.: Implementation relations and probabilistic schedulers
in the distributed test architecture. J. Syst. Softw. 132, 319–335 (2017)

728 A. Ibias et al.

14. ISO/IEC JTCI/SC21/WG7, ITU-T SG 10/Q.8: Information Retrieval, Transfer
and Management for OSI; Framework: Formal Methods in Conformance Testing.
Committee Draft CD 13245–1, ITU-T proposed recommendation Z.500. ISO - ITU-
T (1996)

15. Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1993)
16. Lefticaru, R., Ipate, F.: Automatic state-based test generation using genetic algo-

rithms. In: 9th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2007, pp. 188–195. IEEE Computer Society (2007)

17. Luna, J.M., Romero, J.R., Ventura, S.: Design and behavior study of a grammar-
guided genetic programming algorithm for mining association rules. Knowl. Inf.
Syst. 32(1), 53–76 (2012)

18. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3–4), 365–
396 (2010)

19. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

20. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley,
Hoboken (2011)

21. Regolin, E.N., Pozo, A.T.R.: Bayesian automatic programming. In: Keijzer, M.,
Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005.
LNCS, vol. 3447, pp. 38–49. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31989-4 4

22. Samarah, A., Habibi, A., Tahar, S., Kharma, N.N.: Automated coverage directed
test generation using a cell-based genetic algorithm. In: 11th Annual IEEE Inter-
national High-Level Design Validation and Test Workshop, pp. 19–26. IEEE Com-
puter Society (2006)

23. Shafique, M., Labiche, Y.: A systematic review of state-based test tools. Int. J.
Softw. Tools Technol. Transf. 17(1), 59–76 (2015)

10.5. Using mutual information to test from Finite State Machines: Test
suite selection 153

10.5 Using mutual information to test from Finite
State Machines: Test suite selection

Authors Alfredo Ibias, Manuel Núñez and Robert M.
Hierons

Title Using mutual information to test from Finite
State Machines: Test suite selection

Publication Type Journal
Venue Information and Software Technology
Number 132
Year 2021
DOI/URL https://doi.org/10.1016/j.infsof.

2020.106498
Pages 21
Authors’ Contributions Ibias, Núñez and Hierons developed the the-

ory. Ibias and Núñez designed the experi-
ments. Ibias developed and executed the ex-
periments. Ibias and Núñez wrote the manu-
script. Núñez and Hierons reviewed the ma-
nuscript.

https://doi.org/10.1016/j.infsof.2020.106498
https://doi.org/10.1016/j.infsof.2020.106498

Information and Software Technology 132 (2021) 106498

Available online 14 December 2020
0950-5849/© 2020 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Using mutual information to test from Finite State Machines: Test suite
selection✩

Alfredo Ibias a, Manuel Núñez a,∗, Robert M. Hierons b

a Instituto de Tecnología del Conocimiento, Universidad Complutense de Madrid, Madrid, Spain
b Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom

A R T I C L E I N F O

Keywords:
Formal approaches to testing
Information Theory
Mutual information
Finite State Machines

A B S T R A C T

Context: Mutual Information is an information theoretic measure designed to quantify the amount of similarity
between two random variables ranging over two sets. In this paper, we adapt this concept and show how it
can be used to select a good test suite to test from a Finite State Machine (FSM) based on a maximise diversity
approach.
Objective: The main goal of this paper is to use Mutual Information in order to select test suites to test from
FSMs and evaluate whether we obtain better results, concerning the quality of the selected test suite, than
current state-of-the-art measures.
Method: First, we defined our scenario. We considered the case where we receive two (or more) test suites
and we have to choose between them. We were interested in this scenario because it is a recurrent case in
regression testing. Second, we defined our notion based on Mutual Information: Biased Mutual Information.
Finally, we carried out experiments in order to evaluate the measure.
Results: We obtained experimental evidence that demonstrates the potential value of the measure. We also
showed that the time needed to compute the measure is negligible when compare to the time needed to
apply extra testing. We compared our measure with a state-of-the-art test selection measure and showed that
our proposal outperforms it. Finally, we have compared our measure with a notion of transition coverage.
Our experiments showed that our measure is slightly worse than transition coverage, as expected, but its
computation is 10 times faster.
Conclusion: Our experiments showed that Biased Mutual Information is a good measure for selecting test
suites, outperforming the current state-of-the-art measure, and having a (negative) correlation to fault coverage.
Therefore, we can conclude that our new measure can be used to select the test suite that is likely to find
more faults. As a result, it has the potential to be used to automate test generation.

1. Introduction

Software testing [1,2] is the main technique to validate complex
systems with the goal of increasing their reliability. Testing is a time
consuming part of software development; it has been observed that
testing can cost more than 50% of the development budget [2]. There-
fore, it is important to devise methodologies that reduce the time taken
without notably decreasing effectiveness. A good starting point is to
reduce the number of tests (the size of the test suite) that we apply to

✩ This work has been supported by the Spanish MINECO/FEDER (grant FAME, RTI2018-093608-B-C31); the Region of Madrid, Spain (grant FORTE-CM,
S2018/TCS-4314) co-funded by EIE Funds of the European Union; the Region of Madrid - Complutense University of Madrid, Spain (grant PR65/19-22452); and
the UK EPSRC (grant InfoTestSS, EP/P006116/2).
∗ Corresponding author.
E-mail addresses: aibias@ucm.es (A. Ibias), mn@sip.ucm.es (M. Núñez), r.hierons@sheffield.ac.uk (R.M. Hierons).
URLs: https://alfredoibias.com/ (A. Ibias), http://antares.sip.ucm.es/manolo/ (M. Núñez), https://robhierons.github.io/ (R.M. Hierons).

1 The number of tests needed to exhaustively test even the simplest systems is exorbitant. For example, exhaustive testing of a black-box implementation of a
method adding two numbers on a 32-bit machine needs around 8 ⋅ 1028 tests.

the System Under Test (SUT).1 Therefore, we require approaches that
select a test suite that is small enough to be used in practice and is likely
to be effective in finding faults. We can rephrase this as the problem of
maximising the expected test effectiveness for a given cost/time. Since
the cost of test execution typically depends on the test suite size, we
reduce this to the problem of choosing amongst different test suites,
that have the same size, the one that is most likely to find faults.

The main aim of the work presented in this paper is to devise
measures that can help testers, or testing tools, to choose between

https://doi.org/10.1016/j.infsof.2020.106498
Received 8 March 2020; Received in revised form 17 November 2020; Accepted 18 November 2020

Information and Software Technology 132 (2021) 106498

2

A. Ibias et al.

alternative test suites. We focus on the case where we want to choose
between different finite test suites that have the same number of inputs
(and so, most likely, the same execution cost). The problem studied
is relevant in a number of contexts. For example, we might build a
test suite in an incremental manner. When choosing a next test case
to add we will be comparing test suites of the same size (the current
test suite extended by the different test cases that could be added) and
will choose the test suite that we expect to be most effective. Thus,
incremental approaches to building a test suite involve the comparison
of test suites of the same size. Measures that compare test suites might
also be used to help guide test suite generation since, for example, the
measures could form fitness functions to be used within a search-based
approach. The problem is also relevant in the context of regression test-
ing, where we typically have to repeatedly use a test suite. Ideally, one
executes the entire test suite in regression testing but often this is too
expensive, with this having led to a significant body of work regarding
the problem of selecting a ‘best’ subset (see, for example, [3–5]).

This paper considers the situation in which the SUT is a black-
box; we know its input and output alphabets but have no additional
information. As a result, in choosing a test suite we cannot use infor-
mation about the internal structure of the SUT. A side-effect of this is
that we will not have access to information about the coverage of the
SUT achieved by a test suite. However, we assume that we do have a
specification of the system that we want to build. In order to simplify
the presentation, we assume that the specification is given by a Finite
State Machine (FSM) but the approach can be adapted to deal with
other state-based formalisms, in particular, those containing data.

The choice of FSMs as a formalisation was motivated by the fact
that they have been used in a number of areas. The early work largely
concerned protocol conformance testing [6,7] and hardware (proces-
sor) testing, since processor designs are FSMs (see, for example, [8]).
FSM-based techniques have also been used in testing web-services
and web-based applications [9,10]. It is important to observe that it
is not necessary for the user to produce an FSM specification; the
specification may be in some other state-based formalism, such as
state-charts, with a model being mapped to an FSM that represents
its semantics (possibly after some abstraction). This makes FSM-based
approaches applicable to a wide range of state-based specifications,
such as those used in the embedded systems industry. The value of
such an approach was also demonstrated when used to test a number of
Microsoft Windows protocols [11]. Recent work has shown that FSM-
based test generation techniques can be applied when testing from a
class of rather more expressive models (reactive I/O-state-transition
systems, RIOSTS) [12]. The benefit is that RIOSTS can also be used
with a range of embedded systems [12], with the approach having been
evaluated on part of the European Train Control System and also an
airbag controller [13]. Finally, it is worth mentioning that there are
several tools that can be used to specify and analyse FSMs (for example,
fsmlib-cpp,2 automatalib [14] and OpenFST [15]).

This paper describes a novel information theoretic measure and pro-
poses its use to inform the choice between test suites. Specifically, we
define a notion, Biased Mutual Information (BMI), inspired by Mutual
Information [16], and use it to compare test suites of similar length.
The idea behind the definition of BMI is that two tests that share a large
amount of information will be more likely to explore the same paths
of an FSM, applying the same inputs and expecting the same outputs.
The intended goal of BMI is thus to indirectly maximise diversity and
is motivated by it having been widely recognised that diversity has a
strong impact on test quality [17–20]. Our hypothesis was that a test
suite with lower BMI will tend to be more effective (be more likely to
find faults) because lower BMI implies that the tests in the test suite
share less information and, therefore, they explore more behaviours of
the FSM. In order to evaluate this hypothesis, we used mutants, that

2 https://github.com/agbs-uni-bremen/fsmlib-cpp.

simulate faults. Specifically, given an FSM and a pair of test suites, we
checked whether the test suite with lower BMI killed more mutants.
Our experiments revealed that minimising BMI led to test suites that
kill more mutants most of the time. Moreover, we obtained a (negative)
correlation between BMI and mutation score. We also found that the
time needed to compute BMI is negligible when compared to the time
typically needed to apply a single test suite. The consequence of this
fact is that it will often be worth spending some time to decide between
two test suites, instead of applying both of them, if, as usual, resources
and time are scarce. These results suggest that BMI can be used to guide
testing towards test suites that are likely to be more effective.

Interestingly, in additional experiments it was found that BMI out-
performed a previous information theoretic approach, the test set di-
ameter (TSDm) measure [21], when selecting between two randomly
generated test suites. We also compared our measure with a notion of
transition coverage. Specifically, we explored the question of which
measure was most effective when used to choose between two test
suites: choosing the test suite with smaller BMI or the test suite with
higher transition coverage. Since transition coverage has more infor-
mation available (the states from which inputs are applied), it was not
surprising that transition coverage was slightly more effective. How-
ever, BMI was found to be considerably faster. As a result, in the context
of testing from an FSM, there is a trade-off between effectiveness and
speed. Note that, although the comparison with transition coverage
was interesting, the aim of the work described in this paper was to
produce a general method that can be used in a range of scenarios. This
includes scenarios in which, for example, we do not have a complete
specification but we can estimate the frequency of input/output pairs,
which is the only information required to compute BMI. There is
potential to use (random) sampling to estimate such frequencies.

Although it will become clearer when we give the formal definition
of BMI, we will briefly explain why we need a bias in our notion.
Essentially, in order to compute our measure we need to know the
frequency of occurrence of each input/output pair in the underlying
FSM. Since the formulation of Mutual Information applies a logarithm
over that frequency, if we have only one occurrence of an input/output
pair (𝑖, 𝑜) in the FSM, then we obtain log(1) = 0. This produces two
undesirable consequences. First, we obtain the smallest possible value
for (𝑖, 𝑜) while we want to give it the highest weight. Second, when we
combine this weight with other values by multiplying them, we obtain
0, which leads to final values that are uninformative. The introduction
of a bias solves this problem.

The rest of the paper is structured as follows. In Section 2 we
review basic concepts and notation used in the paper. In Section 3 we
present related work. In Section 4 we formally define our measure and
explore some of its properties. Section 5 reports on the experiments and
Section 6 discusses threats to validity. In Section 7 we discuss some
decisions that we took during the research presented in this paper.
Finally, in Section 8 we provide conclusions and discuss future work.

2. Preliminaries

In this paper, systems will be modelled as Finite State Machines
(FSMs). In order to define an FSM, we first introduce some notation.
Given set 𝐴, 𝐴∗ denotes the set of finite sequences of elements of 𝐴;
𝐴+ denotes the set of non-empty finite sequences of elements of 𝐴; and
𝜖 ∈ 𝐴∗ denotes the empty sequence. We let |𝐴| denote the size of set
𝐴. Given a sequence 𝜎 ∈ 𝐴∗, |𝜎| denotes its length. Given a sequence
𝜎 ∈ 𝐴∗ and 𝑎 ∈ 𝐴, we have that 𝜎𝑎 denotes the sequence 𝜎 followed by
𝑎 and 𝑎𝜎 denotes the sequence 𝜎 preceded by 𝑎.

Throughout this paper we let  be the set of input actions and  be
the set of output actions. It is important to differentiate between input
actions and inputs of the system. An input of a system will be a non-
empty sequence of input actions, that is, an element of + (similarly
for outputs and output actions).

Information and Software Technology 132 (2021) 106498

3

A. Ibias et al.

An FSM is a (finite) labelled transition system in which every tran-
sitions has a label in the form of an input/output pair (a pair containing
an input action and an output action). We use this formalism to define
specifications.

Definition 1. A Finite State Machine (FSM) is represented by a tuple
𝑀 = (𝑄, 𝑞𝑖𝑛,,, 𝑇) in which 𝑄 is a finite set of states, 𝑞𝑖𝑛 ∈ 𝑄 is the
initial state,  is a finite set of input actions,  is a finite set of output
actions, and 𝑇 ⊆ 𝑄× ( ×) ×𝑄 is the transition relation. The meaning
of a transition (𝑞, (𝑖, 𝑜), 𝑞′) ∈ 𝑇 , also denoted by (𝑞, 𝑖∕𝑜, 𝑞′), is that if 𝑀
receives input action 𝑖 when in state 𝑞 then it can move to state 𝑞′ and
produce output action 𝑜. We write (𝑖, 𝑜) ∈𝑚 𝑀 to denote that the pair
(𝑖, 𝑜) appears in 𝑚 transitions of 𝑀 .

We say that 𝑀 is deterministic if for all 𝑞 ∈ 𝑄 and 𝑖 ∈  there exists
at most one pair (𝑞′, 𝑜) ∈ 𝑄 ×  such that (𝑞, 𝑖∕𝑜, 𝑞′) ∈ 𝑇 .

We assume that FSMs are deterministic; this makes the work com-
patible with the previously devised information theoretic (white-box)
TSDm measure [21]. In particular, it allows us to run experiments that
compare the proposed approach with TSDm.

An FSM can be represented by a diagram in which nodes represent
states of the FSM and transitions are represented by arcs between the
nodes. We use an incoming edge with no source to denote the initial
state. In our case, all states are final as long as they are reachable from
the initial state.

We will assume the minimal test hypothesis [22]: the SUT can be
modelled as an (unknown) object described in the same formalism as
the specification (here, an FSM). Note that we do not need to have
access to this description; we are in a black-box testing framework
and only assume the existence of such an FSM. In principle, we could
weaken this hypothesis to simply assume that each time the SUT
receives a sequence of input actions, it returns a sequence of output
actions.

Our main goal while testing is to decide whether the behaviour of an
SUT conforms to the specification of the system that we would like to
build. In order to detect differences between specifications and SUTs,
we need to compare their behaviours and the main notion to define
such behaviours is given by the concept of a trace.

Definition 2. Let 𝑀 = (𝑄, 𝑞𝑖𝑛,,, 𝑇) be an FSM, 𝜎 = (𝑖1, 𝑜1)… (𝑖𝑘, 𝑜𝑘)
∈ ( ×)∗ be a sequence of pairs and 𝑞 ∈ 𝑄 be a state. We say that 𝑀
can perform 𝜎 from 𝑞 if there exist states 𝑞1 … 𝑞𝑘 ∈ 𝑄 such that for all
1 ≤ 𝑗 ≤ 𝑘 we have (𝑞𝑗−1, 𝑖𝑗∕𝑜𝑗 , 𝑞𝑗) ∈ 𝑇 , where 𝑞0 = 𝑞. If 𝑞 = 𝑞𝑖𝑛 then we
say that 𝜎 is a trace of 𝑀 . We denote by 𝚝𝚛𝚊𝚌𝚎𝚜(𝑀) the set of traces of
𝑀 . Note that 𝜖 ∈ 𝚝𝚛𝚊𝚌𝚎𝚜(𝑀) for every FSM 𝑀 .

Next we define the notion of test. As previously explained, a test is
a sequence of (input action, output action) pairs. A test suite will be a
set of tests.

Definition 3. Let 𝑀 = (𝑄, 𝑞𝑖𝑛,,, 𝑇) be an FSM. We say that
𝑡 = (𝑖1, 𝑜1)… (𝑖𝑘, 𝑜𝑘) ∈ ( × )+ is a test for 𝑀 if 𝑡 ∈ 𝚝𝚛𝚊𝚌𝚎𝚜(𝑀). The
length of 𝑡 is the length of the sequence, that is, |𝑡| = 𝑘. In addition,
the sequence of input actions of 𝑡 is 𝜆 = 𝑖1 … 𝑖𝑘 and the sequence of
output actions of 𝑡 is 𝜇 = 𝑜1 … 𝑜𝑘. We will sometimes use the notation
𝑡 = (𝜆, 𝜇) ∈ (+ × +). We write (𝑖, 𝑜) ∈ 𝑡 to denote that the pair (𝑖, 𝑜)
appears in the test 𝑡; (𝑖, 𝑜) ∈𝑛 𝑡 denotes that the pair (𝑖, 𝑜) appears 𝑛 times
in the test 𝑡.

A test suite for 𝑀 is a set of tests for 𝑀 . Given a test suite  =
{𝑡1,… , 𝑡𝑛}, the length of the test suite is the sum of the lengths of its
tests, that is, | | =

∑

𝑖=1,…,𝑛 |𝑡𝑖|.
Let 𝑡 = (𝜆, 𝜇) be a test for 𝑀 . We say that the application of 𝑡 to

an FSM 𝑀 ′ fails if there exists 𝜇′ such that (𝜆, 𝜇′) ∈ 𝚝𝚛𝚊𝚌𝚎𝚜(𝑀 ′) and
𝜇 ≠ 𝜇′. Similarly, let  be a test suite for 𝑀 . We say that the application
of  to an FSM 𝑀 ′ fails if there exists 𝑡 ∈  such that the application
of 𝑡 to 𝑀 ′ fails.

Intuitively, a test (𝜆, 𝜇) for 𝑀 denotes that the application of the
sequence of input actions 𝜆 to a correct system (with respect to 𝑀)
should lead to the sequence of output actions 𝜇. Note that if we allowed
non-determinism, then the previous inequality must be appropriately
replaced to express that a behaviour of the SUT must be one of those
of the specification, and we will have a notion of conformance similar
to ioco [23].

The concept of Test Set Diameter (TSDm) [21], which will be
used as the state-of-the-art measure to compare with, is derived from
Kolmogorov complexity [24]. The Kolmogorov complexity of a string
is the length of the shortest program that produces that string. It has
been shown that Kolmogorov complexity can be approximated using
Normalised Compression Distance [25].

Definition 4. Let 𝑥 and 𝑦 be two strings and 𝐶(𝑥) be the length of
the string 𝑥 after being compressed by a chosen compression program.
We denote by 𝚗𝚌𝚍(𝑥, 𝑦) the Normalised Compression Distance of 𝑥 and
𝑦 and we define it as
𝐶(𝑥𝑦) − min{𝐶(𝑥), 𝐶(𝑦)}

max{𝐶(𝑥), 𝐶(𝑦)}
where 𝑥𝑦 denotes the concatenation of 𝑥 and 𝑦.

The previous distance can be naturally extended to deal with mul-
tisets of strings.

Definition 5. Let 𝑋 be a multi-set of strings with at least two elements
and 𝐶(𝑥) be the length of the string 𝑥 ∈ 𝑋 after being compressed by
a chosen compression program. We denote by 𝙽𝙲𝙳(𝑋) the Normalised
Compression Distance of 𝑋 and we define it as
{

𝚗𝚌𝚍(𝑥1, 𝑥2) if 𝑋 = {|𝑥1, 𝑥2|}
max{𝙽𝙲𝙳1(𝑋),max𝑌 ⊂𝑋{𝙽𝙲𝙳(𝑌)}} otherwise

where

𝙽𝙲𝙳1(𝑋) =
𝐶(𝑋) − min𝑥∈𝑋{𝐶(𝑥)}
max𝑥∈𝑋{𝐶(𝑋∖{𝑥})}

and where 𝐶(𝑋) is the length of the compression of the concatenation
of the strings belonging to 𝑋 in any specific order as long as we use it
for all the concatenations.

The Test Set Diameter of a test suite is defined in terms of the
NCD of a (multi-)set of tests. We can consider different multisets for
computing this metric. For example, we could use the multiset of test
inputs (Input-TSDm), the multiset of test outputs (Output-TSDm) or
even the multi-set of execution traces (Trace-TSDm). In this paper, as
recommended in the original work [21], we used ITSDm to drive test
selection.

It is important to note that Test Set Diameter is the current baseline
for the use of Information Theory to direct the generation and selection
of test suites in black-box testing. An extensive study [26] found that
Test Set Diameter outperformed many alternatives. Specifically, the
study shows that, for 5 well-known programs (Grep, Sed, Flex, Make
and GZip), ITSDm is the best alternative, obtaining fault detection rates
between 85% and 95%. Moreover, they observed that ITSDm is able
to compete with white-box techniques, obtaining differences in fault
detection rates of less than 2%, which is remarkable given the fact
that ITSDm, as a black-box technique, works with less information than
white-box techniques.

Finally, we recall the classical definition of mutual information [16],
which we use as an inspiration for our measure.

Definition 6. Let 𝐴 and 𝐵 be two sets and 𝜉𝐴 and 𝜉𝐵 be two discrete
random variables ranging, respectively, over 𝐴 and 𝐵. We denote by
𝐼(𝜉𝐴; 𝜉𝐵) the mutual information of 𝜉𝐴 and 𝜉𝐵 and we define it as
∑

𝑏∈𝐵

∑

𝑎∈𝐴
𝜎𝜉𝐴,𝐵 (𝑎, 𝑏) ⋅ log2

𝜎𝜉𝐴,𝐵 (𝑎, 𝑏)

𝜎𝜉𝐴 (𝑎) ⋅ 𝜎𝜉𝐵 (𝑏)

where 𝜉𝐴,𝐵 is the joint probability distribution, defined as usual, of 𝜉𝐴
and 𝜉𝐵 .

Information and Software Technology 132 (2021) 106498

4

A. Ibias et al.

3. Related work

There are many techniques for generating a test suite from an
FSM specification. Possibly the first work in this area was the seminal
paper by Moore, published in 1956, that described an overall frame-
work [27]. Later, in 1964, Hennie [28] published a test generation
algorithm. Hennie’s algorithm required the specification to be a deter-
ministic, completely-specified FSM that has a special type of sequence,
called a distinguishing sequence.3 Later, a more general test generation
algorithm was published [29,30], with this only requiring that the
specification is a deterministic, completely-specified FSM.4

The area of FSM-based test generation has been extended in a
number of directions. The techniques mentioned above are complete in
the sense that they return test suites that determine correctness as long
as the SUT is equivalent to an (unknown) FSM in some well-defined
fault domain; the fault domain typically places an upper bound on the
number of states of the minimal FSM that represents the behaviour
of the SUT. A number of other complete test generation algorithms
that have been devised, typically with a focus on producing relatively
small complete test suites (see, for example, [31–33]). There are also
complete techniques for testing from other classes of FSM such as
(possibly non-deterministic) partial FSMs (see, for example, [34–36]),
FSMs representing distributed systems (see, for example, [37,38]),
probabilistic FSMs (see, for example, [39,40]), and stochastic FSMs
(see, for example, [41]). It is not always feasible to produce and use
complete test suites and so there are also approaches that aim to cover
the FSM specification in some way (see, for example, [42]). The interest
in FSM-based testing is motivated by the ability of FSMs to suitably
model many classes of system, possibly after an abstraction has been
applied. Sometimes, however, it does not make sense to abstract out
data (for example, where this data determines which transitions can be
executed). There has thus been interest in testing from extended FSMs
(EFSMs), which allow data (see, for example, [43–47]), including work
on testing from Stream X-machines [48].

Interestingly, although there has been much work on testing from
both FSMs and EFSMs, it appears that notions of diversity have not
been utilised in these areas. A potential advantage of diversity-based
approaches is that they can be used with any test budget: given a bound
on the overall test execution cost/time available, one can aim to find
the most diverse test suite whose cost does not exceed this bound.
Diversity-based approaches are thus potentially extremely flexible and
it should be possible to apply them with FSMs, EFSMs or FSMs extended
with other features such as probability and time. However, as a first
step this paper restricts attention to FSMs.

Information Theory has already been used in testing [49–58]. In
particular, the problem of choosing among different test suites has been
addressed before [17,21,59]. However, as far as we are aware, this
is the first work in which a measure inspired by Information Theory
has been used to choose between test suites in a black-box testing
framework, in particular, in testing from FSMs.

4. Biased mutual information

As previously explained, our goal is to increase test suite diversity
with the hope that this will be reflected in the capability of the test
suite to detect faults. Lower values of mutual information should be
associated with higher diversity. We will consider both the input part
of the test and the expected output with the goal of also increasing
output diversity [60]. We can utilise output as well as input since we
have a specification.

3 A distinguishing sequence is an input sequence that produces different
output sequences from the different states of the FSM.

4 It also requires the specification to be minimal but any determinis-
tic, completely-specified FSM can be converted into an equivalent minimal
deterministic, completely-specified FSM.

Fig. 1. Example of FSM.

The intuition behind maximising diversity as a goal is very simple.
Assume that we have an FSM with a set of input/output pairs labelling
its transitions. If we select two different input/output pairs, and observe
no failure, then we know that this selection traversed two different
transitions of the FSM that represents the SUT. However, selecting one
input/output pair twice leads to a scenario where we might traverse the
same transition of the FSM twice (in particular, FSMs can have loops
and so can return to a state met earlier). One might argue that this
happens with probability 1

𝑚 , where 𝑚 is the number of times that the
input/output pair labels a transition of the FSM; even for large 𝑚, we
have a non-zero probability of traversing a transition more than once.
This scenario also shows that we have to be careful when looking for
measures of diversity, as the probability decreases when 𝑚 increases.
For example, the cases where 𝑚 = 2 should be rather different to the
case where 𝑚 = 200. Therefore, one should not automatically discard
test suites where a pair appears more than once. Instead, we should
take into account the number of times a label appears in the FSM
specification. We illustrate this with a simple example.

Example 1. Consider the FSM given in Fig. 1 and its test suites

1 = {(𝑖2𝑖4, 𝑜1𝑜4), (𝑖1𝑖2, 𝑜1𝑜2)}

and

2 = {(𝑖1𝑖3, 𝑜1𝑜3), (𝑖1𝑖2, 𝑜1𝑜2)}

On the one hand, 1 has a mutual information of 0. Even though
the input action 𝑖2 appears twice in the test suite, we know that the
pairs (𝑖2, 𝑜1) and (𝑖2, 𝑜2) represent different behaviours. On the other
hand, 2 has a non-zero mutual information (applying the classical
formula given in Definition 6 we have that this value is equal to 0.53).
Therefore, a measure based on mutual information should choose the
first test suite.

Initially, we would like to compute the mutual information of two
tests. Each test is a sequence of input/output pairs. If we abstract out
the position of the pairs in the sequence, we obtain a set of pairs.
Given two tests 𝑡1 and 𝑡2, in order to compute the mutual information
𝐼(𝜉𝑡1 ; 𝜉𝑡2) we need a definition of the probability distribution 𝜎𝜉𝑡 (𝑥) (see
Definition 6). The first attempt was to give an intuitive definition of 𝜎 in
which we used the uniform distribution as the probability distribution
in the mutual information formula. That is, if a label appears in 𝑚
transitions of the machine, then the probability of this label will be
1
𝑚 ; the probability that the pair 𝑥 corresponds to a specific transition
of specification 𝑀 . Also, we replaced the notion of joint probability
with a notion of composition. In this, if we have two transitions with
the same input/output pair (𝑖, 𝑜), then the composition will return the
common weight, that is, the weight of (𝑖, 𝑜); otherwise, we multiply the
weights. Alternatively, this composition can be seen as the product of
the weights of each element reweighed by the number of repetitions of
the input/output pair in the FSM.

Unfortunately, this choice does not induce a probability distribution
over the pairs in the tests and so it is not a mathematically valid
formulation of the mutual information between two tests. As a result,
there is a need to explore alternatives. After several possibilities were

Information and Software Technology 132 (2021) 106498

5

A. Ibias et al.

considered (discussed in Section 7), we found that none of them consis-
tently gave better results, so we kept the initial intuition to not restrict
ourselves to random variables. Then, in the next definition the different
occurrences of 𝜎 do not refer to probability distribution functions, but
we keep this notation to retain the structure of the original formulation.
As a result of the above, we will use the term 𝜎𝑡(𝑥), even though 𝑡 does
not explicitly appear in the right hand side of the following formulae,
because 𝑡 is an implicit parameter; 𝜎𝑡(𝑥) is only defined for 𝑥 if 𝑥 ∈ 𝑡. In
the rest of this section, recall that we write (𝑖, 𝑜) ∈𝑚 𝑀 to denote that
the pair (𝑖, 𝑜) appears in 𝑚 transitions of 𝑀 and (𝑖, 𝑜) ∈𝑛 𝑡 denotes that
the pair (𝑖, 𝑜) appears 𝑛 times in the test 𝑡.

Definition 7. Let 𝑀 = (𝑄, 𝑞𝑖𝑛,,, 𝑇) be an FSM, 𝑡 be a test for 𝑀
and 𝑥 ∈  ×  be an input/output pair such that 𝑥 ∈ 𝑡. We let:

𝜎𝑡(𝑥) =

{ 1
𝑚

if 𝑥 ∈𝑚 𝑀, 𝑚 ≥ 1
0 otherwise

We define the composition of two tests 𝑡1, 𝑡2 of 𝑀 , for input/output
pairs 𝑥1 ∈ 𝑡1, 𝑥2 ∈ 𝑡2, as:

𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2) =

⎧

⎪

⎨

⎪

⎩

1
𝑚1

⋅
1

��𝑚2
⋅��𝑚2 if 𝑥1 = 𝑥2

1
𝑚1

⋅
1
𝑚2

otherwise

where 𝑥1 ∈𝑚1
𝑀 and 𝑥2 ∈𝑚2

𝑀 . In the first case, note that 𝑚1 = 𝑚2
because we are looking for the same input/output pair in 𝑀 . Also note
that 𝑚1 and 𝑚2 are greater than zero because we request 𝑥1 ∈ 𝑡1 and
𝑥2 ∈ 𝑡2 to appear in 𝑀 .

Finally, we redefine the mutual information of two tests as:

𝐼(𝑡1; 𝑡2) =
∑

𝑥1∈𝑡1

∑

𝑥2∈𝑡2

𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2) ⋅ log2
𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2)

𝜎𝑡1 (𝑥1) ⋅ 𝜎𝑡2 (𝑥2)

Note that the intuition assumes a uniform distribution over the set of
transitions of 𝑀 with the same label. We could choose another distribu-
tion for those probabilities by, for example, increasing the probability
associated with transitions that are reached from the initial state after
fewer transitions. However, this would complicate the computation of
the measure and preliminary experiments did not show a significant
improvement. Therefore, if the real distribution is not known then
we use a uniform distribution in order to aid simplicity. Note that
uniform distributions also have desirable properties (in particular, this
distribution maximises entropy [61]). Naturally, we should not use
uniform distributions if we have evidence that they are inappropriate
(i.e. because using the true distribution is known to lead to better re-
sults). For example, this is the case if we have probabilistic user models
indicating the probabilities with which users choose inputs [62]. Next
we give a result allowing us to simplify the formulation.

Lemma 1. Let 𝑀 be an FSM and 𝑡1, 𝑡2 be tests for 𝑀 . We have

𝐼(𝑡1; 𝑡2) =
∑

𝑥∈𝑡2

𝑛𝑥 ⋅
log2(𝑚𝑥)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡1.

Proof. In order to compute the terms of the sum defining mutual
information, that is,

𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2) ⋅ log2
𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2)

𝜎𝑡1 (𝑥1) ⋅ 𝜎𝑡2 (𝑥2)
(1)

we will distinguish two cases: 𝑥1 = 𝑥2 and 𝑥1 ≠ 𝑥2. First, let us consider
𝑥1 = 𝑥2. Note that 𝜎𝑡1 (𝑥1) = 𝜎𝑡2 (𝑥2), because these values depend only
on 𝑀 and 𝑥. In addition, the composition of an element of a test and
itself is the probability of the element (as we stated in Definition 7).
Therefore, 𝜎𝑡1 ,𝑡2 (𝑥, 𝑥) = 𝜎𝑡1 (𝑥). Now, taking into account Definition 7

Fig. 2. Measure comparison plot.

we have that if 𝑥1 = 𝑥2 then the previous term is equal to

1
𝑚𝑥

⋅
1
𝑚𝑥

⋅ 𝑚𝑥 ⋅ log2

⎛

⎜

⎜

⎜

⎝

1
𝑚𝑥

⋅ 1
𝑚𝑥

⋅ 𝑚𝑥

1
𝑚𝑥

⋅
1
𝑚𝑥

⎞

⎟

⎟

⎟

⎠

= 1
𝑚𝑥

⋅ log2

⎛

⎜

⎜

⎜

⎝

1
1
𝑚𝑥

⎞

⎟

⎟

⎟

⎠

and, simplifying, we conclude that if 𝑥1 = 𝑥2, then the term given
in Eq. (1) is equal to
log2(𝑚𝑥)

𝑚𝑥

Now, let us consider 𝑥1 ≠ 𝑥2. In this case, 𝜎𝑡1 ,𝑡2 (𝑥1, 𝑥2) = 𝜎𝑡1 (𝑥1) ⋅ 𝜎𝑡2 (𝑥2)
and, therefore, the term given in Eq. (1) becomes equal to 0 because
we have log2(1) as one of the factors.

Putting together these two cases in the Mutual Information formula
given in Definition 7, we obtain the following expression:

𝐼(𝑡1; 𝑡2) =
∑

𝑥2∈𝑡2

∑

𝑥1∈𝑡1𝑥1=𝑥2

log2(𝑚𝑥)
𝑚𝑥

Note that in the inner sum, for a given 𝑥2, we are always adding the
same value. Therefore, we can simplify it as a multiplication of that
value times the number of times it is added. This last factor corresponds
to the number of times 𝑥1 = 𝑥2 appears in the test 𝑡1, that is, the value
𝑛𝑥 such that 𝑥2 ∈𝑛𝑥 𝑡1. This results in the following expression:

𝐼(𝑡1; 𝑡2) =
∑

𝑥2∈𝑡2

𝑛𝑥 ⋅
log2(𝑚𝑥)

𝑚𝑥

that can easily be rewritten as:

𝐼(𝑡1; 𝑡2) =
∑

𝑥∈𝑡2

𝑛𝑥 ⋅
log2(𝑚𝑥)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡1. □

An important remark about this formula is that it is not monotonic
and it is equal to 0 if all the transitions of the specification have
different input/output pairs. Since we are interested in values that are
useful when comparing test suites (therefore, we need monotonicity
and we should avoid ‘‘division by zero’’), we solve this problem with a
simple transformation. The dashed curve in Fig. 2 shows the behaviour
of the previous formula. We make a small translation in the X axis of
the logarithm of the formula, so that its behaviour is the one given by
the solid curve.

Definition 8. Let 𝑀 be an FSM and 𝑡1, 𝑡2 be tests for 𝑀 . We say that
the biased mutual information (bmi) of 𝑡1 and 𝑡2 is given by

𝑏𝑚𝑖(𝑡1; 𝑡2) =
∑

𝑥∈𝑡2

𝑛𝑥 ⋅
log2(𝑚𝑥 + 1)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡1.

Information and Software Technology 132 (2021) 106498

6

A. Ibias et al.

Fig. 3. Another example of FSM.

In the following example we illustrate the importance of this trans-
lation.

Example 2. Consider the FSM 𝑀 depicted in Fig. 3 and the test suites

1 = {𝑡1 = (𝑖2𝑖4𝑖4, 𝑜2𝑜4𝑜4), 𝑡2 = (𝑖3𝑖2𝑖1, 𝑜3𝑜2𝑜1)}

and

2 = {𝑡3 = (𝑖3𝑖1𝑖1, 𝑜3𝑜1𝑜1), 𝑡4 = (𝑖3𝑖2𝑖2, 𝑜3𝑜2𝑜2)}

Note that the only pair appearing in both 𝑡1 and 𝑡2 is (𝑖2, 𝑜2) (this
input/output pair appears 9 times in 𝑀); similarly, the only common
pair for 𝑡3 and 𝑡4 is (𝑖3, 𝑜3) (this appears once in 𝑀). The (biased) mutual
information of each test suite can be computed as follows:

𝑏𝑚𝑖(𝑡1; 𝑡2) =
log2(9 + 1)

9
=

log2(10)
9

≈ 0.3691

𝑏𝑚𝑖(𝑡3; 𝑡4) =
log2(1 + 1)

1
=

log2(2)
1

= 1

𝐼(𝑡1; 𝑡2) =
log2(9)

9
≈ 0.3522

𝐼(𝑡3; 𝑡4) =
log2(1)

1
= 0

Therefore, the first test suite would be better if we consider biased
mutual information, but would be worse if we consider mutual infor-
mation. In principle, we should prefer 1 because it is more likely that
it will check more transitions than 2. In fact, in this example we know
that the second test suite will traverse the same transition twice.

The biased mutual information between two tests will be used as
the basis of a measure for a test suite. The idea is that we need to
compute the cumulative amount of biased mutual information between
all the pairs of tests. Given a test suite  , this will be denoted by 𝛼()
in the definition of the Biased Mutual Information of  . Therefore, if
we have a specification 𝑀 and a test suite  = {𝑡1,… , 𝑡𝑘}, then we
apply Definition 8 to all the pairs of tests included in  :

𝛼() =
∑

𝑖=1,…,𝑘

∑

𝑗=𝑖+1,…,𝑘

∑

𝑥∈𝑡𝑖

𝑛𝑥 ⋅
log2(𝑚𝑥 + 1)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡𝑗 .

In addition, we need to take into account repetitions in each test
belonging to the test suite. Intuitively, we should penalise test suites
that have tests with many repeated input/output pairs, even if these
pairs do not appear in other tests of the suite. We present a simple
example to motivate why we need to take this into account.

Example 3. Consider the test suites

1 = {𝑡1 = (𝑖1𝑖1𝑖1, 𝑜1𝑜1𝑜1), 𝑡2 = (𝑖2𝑖3𝑖4, 𝑜2𝑜3𝑜4)}

and

2 = {𝑡3 = (𝑖1𝑖7𝑖9, 𝑜1𝑜7𝑜9), 𝑡4 = (𝑖2𝑖3𝑖4, 𝑜2𝑜3𝑜4)}

There is no mutual information between 𝑡1 and 𝑡2 (similarly between 𝑡3
and 𝑡4). However, we should take into account the repetition in 𝑡1 and
we should prefer 2.

If we have a specification 𝑀 and a test suite  , then for each test
𝑡 ∈  we have that this self-redundancy factor, denoted by 𝛽(𝑡), is
defined as:

𝛽(𝑡) =
∑

𝑥∈𝑡

(𝑛𝑥 − 1) ⋅ 𝑛𝑥
2

⋅
log2(𝑚𝑥 + 1)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡.

In the previous formula, (𝑛𝑥−1)⋅𝑛𝑥
2 is the sum of the first 𝑛𝑥 − 1

integers. This represents the number of pairs (𝑥1, 𝑥2) of input/output
pairs such that 𝑥1 and 𝑥2 are both in the test and 𝑥1 ≠ 𝑥2. In addition,
log2(𝑚𝑥+1)

𝑚𝑥
is the biased mutual information between those pairs.

If we appropriately combine these factors, then we obtain our
formula for the Biased Mutual Information (BMI) of a test suite.

Definition 9. Let 𝑀 be an FSM and  = {𝑡1,… , 𝑡𝑘} be a test suite for
𝑀 . We have

𝐵𝑀𝐼() = 𝛼() +
∑

𝑖=1,…,𝑘
𝛽(𝑡𝑖)

In the next section we describe the experiments used to evaluate
BMI.

5. Empirical evaluation

In this section we describe the experiments used to evaluate the
proposed measure (BMI) and assess its ability to help the tester to
choose good test suites. We performed several experiments with dif-
ferent models and in each we:

• Derived test suites by randomly traversing the specification.
• Generated mutants of the specification. The rationale is that test

suite 1 is better than test suite 2 if 1 kills.5 more mutants than
2.

In the experiments we used 241 real FSMs from a benchmark [63].
We also used randomly generated FSMs, with this providing us with a
larger set of subjects and also the ability to explore how performance
changes as we vary FSM properties such as the alphabet size. There
were two main reasons for us using randomly generated mutants in
the experiments. First, the benchmark FSMs do not come with faulty
versions and, indeed, we are not aware of any FSM benchmark that
includes faulty programs or models. Second, we do not have a general
fault model representing potential (faulty) implementations of a specifi-
cation. If we had such a fault model, then we could have used it instead
of the randomly generated mutants. Observe that since we used FSMs it
is possible to identify equivalent mutants in low-order polynomial time
and so we were able to remove them. Therefore, we have an implicit
fault model, which is all non-equivalent mutants that can be generated
using our mutation operators.

In the rest of this section, first, we state the research questions. We
then explain the experimental design before discussing the results of
the experiments and what these tell us about the research questions. All
the code, benchmarks and results from the experiments are available at
https://github.com/Colosu/BMI-test-selection.

5 A test suite kills a mutant if the test suite contains a test case such that
the specification and mutant produce different outputs in response to this test
case.

Information and Software Technology 132 (2021) 106498

7

A. Ibias et al.

Table 1
Properties of the FSM sets.

Set
number

Set
size

Range
states

Range
outgoing
transitions

Range
input alphabet
size

Range
output alphabet
size

1 241 [3 , 156] [0 , 130] [2 , 130] [2 , 65]
2 100 50 [2 , 5] 5 5
3 100 50 [2 , 5] 25 25

5.1. Research questions

In order to evaluate BMI, we first checked how well it works.
The main motivation for the work described in this paper is that we

would like to be able to choose between alternative test suites. Thus,
as a first step we assessed whether BMI is effective in guiding such a
choice.

Research Question 1. Given a pair of test suites with the same length,
will the one with lower Biased Mutual Information tend to have higher fault
detection ability?

We also wanted to address the related question of whether lower
levels of Biased Mutual Information are associated with higher fault
coverage; whether a correlation exists.

Research Question 2. Are lower levels of Biased Mutual Information
associated with higher fault coverage?

If we have a positive answer (with statistical significance) to the
above questions, then we would like to see how BMI compares to the
currently proposed Information Theory approach, the test set diameter
(TSDm) measure.6

Research Question 3. Do test suites selected by BMI have higher fault
coverage than those selected by test set diameter (ITSDm)?

Finally, we wanted to check whether the time taken to compute BMI
might be better used in executing additional tests.

Research Question 4. How does the time to execute the selection method
scale as the length of the test suite increases? How does the time needed to
compute the selection method relate to the time needed to apply a test suite?

By the length of a test suite we mean the sum of the lengths of the
tests (sequences).

5.2. Experimental subjects

We designed a series of experiments in order to address the research
questions. We used three sets of FSMs.

Set1 A benchmark of 335 FSMs recently collected [63]. From this, we
selected the 241 deterministic FSMs. These FSMs represent real-
world systems, ranging from the classical coffee machine to more
complex systems such as ATMs, circuits, network protocols and
X-ray systems.

Set2 A set of 100 randomly generated FSMs with 50 states and input
and output alphabets with 5 elements. Each state was given
a random number, between 2 and 5, of outgoing transitions
(except state 50, which had no outgoing transitions).

Set3 Another set of 100 randomly generated FSMs with 50 states and
input and output alphabets of size 25. Again, each state was
given a random number, between 2 and 5, of outgoing transitions
(except state 50, which had no outgoing transitions). These were
used in order to explore the effect of having a larger input
alphabet.

6 In Section 5.5 we describe how TSDm has been used in test selection.

Table 2
Summary of the results of the experiment with real FSMs.

Value
of A

runs
[0.5, 0.6)

runs
[0.6, 0.7)

runs
[0.7, 0.8)

Min
value

Max
value

% success
(mean)

1/5 41 9 0 0.536232 0.616319 58.4039%
2/5 12 38 0 0.556391 0.649412 61.6790%
3/5 1 48 1 0.597360 0.703226 65.1793%
4/5 3 44 3 0.588235 0.712062 64.0050%

In Table 1 we summarise the main parameters of the FSMs in these
three sets.

We used the first set (Set1) in order to evaluate BMI on real
FSMs. This provided FSMs with varying numbers of states and varying
alphabet sizes. While this is useful, there is only a limited number of
FSMs and the use of these also limits the control we have (e.g. if we
want to vary the size of the alphabets). This motivated the use of the
other two sets of FSMs.

In order to assess the fault detection ability of a test suite, we gen-
erated mutants of the specification. We only use the mutation operator
that modifies the target state of a transition because a preliminary ex-
periment showed that faults produced by mutations on the labels of the
transitions are much easier to detect during testing. The use of mutants
is a standard approach to assessing fault detection effectiveness; see the
discussion in the introduction. We say that a test 𝑡 kills a mutant 𝑁
of FSM 𝑀 if either 𝑀 and 𝑁 produce different output sequences in
response to 𝑡 or 𝑡 = 𝑡′ 𝑖∕𝑜 𝑡′′ for an input action 𝑖, output action 𝑜 and
prefix 𝑡′ such that 𝑡′ takes 𝑁 to a state from which there is no transition
with input action 𝑖.

For an FSM specification 𝑀 , we generated test suites by randomly
traversing 𝑀 . The FSMs typically had at least one sink state, with no
outgoing transitions: if such a sink state was reached then a new test
was started (at the initial state).

We now describe the actual experiments used to address the re-
search questions and the results of these.

5.3. Using BMI to help guide test suite choice

These experiments explored whether BMI is valid for our purposes.
Initially, we used the real FSMs (Set1). For each FSM, we generated
two test suites, from the FSM, of length 𝑛𝑢𝑚_𝑠𝑡𝑎𝑡𝑒𝑠 × 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡_𝑠𝑖𝑧𝑒 × 𝐴
where we used the following values for 𝐴: { 1

5 ,
2
5 ,

3
5 ,

4
5 }. Recall that we

generated a test suite by randomly traversing the FSM, starting a new
test (sequence) whenever a sink state is met; the length of a test suite
is thus the sum of the lengths of the individual tests (sequences). We
let the test suite length depend on the number of states because the
number of states of the FSMs in the benchmark varied, from 3 to 156
states; we used a length proportional to the potential maximum number
of transitions of the FSM.

For each pair of test suites, we computed BMI values to determine
which test suite would be selected if we chose the one with lower
BMI. We also produced 100 mutants of the original FSM; recall that the
mutation operator modifies the target state of a transition. We applied
each test suite to all of the mutants to determine how many mutants
were killed by a test suite. We repeated this procedure 10 times for each
FSM, obtaining 10 pairs of test suites, and then computed how many
times the test suite selected using BMI was the one that killed more
mutants (the percentage of success). Where two test suites in a pair had
the same mutation score or the same BMI, we replaced this pair of test
suites with another randomly generated pair. We repeated this process
50 times for each value of 𝐴.

Table 2 summarises the results (the full results are given in Tables 3–
6). We always had a percentage of success that was higher than 58%,
and in most cases it was higher than 60%. These results suggest that
BMI performs better than random selection and that the difference
increases for larger test suites.

Information and Software Technology 132 (2021) 106498

8

A. Ibias et al.

Table 3
Percentages of success of our selected test suite in the
experiment with real FSMs and 𝐴 = 1∕5.
Run # Percentage of success

1 0.5761467889908257
2 0.5682242990654206
3 0.5600739371534196
4 0.5918727915194346
5 0.5875
6 0.6102941176470589
7 0.5652173913043478
8 0.5804701627486437
9 0.5652985074626866

10 0.5958254269449715
11 0.5952813067150635
12 0.5882352941176471
13 0.5892547660311959
14 0.5863309352517986
15 0.5678571428571428
16 0.5948905109489051
17 0.569620253164557
18 0.563963963963964
19 0.6133333333333333
20 0.5893805309734513
21 0.6077348066298343
22 0.5871212121212122
23 0.6007604562737643
24 0.5868372943327239
25 0.5979202772963604
26 0.5769944341372912
27 0.5989010989010989
28 0.5362318840579711
29 0.6040145985401459
30 0.5471014492753623
31 0.5886939571150097
32 0.585278276481149
33 0.6046099290780141
34 0.6163194444444444
35 0.5594795539033457
36 0.5659050966608085
37 0.5981981981981982
38 0.5730129390018485
39 0.5801801801801801
40 0.5884543761638734
41 0.5748613678373382
42 0.5545774647887324
43 0.5893805309734513
44 0.5981818181818181
45 0.5822550831792976
46 0.5801801801801801
47 0.5640569395017794
48 0.5786713286713286
49 0.6106870229007634
50 0.6083032490974729

We then carried out experiments to assess BMI in a more con-
trolled scenario, using the following approach. We started with the
100 randomly generated FSMs in Set2 (50 states, between 2 and 5
outgoing transitions for each state, and alphabets of size 5). We used
the process described above but this time generating 1000 mutants
and fixing the test suite length to 100, because now we have a fixed
number of states. We repeated the whole process 50 times, obtaining 50
different percentages of success. Since each percentage of success was
obtained from 100 different FSMs, the calculation of a mean percentage
of success required 5000 repetitions.

One issue in the design of the experiments was whether we should
check for redundancy in a test suite, where redundancy corresponds to
the case where one test (sequence) is a prefix of another. We carried
out experiments to explore the effect of this choice on our results. In
these experiments, we had two scenarios: (1) randomly generated test
suites without checking for prefixes; and (2) discarding prefixes when
randomly generating test suites. Table 7 provides a summary of the
results (full results can be found in Table 8), where we can see that
very similar results were obtained in the two scenarios. Also, we can

Table 4
Percentages of success of our selected test suite in the
experiment with real FSMs and 𝐴 = 2∕5.
Run # Percentage of success

1 0.6290726817042607
2 0.5892857142857143
3 0.6421319796954315
4 0.6048192771084338
5 0.6456310679611651
6 0.6059113300492611
7 0.625
8 0.592964824120603
9 0.6132075471698113

10 0.6363636363636364
11 0.6122931442080378
12 0.6222222222222222
13 0.6144278606965174
14 0.6123456790123457
15 0.6327014218009479
16 0.6015037593984962
17 0.6374407582938388
18 0.5949367088607594
19 0.6186666666666667
20 0.6363636363636364
21 0.6155717761557178
22 0.6425
23 0.6289156626506024
24 0.6491228070175439
25 0.5924932975871313
26 0.6428571428571429
27 0.6109785202863962
28 0.5772946859903382
29 0.6169665809768637
30 0.5815602836879432
31 0.6388140161725068
32 0.6341463414634146
33 0.6486486486486487
34 0.6275
35 0.645933014354067
36 0.6265356265356266
37 0.5944584382871536
38 0.6268656716417911
39 0.5965770171149144
40 0.6216867469879518
41 0.6035353535353535
42 0.6191646191646192
43 0.5891089108910891
44 0.5758293838862559
45 0.628140703517588
46 0.6116504854368932
47 0.6494117647058824
48 0.556390977443609
49 0.596401028277635
50 0.6218274111675127

see that in both cases, all the values are in the range [0.5, 0.8), with the
majority of them belonging to the range [0.6, 0.7). These observations
suggest that the effectiveness of BMI is not affected by whether we
allow the test suite to have redundancy. As a result, the remaining
experiments consider the case where we do not allow the test suite to
have redundant tests (in practice, this will typically be the case).

We repeated the experiments using the randomly generated FSMs
with input alphabet of size 25 (Set3), using test suites without redun-
dancy. The mean percentage of success was 75.0605% (full results can
be found in Table 9). These results are much better than the results
from the previous experiments and this suggests that BMI works better
in FSMs with larger input alphabets.

Over all the obtained results, we performed an homogeneity of
variance check and a statistical hypothesis test whose null hypothesis
was that random selection and ordering on BMI give similar results. The
homogeneity check showed that there is no homogeneity, so we cannot
use the ANOVA test. Instead, we applied a Kruskal–Wallis H-test where
we tested whether the results of the experiment are distributed as the
distribution that would arise from random selection. We assumed that

Information and Software Technology 132 (2021) 106498

9

A. Ibias et al.

Table 5
Percentages of success of our selected test suite in the
experiment with real FSMs and 𝐴 = 3∕5.
Run # Percentage of success

1 0.6346153846153846
2 0.6633663366336634
3 0.6482758620689655
4 0.6782334384858044
5 0.5973597359735974
6 0.6382252559726962
7 0.6054421768707483
8 0.6611295681063123
9 0.6331168831168831

10 0.6820987654320988
11 0.6254071661237784
12 0.6452702702702703
13 0.6528662420382165
14 0.6807817589576547
15 0.6666666666666666
16 0.6511627906976745
17 0.6524590163934426
18 0.6372881355932203
19 0.6910828025477707
20 0.6461038961038961
21 0.6918032786885245
22 0.625
23 0.6587837837837838
24 0.6
25 0.6221498371335505
26 0.7032258064516129
27 0.6710963455149501
28 0.6514084507042254
29 0.6478405315614618
30 0.6366666666666667
31 0.6577181208053692
32 0.6741935483870968
33 0.6806451612903226
34 0.6326530612244898
35 0.6697530864197531
36 0.6825396825396826
37 0.6317567567567568
38 0.6419354838709678
39 0.6489028213166145
40 0.6477987421383647
41 0.6390728476821192
42 0.6861538461538461
43 0.6515151515151515
44 0.6495176848874598
45 0.6513157894736842
46 0.6389776357827476
47 0.6457564575645757
48 0.6332288401253918
49 0.6261980830670927
50 0.6914498141263941

the distribution that arises from random selection would be a Poisson
distribution with 𝜆 = 50.7 Then, we computed the p-values and, in all
cases, the null hypothesis was rejected with a 𝑝-value extremely close to
zero. We also performed an effect size measure.8 We computed Cliff’s
delta statistic and we obtained large effect sizes (all higher than 1).
This reinforces the conclusions derived from the previously computed
p-values.

5.4. Assessing correlation

The results described above provide evidence that BMI works when
choosing between two test suites. Ideally, we would also like a measure
that correlates with the fault detection ability of a test suite.

7 In each selection, we have a binomial distribution (50% probability of
choosing the better test suite), and the repetition of this binomial distribution
produces a Poisson distribution of 𝜆 = 50.

8 https://github.com/txt/ase16/blob/master/doc/stats.md.

Table 6
Percentages of success of our selected test suite in the
experiment with real FSMs and 𝐴 = 4∕5.
Run # Percentage of success

1 0.6359832635983264
2 0.622568093385214
3 0.6475409836065574
4 0.7021276595744681
5 0.6509803921568628
6 0.7120622568093385
7 0.636734693877551
8 0.61003861003861
9 0.6126126126126126

10 0.673469387755102
11 0.6204081632653061
12 0.6653061224489796
13 0.6282051282051282
14 0.664
15 0.6613545816733067
16 0.5933609958506224
17 0.6363636363636364
18 0.6428571428571429
19 0.6336206896551724
20 0.6170212765957447
21 0.6223175965665236
22 0.6386554621848739
23 0.6788617886178862
24 0.5882352941176471
25 0.648068669527897
26 0.6283185840707964
27 0.64
28 0.6529680365296804
29 0.6567796610169492
30 0.6491228070175439
31 0.6533333333333333
32 0.6074380165289256
33 0.6260504201680672
34 0.6582278481012658
35 0.6443514644351465
36 0.6317991631799164
37 0.6125
38 0.6313725490196078
39 0.7086614173228346
40 0.6440677966101694
41 0.6173913043478261
42 0.6592920353982301
43 0.6390041493775933
44 0.6942148760330579
45 0.6220472440944882
46 0.6473029045643154
47 0.5966386554621849
48 0.6091954022988506
49 0.6115702479338843
50 0.6111111111111112

We repeated the experiment described in the previous section using
the same FSMs (Set2) but different test suites and mutants. For each
FSM, we then computed the correlation between BMI and the muta-
tion score (i.e. the number of killed mutants). We obtained a mean
Pearson correlation of −0.369134 and a mean Spearman correlation
of −0.356978. The fact that the correlations are negative implies that
lower BMI is associated with higher mutation scores, addressing RQ2.
These correlations are consistent with the results from the previous
experiment. The full results are displayed in Table 10.

We repeated the experiment with the FSMs with alphabet size 25
(Set3). The results show a stronger (negative) correlation. Specifically,
we obtained a mean Pearson correlation of −0.650256 and a mean
Spearman correlation of −0.634711. The full results can be found in
Table 11.

Again, we checked whether the results are statistically significant.
Here our null hypothesis is that there is no correlation (that is, the
correlation is equal to 0). First, we performed an homogeneity of
variance check that told us that there is no homogeneity, and then we
applied a Kruskal–Wallis H-test where we tested whether the results of

Information and Software Technology 132 (2021) 106498

10

A. Ibias et al.

Table 7
Summary of the results of the experiment with controlled FSMs with alphabet of size 5.
Type of test suite # runs

[0.5, 0.6)
runs
[0.6, 0.7)

runs
[0.7, 0.8)

Min
value

Max
value

% success
(mean)

with repetitions 15 32 3 0.540816 0.714286 62.2402%
without repetitions 13 34 3 0.520408 0.737374 62.4924%

Table 8
Percentages of success of our selected test suite in the experiment with
controlled FSMs with alphabet of size 5.
Run # With

repetition of
tests

Without
repetition of
tests

1 0.65 0.555556
2 0.59596 0.62
3 0.666667 0.535354
4 0.602041 0.62
5 0.71 0.642857
6 0.58 0.59596
7 0.66 0.612245
8 0.56 0.65
9 0.65 0.585859

10 0.656566 0.71
11 0.69697 0.520408
12 0.59 0.646465
13 0.63 0.656566
14 0.63 0.636364
15 0.602041 0.737374
16 0.58 0.71
17 0.663265 0.636364
18 0.606061 0.646465
19 0.616162 0.581633
20 0.65 0.608247
21 0.585859 0.686869
22 0.59 0.57
23 0.540816 0.666667
24 0.653061 0.61
25 0.565657 0.626263
26 0.602041 0.61
27 0.61 0.587629
28 0.670103 0.63
29 0.639175 0.618557
30 0.632653 0.636364
31 0.540816 0.59596
32 0.626263 0.57
33 0.618557 0.632653
34 0.68 0.585859
35 0.6 0.646465
36 0.606061 0.64
37 0.58 0.57
38 0.66 0.61
39 0.59 0.626263
40 0.69697 0.663265
41 0.656566 0.69697
42 0.545455 0.656566
43 0.59 0.63
44 0.714286 0.656566
45 0.6 0.540816
46 0.571429 0.642857
47 0.63 0.61
48 0.606061 0.61
49 0.61 0.628866
50 0.714286 0.68

the experiment are distributed as the distribution that would arise from
random selection. We assumed that the distribution that arises from
random selection would be a normal distribution of 𝜇 = 0 and 𝜎 = 0.1.
Then, we computed the final p-values that state the significance of
our results. Again, the null hypothesis was rejected, with the returned
p-values being very close to zero. We also performed an effect size
measure, computing the Cliff’s delta statistic. We obtained large effect
sizes (all higher than 0.8). This reinforces the conclusions derived from
the previously computed p-values.

Table 9
Percentages of success of our selected test suite in the experiment with
controlled FSMs with alphabet of size 5, and associated time costs.
Run # Percentage of success Elapsed time

1 0.76 0.000842141
2 0.721649 0.000793936
3 0.85 0.000822785
4 0.767677 0.000821019
5 0.826531 0.000813211
6 0.680412 0.000838903
7 0.77 0.000841091
8 0.74 0.000789195
9 0.806122 0.000826917

10 0.707071 0.000835529
11 0.717172 0.000853626
12 0.74 0.00082674
13 0.8 0.000840832
14 0.787879 0.000840821
15 0.76 0.00086412
16 0.75 0.000841077
17 0.714286 0.000850253
18 0.69 0.00082661
19 0.747475 0.0008403
20 0.714286 0.000846815
21 0.707071 0.000871455
22 0.65 0.000806566
23 0.757576 0.000827078
24 0.7 0.000842363
25 0.77 0.000819572
26 0.76 0.000836346
27 0.693878 0.00083186
28 0.717172 0.00085203
29 0.74 0.000836536
30 0.76 0.00085497
31 0.767677 0.000844704
32 0.795918 0.000847846
33 0.767677 0.000852514
34 0.78 0.000832202
35 0.71 0.000828946
36 0.795918 0.000863082
37 0.767677 0.000832604
38 0.83 0.000833852
39 0.83 0.000831776
40 0.838384 0.000874901
41 0.636364 0.000850119
42 0.737374 0.000826633
43 0.83 0.000844154
44 0.767677 0.000823715
45 0.686869 0.000835953
46 0.747475 0.000843442
47 0.69 0.000844199
48 0.73 0.000821044
49 0.7 0.000852965
50 0.814433 0.000873662

5.5. Comparison with TSDm

We performed additional experiments to compare BMI with a pre-
vious information theoretic proposal: the Test Set Diameter (TSDm)
measure.

In order to compare the measures, we started by using Set2 (100
FSMs with alphabets of size 5). For each FSM, we randomly generated
two test suites, as in previous experiments. We then computed the
ITSDm and BMI values of both test suites and recorded which one
was better for each measure. We then produced 1000 mutants of
the original FSM. As before, mutations changed the target state of a

Information and Software Technology 132 (2021) 106498

11

A. Ibias et al.

Table 10
Correlation between BMI and mutation score with alphabet size of 5.
Run # Pearson correlation Spearman correlation

1 −0.378529 −0.447121
2 −0.407239 −0.308503
3 −0.305347 −0.299361
4 −0.338248 −0.257336
5 −0.342747 −0.374436
6 −0.634282 −0.541008
7 −0.731647 −0.731102
8 −0.273694 −0.312782
9 −0.247209 −0.220384

10 −0.395459 −0.409929
11 −0.259926 −0.298081
12 −0.170457 −0.0308619
13 −0.414295 −0.456907
14 −0.507343 −0.693233
15 −0.58775 −0.624765
16 −0.44744 −0.545865
17 0.123024 0.232103
18 −0.383787 −0.300752
19 −0.534142 −0.471783
20 0.00977185 −0.0647103
21 −0.505013 −0.486649
22 −0.354695 −0.484575
23 −0.492013 −0.408578
24 −0.357769 −0.355907
25 −0.460478 −0.391877
26 −0.584937 −0.660399
27 −0.425394 −0.415194
28 −0.224411 −0.227905
29 −0.495339 −0.596992
30 −0.674246 −0.603391
31 −0.0656146 0.00300865
32 −0.468773 −0.438511
33 −0.433851 −0.395637
34 −0.564793 −0.456735
35 −0.553955 −0.548872
36 −0.383386 −0.40271
37 −0.285205 −0.221302
38 0.110759 0.0721805
39 −0.689946 −0.61203
40 −0.664481 −0.54778
41 −0.333295 −0.275188
42 −0.328676 −0.34501
43 −0.158634 −0.202484
44 −0.0459975 0.0428894
45 −0.245797 −0.300113
46 −0.380434 −0.359398
47 −0.325745 −0.26968
48 −0.462855 −0.37594
49 −0.132061 −0.17833
50 −0.242898 −0.248966

transition. Finally, we computed the mutation score of each test suite.9
We performed this procedure for each FSM and then computed how
many times the test suite selected using BMI had the higher mutation
score, how many times it was the one selected using ITSDm, and how
many times both measures selected the same test suite. Additionally, in
this last case we checked how many times the test suite selected was the
one with the higher mutation score, and how many times it was the one
with lower mutation score. We presented the results as percentages. We
repeated the whole process until we obtained 50 different sets of the
corresponding four percentages (each percentage was obtained from
100 different FSMs and 1000 mutants per FSM).

Additionally, we computed the mean execution time for the com-
putation of each measure, in order to compare the differences in
performance with the differences in execution time.

In the experiments, on average, 55.84% of the time BMI selected the
best test suite, while ITSDm selected the best test suite only 46.72%

9 A mutant is killed if an input action is received in a state where it is not
defined or the wrong output action is observed.

Table 11
Correlation between BMI and mutation score with alphabet size of 25.
Run # Pearson correlation Spearman correlation

1 −0.571537 −0.426476
2 −0.517691 −0.501696
3 −0.692478 −0.634825
4 −0.539586 −0.556391
5 −0.705762 −0.602183
6 −0.671802 −0.555305
7 −0.704822 −0.77924
8 −0.589333 −0.631064
9 −0.56587 −0.519744

10 −0.642352 −0.643851
11 −0.828483 −0.817908
12 −0.614509 −0.62147
13 −0.749209 −0.749906
14 −0.649231 −0.659135
15 −0.583118 −0.360286
16 −0.620321 −0.729323
17 −0.783434 −0.809184
18 −0.761556 −0.733358
19 −0.810923 −0.838661
20 −0.531118 −0.562406
21 −0.347714 −0.341353
22 −0.561493 −0.454306
23 −0.558292 −0.62754
24 −0.662369 −0.72009
25 −0.804059 −0.774436
26 −0.723854 −0.748683
27 −0.798174 −0.7567
28 −0.624052 −0.647347
29 −0.605207 −0.543675
30 −0.525772 −0.561324
31 −0.73993 −0.827379
32 −0.520028 −0.697744
33 −0.541205 −0.496989
34 −0.643269 −0.58443
35 −0.789753 −0.864459
36 −0.843549 −0.767784
37 −0.787704 −0.774436
38 −0.706133 −0.678706
39 −0.666575 −0.715789
40 −0.596623 −0.585844
41 −0.721583 −0.762406
42 −0.725915 −0.708804
43 −0.528187 −0.541008
44 −0.596918 −0.491347
45 −0.694988 −0.527109
46 −0.583214 −0.487585
47 −0.730042 −0.712782
48 −0.60586 −0.64812
49 −0.744956 −0.613996
50 −0.402239 −0.340986

of the time. Moreover, in 30.16% of cases, BMI chose the best test
suite and ITSDm chose the worst one, while the other way around only
occurred 21.04% of the time. Finally, 23.12% of the time both measures
failed to select the best test suite. Full results are displayed in Table 12.

Regarding execution time, we found that the mean time taken to
compute BMI was 0.043 s, while the corresponding value for ITSDm
was 0.174 s. Thus, the proposed measure required 75.29% less time
than ITSDm, while at the same time obtaining better results. These
results are promising: the proposed measure tended to be a better guide,
than ITSDm, when choosing between alternative test suites and took
less time to compute.

We repeated this experiment using Set3 (100 FSMs with alphabets
of size 25) and we again obtained better results for BMI. On average,
75.78% of the time BMI selected the best test suite, while for ITSDm
this happened only 46.66% of the time. Moreover, 40% of the time BMI
chose the best test suite while ITSDm chose the worst one, while the
other way around only happened 10.88% of the time. Finally, 13.34%
of the time both measures failed to select the best test suite. Full results
are displayed in Table 13. With respect to time, the execution time

Information and Software Technology 132 (2021) 106498

12

A. Ibias et al.

Table 12
Percentages from the comparison of BMI with ITSDm (Set2).

Run # BMI wins ITSDm wins Draw winning Draw losing

1 0.29 0.26 0.18 0.27
2 0.3 0.17 0.24 0.29
3 0.39 0.18 0.2 0.23
4 0.32 0.18 0.28 0.22
5 0.24 0.21 0.27 0.28
6 0.36 0.15 0.25 0.24
7 0.33 0.22 0.24 0.21
8 0.28 0.23 0.25 0.24
9 0.31 0.17 0.26 0.26

10 0.31 0.24 0.26 0.19
11 0.33 0.22 0.25 0.2
12 0.29 0.19 0.23 0.29
13 0.33 0.27 0.16 0.24
14 0.27 0.23 0.23 0.27
15 0.36 0.24 0.23 0.17
16 0.32 0.24 0.23 0.21
17 0.26 0.22 0.3 0.22
18 0.31 0.23 0.26 0.2
19 0.26 0.16 0.29 0.29
20 0.25 0.23 0.23 0.29
21 0.31 0.29 0.23 0.17
22 0.27 0.24 0.26 0.23
23 0.27 0.24 0.29 0.2
24 0.32 0.25 0.26 0.17
25 0.29 0.21 0.28 0.22
26 0.35 0.24 0.2 0.21
27 0.31 0.22 0.19 0.28
28 0.31 0.25 0.23 0.21
29 0.28 0.23 0.29 0.2
30 0.22 0.21 0.35 0.22
31 0.3 0.17 0.29 0.24
32 0.35 0.18 0.26 0.21
33 0.29 0.21 0.22 0.28
34 0.34 0.16 0.27 0.23
35 0.32 0.15 0.3 0.23
36 0.36 0.14 0.24 0.26
37 0.31 0.19 0.3 0.2
38 0.35 0.18 0.29 0.18
39 0.34 0.16 0.22 0.28
40 0.32 0.23 0.26 0.19
41 0.23 0.21 0.35 0.21
42 0.23 0.3 0.17 0.3
43 0.25 0.24 0.27 0.24
44 0.27 0.2 0.29 0.24
45 0.31 0.19 0.3 0.2
46 0.29 0.18 0.32 0.21
47 0.21 0.22 0.33 0.24
48 0.28 0.24 0.27 0.21
49 0.37 0.19 0.21 0.23
50 0.32 0.16 0.26 0.26

results are better too, with the computation of BMI taking a mean time
of 0.045 s, while the corresponding time for ITSDm was 0.32 s. This
corresponds to a 85.94% saving in execution time.

Similar to the comparison with random ordering, we analysed the
statistical significance of the results of the experiments, with the null
hypothesis being that the two approaches (using ITSDm and BMI) give
similar results. Again, we performed an homogeneity of variance check
that told us that for the experiment with Set2 there is homogeneity, but
for the experiment with Set3 there is none. Therefore, we applied an
upper-tailed ANOVA test to the results for the experiments with Set2
(where we tested whether the results concerning BMI and the ones
concerning ITSDm come from the same distribution) and we applied
a Kruskal–Wallis H-test to the results for the experiment with Set3
(where we tested if the BMI results come from the same distribution
as the ITSDm results). We computed the p-values, obtaining p-values
close to zero, so we reject the hypothesis. We performed two effect
size measures (one for each experiment), computing the Cliff’s delta
statistic. We obtained large effect sizes (greater than 0.89).

Table 13
Percentages from the comparison of BMI with ITSDm (Set3).

Run # BMI wins ITSDm wins Draw winning Draw losing

1 0.38 0.11 0.38 0.13
2 0.43 0.15 0.31 0.11
3 0.38 0.12 0.38 0.12
4 0.36 0.1 0.4 0.14
5 0.41 0.06 0.39 0.14
6 0.33 0.2 0.34 0.13
7 0.5 0.1 0.29 0.11
8 0.39 0.14 0.35 0.12
9 0.39 0.07 0.37 0.17

10 0.36 0.12 0.38 0.14
11 0.42 0.13 0.32 0.13
12 0.41 0.05 0.4 0.14
13 0.44 0.1 0.33 0.13
14 0.37 0.1 0.38 0.15
15 0.38 0.07 0.37 0.18
16 0.36 0.13 0.37 0.14
17 0.51 0.09 0.31 0.09
18 0.43 0.09 0.38 0.1
19 0.36 0.16 0.37 0.11
20 0.35 0.1 0.4 0.15
21 0.4 0.1 0.35 0.15
22 0.44 0.13 0.32 0.11
23 0.41 0.06 0.41 0.12
24 0.44 0.11 0.29 0.16
25 0.39 0.1 0.38 0.13
26 0.4 0.11 0.34 0.15
27 0.45 0.07 0.31 0.17
28 0.34 0.14 0.41 0.11
29 0.45 0.14 0.31 0.1
30 0.41 0.06 0.36 0.17
31 0.38 0.12 0.36 0.14
32 0.42 0.12 0.32 0.14
33 0.38 0.07 0.42 0.13
34 0.4 0.1 0.32 0.18
35 0.43 0.09 0.28 0.2
36 0.4 0.13 0.35 0.12
37 0.26 0.12 0.47 0.15
38 0.43 0.09 0.34 0.14
39 0.42 0.15 0.34 0.09
40 0.5 0.1 0.28 0.12
41 0.41 0.15 0.34 0.1
42 0.44 0.08 0.4 0.08
43 0.42 0.06 0.4 0.12
44 0.31 0.09 0.45 0.15
45 0.46 0.09 0.31 0.14
46 0.42 0.17 0.31 0.1
47 0.43 0.1 0.32 0.15
48 0.31 0.13 0.42 0.14
49 0.37 0.14 0.37 0.12
50 0.32 0.13 0.39 0.16

5.6. Execution time

On average we needed 0.00083786 s to compute BMI for test suites
of length 100.10 In order to simulate the use of BMI, we extended
the experiment for RQ1 as follows. First, we recorded the (mean)
time needed to compute BMI for test suites of length 100, 200, 300,
400, 500, 600, 700, 800, 900 and 1000. We also determined the mean
time needed to apply these test suites to mutants (averaged over 1000
mutants) assuming that the time needed to execute a transition is
0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1 and 1 seconds (test
execution terminated once a failure occurred). We compared the mean
time to compute BMI with the mean time needed to apply a test suite,
obtaining the results in Fig. 4.

10 The experiments were run on a GNU/Linux machine with an AMD® Ryzen
threadripper 1920X at 3.50 GHz × 12 cores and with 32 GB of RAM (although
only one core was running at a time and we did not use more than 4Gb of
RAM).

Information and Software Technology 132 (2021) 106498

13

A. Ibias et al.

Fig. 4. Time comparison plots (left to right, from top to bottom, with transition time of 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1 seconds).

Note that the mean time needed to compute BMI includes the time
needed to determine how many times each input/output pair appears
in the specification. This is computed only once for a given FSM.
Therefore, although we included this in the time needed to compute
BMI, when comparing test suites we need to carry out this computation
only once.

As we can see, as long as the time needed to execute a transition
is greater than 0.001 s, computing BMI is much faster than applying
test suites. If this time is higher than 0.1 s then we need minutes (or
even hours if it is higher than 1 second) to apply a test suite. As an
additional result of the experiments, we validated that the time needed
to compute BMI scales (approximately) quadratically with respect to
the test suite length.

5.7. Assessing fault complexity and test suites coverage

We decided to assess the fault complexity and test suite coverage
of the randomised elements we use in our experiments. In order to
do so, we performed a new experiment. For the FSMs in Set2 and
Set3, we randomly generated 100 test suites and 1000 mutants. We then
computed, for each mutant, how many test suites killed this mutant and
the coverage of each test suite, both in terms of transitions traversed
and states visited, with respect to each original FSM.

For Set2, each mutant was killed by between 52.78% and 96.01% of
the test suites, with a mean value of 73.45%. Full results are displayed
in Tables 14 and 15. For Set3, the results range from a minimum of 0%
of test suites killing the mutant to a maximum of 90.21%, with a mean
of 43.63%. Full results are displayed in Tables 16 and 17 (minimum
results are not displayed this time because there was always a mutant
that is not killed by any test suite).

Regarding coverage, we first computed the state coverage and tran-
sition coverage of each test suite. In addition, in order to normalise the
values we required an upper bound on the maximum achievable coverage
since this would allow us to compute the ratio between obtained
coverage and an upper bound. Let us illustrate these concepts with a
simple example.

Example 4. Consider an FSM with 50 states and 150 transitions and
a test suite of length 75. An upper bound of the maximum transition
coverage that we can reach is 50% (the test suite will traverse at most
75 of the 150 different transitions) while the maximum state coverage
that we can reach is 100%. Note that these values are upper bounds
but need not be least upper bounds because the structure of the FSM
might induce smaller real maxima. For example, if we consider the
FSM depicted in Fig. 1, then any test suite with 6 inputs will have a

maximum transition coverage of 6
7 ⋅100% although our estimate will be

100% because the FSM has 6 transitions.
Let us suppose that the test suite has a 60% state coverage and 40%

transition coverage. Then we know that our test suite covers at least
60% of the maximum number of states that can be covered by any
test suite of its size (as already said, the real value might be higher).
Similarly, our test suite covers at least 80% of the maximum number
of transitions that can be covered with a test suite of its size.

We did not compute a true maximum value of coverage because of
the time required. For example, it is straightforward to prove that the
problem of computing the maximum state coverage for a given FSM
and test suite length is NP-hard (by reduction from the Hamiltonian
path problem [64]).

For Set2 we obtained an average state coverage of 77.42%, while
the estimate of maximum achievable state coverage was always 100%.
For transition coverage, Set2 obtained an average of 40.39% total
coverage. If we normalise this number with respect to the estimate of the
maximum achievable transition coverage we have 69.49%. Regarding
Set3, we have 78.54% state coverage (again, the estimate of the max-
imum achievable state coverage was 100%), 41.16% total transition
coverage, and 69.91% transition coverage with respect to the estimate
of the maximum achievable coverage. The full results can be found at
Tables 18 and 19 for Set2, and Tables 20 and 21 for Set3.

5.8. Comparison with coverage guided selection

During the analysis of coverage, a concern was raised: whether our
BMI measure was simply a proxy for transition coverage. In order to
determine whether this was the case, we developed a new experiment.
This experiment was essentially the same as the experiment where
we compared BMI with TSDm, but this time we compared BMI with
an approach in which we select the test suite with higher transition
coverage (over the specification) instead of the one with a higher
ITSDm value.

We took Set2 and Set3. For each FSM in one of these sets, we
generated two test suites of length 100, we computed both BMI and the
transition coverage of each test suite, and marked the one chosen by
each method. Then, we generated 1000 mutants of the FSM, computed
how many mutants were killed by each test suite, and compared them.
Then, we computed how many times both methods select the same
test suite and how many times they did not. When they coincide, we
consider two cases: they selected the test suite that killed more mutants
or they selected the test suite that killed fewer mutants. When they
differed, we determined which test suite killed more mutants and which
one was the method that choose this test suite. We repeated this full
experiment 50 times.

Information and Software Technology 132 (2021) 106498

14

A. Ibias et al.

Table 14
Percentage of test suites that kill the mutants (Set2 Part I).
FSM # Min. Max. Average

1 0.41 0.99 0.66156
2 1.0 1.0 1.0
3 0.28 0.97 0.59814
4 0.65 0.98 0.79892
5 0.58 0.95 0.76067
6 0.81 0.99 0.91935
7 0.91 1.0 0.94743
8 0.53 0.97 0.77722
9 0.49 0.98 0.74142

10 0.56 0.98 0.74353
11 0.95 1.0 0.97229
12 0.87 1.0 0.93984
13 0.58 0.98 0.74424
14 0.75 0.98 0.85946
15 0.77 1.0 0.87572
16 0.54 0.93 0.73653
17 0.0 0.79 0.42637
18 0.76 1.0 0.86361
19 0.51 1.0 0.72173
20 0.0 0.89 0.40575
21 0.34 1.0 0.63675
22 0.97 1.0 0.98332
23 0.95 1.0 0.97183
24 0.51 0.97 0.71475
25 0.19 0.9 0.53744
26 0.74 0.98 0.85649
27 0.47 0.95 0.69854
28 0.98 1.0 0.9874
29 0.46 0.95 0.69807
30 0.84 0.99 0.91555
31 0.76 1.0 0.87161
32 0.0 0.92 0.43817
33 0.17 0.94 0.51964
34 0.26 0.97 0.57787
35 0.0 0.98 0.41146
36 0.51 0.94 0.71073
37 0.53 0.99 0.7301
38 0.71 0.96 0.83734
39 0.62 0.94 0.77565
40 0.0 0.82 0.42639
41 0.94 1.0 0.96297
42 0.88 1.0 0.93942
43 0.0 0.92 0.44462
44 0.0 0.9 0.42206
45 0.0 0.88 0.43675
46 0.45 0.96 0.67961
47 0.59 0.95 0.78192
48 0.46 0.98 0.69809
49 0.47 0.96 0.71049
50 0.62 0.99 0.78636

The results for Set2 are interesting: in 65.5% of the cases, BMI
selected the same test suite as coverage. In 54.78% of the cases BMI
selected the test suite that killed more mutants while coverage selected
that test suite 62.16% of the time. In 13.56% of the experiments BMI
selected the test suite that killed more mutants while coverage selected
the other test suite. In 20.94% of the experiments the situation was the
other way round. Finally, both measures failed to select the best test
suite 24.28% of the time.

Regarding computation time, we have that BMI needed a mean of
0.00295048 s while coverage required a mean of 0.0583516 s. This
constitutes a 94.94% saving.

The results for Set3 are not so different: BMI and coverage selected
the same test suite 85.78% of the time. In addition, in 75.96% of
the experiments BMI selected the test suite that killed more mutants,
while coverage selected this test suite 81.78% of the time. In 4.2%
of cases, BMI selected the test suite that killed more mutants and
coverage selected the other test suite; the situation was the other way
round 10.02% of the time. Finally, in 14.02% of the experiments,
both measures failed to select the test suite that killed more mutants.

Table 15
Percentage of test suites that kill the mutants (Set2 Part II).
FSM # Min. Max. Average

51 0.66 0.99 0.80505
52 0.4 0.97 0.65833
53 0.86 1.0 0.92803
54 0.49 0.91 0.71166
55 0.59 1.0 0.79225
56 0.2 0.97 0.5383
57 0.48 0.94 0.69313
58 0.65 1.0 0.80878
59 0.78 0.99 0.87713
60 0.64 0.96 0.79091
61 0.85 1.0 0.93616
62 0.42 0.94 0.68205
63 0.9 1.0 0.94805
64 0.64 0.98 0.80052
65 0.35 0.96 0.63074
66 0.08 0.94 0.48562
67 0.26 0.86 0.6002
68 0.47 0.95 0.71338
69 0.37 0.96 0.69181
70 0.34 0.93 0.61436
71 0.17 0.91 0.5281
72 0.62 0.94 0.77926
73 0.0 0.89 0.45093
74 0.92 1.0 0.95179
75 0.24 0.85 0.53192
76 0.79 0.98 0.87988
77 0.92 1.0 0.96011
78 0.78 1.0 0.8672
79 0.25 0.92 0.56085
80 0.92 1.0 0.95496
81 0.48 0.98 0.70715
82 0.57 0.98 0.76196
83 0.75 0.98 0.8651
84 0.45 0.99 0.70628
85 0.77 1.0 0.89163
86 0.76 0.98 0.86909
87 0.0 0.9 0.44222
88 0.58 0.95 0.75736
89 0.61 0.96 0.77888
90 0.32 0.91 0.59404
91 0.81 0.99 0.88447
92 0.41 0.95 0.66994
93 0.51 0.95 0.74146
94 0.15 0.91 0.52903
95 0.3 0.94 0.60817
96 0.63 0.95 0.79545
97 0.74 0.98 0.84585
98 0.65 0.95 0.79298
99 0.3 0.94 0.606

100 0.58 0.96 0.77294

Regarding computation time, BMI took 0.00137012 s on average and
coverage took 0.016663 s on average. This is a saving of 91.78%.

Similar to the other comparisons, we analysed the statistical signifi-
cance of the results of the experiments assuming as the null hypothesis
that the two approaches (using transition coverage and BMI) give
similar results. Again, we performed an homogeneity of variance check
that told us that there is no homogeneity for our results. Therefore, we
applied a Kruskal–Wallis H-test to the results, where we tested if the
BMI results come from the same distribution as the transition coverage
results. We computed the p-values, obtaining p-values close to zero, so
we reject the hypothesis that the results are statistically equivalent. We
also computed the effect-size using Cliff’s delta statistic. We obtained
large effect sizes (greater than 0.82).

Based on the above, we can conclude that BMI is not a proxy for
transition coverage. In addition, although BMI is not as effective as
coverage, it takes less time to compute, which can be a critical fact
in some industrial size cases. There is therefore a trade-off between the
effectiveness of the approaches and the time taken.

Information and Software Technology 132 (2021) 106498

15

A. Ibias et al.

Table 16
Percentage of test suites that kill the mutants (Set3 Part I). Minimum is
always 0.
FSM # Max. Average

1 0.91 0.44829
2 0.9 0.44203
3 0.86 0.43297
4 0.87 0.44348
5 0.88 0.41344
6 0.95 0.43757
7 0.93 0.43475
8 0.89 0.40389
9 0.96 0.43645

10 0.84 0.42938
11 0.91 0.42769
12 0.94 0.45951
13 0.86 0.43165
14 0.83 0.42816
15 0.92 0.4193
16 0.83 0.44864
17 0.89 0.48418
18 0.88 0.43903
19 0.95 0.43351
20 0.92 0.4278
21 0.92 0.41964
22 0.9 0.44669
23 0.84 0.42021
24 0.83 0.43035
25 0.87 0.41209
26 0.91 0.42674
27 0.84 0.45367
28 0.96 0.40972
29 0.89 0.41803
30 0.96 0.43839
31 0.89 0.4641
32 0.97 0.46382
33 0.9 0.44115
34 0.91 0.44495
35 0.91 0.43584
36 0.8 0.4282
37 0.92 0.44832
38 0.9 0.44736
39 0.91 0.45373
40 0.88 0.40431
41 0.87 0.41552
42 0.95 0.43048
43 0.8 0.41188
44 0.88 0.47413
45 0.96 0.43364
46 0.91 0.41166
47 0.9 0.45991
48 0.94 0.45115
49 0.97 0.39983
50 0.92 0.45365

In some ways it is not too surprising that transition coverage can be
more effective than BMI since transition coverage uses more informa-
tion about the FSM: it uses information about the states associated with
each input/output pair rather than just input/output pair frequency.
It is therefore, for example, able to identify cases where the same in-
put/output pair appears but they represent different parts (transitions)
of the specification.

In principle, it should be possible to extend the definition of BMI to
use information about the transitions executed instead of input/output
pair frequency. However, this would have at least two disadvantages.
The first disadvantage is simply that it would be necessary to traverse
the FSM specification and this would increase the computation time.
The second, and rather more important, disadvantage is that such a
revised definition of BMI would only be applicable in situations in
which we have an FSM specification. This would go against the aim
of developing a measure that can be used in a range of scenarios. For
example, in principle it should be possible to use BMI without having
a specification, as long as it is possible to include some initial random

Table 17
Percentage of test suites that kill the mutants (Set3 Part II). Minimum
is always 0.
FSM # Max. Average

51 0.96 0.44439
52 0.84 0.39549
53 0.96 0.43365
54 0.97 0.42208
55 0.95 0.46957
56 0.96 0.4291
57 0.94 0.42368
58 0.9 0.41643
59 0.85 0.45532
60 0.88 0.44115
61 0.92 0.43872
62 0.95 0.44664
63 0.88 0.48217
64 0.87 0.45015
65 0.93 0.42311
66 0.88 0.44841
67 0.93 0.44696
68 0.91 0.42443
69 0.83 0.44163
70 0.82 0.41825
71 0.88 0.44828
72 0.9 0.43722
73 0.96 0.43312
74 0.85 0.4523
75 0.85 0.4469
76 0.84 0.41888
77 0.87 0.43075
78 0.93 0.42524
79 0.98 0.41455
80 0.92 0.40092
81 0.99 0.43639
82 0.9 0.44402
83 0.92 0.45994
84 0.89 0.44517
85 0.97 0.46387
86 0.87 0.41392
87 0.9 0.43428
88 0.99 0.4524
89 0.9 0.41782
90 0.87 0.4276
91 0.94 0.44664
92 0.87 0.42702
93 0.95 0.40269
94 0.84 0.42797
95 0.89 0.46605
96 0.91 0.48529
97 0.91 0.43881
98 0.92 0.43231
99 0.88 0.44156

100 0.86 0.43291

testing in order to provide estimates of input/output pair frequency;
clearly, transition coverage cannot be applied in such situations.

5.9. Summary

We now summarise what the results tell us about the research
questions.

Research Question 1. Given a pair of test suites with the same length,
will the one with lower Biased Mutation Information tend to have higher
fault detection ability?

The answer to this question is affirmative: BMI tended to select
test suites with higher fault coverage than random selection. In the
experiments BMI selected the best test suite 62.4924% of the time when
we used FSMs with an alphabet of size 5 (Tables 7 and 8) and 75.0605%
of the times when we used FSMs with an input alphabet of size 25
(Table 9). BMI also selected test suites with higher fault coverage in
the scenario with real FSMs.

Information and Software Technology 132 (2021) 106498

16

A. Ibias et al.

Table 18
Test suite coverage evaluation results in percentages (Set2 Part I). We include
Percentages with respect to Maximal Achievable Transition Coverage.
FSM # State coverage Transition coverage PMATC

1 0.7452 0.390893 0.6567
2 0.7672 0.404909 0.6681
3 0.766 0.38388 0.7025
4 0.7568 0.399706 0.6795
5 0.7912 0.409429 0.716499
6 0.7974 0.412286 0.721499
7 0.761 0.408863 0.682801
8 0.7236 0.402134 0.6595
9 0.7736 0.408647 0.6947

10 0.7458 0.377457 0.653
11 0.788 0.420706 0.7152
12 0.763 0.405353 0.6891
13 0.7338 0.382743 0.6698
14 0.803 0.404309 0.7318
15 0.7208 0.403291 0.6372
16 0.79 0.409829 0.717199
17 0.7866 0.399945 0.727899
18 0.7304 0.421753 0.649499
19 0.724 0.398503 0.665501
20 0.8022 0.375026 0.7238
21 0.7558 0.405522 0.661
22 0.7714 0.390471 0.6638
23 0.7632 0.385706 0.6827
24 0.7878 0.4148 0.725899
25 0.7706 0.410542 0.6815
26 0.814 0.388229 0.745401
27 0.7474 0.382102 0.6725
28 0.7958 0.402944 0.725299
29 0.775 0.409415 0.700101
30 0.794 0.399011 0.726199
31 0.8078 0.427134 0.7005
32 0.7938 0.427824 0.7273
33 0.7868 0.392528 0.698699
34 0.7786 0.403121 0.6974
35 0.7692 0.401861 0.691201
36 0.7616 0.390387 0.7066
37 0.7714 0.401221 0.690101
38 0.7874 0.431205 0.7158
39 0.7882 0.394365 0.7138
40 0.7884 0.406514 0.7114
41 0.7444 0.378352 0.688599
42 0.763 0.401198 0.670001
43 0.7324 0.403187 0.6451
44 0.7898 0.396448 0.7255
45 0.796 0.399034 0.7023
46 0.8 0.394837 0.7265
47 0.7954 0.415176 0.7058
48 0.762 0.406871 0.6632
49 0.7852 0.4345 0.6952
50 0.7738 0.40681 0.6631

Research Question 2. Are lower levels of Biased Mutual Information
associated with higher fault coverage?

In the experiments, lower levels of BMI were correlated with higher
fault coverage. We can conclude this from Tables 10 and 11, where
we can observe that BMI was negatively correlated with the mutation
score of the tests, with a mean correlation of −0.369134 for FSMs with
an alphabet of size 5 and a mean correlation of −0.650256 for FSMs with
an alphabet of size 25.

Research Question 3. Do test suites selected by BMI have higher fault
coverage than those selected by test set diameter (ITSDm)?

The answer was again positive: BMI selected test suites with higher
fault coverage than ITSDm. We can conclude this from Tables 12 and
13, where we can observe that BMI outperformed the ITSDm measure
when selecting the best test suite from a set of 2 randomly generated
test suites.

Table 19
Test suite coverage evaluation results in percentages (Set2 Part II). We include
Percentages with respect to Maximal Achievable Transition Coverage.
FSM # State coverage Transition coverage PMATC

51 0.7616 0.400526 0.684901
52 0.7772 0.418788 0.691
53 0.7418 0.388171 0.679299
54 0.805 0.418439 0.7239
55 0.7834 0.392286 0.686499
56 0.7932 0.389945 0.7136
57 0.7956 0.403218 0.701599
58 0.7328 0.364674 0.671
59 0.7758 0.404768 0.696201
60 0.7766 0.396033 0.7287
61 0.7652 0.396171 0.693299
62 0.7596 0.403095 0.6772
63 0.7674 0.398343 0.6732
64 0.7868 0.409882 0.6927
65 0.7922 0.408363 0.698301
66 0.7748 0.411797 0.687701
67 0.8096 0.436348 0.728701
68 0.8042 0.431151 0.711399
69 0.7686 0.388187 0.706499
70 0.7644 0.388022 0.706199
71 0.8192 0.395769 0.720299
72 0.8152 0.406966 0.724399
73 0.81 0.425 0.714
74 0.7542 0.381768 0.691
75 0.7552 0.378737 0.7196
76 0.7622 0.417665 0.697501
77 0.7768 0.408855 0.6787
78 0.7262 0.386509 0.6532
79 0.7854 0.388989 0.7313
80 0.7648 0.423418 0.669001
81 0.7426 0.400248 0.6444
82 0.7654 0.415305 0.6811
83 0.7908 0.430307 0.7014
84 0.7984 0.435901 0.7018
85 0.7668 0.400059 0.6761
86 0.7816 0.40092 0.6976
87 0.8054 0.437143 0.7038
88 0.7792 0.406994 0.7041
89 0.7882 0.411345 0.703401
90 0.756 0.387598 0.6938
91 0.7746 0.390945 0.7037
92 0.765 0.407651 0.6767
93 0.8102 0.434573 0.7127
94 0.7446 0.415938 0.6655
95 0.7514 0.419063 0.6705
96 0.7968 0.411136 0.7236
97 0.7452 0.376667 0.6893
98 0.7638 0.405907 0.694101
99 0.7834 0.413392 0.706901

100 0.7802 0.405989 0.698301

Research Question 4. How does the time to execute the selection method
scale as the length of the test suite increases? How does the time needed to
compute the selection method relate to the time needed to apply a test suite?

Fig. 4 shows that the time needed to compute BMI increased (ap-
proximately) quadratically with respect to the length of the test suite.
Also, the time needed to compute the selection method was smaller
than the time needed to apply a test suite as long as we need at least
0.001 s to execute each transition (Table 9).

6. Threats to validity

In this section we discuss the possible threats to the validity of the
results of the experiments.

Concerning threats to internal validity, which consider uncontrolled
factors that might be responsible for the obtained results, the main
threat is associated with possible faults in the tools. In order to reduce
the impact of this threat we tested the code with carefully constructed
examples for which we could manually check the results. In addition,

Information and Software Technology 132 (2021) 106498

17

A. Ibias et al.

Table 20
Test suite coverage evaluation results in percentages (Set3 Part I). We include
Percentages with respect to Maximal Achievable Transition Coverage.
FSM # State coverage Transition coverage PMATC

1 0.7778 0.415671 0.6817
2 0.7662 0.405353 0.6891
3 0.7938 0.413977 0.707901
4 0.7974 0.424458 0.7046
5 0.7744 0.399435 0.707
6 0.8006 0.415407 0.714501
7 0.788 0.405029 0.7007
8 0.7914 0.404413 0.7239
9 0.7674 0.423727 0.6822

10 0.7926 0.403295 0.7098
11 0.7738 0.393779 0.677301
12 0.8128 0.411916 0.687901
13 0.78 0.404128 0.695101
14 0.7956 0.422083 0.7091
15 0.7538 0.397337 0.6715
16 0.7974 0.393757 0.7127
17 0.8096 0.425154 0.693
18 0.7804 0.411183 0.6949
19 0.7802 0.403489 0.694001
20 0.7968 0.405114 0.713
21 0.7718 0.418235 0.711
22 0.7718 0.432911 0.684
23 0.7926 0.408864 0.7196
24 0.8026 0.424551 0.709001
25 0.7774 0.409538 0.7085
26 0.7462 0.391737 0.654201
27 0.7988 0.419461 0.700501
28 0.773 0.3925 0.7222
29 0.7804 0.399385 0.7149
30 0.7782 0.388506 0.675999
31 0.8176 0.419581 0.700701
32 0.7576 0.424494 0.6707
33 0.797 0.413684 0.707401
34 0.7876 0.411579 0.7038
35 0.799 0.399375 0.7029
36 0.801 0.405967 0.7348
37 0.8006 0.439062 0.7025
38 0.7938 0.408855 0.6787
39 0.799 0.40578 0.702
40 0.7884 0.387263 0.7358
41 0.7696 0.393559 0.6966
42 0.7598 0.390284 0.6869
43 0.7528 0.406023 0.694301
44 0.7468 0.422581 0.655
45 0.7734 0.41 0.6724
46 0.7776 0.392198 0.713799
47 0.815 0.421006 0.7115
48 0.7652 0.408963 0.6707
49 0.781 0.396497 0.7018
50 0.7974 0.42018 0.701701

we repeated the experiments many times to reduce the impact of
randomisation. Another important threat was the processor reschedule
policy, which can affect the recorded times. In order to reduce the
impact of this threat, we abstracted the time computation and only
computed small enough time values so that the reschedule policy does
not affect them. In addition, we repeated the tests and computed mean
values. Another threat was that Normalised Compress Distance (NCD),
used in TSDm, performs poorly with short strings. We therefore used
relatively long strings; for a test suite of length 100 we have strings
of (100 𝑖𝑛𝑝𝑢𝑡 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 100 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑐𝑡𝑖𝑜𝑛𝑠) × 2 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 =
400 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠. We made this choice because it seemed to be a reason-
able test length for the FSMs used and also because previous work noted
that compression did not work for strings of length less than 128 [21].
It is possible that longer test sequences would lead to more effective
compression and so NCD being a better guide; this is an issue that could
be addressed by further experiments.

The main threat to external validity, which concerns conditions that
allow us to generalise our findings to other situations, is the choice

Table 21
Test suite coverage evaluation results in percentages (Set3 Part II). We include
Percentages with respect to Maximal Achievable Transition Coverage.
FSM # State coverage Transition coverage PMATC

51 0.77 0.410424 0.6772
52 0.7694 0.403932 0.718999
53 0.7644 0.429814 0.692
54 0.7758 0.40386 0.690601
55 0.7988 0.438853 0.689
56 0.7748 0.388258 0.691099
57 0.8038 0.408324 0.7309
58 0.7874 0.395281 0.703599
59 0.782 0.436346 0.6807
60 0.7952 0.405402 0.705399
61 0.8026 0.439752 0.708
62 0.7938 0.427048 0.7089
63 0.7782 0.431503 0.6602
64 0.8098 0.435151 0.717999
65 0.7708 0.401395 0.690401
66 0.8094 0.447 0.7152
67 0.7968 0.418537 0.6864
68 0.7756 0.399535 0.687201
69 0.7998 0.42 0.714
70 0.7984 0.411573 0.732599
71 0.8216 0.424269 0.725501
72 0.8052 0.409714 0.716999
73 0.7742 0.422638 0.6889
74 0.8286 0.441212 0.727999
75 0.799 0.416667 0.7125
76 0.7854 0.382989 0.7047
77 0.7798 0.413721 0.711601
78 0.7704 0.409177 0.6956
79 0.7348 0.397831 0.6604
80 0.7762 0.398962 0.7301
81 0.7524 0.412468 0.6517
82 0.7512 0.42075 0.6732
83 0.7704 0.414479 0.6756
84 0.8016 0.412486 0.7136
85 0.7934 0.420311 0.6767
86 0.7848 0.401808 0.7112
87 0.8016 0.401932 0.7074
88 0.7922 0.40503 0.6845
89 0.7618 0.405497 0.693401
90 0.807 0.390909 0.731001
91 0.733 0.397469 0.6439
92 0.7916 0.428036 0.7191
93 0.7738 0.39676 0.7102
94 0.7826 0.412126 0.7171
95 0.8102 0.415882 0.707
96 0.807 0.452467 0.6787
97 0.79 0.425864 0.6899
98 0.794 0.395304 0.7155
99 0.8116 0.427679 0.7185

100 0.7898 0.415385 0.702

of FSMs. Such a threat cannot be entirely addressed since the popu-
lation of FSMs is unknown and it is not possible to sample from this
(unknown) population. In order to reduce the impact of this threat we
used randomly generated FSMs and a carefully constructed benchmark.
A minor external threat is that if we use large alphabets for randomly
generated FSMs then very few input/output pairs will be repeated.
In order to address this threat we performed the experiments with
different alphabet sizes, as shown in Section 5.

Finally, we considered threats to construct validity, which are re-
lated to whether we are measuring properties of interest. The aim
of testing is to find faults and so it is clear that the fault detection
ability of a test suite is of interest, as is the time used to obtain a
solution (since there are finite resources). We used mutants to assess
fault detection ability and ideally we would have also used real faults.
However, we are not aware of benchmark FSMs with faulty versions;
state-based specifications are widely used in certain areas of industry
(e.g. automotive and avionics) but associated companies appear not to
have provided faulty versions. The open source community provides a
source of faulty code but not faulty models.

Information and Software Technology 132 (2021) 106498

18

A. Ibias et al.

7. Final discussion: alternative definitions

We have shown that BMI is interesting, potentially useful and that
the time needed to compute it is negligible when compared to the time
needed to apply extra testing. However, it is possible that some of the
design decisions were not optimal and, indeed, there were alternative
choices. In this section we describe some such alternatives and the
results of additional experiments carried out to evaluate these. The
decisions made, when designing BMI, fall into the following classes:

1. The formula used to define 𝑏𝑚𝑖(𝑡1; 𝑡2) in terms of the ‘distribu-
tions’;

2. Whether the variables used in the mutual information formula
were probability distributions.

We now describe some alternatives to the choices made, along with
the results of experiments that evaluated these.

7.1. The definition of 𝑏𝑚𝑖(𝑡1; 𝑡2)

During the rest of this section, remember that we write (𝑖, 𝑜) ∈𝑚 𝑀
to denote that the pair (𝑖, 𝑜) appears in 𝑚 transitions of 𝑀 and (𝑖, 𝑜) ∈𝑛 𝑡
denotes that the pair (𝑖, 𝑜) appears 𝑛 times in the test 𝑡.

The definition of 𝑏𝑚𝑖(𝑡1; 𝑡2) used a transformation of the 𝑋-axis and
we might have chosen a different transformation. In order to explore
the impact of using a larger transformation, we considered:

𝑏𝑚𝑖2(𝜉𝑡1 ; 𝜉𝑡2) =
∑

𝑥∈𝑡2

𝑛𝑥 ⋅
log2(𝑚𝑥 + 2)

𝑚𝑥 + 2

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 and 𝑛𝑥 is such that 𝑥 ∈𝑛𝑥 𝑡1.

Another option is to use the formula 𝑛
𝑚 , instead of 1

𝑚 , to compute
the values of 𝜎𝑡(𝑥) (where 𝑥 ∈𝑛 𝑡 and 𝑥 ∈𝑚 𝑀). This way, we take into
account also how many times the input/output pair is repeated in the
test. This leads to the following formula:

𝑏𝑚𝑖3(𝜉𝑡1 ; 𝜉𝑡2) =
∑

𝑥∈𝑡2

𝑛1 ⋅ 𝑛1 ⋅ 𝑛2 ⋅
log2(𝑚𝑥 + 1)

𝑚𝑥

where 𝑚𝑥 is such that 𝑥 ∈𝑚𝑥
𝑀 , 𝑛1 is such that 𝑥 ∈𝑛1 𝑡1 and 𝑛2 is such

that 𝑥 ∈𝑛2 𝑡2.
Finally, we applied the previous variations with two different ap-

proaches to compute the values of 𝜎𝑡(𝑥). Instead of using the proba-
bility explained in Section 4, we could use the number of times an
input/output pair appears in the test suite:

𝜎𝜉𝐴 (𝑥) =
1

#test suite ∕ pairs with label 𝑥

The results of experiments, using Set3 (50 states and alphabets of
size 25), are given in Table 22. These show that from the seven possible
combinations, five are more or less equally good, and the other two are
clearly worse. Therefore, we decided to retain our approach, since it
appears to keep a good balance between intuition and being faithful to
the original Information Theory formulae.

7.2. Variables used in the mutual information formula

Another important choice was the decision to not use true random
variables and corresponding probability distributions in the Mutual
Information formula. We now describe some alternatives considered.
The alternatives that we explored used combinations of the following
mechanisms for generating the random variables used in the definition
of BMI.

1. Whether normalisation is used;
2. Whether one takes into account the number of times a pair

appears in a test;

3. How to consider the case where an input/output pair appears
in both tests (i.e. how one defines the ‘‘joint probability’’, cor-
responding to 𝜎𝜉𝑡1 ,𝑡2 (𝑥1, 𝑥2), for two tests 𝑡1, 𝑡2 when considering
the same pair (𝑥1 = 𝑥2)).

Regarding the first point, normalisation would lead to a probability
distribution (i.e. with values that sum to 1). Normalisation can be
achieved by taking the sum of the values for the input/output pairs of
the test and then dividing the value given for each input/output pair by
this factor. This way, the sum of the probabilities of all the input/output
pairs of the test is equal to 1.

Regarding the second mechanism, it would have been possible
to use the number of times each input/output pair appears within a
single test when defining the corresponding probability distribution.
The resultant probabilities depend both on the test and on the FSM.
The downside of this mechanism was that we lose the intuition that
we previously followed, which is that the weight of each input/output
pair in a test should be the probability of this pair corresponding to
a particular transition of the specification (see paragraph after Exam-
ple 1). Despite this, we evaluated alternatives that take into account
the number of times an input/output pair appears in a test.

Finally, we considered the approach taken to define the joint prob-
ability distribution for tests 𝑡1 and 𝑡2. We explored an alternative
approach in which we start by giving a random variable and its
probability distribution for 𝑡1 and 𝑡2. Then, we compute the joint
probability of both tests with the uncorrelated input/output pairs of
each test (the case where the input/output pairs are different) and
add all these values. This is straightforward because the joint proba-
bility of uncorrelated input/output pairs is simply the product of the
probabilities of each input/output pair. As the sum of all the values
of the joint probability should sum up to 1, we know the amount of
probability corresponding to the correlated input/output pairs (we will
call this 𝑃). Then, we defined 𝑠 to be the product of the probabilities
of each input/output pair modified by a factor and we define the joint
probability of the correlated input/output pairs as 𝑠 divided by the sum
of all the 𝑠’s and multiplied by 𝑃 . This gives us a joint probability
for each pair of correlated input/output pairs and we could call this
‘‘a joint probability of correlated input/output pairs’’. It is important
to note that this joint probability is different from the product of
the probabilities of each input/output pair; otherwise, in the mutual
information formula we would get log2(1) and since this is equal to 0,
we would have mutual information of 0.

We tried several different combinations of these mechanisms. These
alternatives are displayed in Table 23. The column ‘‘dist’’ corresponds
to the probability distribution formula, while ‘‘joint’’ corresponds to the
joint distribution formula for the correlated input/output pairs (for the
uncorrelated input/output pairs, the joint distribution is the product of
the individual distributions). In the table we assume 𝑥1 ∈𝑛1 𝑡1, 𝑥2 ∈𝑛2 𝑡2,
𝑥1 ∈𝑚 𝑀 , 𝑥2 ∈𝑚 𝑀 and 𝑃 = 1 − 𝑆1.

As can be seen in Table 23, all the alternative formulations consid-
ered were outperformed by the proposed approach. This is despite some
of the alternatives being notably more involved than the proposed ap-
proach. All of the alternatives achieve a mean score between 50% and
65%, with only one distribution getting more than 60%. In contrast,
our proposed approach had a score of 75.0605%.

Then, with all this information, we are able to clearly state that the
alternative a tester should use is the one presented in Section 4.

8. Conclusions and future work

The selection of a test suite can be a critical task because the
time and resources devoted to testing are limited. In this paper we
considered the problem of choosing between two alternative test suites.
Solutions to this problem might be used to directly compare alternative
test suites (e.g. for different sets of features). They might also be used
to guide the generation of test suites in an iterative manner or to inform

Information and Software Technology 132 (2021) 106498

19

A. Ibias et al.

Table 22
Comparing different alternative approaches.

Test # 0.4% # 0.5% # 0.6% # 0.7% # 0.8% Min value Max value % success (mean)

𝑀𝐼 based on spec 4 33 13 0 0 0.459184 0.680851 56.9662%
𝑀𝐼 based on test suite 0 0 3 41 6 0.666667 0.818182 75.0757%
𝐁𝐌𝐈 𝐛𝐚𝐬𝐞𝐝 𝐨𝐧 𝐬𝐩𝐞𝐜 0 0 5 36 9 0.673469 0.838384 75.3883%
𝐵𝑀𝐼 based on test suite 0 0 5 32 13 0.666667 0.848485 76.4054%
𝐵𝑀𝐼2 based on spec 0 0 14 31 5 0.66 0.816327 74.2696%
𝐵𝑀𝐼2 based on test suite 0 0 1 43 6 0.670103 0.848485 75.1613%
𝐵𝑀𝐼3 3 22 24 1 0 0.42268 0.7 58.9412%

Table 23
Comparing different probability distributions.

Dist Joint s1 s2 S1 S2 Success

1 1
𝑚 ⋅ 𝑠

𝑛1
𝑚 ⋅ 𝑠1

⋅
𝑛2

𝑚 ⋅ 𝑠2
⋅
𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑀

1
𝑚1

∑

𝑥2∈𝑡2
𝑥2∈𝑀

1
𝑚2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2
64%

2 𝑛
𝑠

𝑚𝑖𝑛(𝑛1 , 𝑛2)
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑀

𝑛1
∑

𝑥2∈𝑡2
𝑥2∈𝑀

𝑛2 0
∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑚𝑖𝑛(𝑛1 , 𝑛2) 55%

3 𝑛
𝑠

𝑛1
𝑠1

⋅
𝑛2
𝑠2

⋅
1
𝑚1

⋅
𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

𝑛1
∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

𝑛2
∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

𝑛1
𝑠1

⋅
𝑛2
𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑛1
𝑠1

⋅
𝑛2
𝑠2

⋅
1
𝑚1

54%

4 𝑛
𝑠

𝑛1
𝑠1

⋅
𝑛2
𝑠2

⋅ 𝑚1 ⋅
𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

𝑛1
∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

𝑛2
∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

𝑛1
𝑠1

⋅
𝑛2
𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑛1
𝑠1

⋅
𝑛2
𝑠2

⋅ 𝑚1 58%

5 1
𝑚 ⋅ 𝑠

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2
⋅

1
𝑚1

⋅
𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

1
𝑚1

∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

1
𝑚2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2
⋅

1
𝑚1

57%

6 1
𝑚 ⋅ 𝑠

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2
⋅ 𝑚1 ⋅

𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

1
𝑚1

∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

1
𝑚2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

1
𝑚1 ⋅ 𝑠1

⋅
1

𝑚2 ⋅ 𝑠2
⋅ 𝑚1 55%

7 𝑛
𝑚 ⋅ 𝑠

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2
⋅

1
𝑚1

⋅
𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

𝑛1
𝑚1

∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

𝑛2
𝑚2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2
⋅

1
𝑚1

56%

8 𝑛
𝑚 ⋅ 𝑠

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2
⋅ 𝑚1 ⋅

𝑃
𝑆2

∑

𝑥1∈𝑡1
𝑥1∈𝑚1

𝑀

𝑛1
𝑚1

∑

𝑥2∈𝑡2
𝑥2∈𝑚2

𝑀

𝑛2
𝑚2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2
𝑥1≠𝑥2

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2

∑

𝑥1∈𝑡1
𝑥2∈𝑡2𝑥1=𝑥2

𝑛1
𝑚1 ⋅ 𝑠1

⋅
𝑛2

𝑚2 ⋅ 𝑠2
⋅ 𝑚1 55%

the choice of which subset of a regression test suite to use. We observed
that diverse test suites have been found to be effective and proposed the
use of a novel measure, BMI, based on Mutual Information to assess
diversity.

Having developed BMI, and analysed a number of its properties, we
reported on experiments that evaluated it. First, we randomly generated
pairs of test suites and used BMI to order the test suites in each pair.
We then determined how many mutants of the FSM specification were
killed by each test suite. In these experiments we found that test suites
with lower BMI tend to kill more mutants. This provides evidence that
BMI can be used as the basis for choosing between test suites. There
was also a (negative) correlation between the fault detecting ability
of a test suite (i.e. the number of mutants that it killed) and the BMI
of the test suite. Interestingly, we also found that BMI outperformed
the previous information theoretic measure, Test Set Diameter (TSDm),
when selecting a test suite from a set of two randomly generated test
suites.

The positive results, when comparing BMI with TSDm, suggest that
the use of diversity is improved if we introduce knowledge about the
specification; previous work using diversity has concerned white-box
testing and assumed that a specification is not available. The results
suggest that measures of test suite diversity can be improved if one
has knowledge about the rarity of events. This knowledge can be
extracted from the specification of the developed system. Naturally,
if additional information is available then it should be possible to
improve on measures. As a result, we found that transition coverage
was (slightly) more effective than BMI, although the computation of
transition coverage took much more time than the computation of BMI.
Therefore, there is potentially a trade-off between effectiveness and
time taken. Importantly, however, BMI can be used whenever we have

information about input/output pair frequency and is therefore more
widely applicable than transition coverage. In fact, there is potential to
use BMI even if there is no specification, since it should be possible to
estimate input/output pair frequency using sampling.

The results presented in this paper have some clear practical rami-
fications. First, testers can directly use the novel BMI measure if they
have a number of test suites; they can compute the BMI of each test
suite and take the one (or ones) with lower BMI. Testers can also use
BMI to drive test subset selection; they can select the subset with lower
BMI. In addition, if there is a limited budget for regression testing then
the tester faces the problem of choosing a subset of the regression test
suite; the test subset selection problem has been addressed based on
white-box coverage information (see, for example, [3–5]) but, where
this is not available, it is possible to instead use BMI. BMI can be used
by testers when they have limited information about the specification.
In particular, it can be used instead of methods based on coverage when
we do not have a complete specification of the system but we have the
frequency of each input/output pair.

An intuition that explains why BMI is better than a true Information
Theory based measure can be the following one: BMI gives a propor-
tional value to each input/output pair independently of the rest of the
test. That is, we are giving the same weight to the same input/output
pair independently of the test length. However, when using Information
Theory based measures, we require a probability distribution over the
input/output pairs of the test. Therefore, the weights of an input/output
pair will be different in two different tests. This produces undesirable
effects like the decrease of the weight of an input/output pair due to it
being in a longer test than if it were in a shorter test. This can lead to
situations where, for example, a test suite with a longer test with many
repeated input/output pairs could be preferred to a test suite with many

Information and Software Technology 132 (2021) 106498

20

A. Ibias et al.

shorter tests with only one repeated input/output pair between all of
them.

There are several possible lines of future work. First, it would be
interesting to explore the use of BMI in the task of generating new
test suites from scratch. Second, we would like to perform additional
experiments to compare BMI and ITSDm. Third, there is potential to
apply BMI in more complex scenarios, with one such scenario being
when the specification is an Extended Finite State Machine (EFSM).
Note that an EFSM can be mapped to an FSM through expanding out the
data, possibly after applying an abstraction. Thus, EFSM faults that lead
to incorrect variable values map nicely to the type of mutation used in
the experiments, in which only the final state of a transition is changed.
Another interesting scenario is given when we consider distributed
systems, possibly with asynchronous communications, whose specifi-
cations are represented as a variant of an FSM [65,66]. In order to
confront these more complicated formalisms, we can use current work
that make it possible to apply a systematic approach to the generation
of mutants [67,68]. In principle, it should also be possible to apply BMI
even when there is no specification, since an initial random testing
phase could be used to produce estimates of input/output pair fre-
quency. For this scenario, there is a need for experiments that explore
the process of producing estimates of input/output pair frequency and
also the impact of using estimates on the effectiveness of BMI. This line
of work is particularly important because it should make it possible to
apply BMI in a context in which we do not have access to a specification
and so we cannot apply a method based on the coverage of the available
test suites.

CRediT authorship contribution statement

Alfredo Ibias: Conceptualization, Software, Validation, Formal
analysis, Data curation, Writing - original draft, Writing - review &
editing, Visualization. Manuel Núñez: Conceptualization, Methodol-
ogy, Writing - original draft, Writing - review & editing, Supervision,
Funding acquisition. Robert M. Hierons: Conceptualization, Method-
ology, Writing - original draft, Writing - review & editing, Supervision,
Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We would like to thank the anonymous reviewers for the careful
reading of the paper and the many constructive comments, which have
helped us to further strengthen the paper.

References

[1] P. Ammann, J. Offutt, Introduction to Software Testing, second ed., Cambridge
University Press, 2017.

[2] G. Myers, C. Sandler, T. Badgett, The Art of Software Testing, third ed., John
Wiley & Sons, 2011.

[3] G. Rothermel, M.J. Harrold, Analyzing regression test selection techniques, IEEE
Trans. Softw. Eng. 22 (8) (1996) 529–551.

[4] Z. Li, M. Harman, R.M. Hierons, Search algorithms for regression test case
prioritization, IEEE Trans. Softw. Eng. 33 (4) (2007) 225–237.

[5] A. Arrieta, J.A. Agirre, G. Sagardui, Seeding strategies for multi-objective test
case selection: an application on simulation-based testing, in: 22nd Annual
Conf. on Genetic and Evolutionary Computation, GECCO’20, ACM, 2020, pp.
1222–1231.

[6] B. Sarikaya, G.v. Bochmann, Synchronization and specification issues in protocol
testing, IEEE Trans. Commun. 32 (1984) 389–395.

[7] K. Sabnani, A. Dahbura, A protocol test generation procedure, Comput. Netw.
ISDN Syst. 15 (1988) 285–297.

[8] I. Pomeranz, S.M. Reddy, Test generation for multiple state-table faults in
finite-state machines, IEEE Trans. Comput. 46 (7) (1997) 783–794.

[9] A. Benharref, R. Dssouli, M.A. Serhani, A. En-Nouaary, R. Glitho, New approach
for EFSM-based passive testing of web services, in: Joint 19th IFIP TC6/WG6.1
Int. Conf. on Testing of Software and Communicating Systems, TestCom’07, and
7th Int. Workshop on Formal Approaches To Software Testing, FATES’07, LNCS
4581, Springer, 2007, pp. 13–27.

[10] M. Haydar, A. Petrenko, H. Sahraoui, Formal verification of web applications
modeled by communicating automata, in: 24th IFIP WG 6.1 Int. Conf. on Formal
Techniques for Networked and Distributed Systems, FORTE’04, LNCS 3235,
Springer, 2004, pp. 115–132.

[11] W. Grieskamp, N. Kicillof, K. Stobie, V. Braberman, Model-based quality as-
surance of protocol documentation: tools and methodology, Softw. Test. Verif.
Reliab. 21 (1) (2011) 55–71.

[12] W. Huang, J. Peleska, Complete model-based equivalence class testing for
nondeterministic systems, Form. Asp. Comput. 29 (2) (2017) 335–364.

[13] F. Hübner, W. Huang, J. Peleska, Experimental evaluation of a novel equivalence
class partition testing strategy, Softw. Syst. Model. 18 (1) (2019) 423–443.

[14] M. Isberner, F. Howar, B. Steffen, The open-source learnlib, in: 27th Int. Conf. on
Computer Aided Verification, CAV’15, LNCS 9206, Springer, 2015, pp. 487–495.

[15] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, M. Mohri, Openfst: A general
and efficient weighted finite-state transducer library, in: 9th Int. Conf. on
Implementation and Application of Automata, CIAA’07, LNCS 4783, 4783,
Springer, 2007, pp. 11–23.

[16] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27
(1948) 379–423, 623–656.

[17] R. Feldt, R. Torkar, T. Gorschek, W. Afzal, Searching for cognitively diverse tests:
Towards universal test diversity metrics, in: 1st IEEE Int. Conf. on Software
Testing Verification and Validation Workshops, IEEE Computer Society, 2008,
pp. 178–186.

[18] E.G. Cartaxo, P.D.L. Machado, F.G. de Oliveira Neto, On the use of a similarity
function for test case selection in the context of model-based testing, Softw. Test.
Verif. Reliab. 21 (2) (2011) 75–100.

[19] H. Hemmati, A. Arcuri, L. Briand, Achieving scalable model-based testing through
test case diversity, ACM Transactions on Software Engineering and Methodology
22 (1) (2013) 6:1–6:42.

[20] H. Hemmati, Z. Fang, M.V. Mantyla, Prioritizing manual test cases in traditional
and rapid release environments, in: 8th IEEE Int. Conf. on Software Testing,
Verification and Validation, ICST’15, IEEE Computer Society, 2015, pp. 1–10.

[21] R. Feldt, S.M. Poulding, D. Clark, S. Yoo, Test set diameter: Quantifying the
diversity of sets of test cases, in: 9th IEEE Int. Conf. on Software Testing,
Verification and Validation, ICST’16, IEEE Computer Society, 2016, pp. 223–233.

[22] ITU-TSG 10/Q8 ISO/IEC JTCI/SC21/WG7, Information retrieval, transfer and
management for OSI; framework: Formal methods in conformance testing.
Committee draft CD 13245-1, ITU-T proposed recommendation Z.500. ISO –
ITU-T, 1996.

[23] J. Tretmans, Model based testing with labelled transition systems, in: Formal
Methods and Testing, LNCS 4949, Springer, 2008, pp. 1–38.

[24] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its
Applications, fourth ed., Springer, 2019.

[25] R. Cilibrasi, P.M.B. Vitányi, Clustering by compression, IEEE Trans. Inform.
Theory 51 (4) (2005) 1523–1545.

[26] C. Henard, M. Papadakis, M. Harman, Y. Jia, Y.L. Traon, Comparing white-box
and black-box test prioritization, in: 38th Int. Conf. on Software Engineering,
ICSE’16, ACM Press, 2016, pp. 523–534.

[27] E.P. Moore, Gedanken experiments on sequential machines, in: C. Shannon, J.
McCarthy (Eds.), Automata Studies, Princeton University Press, 1956.

[28] F. Hennie, Fault-detecting experiments for sequential circuits, in: 5th Annual
Symposium on Switching Circuit Theory and Logical Design, IEEE Computer
Society, 1964, pp. 95–110.

[29] T.S. Chow, Testing software design modeled by finite state machines, IEEE Trans.
Softw. Eng. 4 (1978) 178–187.

[30] M.P. Vasilevskii, Failure diagnosis of automata, Cybernetics 4 (1973) 653–665.
[31] R.M. Hierons, H. Ural, Optimizing the length of checking sequences, IEEE Trans.

Comput. 55 (5) (2006) 618–629.
[32] F. Ipate, Bounded sequence testing from deterministic finite state machines,

Theoret. Comput. Sci. 411 (16–18) (2010) 1770–1784.
[33] A. Simão, A. Petrenko, N. Yevtushenko, On reducing test length for FSMs with

extra states, Softw. Test. Verif. Reliab. 22 (6) (2012) 435–454.
[34] R.M. Hierons, Testing from partial finite state machines without harmonised

traces, IEEE Trans. Softw. Eng. 43 (11) (2017) 1033–1043.
[35] R.M. Hierons, FSM quasi-equivalence testing via reduction and observing

absences, Sci. Comput. Program. 177 (2019) 1–18.
[36] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM

specifications, IEEE Trans. Comput. 54 (9) (2005) 1154–1165.
[37] R.M. Hierons, M. Núñez, Implementation relations and probabilistic schedulers

in the distributed test architecture, J. Syst. Softw. 132 (2017) 319–335.
[38] R.M. Hierons, M.G. Merayo, M. Núñez, Bounded reordering in the distributed

test architecture, IEEE Trans. Reliab. 67 (2) (2018) 522–537.

Information and Software Technology 132 (2021) 106498

21

A. Ibias et al.

[39] I. Hwang, A.R. Cavalli, Testing a probabilistic FSM using interval estimation,
Comput. Netw. 54 (7) (2010) 1108–1125.

[40] N. López, M. Núñez, I. Rodríguez, Specification, testing and implementation
relations for symbolic-probabilistic systems, Theoret. Comput. Sci. 353 (1–3)
(2006) 228–248.

[41] R.M. Hierons, M.G. Merayo, M. Núñez, Testing from a stochastic timed system
with a fault model, J. Log. Algebr. Program. 78 (2) (2009) 98–115.

[42] A.V. Aho, A.T. Dahbura, D. Lee, M.Ü. Uyar, An optimization technique for
protocol conformance test generation based on UIO sequences and Rural Chinese
Postman Tours, IEEE Trans. Commun. 39 (11) (1991) 1604–1615.

[43] A.Y. Duale, M.Ü. Uyar, A method enabling feasible conformance test sequence
generation for EFSM models, IEEE Trans. Comput. 53 (5) (2004) 614–627.

[44] K. Derderian, R.M. Hierons, M. Harman, Q. Guo, Generating feasible input
sequences for extended finite state machines (EFSMs) using genetic algorithms,
in: 7th Genetic and Evolutionary Computation Conference, GECCO’05, ACM
Press, 2005, pp. 1081–1082.

[45] A.S. Kalaji, R.M. Hierons, S. Swift, Generating feasible transition paths for testing
from an extended finite state machine (EFSM), in: 2nd Int. Conf. on Software
Testing Verification and Validation, ICST’09, IEEE Computer Society, 2009, pp.
230–239.

[46] A. Petrenko, S. Boroday, R. Groz, Confirming configurations in EFSM testing,
IEEE Trans. Softw. Eng. 30 (1) (2004) 29–42.

[47] A. Turlea, F. Ipate, R. Lefticaru, A test suite generation approach based on EFSMs
using a multi-objective genetic algorithm, in: 19th Int.Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, SYNASC’17, IEEE Computer
Society, 2017, pp. 153–160.

[48] K. Bogdanov, M. Holcombe, F. Ipate, L. Seed, S. Vanak, Testing methods for
X-machines: a review, Form. Asp. Comput. 18 (2006) 3–30.

[49] K. Androutsopoulos, D. Clark, H. Dan, R. Hierons, M. Harman, An analysis of the
relationship between conditional entropy and failed error propagation in software
testing, in: 36th Int. Conf. on Software Engineering, ICSE’14, ACM Press, 2014,
pp. 573–583.

[50] J.K. Blundell, M.L. Hines, J. Stach, The measurement of software design quality,
Ann. Softw. Eng. 4 (1–4) (1997) 235–255.

[51] D. Clark, R. Feldt, S.M. Poulding, S. Yoo, Information Transformation: An
Underpinning Theory for Software Engineering, in: 37th IEEE/ACM International
Conference on Software Engineering, ICSE’15, 2015, pp. 599–602.

[52] D. Clark, R.M. Hierons, Squeeziness: An information theoretic measure for
avoiding fault masking, Inform. Process. Lett. 112 (8–9) (2012) 335–340.

[53] A. Ibias, R.M. Hierons, M. Núñez, Using squeeziness to test component-based
systems defined as finite state machines, Inf. Softw. Technol. 112 (2019)
132–147.

[54] A.V. Miranskyy, M. Davison, R.M. Reesor, S.S. Murtaza, Using entropy measures
for comparison of software traces, Inform. Sci. 203 (2012) 59–72.

[55] K.R. Pattipati, M.G. Alexandridis, Application of heuristic search and information
theory to sequential fault diagnosis, IEEE Trans. Syst. Man Cybern. 20 (4) (1990)
872–887.

[56] K.R. Pattipati, S. Deb, M. Dontamsetty, A. Maitra, START: System testability
analysis and research tool, IEEE Aerosp. Electron. Syst. Mag. 6 (1) (1991) 13–20.

[57] R. Sagarna, A. Arcuri, X. Yao, Estimation of distribution algorithms for testing
object oriented software, in: 9th IEEE Congress on Evolutionary Computation,
CEC’07, IEEE Computer Society, 2007, pp. 438–444.

[58] S. Yoo, M. Harman, D. Clark, Fault localization prioritization: Comparing
information-theoretic and coverage-based approaches, ACM Trans. Softw. Eng.
Methodol. 22 (3) (2013) 19:1–19:29.

[59] A. González-Sanchez, É. Piel, H.-G. Groß, A.J.C. van Gemund, Prioritizing tests
for software fault localization, in: 10th Int. Conf. on Quality Software, QSIC’10,
IEEE Computer Society, 2010, pp. 42–51.

[60] N. Alshahwan, M. Harman, Coverage and fault detection of the output-uniqueness
test selection criteria, in: 24th ACM SIGSOFT Int. Symposium on Software Testing
and Analysis, ISSTA’14, ACM Press, 2014, pp. 181–192.

[61] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley Interscience,
1991.

[62] C. Andrés, M.G. Merayo, M. Núñez, Supporting the extraction of timed properties
for passive testing by using probabilistic user models, in: 9th Int. Conf. on Quality
Software, QSIC’09, IEEE Computer Society, 2009, pp. 145–154.

[63] D. Neider, R. Smetsers, F.W. Vaandrager, H. Kuppens, Benchmarks for automata
learning and conformance testing, in: T. Margaria, S. Graf, K.G. Larsen (Eds.),
Models, Mindsets, Meta: The What, the how, and the Why Not? - Essays
Dedicated To Bernhard Steffen on the Occasion of His 60th Birthday, Springer,
2019, pp. 390–416.

[64] M.R. Garey, D.S. Johnson, Computers and Intractability, W. H. Freeman and
Company, 1979.

[65] M.G. Merayo, R.M. Hierons, M. Núñez, Passive testing with asynchronous
communications and timestamps, Distrib. Comput. 31 (5) (2018) 327–342.

[66] M.G. Merayo, R.M. Hierons, M. Núñez, A tool supported methodology to
passively test asynchronous systems with multiple users, Inf. Softw. Technol.
104 (2018) 162–178.

[67] P. Gómez-Abajo, E. Guerra, J. de Lara, M.G. Merayo, A tool for
domain-independent model mutation, Sci. Comput. Program. 163 (2018) 85–92.

[68] P. Gómez-Abajo, E. Guerra, J. de Lara, M.G. Merayo, Wodel-test: a model-
based framework for language-independent mutation testing, Softw. Syst. Model.
(2020) in press.

10.6. Coverage-Based Grammar-Guided Genetic Programming Generation
of Test Suites 175

10.6 Coverage-Based Grammar-Guided Genetic Pro-
gramming Generation of Test Suites

Authors Alfredo Ibias, Pablo Vazquez-Gomis and
Miguel Benito-Parejo

Title Coverage-Based Grammar-Guided Genetic
Programming Generation of Test Suites

Publication Type Conference
Venue 2021 IEEE Congress on Evolutionary Com-

putation
Year 2021
DOI/URL https://doi.org/10.1109/CEC45853.

2021.9504969
Pages 8
Authors’ Contributions Ibias and Benito-Parejo developed the theory.

Ibias, Vazquez-Gomis and Benito-Parejo de-
signed the experiments. Ibias and Vazquez-
Gomis developed and executed the experi-
ments. Ibias and Benito-Parejo wrote the ma-
nuscript. Ibias and Benito-Parejo reviewed
the manuscript.

https://doi.org/10.1109/CEC45853.2021.9504969
https://doi.org/10.1109/CEC45853.2021.9504969

Coverage-Based Grammar-Guided Genetic
Programming Generation of Test Suites
Alfredo Ibias

DTRS research group
Universidad Complutense de Madrid

28040, Madrid, Spain
aibias@ucm.es

Pablo Vazquez-Gomis
DTRS research group

Universidad Complutense de Madrid
28040, Madrid, Spain

pavazq01@ucm.es

Miguel Benito-Parejo
DTRS research group

Universidad Complutense de Madrid
28040, Madrid, Spain

mibeni01@ucm.es

Abstract—Software testing is fundamental to ensure the re-
liability of software. To properly test software, it is critical to
generate test suites with high fault finding ability. We propose
a new method to generate such test suites: a coverage-based
grammar-guide genetic programming algorithm. This evolution-
ary computation based method allows us to generate test suites
that conform with respect to a specification of the system under
test using the coverage of such test suites as a guide. We
considered scenarios for both black-box testing and white-box
testing, depending on the different criteria we work with at
each situation. Our experiments show that our proposed method
outperforms other baseline methods, both in performance and
execution time.

Index Terms—Genetic Programming, Coverage, Software Test-
ing

I. INTRODUCTION

Testing software is a fundamental step on every software
development process. The goal is to improve the quality of
the software searching for faults in it, using as few resources
as possible. However, due to its criticality, testing can cost
more than 50% of the development budget [30]. Therefore,
good, cheap and effective methods for testing software are
fundamental for the software product cycle. One of the main
techniques in the software testing field [1], [30] is to try to find
faults through the execution of input sequences and comparing
the outputs obtained with the expected ones. The combination
of the input sequence and the expected outputs is a test suite,
and the goal of the method is to use the test suites with higher
fault finding ability. In order to generate such test suites, the
most widely known approach is mutation testing [22], [32],
which uses mutants (i.e. modified versions) of the System Un-
der Test (SUT) (or more usually, its specification) to generate
such test suites. However, one of the main issues with this
method is its computational cost. More feasible approaches
focus on finding good test suites with respect to a chosen

This work has been supported by the Spanish MINECO/FEDER project
FAME (RTI2018-093608-B-C31); the Region of Madrid project FORTE-
CM (S2018/TCS-4314) co-funded by EIE Funds of the European Union;
the Region of Madrid - Complutense University of Madrid (grant number
PR65/19-22452); and the Santander – Complutense University of Madrid
(grant number CT63/19-CT64/19).

criteria, reducing the computational and resources costs but
diminishing at the same time the effectiveness of the method.
In this paper we present one of such approaches.

Another problem of software testing is the so called Oracle
problem [2], [25]. This problem focuses on how to decide
that a SUT is correct or not given the obtained outputs, and
for extension, on how well a test suite detects a fault in the
program. For this task a lot of approaches had been tried,
from classical deterministic solutions [7], [11] to more evolved
ones, like those based on genetic algorithms [3], [4], [31]. In
this paper we use Finite State Machines (FSMs) to represent
the specification of the SUT, and we used a coverage-based
criterion to decide how good the test suites are detecting faults.
We also use the mutation score to compare our approach
to others from the literature. Mutation score is a measure
from mutation testing that calculates the percentage of mutants
killed by a test suite. We say that a test kills a mutant when
the mutation has been discovered when executing the test.

Evolutionary computation algorithms are a well known
family of algorithms and meta-heuristics that focus on the
evolution of a bunch of individual solutions to obtain an ap-
proximately optimal solution. This family ranges from the Ge-
netic Algorithms [34] based on the evolution of the genomes
to the Ant Colony Optimisation algorithm [9] based on the
organisation of an ant colony, passing by the Particle Swarm
Optimisation algorithm [5], [23] based on the development of
a flock of birds. Genetic algorithms [34] are an approximation
method to find good or nearly good solutions to computation-
ally exponential problems. They focus on generating random
solutions (called individuals) and improving them through the
mixture and mutation of the best generated ones. To decide
which individual is better they use a previously chosen criteria
(called fitness function) that should guide the evolution. Ge-
netic programming [24] is an extension of genetic algorithms
that manage to deal with structured types, being able to find
solutions to a wider range of problems. Specifically, genetic
programming used to work with tree-like structures, which can
be totally free or bounded to a grammar [27]. In our work we
use a genetic programming algorithm whose individuals are
bounded to a grammar that will ensure that they will conform
to valid test suites of the SUT.

In this paper we present a Grammar-Guided Genetic Pro-978-1-7281-8393-0/21/$31.00 ©2021 IEEE

gramming algorithm to generate test suites. This algorithm
uses a coverage-based measure as a guide, and therefore
obtains test suites that have a high coverage of the FSM that
models the SUT. The goal of this algorithm is to generate
test suites with a high fault detection ability, and it uses
coverage-based fitness functions to that end. Specifically, we
use measures based on t-way coverage, which measures how
many groups of t consecutive elements of the SUT are covered
by the test suite. These coverage-based fitness functions are
prepared for two scenarios: a white-box scenario where we
have information about the internal structure of the SUT (like
states) and a black-box scenario where we do not have such
information and we can only observe input and outputs. We
performed experiments to compare this approach to more
traditional ones and to different variations of itself. Specif-
ically, we compared our algorithm with a grammar-guided
genetic programming algorithm that uses as fitness function
the mutation score of the individuals. In these experiments
we obtained that our solutions generated using coverage-based
fitness functions were quite effective, as they took less time
to be computed, while not losing a lot of (or even having
better) finding faults potential. We found that the coverage
criteria based on 1-way transition coverage is the preferable
choice when generating test suites if we are in a black-box
scenario. For a white-box scenario, the 2-way state coverage
is preferred.

In this paper, Section II introduces the basic concepts over
which our algorithm is developed. Section III introduces our
coverage-based grammar-guided genetic programming algo-
rithm for generating test suites. Later, Section IV presents our
experiments evaluating our algorithm. In Section V we discuss
some aspects of our algorithm and our experiments. Section VI
evaluates the threats to the validity of our experiments. Finally,
Section VII contains the conclusions of our work and lines for
future work.

II. THEORETICAL BACKGROUND

We model systems as Finite State Machines (FSMs). In order
to define an FSM, we first introduce some notation.

Given set A, A∗ denotes the set of finite sequences of ele-
ments of A; A+ denotes the set of non-empty finite sequences
of elements of A; and ε ∈ A∗ denotes the empty sequence.
We let |A| denote the size of set A. Given a sequence σ ∈ A∗,
|σ| denotes its length. Given a sequence σ ∈ A∗ and a ∈ A,
we have that σa denotes the sequence σ followed by a and
aσ denotes the sequence σ preceded by a.

Throughout this paper we let I be the set of input actions
and O be the set of output actions. It is important to differen-
tiate between input actions and inputs of the system. An input
of a system will be a non-empty sequence of input actions,
that is, an element of I+ (similarly for outputs and output
actions).

An FSM is a (finite) labelled transition system in which
every transitions is labelled with an input/output pair (a pair
containing an input action and an output action). We use this
formalism to define specifications.

Definition 1: A Finite State Machine (FSM) is represented
by a tuple M = (Q, qin, I,O, T) in which Q is a finite set
of states, qin ∈ Q is the initial state, I is a finite set of input
actions, O is a finite set of output actions, and T ⊆ Q× (I ×
O)×Q is the transition relation. The meaning of a transition
(q, (i, o), q′) ∈ T , also denoted by (q, i/o, q′), is that if M
receives input action i when in state q then it can move to
state q′ and produce output action o.

We say that M is deterministic if for all q ∈ Q and i ∈
I there exists at most one pair (q′, o) ∈ Q × O such that
(q, i/o, q′) ∈ T .

We assume that FSMs are deterministic. This simplifies our
scenario so we can use genetic algorithms, without losing
applicability. However, our algorithm can be used on non-
deterministic FSMs with some adaptations to the specification.
An FSM can be represented by a diagram in which nodes
represent states and transitions are represented by arcs between
the nodes. In our case, all states are final as long as they are
reachable from the initial state.

We will assume the minimal test hypothesis [21]: the SUT
can be modelled as an (unknown) object described in the same
formalism as the specification (here, an FSM).

We say that a mutant M ′ = (Q, qin, I,O, T ′) of an FSM
M = (Q, qin, I,O, T) is another FSM such that T and T ′

only differ in one transition in the form of (q, (i, o), q′) ∈ T
and (q, (i, o), q′′) ∈ T ′ with q′ 6= q′′.

Our main goal while testing is to decide whether the be-
haviour of an SUT conforms to the specification of the system
that we would like to build. In order to detect differences
between specifications and SUTs, we need to compare their
behaviours, and the main notion to define such behaviours is
given by the concept of a trace.

Definition 2: Let M = (Q, qin, I,O, T) be an FSM, σ =
(i1, o1) . . . (ik, ok) ∈ (I × O)∗ be a sequence of pairs and
q ∈ Q be a state. We say that M can perform σ from q if
there exist states q1 . . . qk ∈ Q such that for all 1 ≤ j ≤ k we
have (qj−1, ij/oj , qj) ∈ T , where q0 = q. If q = qin then we
say that σ is a trace of M . We denote by traces(M) the set
of traces of M . Note that ε ∈ traces(M) for every FSM M .

Next we define the notion of test. As previously explained,
a test is a sequence of (input action, output action) pairs. A
test suite will be a set of tests.

Definition 3: Let M = (Q, qin, I,O, T) be an FSM. We
say that t = (i1, o1) . . . (ik, ok) ∈ (I × O)+ is a test for
M if t ∈ traces(M). The length of t is the length of the
sequence, that is, |t| = k. In addition, the sequence of input
actions of t is λ = i1 . . . ik and the sequence of output actions
of t is µ = o1 . . . ok. We will sometimes use the notation
t = (λ, µ) ∈ (I+ × O+). We write (i, o) ∈ t to denote that
the pair (i, o) appears in the test t; (i, o) ∈n t denotes that the
pair (i, o) appears n times in the test t.

A test suite for M is a set of tests for M . Given a test suite
T = {t1, . . . , tn}, the length of the test suite is the sum of
the lengths of its tests, that is, |T | =

∑
i=1,...,n |ti|.

Let t = (λ, µ) be a test for M . We say that the application
of t to an FSM M ′ fails if there exists µ′ such that (λ, µ′) ∈

traces(M ′) and µ 6= µ′. Similarly, let T be a test suite for
M . We say that the application of T to an FSM M ′ fails if
there exists t ∈ T such that the application of t to M ′ fails.

The notion of coverage is quite simple in our context: it
represent how much of the FSM a test suite traverses. We
define three different coverage criteria based on the t-way
coverage definition:
• t-way transition coverage: the percentage of sets of t

consecutive transition labels that the test suite traverses.
We define transition label as a pair input/output of the
FSM (that is, a pair input/output that corresponds to the
execution of a transition).

• t-way state coverage: the percentage of sets of t consec-
utive states that the test suite visits. We define state as a
state of the FSM.

• t-way action coverage: the percentage of sets of t consec-
utive actions that the test suite executes. We define action
as an input of the FSM.

We differentiate between these 3 types of coverage as they
are the most widely used in the literature [26], [33]. Each
coverage type focus on a different element of the FSM and
therefore it is mandatory to compare between the three to
see which one yields better results. In order to use state
coverage we need to be aware of the internal state of the
FSM, therefore it can only be considered within a white-box
scenario. However, action coverage and transition coverage
only needs observable information and can also be used in
a black-box scenario. Finally, for a notion of coverage based
in transitions (as defined in Def. 1), we require a white-box
scenario as well, since the structure of the FSM is also needed.
This last case will be studied in detail in section IV.

The t-way coverage groups the transition
labels/states/actions of the FSM in sets with exactly t
elements. These sets contains t consecutive elements, that is,
there exists a sequence of transitions of the FSM such that the
transition labels/states/actions involved in it are exactly the
ones in the set. For example, for 1-way state coverage, the
states of the FSM are group in sets with only one state, and
therefore there are as many sets as states. In the case of 2-way
state coverage however, the states of the FSM are grouped
in sets of pairs of states. Specifically each set contains two
consecutive states, that is, two states that are connected by
a transition. Then, in this case there are as many sets as
transitions, but not as many as combinations of two states,
because if two states are not connected trough a transition,
then they are not consecutive.

With the t-way sets of transition labels/states/actions of the
FSM, we can check the number of them that appear (without
repetitions) in a test suite. The percentage of these sets that
appear in the test suite will be its t-way transition/state/action
coverage score. This score represents how much coverage of
the SUT this test suite will provide.

Formally, we define the t-way transition/state/action cover-
age score as follows.

Definition 4: Given an FSM M , a grouping G (with |G|
elements) of its transition labels/states/actions in sets of t

consecutive elements, and a test suite that traverses s of
such sets (without repetitions), the t-way transition/state/action
coverage score is s

|G| .
In our work, t ranges from 1 to 3. Along this paper we will

call G set to the grouping of the transition labels/states/actions
in sets of t consecutive elements of an FSM.

Genetic programming is a meta-heuristic that is often used
to obtain good enough solutions to complicated optimisation
problems. They are non-deterministic algorithms that con-
sider multiple possible solutions or individuals at a time,
and combine their information in order to obtain different
solutions each iteration. Since the objective is to improve the
final solution, a fitness function evaluates each individual to
prioritise those possible solutions with a better score. This
method is derived from the classical genetic algorithm, with
some adaptations to work with tree-like structures that we use
in our work. Usually, a genetic algorithm is divided in 5 steps
structured as follows:
• The initialisation step generates the initial population,

acting as a seed for the whole process. Such an initialisa-
tion is usually random, in order not to bias the behaviour
of the algorithm.

• The selection step is focused on obtaining the most suited
individuals to perform the following steps, and achieving
a better solution in next generations.

• The crossover step consists of pairing the individuals
obtained in the selection step, and exchanging parts of
the structure within each couple.

• The mutation step considers each individual after the
crossover step, and with a small probability performs
slight variations or mutations. This process, although
might seem counter-intuitive, it tends to avoid obtaining
local maximum solutions, by possibly substituting the
negative-impact elements of the individual for new ones.

• The replacement step, finally takes the current population
and its offspring, and decides which individuals amongst
them conform the following generation.

The idea of genetic algorithms is to iterate the process to
make the population evolve and produce a better solution.
Therefore, it requires a termination criteria, which usually
considers a bound on the number of iterations.

It is important to note that the loop for a genetic algorithm
only considers the selection, crossover, mutation and replace-
ment steps, as only one initialisation is required. A general
flowchart of genetic programming is shown in Fig. 1.

For our genetic programming algorithm we use a grammar
to guide the generation of the test suites. A grammar is a set of
symbols and rules that restrict the generation capabilities of the
algorithm in order to ensure the correctness of the generated
individuals with respect to a chosen criteria (in our case, that
they are valid test suites for the SUT).

III. COVERAGE-BASED GRAMMAR-GUIDED GENETIC
PROGRAMMING ALGORITHM

In this section, we describe the specific elements of our
genetic algorithm, and the structure of the steps we use, to

Fig. 1. GA flowchart

present a global idea of our contribution in a more detailed
manner.

Our proposed algorithm is a genetic programming algo-
rithm that works with a population of individuals of the
same size. Each individual is a test suite consisting of n
input/outputs pairs. However, a grammar-guided genetic pro-
gramming works with tree-like structures (i.e. data structures
that can be abstracted as trees) that conform to a grammar.
Thus, we have to adapt our test suites to be abstractly repre-
sented as grammar-guided trees. We do such a transformation
defining each node of the tree as an input/output pair (i.e.
each node contains an input and an output) with a grammatical
symbol, then each succession of nodes would be a succession
of input/output pairs, which corresponds to a test. Finally, in
order to combine the tests of the test suite into a tree, we
join them with a dummy node that would be the root of the
tree. This way, each test would be a branch of the tree. It
is important to note that we work with a constrained size,
which all trees share, in order not to obtain huge trees that
compromise the score of the results, as a bigger size in a test
suite would induce a better score. Along the rest of the paper
we would use input/output pair and node interchangeably, and
we would do the same for test and branch, and for test suite
and tree. Finally, remark that a subtree of these trees would
be a section of a test.

Since we decided to use a grammar-guided genetic program-
ming approach, we need to generate a grammar that allows
to generate test suites that conforms to the FSM. For this
grammar, we define the following components [17]:

• A start non-terminal symbol S that starts the grammar.
• A non-terminal symbol TS that introduces each test of

the test suite.
• A non-terminal symbol A for each state, where A ∈ A

is the state number.
• A terminal symbol ′a/b′ for each input/output pair present

on the FSM, where a is the input and b is the output.
• A terminal symbol ′null′ to represent the end of a test.
• A production rule S −→ TS to generate the initial test.
• A production rule TS −→ TS + TS to introduce a new

test.
• A production rule TS −→ 0 to start each test in the
FSM initial state.

• A production rule A −→ ′a/b′ + A for each transition
from the left hand side state A to the right hand side state
A with input/output pair (a, b).

• A production rule A −→′ null′ for each state A to a
terminal to represent the end of the test.

With this components, we will produce the nodes of the trees
that represent test suites.

In the initialisation step, we generate random test suites,
avoiding duplicated tests. The idea is to generate an initial
population as diverse as possible, in order to have a wider
spectrum to explore with the following steps.

To evaluate and compare the individuals of our population,
we need a fitness function. As the main contribution of our
work, we propose several coverage-based fitness functions,
considering the notion of coverage defined in Def. 4. These
fitness functions are built over coverage criteria to determine
which test suites have a higher fault finding capability. We
developed 12 fitness functions using t-way coverage criterion.
In particular, we considered transition, state, action t-way
coverage, and an extension of transition t-way coverage that
includes the initial and final states of each transition (i.e. it
considered the actual transitions). We instantiated these criteria
with t ∈ {1, 2, 3}. We will later on compare the results that
we obtain with each of these fitness functions.

In the selection step, we aim at an exploration goal, rather
than an exploitation one. In that sense, we consider that our
selection method should take into account the whole popula-
tion, in order not to lose any genetic diversity. Therefore, our
selection method simply matches pairs of individuals for the
following steps.

For the grammar-guided crossover, we implemented a vari-
ation on the standard crossover, where we select a random
node from each parent such that both nodes have the same
grammatical symbol. Then, we exchange the selected subtrees
while maintaining the grammatical correctness of the whole
tree. This means that the resulting individuals still represent a
valid test suite for the given SUT. However, in order to keep
the length of the test suite (note that such length is the sum of
the length of each test), we will have to modify the resulting
trees accordingly. We have two different scenarios: first, we
have to extend test suites that provide a longer subtree while
receiving a shorter one; and second we have to bound test
suites that receive a longer subtree than the one they provide.
This is necessary to control the length of a test suite, avoiding
an incremental increase of the size of the individuals. The
reason to keep the length invariant is to have a reasonable
comparison between the solutions, as a bigger test suite would
produce inherently a better score.

We perform the extension of a subtree by randomly gen-
erating a grammatically valid continuation of the subtree.
That means that we expand from the leaf of the subtree
generating new nodes (i.e. input/output pairs) until reaching
the adequate length. In the case that we are unable to extend
such subtree up to the desired length, we generate a new
random test to substitute the remaining nodes. For the bound
on larger subtrees, we simply eliminate its final nodes, in order

for the test suite to match the required length. Due to this
variation of the standard crossover, in most cases we add a
little extra genetic information apart from the one belonging
to the parents.

Our grammar-guided mutation step consists in randomly
replacing tests of the test suite for newly generated ones.
The idea of this mutation, is to incorporate different tests
that have not been considered before for the test suite. With
this procedure, we add new genetic information (previously
unseen) to the individual and avoid reaching local optimum.
We do not consider a mutation on the test suite as such, but
on each test in the test suite. Since each test is represented
by a branch of the tree, we remove such test by deleting the
branch, and we include the new test by adding a new branch
to the dummy root node. It is important to note that a test is
either fully removed, or is not modified, as we do not interfere
with partial branches of the tree.

Finally, the last step of our loop combines the best elements
of both the parent and the offspring populations, to prepare the
final individuals (either for following iterations, or the end of
the process). We divided this step in several phases, starting
by obtaining the average score for the offspring population.
With it, we automatically consider the individuals that improve
such average value to be in the final population. Next, for
the remaining individuals, which have a worse score than the
average, there is a probability for them to be maintained. To
finish, in order to complete the size of the population, that
should remain invariant, we randomly select among the best
individuals from the parent generation.

The termination criteria that we consider is to perform 100
iterations. However, if during the execution we find that the
last 20% of iterations do not improve the score, we terminate
the process. We added such extra condition as we want to
avoid an excessive amount of iterations and computing power
that will not yield a better result.

IV. EXPERIMENTS

The experiments we performed aimed to compare our
algorithm with another test suite generation algorithm based on
mutation score. For these experiments we took as experiment
subjects a set of 100 randomly generated FSMs, each one
with 100 states. In them, each state has between 5 and 50
outgoing transitions, each one with a label conformed by an
input/output pair. These pairs are generated from both input
and output alphabets, each one with 50 elements. This set of
FSM is generated with the idea of stretching the capabilities
of the proposed algorithm, being big enough SUTs and trying
to be as representative of real-world applications as possible.

The idea of the experiments was to compare our proposed
algorithm (coverage algorithm) to a genetic programming al-
gorithm whose fitness function is the mutation score (mutation
score algorithm). Mutation score algorithm uses the same
grammar-guided genetic programming algorithm as coverage
algorithm, the only real change is in the fitness function, and
therefore in the obtained solutions. Specifically, it generates
a new set of 10 random mutants each iteration to calculate

the mutant score of the individuals of the population. In these
experiments each individual of the population represents a test
suite of fixed length 1000, and therefore the solutions will be
test suites for the given FSM. Then, we compare the solution
from both algorithms using mutation score, as it is a well
established method to compare test suites [32].

The experiments were developed as follows: for each FSM
we generated two test suites (one using coverage algorithm
and other using mutation score algorithm). Then, we generated
100 mutants of the FSM and computed the mutation score of
each test suite. We repeated this procedure for each of the 100
FSMs from the experiment subjects set, and we computed the
average values for all the FSMs. Finally, we performed this
whole experiment 10 times to obtain a final mean value that
is less prone to the randomisation influence. We display these
final averages on Table I, where:
• The Success columns indicate the percentage of times

where coverage algorithm performed better than the
mutation score algorithm (and vice-versa).

• The Mutants Killed columns indicate the percentage of
mutants each algorithm was able to kill.

• The Execution Time columns indicate the time that each
algorithm took to run.

The results of the experiments are displayed on Table I.
There we can see that the three of t-way transition coverage,
t-way state coverage and t-way action coverage beat mutation
score to a extent, both in fault finding capability and in
computation time. Moreover, we can observe an interesting
phenomena: the mutation score of the different coverage
notions is not uniform with respect to the value of t. This
implies that a greater t does not imply that the resulting test
suite will have a higher mutation score.

From these results arises the question of what would the
situation be if we computed the t-way transition coverage
using transitions instead of transition labels. We call this
notion t-way extended transition coverage. It is obvious that
the transitions have more information about the underlying
FSM and its structure, so they could perform better, while not
needing a lot of extra time as they follow a similar concept
of coverage. However, the transitions can only be generated if
we have an oracle (an FSM representing the SUT) or we are
in a white-box testing scenario, which limits its applicability.
We repeated the experiment using the transitions and obtained
the results displayed on Table II. As we can observe there, the
results are in the line of the ones from the other coverage types,
without a huge difference in computation time. Therefore, we
can conclude that the extra requirements are not worth it.

Finally, we performed a statistical hypothesis test over all
the results. The null hypothesis was that the coverage-based
fitness functions and the mutation score fitness function gave
similar results, that is, both produced test suites with similar
mutation score. We applied a one-way ANOVA test1 where
we tested whether the values of both fitness functions were,

1Note that we could use the ANOVA test because we performed an
homogeneity of variance check and it raised a positive result.

TABLE I
RESULTS OF THE COMPARISON WITH MUTATION SCORE.

Success Success Mutants Killed Mutants Killed Execution Time Execution Time
Coverage Coverage Mutation Score Coverage Mutation Score Coverage Mutation Score

Type (Percentage) (Percentage) (Percentage) (Percentage) (Seconds) (Seconds)
1− way transition 0.5644 0.4356 0.3781 0.3660 31.0099 83.9273

coverage
2− way transition 0.5585 0.4415 0.3738 0.3652 29.1904 84.5565

coverage
3− way transition 0.5131 0.4869 0.3673 0.3660 9.8079 84.2539

coverage
1− way state 0.4915 0.5085 0.3660 0.3666 6.8651 85.6319

coverage
2− way state 0.6167 0.3833 0.3827 0.3633 31.7231 86.0107

coverage
3− way state 0.5452 0.4548 0.3734 0.3636 31.2126 86.5856

coverage
1− way action 0.4995 0.5005 0.3663 0.3670 6.8224 85.9126

coverage
2− way action 0.5074 0.4926 0.3672 0.3654 31.4185 85.9683

coverage
3− way action 0.4995 0.5005 0.3684 0.3667 10.0687 86.1290

coverage

TABLE II
RESULTS OF THE COMPARISON WITH MUTATION SCORE (USING TRANSITIONS).

Success Success Mutants Killed Mutants Killed Execution Time Execution Time
Coverage Coverage Mutation Score Coverage Mutation Score Coverage Mutation Score

Type (Percentage) (Percentage) (Percentage) (Percentage) (Seconds) (Seconds)
1− way extended 0.6028 0.3972 0.3823 0.3663 31.2724 87.5435

transition coverage
2− way extended 0.5458 0.4542 0.3722 0.3651 29.0016 86.3313

transition coverage
3− way extended 0.4973 0.5027 0.3674 0.3656 10.1902 86.2759

transition coverage

on average, similar. Then, we computed the p-value for the
experiments. Here, we observed an interesting situation: for
1-way and 2-way transition and extended transition coverage,
and for 2-way and 3-way state coverage the obtained p-values
were lower than 0.05. However, for the other measures the p-
values were higher than 0.05. Therefore, we can deny the null
hypothesis for the experiments with the first coverage notions
with a confidence higher than 0.95, and we have to accept
the null hypothesis for the experiments with the second set
of coverage notions. In order to double-check our results, we
performed a t-test and obtained the same p-values.

We can conclude that some of our coverage-based fitness
functions are better than a mutation score function, both
regarding performance and computation time. However, there
is something more that we have to discuss. More precisely,
we detected that the computation time in some experiments
was lower by a huge margin than for others. After a careful
analysis, we concluded that this behaviour was produced by
the different orders of magnitude between the different G sets.
For example, the number of sets of 3-way transitions, actions
and extended transitions are so huge, that with a test suite
of length 1000 the variation on percentage between two test
suites is almost null. Alternatively, we have that the number
of sets of 1-way states and actions are very small (in fact,
these numbers are 100 and 50 in our experimental subjects,
respectively) and therefore with test suites of length 1000

is really easy to cover all the sets, obtaining a coverage of
100%. It is important to note that these two groups correspond
to the ones that confirmed the null hypothesis. This lack of
improvement (either because we reached the 100%, or the
improvement is negligible) triggers the second condition of
the termination criteria, stopping the execution before the 100
iterations are produced, and therefore reducing the execution
time. This behaviour shows that not all the coverage notions
that we propose in our work are useful for the average testing
practices, because some will arise pointless results.

V. DISCUSSION

During the development of our algorithm there were some
critical decisions we had to make and that can arise some
questions from an experienced reader. Therefore, in this sec-
tion we will address such decisions. We discuss in detail our
decision of using only one kind of coverage measures and our
decision of using a genetic algorithm with mutation score as
fitness function as a baseline algorithm for comparing with
our proposed algorithm. Finally, we also address the decision
of which crossover to use for our genetic algorithm.

A. Coverage Measures Choice

In traditional coverage-based literature there are two kind
of coverage metrics: the first one includes in the coverage
metric all the elements a test traverses, and the second one
only includes the last element (or set of elements) of each

test. We decided to stick to the first kind of coverage metrics
and forget about the second one because the characteristics of
the first kind would help better to the evolution of the genetic
algorithm. We chose the first kind of coverage metrics because
it is easier to obtain different scores for two test suites with
the same amount of tests, while the second kind of coverage
metrics would yield the same score for those two test suites
(if there are no repetitions). For example, let us say we have
two test suites with only one test: the test of the first test suite
has 17 input/output pairs and the test of the second test suite
has 5 input/output pairs. Let us say also consider the 2-way
action coverage. Then, if we use the first kind of metrics the
first test suite will cover 16 sets of actions and the second test
suite will cover 4 sets of actions, while if we use the second
kind of metrics both test suites cover only 1 set of actions.
However, it is clear that we should prefer the first test suite
over the second, as suggested by the first kind of coverage
measure.

B. Baseline Algorithm Choice

Mutation score is a traditional and widely known measure
used in mutation testing. It is typically used as a measure
to compare different test suite generation algorithms, as it
has been shown to be highly correlated with the fault finding
ability of a test suite [32]. That’s why we use it to compare
between different coverage measures and to compare with the
baseline algorithm. The choice we want to discuss here is why
we used it as a fitness function of our baseline algorithm.

The reasoning behind this choice is that a genetic algo-
rithm (in this case a grammar-guided genetic programming
algorithm) whose evolution is guided by mutation score as
fitness function will obtain test suites that obtain a high
mutation score, and therefore, will obtain the best scores later
when comparing with another algorithm using mutation score.
However, such algorithm will take a lot of computation time
due to the high computational cost of generating and using the
bunch of mutants needed to obtain a mutation score. Therefore,
this kind of algorithm should be a valid baseline with which
to compare our proposed algorithm.

We could have used other state-of-the-art algorithms to
which compare our algorithm, like genetic algorithms using
fitness functions like Test Set Diameter [10], [17], or more
classical algorithms like W [11] or Wp [7] methods. However,
we considered that a genetic algorithm using mutation score
as fitness function will perform better as a baseline measure.
Anyway, the comparison with these other methods would be
matter of future work, in order to ensure the suitability of our
proposed algorithm.

C. Crossover Choice

Concerning the crossover selected for our proposed
grammar-guided genetic programming algorithm, our choice
arises some concern due to its capability to include new (previ-
ously unseen) genetic information into the offspring. We chose
this crossover because we wanted a crossover with two clear
restrictions: first, the offspring had to be grammatically valid,

and second the offspring had to keep the same length than its
parents. Then, the spectrum of options that we had available
was limited. In fact, we could only find two crossovers that
conform to those restrictions.

The first crossover we considered was simpler but also
harder to produce: it consisted in finding the same grammatical
symbol with the same length to the leaf in both trees. This
situation happens very rarely and therefore the amount of
crossovers produced was less than optimal (even when trying
to produce the crossover for each pair of trees). This crossover
conformed to the required restrictions because the length was
maintained through the interchange of subtrees with the same
number of nodes, and the grammatical correctness was ensured
because both subtrees started with the same grammatical
symbol. However, it obtained worse results than our selected
crossover.

The second crossover was our selected crossover. It is a bit
more complex but at the same time easier to occur: it consisted
in finding the same grammatical symbol at both trees, exchang-
ing the subtrees that start at such symbols, and then solving
the possible problems with the length of the offspring. It is
in this last step where new genetic information was generated
in order to extend the shorter tree into the desired length.
This crossover conforms to the required restrictions because
the grammatical correctness was ensured due to both subtrees
starting with the same grammatical symbol, and the length
being maintained by generating or bounding the offspring.
This crossover does not have problems of incapability to be
produced and therefore it obtains better results than other
options.

VI. THREATS TO VALIDITY

In this section we briefly discuss some of the possible threats
to the validity of the results of our experiments. Concerning
threats to internal validity (results validity), the main threat
is associated with the possible faults in the developed experi-
ments because they could lead to misleading results. In order
to reduce the impact of this threat we tested our code with
carefully constructed examples for which we could manually
check the results. In addition, we repeated the experiments
many times in order to get a mean so that the randomisation
impact is reduced. Finally, there is the choice of baseline
measure, that if poorly chosen can arise better results than
the real ones. This concern is discussed in Section V and we
consider it properly addressed.

The main threat to external validity (results generalisation),
is the different possible systems to which we could apply our
algorithm. Such a threat cannot be entirely addressed since
the population of possible systems is unknown and it is not
possible to sample from this (unknown) population. In order to
diminish this risk, we perform our experiments over randomly
generated FSMs prepared to stretch the capabilities of the
algorithm.

Finally, we considered threats to construct validity (exper-
iments reality), that is, whether our experiments reflect real-
world situations or not. In our work, the main construct threat

is what would happen if we used our algorithm with much
more complex methods. In order to address this concern, we
have performed experiments with huge randomly generated
FSMs, but there is still room for improvement and it will be
matter of future work.

VII. CONCLUSIONS

Generating test suites with a high fault finding ability is
fundamental for ensuring the quality of software. Moreover,
performing this task in a quick and efficient manner is critical
for software budgets. In this paper we have presented a
grammar-guided Genetic Programming algorithm to generate
such tests suites, based on coverage criteria fitness functions.
We compared our proposal with another method that happens
to be worst than ours. We also found that 1-way transition
coverage is the preferable choice when generating test suites
if we are in a black-box scenario, and 2-way state coverage if
we are in a white-box scenario.

For future work, we would like to explore a wider range
of coverage notions, specifically t-way coverage with t > 3.
Evolving over this line of work, we would like to explore
the significance of the relation between the size of the G
set and the length of the test suites. We would like to deal
with bigger numbers of mutants. Therefore, we would like to
include recent work on producing and managing big sets of
mutants [6], [8], [12], [13] into our framework. We would
also like to explore the possibility of using another kind
of evolutionary computation algorithms, instead of a genetic
programming algorithm, like tree swarm optimisation [14],
[15]. In another line of work, we would like to use our recent
work on testing using Information Theory concepts [18]–[20]
to implement genetic algorithms using the induced measures
as fitness functions. Finally, we would like to extend our
framework to deal with FSMs that can represent systems with
distributed components [16], [28], [29].

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507–525, 2015.

[3] M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Núñez. Using
genetic algorithms to generate test suites for FSMs. In 15th Int. Work-
Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506, pages
741–752. Springer, 2019.

[4] M. Benito-Parejo and M. G. Merayo. An evolutionary algorithm
for selection of test cases. In 22nd IEEE Congress on Evolutionary
Computation, CEC’20, pages E–24535: 1–8. IEEE Computer Society,
2020.

[5] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and
Applications. Springer, 2008.

[6] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[7] T. S. Chow. Testing software design modeled by finite state machines.
IEEE Transactions on Software Engineering, 4:178–187, 1978.

[8] P. Delgado-Pérez and I. Medina-Bulo. Search-based mutant selection
for efficient test suite improvement: Evaluation and results. Information
and Software Technology, 104:130–143, 2018.

[9] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man
and Cybernetics B, 26(1):29–41, 1996.

[10] R. Feldt, S. M. Poulding, D. Clark, and S. Yoo. Test set diameter:
Quantifying the diversity of sets of test cases. In 9th IEEE Int. Conf. on
Software Testing, Verification and Validation, ICST’16, pages 223–233.
IEEE Computer Society, 2016.

[11] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite-state models. IEEE
Transactions on Software Engineering, 17(6):591–603, 1991.

[12] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A
tool for domain-independent model mutation. Science of Computer
Programming, 163:85–92, 2018.

[13] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. Wodel-Test:
a model-based framework for language-independent mutation testing.
Software and Systems Modeling (in press), 2021.

[14] D. Griñán and A. Ibias. Generating tree inputs for testing using evolu-
tionary computation techniques. In 22nd IEEE Congress on Evolutionary
Computation, CEC’20, pages E–24267: 1–8. IEEE Computer Society,
2020.

[15] D. Griñán, A. Ibias, and M. Núñez. Grammar-based tree swarm
optimization. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics,
SMC’19, pages 76–81. IEEE Press, 2019.

[16] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering
in the distributed test architecture. IEEE Transactions on Reliability,
67(2):522–537, 2018.

[17] A. Ibias, D. Griñán, and M. Núñez. GPTSG: a Genetic Programming
Test Suite Generator using Information Theory measures. In 15th Int.
Work-Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506,
pages 716–728. Springer, 2019.

[18] A. Ibias, R. M. Hierons, and M. Núñez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information
& Software Technology, 112:132–147, 2019.

[19] A. Ibias and M. Núñez. SqSelect: Automatic assessment of failed
error propagation in state-based systems. Expert Systems with Applica-
tions, 174:114748, 2021.

[20] A. Ibias, M. Núñez, and R. M. Hierons. Using mutual information to
test from Finite State Machines: Test suite selection. Information &
Software Technology, 132:106498, 2021.

[21] ISO/IEC JTCI/SC21/WG7, ITU-T SG 10/Q.8. Information Retrieval,
Transfer and Management for OSI; Framework: Formal Methods in
Conformance Testing. Committee Draft CD 13245-1, ITU-T proposed
recommendation Z.500. ISO – ITU-T, 1996.

[22] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[23] J. Kennedy and R. Eberhart. Particle swarm optimization. In 3rd Int.
Conf. on Neural Networks, ICNN’95, pages 1942–1948. IEEE Computer
Society, 1995.

[24] J. R. Koza. Genetic programming. MIT Press, 1993.
[25] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen. How effectively does

metamorphic testing alleviate the oracle problem? IEEE Transactions
on Software Engineering, 40(1):4–22, 2014.

[26] J. D. McGregor and D. A. Sykes. A Practical Guide to Testing Object-
Oriented Software. Addison Wesley object technology series. Pearson /
Prentice Hall, 2001.

[27] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. S., and M. O’Neill.
Grammar-based genetic programming: a survey. Genetic Programming
and Evolvable Machines, 11(3-4):365–396, 2010.

[28] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing with
asynchronous communications and timestamps. Distributed Computing,
31(5):327–342, 2018.

[29] M. G. Merayo, R. M. Hierons, and M. Núñez. A tool supported
methodology to passively test asynchronous systems with multiple users.
Information & Software Technology, 104:162–178, 2018.

[30] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
John Wiley & Sons, 3rd edition, 2011.

[31] A. Núñez, M. G. Merayo, R. M. Hierons, and M. Núñez. Using genetic
algorithms to generate test sequences for complex timed systems. Soft
Computing, 17(2):301–315, 2013.

[32] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman.
Mutation testing advances: An analysis and survey. volume 112 of
Advances in Computers, pages 275 – 378. Elsevier, 2019.

[33] S. Splaine and S. P. Jaskiel. The web testing handbook. STQE Pub.,
2001.

[34] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE
Computer, 27:17–27, 1994.

10.7. Feature Selection using Evolutionary Computation Techniques for
Software Product Line Testing 185

10.7 Feature Selection using Evolutionary Compu-
tation Techniques for Software Product Line
Testing

Authors Alfredo Ibias and Luis Llana
Title Feature Selection using Evolutionary Compu-

tation Techniques for Software Product Line
Testing

Publication Type Conference
Venue 2020 IEEE Congress on Evolutionary Com-

putation
Year 2020
DOI/URL https://doi.org/10.1109/CEC48606.

2020.9185675
Pages 8
Authors’ Contributions Ibias and Llana developed the theory. Ibias

designed the experiments. Ibias developed
and executed the experiments. Ibias and
Llana wrote the manuscript. Ibias and Llana
reviewed the manuscript.

https://doi.org/10.1109/CEC48606.2020.9185675
https://doi.org/10.1109/CEC48606.2020.9185675

Feature Selection using Evolutionary Computation
Techniques for Software Product Line Testing

Alfredo Ibias
Universidad Complutense de Madrid

Madrid, Spain
aibias@ucm.es

Luis Llana
Universidad Complutense de Madrid

Madrid, Spain
llana@ucm.es

Abstract—Software product lines are an excellent mechanism
in the development of software. Testing software product lines
is an intensive process where selecting the right features where
to focus it can be a critical task. Selecting the best combination
of features from a software product line is a complex problem
addressed in the literature. In this paper, we address the
problem of finding the combination of features with the highest
probability of being requested from a software product line
with probabilities. We use Evolutive Computation techniques
to address this problem. Specifically, we use the Ant Colony
Optimization algorithm to find the best combination of features.
Our results report that our framework overcomes the limitations
of the brute force algorithm.

Index Terms—Software Testing, Evolutionary Computation,
Software Product Lines

I. INTRODUCTION

During the last years, software product lines (in short,
SPLs) have become a widely adopted mechanism for efficient
software development. They are a set of similar software-based
systems produced from a set of software features that are
shared between them using a common means of production.
The main goal of SPLs is to increase the productivity of
creating software products. They achieve this goal by selecting
those software systems that are better for a specific criterion
(e.g., a software system is less expensive than others; it
requires less time to be executed, etc.). Currently, different
approaches for representing the product line organisation can
be found in the literature, such as FODA [38], RSEB [30],
PLUSS [28] and SPLA [2]

The formal langage SPLA was introduced in [4]. The authors
present a formal language capable to express the FODA
diagrams (Figure 1 shows some examples). A recent work [14]
has proposed a probabilistic extension to SPLA: SPLAP . This
proposal includes a probability whenever there is a choice
in the representation of the SPL. This probability allows us
to know which features are requested more frequently and
which feature combinations are the most popular ones. This
knowledge is beneficial to make decisions about the SPL, the
resources destined to each feature, and the SPL updates.

Software testing [1] is the main validation technique to
assess the reliability of complex software systems. When

This work has been supported by the Spanish MINECO-FEDER (grant
number FAME, RTI2018-093608-B-C31) and the Region of Madrid (grant
number FORTE-CM, S2018/TCS-4314).

A

B

 A; B;X

A

B

 A; B;X

A

B C

 A; (B;X ∨ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 B 6⇒ C in A; (B;X ∧ C;X)

A

B C

 B⇒ C in A; (B;X ∧ C;X)

Fig. 1: Examples of translation from FODA Diagrams into
SPLA.

testing SPLs [18], it is crucial to distribute the resources
between the different features of the line in a smart way. We
are particularly concerned about the testing resources assigned
to each component of the software system. These resources are
limited so, if we had information about the most requested
components of the software system (what we have called fea-
tures) we could assign them more testing resources. Therefore,
the information about the more requested features from the
SPL can be vital to distribute the resources during testing. This
problem has been addressed in [14]. Besides, when producing
SPLs, we want to pay attention to have a better engagement
between the features that are more commonly shipped together.
Therefore, more development and testing resources are ideally
focused on those features and their engagement. However, it is
not trivial (and sometimes not feasible) to know the probability
of use of all the possible feature combinations that a product
line can produce. Therefore, being able to know which feature
combinations are more used can be critical when testing SPLs.
In this paper, we present an approach to get those feature
combinations.

Heuristic search algorithms are techniques commonly used
in Mathematics and Computer Science either to optimize a

978-1-7281-6929-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

function or to find the best possible solution for a given
problem. These techniques, also referred to as metaheuris-
tics, can be roughly divided into three categories: global
search techniques such as simulated annealing [40], evolutive
techniques such as genetic algorithms [29], and constructive
techniques such as Ant Colony Optimization [26], [27].

In this paper, we have used an Evolutionary Computation
technique to select features from a SPL. We have chosen
this particular family of techniques because it is well suited
for parallel searching, and it also combines the knowledge
obtained by each member of the population of candidate solu-
tions. Furthermore, by starting with a random set of candidate
solutions, the algorithm can quickly obtain a candidate solution
that suits our goal. More specifically, we have implemented a
variation of a typical Evolutionary approach: the Ant Colony
Optimization (ACO) algorithm [26], [27]. In this variation we
have combined the classical ACO algorithm with a SPLAP

expressions interpreter to be able to search, in an a priory
unknown search space, the feature combination with a higher
probability that the SPLAP expression can produce.

Then, we show the results of some experiments. In them,
we can clearly see how our framework can solve the feature
selection problem we have raise, beating in time (saving
around 67% of time) to the standard brute force algorithm.
Also, we show how our framework can obtain as good results
as the ones obtained by the brute force algorithm, getting in
mean feature combinations with only an 18% less probability.
We also analyse some extreme cases, where the randomisation
factors have had a high impact.

Finally, we would like to mention that the use of metaheuris-
tics in testing is not new [3], [5], [21], [23], [32], [33], [36],
[45]. In particular, there is some work on the application of the
swarm idea to testing [31], [48]. The novelty of our approach
resides in the fact that we are using this metaheuristics to the
feature selection problem as a previous step before properly
testing an SPL.

The rest of the paper is organised as follows. In Section II,
we present some theoretical concepts that we use along with
our paper. In Section III, we introduce our feature selection
framework. In Section IV, we present our experiments and
discuss the results. In Section V, we review some of the
possible threats to the validity of our results. Finally, in
Section VI, we give conclusions and outline some directions
for future work.

II. PRELIMINARIES

In this section we briefly introduce the concepts that will
be used along the work. First, we define the concepts of SPL,
software feature, and SPLAP process algebra.

A Software Product Line (SPL) is, as defined by The
Carnegie Mellon Software Engineering Institute, “a set of
software-intensive systems that share a common managed set
of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set
of core assets in a prescribed way” [42]. The idea of SPLs is
that they allow producing, from a set of predefined software

features, a piece of software that includes all those features.
SPLAP [14] extends these classic SPLs concepts with a notion
of probability. This probability indicates the preferences of the
users in front of a choice.

We have decided to represent SPLs using the SPLAP

process algebra [14]. In order to work with this algebra, we
will consider a set of features, denoted by F , and the elements
A, B, C, . . . will stand for elements of F . We have a special
feature X 6∈ F to mark the end of a product. We consider
non-degenerated probabilities in the syntax, that is, for all
probability p we have 0 < p < 1.

Definition 1: A probabilistic software product line is a term
generated by the following grammar:

P ::= X | nil | A;P | A;p P | P ∨p Q | P ∧Q |
A 6⇒ B in P | A⇒ B in P | P\A | P ⇒ A

where A, B ∈ F , X /∈ F y p ∈ (0, 1). The set of all software
product lines is denoted by SPLAP .

This probabilistic process algebra has an operational seman-
tics to guide how to interpret the expressions of the algebra.
The operational semantics rules are displayed in Figure 2. A
relevant property of this algebra is that each time we find
a probability, the feature from the left-hand side gets the
probability p, and the feature from the right-hand side gets
the probability 1 − p, but those are not the full probabilities
of each feature. In fact, the probability of a single feature in
a SPL is a measure of its occurrences in the set of products.

The operational semantics of an SPLAP expression P is
a tree structure. The set of products of P is computed by
traversing this tree.

Definition 2: Let P,Q ∈ SPLAP . We write P
s

==⇒p Q if
there exists a sequence of consecutive transitions

P = P0
a1−−→p1

P1
a2−−→p2

P2 · · ·Pn−1
an−−→pn

Pn = Q

where n ≥ 0, s = a1a2 · · · an and p = p1 · p2 · · · · pn. We say
that s is a trace of P .

Let s ∈ F∗ be a trace of P . We define the product bsc ⊆ F
as the set consisting of all features belonging to s.

Let P ∈ SPLAP . We define the set of probabilistic products
of P , denoted by prodP(P), as the set

prodP(P) =
{

(pr, p) | p > 0 ∧ p =
∑
{q | P sX

==⇒q Q
∧ bsc = pr}

}
However, computing this tree is computationally expensive,

and can be infeasible in some cases. That is the reason we
need to work with evolutive computation techniques. And as
this tree can be seen as a directed graph, then a convenient
evolutive technique to search this tree as a search space is the
Ant Colony Optimization algorithm.

The Ant Colony Optimization algorithm is a well known
algorithm in the Evolutionary Computation field. It is a
distributed algorithm of search in a graph-like search space.
It consists of a set of ants, that are the agents that explore
the search space. Then, each ant look for the shortest path
from the initial node to the target node, choosing their next
move based on a random choice modified by the weigh of each

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

[tick] X X−−→1 nil [feat] A;P A−−→1 P

[ofeat1] A;p P
A−−→p P [ofeat2] A;p P

X−−→ (1−p) nil

[cho1]
P A−−→p P1

P ∨q Q A−−→p·q P1

[cho2]
Q A−−→q Q1

P ∨p Q A−−→ (1−p)·q Q1

[con1]
P A−−→p P1

P ∧Q A−−→ p
2
P1 ∧Q

[con2]
Q A−−→q Q1

P ∧Q A−−→ q
2
P ∧Q1

[con3]
P X−−→q nil, Q

X−−→p nil

P ∧Q X−−→p·q nil

[con4]
P A−−→p P1, Q

X−−→q nil

P ∧Q A−−→ p·q
2
P1

[con5]
P X−−→p nil, Q

A−−→q Q1

P ∧Q A−−→ p·q
2
Q1

[req1]
P C−−→p P1, C 6= A

A⇒ B in P C−−→p A⇒ B in P1

[req2]
P A−−→p P1

A⇒ B in P A−−→p P1 ⇒ B

[req3]
P X−−→p nil

A⇒ B in P X−−→p nil

[excl1]
P C−−→p P1, C 6= A, C 6= B

A 6⇒ B in P C−−→p A 6⇒ B in P1

[excl2]
P A−−→p P1

A 6⇒ B in P A−−→p P1\B

[excl3]
P B−−→p P1

A 6⇒ B in P B−−→p P1\A
[excl4]

P X−−→p nil

A 6⇒ B in P X−−→p nil

[forb1]
P B−−→p P1, B 6= A

P\A B−−→p P1\A
[forb2]

P X−−→p nil

P\A X−−→p nil

[mand1]
P X−−→p nil

P ⇒ A
A−−→p X

[mand2]
P A−−→p P1

P ⇒ A
A−−→p P1

[mand3]
P B−−→p P1, A 6= B

P ⇒ A
B−−→p P1 ⇒ A

A, B, C ∈ F , a ∈ F ∪ {X}

Fig. 2: SPLAP operational semantics.

path and the pheromones released by other ants that previously
performed that move.

Formally, an Ant Colony Optimization algorithm [26] needs
a combinatorial optimization problem to be solved. This
problem can be defined as:

Definition 3: A model P = (S,Ω, f) of a combinatorial
optimization problem consists of:
• a search space S defined over a finite set of discrete

decision variables Xi, i = 1, . . . , n.
• a set Ω of constraints among the variables.
• an objective function f : S→ R+

0 to be minimised.
The generic variable Xi takes values in Di = v1i , . . . , v

|Di|
i . A

feasible solution s ∈ S is a complete assignment of values to
variables that satisfies all constraints in Ω. A solution s∗ ∈ S
is called a global optimum if and only if f(s∗) ≤ f(s) ∀s ∈ S.

Then, from this setup we can generate the construction
graph GC(V,E),where V is a set of vertices and E is a set
of edges. This graph can be obtained from the set of solution
components C in two ways: components may be represented
either by vertices or by edges. Artificial ants move from vertex
to vertex along the edges of the graph, incrementally building
a partial solution.

Additionally, ants deposit a certain amount of pheromone
on the components, that is, either on the vertices or on
the edges that they traverse. The amount of ∆τ pheromone

Set parameters;
Initialise pheromone trails;
while termination criterion not reached do

Construct Ant Solutions;
Update Pheromones;

end
Algorithm 1: Ant Colony Optimization algorithm: general
scheme

deposited may depend on the quality of the solution found.
Subsequent ants use the pheromone information as a guide
toward promising regions of the search space.

The ACO general scheme is presented in Algorithm 1. In
each iteration, each ant generates a solution. Then, the global
state updates the pheromones left by the ants in their solution
path. Following there is a more detailed explanation of each
step:

Construct Ant Solutions: At each iteration, a set of m
ants generates solutions taking elements from a finite set of
available solution components C = {cij}, i = 1, . . . , n, j =
1, . . . , |Di|. The construction starts from an empty solution set
sP = ∅ and, at each step, the ant extends its partial solution
adding a feasible solution element from the set N(sP) ⊆ C,
that is the set of elements of C that can be added to the
partial solution sP without violating any constraint from Ω.

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Schema of the proposed feature selection framework

This process can be seen as a walk on the construction graph
GC(V,E). The choice of a solution component from N(sP)
is guided by a stochastic mechanism, which is biased by the
pheromone associated with each of the elements of N(sP).
The rule for the stochastic choice of solution components vary
across different ACO algorithms but, in all of them are inspired
by the behaviour of real ants.

Update Pheromones: The pheromone update aims to in-
crease the pheromone values associated with good or promis-
ing solutions, and to decrease those that are associated with
bad ones. Usually, this is achieved by decreasing all the
pheromone values through pheromone evaporation, and by
increasing the pheromone levels associated with a chosen set
of good solutions.

III. FEATURE SELECTION FRAMEWORK

In this section, we present our feature selection framework.
Its main goal is to find a combination of features that have a
high enough probability for a given SPL, that is, a SPLAP

expression. As we have already explained, we decided to
rely on evolutionary computation techniques to compute these
feature combinations. Specifically, we decided to use an ACO
algorithm because we considered it to be the most suitable
one for this problem. In future work we will address the use
of other evolutionary computation techniques.

Below, we briefly describe the main components of our
framework:

• A software product line, it is the system that we are
working with. It is represented as a probabilistic algebra
expression, specifically, as a SPLAP expression [14].

• A SPLAP interpreter that allows us to explore the search
space generated by the SPLAP expression without fully
computing it.

• An Ant Colony Optimization algorithm. It leads the
search for a feature combination with high probability.

Fig. 4: Schema of the experiments flow

A graphical representation of our framework can be found in
Figure 3.

In our framework, we receive a SPL, expressed as a SPLAP

expression, intending to find a set of features that fulfil the req-
uisites of the SPL and at the same time has a high probability.
This probability, coming from the SPLAP expression, usually
represents the probability of each feature to be chosen, but it
does not have to be limited to that purpose [14]. However,
in our scenario, we assume that the probabilities represent the
likelihood of each feature to be chosen, because we are looking
for the feature combination that has the higher probability to
be selected and therefore the one that needs more testing focus
when testing the SPL.

Then, with the SPLAP expression, we interpret it to be able
to execute an ACO algorithm over it. As our target is to find
a set of features with a high probability, but without having to
compute all the probabilities of all the possible combinations
of features of the SPLAP expression, we need to have an
interpreter. This interpreter has to, given a feature of the SPLAP

expression, return the probability of that feature, but without
computing the full SPLAP expression tree.

For our ACO algorithm to work, we need to have a combi-
natorial optimization problem. Then, we need to express our
problem as a combinatorial optimization one, in the following
way:
• Search space S: it is the full SPLAP tree, whose decision

variables are the feature to choose next.
• Set of constraints Ω: it is composed by:

– A constraint that states that a valid path should end
in a X feature.

– A constraint that states that a valid path should fulfil
the SPLAP expression constraints.

• Objective Function f : it is the function assigning to each

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100
Product Line number

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
od

uc
t L

in
e

be
st

 p
ro

ba
bi

lit
y

Fig. 5: Sorted obtained probabilities (blue = brute force, red
= ACO)

0 20 40 60 80 100
Product Line number

0

200

400

600

800

1000

Pr
od

uc
t L

in
e

be
st

 ti
m

e

Fig. 6: Sorted obtained times (blue = brute force, red = ACO)

set of features their probability in the SPLAP expression.
In this case, we look to maximize it.

Then, with this well defined combinatorial optimization
problem, the ACO algorithm follows the general scheme
presented in Algorithm 1. The only modification is the fact
that, when exploring the search space, the ants are generating
it instead of having a memory variable storing all the informa-
tion. Thus, the ACO algorithm has to work with the SPLAP

interpreter in order to obtain the distances (in this case, the
probabilities).

Another important fact about the ACO algorithm is that
the distance between nodes is the probability of choosing
the feature associated with the target node. This implies that
the total distance travelled by an ant is the product of the
probabilities of each step, instead of the sum of the weights
as in the classical ACO algorithm.

IV. EXPERIMENTS

In this section, we present an experiment we performed
intending to evaluate the suitability of our proposed frame-
work. The schema of the experiment (graphically presented

0 20 40 60 80 100
Product Line number

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
od

uc
t L

in
e

pr
ob

ab
ilit

y
lo

ss

Fig. 7: Sorted probability loss

0 20 40 60 80 100
Product Line number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

od
uc

t L
in

e
tim

e
sa

vi
ng

Fig. 8: Sorted time saving

in Figure 4) is very similar to our general framework (see
Figure 3). There is, however, a slight difference. To be able
to compare the performance of our ACO algorithm with
respect to computing the full tree from the SPLAP expression,
we decided to also compute the feature combination with
higher probability by a brute force algorithm so that we can
compare the performance in time versus the difference in the
probabilities obtained. However, although we have computed
all the probabilities from the SPLAP expression, we should not
use those probabilities for the ACO algorithm, but instead, it
should compute their own probabilities based on which paths
the ants take.

For our experiments, we needed four elements:
• A set of SPLAP expressions as experimental subjects.
• An interpreter of SPLAP expressions.
• A brute force algorithm to find the set of features with

the highest probability.
• An Ant Colony Optimization algorithm implementation1,

modified to be able to work with the SPLAP probabilistic

1We used the code from https://github.com/pjmattingly/
ant-colony-optimization as a starting point for our adapted ACO algorithm.

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

process algebra.
The experimental subjects set consists of 100 SPLAP ex-

pressions automatically generated using the BeTTy tool [47]
and stored in an fodaA format in .xml files. The interpreter
allows us to compute the probabilities of each feature in an
ad-hoc way, so we do not fully compute the SPLAP expression
tree. The brute force algorithm is an algorithm that asks
the interpreter, for each feature of the SPLAP expression,
which is its probability. It returns the feature with the highest
probability, but at the cost of a longer computation. Therefore,
we need to work with small SPLAP expressions to end in a
reasonable time. The ACO algorithm is an ACO algorithm that
searches the set of features with maximum probability from
the SPLAP expression, using the interpreter to compute the
probabilities. For our ACO algorithm, we decided to use 5
ants, and perform a maximum of 10 iterations over the main
loop. The pheromone evaporation coefficient was 0.4, and the
pheromone constant was 1000. Finally, the α and β values
used to calculate the attractiveness of each path where 0.5
and 1.2 respectively. The ants and iterations values are so low
because we are working with small SPLAP expressions (as
explained before), and therefore higher values are unnecessary
and a waste of resources.

With the interpreter and the ACO algorithm, we were able
to implement our framework and test it against the SPLs rep-
resented as SPLAP expressions coming from the experimental
subjects set. To perform interesting experiments, we took the
100 SPLAP expressions and computed their best selection of
features, that is, the one with the highest probability. We com-
puted those selections both with the brute force algorithm and
the ACO algorithm and compared the probabilities obtained
and the computation times. The code and results of the exper-
iments can be found at https://github.com/Colosu/FSACO.

In Table I we can find the probabilities obtained for each
SPLAP expression, as well as the computation times. In Fig-
ure 5, we can compare the probabilities obtained graphically.
The same happens for times in Figure 6. In both figures, the
results from the brute force algorithm are in blue and the
results from the ACO algorithm are in red. They are sorted
to facilitate the display of the results. Finally, in Figure 7 we
can observe the sorted probability losses obtained, that is, the
difference (in percentage) between the probabilities of the best
feature combination and the one obtained by our framework.
And in Figure 8 we can see the sorted time savings achieved.
In mean, we have loss an 18.2318% of probability saving at
the same time a 67.33% of time. This shows that our method
is not only useful to save time. We also obtain good feature
combinations: those whose probability is close to the best
combination (in terms of probability).

From the results, we can make some interesting remarks.
First, it is interesting to see that there are some cases where
the ACO algorithm saves more than 97% of the time while
losing no probability (that is, giving the feature combination
with the highest probability). This is the case of trials number
8 or 34. Another interesting remark is the fact that there are
around 40% of the cases where there is no loss of probability,

while there is always at least a 30% of time-saving. Moreover,
there are only 3 cases (trials 22, 32 and 70) where the loss of
probability is proportionally higher than the time saving, what
can be a result of the randomization factors. However, also
due to the randomization factors, there are cases where the
time saving comes with a high probability loss, being the case
of the trial number 32 the clearest case (although the saving
in time is still high). In fact, there are only 2 cases (trials 17
and 32) where the loss of probability surpass the 60%.

V. THREATS TO VALIDITY

In this section, we briefly discuss some of the possible
threats to the results of our experiments validity. Concerning
threats to internal validity, which consider uncontrolled factors
that might be responsible for the obtained results, the main
threat is associated with the possible faults in the developed
experiment because they could lead to misleading results. To
reduce the impact of this threat, we tested our code with
carefully constructed examples for which we could manually
check the results. Besides, we repeated the experiment with
many subjects to diminish the effect of randomization factors.

The main threat to external validity, which concerns condi-
tions that allow us to generalize our findings to other situations,
is the different possible SPLs to which we could apply
our framework. Such a threat cannot be entirely addressed
since the population of possible SPLs is unknown, and it
is not possible to sample from this (unknown) population.
To diminish this risk, we considered different SPLs in the
experiments.

Finally, we considered threats to construct validity, which
are related to the reality of our experiments, that is, whether
our experiments reflect real-world situations or not. In our
work, the main construct threat is what would happen if we
use our framework with much more complex SPLs, which is
a matter of future work.

VI. CONCLUSIONS

We have proposed a new framework for feature selection
in software product lines with probabilities. Our framework
strongly relays on Evolutionary Computation techniques to
perform feature selection. Specifically, we have used a novel
variant of ACO to deal with an a priory unknown search
space. With this new framework, we can obtain new feature
combinations for a given SPL without computing all the
possible feature combinations, which is a time-consuming
task. Besides, to present the new framework, in this paper,
we have reported some of our experiments. Their goal was
to show that the loss in the feature combination probabilities
produced by our framework pays back with the saving of time
when computing those combinations.

For future work we have already identified several research
directions concerning applicability, scalability, suitability and
adaptability of our framework. First, we plan to adapt our
framework to perform feature selection in SPLs where instead
of probabilities we have costs. Since there are similarities, but
also differences, between probabilities and costs we will try to

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

Brute Brute
Trial Force ACO Probability Force ACO Time

Number Probability Probability Loss Time Time Saving
1 0.9568 0.7458 0.2204 14.1544 3.6634 0.7411
2 0.9868 0.7558 0.2341 14.7537 4.2998 0.7085
3 1.0 1.0 0.0 7.5902 3.0380 0.5997
4 0.9578 0.5 0.4780 67.1252 4.0392 0.9398
5 1.0 0.8333 0.1666 35.2642 5.9373 0.8316
6 1.0 0.5 0.5 17.3872 3.9101 0.7751
7 1.0 0.7317 0.2682 12.4005 4.4771 0.6389
8 1.0 1.0 0.0 152.1496 3.223 0.9788
9 0.9971 0.9968 0.0003 19.8590 4.3838 0.7792
10 1.0 1.0 0.0 8.7878 3.5475 0.5963
11 0.9952 0.5 0.4976 17.9624 3.1754 0.8232
12 1.0 0.7843 0.2156 52.3167 6.2011 0.8814
13 1.0 0.9226 0.0773 15.1992 7.4489 0.5099
14 1.0 1.0 0.0 6.8014 2.9485 0.5664
15 0.9 0.5833 0.3518 7.3125 3.4301 0.5309
16 1.0 0.75 0.25 9.5622 3.5962 0.6239
17 0.9034 0.3289 0.6359 22.9624 5.5561 0.7580
18 1.0 1.0 0.0 11.3242 3.6242 0.6799
19 1.0 0.9037 0.0962 11.4791 4.2828 0.6269
20 0.9978 0.8925 0.1055 13.5067 3.6242 0.7316
21 1.0 0.8 0.1999 5.7608 3.0709 0.4669
22 1.0 0.6153 0.3846 5.5168 3.5669 0.3534
23 1.0 0.8344 0.1655 26.4979 9.5484 0.6396
24 1.0 1.0 0.0 8.0393 3.3579 0.5823
25 1.0 0.5 0.5 8.0977 3.1421 0.6119
26 1.0 0.6222 0.3777 7.4093 3.9446 0.4676
27 1.0 1.0 0.0 9.6065 3.5982 0.6254
28 1.0 1.0 0.0 12.3441 2.9144 0.7638
29 0.9910 0.9268 0.0647 260.5862 30.8953 0.8814
30 1.0 1.0 0.0 31.9025 4.7426 0.8513
31 1.0 0.9190 0.0809 52.2687 26.1559 0.4995
32 0.9978 0.0158 0.9840 36.01 3.4776 0.9034
33 0.9836 0.9696 0.0141 8.9961 3.3452 0.6281
34 1.0 1.0 0.0 120.6549 3.4089 0.9717
35 1.0 1.0 0.0 15.8293 3.2840 0.7925
36 1.0 0.8695 0.1304 7.9836 3.5726 0.5525
37 1.0 1.0 0.0 5.4251 3.2981 0.3920
38 1.0 1.0 0.0 10.4942 4.4392 0.5769
39 0.9409 0.8346 0.1129 11.1994 4.4170 0.6056
40 1.0 1.0 0.0 67.2651 5.0123 0.9254
41 1.0 0.8982 0.1017 8.8722 4.0693 0.5413
42 0.875 0.875 0.0 8.7718 3.7987 0.5669
43 1.0 1.0 0.0 6.9869 3.1898 0.5434
44 1.0 0.5 0.5 9.7102 3.1239 0.6782
45 1.0 0.4883 0.5116 6.4319 2.8708 0.5536
46 0.9983 0.9461 0.0523 110.5130 13.4314 0.8784
47 0.6666 0.6666 0.0 7.6843 3.3206 0.5678
48 1.0 1.0 0.0 101.6822 3.1101 0.9694
49 1.0 0.5625 0.4375 16.2177 4.0925 0.7476
50 1.0 1.0 0.0 8.5078 3.0497 0.6415

(a) First part.

Brute Brute
Trial Force ACO Probability Force ACO Time

Number Probability Probability Loss Time Time Saving
51 1.0 0.7258 0.2741 6.6376 3.6591 0.4487
52 1.0 0.8709 0.1290 9.8265 4.0051 0.5924
53 0.9359 0.5 0.4657 12.2820 3.0111 0.7548
54 1.0 0.9768 0.0231 32.4471 8.1153 0.7498
55 1.0 1.0 0.0 6.4097 3.2232 0.4971
56 1.0 1.0 0.0 10.5378 3.1247 0.7034
57 0.5 0.5 0.0 18.9448 3.5220 0.8140
58 1.0 1.0 0.0 27.3563 3.5678 0.8695
59 0.9882 0.9523 0.0362 256.0567 4.7459 0.9814
60 1.0 0.9375 0.0625 19.6477 7.1258 0.6373
61 1.0 0.7472 0.2527 1013.2517 12.8199 0.9873
62 1.0 0.5 0.5 14.2741 3.7750 0.7355
63 1.0 0.6590 0.3409 11.5821 4.0514 0.6502
64 1.0 0.5 0.5 10.0417 2.8096 0.7201
65 1.0 0.5 0.5 6.7181 2.8282 0.5790
66 1.0 1.0 0.0 9.9793 4.1015 0.5889
67 0.8269 0.5 0.3953 8.0312 3.2244 0.5985
68 1.0 0.5 0.5 12.9420 3.5798 0.7233
69 1.0 1.0 0.0 598.2494 3.8589 0.9935
70 1.0 0.4912 0.5087 6.3343 3.2288 0.4902
71 1.0 0.5 0.5 8.2636 3.4499 0.5825
72 1.0 1.0 0.0 27.9893 3.0902 0.8895
73 0.9714 0.5 0.4852 9.0948 4.4819 0.5071
74 1.0 0.5 0.5 23.3201 3.3990 0.8542
75 0.9212 0.7804 0.1528 8.8912 4.2803 0.5185
76 1.0 0.6153 0.3846 8.9465 3.1816 0.6443
77 1.0 0.5 0.5 14.1738 3.4967 0.7532
78 1.0 0.7787 0.2212 10.4757 4.3059 0.5889
79 1.0 1.0 0.0 7.6632 3.6695 0.5211
80 1.0 0.68 0.3199 10.5954 3.6948 0.6512
81 1.0 1.0 0.0 9.1105 2.9731 0.6736
82 1.0 1.0 0.0 7.3558 3.3774 0.5408
83 1.0 1.0 0.0 7.8904 3.0344 0.6154
84 0.9858 0.5 0.4928 170.1517 4.5620 0.9731
85 1.0 1.0 0.0 12.7440 3.4231 0.7313
86 0.75 0.75 0.0 5.2166 2.9751 0.4296
87 1.0 1.0 0.0 11.8614 3.6342 0.6936
88 1.0 1.0 0.0 14.9899 3.0819 0.7943
89 1.0 1.0 0.0 13.2409 3.4413 0.74
90 0.9393 0.4477 0.5233 10.1325 4.2891 0.5766
91 1.0 0.8505 0.1494 18.3256 5.1875 0.7169
92 1.0 0.9012 0.0987 15.5291 9.4323 0.3926
93 0.9690 0.9690 0.0 46.3790 31.8633 0.3129
94 1.0 1.0 0.0 20.1493 3.0774 0.8472
95 1.0 0.8892 0.1107 20.3595 6.3576 0.6877
96 0.5 0.5 0.0 7.6664 3.8037 0.5038
97 0.9870 0.875 0.1134 19.4409 5.9538 0.6937
98 1.0 0.8437 0.1562 16.5696 4.0402 0.7561
99 1.0 1.0 0.0 28.0511 7.1120 0.7464

100 1.0 0.5 0.5 19.6242 3.0028 0.8469

(b) Second part.

TABLE I: Results of the experiments.

incorporate into our framework recent work on formal testing
of fuzzy systems [12], [13], where probabilities are replaced
by confidences, and on testing using Information Theory
concepts [37]. Second, concerning scalability, we would like
to consider more complex SPLs and check whether our
technique scales well. In addition, we would like to use current
approaches to mutation testing [15], [20], [22] to efficiently
generate and process big amount of mutants representing either
non-optimal or faulty selections of features. Concerning suit-
ability, we have two orthogonal lines of work. First, we would
like to compare our ACO approach with other metaheuristics
such as Bee Swarm [39] and Water Based [46] metaheuristics
and Collective Intelligence [24], [25], [43], [44]. Second, we
would like to consider SPLs with existing feature selections,
produced by an expert, and compare the quality of the existing
feature selections and the ones produced by our framework.
Concerning adaptability, we would like to assess the useful-

ness of our methodology in other frameworks. In particular,
we consider more complicated feature selection frameworks
where we have to work with deadlock avoidance/analysis [9]–
[11], [19], so that we can scale the feature selection from
single systems to entire software families. A second line of
work consists in applying our framework to formal models of
cloud [6], [7], [16] and distributed [34], [35] systems because
they are highly configurable and, therefore, will induce SPLs
with many features. Finally, it is interesting the possibility of
integration of our feature selection framework to existing tools
like ProFeat [17], to represent product lines, PRISM [41], to
analyse probabilistic systems, and MEdit4CEP-CPN [8], to
represent complex events.

REFERENCES

[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

[2] C. Andrés, C. Camacho, and L. Llana. A formal framework for software
product lines. Information & Software Technology, 55(11):1925–1947,
2013.

[3] C. Andrés, M. G. Merayo, and M. Núñez. Multi-objective genetic
algorithms: Construction and recombination of passive testing properties.
In 22nd Int. Conf. on Software Engineering & Knowledge Engineering,
SEKE’10, pages 405–410. Knowledge Systems Institute, 2010.

[4] César Andrés, Carlos Camacho, and Luis Llana. A formal framework
for software product lines. Inf. Softw. Technol., 55(11):1925–1947, 2013.

[5] M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Núñez. Using
genetic algorithms to generate test suites for FSMs. In 15th Int. Work-
Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506, pages
741–752. Springer, 2019.

[6] A. Bernal, M. E. Cambronero, A. Núñez, P. C. Cañizares, and V. Valero.
Improving cloud architectures using UML profiles and M2T transfor-
mation techniques. The Journal of Supercomputing, 75(12):8012–8058,
2019.

[7] A. Bernal, M. E. Cambronero, V. Valero, A. Núñez, and P. C. Cañizares.
A framework for modeling cloud infrastructures and user interactions.
IEEE Access, 7:43269–43285, 2019.

[8] J. Boubeta-Puig, G. Dı́az, H. Macià, V. Valero, and G. Ortiz.
MEdit4CEP-CPN: An approach for complex event processing modeling
by prioritized colored Petri nets. Information Systems, 81:267–289,
2019.

[9] M. Bravetti, M. Carbone, and G. Zavattaro. Undecidability of asyn-
chronous session subtyping. Inf. Comput., 256:300–320, 2017.

[10] M. Bravetti, M. Carbone, and G. Zavattaro. On the boundary between de-
cidability and undecidability of asynchronous session subtyping. Theor.
Comput. Sci., 722:19–51, 2018.

[11] M. Bravetti and G. Zavattaro. On the expressive power of process
interruption and compensation. Mathematical Structures in Computer
Science, 19(3):565–599, 2009.

[12] I. Calvo, M. G. Merayo, and M. Núñez. A methodology to analyze
heart data using fuzzy automata. Journal of Intelligent & Fuzzy Systems,
37(6):7389–7399, 2019.

[13] I. Calvo, M. G. Merayo, M. Núñez, and F. Palomo-Lozano. Confor-
mance relations for fuzzy automata. In 15th Int. Work-Conf. on Artificial
Neural Networks, IWANN’19, LNCS 11506, pages 753–765. Springer,
2019.

[14] C. Camacho, L. Llana, A. Núñez, and M. Bravetti. Probabilistic
software product lines. Journal of Logical and Algebraic Methods in
Programming, 107:54 – 78, 2019.

[15] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[16] P. C. Cañizares, A. Núñez, J. de Lara, and L. Llana. MT-EA4Cloud:
A methodology for testing and optimising energy-aware cloud systems.
Journal of Systems and Software, 163:110522:1–110522:25, 2020.

[17] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. Profeat: feature-
oriented engineering for family-based probabilistic model checking.
Formal Aspects of Computing, 30(1):45–75, 2018.

[18] M. Cordy, P. Heymans, P. Schobbens, A. M. Sharifloo, C. Ghezzi, and
A. Legay. Verification for reliable product lines. CoRR, abs/1311.1343,
2013.

[19] F. S. de Boer, M. Bravetti, M. D. Lee, and G. Zavattaro. A petri net based
modeling of active objects and futures. Fundam. Inform., 159(3):197–
256, 2018.

[20] P. Delgado-Pérez and I. Medina-Bulo. Search-based mutant selection
for efficient test suite improvement: Evaluation and results. Information
and Software Technology, 104:130–143, 2018.

[21] P. Delgado-Pérez, I. Medina-Bulo, and M. Núñez. Using evolutionary
mutation testing to improve the quality of test suites. In 19th IEEE
Congress on Evolutionary Computation, CEC’17, pages 596–603. IEEE
Computer Society, 2017.

[22] P. Delgado-Pérez, Louis M. Rose, and I. Medina-Bulo. Coverage-based
quality metric of mutation operators for test suite improvement. Software
Quality Journal, 27(2):823–859, 2019.

[23] K. Derderian, M. G. Merayo, R. M. Hierons, and M. Núñez. A case
study on the use of genetic algorithms to generate test cases for temporal
systems. In 11th Int. Conf. on Artificial Neural Networks, IWANN’11,
LNCS 6692, pages 396–403. Springer, 2011.

[24] G. Dı́az, H. Macià, V. Valero, J. Boubeta-Puig, and F. Cuartero. An
intelligent transportation system to control air pollution and road traffic

in cities integrating CEP and colored petri nets. Neural Computing and
Applications, 32(2):405–426, 2020.

[25] G. Dı́az, H. Macià, V. Valero, J. Boubeta-Puig, and G. Ortiz. Facilitating
the quantitative analysis of complex events through a computational in-
telligence model-driven tool. Scientific Programming, 2019:2604148:1–
2604148:17, 2019.

[26] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE
Computational Intelligence Magazine, 1(4):28–39, 2006.

[27] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.
[28] M. Eriksson, J. Börstler, and K. Borg. The PLUSS approach - domain

modeling with features, use cases and use case realizations. In Int. Conf.
on Software Product Lines, SPLC’05, pages 33–44, 2005.

[29] D. E. Goldberg. Genetic Algorithms in Search, Optimisation and
Machine Learning. Addison-Wesley, 1989.

[30] M. L. Griss, J. M. Favaro, and M. D’Alessandro. Integrating feature
modeling with the RSEB. In Int. Conf. on Software Reuse, ICSR’98,
pages 76–85, 1998.

[31] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr. Swarm testing. In
22nd ACM SIGSOFT Int. Symposium on Software Testing and Analysis,
ISSTA’12, pages 78–88. ACM Press, 2012.

[32] L. Gutiérrez-Madroñal, A. Garcı́a-Domı́nguez, and I. Medina-Bulo.
Evolutionary mutation testing for IoT with recorded and generated
events. Software - Practice & Experience, 49(4):640–672, 2019.

[33] M. Harman and P. McMinn. A theoretical and empirical study of search-
based testing: Local, global, and hybrid search. IEEE Transactions on
Software Engineering, 36(2):226–247, 2010.

[34] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering
in the distributed test architecture. IEEE Transactions on Reliability,
67(2):522–537, 2018.

[35] R. M. Hierons and M. Núñez. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and
Software, 132:319–335, 2017.

[36] A. Ibias, D. Griñán, and M. Núñez. GPTSG: a Genetic Programming
Test Suite Generator using Information Theory measures. In 15th Int.
Work-Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506,
pages 716–728. Springer, 2019.

[37] A. Ibias, R. M. Hierons, and M. Núñez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information
& Software Technology, 112:132–147, 2019.

[38] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson.
Feature-Oriented Domain Analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-21, Carnegie Mellon University, 1990.

[39] D. Karaboga and B. Akay. A survey: algorithms simulating bee swarm
intelligence. Artificial Intelligence Review, 31(1):61, Oct 2009.

[40] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[41] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In Int. Conf. on Computer Aided
Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

[42] J. D. McGregor. Testing a software product line. In Testing Techniques
in Software Engineering, Pernambuco Summer School on Software
Engineering, PSSE’07, pages 104–140, 2007.

[43] V. D. Nguyen, H. B. Truong, M. G. Merayo, and N. T. Nguyen.
An overview on consensus-based approaches to processing collective
inconsistency and knowledge integration. WIREs Data Mining and
Knowledge Discovery, 9(4):1311:1–1311:9, 2019.

[44] V. D. Nguyen, H. B. Truong, M. G. Merayo, and N. T. Nguyen. Toward
evaluating the level of crowd wisdom using interval estimates. Journal
of Intelligent & Fuzzy Systems, 37(6):7279–7289, 2019.

[45] A. Núñez, M. G. Merayo, R. M. Hierons, and M. Núñez. Using genetic
algorithms to generate test sequences for complex timed systems. Soft
Computing, 17(2):301–315, 2013.

[46] P. Rabanal, I. Rodrı́guez, and F. Rubio. Applications of river formation
dynamics. Journal of Computational Science, 22:26–35, 2017.

[47] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-
Cortés. Betty: Benchmarking and testing on the automated analysis
of feature models. In 6th Int. Workshop on Variability Modeling of
Software-Intensive Systems, VaMoS’12, pages 63–71, 2012.

[48] A. Windisch, S. Wappler, and J. Wegener. Applying particle swarm
optimization to software testing. In 9th Genetic and Evolutionary
Computation Conference, GECCO’07, pages 1121–1128. ACM Press,
2007.

Authorized licensed use limited to: Newcastle University. Downloaded on September 20,2020 at 02:31:05 UTC from IEEE Xplore. Restrictions apply.

10.8. Using Ant Colony Optimisation to Select Features having Associated
Costs 195

10.8 Using Ant Colony Optimisation to Select Fea-
tures having Associated Costs

Authors Alfredo Ibias, Luis Llana and Manuel Núñez
Title Using Ant Colony Optimisation to Select Fea-

tures having Associated Costs
Publication Type Conference
Venue 33rd IFIP International Conference on Test-

ing Software and Systems
Year 2021
DOI/URL To appear
Pages 17
Authors’ Contributions Ibias, Llana and Núñez developed the the-

ory. Ibias designed the experiments. Ibias de-
veloped and executed the experiments. Ibias
and Llana wrote the manuscript. Llana and
Núñez reviewed the manuscript.

Using Ant Colony Optimisation to Select Features
having Associated Costs?

Alfredo Ibias1[0000−0002−3122−4272], Luis Llana1[0000−0003−1962−1504], and Manuel
Núñez1[0000−0001−9808−6401]

Universidad Complutense de Madrid, Madrid 28040, Spain
{aibias,llana,manuelnu}@ucm.com

Abstract. Software Product Lines (SPLs) strongly facilitate the automation of
software development processes. They combine features to create programs (called
products) that fulfil certain properties. Testing SPLs is an intensive process where
choosing the proper products to include in the testing process can be a critical
task. In fact, selecting the best combination of features from an SPL is a complex
problem that is frequently addressed in the literature. In this paper we use evo-
lutionary algorithms to find a combination of features with low testing cost that
include a target feature, to facilitate the integration testing of such feature. Specif-
ically, we use an Ant Colony Optimisation algorithm to find one of the cheapest
(in terms of testing) combination of features that contains a specific feature. Our
results show that our framework overcomes the limitations of both brute force
and random search algorithms.

Keywords: Software Product Lines · Integration Testing · Ant Colony Optimi-
sation · Feature Selection.

1 Introduction

Software Product Lines (SPLs) define generic software products, enabling mass cus-
tomisation. Generally speaking, SPLs provide a systematic and disciplined approach
to developing software. SPLs encode a set of similar (software) systems that can be
constructed from a specific set of features. These features can be combined according
to some specific rules defining which products (that is, which combinations of features)
are valid. In this paper we use FODA [22] to represent SPLs. In order to formally
reason about FODA diagrams, it is important to have a formal framework to repre-
sent FODA diagrams. In previous work, we introduced SPLA [1], an algebra that can
provide a precise semantics to these diagrams. The original framework was extended
to manage an important aspect of features: their costs. This is captured in the process
algebra SPLA-CRIS [4]. In this work, these costs will represent the cost of testing a
specific feature of the product. Testing SPLs is fundamental to ensure the quality and

? This work has been supported by the Spanish MINECO/FEDER project FAME (RTI2018-
093608-B-C31); the Region of Madrid project FORTE-CM (S2018/TCS-4314) co-funded by
EIE Funds of the European Union; and the Santander - Complutense University of Madrid
(grant number CT63/19-CT64/19).

2 A. Ibias et al.

reliability of the products generated by them. When testing SPLs [26], it is crucial to
distribute the testing resources between the different features of the line in a smart way.
One way of distributing such resources is based on the probability of each feature be-
ing requested [18]. However, if we do not have such probabilities, we can consider the
costs of testing each feature. The idea is that the products with the minimum cost will
be easier to test and, therefore, will consume less resources. This situation is ideal when
testing the integration of a specific feature into the SPL. For example, if we add a new
feature to an existing SPL and we want to test that its integration with the other features
does not produce any errors, then it is useful to have a product with lower testing cost
because the integration testing process will be faster and/or cheaper.

We are going to focus on the problem of Integration Testing of Software Compo-
nents [21]. Actually, software components can be seen as the features of an SPL. In
fact, integration testing within an SPL has gained attention from researchers [7,29,33].
One important aspect of integration testing is its cost: although testing each variant of
an SPL may be feasible, it is impossible to independently test all possible (maybe re-
dundant) products [24]. In our approach, we are interested in getting the product that
includes a particular feature having the smallest testing cost. Note that the order of the
features may be relevant in the complexity and costs of the testing process [34].

In general, testing cost can refer to multiple concepts: from actual monetary cost of
testing the integration of the feature into the product, to the necessary time to test such
integration, passing through the amount of resources needed to test that integration. In
our framework, we only need to know that such cost exists and that it represents the
same along all individual costs of the same SPL. Therefore, along this paper we will
be talking about testing cost in a broad sense and we will try to minimise it. Finally,
regarding the origin of such costs, we will assume that they are provided together with
the SPL. Ideally, such costs would be obtained through estimation, approximation or
empirical methods and added to the SPL before using the solution presented in this
paper.

It is important to clarify what we mean by computing a cheap (or expensive) product
of an SPL. In our context, a cheap product is a product that has a low total testing cost
compared to the cost of other products. For example, if the testing cost represents the
estimated time needed to test such product, then a cheap product would be one whose
aggregated time to test it is low compared with other products of the SPL (e.g. hours
vs. weeks). Note that cheaper to test products will not necessarily be the ones with a
smaller number of features.

Finally, we want to clarify that testing cost is not a proxy for fault detection effec-
tiveness. We are not looking for the product that will arise more faults, but for the one
that will be cheaper to test. This is so because our solution looks to fill a very specific
need: we have a feature to add to an SPL and we want to cheaply test its integration
into the SPL. The goal is not to find all the faults in the introduced feature, but instead
ensure that it can be included into products of the SPL. This is specially useful when
one has an SPL with hundreds or thousands of features and there is not enough time
or resources to test all the possible combinations. Therefore, it is useful to test that the
feature can be included into products and that there are no errors when used in combi-
nation with other features, what can be tested using any product. One example of such

Using Ant Colony Optimisation to Select Features having Associated Costs 3

situation appears when adding a new database to a server SPL. It is necessary to test
that the added database is correctly integrated with the other features of the SPL, but
the tester only needs to test the integration in one product because all the productions
might have the same integration faults.

In this paper we apply Ant Colony Optimisation algorithm (ACO) [9] to select a
combination of features from an SPL with the minimum testing cost that contains a
given feature. This combination will be later used to test the integration of such fea-
ture into the SPL. To the best of our knowledge, this is the first attempt to develop an
efficient solution to this problem if we rely on a formal approach (in our case, a pro-
cess algebra). To develop this algorithm we modify, enhance and extend our recently
developed framework [18] so that we select feature combinations with low testing cost
from SPLs including testing costs information, and so that we have the requirement of
including a given feature in the generated product.

In order to evaluate the quality of the solutions obtained by our ACO-approach, we
compare our framework with a brute force algorithm (computing all the combinations
of features and choosing one with the lowest cost) and a random algorithm (randomly
choosing features but such that they conform a valid product). We could not compare
our algorithm to other alternatives as there were no previous proposals addressing our
specific scenario. Our framework takes significantly less time to compute a solution than
the brute force algorithm (around a 99% saving), while obtaining total testing costs that
are not much higher (around a 25% increase). It also gets solutions with lower testing
cost than the ones obtained by the random algorithm (around a 15% cheaper). In order
to properly compare our ACO and the random approach, we allow the random approach
to run an equal amount of time as the ACO one. In conclusion, our approach represents
a preferable choice to these two alternatives.

The rest of the paper is organised as follows. In Section 2 we review related work.
In Section 3 we present background concepts that we use in our paper. In Section 4
we introduce our feature selection framework. In Section 5 we present our experiments
and discuss the results. In Section 6 we briefly review some threats to the validity of our
results. In Section 7 we discuss some considerations concerning the different choices
that we took when defining our algorithm. Finally, in Section 8, we give conclusions
and outline some directions for future work.

2 Related work

In this section we review previous work related to the research presented in this paper.
We have chosen FODA [22] to represent SPLs but there are other alternative ap-

proaches such as RSEB [12] and PLUSS [10]. We think that FODA represents several
advantages: it is widely used and, more important, it is based on graphic models.

We are aware that we cannot compute the best, according to a given criteria, combi-
nation of features due to the combinatorial nature of the problem. In fact, we performed
a small experiment to show that this is the case also in our framework. Therefore, we
have to rely on an heuristic approach. Our previous work on applying heuristic ap-
proaches to testing [17, 19, 20] showed that Swarm Intelligence [36] was very suitable.
Among the different approaches to implement a swarm, in this paper we have decided

4 A. Ibias et al.

to consider the Ant Colony Optimisation algorithm (ACO) [9] because it allowed us to
build on top of previous work, facilitating the implementation of the approach. ACO is
inspired by the behaviour of real ant colonies in nature and has been successfully used
in computationally hard classical optimisation problems such as the travelling salesman
problem but, to the best of our knowledge, the research presented in this paper is a novel
application of ACO. Although we have used ACO, other alternative approaches in the
broad field of evolutionary algorithms could have been selected. Evolutionary algo-
rithms are a family of meta-heuristics that base its intelligent behaviour in the evolution
of its population. Some approaches in the broad field of Artificial Intelligence consider
the combination of many individuals, usually with limited intelligence, that work as a
collective to either reach a goal or find a good enough solution to a certain problem. In
particular, there are several applications of these algorithms in testing [3, 5, 30].

We have used an evolutionary computation approach to find cheap to test products
but a framework supporting constraint propagation could be used. In this case, we could
rely on tools like FaMa [2] and FeatureIDE [35]. However, we prefer to use the com-
bination of a process algebra and an evolutionary computation technique because they
allow us to work with a precise semantic description of each product, facilitating the
task of deciding the equivalence, up to a certain criterion, of different products.

There exist evolutionary approaches for test case selection and prioritisation in
SPLs [13, 25]. Despite working on testing, these solutions cannot be easily adapted
to cope with our problem because we do not select/generate test cases: we select a set
of features such that testing the resulting product is as cheap as possible.

Finally, more related to our work, there are evolutionary computation approaches to
select features. A study [31] showed that the Indicator-Based Evolutionary Algorithm
(IBEA) was better than other evolutionary approaches dealing with high complexity in
the decision objective spaces. We cannot use this algorithm to solve our problem be-
cause IBEA strongly depends on user preferences (we do not have them). In addition,
it seems like this algorithm performs better in a multi-objective optimisation problem:
we think that a simpler approach, like ours, might work better in our single-objective
optimisation problem but further experiments are needed to support this claim. Finally,
another important difference is that they define the set of rules from the SPL as an
objective of the optimisation problem because their solution can create non-valid prod-
ucts. In our case, we use a process algebra as the search space to ensure the correctness
of the generated products. Another related study [14] proposed the SIP method, which
improved previous proposals beating even the IBEA algorithm. The approach mainly
focused on enhancing the search through a novel representation that hard-codified some
constraints and through optimising first the constraints related to the generation of valid
products. They also used their approach over real-world SPLs. However, this approach
has the same concerns than the previous one: its problem is based on user preferences,
it is focused on multi-objective optimisation, and, furthermore, it can produce non-valid
products. All these differences make hard to adapt this kind of algorithms to our prob-
lem, as they rely on some assumptions that we do not consider and they can generate
non-valid products that our approach cannot generate.

Using Ant Colony Optimisation to Select Features having Associated Costs 5

A

B

 A; B;X

A

B

 A; B;X

A

B C

 A; (B;X ∨ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 A; (B;X ∧ C;X)

A

B C

 B 6⇒ C in A; (B;X ∧ C;X)

A

B C

 B⇒ C in A; (B;X ∧ C;X)

Fig. 1: Translation of FODA Diagrams into SPLA.

3 Preliminaries

In this section we present notation and introduce concepts related to the main two lines
that we use in this paper: specification of Software Product Lines with costs and the Ant
Colony Optimisation algorithm.

3.1 SPLA-CRIS: SPLs with costs

In this section we briefly review the formal language SPLA-CRIS. The interested reader
is referred to the original work [4] for more details.

Definition 1. We will assume that we have a finite set of features F and we will use A,
B, C. . . to denote single features. A Software Product Line is a term generated by the
following Extended BNF-like expression:

P ::= X | nil | A;P | A;P | P ∨Q | P ∧Q
A 6⇒ B in P | A⇒ B in P

where A, B ∈ F . We denote the set of terms of this algebra by SPLA.

6 A. Ibias et al.

Next we describe the operators of the algebra. The term nil represents an SPL with
no products, while X is an SPL that has only the empty product; they are the terminal
elements of the syntax. Then the we have the mandatory prefix operator A;P (feature A
is mandatory) and the optional prefix operator A;P (A is optional). The binary operator
P ∨Q represents the choose-one. The binary operator P ∧Q represents the conjunction
operator. These operators are associative and commutative, so they can be extended
as n-ary operators. The operator A⇒ B in P represents the require constraint. The
operator A 6⇒ B in P represents the exclusion constraint. Figure 1 shows the relation
between these operators and FODA diagrams.

We can define an operational semantics. Given A ∈ F∪{X}, we will write P A−−→Q
if we can evolve from P to Q using the defined operational rules. It is important to
remark that X is not a feature and, as such, it is not included in the product. This
semantics is given as a set of SOS rules and the interested reader can find them, as well
as detailed explanations, in our previous work [1, 4].

Single transitions can be sequentially executed to produce traces. We use ε to denote
an empty trace and consider the usual concatenation operator s1 · s2. Abusing the
notation, we will write A ∈ s is A appears in s. Traces ending with X, that we call
successful, are the only ones associated with valid products. It is irrelevant the order in
which the features of a trace are obtained. Given a successful trace s, [s] denotes the
set obtained from the elements of s.

Finally, given P ∈ SPLA, we define the products of P , denoted by prod (P), as
prod (P) = {[s] | s ∈ tr(P)}. �

In order to define a cost model, we will have a cost function such that given a
sequence of features (representing the part of the product that we have defined so far)
and a single feature (representing the new feature that we would like to add), returns the
cost of testing this new feature in the given product. This cost can represent either time
and/or resources needed to perform the (integration) testing of this new feature, given
the previous ones. In our framework, we assume that costs can be represented by natural
numbers. Sometimes, we will not be able to compute the testing cost of integrating a
new feature with the ones already chosen. For instance, if the new one is incompatible
with the existing features or there are missing dependencies. Therefore, we extend the
set of costs with a new symbol ⊥ to represent indefiniteness.

Definition 2. The set of costs is given by IN⊥ = IN ∪ {⊥}. We extend arithmetic op-
erations in the expected way: for any x ∈ IN⊥ we have x + ⊥ = ⊥ + x = ⊥ and
x ≤ ⊥.

A cost function is a function c : F∗ ×F 7→ IN⊥. �

In order to compute the cost associated with a product we need to extend the oper-
ational semantics (see our previous work [4] for a complete definition). Intuitively, let
P ∈ SPLA be a process, c be a cost function and s be a successful trace of P . We denote
by tc(P, s) the cost associated with the set of features included in s according to c.

Finally, let us remind that the position of the features in the trace is not relevant to
define a product although it may have an impact in its costs. Therefore, different traces

Using Ant Colony Optimisation to Select Features having Associated Costs 7

Server

Roles Environments

Web DB Monitor

MySQL SQLServerApache Nginx Nagios New Relic

Production Developing

Fig. 2: FODA App Server feature diagram.

Server =
P⇒ MS in (
P 6⇒ NE in (

S; (
R; (
W; (AP;X ∨ NG;X)
∧
D; (MS;X ∨ SS;X)
∧
M; (NA;X ∨ NR;X)

)
∧
E; (P;X ∨ Dv;X)

)
)

)
)

P itc(P)
{S, R, E, W, D, P, AP, MS} 2.10
{S, R, E, W, D, P, NG, MS} 2.40
{S, R, E, W, D, Dv, AP, MS} 1.10
{S, R, E, W, D, Dv, NG, MS} 1.30
{S, R, E, W, D, Dv, AP, SS} 1.20
{S, R, E, W, D, Dv, NG, SS} 1.00
{S, R, E, W, D, P, M, NA, AP, MS} 2.50
{S, R, E, W, D, Dv, M, NA, AP, MS} 2.30
{S, R, E, W, D, Dv, M, NE, AP, MS} 2.20
{S, R, E, W, D, Dv, M, NA, AP, SS} 2.20
{S, R, E, W, D, Dv, M, NE, AP, SS} 2.10
{S, R, E, W, D, P, M, NA, NG, MS} 2.80
{S, R, E, W, D, Dv, M, NA, NG, MS} 2, 40
{S, R, E, W, D, Dv, M, NE, NG, MS} 2.30
{S, R, E, W, D, Dv, M, NA, NG, SS} 2.20
{S, R, E, W, D, Dv, M, NE, NG, SS} 2.10

Legend:
S : Server
R : Roles
E : Environments
P : Production
Dv : Developing
W : Web server
D : Database Server
M : Monitoring service
AP : Apache
NG : Nginx
MS : MySQL
SS : SQLServer
NA : Nagios
NE : New Relic

Fig. 3: SPLA term.

can produce the same product but with different costs. As a consequence, we need to
consider a set of costs for each product, because a product will be equivalent to a set of
sequences.

Definition 3. Let c be a cost function. We consider the function cSPLA : SPLA×P(F∗) 7→
P(IN⊥) defined as follows:

cSPLA(P, p) = {tc(P, s) ∈ IN⊥|∃s trace of P : [s] = p}

�

Example Let us illustrate the previous definitions with an example. Let us consider a
Server consisting of a Web Server and a Database. There are two possible environments
for the running server: the production environment and the developing environment.
There are two possibilities for the database: MySQL or SQLServer. For the Web server
we can use either Apache Web Server or Nginx. There are also two restrictions in the

8 A. Ibias et al.

case of the Production environment: First, the use of the New Relic monitor system is
forbidden. Second, the use of MySQL is mandatory. Figure 2 show the FODA diagram
corresponding to this description. This FODA diagram is translated to the SPLA term
in Figure 3 (left) to handle the system formally. The Integration Test costs appears in
the centre of Figure 3. Formally, the cost function is defined as follows: for s ∈ F∗
and A ∈ F , c(s, A) = itc([sA]) if the product [sA] is listed in table and c(s, A) = 0
otherwise.

3.2 Ant Colony Optimisation

The Ant Colony Optimisation algorithm (ACO) [9] is a well-known algorithm in the
evolutionary algorithms field. It is a distributed algorithm to explore a graph-like search
space associated with a combinatorial optimisation problem. It consists of a set of ants,
which are the agents that explore the search space. Each ant looks for the shortest path
from the initial node to the target node, choosing their next move based on a random
choice modified by the weigh of each path and the pheromones released by other ants
that previously performed that move.

Definition 4. A model P of a combinatorial optimisation problem is a tuple (S, Ω, f),
where S is a search space defined over a finite set X1, . . . , Xn of discrete decision
variables, Ω is a set of constraints over the variables, and f : S→ R+

0 is the objective
function to be minimised.

Each generic variable Xi takes values in Di = {v1i , . . . , v
|Di|
i }. A feasible solution

s ∈ S is a complete assignment of values to variables such that all the constraints in Ω
are satisfied. A feasible solution s∗ ∈ S is called a global optimum if and only if for all
s ∈ S we have f(s∗) ≤ f(s). �

Once we have a model of the problem that we would like to solve, we can generate
a construction graph. Artificial ants move from vertex to vertex along the edges of this
graph, incrementally building a partial solution. During this traversal of the graph, the
ants deposit a certain amount of pheromone on the edges that they traverse. The amount
of pheromone deposited by each artificial ant usually depends on the quality of the so-
lution reached after that specific traversal. The idea underlying ACO and the simulation
of pheromone is that other ants will use the information concerning the concentration
of pheromone as a hint to further explore promising regions of the search space.

The ACO general scheme proceeds as follows. After a preliminary step, where the
main parameters and the pheromone trails are initialised, we have a main loop that iter-
ates until we reach the termination criterion. This criterion may be based on the numbers
of iterations of the loop or on the quality of the obtained solution. In each iteration of
the loop, each ant generates a solution. Then, the global state updates the pheromones
left by the ants in their solution path. This task consists of two main consecutive steps.

First step of the loop: Construct ant solutions. In each iteration, m ants generate
solutions from a finite set of available solution components C. The construction starts
from an empty solution set sP = ∅ and, in each step, the ant extends its partial solution
by adding a feasible solution element from the set of elements of C that can be added

Using Ant Colony Optimisation to Select Features having Associated Costs 9

to the partial solution sP without violating any constraint inΩ. The choice of a solution
component from this set is guided by a stochastic mechanism, which is biased by the
pheromone associated with each of the elements in it. The rule for the stochastic choice
of solution components varies across different ACO algorithms but they are always
inspired by the behaviour of real ants. This process can be seen as a traversal of the
construction graph.

Second step of the loop: Update pheromones. The pheromone update aims to in-
crease the pheromone values associated with good or promising solutions and, in turn,
decrease those associated with bad ones. Usually, this is achieved by decreasing all the
pheromone values through pheromone evaporation and by increasing the pheromone
levels associated with a chosen set of good solutions.

4 ACO for feature selection taking into account testing costs

Our feature selection framework finds, for a given SPL and a selected feature, a com-
bination of features that contains said feature and such that the cost (in time and/or
resources) of testing the generated product is as low as possible. We will consider that
the SPL is formally defined as an SPLA-CRIS term. We use an ACO algorithm be-
cause it is the most suitable one for this problem. A comprehensive discussion about
this choice can be found in Section 7. Next, we briefly describe the main components
of our framework:

– An SPL represented as an SPLA-CRIS expression.
– An SPLA-CRIS interpreter that allows us to explore the search space generated by

the SPLA-CRIS expression without fully computing it.
– An ACO to lead the search for a feature combination with low cost.

We combine these three components as follows. We consider an SPLA-CRIS ex-
pression and derive the structure needed to execute our ACO over it with the goal of
finding a cheap to test product. However, we cannot compute the testing cost of all the
possible combinations of features of the SPLA-CRIS expression. We will rely on an
interpreter to compute the added testing cost after adding a new feature to the current
selection, but without constructing the full SPLA-CRIS expression tree.

As usual, our ACO needs to have a representation of our setting as a combinatorial
optimisation problem. We will define this problem as follows:

– Search space S. This is the full SPLA-CRIS tree. In addition, the associated deci-
sion variables are associated to the feature that we have to choose next.

– Set of constraints Ω. We have three constraints.
• A constraint stating that the last symbol of a valid path must beX. Remind that

this is the special symbol that we use to denote successful termination, that is,
the last symbol of a successful trace.

• A constraint stating that a valid feature combination should contain the previ-
ously selected feature.

• A constraint stating that a valid path can be generated by the definition of the
SPLA-CRIS expression that we are considering.

10 A. Ibias et al.

– Objective function f . This function assigns its cost to each set of features that can
be produced from the SPLA-CRIS expression. The goal of our ACO is to minimise
the value of this function.

Once we have our problem redefined as a combinatorial optimisation problem, our
ACO follows the general scheme presented in Section 3.2. The only adaption with re-
spect to this general scheme is that our ants generate on the fly the search space while
exploring it, instead of having all the information stored beforehand. Thus, our ACO
has to work together with our SPLA-CRIS interpreter in order to obtain the associated
costs.

It is important to note that our algorithm does not use any additional heuristic opti-
misation. In the literature there are some common heuristics, like removing mandatory
features (i.e. computing atomic sets), that are usually used to simplify the problem at
hand. In our case, as the goal is to have a lower testing cost, we cannot consider such
heuristic optimisation as they would modify the obtained testing costs. For example, in
the case of removing the mandatory features, that heuristic would produce testing costs
that do not consider the additional testing costs that each mandatory feature would add
with each added feature, costs that are not constant neither uniform between different
features.

5 Experimental Results

In order to evaluate the usefulness of our ACO to find cheap (in terms of testing) combi-
nations of features, according to a certain set of constraints defined by the corresponding
SPL, we decided to initially compare it with a brute force algorithm. The brute force
algorithm will effectively compute a feature combination with the lowest testing cost at
the expense of a long execution time. In contrast, we will show that our framework can
give feature combinations with slightly higher testing costs but having (much) shorter
execution times.

We set our ACO algorithm with the following parameters:

– Number of ants: 10.
– Number of maximum iterations: 100.
– Pheromone constant: 1000.
– Pheromone evaporation coefficient: 0.4.
– α coefficient: 0.5.
– β coefficient: 1.2.

These parameters are typical parameters in the literature and they worked very well
in our previous work [18]. Moreover, we did small experiments to tune the parameters
and none of them show better performance than these ones.

For our experiments, we used 75 SPLA-CRIS expressions with between 10 and
85 features. These SPLA-CRIS expressions were generated using previous work with
SPLA-CRIS [4], automatically generating them using the BeTTy tool [32] and storing
them in an fodaA format in .xml files. The costs in these expressions are also automat-
ically generated, and thus we consider that they represent the additional testing costs
that a feature will add to the product if included in it.

Using Ant Colony Optimisation to Select Features having Associated Costs 11

Brute Brute
Trial Force ACO Cost Force ACO Time

Number Cost Cost Increase Time Time Saving
1 27 36 33.33% 1.1713 4.5798 -291.01%
2 18 27 53.33% 6.5209 8.9389 -37.08%
3 36 45 25.00% 20.5985 9.8473 52.19%
4 63 72 14.29% 4,434.4519 14.8687 99.66%

Average 36 45 25.42% 1,115.6856 9.5587 99.14%

Table 1: Comparing our approach and brute force (time is measured in seconds).

In our first experiment we evaluated these expressions through our SPLA-CRIS in-
terpreter. Using this interpreter, we executed a brute force algorithm to compute all the
possible feature combinations as well as their costs. We also executed our ACO algo-
rithm using the SPLA-CRIS interpreter to obtain a feature combination with low cost.
Due to the randomisation involved in the ACO algorithm, we executed both algorithms
15 times for each SPLA-CRIS expression and measured the mean of the results of all
the computations. Unfortunately, after running during 20 hours the brute force algo-
rithm was able to compute the solution only for four expressions (note that the longest
time used by our ACO was less than 15 seconds). In Table 1 we compare the cost and
computation time for these expressions.

As expected, the brute force algorithm was unable to compute, in a reasonable time,
the best feature selection for most of the experiments (in fact, it was only able to com-
pute it for the smaller expressions, the ones with less than 13 features) due to the com-
binatorial explosion underlying feature selection, aggravated with minimising the cost.
This leaves us with only four values to compare our ACO with the brute force algo-
rithm. In this comparison we can see that our algorithm obtains, on average, a solution
that it is 25.42% more expensive than the best features combination (computed by the
brute force algorithm). In contrast, it needs on average 99.14% less time to produce this
solution.

Here, it is important to note that for the simplest cases, the brute force algorithm
needs less time than our ACO algorithm. The reason is that the expressions are so simple
that our ACO algorithm is overpowered for this task. That means that, as the expression
is so small, brute force computes all the combinations quickly (because there are so
few) while the ACO algorithm not only has to explore the expression, but it also needs
to achieve convergence (what will take a while due to the required iterations). However,
as we increase the complexity of the expressions, the brute force algorithm quickly
raises its execution time a lot (due to its exponential nature), while our ACO algorithm
keeps its execution time in a reasonable value.

The comparison with the brute force algorithm leaves us with so few results that
we decided to perform a second experiment and compare our framework with a random
algorithm. This random algorithm will give us the feature combination with lowest costs
of a set of randomly generated feature combinations that represent valid products. The
number of feature combinations on this set of randomly generated feature combinations

12 A. Ibias et al.

Trial Random ACO Cost
Number Cost Cost Saving (%)

1 52.2 52.2 0.00
2 36.0 34.8 3.33
3 50.4 50.4 0.00
4 73.8 73.8 0.00
5 63.6 63.6 0.00
6 70.2 69.0 1.71
7 63.6 61.2 3.77
8 73.2 70.8 3.28
9 67.8 67.2 0.88

10 75.0 70.8 5.60
11 63.6 63.6 0.00
12 62.4 57.0 8.65
13 91.8 87.0 5.23
14 81.6 77.4 5.15
15 70.8 66.0 6.78
16 58.2 54.0 7.22
17 83.4 79.2 5.04
18 99.6 79.8 19.88
19 78.0 76.8 1.54
20 99.0 81.0 18.18
21 80.4 79.2 1.49
22 111.0 96.6 12.97
23 70.8 67.8 4.24
24 96.0 80.4 16.25
25 76.8 69.0 10.16

Trial Random ACO Cost
Number Cost Cost Saving (%)

26 131.4 102.6 21.92
27 120.6 98.4 18.41
28 147.6 115.8 21.54
29 109.2 94.8 13.19
30 115.8 102.0 11.92
31 161.4 128.4 20.45
32 114.6 82.8 27.75
33 130.2 117.0 10.14
34 157.2 148.8 5.34
35 78.0 70.2 10.00
36 93.0 78.0 16.13
37 100.8 97.2 3.57
38 149.4 133.2 10.84
39 122.4 101.4 17.16
40 166.8 142.2 14.75
41 147.0 138.0 6.12
42 159.0 146.4 7.92
43 115.2 89.4 22.40
44 148.8 135.6 8.87
45 168.0 132.0 21.43
46 156.0 134.4 13.85
47 118.2 98.4 16.75
48 189.6 144.6 23.73
49 175.8 168.0 4.44
50 201.6 175.8 12.8

Trial Random ACO Cost
Number Cost Cost Saving (%)

51 221.4 159.6 27.91
52 136.8 120.6 11.84
53 176.4 142.8 19.05
54 151.2 123.0 18.65
55 142.2 96.0 32.49
56 208.8 176.4 15.52
57 166.8 139.8 16.19
58 145.2 105.0 27.69
59 166.8 135.0 19.06
60 175.2 135.0 22.95
61 178.2 139.2 21.89
62 185.4 167.4 9.71
63 199.2 171.0 14.16
64 254.4 171.6 32.55
65 168.6 121.2 28.11
66 173.4 146.4 15.57
67 238.8 187.8 21.36
68 210.0 191.4 8.86
69 226.2 129.0 42.97
70 201.0 133.2 33.73
71 209.4 163.8 21.78
72 309.6 196.8 36.43
73 340.8 207.0 39.26
74 285.6 150.6 47.27
75 197.4 143.4 27.36

Table 2: Results of the experiment comparing with respect to random.

will depend on how much time the algorithm is running. In our experiment, we first
run the ACO algorithm and then we run the random algorithm until it overcomes the
execution time the ACO algorithm needed. This way, the random algorithm always
has the same (or more) time to execute as our ACO and we compare the algorithms
performance, that is, the feature combination costs obtained.

We started with the same set of 75 SPLA-CRIS expressions and evaluated them
using our SPLA-CRIS interpreter. For each SPLA-CRIS expression, we also used this
interpreter to execute 15 times both our ACO algorithm and the random algorithm. We
computed mean costs and compared them (see Table 2).

In order to present an easy visualisation of all the results, we sorted the obtained
costs for the ACO approach, from lowest to highest, and produced the graphic shown
in Figure 4. We also obtained the sorted percentage cost saving of the ACO algorithm
with respect to the random algorithm (see Figure 5). In order to compute the cost sav-
ing of our approach with respect to the random algorithm, we proceeded as follows.
For each SPLA-CRIS expression, we computed the cost using both our ACO and the
random algorithm and computed the percentage difference of the ACO with respect to
the random algorithm. For example, if the cost associated with the selected product by
the ACO is equal to 135.0 and the cost obtained by the random algorithm, most likely
for a different product but also fulfilling the constraints associated to the SPL, is 175.2,
then the cost saving is equal to 100 · (1− 135.0

175.2) ≈ 22.95.
The analysis of the results shows that our ACO algorithm always finds feature com-

binations with lower costs than the random algorithm (or equal cost in the worst cases).
Therefore, our algorithm performs better than the random algorithm. On average, our
ACO computes solutions that are 14.87% cheaper.

Using Ant Colony Optimisation to Select Features having Associated Costs 13

0 10 20 30 40 50 60 70 80

100

200

300

Product Line number

Pr
od

uc
tL

in
e

m
ea

n
be

st
co

st

Fig. 4: Sorted obtained costs (blue = random, red = ACO).

We performed a statistical hypothesis test over the results, whose null hypothesis
was that the random algorithm and our framework give similar results, that is, both
obtain similar costs. We applied a one-way ANOVA test where we tested whether the
results of both algorithms are similar in average. Then, we computed the p-value for
the experiment, obtaining a p-value of 0.0037. This represents that there is a 00.37%
of probability that the null hypothesis is fulfilled. Therefore, we can reject the null
hypothesis for the experiment with a confidence higher than 99%, as its p-value is lower
than 0.01. In order to double-check our results, we also performed a t-test and obtained
the same p-value. Thus, the conclusion is that the performance of our ACO algorithm
is better than the random algorithm.

6 Threats to Validity

Threats to internal validity refer to uncontrolled factors that can affect the output of the
experiments, either in favour or against our hypothesis. The main threat in this category
is the possibility of having faults in the code of the experiments. We diminished this
threat by carefully testing the code, even using small examples for which we knew
the expected results. Additionally, in order to reduce the impact of the randomness
associated with our methodology, we repeated the experiments several times.

Threats to external validity refer to the generality of our findings to other situations.
The main threat in this category is given by the different possible SPLs to which we
could apply our framework. As the population of SPLs is unknown, this threat is not
fully addressable. In order to diminish this risk, we considered different SPLs in the
experiments.

Finally, threats to construct validity refer to the relevance of the properties we are
measuring for the extrapolation of the results to real-world examples. The main threat
in this category is what would happen if we use our framework with real-world SPLs
and/or with much more complex SPLs, which is a matter of future work.

7 Discussion about the suitability of ACO

We have shown that our ACO achieves good solutions for this task. However, it is pos-
sible that other heuristics could work better than ACO in this specific framework. Al-

14 A. Ibias et al.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

Product Line number

Pr
od

uc
tL

in
e

co
st

sa
vi

ng
(%

)

Fig. 5: Sorted cost saving.

though this comparison should be further investigated, and it will be indeed a matter of
future work, we would like to briefly justify why we decided to use an ACO algorithm.

Our main concern when developing the algorithm was that we needed to provide a
much faster solution than brute force while, at the same time, being able to obtain good
enough results. Therefore, we classified our problem as an exploratory problem. We
are aware that there are many evolutionary algorithms that usually work better than a
random based search. In our case, we needed a proposal able to search in a SPLA-CRIS
expression. Fortunately, this kind of syntactical expressions can be transformed into a
graph whose final states represent all the possible feature combinations that fulfil the
expression restrictions. Since this graph can have cycles, we need to perform an extra
step to unfold these cycles in order to be able to use a Genetic Programming based
algorithm to search for feature combinations inside this graph. This operation would in-
crease the complexity of the approach. In addition, since we are working with a search
space based on a graph structure, an approach such as particle swarm optimisation al-
gorithms would suffer because it needs extra adaptation phases that also will increase
the complexity of the algorithm. In contrast, ACO can be easily applied to this scenario
because our search space is represented as a graph where we are looking for a path from
the root to a final state, representing a valid feature combination, with a cost as low as
possible. So, in order to put into practice our approach we only needed an available
interpreter [4] that transform the SPLA-CRIS expressions into appropriate graphs.

8 Conclusions and future work

Software Product Lines are a useful tool for developing software systems in an auto-
matic way and testing them is a must. Integration testing is a process that SPLs should
overcome: we test how well a new feature is integrated with the already existing fea-
tures of the SPL. If we have the costs of testing each feature of the SPL, then we can
select the product that contains the new feature that has a lower testing cost, so we can
test its integration with the other features of the SPL in a quicker and/or cheaper way.

In this paper we have proposed a new framework for feature selection in SPLs
having testing costs associated with the combination of features. This feature selection
generates a product with low cost and a given feature. We have adapted ACO to deal
with an a priory unknown search space. Therefore, our framework is able to obtain

Using Ant Colony Optimisation to Select Features having Associated Costs 15

new feature combinations for a given SPL without computing all the possible feature
combinations, which is a time-consuming task. Besides, in order to assess the usefulness
of the new framework, we have reported on our most representative experiments. These
experiments show that our algorithm is well suited for this task and that it is preferable
than other simpler algorithms. Finding sub-optimal solutions in a shorter time can be
fundamental in some scenarios, as computing the optimal solution can require a huge
amount of resources and time. In fact, in our own experiments we were able to compute
the exact solution, by computing all the possible solutions, only for SPLs with a very
small number of features. In addition, our experiments show that our algorithm is better
than a random search, when giving the same time to both algorithms.

We have identified several research directions concerning applicability, scalability,
suitability and adaptability of our framework. Concerning scalability, we will consider
more complex SPLs and check whether our technique scales well. Although we will
not be able to compare our ACO with brute force, because the latter will not compute the
best solution, we want to explore the limit of our approach. In addition, we would like
to use current mutation testing approaches [11, 28] to efficiently generate and process
big amount of mutants representing either non-optimal or faulty selections of features.

With respect to suitability, we will consider two unrelated lines of work. First, al-
though our ACO is well suited for this task, we would like to compare it with other
heuristics that could work better than our proposal in this specific framework. Specif-
ically, we would like to compare our ACO approach with other meta-heuristics based
on Bee Swarm [23]. A second line of work to analyse the suitability of our framework
is to consider SPLs with existing feature selections, produced by an expert, and com-
pare their costs and the ones produced by our framework. In addition, as suggested by
a reviewer, it would be interesting to take into account that products including features
interacting with the new feature will be more likely to expose bugs, than products run-
ning the feature in isolation. Finally, concerning adaptability, we would like to assess
the usefulness of our methodology in other frameworks. First, we would like to apply
our framework to study formal models of cloud [6,27] and distributed [15,16] systems.
We choose this type of systems because we are familiar with them and, more impor-
tantly, because they are highly configurable and, therefore, will induce SPLswith many
features. Finally, we would like to evaluate whether it is possible to integrate our feature
selection framework in existing tools like ProFeat [8].

Acknowledgements

We would like to thank the anonymous reviewers for the careful reading, the many
constructive comments and the useful suggestions, which have helped us to further
strengthen the paper.

References

1. C. Andrés, C. Camacho, and L. Llana. A formal framework for software product lines.
Information & Software Technology, 55(11):1925–1947, 2013.

16 A. Ibias et al.

2. D. Benavides, P. Trinidad, A. Ruiz Cortés, and S. Segura. FaMa. In R. Capilla, J. Bosch, and
K. C. Kang, editors, Systems and Software Variability Management - Concepts, Tools and
Experiences, pages 163–171. Springer, 2013.

3. M. Benito-Parejo and M. G. Merayo. An evolutionary algorithm for selection of test cases.
In 22nd IEEE Congress on Evolutionary Computation, CEC’20, pages E–24535: 1–8. IEEE
Computer Society, 2020.

4. C. Camacho, L. Llana, and A. Núñez. Cost-related interface for software product lines.
Journal of Logic and Algebraic Methods in Programming, 85(1):227–244, 2016.

5. J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri. An empirical evaluation of
evolutionary algorithms for unit test suite generation. Information and Software Technology,
104:207–235, 2018.

6. P. C. Cañizares, A. Núñez, J. de Lara, and L. Llana. MT-EA4Cloud: A methodology
for testing and optimising energy-aware cloud systems. Journal of Systems and Software,
163:110522:1–25, 2020.

7. I. do Carmo Machado, P. A. da Mota Silveira Neto, and E. Santana de Almeida. Towards an
integration testing approach for software product lines. In IEEE 13th Int. Conf. on Informa-
tion Reuse & Integration, IRI’12, pages 616–623. IEEE, 2012.

8. P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. ProFeat: feature-oriented engineering
for family-based probabilistic model checking. Formal Aspects of Computing, 30(1):45–75,
2018.

9. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.
10. M. Eriksson, J. Borstler, and K. Borg. The PLUSS approach - domain modeling with fea-

tures, use cases and use case realizations. In 9th Int. Conference on Software Product Lines,
SPLC’06, LNCS 3714, pages 33–44. Springer, 2006.

11. P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. Wodel-Test: a model-based
framework for language-independent mutation testing. Software and Systems Modeling,
20(3):767–793, 2021.

12. M. Griss, J. Favaro, and M. D’Alessandro. Integrating feature modeling with the RSEB. In
5th Int. Conf. on Software Reuse, ICSR’98, pages 76–85. IEEE Computer Society, 1998.

13. C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. Le Traon. Bypassing
the combinatorial explosion: Using similarity to generate and prioritize T-Wise test configu-
rations for software product lines. IEEE Transactions on Software Engineering, 40(7):650–
670, 2014.

14. R. M. Hierons, M. Li, X. Liu, S. Segura, and W. Zheng. SIP: optimal product selection
from feature models using many-objective evolutionary optimization. ACM Transactions on
Software Engineering and Methodology, 25(2):17:1–17:39, 2016.

15. R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering in the distributed test
architecture. IEEE Transactions on Reliability, 67(2):522–537, 2018.

16. R. M. Hierons and M. Núñez. Implementation relations and probabilistic schedulers in the
distributed test architecture. Journal of Systems and Software, 132:319–335, 2017.

17. A. Ibias, D. Griñán, and M. Núñez. GPTSG: a Genetic Programming Test Suite Generator
using Information Theory measures. In 15th Int. Work-Conf. on Artificial Neural Networks,
IWANN’19, LNCS 11506, pages 716–728. Springer, 2019.

18. A. Ibias and L. Llana. Feature selection using evolutionary computation techniques for soft-
ware product line testing. In 22nd IEEE Congress on Evolutionary Computation, CEC’20,
pages E–24502: 1–8. IEEE Computer Society, 2020.

19. A. Ibias and M. Núñez. Using a swarm to detect hard-to-kill mutants. In 2020 IEEE Int.
Conf. on Systems, Man and Cybernetics, SMC’20, pages 2190–2195. IEEE Computer Soci-
ety, 2020.

Using Ant Colony Optimisation to Select Features having Associated Costs 17

20. A. Ibias, P. Vazquez-Gomis, and M. Benito-Parejo. Coverage-based grammar-guided genetic
programming generation of test suites. In 23rd IEEE Congress on Evolutionary Computa-
tion, CEC’21, pages 2411–2418. IEEE, 2021.

21. M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino, and A. Polini. Testing software components for
integration: a survey of issues and techniques. Software Testing, Verification and Reliability,
17(2):95–133, 2007.

22. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Carnegie
Mellon University, 1990.

23. D. Karaboga and B. Akay. A survey: algorithms simulating bee swarm intelligence. Artificial
Intelligence Review, 31(1):61–85, 2009.

24. R. Lachmann, S. Beddig, S. Lity, S. Schulze, and I. Schaefer. Risk-based integration test-
ing of software product lines. In 11th Int. Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS’17, pages 52–59. ACM Press, 2017.

25. R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and E. Alba. Comparative analysis of
classical multi-objective evolutionary algorithms and seeding strategies for pairwise testing
of software product lines. In 16th IEEE Congress on Evolutionary Computation, CEC’14,
pages 387–396. IEEE, 2014.

26. J. D. McGregor. Testing a software product line. In P. Borba, A. Cavalcanti, A. Sampaio,
and J. Woodcook, editors, Testing Techniques in Software Engineering: 2nd Pernambuco
Summer School on Software Engineering, PSSE’07, pages 104–140. Springer, 2010.

27. A. Núñez, P. C. Cañizares, M. Núñez, and R. M. Hierons. TEA-Cloud: A formal framework
for testing cloud computing systems. IEEE Transactions on Reliability, 70(1):261 – 284,
2021.

28. M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. Mutation testing
advances: An analysis and survey. volume 112 of Advances in Computers, pages 275 – 378.
Elsevier, 2019.

29. S. Reis, A. Metzger, and K. Pohl. Integration testing in software product line engineering:
A model-based technique. In 10th Int. Conf. on Fundamental Approaches to Software Engi-
neering, FASE’07, LNCS 4422, pages 321–335. Springer, 2007.

30. D. S. Rodrigues, M. E. Delamaro, C. G. Corrêa, and F. L. S. Nunes. Using genetic algorithms
in test data generation: A critical systematic mapping. ACM Computing Surveys, 51(2):article
41, 2018.

31. A. S. Sayyad, J. Ingram, T. Menzies, and H. H. Ammar. Optimum feature selection in
software product lines: Let your model and values guide your search. In 1st Int. Workshop
on Combining Modelling and Search-Based Software Engineering, CMSBSE’13, pages 22–
27. IEEE Computer Society, 2013.

32. S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés. Betty: Bench-
marking and testing on the automated analysis of feature models. In 6th Int. Workshop on
Variability Modeling of Software-Intensive Systems, VaMoS’12, pages 63–71, 2012.

33. J. Shi, M. B. Cohen, and M. B. Dwyer. Integration testing of software product lines us-
ing compositional symbolic execution. In 15th Int. Conf. on Fundamental Approaches to
Software Engineering, FASE’12, LNCS 7212, pages 270–284. Springer, 2012.

34. M. Steindl and J. Mottok. Optimizing software integration by considering integration test
complexity and test effort. In 10th Int. Workshop on Intelligent Solutions in Embedded
Systems, WISES’12, pages 63–68. IEEE Computer Society, 2012.

35. T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. FeatureIDE: An
extensible framework for feature-oriented software development. Science of Computer Pro-
gramming, 79:70–85, 2014.

36. D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm: an overview. Soft
Computing, 22:387–408, 2018.

10.9. Using a swarm to detect hard-to-kill mutants 213

10.9 Using a swarm to detect hard-to-kill mutants

Authors Alfredo Ibias and Manuel Núñez
Title Using a swarm to detect hard-to-kill mutants
Publication Type Conference
Venue 2020 IEEE International Conference on Sys-

tems, Man, and Cybernetics
Year 2020
DOI/URL https://doi.org/10.1109/SMC42975.

2020.9282883
Pages 6
Authors’ Contributions Ibias and Núñez developed the theory. Ibias

designed the experiments. Ibias developed
and executed the experiments. Ibias and
Núñez wrote the manuscript. Ibias and
Núñez reviewed the manuscript.

https://doi.org/10.1109/SMC42975.2020.9282883
https://doi.org/10.1109/SMC42975.2020.9282883

Using a swarm to detect hard-to-kill mutants
Alfredo Ibias

Universidad Complutense de Madrid
Madrid, Spain
aibias@ucm.es

Manuel Núñez
Universidad Complutense de Madrid

Madrid, Spain
manuelnu@ucm.es

Abstract—Mutation Testing is an effective testing technique
that relies in the generation of mutants from the system under
test. The main limitation of this technique is that the potential
number of mutants is usually huge. Therefore, it is important to
classify and select mutants in order to avoid repetitive, useless
or excessive computations, and biased results. In this paper we
focus on avoiding too many executions and/or biased results by
classifying mutants into two categories: hard-to-kill and easy-to-
kill mutants. We propose a new swarm intelligence algorithm to
classify a set of mutants between those two classes and we show
how our algorithm compares to other approaches.

Index Terms—Mutation Testing, Swarm Intelligence, Mutant
Selection

I. INTRODUCTION

Software Testing [2], [31] is the most widely used technique
to detect faults in software systems. Software testing includes
different approaches and methodologies that target specific
categories of faults. Most approaches try to increase code
coverage, that is, try to build test suites that traverse all
the paths of the system that are relevant with respect to a
certain criterion. In this paper we focus on mutation testing,
an approach that does not only focus on showing where to test,
but also on helping to identify what should be checked for.
Experimental evidence has showed that tests suites produced by
mutation testing approaches were significantly better than the
(high quality) manually written ones [17]. Intuitively, mutation
testing considers a software system, that we would like to
evaluate, and variants of this system, called mutants, that
represent potential faults of the system. The goal is to find good
test suites that kill all the mutants: a test case kills a mutant
if the application of the test to the original system and to the
mutant produces different results. If a mutant is alive after the
application of all the test cases, then we have to analyse whether
our test suite was not good enough or the mutant is equivalent
to the original system.

Mutant selection is critical because it ameliorates the scal-
ability problem associated with mutation testing: usually, we
have huge amounts of potential mutants. Producing and work-
ing with a large number of mutants is impractical, as they need
to be analysed, compiled, executed and killed by test cases.
This is an important problem and, actually, makes difficult

Research partially supported by the Spanish MINECO/FEDER project
FAME (RTI2018-093608-B-C31), the Comunidad de Madrid project FORTE-
CM (S2018/TCS-4314) co-funded by EIE Funds of the European Union and the
Region of Madrid - Complutense University of Madrid (grant number PR65/19-
22452).

the wide applicability and large adoption of mutation testing.
Classically, mutant selection tried to solve this problem through
the reduction of the size of the mutants sets used in the
process, defining mutant reduction strategies such as selective
mutation [36], [43] and random mutant selection [1].

Previous work has focused on classifying mutants based on
different characteristics. For example, it is usually assumed that
harder to kill mutants are more useful than the easy to kill ones,
but there are many categories. Hard-to-kill mutants are usually
considered to be the ones killed by a small fraction of the
considered test cases, but there is also work identifying hard-
to-kill mutants based on the internal structure of the code of
the given system under test [42]. A recent work [37] identifies
different criteria to classify mutants (hard to kill, subsuming,
hard to propagate and fault revealing) and show that each
of them classifies different mutants as the preferable ones
for mutation testing. Moreover, the authors found that there
is a weak connection between these classifications and fault
revelation. However, they conclude that hard-to-kill mutants are
the ones more related to fault revelation.

Our goal in this paper is to classify a set of mutants
between hard-to-kill and easy-to-kill mutants, with the idea
that this kind of mutants gives a compromise between easy
to classify and fault detection ability. We propose an approach
based in the Swarm Intelligence Algorithms theory [6], [40], a
family of algorithms that naturally falls into the Computational
Collective Intelligence [10], [32]–[34] research area, to address
this problem. In previous work other authors have proposed
different approaches for mutant classification, including using
machine learning methods [13], [25], [28], but we are not
aware of a hard-to-kill mutant classification algorithm based
on Swarm Intelligence Algorithms theory. In our work, we use
a swarm of agents to apply tests to small sets of mutants with
the goal of building a hard-to-kill set of mutants from the results
obtained by the agents.

The paper is organised as follows. First, in Section II, we
present some basic concepts needed to understand our work.
Then, we explain our algorithm (Section III) and we present
the experiments that we performed to assess its performance
(Section IV). Finally, we present the threats to the validity
(SectionV) and the conclusions of our work (Section VI).

II. PRELIMINARIES

In this section we present basic information about the two
main fields that we consider in this paper: mutation testing and

2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
October 11-14, 2020. Toronto, Canada

978-1-7281-8526-2/20/$31.00 ©2020 IEEE 2190

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

swarm intelligence algorithms.

A. Mutation Testing

Software Testing is a broad field of techniques with the
goal of detecting faults in software systems. Essentially, testing
consists in applying a set of inputs to the System Under
Test (SUT), observe the generated output, and decide whether
this output is consistent with the expected output. In order to
perform this decision, it is necessary some kind of oracle that
determines which one is the correct output. In some cases,
there is no oracle available and the testers should resort to
other kind of techniques to determine what constitutes a valid
output [3]. One of the techniques to overcome this oracle
problem is mutation testing. Mutation testing is not just an
academic methodology because it has been successfully used
in real software systems [38].

A mutant is a modified version of the SUT that includes a
fault. These faults can be randomly seeded or following some
guide and can be generated either automatically or manually.
Then, when applying a test to a mutant, we will check whether
the produced output is different to the output obtained after
applying the test to the original SUT. If the outputs are different,
then we say that the mutant has been killed. If the mutant is
not killed then we have three different possibilities: the fault
has not been executed, the fault has been executed but it has
not propagated to the output, or the mutant is equivalent to the
original SUT. Intuitively, mutation testing uses the SUT as a
kind of oracle and generates mutants from it with the goal of
having faulty versions of the SUT to assess the quality of the
generated tests. Then, the quality of a test is assessed with a
metric called mutation score, which represents the percentage
of mutants that the test has killed.

Just as we can classify the tests using their mutation score,
we can classify the mutants depending on how many tests kill
those mutants. This idea crystallises in the concept of hard-to-
kill mutants, that is, those mutants that are killed by a small
amount of tests (as opposed to easy-to-kill mutants, which are
those that are killed by most of the tests). In previous work,
there have been different definitions of hard-to-kill mutants, all
of them with the idea that hard-to-kill mutants are the hardest
to find with a test. It is possible to provide a certain bound,
for example, those killed by 5% or 2.5% of the tests [37].
Another possibility [42] is to mark a mutant as hard-to-kill if
it presents a specific internal structure. In this paper we will
consider as hard-to-kill mutants those that are the least killed,
using a variable measure instead of a fixed cap.

B. Swarm Intelligence Algorithms

Swarm Intelligence Algorithms [6], [40] are a family of
algorithms that base its intelligent behaviour in their swarm
interactions. In this kind of algorithms, there is a swarm of
agents, where each agent has little to no intelligence. Usually,
these agents perform basic and repetitive tasks. The intelligent
behaviour from the Swarm Intelligence Algorithms comes from
the fact that joining all the information obtained by the individ-
ual agents allows the swarm to perform intelligent decisions.
This characteristic of the Swarm Intelligence Algorithms is the

Set parameters;
Initialise kill matrix (all zeros);
Initialise iteration-hard-to-kill list (all mutants);
Initialise final-hard-to-kill list (empty);
while iteration-hard-to-kill list is not empty do

Assign a mutant and a set of tests to each agent;
Each agent applies its set of tests to its mutant;
Each agent updates the kill matrix;
Update iteration-hard-to-kill list;

end
Return final-hard-to-kill list;

Algorithm 1: Heuristic: general scheme

so called emergence property. This property is the basic key for
the good results obtained by Swarm Intelligence Algorithms,
like the widely known Particle Swarm Optimisation (PSO)
algorithm [26] and its most recent variation the Tree Swarm
Optimisation [20]. This last algorithm has been recently applied
to the Software Testing field [19].

III. SWARM MUTANT CLASSIFICATION

We work with a scenario where we have m mutants and t
tests. Our goal is to detect those mutants that are hard to kill
by this set of tests, having in mind that our approach should
represent a good balance between the computing time and the
quality, in terms of the proportion of (un-)detected interesting
mutants, of the obtained solution. We have considered a swarm
heuristic that avoids the application of the full set of tests to all
the mutants and that, at the same time, gives more flexibility
than setting a fixed cap to decide when a mutant is hard-to-
kill [37].

Our heuristic uses three important elements:
• Agents conform the swarm that performs the evaluation.

We will have a agents.
• The Kill Matrix is the matrix where the agents store the

information. It will encode which tests kill which mutants,
which tests fail to kill which mutants, and which tests have
not been applied to which mutants.

• The hard-to-kill mutants lists store the promising hard-to-
kill mutants. These lists are updated after each iteration of
our algorithm. We will have two hard-to-kill mutants lists:
one for storing the considered hard-to-kill mutants in the
current iteration (this one guides the algorithm), and one
for storing the final solution.

In Algorithm 1 we present a high-level view of our heuristic.
For each iteration, our heuristic has four steps:

• For each of the agents, we choose one mutant from the
iteration-hard-to-kill list and choose n << t tests1 that
will be applied to that mutant (and that have not been
applied previously) and assign them to an agent. If we
detect that a mutant cannot leave the iteration-hard-to-kill
list with the remaining tests, we add this mutant to the
final-hard-to-kill list and take another mutant.

• Each agent applies its set of n tests to its mutant.

1Note that n is chosen by the user. For our experiments, we used n = 5.

2191

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

• Each agent updates the kill matrix. We use the following
convention:

– 1: the mutant has been killed by that test.
– 0: the test has not been applied to the mutant.
– −1: the mutant has not been killed by that test.

• The iteration-hard-to-kill list is updated.
The update of the iteration-hard-to-kill list is the most critical

step of the algorithm, because it is where the emergence
property arises. In this step, the list of mutants considered to be
hard-to-kill is updated. The selection is performed after each
iteration as a way to guide the development of the algorithm.
After each iteration we compute how many tests killed each
mutant, storing the highest (max) and the lowest values (min).
Then, we mark as hard-to-kill mutants the ones whose value is
less than or equal to:

min+
max−min

4

Note that this bound is selected by us but other different bounds
could be used. For instance, using this bound we choose all the
mutants that after this iteration are in the the lowest quarter of
the obtained values. Finally, we remove from the iteration-hard-
to-kill list the mutants that are already in the final-hard-to-kill
list. We also remove those that have already been tested with
all the tests, and we add them to the final-hard-to-kill list.

An interesting property of our heuristic is that the max value
does not have to be equal to the maximum number of tests that
kill a mutant. In other words, even if a mutant is killed by all the
tests, it is possible that the max value is lower than t (the total
number of tests). This happens because the difference between
max and min will be lower or equal to 4

3 · n and, therefore,
we can have max < min+ 4

3 · n < t (and that will be usually
the case).

Our heuristic is able to overcome two problems when decid-
ing which mutants are hard-to-kill and which ones are not. The
first one is that, in general, it is not necessary to apply all the
tests to all the mutants. This will avoid the associated costs of
other algorithms based on brute force. The second one is that
our heuristic is more flexible than an approach based on fixed
percentages. For example, if we define hard-to-kill mutants as
the mutants that are killed by at most 5% of the tests, but we
have a situation where we have 100 tests and all the mutants
are killed by at least 6 tests, then the set of hard-to-kill mutants
will be empty. If we use our algorithm in the same situation,
our set of hard-to-kill mutants will not be empty because those
6 tests will provide the min value of our range. Therefore, we
will always have mutants that can be considered, under the
circumstances, the hardest-to-kill of all the generated mutants.
This implies that our heuristic will be more consistent than
other algorithms like random selection.

IV. EXPERIMENTS

In this section we present the experiments that we performed
to measure the usefulness of our approach. We wanted to
compare our algorithm with three different alternatives: a brute
force approach that consists in executing all the tests over
all the mutants and afterwards determining which mutants we

consider hard-to-kill; a cap approach where we execute only
the necessary tests to know if a mutant overcomes a previously
fixed cap; and a random algorithm that executes randomly tests
on mutants and then computes the solution. Therefore, our main
goal was to answer two questions:

Research Question 1: How many test applications does our
approach save when compared to a brute force approach? How
different is our approach from a cap-based approach?

Research Question 2: What is the quality of the solution of
our approach and how good it is compared with the solution
obtained by a cap-based approach and a random approach?

Our heuristic strongly depends on the application of tests
to mutants. However, we only use whether a given mutant
was killed by a certain test; we do not use any information
concerning the actual application of the test (e.g. which parts
of the code of the mutant were traversed). Therefore, we
only need a kill matrix encoding the result of the application
of tests to mutants. Each position i, j of the matrix says
whether the ith test kills the jth mutant. We have used
the matrices provided by a recent work [13], available at
https://mutationtesting.uni.lu/farm/. These matrices where build
from a set of mutants generated from the CodeFlaws [41] and
CoREBench [7] program sets, and a set of tests generated by
using KLEE [9] for each program. This combination arises
1, 737 matrices, with a total count of 4, 778, 157 mutants and
144, 738 tests, what needed 8, 463 CPU days of computation.
Breaking down by benchmark, the CodeFlaws program set
brings a total of 3, 213, 543 mutants and 122, 261 test cases
from 1, 692 programs with between 1 to 322 lines of code
(mean of 36 lines of code). The CoREBench program set brings
a total of 1, 564, 614 mutants and 22, 477 test cases from 45
programs with between 9, 000 and 83, 000 lines of code. In
computation terms, the CodeFlaws benchmark needed 8, 009
CPU days of computation and the CoREBench benchmark used
454 CPU days of computation to generate all their mutants.

We applied our heuristic to the kill matrix of each program,
computing the number of total operations (that is, the number
of tests that are applied) and computing the resulting hard-to-
kill mutants. As an additional step we computed average values
and some quality indicators. These last values will be useful to
compare our solutions with respect to previous work [37] where
hard-to-kill mutants are those killed by less than 5% of tests.
Specifically, we would like to know how different are our hard-
to-kill mutants sets from the ones generated using a fixed cap
approach and how many extra operations we save. Therefore,
we also implemented an algorithm to compute those mutants
that are killed by 5% of the the tests or less. The algorithm is
very simple: it traverses each row of the matrix until more than
5% of the tests have killed the mutant (so it is not a hard-to-kill
mutant). We store the quality indicators of these sets of mutants
and the number of operations (that is, the number of elements
of the matrix that have been accessed) needed to compute them.

In order to have an easier visualisation of the results of
our experiments, we combine all these values and plot them.
In Figure 1 we have the relative number of operations for
each algorithm with respect to the total number of operations
obtained by all three algorithms: Brute Force, our Swarm

2192

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

Mutant Classification (SMC) and the cap algorithm. We can
observe that our SMC always needs less operations than the
Brute Force algorithm and, depending on the program, may
need less operations than the cap algorithm. On average, the
Brute Force algorithm needed 70, 041 operations while our
SMC needed 25, 255 operations and the cap algorithm needed
25, 109 operations. That is, our SMC needs, on average, 61.97%
less operations (that would be applications of tests if we do
not have the killing matrix) while the cap algorithm saves, on
average, 68.99%.

We performed a statistical hypothesis test over the results
concerning operations. The null hypothesis was that the cap
algorithm and our SMC algorithm give similar results, that
is, both need a similar number of operations. We applied a
one-way ANOVA test2 where we tested whether the values of
both algorithms are, on average, similar. Then, we computed
the p-value for the experiment, obtaining a p-value of 0.9044.
Therefore, we can confirm the null hypothesis for this experi-
ment because its p-value is much higher than 0.05. In order to
double-check our results, we performed a t-test and obtained the
same p-value. Thus, the conclusion is that the needed number
of operations of our SMC is equivalent to the number needed
for the cap algorithm.

In Figure 2 we present the relative operations percentage
saving with respect to the saving of both the cap algorithm and
our algorithm. We can see how they save some operations with
respect to the Brute Force algorithm and how, sometimes, our
algorithm outperforms the cap algorithm.

Next, we wanted to perform a quality assessment. In order to
do so, we compared our algorithm and the cap algorithm with
another new algorithm: the random algorithm. This algorithm
applies random tests to random mutants, filling a kill matrix,
and then chose the mutants that are killed by at most a fixed
number of tests. In our case, in order to compare with the cap
algorithm, we decided to take the mutants killed by less than 5%
of the tests. Also, in order to compare with our SMC algorithm,
we decided that the number of tests that the random algorithm
will apply will be equal to the number of tests applied by our
algorithm.

We assessed the quality with three indicators: how many
mutants that are killed by less than the 5% of tests are not
included in the solution; how many mutants that are killed by
more than the 25% of tests are included in the solution; and
how many mutants, that are killed by less tests than the ones
that kill the mutant of the solution that is killed by more tests,
are included in the solution. Using these three indicators, we
assess three different qualities of the hard-to-kill mutants sets,
respectively: how good is the algorithm obtaining the most hard
to kill mutants; how good is the algorithm avoiding mutants
that cannot be considered hard-to-kill, and how good is the
algorithm obtaining dense hard-to-kill mutants sets.

The results of the three algorithms are positive. For the cap
algorithm, as it is pretty consistent, the values for the three
indicators are equal to 0. For the random algorithm, the mean
for the first indicator is 0, for the second indicator is 31.61 and

2Note that we could use the ANOVA test because we performed an
homogeneity of variance check and it raised a positive result.

for the third indicator is 303.63. Finally, for our algorithm,
that is more flexible than the cap algorithm and it is less
random than the purely random algorithm, the mean for the
first indicator is 24.02, the mean for the second indicator is
1.12, and the mean for the third indicator is 51.16. Analysing
these results, we can conclude that the cap algorithm gives
what it says: the mutants that are killed by less than the 5% of
tests; that the random algorithm gives hard-to-kill mutants sets
that are more hollow, what indicates that their choice criteria is
less uniform; and that our algorithm gives hard-to-kill mutants
sets that are a middle point between the fixed criteria and the
random criteria, with more flexibility than the cap algorithm,
and with a huge improvement in the choice criteria over the
random algorithm.

In Figure 3 we summarise the results concerning the quality
of the obtained mutants. We show the cumulative values of
the first and second indicator for the two algorithms that
obtained values different from 0 and their relative values with
respect to the ones obtained by the other algorithm. White lines
correspond to cases were all the algorithms obtained a value of
0 for both indicators.

As a recap, answering the first research question, our SMC
saves 61.97% of the operations of the brute force approach and
needs a similar number of operations as the cap algorithm. In
fact, regarding number of operations, both algorithms are sta-
tistically equivalent. Concerning the second research question,
our approach obtains hard-to-kill mutants sets of good quality.
In fact, their quality is better than the quality of the solutions of
a random approach, and not so far to the quality of the solutions
of the cap approach. However, an advantage of our SMC over
the cap approach is that it avoids some extreme cases (from
both sides) that appear with it, what makes it a more reliable
tool to be used.

V. THREATS TO VALIDITY

Concerning the threats to the validity of our results, most of
them have been already addressed. Starting with the internal
validity threats, the main concern is whether our results can
be the product of internal faults in our experiments code. We
addressed this concern by thoroughly testing our code with
carefully constructed examples for which we could manually
check the results. Another important internal validity threat is
whether our results are valid in terms of time computation while
using kill matrices instead of properly apply the tests to the
mutants. In order to address this threat we compared the number
of performed operations instead of execution times, under the
assumption that the difference in execution time between tests
will not be so critical as the difference in execution time
between applying different number of tests. A final internal
validity threat is how the randomness associated with the
random algorithm affects the obtained results. In order to
overcome this threat we repeated the same experiment different
times and see that the mean results where similar enough to be
considered representative.

Concerning threats to external validity, here arises the ques-
tion of whether the kill matrices used in our work can be
generalised to other families of kill matrices. Although this

2193

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700
0

0.5

1

Program Number

N
um

be
r

of
O

pe
ra

tio
ns

Fig. 1. Relative number of operations (orange = Brute Force, yellow = SMC, blue = cap (5%)).

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

0.2

0.4

0.6

0.8

1

Program Number

O
pe

ra
tio

ns
Sa

vi
ng

(%
)

Fig. 2. Relative number of operations savings (yellow = SMC vs Brute Force, blue = cap (5%) vs Brute Force).

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

0

0.5

1

Program Number

Q
ua

lit
y

of
se

t

Fig. 3. Relative quality of sets of hard-to-kill mutants (yellow = SMC, green = random).

threat cannot be completely addressed, we worked with kill
matrices generated from real programs and with mutants and
tests generated by state-of-the-art techniques.

Finally, concerning threats to construct validity, the main
concern is whether the kill matrices used in our work can be
representative of real programs. Fortunately, our kill matrices
where generated from real programs, so they are indeed repre-
sentative of real kill matrices.

VI. CONCLUSIONS

Mutation testing is one of the main techniques in Software
Testing. In order to perform a good and efficient mutation
process, it is necessary to filtrate the mutants. In this work,
we focused on detecting hard-to-kill mutants. As the concept
of hard-to-kill mutants is too abstract, we developed a Swarm
Intelligence Algorithm in order to choose a set of hard-to-kill

mutants from the set of all the mutants of a program. We
performed several experiments to prove the efficiency of our
algorithm when compared to other approaches to the concept
of hard-to-kill mutants. We showed that our SMC is a preferable
option to detect those hard-to-kill mutants.

For future work we have identified several lines. First, we
would like to assess how the hard-to-kill mutants set changes
when modifying the bound for choosing the hard-to-kill mu-
tants in the main loop of our algorithm. Second, we would like
to compare the efficiency of our algorithm in a weak mutation
scenario, compared to the current strong mutation scenario we
presented here. Third, we would like to compare our approach
to other Swarm Intelligence Algorithms like Particle Swarm
Optimisation [26] and its variations. Fourth, we would like to
assess how related are the hard-to-kill mutants determined by

2194

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

our algorithm and the set of fault revealing mutants [37]. Fifth,
we would like to deal with bigger sets of mutants by including
recent approaches to mutation testing [11], [15], [18] and our
recent work on heuristics based on Information Theory [24].
Finally, we would like to take previous research as initial
step to generalise the framework and measures to deal with
asynchronous [21], [27], [29], [30], distributed [8], [16], [22],
[23], IoT [14], [39] and cloud [4], [5], [12], [35] systems.

REFERENCES

[1] A. T. Acree, A. T. Budd, R. Demillo, R. J. Lipton, and F. G. Sayward.
Mutation analysis. Technical Report GIT-ICS-79/08, Georgia Institute of
Technology, 1979.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge
University Press, 2nd edition, 2017.

[3] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507–525, 2015.

[4] A. Bernal, M. E. Cambronero, A. Núñez, P. C. Cañizares, and V. Valero.
Improving cloud architectures using UML profiles and M2T transfor-
mation techniques. The Journal of Supercomputing, 75(12):8012–8058,
2019.

[5] A. Bernal, M. E. Cambronero, V. Valero, A. Núñez, and P. C. Cañizares.
A framework for modeling cloud infrastructures and user interactions.
IEEE Access, 7:43269–43285, 2019.

[6] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and
Applications. Springer, 2008.

[7] M. Böhme and A. Roychoudhury. CoREBench: studying complexity
of regression errors. In 23rd Int. Symposium on Software Testing and
Analysis, ISSTA’14, pages 105–115. ACM Press, 2014.

[8] J. Boubeta-Puig, G. Dı́az, H. Macià, V. Valero, and G. Ortiz. MEdit4CEP-
CPN: An approach for complex event processing modeling by prioritized
colored Petri nets. Information Systems, 81:267–289, 2019.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI’08, pages 209–224. USENIX Association, 2008.

[10] A. Camacho, M. G. Merayo, and M. Núñez. Collective intelligence and
databases in eHealth: A survey. Journal of Intelligent & Fuzzy Systems,
32(2):1485–1496, 2017.

[11] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[12] P. C. Cañizares, A. Núñez, J. de Lara, and L. Llana. MT-EA4Cloud:
A methodology for testing and optimising energy-aware cloud systems.
Journal of Systems and Software, 163:110522:1–110522:25, 2020.

[13] T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and K. Sen.
Selecting fault revealing mutants. Empirical Software Engineering,
25(1):434–487, 2020.

[14] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, and J. Boubeta-Puig. A stream
processing architecture for heterogeneous data sources in the internet of
things. Computer Standards & Interfaces, 70:103426:1–103426:13, 2020.

[15] P. Delgado-Pérez, Louis M. Rose, and I. Medina-Bulo. Coverage-based
quality metric of mutation operators for test suite improvement. Software
Quality Journal, 27(2):823–859, 2019.

[16] G. Dı́az, H. Macià, V. Valero, J. Boubeta-Puig, and F. Cuartero. An
intelligent transportation system to control air pollution and road traffic
in cities integrating CEP and colored Petri nets. Neural Computing and
Applications, 32(2):405–426, 2020.

[17] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292,
2012.

[18] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A tool for
domain-independent model mutation. Science of Computer Programming,
163:85–92, 2018.

[19] D. Griñán and A. Ibias. Generating tree inputs for testing using evolu-
tionary computation techniques. In 22nd IEEE Congress on Evolutionary
Computation, CEC’20, pages E–24267: 1–8. IEEE Computer Society,
2020.

[20] D. Griñán, A. Ibias, and M. Núñez. Grammar-based tree swarm opti-
mization. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics,
SMC’19, pages 76–81. IEEE Press, 2019.

[21] R. M. Hierons, M. G. Merayo, and M. Núñez. An extended framework for
passive asynchronous testing. Journal of Logical and Algebraic Methods
in Programming, 86(1):408–424, 2017.

[22] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering in the
distributed test architecture. IEEE Transactions on Reliability, 67(2):522–
537, 2018.

[23] R. M. Hierons and M. Núñez. Implementation relations and probabilistic
schedulers in the distributed test architecture. Journal of Systems and
Software, 132:319–335, 2017.

[24] A. Ibias, R. M. Hierons, and M. Núñez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Information
& Software Technology, 112:132–147, 2019.

[25] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and future
challenges. In Leaders of Tomorrow Symposium: Future of Software
Engineering, FOSE@SANER’16, pages 33–45. IEEE Computer Society,
2016.

[26] J. Kennedy and R. Eberhart. Particle swarm optimization. In 3rd Int.
Conf. on Neural Networks, ICNN’95, pages 1942–1948. IEEE Computer
Society, 1995.

[27] R. Lefticaru, R. M. Hierons, and M. Núñez. Implementation relations
and testing for cyclic systems with refusals and discrete time. Journal of
Systems and Software, 170:110738:1–110738:20, 2020.

[28] T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes
to learn defect predictors. IEEE Transactions on Software Engineering,
33(1):2–13, 2007.

[29] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing with
asynchronous communications and timestamps. Distributed Computing,
31(5):327–342, 2018.

[30] M. G. Merayo, R. M. Hierons, and M. Núñez. A tool supported
methodology to passively test asynchronous systems with multiple users.
Information & Software Technology, 104:162–178, 2018.

[31] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
John Wiley & Sons, 3rd edition, 2011.

[32] N. T. Nguyen, D. Hwang, and E. Szczerbicki. Computational collective
intelligence for enterprise information systems. Enterprise IS, 13(7-
8):933–934, 2019.

[33] N. T. Nguyen, E. Szczerbicki, B. Trawinski, and V. D. Nguyen. Collective
intelligence in information systems. Journal of Intelligent and Fuzzy
Systems, 37(6):7113–7115, 2019.

[34] V. D. Nguyen and N. T. Nguyen. Intelligent collectives: Theory,
applications, and research challenges. Cybernetics and Systems, 49(5-
6):261–279, 2018.

[35] A. Núñez, P. C. Cañizares, M. Núñez, and R. M. Hierons. TEA-
Cloud: A formal framework for testing cloud computing systems. IEEE
Transactions on Reliability (in press), 2020.

[36] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation of
selective mutation. In 15th Int. Conf. on Software Engineering, ICSE’93,
pages 100–107. IEEE Computer Society / ACM Press, 1993.

[37] M. Papadakis, T. T. Chekam, and Y. Le Traon. Mutant quality indicators.
In 13th Int. Workshop on Mutation Analysis, MUTATION’18, ICST
Workshops, pages 32–39. IEEE Computer Society, 2018.

[38] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman.
Mutation testing advances: An analysis and survey. volume 112 of
Advances in Computers, pages 275 – 378. Elsevier, 2019.

[39] J. Roldán, J. Boubeta-Puig, J. L. Martı́nez, and G. Ortiz. Integrating
complex event processing and machine learning: An intelligent architec-
ture for detecting iot security attacks. Expert Systems with Applications,
149:113251:1–113251:22, 2020.

[40] S. Selvaraj and E. Choi. Survey of swarm intelligence algorithms. In
3rd Int. Conf. on Software Engineering and Information Management,
ICSIM’20, pages 69–73. ACM Press, 2020.

[41] S. H. Tan, J. Yi, Y., S. Mechtaev, and A. Roychoudhury. Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools. In 39th Int. Conf. on Software Engineering, ICSE’17
Companion Volume, pages 180–182. IEEE Computer Society, 2017.

[42] W. Visser. What makes killing a mutant hard. In 31st IEEE/ACM Int.
Conf. on Automated Software Engineering, ASE’16, pages 39–44. ACM
Press, 2016.

[43] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing: An
empirical study. Journal of Systems and Software, 31(3):185–196, 1995.

2195

Authorized licensed use limited to: Univ Complutense de Madrid. Downloaded on October 04,2021 at 14:13:38 UTC from IEEE Xplore. Restrictions apply.

Part VI

Bibliography

[1] A. T. Acree, A. T. Budd, R. Demillo, R. J. Lipton, and F. G. Sayward.
Mutation analysis. Technical Report GIT-ICS-79/08, Georgia Institute
of Technology, 1979.

[2] K. Adamopoulos, M. Harman, and R. M. Hierons. How to overcome
the equivalent mutant problem and achieve tailored selective muta-
tion using co-evolution. In Genetic and Evolutionary Computation
- GECCO’04, Genetic and Evolutionary Computation Conf., volume
3103 of Lecture Notes in Computer Science, pages 1338–1349. Springer,
2004.

[3] F. Ahishakiye, J.-I. R. Jarabo, L. M. Kristensen, and V. Stolz. Cov-
erage analysis of net inscriptions in coloured petri net models. In
Verification and Evaluation of Computer and Communication Systems
- 14th International Conference, VECoS’20, volume 12519 of Lecture
Notes in Computer Science, pages 68–83. Springer, 2020.

[4] F. Ahishakiye, J.-I. R. Jarabo, L. M. Kristensen, and V. Stolz. MC/DC
test cases generation based on bdds. In Dependable Software Engineer-
ing. Theories, Tools, and Applications - 7th International Symposium,
SETTA’21, volume 13071 of Lecture Notes in Computer Science, pages
178–197. Springer, 2021.

[5] A. Aho, A. Dahbura, D. Lee, and M. Ü. Uyar. An optimization tech-
nique for protocol conformance test generation based on UIO sequences
and Rural Chinese Postman tours. In Protocol Specification, Testing
and Verification VIII, pages 75–86. North Holland, 1988.

222 Bibliography

[6] A. V. Aho, A. T. Dahbura, D. Lee, and M. Ü. Uyar. An optimiza-
tion technique for protocol conformance test generation based on UIO
sequences and Rural Chinese Postman Tours. IEEE Transactions on
Communications, 39(11):1604–1615, 1991.

[7] S. Ali, L. Briand, and H. Hemmati. Modeling robustness behavior using
aspect-oriented modeling to support robustness testing of industrial
systems. Software and Systems Modeling, 11(4):633–670, 2012.

[8] N. Alshahwan and M. Harman. Coverage and fault detection of the
output-uniqueness test selection criteria. In 24th ACM SIGSOFT Int.
Symposium on Software Testing and Analysis, ISSTA’14, pages 181–
192. ACM Press, 2014.

[9] P. Ammann and J. Offutt. Introduction to Software Testing. Cam-
bridge University Press, 2nd edition, 2017.

[10] S. Anand, E. K. Burke, T. Y. Chen, J. A. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, and P. McMinn. An or-
chestrated survey of methodologies for automated software test case
generation. Journal of Systems and Software, 86(8):1978–2001, 2013.

[11] C. Andrés, C. Camacho, and L. Llana. A formal framework for software
product lines. Information & Software Technology, 55(11):1925–1947,
2013.

[12] C. Andrés, M. G. Merayo, and M. Núñez. Multi-objective genetic
algorithms: Construction and recombination of passive testing proper-
ties. In 22nd Int. Conf. on Software Engineering & Knowledge Engin-
eering, SEKE’10, pages 405–410. Knowledge Systems Institute, 2010.

[13] K. Androutsopoulos, D. Clark, H. Dan, R.M. Hierons, and M. Harman.
An analysis of the relationship between conditional entropy and failed
error propagation in software testing. In 36th Int. Conf. on Software
Engineering, ICSE’14, pages 573–583. ACM Press, 2014.

[14] R. Anido, A. R. Cavalli, L. A. Paula Lima Jr., and N. Yevtushenko.
Test suite minimization for testing in context. Software Testing, Veri-
fication and Reliability, 13(3):141–155, 2003.

[15] T. Apiwattanapong, R. A. Santelices, P. K. Chittimalli, A. Orso, and
M. J. Harrold. MATRIX: Maintenance-oriented testing requirements
identifier and examiner. In 1st Testing: Academia and Industry Con-
ference - Practice And Research Techniques, TAIC PART’06, pages
137–146. IEEE Computer Society, 2006.

[16] T. Arbuckle. Studying software evolution using artefacts’ shared in-
formation content. Sci. Comput. Program., 76(12):1078–1097, 2011.

Bibliography 223

[17] K. Ayari, S. Bouktif, and G. Antoniol. Automatic mutation test input
data generation via ant colony. In Genetic and Evolutionary Compu-
tation Conf., GECCO’07, pages 1074–1081. ACM, 2007.

[18] M. Badri, L. Badri, W. Flageol, and F. Touré. Investigating the ac-
curacy of test code size prediction using use case metrics and machine
learning algorithms: An empirical study. In 2017 Int. Conf. on Ma-
chine Learning and Soft Computing, ICMLSC’17, pages 25–33. ACM,
2017.

[19] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. Genes and
bacteria for automatic test cases optimization in the .net environment.
In 13th Int. Symp. on Software Reliability Engineering (ISSRE’02),
pages 195–206. IEEE Computer Society, 2002.

[20] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. Automatic test
case optimization: A bacteriologic algorithm. IEEE Softw., 22(2):76–
82, 2005.

[21] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. From genetic
to bacteriological algorithms for mutation-based testing. Softw. Test.
Verification Reliab., 15(2):73–96, 2005.

[22] B. Baudry, F. Fleurey, J.M. Jézéquel, and Y. Le Traon. Automatic test
cases optimization using a bacteriological adaptation model: Applica-
tion to .NET components. In 17th Int. Conf. on Automated Software
Engineering, ASE’02, page 253. IEEE Computer Society, 2002.

[23] M. H. ter Beek, A. Borälv, A. Fantechi, A. Ferrari, S. Gnesi, C. Löfving,
and F. Mazzanti. Adopting formal methods in an industrial setting:
The railways case. In 23rd Int. Symposium on Formal Methods, FM’19
LNCS 11800, pages 762–772. Springer, 2019.

[24] M. Benito-Parejo, I. Medina-Bulo, M. G. Merayo, and M. Núñez. Using
genetic algorithms to generate test suites for FSMs. In 15th Int. Work-
Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506, pages
741–752. Springer, 2019.

[25] M. Benito-Parejo and M. G. Merayo. An evolutionary algorithm for
selection of test cases. In 22nd IEEE Congress on Evolutionary Com-
putation, CEC’20, pages E–24535: 1–8. IEEE Computer Society, 2020.

[26] F. Bergadano and D. Gunetti. Testing by means of inductive program
learning. ACM Trans. Softw. Eng. Methodol., 5(2):119–145, 1996.

[27] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and
Applications. Springer, 2008.

224 Bibliography

[28] J. K. Blundell, M. L. Hines, and J. Stach. The measurement of software
design quality. Annals of Software Engineering, 4(1–4):235–255, 1997.

[29] Z. Bluvband, S. Porotsky, and M. Talmor. Advanced models for soft-
ware reliability prediction. In 2011 Annual Reliability and Maintain-
ability Symp., pages 1–5, 2011.

[30] M Böhme. STADS: software testing as species discovery. ACM Trans.
Softw. Eng. Methodol., 27(2):7:1–7:52, 2018.

[31] A. D. Bonis, L. Gasieniec, and U. Vaccaro. Generalized framework
for selectors with applications in optimal group testing. In Automata,
Languages and Programming, 30th Int. Colloquium, ICALP’03, pages
81–96, 2003.

[32] J. Boubeta-Puig, G. Díaz, H. Macià, V. Valero, and G. Ortiz.
MEdit4CEP-CPN: An approach for complex event processing model-
ing by prioritized colored Petri nets. Information Systems, 81:267–289,
2019.

[33] C. Braunstein, A. E. Haxthausen, W.-L. Huang, F. Hübner, J. Peleska,
U. Schulze, and L. V. Hong. Complete model-based equivalence class
testing for the ETCS ceiling speed monitor. In 16th Int. Conf. on
Formal Engineering Methods, ICFEM’14, LNCS 8829, pages 380–395.
Springer, 2014.

[34] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Providing an empir-
ical basis for optimizing the verification and testing phases of software
development. In 3rd Int. Symp. on Software Reliability Engineering,
ISSRE’92, pages 329–338, 1992.

[35] L. C. Briand, J. Feng, and Y. Labiche. Using genetic algorithms and
coupling measures to devise optimal integration test orders. In 14th Int.
Conf. on Software engineering and knowledge engineering, SEKE’02,
pages 43–50. ACM, 2002.

[36] D. E. Brown. A method for obtaining software reliability measures
during development. IEEE Transactions on Reliability, R-36(5):573–
580, Dec 1987.

[37] P. M. S. Bueno and M. Jino. Identification of potentially infeasible
program paths by monitoring the search for test data. In 15th IEEE
Int. Conf. on Automated Software Engineering, ASE’00, pages 209–
218. IEEE Computer Society, 2000.

[38] C. Camacho, L. Llana, and A. Núñez. Cost-related interface for soft-
ware product lines. Journal of Logic and Algebraic Methods in Pro-
gramming, 85(1):227–244, 2016.

Bibliography 225

[39] C. Camacho, L. Llana, A. Núñez, and M. Bravetti. Probabilistic soft-
ware product lines. Journal of Logic and Algebraic Methods in Pro-
gramming, 107:54–78, 2019.

[40] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim. Entropy-based
test generation for improved fault localization. In 28th IEEE/ACM
Int. Conf. on Automated Software Engineering, ASE’13, pages 257–
267. IEEE, 2013.

[41] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri.
An empirical evaluation of evolutionary algorithms for unit test suite
generation. Information and Software Technology, 104:207–235, 2018.

[42] P. C. Cañizares, A. Núñez, and M. G. Merayo. Mutomvo: Mutation
testing framework for simulated cloud and HPC environments. Journal
of Systems and Software, 143:187–207, 2018.

[43] I. do Carmo Machado, P. A. da Mota Silveira Neto, and E. Santana de
Almeida. Towards an integration testing approach for software product
lines. In IEEE 13th Int. Conf. on Information Reuse & Integration,
IRI’12, pages 616–623. IEEE, 2012.

[44] E. G. Cartaxo, P. D. L. Machado, and F. G. de Oliveira Neto. On
the use of a similarity function for test case selection in the context
of model-based testing. Software Testing, Verification and Reliability,
21(2):75–100, 2011.

[45] A. R. Cavalli, T. Higashino, and M. Núñez. A survey on formal active
and passive testing with applications to the cloud. Annales of Tele-
communications, 70(3-4):85–93, 2015.

[46] T. J. Cheatham, J. P. Yoo, and N. J. Wahl. Software testing: A
machine learning experiment. In 1995 ACM 23rd Annual Conf. on
Computer Science, CSC’95, pages 135–141. ACM, 1995.

[47] T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and
K. Sen. Selecting fault revealing mutants. Empirical Software Engin-
eering, 25(1):434–487, 2020.

[48] T. Y. Chen, J. Feng, and T. H. Tse. Metamorphic testing of programs
on partial differential equations: A case study. In 26th Int. Com-
puter Software and Applications Conf. (COMPSAC’02), pages 327–
333. IEEE Computer Society, 2002.

[49] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
and Z. Q. Zhou. Metamorphic testing: A review of challenges and
opportunities. ACM Computing Surveys, 51(1):4:1–4:27, 2018.

226 Bibliography

[50] N. Chetouane, F. Wotawa, H. Felbinger, and M. Nica. On using k-
means clustering for test suite reduction. In 13th IEEE International
Conference on Software Testing, Verification and Validation Work-
shops, ICSTW’20, pages 380–385. IEEE, 2020.

[51] W. Choi, G. C. Necula, and K. Sen. Guided GUI testing of android
apps with minimal restart and approximate learning. In 2013 ACM
SIGPLAN Int. Conf. on Object Oriented Programming Systems Lan-
guages & Applications, OOPSLA’13, pages 623–640. ACM, 2013.

[52] T. S. Chow. Testing software design modeled by finite state machines.
IEEE Transactions on Software Engineering, 4:178–187, 1978.

[53] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. Pro-
Feat: feature-oriented engineering for family-based probabilistic model
checking. Formal Aspects of Computing, 30(1):45–75, 2018.

[54] R. Cilibrasi and P. M. B. Vitányi. Clustering by compression. IEEE
Transactions on Information Theory, 51(4):1523–1545, 2005.

[55] D. Clark, R. Feldt, S. M. Poulding, and S. Yoo. Information trans-
formation: An underpinning theory for software engineering. In
37th IEEE/ACM International Conference on Software Engineering,
ICSE’15, pages 599–602, 2015.

[56] D. Clark and R. M. Hierons. Squeeziness: An information theoretic
measure for avoiding fault masking. Information Processing Letters,
112(8-9):335–340, 2012.

[57] D. Clark, R. M. Hierons, and K. Patel. Normalised Squeeziness and
Failed Error Propagation. Information Processing Letters, 149:6–9,
2019.

[58] M. Cordy, P. Heymans, P. Schobbens, A. M. Sharifloo, C. Ghezzi, and
A. Legay. Verification for reliable product lines. CoRR, abs/1311.1343,
2013.

[59] J. Couchet, D. Manrique, J. Rios, and A. Rodríguez-Patón. Cros-
sover and mutation operators for grammar-guided genetic program-
ming. Soft Computing, 11(10):943–955, 2007.

[60] T. M. Cover and J. A. Thomas. Elements of Information Theory.
Wiley Interscience, 1991.

[61] Y. Dai, M. Xie, Q. Long, and S. Ng. Uncertainty analysis in software
reliability modeling by bayesian analysis with maximum-entropy prin-
ciple. IEEE Transactions on Software Engineering, 33(11):781–795,
2007.

Bibliography 227

[62] M. Dave and R. Agrawal. Software testing and information theory. In
Smart Trends in Information Technology and Computer Communica-
tions, pages 323–330, Singapore, 2016. Springer Singapore.

[63] P. Delgado-Pérez, I. Medina-Bulo, and J. J. Domínguez-Jiménez.
Mutation testing. In Encyclopedia of Information Science and Tech-
nology, pages 7212–7221. IGI Global, 3rd edition, 2014.

[64] P. Delgado-Pérez, I. Medina-Bulo, and M. Núñez. Using evolutionary
mutation testing to improve the quality of test suites. In 19th IEEE
Congress on Evolutionary Computation, CEC’17, pages 596–603. IEEE
Computer Society, 2017.

[65] P. Delgado-Pérez, L. M. Rose, and I. Medina-Bulo. Coverage-based
quality metric of mutation operators for test suite improvement. Soft-
ware Quality Journal, 27(2):823–859, 2019.

[66] Z. Demirezen. An Information Theory Based Representation Of Soft-
ware Systems And Design. PhD thesis, University of Alabama – Birm-
ingham, 2012.

[67] K. Derderian, M. G. Merayo, R. M. Hierons, and M. Núñez. Aiding test
case generation in temporally constrained state based systems using
genetic algorithms. In 10th Int. Conf. on Artificial Neural Networks,
IWANN’09, LNCS 5517, pages 327–334. Springer, 2009.

[68] K. Derderian, M. G. Merayo, R. M. Hierons, and M. Núñez. A
case study on the use of genetic algorithms to generate test cases for
temporal systems. In 11th Int. Conf. on Artificial Neural Networks,
IWANN’11, LNCS 6692, pages 396–403. Springer, 2011.

[69] J. Derrick and E. Boiten. Testing refinements of state-based formal
specifications. Software Testing, Verification and Reliability, 9(1):27–
50, 1999.

[70] I. Dinca, A. Stefanescu, F. Ipate, R. Lefticaru, and C. Tudose. Test
data generation for event-b models using genetic algorithms. In Soft-
ware Engineering and Computer Systems - Second International Con-
ference, ICSECS’11, volume 181 of Communications in Computer and
Information Science, pages 76–90. Springer, 2011.

[71] M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization.
IEEE Computational Intelligence Magazine, 1(4):28–39, 2006.

[72] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Systems,
Man and Cybernetics B, 26(1):29–41, 1996.

228 Bibliography

[73] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, 2004.

[74] V. H. S. Durelli, R. S. Durelli, S. S. Borges, A. T. Endo, M. M. Eler,
D. R. C. Dias, and M. d. P. Guimarães. Machine learning applied to
software testing: A systematic mapping study. IEEE Trans. Reliab.,
68(3):1189–1212, 2019.

[75] D. G. e Silva, M. Jino, and B. T. de Abreu. Machine learning methods
and asymmetric cost function to estimate execution effort of software
testing. In 3rd Int. Conf. on Software Testing, Verification and Valid-
ation, ICST’10, pages 275–284. IEEE Computer Society, 2010.

[76] O. Ekundayo and S. Viriri. Facial expression recognition: A review of
trends and techniques. IEEE Access, 9:136944–136973, 2021.

[77] K. El-Fakih, A. Petrenko, and N. Yevtushenko. FSM test translation
through context. In 18th Int. Conf. on Testing Communicating Sys-
tems, TestCom’06, LNCS 3964, pages 245–258. Springer, 2006.

[78] M. C. F. P. Emer and S. R. Vergilio. Gptest: A testing tool based
on genetic programming. In GECCO’02: Genetic and Evolutionary
Computation Conf., pages 1343–1350. Morgan Kaufmann, 2002.

[79] M. Eriksson, J. Borstler, and K. Borg. The PLUSS approach - domain
modeling with features, use cases and use case realizations. In 9th Int.
Conference on Software Product Lines, SPLC’06, LNCS 3714, pages
33–44. Springer, 2006.

[80] R. Feldt, S. M. Poulding, D. Clark, and S. Yoo. Test set diameter:
Quantifying the diversity of sets of test cases. In 9th IEEE Int. Conf.
on Software Testing, Verification and Validation, ICST’16, pages 223–
233. IEEE Computer Society, 2016.

[81] R. Feldt, R. Torkar, T. Gorschek, and W. Afzal. Searching for cog-
nitively diverse tests: Towards universal test diversity metrics. In
1st IEEE Int. Conf. on Software Testing Verification and Validation
Workshops, pages 178–186. IEEE Computer Society, 2008.

[82] J. Ferrer, F. Chicano, and E. Alba. Estimating software testing com-
plexity. Information & Software Technology, 55(12):2125–2139, 2013.

[83] G. Fraser and F. Wotawa. Using model-checkers for mutation-
based test-case generation, coverage analysis and specification ana-
lysis. In International Conference on Software Engineering Advances
(ICSEA’06), page 16. IEEE Computer Society, 2006.

[84] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. IEEE Transactions on Software Engineering, 38(2):278–292,
2012.

Bibliography 229

[85] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected state
machine coverage for software testing. In Int. Symp. on Software Test-
ing and Analysis, ISSTA’02, pages 134–143. ACM, 2002.

[86] S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and
A. Ghedamsi. Test selection based on finite-state models. IEEE Trans-
actions on Software Engineering, 17(6):591–603, 1991.

[87] P. García-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. J.
Merelo. Automated playtesting in collectible card games using evol-
utionary algorithms: A case study in hearthstone. Knowledge-Based
Systems, 153:133 – 146, 2018.

[88] M.-C. Gaudel. Testing can be formal, too! In 6th Int. Joint
Conf. CAAP/FASE, Theory and Practice of Software Development,
TAPSOFT’95, LNCS 915, pages 82–96. Springer, 1995.

[89] D. E. Goldberg. Genetic Algorithms in Search, Optimisation and Ma-
chine Learning. Addison-Wesley, 1989.

[90] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. A tool for
domain-independent model mutation. Science of Computer Program-
ming, 163:85–92, 2018.

[91] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. Wodel-
Test: a model-based framework for language-independent mutation
testing. Software and Systems Modeling (in press), 2021.

[92] A. González-Sanchez, É. Piel, R. Abreu, H.-G. Groß, and A. J. C. van
Gemund. Prioritizing tests for software fault diagnosis. Softw. Pract.
Exp., 41(10):1105–1129, 2011.

[93] A. González-Sanchez, É. Piel, H.-G. Groß, and A. J. C. van Gemund.
Prioritizing tests for software fault localization. In 10th Int. Conf.
on Quality Software, QSIC’10, pages 42–51. IEEE Computer Society,
2010.

[94] K. Goseva-Popstojanova and S. Kamavaram. Assessing uncertainty in
reliability of component-based software systems. In 14th Int. Symp.
on Software Reliability Engineering (ISSRE’03), pages 307–320, 2003.

[95] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating
finite state machines from abstract state machines. In ACM SIGSOFT
Symposium on Software Testing and Analysis, ISSTA’02, pages 112–
122. ACM Press, 2002.

[96] W. Grieskamp, N. Kicillof, K. Stobie, and V. Braberman. Model-based
quality assurance of protocol documentation: tools and methodology.
Software Testing, Verification and Reliability, 21(1):55–71, 2011.

230 Bibliography

[97] D. Griñán and A. Ibias. Generating tree inputs for testing using evol-
utionary computation techniques. In 22nd IEEE Congress on Evolu-
tionary Computation, CEC’20, pages E–24267: 1–8. IEEE Computer
Society, 2020.

[98] D. Griñán, A. Ibias, and M. Núñez. Grammar-based tree swarm optim-
ization. In 2019 IEEE Int. Conf. on Systems, Man and Cybernetics,
SMC’19, pages 76–81. IEEE Press, 2019.

[99] M. L. Griss, J. M. Favaro, and M. D’Alessandro. Integrating feature
modeling with the RSEB. In Int. Conf. on Software Reuse, ICSR’98,
pages 76–85, 1998.

[100] A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr. Swarm test-
ing. In 22nd ACM SIGSOFT Int. Symposium on Software Testing and
Analysis, ISSTA’12, pages 78–88. ACM Press, 2012.

[101] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Computing
Unique Input/Output sequences using genetic algorithms. In 3rd Int.
Workshop on Formal Approaches to Testing of Software, FATES’03,
LNCS 2931, pages 164–177. Springer, 2003.

[102] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian. Improving test
quality using robust unique input/output circuit sequences (UIOCs).
Information & Software Technology, 48(8):696–707, 2006.

[103] A. Gupta, N. Gupta, and R. Kumar-Garg. Implementing weighted
entropy-distance based approach for the selection of software reliability
growth models. Int. J. Comput. Appl. Technol., 57(3):255–266, 2018.

[104] L. Gutiérrez-Madroñal, A. García-Domínguez, and I. Medina-Bulo.
Evolutionary mutation testing for IoT with recorded and generated
events. Software - Practice & Experience, 49(4):640–672, 2019.

[105] V. Le Hanh, K. Akif, Y. Le Traon, and J.-M. Jézéquel. Selecting an ef-
ficient OO integration testing strategy: An experimental comparison of
actual strategies. In ECOOP’01 - Object-Oriented Programming, 15th
European Conf., volume 2072 of Lecture Notes in Computer Science,
pages 381–401. Springer, 2001.

[106] M. Harman, S. A. Mansouri, and Y. Zhang. Search based software en-
gineering: A comprehensive analysis and review of trends techniques
and applications. Technical Report TR-09-03, Department of Com-
puter Science, King’s College London, London, UK, April 2009.

[107] M. Harman and P. McMinn. A theoretical and empirical study of
search-based testing: Local, global, and hybrid search. IEEE Trans-
actions on Software Engineering, 36(2):226–247, 2010.

Bibliography 231

[108] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-based
testing through test case diversity. ACM Transactions on Software
Engineering and Methodology, 22(1):6:1–6:42, 2013.

[109] H. Hemmati, Z. Fang, and M. V. Mantyla. Prioritizing manual test
cases in traditional and rapid release environments. In 8th IEEE Int.
Conf. on Software Testing, Verification and Validation, ICST’15, pages
1–10. IEEE Computer Society, 2015.

[110] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon. Com-
paring white-box and black-box test prioritization. In 38th Int. Conf.
on Software Engineering, ICSE’16, pages 523–534. ACM Press, 2016.

[111] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon. Bypassing the combinatorial explosion: Using similar-
ity to generate and prioritize T-Wise test configurations for software
product lines. IEEE Transactions on Software Engineering, 40(7):650–
670, 2014.

[112] F. C. Hennie. Fault-detecting experiments for sequential circuits. In 5th
Annual Symposium on Switching Circuit Theory and Logical Design,
pages 95–110. IEEE Computer Society, 1964.

[113] R. Hewett. Mining software defect data to support software testing
management. Appl. Intell., 34(2):245–257, 2011.

[114] R. M. Hierons. Reaching and distinguishing states of distributed sys-
tems. SIAM Journal on Computing, 39(8):3480–3500, 2010.

[115] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan. Using
formal specifications to support testing. ACM Computing Surveys,
41(2):9:1–9:76, 2009.

[116] R. M. Hierons, M. G. Merayo, and M. Núñez. Mutation testing.
In Phillip A. Laplante, editor, Encyclopedia of Software Engineering,
pages 594–602. Taylor & Francis, 2010.

[117] R. M. Hierons, M. G. Merayo, and M. Núñez. Controllability through
nondeterminism in distributed testing. In 28th IFIP WG 6.1 Int. Conf.
on Testing Software and Systems, ICTSS’16, LNCS 9976, pages 89–
105. Springer, 2016.

[118] R. M. Hierons, M. G. Merayo, and M. Núñez. An extended frame-
work for passive asynchronous testing. Journal of Logical and Algebraic
Methods in Programming, 86(1):408–424, 2017.

232 Bibliography

[119] R. M. Hierons, M. G. Merayo, and M. Núñez. Bounded reordering
in the distributed test architecture. IEEE Transactions on Reliability,
67(2):522–537, 2018.

[120] R. M. Hierons and M. Núñez. Implementation relations and probabil-
istic schedulers in the distributed test architecture. Journal of Systems
and Software, 132:319–335, 2017.

[121] R. M. Hierons and H. Ural. Optimizing the length of checking se-
quences. IEEE Transactions on Computers, 55(5):618–629, 2006.

[122] R. M. Hierons and H. Ural. Checking sequences for distributed test
architectures. Distributed Computing, 21(3):223–238, 2008.

[123] R. M. Hierons and H. Ural. The effect of the distributed test architec-
ture on the power of testing. The Computer Journal, 51(4):497–510,
2008.

[124] J. Huo and A. Petrenko. Covering transitions of concurrent systems
through queues. In 16th Int. Symposium on Software Reliability En-
gineering, ISSRE’05, pages 335–345. IEEE Computer Society, 2005.

[125] I. Hwang and A. R. Cavalli. Testing a probabilistic FSM using interval
estimation. Computer Networks, 54(7):1108–1125, 2010.

[126] I. Hwang, A. R. Cavalli, M. Lallali, and D. Verchère. Applying formal
methods to PCEP: an industrial case study from modeling to test
generation. Software Testing, Verification and Reliability, 22(5):343–
361, 2012.

[127] A. Ibias. Using mutual information to test from Finite State Machines:
Test suite generation. Submitted for publication, -:–, 2022.

[128] A. Ibias, D. Griñán, and M. Núñez. GPTSG: a Genetic Programming
Test Suite Generator using Information Theory measures. In 15th Int.
Work-Conf. on Artificial Neural Networks, IWANN’19, LNCS 11506,
pages 716–728. Springer, 2019.

[129] A. Ibias, R. M. Hierons, and M. Núñez. Using Squeeziness to test
component-based systems defined as Finite State Machines. Informa-
tion & Software Technology, 112:132–147, 2019.

[130] A. Ibias and L. Llana. Feature selection using evolutionary compu-
tation techniques for software product line testing. In 22nd IEEE
Congress on Evolutionary Computation, CEC’20, pages E–24502: 1–
8. IEEE Computer Society, 2020.

Bibliography 233

[131] A. Ibias, L. Llana, and M. Núñez. Using ant colony optimisation to
select features having associated costs. In 33rd IFIP Int. Conf. on
Testing Software and Systems, ICTSS’21, pages –. IEEE, 2021.

[132] A. Ibias and M. Núñez. Estimating fault masking using Squeeziness
based on Rényi’s entropy. In 35th ACM Symposium on Applied Com-
puting, SAC’20, pages 1936–1943. ACM Press, 2020.

[133] A. Ibias and M. Núñez. Using a swarm to detect hard-to-kill mutants.
In 2020 IEEE Int. Conf. on Systems, Man and Cybernetics, SMC’20,
pages 2190–2195. IEEE Press, 2020.

[134] A. Ibias and M. Núñez. SqSelect: Automatic assessment of failed error
propagation in state-based systems. Expert Systems with Applications,
174:114748, 2021.

[135] A. Ibias and M. Núñez. Squeeziness for Non-Deterministic Systems.
Submitted for publication, -:–, 2022.

[136] A. Ibias, M. Núñez, and R. M. Hierons. Using mutual information to
test from Finite State Machines: Test suite selection. Information &
Software Technology, 132:106498, 2021.

[137] A. Ibias, P. Vazquez-Gomis, and M. Benito-Parejo. Coverage-based
grammar-guided genetic programming generation of test suites. In
IEEE Congress on Evolutionary Computation, CEC’21, pages 2411–
2418. IEEE, 2021.

[138] F. Ingrand and M. Ghallab. Deliberation for autonomous robots: A
survey. Artif. Intell., 247:10–44, 2017.

[139] F. Ipate. Bounded sequence testing from deterministic finite state
machines. Theoretical Computer Science, 411(16-18):1770–1784, 2010.

[140] ISO/IEC JTCI/SC21/WG7, ITU-T SG 10/Q.8. Information Retrieval,
Transfer and Management for OSI; Framework: Formal Methods in
Conformance Testing. Committee Draft CD 13245-1, ITU-T proposed
recommendation Z.500. ISO – ITU-T, 1996.

[141] M. Jaffar-ur Rehman, F. Jabeen, A. Bertolino, and A. Polini. Testing
software components for integration: a survey of issues and techniques.
Software Testing, Verification and Reliability, 17(2):95–133, 2007.

[142] G. Jahangirova, D. Clark, M. Harman, and P. Tonella. An empirical
study on failed error propagation in java programs with real faults.
CoRR, abs/2011.10787, 2020.

[143] A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks:
A tutorial. IEEE Computer, 29(3):31–44, 1996.

234 Bibliography

[144] K. Jalbert and J. S. Bradbury. Predicting mutation score using source
code and test suite metrics. In 1st Int. Workshop on Realizing AI Syn-
ergies in Software Engineering, RAISE’12, pages 42–46. IEEE, 2012.

[145] Y. Jia and M. Harman. Constructing subtle faults using higher order
mutation testing. In 8th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation (SCAM’08), pages 249–258. IEEE Com-
puter Society, 2008.

[146] Y. Jia and M. Harman. Higher order mutation testing. Inf. Softw.
Technol., 51(10):1379–1393, 2009.

[147] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649–678, 2011.

[148] Y. Kamei and E. Shihab. Defect prediction: Accomplishments and
future challenges. In Leaders of Tomorrow Symposium: Future of Soft-
ware Engineering, FOSE@SANER’16, pages 33–45. IEEE Computer
Society, 2016.

[149] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA) feasibility study. Tech-
nical Report CMU/SEI-90-TR-21, Carnegie Mellon University, 1990.

[150] J. Kennedy and R. Eberhart. Particle swarm optimization. In 3rd Int.
Conf. on Neural Networks, ICNN’95, pages 1942–1948. IEEE Com-
puter Society, 1995.

[151] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An entropy evaluation
approach for triaging field crashes: A case study of mozilla firefox. In
18th Working Conf. on Reverse Engineering, WCRE’11, pages 261–
270. IEEE Computer Society, 2011.

[152] T. M. Khoshgoftaar and T. G. Woodcock. Software reliability model
selection: a cast study. In 2nd Int. Symp. on Software Reliability
Engineering, ISSRE’91, pages 183–191, 1991.

[153] B. Kim, K.-T. Kim, and E. Y. Kim. Reconstruction of degraded images
using genetic algoritm for archive film restoration. In Int. Conf. on
Image Processing, ICIP’09, pages 2765–2768. IEEE, 2009.

[154] K. N. King and A. J. Offutt. A fortran language system for mutation-
based software testing. Softw. Pract. Exp., 21(7):685–718, 1991.

[155] Z. Kohavi. Switching and Finite State Automata Theory. McGraw-Hill,
1978.

Bibliography 235

[156] J. R. Koza. Genetic programming. MIT Press, 1993.

[157] M. Kumar, A. Sharma, and R. Kumar. Fuzzy entropy-based framework
for multi-faceted test case classification and selection: an empirical
study. IET Softw., 8(3):103–112, 2014.

[158] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In 23rd Int. Conf. on Computer
Aided Verification, CAV’11, LNCS 6806, pages 585–591. Springer,
2011.

[159] R. Lachmann, S. Beddig, S. Lity, S. Schulze, and I. Schaefer. Risk-
based integration testing of software product lines. In 11th Int.
Workshop on Variability Modelling of Software-Intensive Systems, Va-
MoS’17, pages 52–59. ACM Press, 2017.

[160] J. W. Laski, W. Szermer, and P. Luczycki. Error masking in computer
programs. Software Testing, Verification and Reliability, 5(2):81–105,
1995.

[161] G. I. Latiu, O. A. Cret, and L. Vacariu. Automatic test data generation
for software path testing using evolutionary algorithms. In 2012 3rd
Int. Conf. on Emerging Intelligent Data and Web Technologies, pages
1–8. IEEE Computer Society, 2012.

[162] D. Lee and M. Yannakakis. Principles and methods of testing finite
state machines: A survey. Proceedings of the IEEE, 84(8):1090–1123,
1996.

[163] M.-C. Lee and T. Chang. Software measurement and software met-
rics in software quality. Int. Journal of software engineering and its
application, 7:15–33, 01 2013.

[164] R. Lefticaru and F. Ipate. Automatic state-based test generation us-
ing genetic algorithms. In 9th Int. Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing, SYNASC’07, pages 188–
195. IEEE Computer Society, 2007.

[165] R. Lefticaru and F. Ipate. An improved test generation approach
from extended finite state machines using genetic algorithms. In Soft-
ware Engineering and Formal Methods - 10th International Conference,
SEFM’12, volume 7504 of Lecture Notes in Computer Science, pages
293–307. Springer, 2012.

[166] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity
and Its Applications. Springer, 4th edition, 2019.

236 Bibliography

[167] G. Lin and J. Wang. Software operational profile reduction and clas-
sification testing based on entropy theory. In 2009 Int. Conf. on Ar-
tificial Intelligence and Computational Intelligence, volume 1, pages
73–77, 2009.

[168] J.-C. Lin and P.-L. Yeh. Automatic test data generation for path
testing using gas. Inf. Sci., 131(1-4):47–64, 2001.

[169] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, A. Egyed, and E. Alba.
Comparative analysis of classical multi-objective evolutionary al-
gorithms and seeding strategies for pairwise testing of software product
lines. In 16th IEEE Congress on Evolutionary Computation, CEC’14,
pages 387–396. IEEE, 2014.

[170] Y. Lou, J. Chen, L. Zhang, and D. Hao. Chapter one - A survey on
regression test-case prioritization. Adv. Comput., 113:1–46, 2019.

[171] J. M. Luna, J. R. Romero, and S. Ventura. Design and behavior
study of a grammar-guided genetic programming algorithm for mining
association rules. Knowledge and Information Systems, 32(1):53–76,
2012.

[172] T. Mantere and J. T. Alander. Evolutionary software engineering, a
review. Appl. Soft Comput., 5(3):315–331, 2005.

[173] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. Automatic testing
of gui-based applications. Softw. Test. Verification Reliab., 24(5):341–
366, 2014.

[174] R. Marinescu, C. Seceleanu, H. Le Guen, and P. Pettersson. A Research
Overview of Tool-Supported Model-based Testing of Requirements-based
Designs, volume 98 of Advances in Computers, chapter 3, pages 89–
140. Elsevier, 2015.

[175] W. Masri, R. Abou-Assi, M. El-Ghali, and N. Al-Fatairi. An empirical
study of the factors that reduce the effectiveness of coverage-based
fault localization. In 2nd Int. Workshop on Defects in Large Software
Systems, DEFECTS’09, pages 1–5. ACM Press, 2009.

[176] P. May, K. Mander, and J. Timmis. Software vaccination: An artificial
immune system approach to mutation testing. In Artificial Immune
Systems, Second Int. Conf., ICARIS’03, volume 2787 of Lecture Notes
in Computer Science, pages 81–92. Springer, 2003.

[177] P. May, J. Timmmis, and K. Mander. Immune and evolutionary ap-
proaches to software mutation testing. In 6th Int. Conf. on Artificial
Immune Systems, ICARIS’07, LNCS 4628, pages 336–347. Springer,
2007.

Bibliography 237

[178] J. D. McGregor. Testing a software product line. In Testing Techniques
in Software Engineering, Pernambuco Summer School on Software En-
gineering, PSSE’07, pages 104–140, 2007.

[179] J. D. McGregor and D. A. Sykes. A Practical Guide to Testing Object-
Oriented Software. Addison Wesley object technology series. Pearson
/ Prentice Hall, 2001.

[180] R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’Neill.
Grammar-based genetic programming: a survey. Genetic Programming
and Evolvable Machines, 11(3-4):365–396, 2010.

[181] G.H. Mealy. A method for synthesizing sequential circuits. Bell System
Techical Journal, 34:1045–1079, 1955.

[182] T. Menzies, J. Greenwald, and A. Frank. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software
Engineering, 33(1):2–13, 2007.

[183] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing with
asynchronous communications and timestamps. Distributed Comput-
ing, 31(5):327–342, 2018.

[184] M. G. Merayo, R. M. Hierons, and M. Núñez. A tool supported meth-
odology to passively test asynchronous systems with multiple users.
Information & Software Technology, 104:162–178, 2018.

[185] C. C. Michael, G. E. McGraw Jr., M. Schatz, and C. C. Walton. Ge-
netic algorithms for dynamic test data generation. In 1997 Int. Conf.
on Automated Software Engineering, ASE’97, pages 307–308. IEEE
Computer Society, 1997.

[186] C. C. Michael, G. McGraw, and M. A. Schatz. Generating software
test data by evolution. IEEE Transactions on Software Engineering,
27(12):1085–1110, 2001.

[187] T. Minohara and Y. Tohma. Parameter estimation of hyper-geometric
distribution software reliability growth model by genetic algorithms. In
6th Int. Symp. on Software Reliability Engineering, ISSRE’95, pages
324–329. IEEE Computer Society, 1995.

[188] A. V. Miranskyy, M. Davison, R. M. Reesor, and S. S. Murtaza. Us-
ing entropy measures for comparison of software traces. Information
Sciences, 203:59–72, 2012.

[189] D. B. Mishra, R. Mishra, A. A. Acharya, and K. N. Das. Test data
generation for mutation testing using genetic algorithm. In Soft Com-
puting for Problem Solving - SocProS’17, volume 817 of Advances in
Intelligent Systems and Computing, pages 857–867. Springer, 2017.

238 Bibliography

[190] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[191] S. N. Mohanty. Models and measurements for quality assessment of
software. ACM Comput. Surv., 11(3):251–275, 1979.

[192] E. P. Moore. Gedanken experiments on sequential machines. In
C. Shannon and J. McCarthy, editors, Automata Studies. Princeton
University Press, 1956.

[193] A. Muhamed, L. Li, X. Shi, S. Yaddanapudi, W. Chi, D. Jackson,
R. Suresh, Z. C. Lipton, and A. J. Smola. Symbolic music generation
with transformer-gans. In 35th AAAI Conf. on Artificial Intelligence,
AAAI’21, pages 408–417. AAAI Press, 2021.

[194] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing.
John Wiley & Sons, 3rd edition, 2011.

[195] S. Naito and M. Tsunoyama. Fault detection for sequential machines.
In IEEE Fault Tolerant Computer Systems, pages 238–243. IEEE Com-
puter Society, 1981.

[196] N. F. M. Nasir, N. Ibrahim, M. M. Deris, and M. Z. Saringat. Test
case and requirement selection using rough set theory and conditional
entropy. In Computational Intelligence in Information Systems, pages
61–71, Cham, 2019. Springer Int. Publishing.

[197] A. Núñez, M. G. Merayo, R. M. Hierons, and M. Núñez. Using genetic
algorithms to generate test sequences for complex timed systems. Soft
Computing, 17(2):301–315, 2013.

[198] A. J. Offutt and A. Abdurazik. Generating tests from UML specific-
ations. In «UML»’99: The Unified Modeling Language - Beyond the
Standard, Second Int. Conf., volume 1723 of Lecture Notes in Com-
puter Science, pages 416–429. Springer, 1999.

[199] A. J. Offutt, G. Rothermel, and C. Zapf. An experimental evaluation
of selective mutation. In 15th Int. Conf. on Software Engineering,
ICSE’93, pages 100–107. IEEE Computer Society / ACM Press, 1993.

[200] H. Okamura, Y. Etani, and T. Dohi. A multi-factor software reliability
model based on logistic regression. In IEEE 21st Int. Symp. on Soft-
ware Reliability Engineering, ISSRE’10, pages 31–40. IEEE Computer
Society, 2010.

[201] H. Okamura, Y. Etani, and T. Dohi. Quantifying the effectiveness of
testing efforts on software fault detection with a logit software reli-
ability growth model. In 2011 Joint Conf of 21st Int’l Workshop on
Software Measurement and the 6th Int’l Conf. on Software Process and

Bibliography 239

Product Measurement, IWSM/Mensura’11, pages 62–68. IEEE Com-
puter Society, 2011.

[202] H. Okamura, Y. Watanabe, and T. Dohi. Estimating mixed software
reliability models based on the EM algorithm. In 2002 Int. Symp.
on Empirical Software Engineering (ISESE’02), pages 69–78. IEEE
Computer Society, 2002.

[203] A. Oliveira, R. Freitas, A. Jorge, V. Amorim, N. Moniz, A. C. R.
Paiva, and P. J. Azevedo. Sequence mining for automatic generation
of software tests from GUI event traces. In Intelligent Data Engineering
and Automated Learning - IDEAL’20 - 21st Int. Conf., volume 12490
of Lecture Notes in Computer Science, pages 516–523. Springer, 2020.

[204] M. Papadakis, T. T. Chekam, and Y. Le Traon. Mutant quality indic-
ators. In 13th Int. Workshop on Mutation Analysis, MUTATION’18,
ICST Workshops, pages 32–39. IEEE Computer Society, 2018.

[205] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Har-
man. Mutation testing advances: An analysis and survey. In Atif M.
Memon, editor, Advances in Computers, volume 112, pages 275 – 378.
Elsevier, 2019.

[206] R. P. Pargas, M. J. Harrold, and R. Peck. Test-data generation us-
ing genetic algorithms. Softw. Test. Verification Reliab., 9(4):263–282,
1999.

[207] K. R. Pattipati and M. G. Alexandridis. Application of heuristic search
and information theory to sequential fault diagnosis. IEEE Transac-
tions on Systems, Man, and Cybernetics, 20(4):872–887, 1990.

[208] K. R. Pattipati, S. Deb, M. Dontamsetty, and A. Maitra. START:
System testability analysis and research tool. In IEEE Conference on
Systems Readiness Technology, ’Advancing Mission Accomplishment’,
pages 395–402, 1990.

[209] J. Peleska. Model-based avionic systems testing for the airbus family.
In 23rd IEEE European Test Symposium, ETS’18, pages 1–10. IEEE
Computer Society, 2018.

[210] M. Pelikan, M. Hauschild, and F. G. Lobo. Estimation of distribu-
tion algorithms. In Springer Handbook of Computational Intelligence,
Springer Handbooks, pages 899–928. Springer, 2015.

[211] A. Petrenko. Fault model-driven test derivation from finite state mod-
els: Annotated bibliography. In 4th Summer School on Modeling and
Verification of Parallel Processes, MOVEP’00, LNCS 2067, pages 196–
205. Springer, 2001.

240 Bibliography

[212] A. Petrenko, S. Boroday, and R. Groz. Confirming configurations in
EFSM testing. IEEE Transactions on Software Engineering, 30(1):29–
42, 2004.

[213] A. Petrenko and N. Yevtushenko. Testing from partial deterministic
FSM specifications. IEEE Transactions on Computers, 54(9):1154–
1165, 2005.

[214] A. Petrenko, N. Yevtushenko, G. von Bochmann, and R. Dssouli. Test-
ing in context: Framework and test derivation. Computer Communic-
ations, 19:1236–1249, 1996.

[215] J. H. Poore and C. J. Trammell. Application of statistical science
to testing and evaluating software intensive systems. In Science and
Engineering for Software Development: A Recognition of Harlin D.
Mills Legacy, pages 40–57, 1999.

[216] J. H. Poore, G. H. Walton, and J. A. Whittaker. A constraint-based
approach to the representation of software usage models. Inf. Softw.
Technol., 42(12):825–833, 2000.

[217] S. M. Poulding and R. Feldt. Generating controllably invalid and atyp-
ical inputs for robustness testing. In 2017 IEEE Int. Conf. on Software
Testing, Verification and Validation Workshops, ICST’17, pages 81–84,
2017.

[218] S. Reis, A. Metzger, and K. Pohl. Integration testing in software
product line engineering: A model-based technique. In 10th Int. Conf.
on Fundamental Approaches to Software Engineering, FASE’07, pages
321–335. Springer, 2007.

[219] A. Rényi. On measures of entropy and information. In 4th Berke-
ley Symposium on Mathematical Statistics and Probability, Volume 1:
Contributions to the Theory of Statistics, pages 547–561. University of
California Press, 1961.

[220] D. S. Rodrigues, M. E. Delamaro, C. G. Corrêa, and F. L. S. Nunes.
Using genetic algorithms in test data generation: A critical systematic
mapping. ACM Comput. Surv., 51(2), 2018.

[221] A. Rosenfeld, O. Kardashov, and O. Zang. Automation of android
applications functional testing using machine learning activities classi-
fication. In 5th Int. Conf. on Mobile Software Engineering and Systems,
MOBILESoft@ICSE’18, pages 122–132. ACM, 2018.

[222] R. H. Rosero, O. S. Gómez, and G. D. R. Rafael. 15 years of software
regression testing techniques - A survey. Int. J. Softw. Eng. Knowl.
Eng., 26(5):675–690, 2016.

Bibliography 241

[223] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning repres-
entations by back-propagating errors. Nature, 323:533–536, 1986.

[224] R. Sagarna, A. Arcuri, and X. Yao. Estimation of distribution al-
gorithms for testing object oriented software. In 9th IEEE Congress
on Evolutionary Computation, CEC’07, pages 438–444. IEEE Com-
puter Society, 2007.

[225] R. Sagarna and J. A. Lozano. Variable search space for software test-
ing. In Int. Conf. on Neural Networks and Signal Processing, 2003,
volume 1, pages 575–578 Vol.1, Dec 2003.

[226] R. Sagarna and J. A. Lozano. Scatter search in software testing, com-
parison and collaboration with estimation of distribution algorithms.
Eur. J. Oper. Res., 169(2):392–412, 2006.

[227] A. Samarah, A. Habibi, S. Tahar, and N. N. Kharma. Automated cov-
erage directed test generation using a cell-based genetic algorithm. In
11th Annual IEEE Int. High-Level Design Validation and Test Work-
shop, pages 19–26. IEEE Computer Society, 2006.

[228] J. Sant, A. L. Souter, and L. G. Greenwald. An exploration of statist-
ical models for automated test case generation. ACM SIGSOFT Softw.
Eng. Notes, 30(4):1–7, 2005.

[229] R. A. Santelices and M. J. Harrold. Applying aggressive propagation-
based strategies for testing changes. In 4th Int. Conf. on Software Test-
ing, Verification and Validation, ICST’11, pages 11–20. IEEE Com-
puter Society Press, 2011.

[230] S. Sarkar, G. M. Rama, and A. C. Kak. Api-based and information-
theoretic metrics for measuring the quality of software modularization.
IEEE Trans. Software Eng., 33(1):14–32, 2007.

[231] K. Sayre. Improved Techniques For Software Testing Based On Markov
Chain Usage Models. PhD thesis, The University of Tennessee,
Knoxville, 1999.

[232] S. Segura, G. Fraser, A. B. Sánchez, and A. Ruiz-Cortés. A survey
on metamorphic testing. IEEE Transactions on Software Engineering,
42(9):805–824, 2016.

[233] S. Selvaraj and E. Choi. Survey of swarm intelligence algorithms. In
3rd Int. Conf. on Software Engineering and Information Management,
ICSIM’20, pages 69–73. ACM Press, 2020.

[234] E. Serna M., E. Acevedo M., and A. Serna A. Integration of properties
of virtual reality, artificial neural networks, and artificial intelligence

242 Bibliography

in the automation of software tests: A review. Journal of Software:
Evolution and Process, 31(7):2159, 2019.

[235] M. Shafique and Y. Labiche. A systematic review of state-based test
tools. International Journal on Software Tools for Technology Transfer,
17(1):59–76, 2015.

[236] L. Shan and H. Zhu. Testing software modelling tools using data muta-
tion. In 2006 Int. Workshop on Automation of Software Test, AST’06,
pages 43–49. ACM, 2006.

[237] C. E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379–423, 623–656, 1948.

[238] J. Shi, M. B. Cohen, and M. B. Dwyer. Integration testing of software
product lines using compositional symbolic execution. In 15th Int.
Conf. on Fundamental Approaches to Software Engineering, FASE’12,
pages 270–284. Springer, 2012.

[239] Q. Shi, Z. Chen, C. Fang, Y. Feng, and B. Xu. Measuring the diversity
of a test set with distance entropy. IEEE Trans. Reliab., 65(1):19–27,
2016.

[240] A. Simão, A. Petrenko, and N. Yevtushenko. On reducing test length
for FSMs with extra states. Software Testing, Verification and Reliab-
ility, 22(6):435–454, 2012.

[241] J. Smith and T. C. Fogarty. Evolving software test data - ga’s learn
self expression. In Evolutionary Computing, AISB Workshop, volume
1143 of Lecture Notes in Computer Science, pages 137–146. Springer,
1996.

[242] Y. Song and Y. Gong. Web service composition on iot reliability test
based on cross entropy. Comput. Intell., 36(4):1650–1662, 2020.

[243] S. Splaine and S. P. Jaskiel. The web testing handbook. STQE Pub.,
2001.

[244] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. IEEE
Computer, 27:17–27, 1994.

[245] M. Steindl and J. Mottok. Optimizing software integration by consid-
ering integration test complexity and test effort. In 10th Int. Workshop
on Intelligent Solutions in Embedded Systems, WISES’12, pages 63–68.
IEEE Computer Society, 2012.

[246] J. Strug and B. Strug. Machine learning approach in mutation test-
ing. In Testing Software and Systems - 24th IFIP WG 6.1 Int. Conf.,

Bibliography 243

ICTSS’12, volume 7641 of Lecture Notes in Computer Science, pages
200–214. Springer, 2012.

[247] A. Turlea, F. Ipate, and R. Lefticaru. A hybrid test generation ap-
proach based on extended finite state machines. In 18th International
Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, SYNASC’16, pages 173–180. IEEE, 2016.

[248] A. Turlea, F. Ipate, and R. Lefticaru. A test suite generation ap-
proach based on EFSMs using a multi-objective genetic algorithm.
In 19th Int.Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing, SYNASC’17, pages 153–160. IEEE Computer So-
ciety, 2017.

[249] A. Turlea, F. Ipate, and R. Lefticaru. Generating complex paths for
testing from an EFSM. In 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion, QRS’18, pages
242–249. IEEE, 2018.

[250] S. Udeshi, X. Jiang, and S. Chattopadhyay. Callisto: Entropy-based
test generation and data quality assessment for machine learning sys-
tems. In 13th IEEE Int. Conf. on Software Testing, Validation and
Verification, ICST’20, pages 448–453. IEEE, 2020.

[251] M. Utting and B. Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan-Kaufmann, 2007.

[252] M. P. Vasilevskii. Failure diagnosis of automata. Cybernetics, 4:653–
665, 1973.

[253] W. Visser. What makes killing a mutant hard. In 31st IEEE/ACM
Int. Conf. on Automated Software Engineering, ASE’16, pages 39–44.
ACM Press, 2016.

[254] D. Wang, D. Tan, and L. Liu. Particle swarm optimization algorithm:
an overview. Soft Computing, 22:387–408, 2018.

[255] X. Wang, S.-C. Cheung, W. K. Chan, and Z. Zhang. Taming co-
incidental correctness: Coverage refinement with context patterns to
improve fault localization. In 31st Int. Conf. on Software Engineering,
ICSE’09, pages 45–55. IEEE Computer Society, 2009.

[256] Y. Wang, M. Ü. Uyar, S. S. Batth, and M. A. Fecko. Fault masking
by multiple timing faults in timed EFSM models. Computer Networks,
53(5):596–612, 2009.

[257] E. J. Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):465–470, 1982.

244 Bibliography

[258] J. A. Whittaker and M. G. Thomason. A markov chain model for
statistical software testing. IEEE Trans. Software Eng., 20(10):812–
824, 1994.

[259] J.A. Whittaker and J.H. Poore. Markov analysis of software specific-
ations. ACM Transactions on Software Engineering and Methodology,
2(1):93–106, 1993.

[260] A. Windisch, S. Wappler, and J. Wegener. Applying particle swarm op-
timization to software testing. In 9th Genetic and Evolutionary Com-
putation Conference, GECCO’07, pages 1121–1128. ACM Press, 2007.

[261] J. K. Wolf. Born again group testing: Multiaccess communications.
IEEE Trans. Information Theory, 31(2):185–191, 1985.

[262] W. E. Wong and A. P. Mathur. Reducing the cost of mutation testing:
An empirical study. Journal of Systems and Software, 31(3):185–196,
1995.

[263] M. R. Woodward and Z. A. Al-Khanjari. Testability, fault size and the
domain-to-range ratio: An eternal triangle. In 12th Int. Symposium on
Software Testing and Analysis, ISSTA’00, pages 168–172. ACM Press,
2000.

[264] L. Yang. Entropy and software systems: towards an information-
theoretic foundation of software testing. PhD thesis, Washington State
University, 2011.

[265] L. Yang, Z. Dang, and T. R. Fischer. Information gain of black-box
testing. Formal Asp. Comput., 23(4):513–539, 2011.

[266] L. Yang, Z. Dang, T. R. Fischer, M. S. Kim, and L. Tan. Entropy
and software systems: towards an information-theoretic foundation
of software testing. In Workshop on Future of Software Engineering
Research, FoSER’10, pages 427–432, 2010.

[267] S. Yoo and M. Harman. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[268] S. Yoo, M. Harman, and D. Clark. Fault localization priorit-
ization: Comparing information-theoretic and coverage-based ap-
proaches. ACM Transanctions on Software Enginnering and Meth-
odology, 22(3):19: 1–29, 2013.

[269] D. Zhang, C. Nie, and B. Xu. A markov decision approach to optimize
testing profile in software testing. In 9th Int. Conf. for Young Computer
Scientists, ICYCS’08, pages 1205–1210. IEEE Computer Society, 2008.

Bibliography 245

[270] J. Zhang, Z. Wang, L. Zhang, D. Hao, L. Zang, S. Cheng, and L. Zhang.
Predictive mutation testing. In 25th Int. Symp. on Software Testing
and Analysis, ISSTA’16, pages 342–353. ACM, 2016.

[271] R. Zhao, W. Wang, Y. Song, and Z. Li. Diversity-oriented test
suite generation for EFSM model. IEEE Transactions on Reliability,
69(2):611–631, 2020.

[272] K. Zhou, X. Wang, G. Hou, J. Wang, and S. Ai. Software reliability
test based on markov usage model. JSW, 7(9):2061–2068, 2012.

[273] X. Zhu, B. Zhou, L. Hou, J. Chen, and L. Chen. An experience-
based approach for test execution effort estimation. In 9th Int. Conf.
for Young Computer Scientists, ICYCS’08, pages 1193–1198. IEEE
Computer Society, 2008.

[274] F. Zhuo, B. Lowther, P. W. Oman, and J. R. Hagemeister. Construct-
ing and testing software maintainability assessment models. In 1st Int.
Software Metrics Symp., METRICS’93, pages 61–70, 1993.

[275] R. Zuo. Information theory, information view, and software test-
ing. In 7th Int. Conf. on Information Technology: New Generations,
ITNG’10, pages 998–1003, 2010.

	Tesis Alfredo Ibias Martínez
	Portada
	Dedicatoria
	Acknowledgements
	Abstract
	Resumen
	I Introduction
	Introduction

	II State of the Art
	Software Testing Background
	General Overview of the Field
	State-of-the-Art
	Test Case Generation
	The Detection of Failed Error Propagation

	Information Theory Background
	General Overview of the Field
	State-of-the-Art
	Generic Theories
	Using Markov Chains
	Test Case Generation and Selection
	Software Quality
	Failed Error Propagation

	Artificial Intelligence Background
	General Overview of the Field
	State-of-the-Art
	Machine Learning for Software Testing
	Evolutionary Algorithms

	III Integrative Discussion
	The Detection of Failed Error Propagation
	Theoretical Background
	The Deterministic Case
	Maximum Entropy Principle
	Maximum Loss of Information

	The Generic Deterministic Case
	Maximum Entropy Principle
	Maximum Loss of Information

	The Non-Deterministic Case
	Maximum Entropy Principle
	Maximum Information Balance (Loss and Gain)

	Associated Papers

	Test Case Generation
	Theoretical Background
	Using Test Set Diameter
	Encoding
	Initial population
	Fitness function
	Stopping criterion
	Selection method
	Crossover method
	Mutation method
	Replacement method

	Using Biased Mutual Information
	Fitness Function
	Crossover Method
	Mutation Method

	Using Coverage-Based Metrics
	Associated Papers

	Integration Testing of Software Product Lines
	Theoretical Background
	Software Product Lines with Probabilities
	Software Product Lines with Costs
	Associated Papers

	Detecting Hard-to-Kill Mutants
	Associated Papers

	IV Conclusions
	Conclusions

	V Publications
	Publications
	Using Squeeziness to test component-based systems defined as Finite State Machines
	Estimating fault masking using Squeeziness based on Rényi’s entropy
	SqSelect: Automatic assessment of Failed Error Propagation in state-based systems
	GPTSG: A Genetic Programming test suite generator using Information Theory measures
	Using mutual information to test from Finite State Machines: Test suite selection
	Coverage-Based Grammar-Guided Genetic Programming Generation of Test Suites
	Feature Selection using Evolutionary Computation Techniques for Software Product Line Testing
	Using Ant Colony Optimisation to Select Features having Associated Costs
	Using a swarm to detect hard-to-kill mutants

	VI Bibliography

