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Abstract: Bone diseases, such as bone cancer, bone infection and osteoporosis, constitute a major 14 

issue for modern societies as a consequence of their progressive ageing. Even though these 15 
pathologies can be currently treated in the clinic, some of those treatments present drawbacks that 16 
may lead to severe complications. For instance, chemotherapy lacks of great tumor tissue selectivity, 17 
affecting healthy and diseased tissues. In addition, the inappropriate use of antimicrobials is leading 18 
to the appearance of drug-resistance bacteria and persistent biofilms, rendering current antibiotics 19 
useless. Furthermore, current antiosteoporotic treatments present many side effects as a 20 
consequence of their poor bioavailability and the need to use higher doses. In view of the exposed 21 
evidences, the encapsulation and selective delivery to the diseased tissues of the different 22 
therapeutic compounds seem highly convenient. In this sense, silica-based mesoporous 23 
nanoparticles offer great loading capacity within their pores, the possibility of modifying the surface 24 
to target the particles to the malignant areas and great biocompatibility. This manuscript is intended 25 
to be a comprehensive review of the available literature on complex bone diseases treated with 26 
silica-based mesoporous nanoparticles, whose further development and eventual translation into 27 
the clinic could bring significant benefits for our future society.  28 

Keywords: Mesoporous Silica Nanoparticles; Mesoporous Bioactive Glasses; Bone cancer; Bone 29 
infection; Bone Regeneration; Osteoporosis; Stimuli-Responsive Drug Delivery; Targeted Drug 30 
Delivery. 31 

 32 

1. Introduction 33 

In the last decades, nanotechnology has been applied to a variety of fields, ranging from novel 34 
electronic devices to the study of biological processes [1–4]. In particular, the application of 35 
nanotechnology to medicine, the so-called nanomedicine, has attracted the attention of many 36 
researchers, and it is expected to revolutionize the pharmaceutical and biotechnological fields in the 37 
near future [5–7].  38 

The first developments in the field of nanomedicine were reported in the early 60’s when 39 
liposomes were first proposed as carriers [8,9]. Since then, scientists have engineered many different 40 
nanocarriers to address effective delivery of therapeutics. Those nanoparticles can be classified as 41 
either organic or inorganic. Examples of organic nanocarriers include liposomes, which are 42 
amphiphilic lipids that rearrange in water to yield vesicles with an inner aqueous compartment 43 
surrounded by lipid bilayers [10]; polymeric nanoparticles produced from polymer chains showing 44 
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different functionalities [11] or polymeric micelles composed by amphiphilic block copolymers able 45 
to rearrange in aqueous media [12]. Examples of inorganic nanocarriers include metal nanoparticles 46 
synthesized from noble metals, such as gold or silver [13]; carbon nanoparticles such as carbon 47 
nanotubes, fullerenes or mesoporous carbon nanoparticles [14] or silica-based mesoporous 48 
nanoparticles, which have been extensively studied owing to their capacity to load large amounts of 49 
therapeutic molecules [15]. The main advantages of silica-based mesoporous nanoparticles over other 50 
types of particles include the robustness of the silica framework, that allows the use of harsh reaction 51 
conditions for their modification, and their excellent textural properties. In fact, conventional 52 
polymeric nanoparticles usually present low drug capacity, usually less than 5% of total weight, 53 
whereas these silica-based mesoporous nanoparticles offer greater values [16,17]. The main 54 
disadvantage over other formulations would be the fact that the translation of these type of particles 55 
remains challenging. However, it should be mentioned that silica is “generally recognized as safe” 56 
by the US FDA, and it is often used as excipient in drug formulations and as dietary supplement  57 
[18,19]. In this sense, the administration of fenofibrate-loaded ordered mesoporous silica materials in 58 
men was found to be safe, and the doses were well tolerated by the patients [20]. In addition, small 59 
silica nanoparticles (c-dots, 7 nm) for imaging purposes were approved by FDA for a human clinical 60 
trial, demonstrating that they were well tolerated by the patients and accumulated in the tumor site 61 
[21]. In consequence, silica-based nanoparticles constitute a powerful and promising tool that might 62 
be promptly translated into the clinic. 63 

This review will cover the application of silica-based mesoporous nanoparticles for the treatment 64 
of complex bone diseases, such as bone cancer, bone infection and osteoporosis. These pathologies 65 
are predominantly found in elderly people, who will constitute a quarter of the European population 66 
by 2020 [22]. Then, bone diseases will definitely entail a significant impact on the health care systems 67 
and, consequently, bone-targeted nanomedicines, i.e., nanomedicines able to specifically reach bone 68 
diseases, could bring significant benefits for our future society.  69 

2. Mesoporous Silica Materials 70 

2.1. The Beginning of a New Era: Ordered Mesoporous Silica Materials 71 

Ordered mesoporous silica materials were first reported in the early 90’s by Mobil Oil 72 
Corporation researchers [23] and scientists from Waseda university [24]. These bulk mesoporous 73 
materials have attracted great attention because they present (1) tunable and narrow pore size 74 
distributions (2-30 nm); (2) adjustable porous structures; (3) high specific surface areas (up to 1500 75 
cm2/g); (4) high pore volumes (ca. 1 cm3/g) and (5) high silanol density on the surface that allows 76 
further modifications [25,26]. Owing to their exquisite physico-chemical properties, mesoporous 77 
silica materials have been broadly applied in a number fields, including heavy metal adsorption 78 
[27,28], catalysis [29,30] or energy storage [31,32], among others.  79 

In addition, these materials find broad application within the field of biomaterials, owing to their 80 
ability to adsorb molecules within their pores and release them in a sustained fashion. In fact, these 81 
materials have been widely studied since Prof. Vallet-Regí and coworkers first reported their 82 
suitability as drug delivery systems back in 2001 [33].  83 

In light of their great properties and their potential biomedical application, researchers focused 84 
their efforts on translating those excellent features of bulk materials to the nanoscale dimension. As 85 
a result, mesoporous silica nanoparticles (MSNs) were developed soon after, opening the gates to 86 
multiple biomedical applications, such as controlled drug delivery [34,35], efficient gene transfection 87 
[36–38], antibacterial treatment [39,40] or bone tissue regeneration [41,42], among others. 88 

2.2. Synthesis and Functionalization of Mesoporous Silica Nanoparticles 89 

The synthesis of MSNs is based on a modification of the Stöber method, which initially yielded 90 
micron-sized monodispersed and non-porous silica spheres [43]. In this sense, the addition of 91 
surfactants as structure-directing agents results in silica nanoparticles with excellent physico-92 
chemical properties and showing porosity. This methodology allows to obtain homogenous 93 
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nanoparticles within the range 50-300 nm [25]. The morphology and dimensions of these surfactant-94 
templated mesoporous silicas can be tailored by controlling the reaction conditions (e.g., pH, 95 
temperature, surfactant concentration or silica precursor) [44]. As an example, a synthetic protocol 96 
for the synthesis of MCM-41 (Mobil Composition of Matter) MSNs is depicted in Figure 1. 97 

 98 

Figure 1. Synthesis of MCM-41 MSNs using a modification of the Stöber method. The surfactant 99 
molecules self-assemble forming rod-like micelles around which the silica precursors polymerize, 100 
leading to the formation of a silica backbone with hexagonally ordered mesopores. TEOS: Tetraethyl 101 
ortosilicate; CTAB: Cetyltrimethylammonium bromide. 102 

The positively charged polar heads of the surfactant molecules interact with the negatively 103 
charged silica precursors, leading to the formation of the silica framework by means of the hydrolysis 104 
and condensation of the silica precursor onto the self-assembled rod-like surfactant micelles. Then, 105 
the organic template is removed using a solvent extraction method, yielding MSNs with empty pores 106 
ready to be filled with therapeutic molecules. This method is usually preferred over calcination, since 107 
the latter may cause irreversible aggregation of the particles and cytotoxic byproducts, limiting their 108 
potential application [45,46].  109 

One of the most remarkable features of MSNs is their high density of silanol groups on the 110 
surface. These chemical groups allow the easy functionalization of the nanoparticles surface, usually 111 
using organosilanes bearing different functionalities (amine, carboxylic acid, thiol…), to increase the 112 
versatility of the produced nanocarriers. The particular organosilane employed allows to tune the 113 
interactions between the payload and the silica matrix, which might be beneficial for particular 114 
diseases [47,48]. The functionalization can be accomplished through two different approximations: 115 
post-synthesis or co-condensation. The post-synthesis method involves the modification of the 116 
surface after the synthesis. This approximation can lead to different groups inside and outside the 117 
pores, depending on whether the process is performed before or after removing the template. The co-118 
condensation approach consists in the simultaneous addition of the silica precursor and the 119 
functional organosilane during the formation of the particles. This approximation can yield 120 
nanoparticles bearing various functional groups homogenously distributed throughout the silica 121 
backbone or biodegradable periodic nanoparticles with labile bonds within the silica framework [25].  122 

2.3. Mesoporous Silica Nanoparticles as Smart Drug Delivery Systems 123 
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Aside from being biocompatible, any nanoparticle intended to be employed as drug delivery 124 
system should fulfill some basic requirements, such us maximizing the amount of therapeutics 125 
loaded, minimizing premature release, reaching the target area and releasing the cargo on-demand 126 
only where needed. In this sense, the extraordinary textural properties of MSNs endow them with 127 
great loading capacities, being able to load huge amounts of therapeutic molecules within their pores, 128 
as demonstrated by Scanning Transmission Electron Microscopy [49]. In addition to serving as drug 129 
reservoir, the silica matrix provides a protective shell for the molecules against potential pH- or 130 
enzymatic-mediated drug degradation in the organism. 131 

The loading of therapeutic molecules within MSNs can be easily accomplished as consequence 132 
of their open porous structure. However, this also means that the cargo molecules might easily diffuse 133 
out of the pores before reaching the target area. This premature release can be minimized using the 134 
so-called stimuli-responsive gatekeepers, which are structures able to open and close the pore 135 
entrances on-demand in response to certain stimuli [50–53]. In this manner, premature and 136 
nonspecific drug release would be minimized and the release would only take place upon application 137 
of a convenient stimulus at the diseased area (Figure 2).  138 

 139 

 140 

Figure 2. Schematic representation of stimuli-responsive MSNs. In response to the stimulus, the 141 
gatekeeper opens the pore entrances, triggering the drug release. The origin of the stimulus can be 142 
internal (pH, enzymes, redox species, etc) or external (magnetic fields, light, ultrasounds, etc). 143 

Stimuli can be applied from inside or outside the organism. The use of internal stimuli is 144 
interesting because of the significant variations of various relevant biomarkers that can be found in 145 
some diseases. For instance, the pH of some subcellular organelles and that of the tumoral matrix are 146 
more acidic compared to the physiological value [54], and analogous behavior is observed in bacterial 147 
infections [55]. These pH variations have been employed to trigger the release from pH-responsive 148 
smart MSNs [56–59]. In addition, some enzymes, which have been observed to be overexpressed in 149 
osteoporotic [60] or tumoral scenarios [61,62], have the ability to cleave very specific peptidic 150 
sequences. In this sense, it is possible to use those peptides to close the pore entrances of MSNs and 151 
trigger the drug release only in those situations, where the enzymes are overexpressed [63–65]. 152 
Another relevant example of internal stimulus is the overexpression of redox species in the cytoplasm 153 
of tumoral cells compared to the extracellular fluids [66,67], which has been employed to initiate the 154 
drug release from different redox-responsive MSNs [68–70].  155 

External stimuli, which should be innocuous to the organism, have also attracted great attention. 156 
Their main advantage is that they would allow the application of the stimulus directly by the 157 
clinician, thereby providing a much higher control of the release kinetics. For instance, the generation 158 
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of heat through the application of alternating magnetic fields has been employed trigger the drug 159 
release from MSNs and generate hyperthermia-mediated cell death [71–73]. The use of light 160 
(ultraviolet, visible, near-infrared) has also attracted the attention of many researchers, and 161 
constitutes a non-invasive method to trigger the release from MSNs [74–76]. Another relevant 162 
example of non-invasive and innocuous stimulus are ultrasounds, which have been successfully 163 
employed to externally trigger the payload release from MSNs [77–79]. 164 

2.4. Biodistribution and Biodegradation of Mesoporous Silica Nanoparticles 165 

The most common routes of administration of the above-mentioned smart nanoparticles are 166 
intravenous, subcutaneous or localized injections in the target area. In particular, the intravenous 167 
administration leads to the rapid delivery and distribution of the particles throughout the organism, 168 
albeit it entails challenging issues. For instance, the particles administration leads to the formation of 169 
a protein corona around them that defines their biological entity. This protein coating might limit the 170 
functionality of the nanoparticles and enables their recognition by the organism, triggering their 171 
removal by the mononuclear phagocyte system and decreasing the efficiency of the treatments [80]. 172 
An effective approximation to overcome that issue would be the modification of the nanoparticles 173 
with hydrophilic polymers, such as poly(ethylene glycol), which might help reduce the amount of 174 
proteins adsorbed onto the nanoparticles by creating a hydrophilic layer, enhancing their colloidal 175 
stability and increasing their circulating half-life [81–83]. In this sense, it has been shown in murine 176 
models that non-PEGylated MSNs rapidly accumulate in the lung, liver and spleen while their 177 
PEGylated counterparts show increased circulating half-life [84,85]. 178 

Besides the effect of PEGylation on the particles biodistribution, there are other relevant 179 
parameters that influence the final fate of MSNs. For instance, it has been shown in vivo that the larger 180 
the nanoparticles the faster their excretion [85]. In addition, it has been observed that, unlike spherical 181 
particles, those presenting elongated or cylindrical shapes undergo faster clearance from the 182 
bloodstream [86]. Finally, the surface charge is a key parameter since it determines the interaction of 183 
the particles with the surrounding media. In this sense, it has been shown that positively charged 184 
nanoparticles are more prone to undergo opsonization and subsequent clearance than their slightly 185 
negative or neutral counterparts [87,88].  186 

Aside from achieving effective accumulation at the diseased area, it would be desirable that the 187 
MSNs degrade somehow to facilitate their excretion after exerting their therapeutic activity. In this 188 
sense, the dissolution rate of the silica backbone is a key factor for their elimination. Silica-based 189 
mesoporous nanoparticles are composed of polycondensed silica tetrahedrons (SiO4) interconnected 190 
by siloxane bonds (-Si-O-Si-) and presenting silanol groups (-Si-OH) on the surface. The silica 191 
dissolution is consequence of the nucleophilic attack of water to the siloxane and silanol groups, 192 
generating biocompatible silicic acid as by-product that can be excreted through the urine [89]. The 193 
dissolution rate depends on the particular characteristics of the particles and can be tuned through 194 
the introduction of organic modifications on the surface. Those modifications have been shown not 195 
to affect the biodistribution and biocompatibility of the MSNs [86].  196 

3. Mesoporous Silica Nanoparticles for the Treatment of Bone Cancer  197 

3.1. General Concepts on Bone Cancer and Bone Metastasis 198 

Cancer is the term given to a group of diseases sharing an unstoppable cell division and with 199 
potential to spread in other organs and tissues. It is a leading cause of mortality worldwide and its 200 
prevalence is progressively increasing, with 1.7 million of estimated new cases and 600,000 cases of 201 
estimated deaths only in the United States in 2019 [90].  202 

Bone-related tumors fall into primary bone tumors and metastatic bone tumors. They are 203 
considered to be highly deadly even though chemotherapy has improved the patient survival for 204 
sarcomas [91]. The most common malignant primary bone tumors are osteosarcoma, 205 
chondrosarcoma and Ewing sarcoma, which account for 70% of such malignancies. They originate in 206 
the bone, where mesenchymal stem cells behave both as ontogenic progenitor tumor cells and 207 
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stromal cells that contribute to tumor development. The stroma of these tumors comprises 208 
osteoblasts, osteoclasts, endothelial and immune cells and mesenchymal stem cells. In particular, 209 
osteoclast have grabbed great attention because their activity (bone destruction) can be metabolically 210 
enhanced directly by tumor cells and, reversibly, the presence of osteoclasts boosts the aggressiveness 211 
of cancer cells [92]. 212 

Metastasis is the spread of cancer cells from a primary tumor to distant sites to create secondary 213 
tumors. It is a stage of the disease usually considered to be incurable and whose treatments are mainly 214 
palliative [93]. Its origin is the pre-metastatic niche, which is an environment in a secondary organ 215 
induced by the primary cancer cells that provides favorable conditions for the growth of tumoral cells 216 
[94]. The exact mechanism of that metastatic organotropism remains unclear but it is thought to be 217 
related with tumor-derived exosomes. Exosomes are nanometric membrane-bound vesicles secreted 218 
by tumors cells that contain functional biomolecules, such as proteins, RNA, DNA and lipids [95]. In 219 
this sense, it has been reported that tumor exosome integrins can determine organotropic metastasis 220 
by fusing with organ-specific resident cells to stablish the pre-metastatic niche. Once uptaken, they 221 
induce cellular changes in the target organ (through the activation of Scr phosphorylation and pro-222 
inflammatory S100), thus promoting cancer cell colonization and organ-specific metastasis [96].  223 

A characteristic feature of this disease is that some types of cancer cells preferentially migrate 224 
and induce metastasis to specific organs [95]. In this sense, breast and prostate tumors normally lead 225 
to bone metastases, which are secondary tumors formed when primary tumor cells home to the 226 
skeleton [97,98]. Cancer cells can leave the primary tumor site owing to the poor adhesion among 227 
each other in the tumoral matrix [99]. Once colonized the bone, tumor cells secrete proteins that 228 
interact with resident cells in the bone marrow to induce the differentiation, recruitment and 229 
activation of osteoblasts and osteoclasts. Then, during the bone resorption the calcium ions and the 230 
growth factors secreted from the mineralized bone matrix promote tumor cell growth, leading to 231 
vicious cycle that supports tumor growth in bone and subsequent fatal outcome [94].  232 

It is believed that, when primary tumor cells migrate, the interaction of these disseminated cells 233 
with the new microenvironment determines whether they will proliferate to form a secondary tumor 234 
or undergo growth arrest and subsequent dormancy. Dormant cells are cells that stop dividing but 235 
still survive in a quiescent state, waiting for the appropriate environmental conditions to re-enter the 236 
cell cycle again [100]. These cells are clinically undetectable and, consequently, constitute a major 237 
issue for future tumor recurrence and metastases [101]. Current pharmacological approximations are 238 
aimed at maintaining cancer cells in the dormant state; reactivating dormant cells to increase their 239 
susceptibility to drugs; and eliminating cancer cells. Those strategies rely on the modulation of certain 240 
factors present on or secreted by the dormant cells in such a way that their overexpression of 241 
inhibition affects the fate of those dormant cells [102]. In this sense, the use of mesoporous silica 242 
nanoparticles might be interesting to enhance those treatments, as they could be employed to load 243 
therapeutic agents able to modulate the expression of those factors. In addition, they could be 244 
employed to co-load those agents with antitumoral drugs, consequently enhancing the efficacy of the 245 
treatments and minimizing tumor recurrence. 246 

3.2. Nanotechnology for Cancer Treatment 247 

Current anticancer treatments mainly rely on chemotherapy, radiotherapy and/or surgery [103–248 
105]. Those treatments, yet effective in many cases, present several drawbacks. In particular, 249 
chemotherapy lacks of a great tumor tissue selectivity, leading to nonspecific drug distribution and 250 
side effects. In this sense, nanoparticles have emerged as a powerful tool to encapsulate drugs and 251 
reduce side effects [106–108]. 252 

The rationale behind the use of nanoparticles in cancer treatment relies on the Enhanced 253 
Permeability and Retention effect (EPR effect), which is the basis of some commercialized 254 
nanomedicines [109]. The EPR effect, first reported by Maeda and coworkers [110], promotes the 255 
passive accumulation of nanoparticles in solid tumors as a result of the hypervasculature, the 256 
enhanced permeability and the poor lymphatic drainage found in many tumors (Figure 3). 257 
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 258 

Figure 3. EPR effect. Nanoparticles passively accumulate in the tumor owing to the presence of 259 
fenestration in the tumor blood vessels. Once there, the particles remain in the tissue for long periods 260 
of time as a consequence of the poor lymphatic drainage. Reproduced from Ref [111] with permission 261 
of MDPI.  262 

Owing to the uncontrolled angiogenesis, the newly formed vessels present an abnormal 263 
architecture, including wide fenestrations (200-2000 nm endothelial cell-cell gaps), irregular vascular 264 
alignment or lack of smooth muscle layer, among others. As a result, molecules larger than 40 kDa 265 
leak out from them and accumulate in the extravascular tumoral tissues. On the contrary, healthy 266 
tissues do not show this abnormal development and no accumulation is observed, thus creating a 267 
differential selectivity for cancer tissues [112]. In addition, unlike normal tissues where the 268 
extracellular fluid is constantly removed, tumors present defective lymphatic drainage and the 269 
accumulated macromolecules tend to remain in the tumoral mass for longer periods of time [113].  270 

The magnitude of the EPR effect in humans highly depends on the particularities of the patient 271 
and the tumor [114] although some alternative strategies, such as tumor-homing peptides or some 272 
types of cells, are currently being explored to overcome the lack of EPR effect.  273 

These alternative approximations have successfully been evaluated using in vivo tumor models, 274 
demonstrating the suitability of using MSNs for tumor drug delivery. In this sense, tumor-homing 275 
peptides (e.g., iRGD, iNGR) not only induce spontaneous accumulation of nanoparticles in the tumor 276 
tissues, but also enhance their diffusion into the tumoral mass [115,116]. In addition, there are certain 277 
types of cells with migratory properties that can transport nanoparticles directly to tumors tissues. 278 
For instance, nanoparticles can be attached to hypoxic bacteria that migrate to the hypoxic areas of 279 
tumors [117,118]. In addition, mesenchymal stem cells have been shown to migrate to tumors in 280 
response to the secretion of various signaling molecules. Then, a smart strategy is to induce the 281 
internalization of drug-loaded nanoparticles within these cells to then delivering them specifically to 282 
tumor tissues [119–122]. 283 

Besides delivering the nanoparticles to malignant tissues, the carriers can be engineered so that 284 
they preferentially recognize cancer cells over healthy cells. This targeting strategy relies on the 285 
overexpression of some receptors only on the membrane of tumoral cells. Examples of this approach 286 
include the functionalization of the particles with antibodies [123,124], proteins [70,125], small 287 
molecules [126–130] or peptides [131–133], among others.  288 

3.3. Targeting Bone-Localized Tumors with Mesoporous Silica Nanoparticles 289 
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Addressing nanoparticles to bone metastases is challenging, as small metastases are poorly 290 
vascularized and, consequently, the magnitude of the EPR effect is low compared to big solid tumors 291 
[134]. A smart approximation would be the modification of the particles with targeting molecules 292 
with high affinity towards calcium phosphate surfaces (bone tissue), such as bisphosphonates [135], 293 
to complement the EPR effect. In this sense, the surface modification with the bisphosphonate 294 
zoledronate has been proved to be effective in delivering MSNs to bone metastases originated from 295 
lung [136] and breast cancer [137].  296 

Besides targeting the particles to bone tissue, it would be desirable for the nanomedicines to be 297 
subsequently internalized only by the tumoral cells. In this sense, our group recently reported a smart 298 
approximation for the sequential targeting of bone tumors or bone metastases that could be easily 299 
implemented into any nanomedicine (Figure 4) [138]. 300 

 301 

Figure 4. Encrypted approach for the sequential targeting of bone cancer tissue and cancer cells. (1) 302 
The presence of a bone targeting agent (alendronate) would help accumulate the nanomedicines in 303 
the bone tumor tissue; (2) Once there, the overexpressed cathepsin K would cleave a specific peptidic 304 
sequence, (3) exposing the RGD (arginine-glycine-aspartic) motif, which is able to promote the 305 
selective uptake of nanomedicine by sarcoma tumoral cells.  306 

As observed in Figure 4, the system is composed of two targeting agents and employs PEG 307 
chains to mimic a nanocarrier. The first one is the bisphosphonate alendronate, which can bind bone 308 
tissue. Then, there is a peptidic fragment containing a cathepsin K-cleavable sequence followed by 309 
the RGD motif, which is able to promote the selective internalization in osteosarcoma cells thanks to 310 
the overexpression of αβ integrins. In this manner, the alendronate molecule would help the EPR 311 
effect to accumulate the nanomedicines in the bone tumor tissue. Once there, cathepsin K, which is 312 
overexpressed in bone tumors and bone metastases, would cleave the encrypting sequence, thereby 313 
exposing the RGD motif and triggering the preferential uptake of the nanomedicines. 314 

As it happens with many other cancer cells, bone tumoral cells overexpress specific receptors 315 
that can be targeted using conveniently engineered MSNs. Aside from targeting MSNs to 316 
osteosarcoma [139], the RGD motif can also be employed to recognize endothelial cells, which can 317 
help MSNs target the tumor endothelium of fibrosarcoma to then eliminate the cancerous cells using 318 
multimodal therapy [140]. In this sense, folic acid can be employed to target overexpressed folate 319 
receptors in fibrosarcoma [141] and osteosarcoma cells [142]. In addition, the modification of MSNs 320 
with a glucose analog enhances their accumulation in bone tumor cells, as a consequence of their 321 
great glucose consumption due to the high metabolic demand of tumors [143]. Some surface 322 
receptors, such as the CD11c, can also be targeted using specific antibodies, which are able to trigger 323 
the selective internalization of MSNs in osteosarcoma [144]. 324 

Cellular Targeting (RGD peptide)

Cathepsin K-cleavable encrypted sequence

Poly(ethylene glycol)

(1) Bone recognition

(2) Cathepsin K clevage

(3) Cellular targeting to cancer cells

Tissue Targeting (alendronate) 
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 The decoration of MSNs with proteins can also increase their cellular uptake. For instance, the 325 
lectin concanavalin A binds overexpressed sialic acid residues to promote the cellular uptake of pH-326 
responsive MSNs in osteosarcoma cells [145]. Transferrin receptors are overexpressed in 327 
fibrosarcoma cells and, consequently, the protein transferrin can be employed to enhance the uptake 328 
of MSNs in those bone tumoral cells [146].  329 

Besides employing active targeting moieties, MSNs can be internalized via electrostatic 330 
interactions with the negatively charged cell membrane. The positively charged surface can be 331 
shielded using PEG, which can be detached using a cleavable bond. The charge is exposed again 332 
upon application of ultrasounds, which triggers the nanoparticles uptake after the accumulation in 333 
the solid bone tumor via EPR effect [147]. 334 

3.4. Controlled Release of Therapeutics in Bone Tumors with Mesoporous Silica Nanoparticles 335 

There are various examples of the suitability of using silica-based mesoporous nanomatrices for 336 
the delivery of antitumoral [148–152] or imaging agents [139,153,154] to bone cancer cells. Moreover, 337 
researchers have taken advantage of the features of the bone tumoral environment to design stimuli-338 
responsive MSNs for the treatment of sarcomas. Among the internal stimuli, the acidic environment 339 
of the lysosomes can be employed to trigger the drug release from pH-responsive polymer-coated 340 
MSNs [145] or pulsatile on-off MSNs whose pore entrances are sealed with pH-responsive 341 
nanovalves [155]. In addition, it is possible to load immunotherapy agents within the pores of pH-342 
responsive lipid-coated MSNs for synergistic chemo-immunotherapy [156]. In addition to pH 343 
variations, the enzyme alkaline phosphatase, which is characteristic bone-related tumors, can be 344 
employed to degrade the gatekeepers of silica-based mesoporous glasses [157]. Moreover, the 345 
esterase enzymes can also be employed to cleave the nanocaps of MSNs [142].   346 

There are some examples of the use of light to trigger the drug release from MSNs in bone tumor 347 
scenarios. For instance, ultraviolet light can be employed to cleave light-responsive bonds connected 348 
to transferrin, which acts as both gatekeeper and targeting agent, triggering the drug release [146]. In 349 
addition, porphyrins can be engineered as gatekeepers using a linker cleavable in the presence of 350 
singlet oxygen, which are self-produced by the porphyrin caps upon application of visible light [158].  351 

Aside from delivering small therapeutic molecules, MSNs allow the effective delivery of 352 
proteins [159] or DNA strands [160] into bone cancer cells. There is a type of nucleic acids, small 353 
interfering RNA (siRNA), that triggers the knockdown of specific and relevant proteins, which makes 354 
them useful for the treatment of various diseases [161]. Unfortunately, siRNAs have short half-life, 355 
poor penetration through cell membranes and easily degrade upon RNase action in the organism 356 
[162]. For that reason, the use of MSNs as protective shell for these nucleic acids have been widely 357 
explored. In this sense, the polo-like kinase 1, which is an essential gene for the correct execution of 358 
cell division [163], is overexpressed in bone tumors and has been targeted with great efficacy using 359 
siRNA-loaded MSNs [164–167]. 360 

A summary of all the nanocarriers here described for bone tumors is summarized in Table 1. 361 

  362 
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Table 1. Summary of the different silica-based nanocarriers applied for the treatment of bone tumors 363 

Cell line Description Reference 

Osteosarcoma 

MG-63 

MSNs loaded with ammonia borate as negative computed tomography contrast agents for the diagnosis of osteosarcoma [154] 

Silica-based mesoporous glass nanospheres for the delivery of alendronate against osteosarcoma cells and osteoclasts [150] 

Silica-based mesoporous glasses with osteogenic properties for the release of alendronate against osteosarcoma cells [149] 

Eu-doped silica-based mesoporous glass nanospheres with osteogenic properties for the release of doxorubicin [148] 

Influence of the different functionalizations of MSNs on their uptake by osteosarcoma cells [144] 

KHOS 

Poly-L-lysine-coated MSNs for the delivery of siRNA to knockdown polo-like kinase 1 [165] 

MSNs with large mesopores for the delivery of siRNA to knockdown polo-like kinase 1 [164] 

Co-loading of topotecan and siRNA to knockdown polo-like kinase 1 in dendrimer-like MSNs [166] 

PEI-coated MSNs for the delivery of siRNA to knockdown polo-like kinase 1 [167] 

HOS 

Stimuli-responsive silica-based mesoporous glasses responsive to alkaline phosphatase overexpressed in bone tumors [157] 

Dendrimer-coated MSNs for the delivery of non-viral oligonucleotides [160] 

MSNs functionalized with singlet oxygen-sensitive porphyrin caps for release of topotecan [168] 

MSNs engineered for ultrasound-induced cellular uptake through the detachment of a shielding PEG layer [147] 

Concanavalin A-targeted and pH-responsive MSNs for the delivery of doxorubicin [169] 

HTB-85 Silica-based mesoporous glass nanospheres with osteogenic properties for the release of doxorubicin [151] 

U2Os Folic acid-targeted MSNs for enzyme-responsive release of camptothecin [142] 

UMR-106 RGD-targeted and Bi-doped MSNs for chemo-photothermal therapy and imaging [139] 

Fibrosarcoma 

L-929 

Ultrasound, pH and magnetically-responsive on-off gated MSNs for the delivery of doxorubicin [155] 

Gd-doped MSNs for magnetic resonance imagining of fibrosarcoma [153] 

pH-responsive MSNs for the intracellular delivery of proteins [159] 

pH-responsive MSNs for combined chemo-immunotherapy [156] 

HT-1080 

Influence of MSNs size on the doxorubicin release and the uptake of the particles by fibrosarcoma cells [152] 

MSNs decorated through an ultraviolet light-responsive linker with transferrin acting as gatekeeper and targeting agent [125] 

RGD-targeted MSNs for multimodal treatment of fibrosarcoma in a chicken embryo model [140] 

364 
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4. Mesoporous Silica Nanoparticles for the Treatment of Bone Infection  365 

4.1. General Concepts on Bacterial Bone Infections 366 

Bone infection is a major issue for health care systems and entails important socioeconomic 367 
implications [170]. The appearance of bone infections is directly related with the progressive ageing 368 
of current society and, consequently, the increased use of implantable medical devices and their 369 
potential bacterial contamination. These infections are mainly caused by Staphylococcus epidermis, 370 
Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa [40]. Regular bacteria can be 371 
relatively easy eliminated using antibiotics. However, the inappropriate use of those antimicrobials 372 
is progressively leading to more cases of drug-resistant bacteria, which are expected to cause more 373 
than 10 million deaths by 2050 [171]. This antimicrobial resistance induces uncontrolled bacterial 374 
growth and formation of persistent biofilms. Biofilms are communities of microorganisms embedded 375 
in a self-produced polysaccharide matrix [172]. This protective matrix endows them with resistance 376 
to antibiotics and host immune systems that, otherwise, would eliminate bacteria in their planktonic 377 
state (free-floating bacteria) [173]. The biofilm—related antimicrobial resistance relies, not only on 378 
the physical hindrance of the matrix, but also on (1) the presence of bacterial and host DNA and 379 
proteins that may increase the shielding capacity of the matrix [174]; (2) the presence of bacteria with 380 
different acquired resistances and antibiotic sensitivities [175]; (3) the development of efflux pumps 381 
[176]; (4) the presence of enzymes able to degrade antimicrobials [177] and (5) the establishment of 382 
quorum sensing (bacteria-bacteria communication) [178]. The process of biofilm formation is 383 
depicted in Figure 3. 384 

 385 

Figure 3. Schematic representation of biofilm formation on an implant surface. The process involves 386 
4 steps: (1) bacterial adhesion, (2) bacterial growth, (3) maturation and (4) biofilm formation. In 387 
addition, bacteria may leak out from the matrix and lead to bacterial dispersion. The first stages 388 
constitute a window of opportunity, in which it is still possible to prevent biofilm formation. 389 
Reproduced from Ref [40] with permission of MDPI. 390 

 The formation of the biofilm comprises 4 steps: (1) adhesion of bacteria to the implant surface; 391 
(2) bacterial growth in multiple bacterial layers; (3) maturation and (4) final biofilm formation. In 392 
addition, bacteria detach from the biofilm to then colonize other areas and induce further infections 393 
[179]. As observed in Figure 3, during the first phases of biofilm formation the individual 394 
microorganisms are floating on the implant, reversibly interacting with the surface. In consequence, 395 



Pharmaceutics 2020, 12, x FOR PEER REVIEW 2 of 31 

 

these stages constitute a window of opportunity that clinicians should take advantage of to prevent 396 
irreversible biofilm formation and subsequent resistance [40].   397 

4.2. Preventing Protein and Bacterial Adhesion and Biofilm Formation: Zwitterionic Mesoporous Silica 398 
Nanoparticles. 399 

In view of the evidences exposed in the previous subsection, avoiding bacterial contamination 400 
of implants constitutes a major concern. In this sense, the development of the so-called zwitterionic 401 
materials has fueled the design of antifouling nanostructured materials able to prevent protein 402 
adsorption, bacterial adhesion and biofilm formation (Figure 4).  403 

 404 

 405 

Figure 4. Schematic representation of bacterial colonization in standard surfaces vs. zwitterionic 406 
surfaces. Unlike in unmodified surfaces, zwitterionic materials create a hydration layer that prevents 407 
bacterial adhesion and biofilm formation. Reproduced from Ref [40] with permission of MDPI. 408 

Zwitterionic surfaces are characterized by an equal number of negative and positive charges, so 409 
the net charge is expected to be neutral. This neutrality leads to the formation of a hydration layer 410 
onto the surface that physically hampers adhesion and biofilm formation [180]. In fact, owing to the 411 
reduced protein adsorption, zwitterionic functionalizations have also been postulated as substitutes 412 
for PEGylation [181], which might be beneficial to overcome the growing appearance of anti-PEG 413 
antibodies [182]. 414 

The first example of mesoporous silica materials with zwitterionic behavior was reported by our 415 
group back in 2010, using SBA-15 mesoporous materials modified with randomly distributed amino 416 
and carboxylic acid short chains on the surface that resulted in significantly lower protein adhesion 417 
[183]. A similar approach using amino and phosphonate groups was recently reported, yielding 418 
MSNs with extremely low protein adsorption and excellent antibacterial properties. In addition, the 419 
nanoparticles showed great biocompatibility with preosteoblasts, assuring their biocompatibility for 420 
the treatment of bone infection [184]. Interestingly, this zwitterionic approach using two small 421 
molecules can be employed to design pH-responsive gatekeepers by taking advantage of the 422 
interaction between both short chains, which interact at physiological pH and experience repulsion 423 
forces at acid pH [185]. 424 

Aside from merging molecules with opposite charges, there are molecules that are zwitterionic 425 
in nature. In this sense, the modification of MSNs with phosphorylcholine groups yields 426 
nanoparticles showing reduced protein adsorption and able to provide sustained drug release in 427 
response to changes in pH [186]. An analogous approximation is the modification of MSNs with 428 
sulfobetaine groups to prevent protein adhesion [187]. Moreover, it is possible to polymerize this 429 
kind of zwitterionic molecules to yield polymer-coated nanoparticles with low protein binding affinity 430 
[188]. In addition, there are some amino acids that are useful for the design of this kind of surfaces. 431 
For instance, the amino acid lysine presents this behavior owing to the –NH3+/COO- pairs and has 432 
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been grafted to MSNs [189] and silica-based mesoporous bioactive glasses [190], leading to reduced 433 
bacterial adhesion and biofilm formation. A similar approach consists in using the amino acid 434 
cysteine to obtain neutral surfaces, yielding MSNs with high stability in human serum [191]. 435 

4.3. Addressing Bone Infections with Mesoporous Silica Nanoparticles 436 

Besides preventing biofilm formation, it is still necessary the elimination of the infection. In this 437 
sense, it is possible to engineer multifunctional mesoporous silica nanomatrices able to prevent 438 
bacterial adhesion and biofilm formation and to release antimicrobials in a controlled manner only 439 
in infected bone tissues [192,193]. In addition, there are examples of stimuli-responsive mesoporous 440 
bioactive silica-based nanomatrices able to trigger the release only in the presence of proteolytic 441 
enzymes characteristics of infected bone tissue scenarios [157,194]. 442 

In an effort to increase the efficiency of the delivery and, consequently, a reduction of the dose, 443 
the research efforts have been headed towards the development of bacteria-targeted MSNs. In this 444 
sense, the presence of positive charges on the surface of the particles increases their affinity to the 445 
negatively charged biofilm and bacteria wall. In this manner, it is easier for the particles to diffuse 446 
into the biofilm to then interact with bacteria and exert their therapeutic effect. Examples of this 447 
approach include the use of short positively charged alkoxysilanes [195] or third-generation 448 
dendrimers, whose great number of positive charges is able to permeate the bacteria wall and induce 449 
the MSNs internalization [196]. Besides using positively charged MSNs, lectins have been shown to 450 
be effective in targeting and promoting internalization of MSNs into the biofilm, as a consequence of 451 
the presence of glycan-type polysaccharides in this protective matrix. In fact, the lectin concanavalin 452 
A is able to trigger this internalization and exert antibacterial effect by itself, which is even more 453 
emphasized when loading an antibiotic in the mesopores [197].  454 

A smart approximation to enhance the possibilities that mesoporous silica materials may offer 455 
against bone infection is the incorporation of the particles within scaffolds. In the context of bone 456 
diseases, scaffolds are materials that are intended to mimic bone tissue and contribute to its 457 
regeneration. The advantages over using bare scaffolds are increased antibiotic loading capacity or 458 
controlled drug release, among others [198]. Examples of this approximation are the incorporation of 459 
silica-based mesoporous glasses in PLGA (poly-(L-lactic-co-glycolic acid)) [199] or MSNs in porous 460 
collagen gelatin [200] for the controlled release of vancomycin against bone infection. In addition, 461 
MSNs-loaded scaffolds allow the co-delivery of therapeutic compounds. In this sense, it is possible 462 
to load cephalexin within the mesopores and vascular endothelial growth factors in the scaffold 463 
structure to achieve bacteria elimination and bone reconstruction [201]. 464 

A summary of different materials for the treatment of bone infection can be found in Table 2. 465 
 466 

  467 



 
 

Pharmaceutics 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/pharmaceutics 

Table 2. Summary of mesoporous silica-based materials against bone infection 468 

Bacteria Description  Reference 

E.coli 

Pronase-responsive gatekeepers for levofloxacin-loaded silica-based mesoporous glasses  [202] 

Levofloxacin-loaded Zwitterionic MSNs with reduced protein adhesion [184] 

Lysine-coated MSNs to inhibit e.coli adhesion [189] 

Acid phosphatase-responsive gatekeepers for levofloxacin-loaded silica-based mesoporous glasses [203] 

Positively charge MSNs target the bacteria wall of e.coli [195] 

Levofloxacin-loaded MSNs coated with polycationic dendrimers destroys biofilm and internalize in bacteria [204] 

Levofloxacin-loaded MSNs decorated with concanavalin A targets and internalize the biofilm [197] 

S.aureus 

Levofloxacin-loaded Zwitterionic MSNs with reduced protein adhesion [184] 

Lysine-coated zwitterionic MSNs to inhibit s.aureus adhesion and s.aureus biofilm formation [189] 

Lysine-coated zwitterionic silica-based mesoporous glasses to prevent s.aureus adhesion [190] 

Levofloxacin-loaded and positively charged MSNs targets and destroy s.aureus biofilm and bacteria [195] 

MSNs-loaded scaffolds for the co-delivery of cephalexin and vascular endothelial growth factor [201] 

Vancomycin-loaded silica-based mesoporous glasses contained in PLGA scaffolds [199] 

Vancomycin-loaded MSNs contained in collagen gelatin scaffolds [200] 

  469 
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5. Mesoporous Silica Nanoparticles for the Treatment of Osteoporosis 470 

5.1. General Concepts on Osteoporosis 471 

Osteoporosis is the most frequent metabolic disease affecting bone tissue. It is characterized by 472 
reduced bone mass and microarchitectural deterioration and results in more than 9 million fractures 473 
annually worldwide (one osteoporotic fracture every 3 seconds) [205], with special incidence in aged 474 
women [206]. Its origin relies on the alteration of the bone remodeling process, which consists in the 475 
removal of old bone (osteoclast) to then create new one (osteoblasts). The imbalance of this process 476 
leads to reduced bone mass and, consequently, osteoporosis.  477 

Current osteoporosis treatments, which are not fully satisfactory, are limited to anti-resorptive 478 
drugs and anabolic agents [207,208]. Anti-resorptive drugs decrease the excess of bone resorption by 479 
targeting osteoclast activity. Examples of these compounds include bisphosphonates [209], raloxifene 480 
[210] or denosumab [211]. The excess of bone resorption can be counteracted using anabolic agents, 481 
which are compounds able to stimulate bone formation. Examples of these drugs are human 482 
parathyroid hormone [212], growth factors or siRNA [213]. 483 

Unfortunately, current treatments present some drawbacks. For instance, bisphosphonates are 484 
known to induce gastric side effects or fractures after long use. Raloxifene may cause venous 485 
thromboembolism. Moreover, cases of hypocalcemia, anaphylaxis or atrial fibrillation have been 486 
associated to denosumab. In addition, anabolic agents, such as siRNA, might be easily degraded by 487 
the harsh environment present in the organism [212]. These issues might be addressed by delivering 488 
the antiosteoporotic agents specifically to the diseased bone tissues and, consequently, the use of 489 
nanoparticles seems highly appealing.   490 

5.2. Addressing Osteoporosis with Mesoporous Silica Nanoparticles 491 

The first example of mesoporous silica materials applied for the controlled release of anti-492 
resorptive molecules was reported by our group back in 2006, when MCM-41 and SBA-15 materials 493 
were employed for the loading and controlled release of alendronate [214]. In this sense, the 494 
introduction of phosphorous groups in SBA-15 mesoporous silica nanomatrices enhanced the 495 
loading of alendronate and induced the formation of apatite, a component of bone, making these 496 
materials promising candidates for the treatment of osteoporosis [215]. Additional examples of anti-497 
resorptive molecules loaded in mesoporous silica-based nanoparticles are ipriflavone [216], salmon 498 
calcitonin [217] or zolendronic acid [218], showing all of them promising results in terms of anti-499 
osteoclast activity and osteogenesis. 500 

A great feature of MSNs is that they allow the loading of hydrophobic compounds, consequently 501 
enhancing their bioavailability. In this sense, they allow the incorporation within their mesopores of 502 
sparingly soluble anabolic agents able to induce bone formation. Examples are the loading of 503 
dexamethasone, which induces bone regeneration through the stimulation of bone mesenchymal 504 
stems cells [219], or estradiol, which enhances the biological functions of osteoblast and inhibits the 505 
proliferation of osteoclasts [220]. 506 

Osteostain, a C-terminal peptide from a parathyroid hormone-related protein, induces strong 507 
bone anabolism through a great stimulation of osteoblastogenesis [221]. It has been shown that 508 
osteostatin-loaded SBA-15 greatly stimulate osteoblastic growth in vitro [222]. Furthermore, these 509 
osteostatin-loaded mesoporous materials have been proved to be effective in regenerating bone 510 
defects in vivo [212,223]. In addition to osteostatin, the bone morphogenic protein-2 (BMP-2) is 511 
considered to be one of the most effective growth factors to induce osteoblast differentiation and 512 
boost bone regeneration. In this sense, MSNs are useful for the co-delivery of dexamethasone and 513 
BMP-2 to achieve great bone regeneration in vivo [224]. Moreover, the residues 73-92 of BMP-2 not 514 
only promote osteogenesis and bone regeneration but also increase the internalization of bone 515 
mesenchymal stem cells of MSNs decorated with this peptidic fragment. [225].   516 
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Aside from being useful for bone cancer treatment, siRNA molecules also find application in the 517 
treatment of osteoporosis. In this sense, the localized release of siRNA able to knockdown RANK 518 
from silica-based mesoporous bioactive glasses has been to shown to be highly effective in 519 
suppressing osteoclastogenesis and, consequently, osteoporosis [226]. A similar approach against 520 
osteoporosis was recently reported by our group using an in vivo model of ovariectomized mice 521 
(Figure 5). 522 

 523 

Figure 5. PEI-coated MSNs as anti-osteoporotic nanocarrier. Osteostatin was loaded in the mesopores 524 
and a siRNA able to knockdown SOST gene was introduced within the polymeric mesh. The co-525 
delivery of both therapeutic agents resulted in synergistic osteogenesis in ovariectomized mice. PEI: 526 
Polyethyleneimine. 527 

MSNs can load therapeutic compounds not only in their mesopores but also within polymeric 528 
coatings through electrostatic interaction. In this sense, Figure 5 shows MSNs carrying the anabolic 529 
agent osteostatin in the pores and a specific siRNA able to knockdown SOST gene interacting with a 530 
PEI coating. This gene encodes the protein sclerostin, which can inhibit the Wnt/β-catenin pathway, 531 
a major signaling carrier that regulates bone development and remodeling. Based on this, the siRNA 532 
and osteostatin-loaded nanoparticles were administered to osteoporotic ovariectomized mice, 533 
showing synergistic effects on all the bone regeneration biomarkers studied [227].  534 

There are some metal ion species known to induce osteogenesis. For instance, copper ions 535 
enhance bone density by inhibiting bone resorption, and their incorporation in mesoporous silica 536 
nanospheres has been proved to be effective in stimulating the differentiation of bone mesenchymal 537 
stem cells into the osteogenic lineage [228]. Moreover, impregnating silica-based mesoporous 538 
bioactive glasses with Ga (III) leads to the formation of apatite together with the disruption of 539 
osteoclastogenesis and early differentiation of pre-osteoblast towards osteoblastic phenotype [229]. 540 
In addition, the osteogenic ability of Zn2+ ions is enhanced when the ions are co-delivered with 541 
osteostatin from silica-based mesoporous bioactive glasses [230]. Furthermore, there are 542 
nanoparticles able to stimulate bone regeneration per se. Examples of these kind of behavior are Au 543 
nanoparticles supported on MSNs that increase the osteogenic capability of preosteoblastic cells [231] 544 
or silica-based mesoporous bioactive glasses that are capable of reducing the bone-resorbing 545 
capability of osteoclasts [232].  546 

A summary of all the above-described materials for the treatment of osteoporosis can be found 547 
in Table 3. 548 

  549 
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Knockdown of SOST gene

Increased expression of Runx2 and Alp

Synergistic osteogenic differentiation



 
 

Pharmaceutics 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/pharmaceutics 

Table 3. Summary of silica-based mesoporous materials for the treatment of osteoporosis 550 

Therapeutic agent Description  Reference 

Anti-resorptive treatment 

Alendronate 
First example of controlled release of bisphosphonates from mesoporous silica materials (MCM-41 and SBA-15) [214] 

Phosphorus-containing SBA-15 mesoporous silica materials for bone regeneration and release of alendronate  [215] 

Ipriflavone Silica-based mesoporous nanospheres for the release of ipriflavone without affecting osteoblast viability [216] 

Zolendronic acid Zolendronic acid-loaded MSNs/hydroxyapatite coatings on implants with enhanced inhibition of osteoclasts activity [218] 

Salmon calcitonin MSNs for the release of salmon calcitonin with significant therapeutic effects in vivo [217] 

siRNA (RANK) Silica-based mesoporous glass nanospheres to deliver of siRNA to knockdown RANK and inhibit osteoclastogenesis [226] 

Ions 
Mesoporous silica-based nanospheres for the delivery of Cu ions able to inhibit osteoclastogenesis  [228] 

Silica-based mesoporous glasses for the release of Ga ions able to disturb osteoclastogenesis [229] 

Particle 
Silica-based mesoporous glasses reduce the bone-resorbing capability of osteoclasts per se [232] 

Au nanoparticles supported on MSNs increases the osteogenic capability of pre-osteoblastic cells [231] 

Anabolic treatment 

Dexamethasone Alendronate-targeted MSNs for the delivery of dexamethasone to bone tissue [219] 

Estradiol Multilayered-coated MSNs for the delivery of estradiol from titanium substrates [220] 

Osteostatin 

Osteostatin-loaded SBA-15 mesoporous silica materials stimulates the growth and differentiations of osteoblasts [222] 

Osteostatin-loaded SBA-15 mesoporous materials regenerates bone in a rabbit femur cavity defect [212] 

Osteostatin-loaded SBA-15 mesoporous silica materials increase the early repair response in bone after local injury [233] 

BMP-2 and 

dexamethasone 

pH-responsive co-delivery of dexamethasone and BMP-2 protein for synergistic osteogenic effect [224] 

BMP-2 derived peptide-decorated MSNs for enhanced uptake in bone mesenchymal stem cells and synergistic effect of 

the peptidic fragment and dexamethasone 
[225] 

Osteostatin and 

siRNA (SOST) 
Enhanced osteogenic expression through MSNs co-delivering osteostatin and siRNA able to knockdown SOST gene [227] 

Zn ions and 

osteostatin 

Co-delivery of osteogenic Zn ions and osteostatin from mesoporous silica-based glasses induces high osteogenic 

response 
[230] 

551 
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6. Conclusions 552 

Complex bone diseases, such as bone cancer, bone infection and osteoporosis, constitute a major 553 
concern for our progressively aged modern societies. Most of the current treatments present several 554 
drawbacks, leading to the deterioration of the patient health and the subsequent socioeconomic 555 
impact. In this sense, the use of nanoparticles, in particular mesoporous silica-based nanoparticles, 556 
has emerged as a powerful approximation to reduce the different side effects. This type of 557 
nanoparticles present high loading capacities, biocompatibility and can be engineered to prevent 558 
premature drug release and address the particles to the affected tissues. The different nanosystems 559 
here presented constitute reliable approximations for the treatment of bone diseases and, 560 
consequently, current research should be headed towards the effective translation of these 561 
nanomaterials into the clinic. 562 
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