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Abstract

The latest design approach for Data Centers follows the direction of exploiting optical

switching to interconnect Top-of-Rack (ToR) switches that serve thousands of data stor-

ing and computing devices. Optical switching provided the means for the development

of Data Centers with high throughput interconnection networks. A significant contribu-

tion to the advanced optical Data Centers designs is the Nephele architecture that em-

ploys optical data planes, optical Points of Delivery (PoD) switches and ToR switches

equipped with 10 Gbps connections to the PoDs and the servers. Nephele follows the

Software Defined Network (SDN) paradigm based on the OpenFlow protocol and it em-

ploys an Agent communicating the protocol commands to the data plane. A ToR’s usual

function is the Virtual Output Queues (VOQs), which is the prevalent solution for the

head-of-line blocking problem of the Data Center switches. An effective VOQs archi-

tecture improves the Data Center’s performance by reducing the frames communication

latency and it is efficient with respect to the implementation cost. The current thesis

introduces a VOQs architecture for the Data Center’s ToR switches that function with

Time Division Multiple Access (TDMA). The proposed VOQs architecture contains a

bounded number of queues at each input port supporting the active destinations and

forwarding the input Ethernet frames to a shared memory buffer. An efficient mecha-

nism of low latency grants each queue to an active destination. The VOQs constitutes

a module of a ToR development, which is based on a commercially available Ethernet

switch and two FPGA Xilinx boards, the Virtex VC707 and the Xilinx NetFPGA. The

VOQs architecture’s implementation and validation took place on the NetFPGA board.

Moreover, the current thesis presents a management tool for the control plane’s Agent

of the Data Center. The Graphical User Interface (GUI) of the Agent’s management

tool is utilized to configure the Agent, create commands, perform step operations and

monitor the results and the status. When used as a testing and validation tool, it plays
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a significant role in the improvement of the Agent’s design as well as in the upgrade

of the entire Data Center’s organization and performance. Furthermore, aiming to im-

prove the Quality of Service (QoS) for diverse applications of the Data Center, recent

works utilize advanced Deep Learning techniques. The plethora of Machine and Deep

Learning applications involve complex processes that impose the need for hardware ac-

celerators to achieve real-time performance. Among these, notable are the Machine

Learning (ML) tasks using Convolutional Neural Networks (CNNs) for classification

applications.Aiming at contributing to the CNN accelerator solutions, the current thesis

focuses on the design of FPGA Accelerators for CNNs of limited feature space to im-

prove performance, power consumption and resource utilization, merits that ultimately

enable the use of CNNs locally at the Data Center’s ToR switches. The proposed CNN

design approach targets the designs that can utilize the logic and memory resources of

a single FPGA device and benefit numerous applications like the Edge, Mobile, Data

Center and On-board satellite (OBC) Computing. This work exploits the proposed ap-

proach to develop an Example FPGA Accelerator for Vessel Detection, on a Xilinx

Virtex 7 XC7VX485T FPGA device. The resulting architecture achieves an operating

frequency of 270 MHz, while consuming 5 watts, it validates the approach.

Keywords:FPGAs - Data Centers - Virtual Output Queues -GUI- CNN - Parallel Processing
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Περίληψη

Η σύγχρονη σχεδίαση των Κέντρων Δεδομένων εκμεταλλεύεται τις δυνατότητες που

προσφέρει η οπτική μεταγωγή με στόχο την διασύνδεση των μεταγωγών ικριώματος

μεταξύ τους, οι οποίοι εξυπηρετούν χιλιάδες συσκευές αποθήκευσης και υπολογιστι-

κά συστήματα. Οι καινοτομίες στον τομέα τον οπτικών επικοινωνιών και της οπτικής

μεταγωγής συνέβαλλαν σημαντικά στην ανάπτυξη των Κέντρων Δεδομένων με υψη-

λής διεκπεραιωτικότητας δίκτυα διασύνδεσης. Σημαντική συνεισφορά στα προηγμένα

οπτικά Κέντρα Δεδομένων παρουσιάζει η αρχιτεκτονική Nephele, η οποία χρησιμο-

ποιεί οπτικά επίπεδα δεδομένων, οπτικούς μεταγωγούς στα Σημεία Παράδοσης και

μεταγωγούς Ικριώματος με δυνατότητα διασύνδεσης της τάξης των 10 Gpbs μεταξύ

των Σημείων Παράδοσης και των εξυπηρετητών. Η αρχιτεκτονική Nephele ακολουθεί

την Δικτύωση Βασισμένη σε Λογισμικό, χρησιμοποιεί το πρωτόκολλο OpenFlow και

στηρίζεται σε έναν Πράκτορα Λογισμικού, ο οποίος υλοποιεί την μεταφορά των εντο-

λών του πρωτοκόλλου στους μεταγωγούς του επιπέδου δεδομένων. ΄Ενας μεταγωγός

Ικριώματος καλείται συνήθως να υποστηρίζει την λειτουργία των Εικονικών Ουρών

Εξόδου, οι οποίες αποτελούν την επικρατέστερη λύση στο πρόβλημα του αποκλει-

σμού μετάδοσης πακέτων που προέρχονται από την ίδια είσοδο σε πολλαπλές εξόδους

του μεταγωγού. Μία αποτελεσματική αρχιτεκτονική Εικονικών Ουρών Εξόδου βελτι-

ώνει την επίδοση του Κέντρου Δεδομένων μειώνοντας την λανθάνουσα καθυστέρη-

ση της επικοινωνίας πλαισίων δεδομένων και ειναι αποδοτική όσον αφορά το κόστος

υλοποίησης. Η συγκεκριμένη διατριβή εισάγει μία αρχιτεκτονική Εικονικών Ουρών

Εξόδου για μεταγωγούς Ικριώματος Κέντρων Δεδομένων τα οποία λειτουργούν σύμ-

φωνα με την μέθοδο πολλαπλής πρόσβασης διαίρεσης χρόνου. Η προτεινόμενη αρχι-

τεκτονική Εικονικών Ουρών Εξόδου περιλαμβάνει έναν περιορισμένο αριθμό ουρών

σε κάθε πόρτα εισόδου που υποστηρίζουν τους ενεργούς προορισμούς και αποθηκεύ-

ουν προσωρινά τα πακέτα Ethernet σε δυναμική μνήμη τυχαίας προσπέλασης. ΄Ενας
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αποδοτικός μηχανισμός χαμηλής λανθάνουσας καθυστέρησης αντιστοιχεί κάθε ου-

ρά σε έναν ενεργό προορισμό. Οι Εικονικές Ουρές Εξόδου αποτελούν ένα δομικό

στοιχείο του μεταγωγού Ικριώματος, ο οποίος βασίζεται σε ένα εμπορικά διαθέσι-

μο μεταγωγό Ethernet και σε δύο κάρτες Xilinx FPGA , την Virtex VC707 και την

NetFPGA. Η αρχιτεκτονική των Εικονικών Ουρών Εξόδου υλοποιήθηκε και επαλη-

θεύτηκε μέσω δοκιμών στην κάρτα NetFPGA. Επιπλέον, η συγκεκριμένη διατριβή

παρουσιάζει ένα εργαλείο διαχείρισης για τον Πράκτορα Λογισμικού του Κέντρου

Δεδομένων. Η Γραφική Διεπαφή Χρήστη του εργαλείου διαχείρισης του Πράκτορα

Λογισμικού χρησιμοποιείται για την διαμόρφωση του Πράκτορα Λογισμικού, την δη-

μιουργία εντολών, την εκτέλεση λειτουργιών σε βήματα και την παρακολούθηση των

αποτελεσμάτων και της κατάστασης των μεταγωγών. Χρησιμοποιούμενο ως εργαλείο

δοκιμών και επαλήθευσης, διαδραματίζει ένα σημαντικό ρόλο στην βελτίωση της σχε-

δίασης του Πράκτορα Λογισμικού καθώς επίσης και στην αναβάθμιση ολόκληρης της

οργάνωσης του Κέντρου Δεδομένων και των επιδόσεων του. Επιπρόσθετα, με στόχο

την Διασφάλιση της Ποιότητας Υπηρεσιών για τις ποικίλες εφαρμογές των Κέντρων

Δεδομένων πρόσφατες έρευνες αξιοποιούν σύγχρονες τεχνικές Βαθιάς Μάθησης. Η

πληθώρα από εφαρμογές Μηχανικής και Βαθιάς Μάθησης περιλαμβάνουν πολύπλοκες

διεργασίες που επιβάλλουν την ανάγκη των Επιταχυντών Υλικού για την εκτέλεσή

τους σε πραγματικό χρόνο. Μεταξύ αυτόν, αξιοσημείωτα είναι τα Συνελικτικά Νευ-

ρωνικά Δίκτυα για εφαρμογές κατηγοριοποίησης. Με στόχο την συνεισφορά στον

τομέα των Επιταχυντών Υλικού Συνελικτικών Νευρωνικών Δικτύων, η παρούσα δια-

τριβή επικεντρώνεται σε νευρωνικά δίκτυα περιορισμένου αριθμού χαρακτηριστικών

για να βελτιώσει τις επιδόσεις, την κατανάλωση ενέργειας και την αξιοποίηση των

πόρων, στοιχεία που τελικά θα δώσουν την δυνατότητα για την χρήση τους τοπικά

στους μεταγωγούς ενός Κέντρου Δεδομένων. Η προτεινόμενη σχεδιαστική προ-

σέγγιση Συνελικτικών Νευρωνικών Δικτύων στοχεύει στην αξιοποίηση των πόρων

λογικής και μνήμης ενός FPGA, και ωφελεί πολυάριθμες εφαρμογές όπως Αποκε-
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ντρωμένες και Φορητές εφαρμογές, Κέντρα Δεδομένων και Δορυφορικές εφαρμογές.

Η συγκεκριμένη διατριβή εκμεταλλεύεται την προτεινόμενη σχεδιαστική προσέγγι-

ση, ώστε να αναπτύξει ένα Παράδειγμα Επιταχυντή για Αναγνώριση Πλοίων, στην

κάρτα Xilinx Virtex 7 XC7VX485T FPGA.Η παραχθείσα αρχιτεκτονική επιτυγχάνει

συχνότητα λειτουργίας 270 MHz , καταναλώνοντας 5 watt επαληθεύοντας την σχε-

διαστική προσέγγιση.

Λέξεις-κλειδιά:FPGAs - Κέντρα Δεδομένων - Εικονικές Ουρές Εξόδου - Γραφική Διεπαφή

Χρήστη - Συνελικτικά Νευρωνικά Δίκτυα - Παράλληλη Επεξεργασία
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1 | Introduction

The ongoing research and innovation in the area of telecommunication networks

has enabled the development of data centers, comprising of very large numbers

of interconnected servers. The widespread availability of cloud applications to

billions of users and the emergence of software-, platform- and infrastructure-as-

a-service models led to the reliance on data centers. As traffic within a data cen-

ter (east-west) is higher than incoming/outgoing traffic (Cisco, 2014-2019), data

center’s interconnection networks play a crucial role in its performance. State-

of-the-art data center networks are based on electronic switches connected in

fat-tree topologies using optical fibers, with electro-opto-electrical transforma-

tion at each hop (Al-Fares, Loukissas, & Vahdat, 2008). However, fat-trees tend

to under-utilize resources, require a large number of cables and switches, suffer

from poor scalability and upgradability, and they result in very high energy con-

sumption (Benson, Akella, & Maltz, 2010), (Roy, Zeng, Bagga, Porter, & Sno-

eren, 2015). The introduction of optical switching in data centers plays a key

role in solving these shortcomings. Many recent works proposed hybrid electri-

cal/optical switched data center networks (Farrington et al., 2010), (G. Wang et

al., 2010), (Singla, Singh, Ramachandran, Xu, & Zhang, 2010), (Saridis et al.,

2016), (Kachris & Tomkos, 2012), (Bakopoulos et al., 2018). Optical switches

are mostly used in telecom networks as circuit switches. They passively redirect

light from any port to another (full cross-bar), but have high reconfiguration times

(tens of ms for high radix and tens of µs for low radix switches), posing barriers

to their applicability in data centers.

The significant increase in the available throughput in optical transmission sup-

ports the development of data center networks, optical transceivers achieve through-

put in the order of 10 Gbps and state of the art solutions aim at 100 Gbps (Zilberman,

1
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Audzevich, Covington, & Moore, 2014). The design of hybrid data center nodes

that operate in the electrical domain aim to support the high throughput optical

interconnection and they have to sustain the same level of throughput in their

electrical and computational systems. Moreover, the design has to be efficient

regarding the implementation cost and the power consumption. Furthermore, all

aforementioned challenges are proportional to the size of the data center network

(Vahdat et al., 2010), (Han et al., 2013), thus the provided solutions must present

high scalability, in order to be suitable for the constantly growing in size data cen-

ters (Cisco, 2014-2019). The current thesis focuses in the study and development

of new techniques for the design and implementation of switches in the electrical

domain, utilized in state of the art optical interconnection data center networks.

First, the use of optical switches in data center networks introduces various chal-

lenges in the design of the data center switches, which has to compromise between

their size and the reconfiguration speed and also be able to scale for large data cen-

ter networks without increased cost. Top-of-Rack (ToR) switches must accommo-

date the incoming traffic of Ethernet Frames originating at the servers of the data

center to packets suitable to be transmitted through the optical data center net-

work, adhering to the scheduling of the central data center controller (H. Liu et al.,

2013), (Moor, 2013), (Patronas, Kyriakos, & Reisis, 2016). Moreover, data center

nodes have to internally minimize blocking probability, transmission latency and

eliminate the head of line blocking, packets originating from the same input port

destined to multiple output ports can be held up in a queue by the first packet. The

model of the Virtual Output Queues (VOQs) is the most prevalent solution to the

head of line blocking (Yébenes, Maglione-Mathey, Escudero-Sahuquillo, García,

& Quiles, 2016) however, the implementation is a challenge in large scale data

centers because of the need of large shared memory buffers, usually realized in

external Dynamic Random Access Memory (DRAM).
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Second, hybrid data center networks typically use centralized control following

the Software Defined Network (SDN) paradigm (Christodoulopoulos, Lugones,

Katrinis, Ruffini, & O’Mahony, 2015), (Saridis et al., 2016), (Bakopoulos et

al., 2018). The working time is divided in time slots according to the method

of Time Division Multiple Access (TDMA) (Tokas et al., 2016), (Vattikonda,

Porter, Vahdat, & Snoeren, 2012). The control plane is based on a Central Con-

troller/Scheduler necessary for the scheduling of the data center network operation

with the following steps. First, it gathers the status information of the traffic from

every data center switch second, it computes the allocation of the resources/time-

slots for the next scheduling period, and third it configures the switches. The

distribution of the schedule has to be synchronized and executed as fast as possi-

ble, so that the remaining time between the scheduling periods can be allocated to

the computation of the schedule, a very challenging task to be solved in real-time.

A software Agent of the data center supervises the execution of the schedule and it

acts as a bridge between the Central SDN Controller and the data center switches.

The current thesis also considers the design and implementation of Convolutional

Neural Networks for classification applications in FPGAs. The Machine and

Deep Learning applications include complicated calculations that require large

amounts of memory and call for the use of FPGA accelerators (Abdelouahab, Pel-

cat, Sérot, & Berry, 2018), in order to achieve real-time performance. The goal

of this work is to propose a CNN design approach for the limited feature space

classification tasks that benefit various applications in the Data Center (Lim et al.,

2019), (P. Wang, Ye, Chen, & Qian, 2018), Edge (Choi & Sobelman, 2022), Mo-

bile (Howard et al., 2017) and OBC computing (Rapuano et al., 2021),(Pitonak,

Mucha, Dobis, Javorka, & Marusin, 2022), while utilizing the resources of a single

FPGA device with only on-chip memories, omitting the use of external DRAM.

This fact enables the possible integration of the CNN accelerator in data cen-
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ter switches that use an external DRAM as a buffer for the incoming packets in

VOQs.

The use of High Level Synthesis (HLS) is prevalent in modern CNN FPGA Ac-

celerators mainly due to the short development time and the provided hardware

abstraction (Kim, Grady, Lian, Brothers, & Anderson, 2017), (Solovyev, Kalinin,

Kustov, Telpukhov, & Ruhlov, 2018), (Zhang et al., 2015), (Sankaradas et al.,

2009), (Peemen, Setio, Mesman, & Corporaal, 2013), (B. Liu et al., 2019). Al-

though, the HLS design approach impede the FPGA designers/engineers to de-

velop an efficient FPGA architecture with respect to resource utilization, energy

consumption and the achievable performance (Pelcat, Bourrasset, Maggiani, &

Berry, 2016). Few authors present solutions for CNN application with FPGA

accelerators developed with VHSIC Hardware Description Language (VHDL).

(Rapuano et al., 2021) present an On-board satellite FPGA accelerator for CNN

inference, implemented with VHDL which utilizes a single processing unit with

external DRAM memory. The current thesis focuses on streamline architectures,

developed with VHDL, that implement the contiguous CNN layers in a pipeline

fashion that differs to the implementation of a systolic array. The advantages of

the proposed design is first the avoidance of idle computing time by extensive

pipelining and second the reduced memory resources (Y. Zhao et al., 2019), lead-

ing to the use of only on-chip (FPGA) memory, features that combined improve

resources utilization, reduced latency and power consumption (Sze, Chen, Yang,

& Emer, 2017), (Lamoureux & Luk, 2008).

The proposed CNN design approach is divided into three phases. The first phase

introduces guidelines for the design stage of the CNN with a tool like TensorFlow

(Abadi et al., 2015), adhering to them produces a CNN model that is friendlier to

a hardware implementation, because the resulting CNN model has reduced mem-

ory requirements but keeps the same levels of classification accuracy. The second
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phase transforms the CNN model into a fixed-point Bit-accurate Model (BAM)

performing the same calculations but in an arithmetic representation that can be

efficiently implemented in hardware that does not decrease classification accu-

racy. The third phase utilizes an already developed library of VHDL Blocks, in

order to save developing time, and along with the proposed approach’s mapping

methodology results in a streamline architecture FPGA accelerator with improved

performance, reduced power consumption and resource utilization.

1.1 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 — introduces the study and implementation of the Virtual Output

Queues architecture and its integration in the Top of Rack switch of the

Nephele data center.

Chapter 3 — demonstrates the management tool for the optical intercon-

nected data center Nephele, how is developed, the Graphical User Interface,

its usecases as well as its advantages.

Chapter 4 — presents the CNN design approach for real-time classifica-

tion FPGA accelerators that can be realised in a single FPGA device and it

proves its merits by developing an Example FPGA Accelerator for Vessel

Detection.

Chapter 5 — concludes this thesis and presents the major paths for future

work.
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2 | Virtual Output Queues

2.1 Introduction

Data centers are comprised of a large number of servers running Virtual Machines

(VMs) and storage resources, which are installed in racks and communicate via

the local data center network. The data center’s performance depends on the avail-

able computing and data storing capacity, the architecture, the features as well as

the performance of the underlying network and the Top-of-Rack (ToR) switches

connecting the servers to the data center. A key factor in improving the perfor-

mance of the ToR switches is the solution of the head-of-line blocking issue that

is most often settled by embedding Virtual Output Queues architectures (Yébenes

et al., 2016), (Kyriakos, Patronas, Tzimas, Kitsakis, & Reisis, 2017).

The motivation for designing the proposed VOQs architecture came by the re-

quirements of the ToR switch included in the Nephele project but it can serve

any network, that receives an input of Ethernet frames and particularly those net-

works which operate under TDMA scheme, are software defined and their nodes

may have to overcome the head-of-line blocking. The following section briefly

highlights the Nephele data center architecture then section 2.3 introduces the ar-

chitecture of the Nephele ToR switch. Section 2.4 presents the organization of

the VOQs. Finally, Section 2.5 presents the details of the VOQs Controller FPGA

implementation.

2.2 Background on the Nephele Data Center

The performance of the data center networks depends on their interconnection

scheme, which usually adhered to the multi-layer approach, and they were based
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on the Fat Tree or the folded Clos architectural schemes (Al-Fares et al., 2008),

(Greenberg et al., 2009), (Farrington, Rubow, & Vahdat, 2009). These approaches

nevertheless, are not efficiently scalable and also, in the case of data centers with

a large number of nodes, lead to the use of a considerable number of switches,

cables and transceivers, which increase power consumption.

In an effort to overcome these deficiencies researchers and engineers have intro-

duced data center interconnections including an optical circuit switching as well

as an electrical packet switching networks (Bazzaz et al., 2011), (Farrington et al.,

2010), (Tokas et al., 2016). A notable design is the all optical data center proposed

by the Nephele project (Bakopoulos et al., 2018).

The Nephele data center involves a slotted hybrid electrical/optical interconnec-

tion network that is advantageous with respect to the dynamic allocation of re-

sources. The network includes PoDs of racks that communicate with the so-called

innovation zones, which are the devices dedicated for the disaggregated comput-

ing, storage and memory resources. The innovation zones are connected to ToR

switches (Patronas et al., 2016). Each innovation zone can communicate to other

innovation zones through an all optical or an electro-optical channel.

The Nephele design adopts the Time Division Multiple Access (TDMA) mode

of operation in the optical data center network. Consequently, the transmissions

are completed within fixed time segments, namely the slots; each slot is assigned

for sending a TDMA frame on a specific path that connects a transmitter node

to a receiver node. The Nephele data center network is a Software Defined Net-

work (SDN) and all the arrangements regarding its operation are dictated by a

central data center controller. The controller is responsible for generating the

TDMA Schedule, which defines which nodes communicate during each time-slot

(Christodoulopoulos, Kontodimas, Yiannopoulos, & Varvarigos, 2016). The first

7



National and Kapodistrian University of Athens Physics Department

version of the scalable, high capacity Nephele network is able to accommodate up

to 1600 Top-of-Rack (ToR) switches and each ToR uses 20 links to connect to the

data center optical network.

Figure 2.1: The Nephele Data Center Network Architecture

The overall system topology of the data center network is depicted in Figure 2.1.

The network includes I (I ≤ 20) parallel planes, each consisting of I (I ≤ 20)

unidirectional optical rings. The rings interconnect P (P ≤ 20) Points of Delivery

(PoDs). A PoD comprises of I Wavelength Selective Switches (WSS) to connect

the I rings, and is connected to W (W ≤ 80) ToRs, through W pod-switches, one

for each ToR switch. Each ToR switch has I north ports, such that the ith north

port is directed to the ith PoD of each plane (each port is connected to a different

PoD switch). The south ports of the ToR switch connect the servers, through

network interface cards (NICs), with the data center network. The performance of
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the ToR switch contributes significantly to the operation of the entire data center

and it depends on the utilization of its resources as well as on the efficiency of

the algorithms and the techniques that it employs. Among the techniques that are

critical with respect to the ToR’s performance is the handling of the Virtual Output

Queues (VOQs). VOQs is an attractive technique for overcoming the head-of-line

blocking cases (Yébenes et al., 2016).

2.3 The Architecture of the Top-of-Rack Switch

The ToR design is a switch and its ports are divided in two sets: a) the south

ports, which are 16 10GEthernet ports connecting the ToR with the servers b) the

corresponding 16 10Gbps north ports that are connected to the optical data center

network. The ToR switch consists of three fundamental blocks. The first is an Eth-

ernet 16×16 switch having all ports as 10GEthernet (Mellanox-Technologies, May

2013). The second is the North Extension. It is implemented on an FPGA and its

role is: a) the formation of TDMA frames that consist of Ethernet frames and

b) to implement the interface of the ToR to the network’s optical (PoD) switches

by using its north ports. The third block is the South Extension. This FPGA

based block connects the servers to the ToR. It has increased complexity and its

functionality includes: a) the execution of the scheduling commands, b) to be re-

sponsible for the communication of the ToR to the data center’s control plane, c)

to implement the VOQs design and d) to control all the functions of the ToR. The

prototype Nephele ToR switch includes a commercially available Ethernet switch

(Mellanox SX1024 (Mellanox-Technologies, May 2013)) and two Xilinx boards:

one Virtex VC707 and one NetFPGA SUME (Zilberman et al., 2014). The im-

plementation and validation of the VOQs architecture took place on the NetFPGA

board. This section briefly highlights the architecture of the Nephele ToR switch
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Figure 2.2: The Nephele Top-of-Rack (ToR) Switch Architecture Overview

Figure 2.2 presents the ToR switch’s architecture as well as the functional blocks

dedicated to the upstream traffic. In the part of the South Extension the figure

shows the LUT MAC-ID that assigns a tag to each incoming Ethernet frame.

These 11 bit tags will be used within the ToR for addressing the Ethernet frames

and saving on the required resources for address bits with respect to the bits re-

quired for the MAC addresses of the destinations of the incoming frames. The

next action is to forward the Ethernet frames to the VOQs/Shared Memory block.

This block stores the Ethernet frames in pages. Each page includes a large num-

ber of Ethernet frames and its length matches the length of a TDMA frame (also

called Nephele frame). All the pages that belong to a destination are arranged in a

linked list. The pointers required for keeping the information of each destination’s

linked list are managed by the Memory Map block.

The Command Interpreter block (Figure 2.2) is responsible for the translation of

the SDN controller commands: it provides to this ToR the destination ToR, which
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has to receive data in the upcoming TDMA slot. The ToR complies to this com-

mand and it retrieves the first page with Ethernet frames that belongs to the linked

list associated to the commanded destination and sends this page to the Ethernet

switch. There is a Lock mechanism (Figure 2.2) that grants either the storing oper-

ation of the input Ethernet frames to the shared memory or the reading operation

from that memory of the TDMA frames. In more detail, the Lock mechanism

divides the time into small time windows TL. Each TL is dedicated for either

writing to the shared buffer or reading from it. Hence, when the ToR reads from

the shared buffer it will continue buffering in the small size queues the incom-

ing traffic from the servers. The length of the TL is computed at design time to

balance: first, the throughput of the shared buffer, which requires long burst trans-

actions for improved performance and second, the need of the ToR operation for

writing/reading to/from the shared buffer at close time instances.

The role of the Ethernet switch in the upstream direction, is to forward the Ether-

net frames to the North Extension and particularly to the buffer of the correspond-

ing destination’s north port. In that buffer the Ethernet frames formulate the final

TDMA/Nephele frame, to which are also added first, the preamble and second,

a word required for each device synchronization. The Command Interpreter fol-

lows the schedule received from the control plane servers and it specifies (the red

control signal of Figure 2.2) the slot that the ToR will transmit that TDMA frame.

For the downstream direction, the Nephele design mandates the Ethernet switch to

just forward the frame from the north input port to the corresponding south port.

That is, the design complexity of the ToR is mostly related to the upstream path.

The communication of the ToR switch with the control plane is accomplished

through the PCI Express interconnection. The PCI Express interface in the pro-

posed architecture is implemented by the use of the Xilinx IP Core for PCIe

and RIFFA (Reusable Integration Framework for FPGA Accelerators) (Jacobsen,
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Richmond, Hogains, & Kastner, 2015). The RIFFA framework consists of an API

(Application Programming Interface), a driver/kernel module for the host PC and

an IP core for the FPGA, all of which are open-source. The module provided by

RIFFA for the FPGA is designed as an extension to the Xilinx IP core for PCIe,

which handles the physical layer of the PCIe interface. The control of the ToR

switch is presented in the next Chapter, more specifically in subsection 3.3.3, in

which the implementation of the PCIe interface is presented in more detail.

2.4 Virtual Output Queues

This Section presents an efficient VOQ organization regarding the resource uti-

lization and the latency needed to assign the incoming Ethernet Frames to the

queues of matching destinations. The VOQ architecture introduced in this chap-

ter is advantageous due to the following: first, it is efficient with respect to the

required implementation area, because it reduces the resources needed to a sin-

gle shared buffer per output port. This buffer stores all the queues of data that

this output port will transmit. Second, the architecture is efficient with respect to

the utilization of the shared buffer’s bandwidth; this is because it maximizes the

throughput utilization of the buffer’s interface by utilizing for storing and read-

ing a paging organization, with each page containing a large number of Ethernet

frames. Third, the proposed VOQ architecture is scalable, which is an advantage

considering the scalability of the entire data center.

The proposed technique achieves the aforementioned goals based on the following

ideas. The receiving Ethernet Frames with the same destination are collected at

the input of the switch into pages of frames. This operation is accomplished by

using small sized queues positioned at each input Ethernet port. In the proposed

design the number of these small sized queues at the input is bounded by the sum
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of the connections that are: a) serviced by each input Ethernet port and b) active

during a small window of time. The latency is minimized with respect to the time

required to associate each input Ethernet Frame to one of the queues. This is

accomplished by employing a mechanism that maps each small size queue to one

of the active destinations each time an Ethernet Frame arrives at the ToR.

The proposed VOQ design improves the required hardware resources based on

the following concept. During a narrow time window TB, the ToR switch re-

ceives Ethernet frames at its south ports for various destinations in the data center

network, which we define as active destinations. We consider that for all prac-

tical purposes, the number of active destinations, during a narrow time window

TB, has an upper limit, which can be an outcome of statistical measurements of

the network traffic patterns across the data center. The active destinations’ upper

limit is significantly smaller compared to the number of all the possible destina-

tions in the data center. Hence, letting a queue to keep all the incoming Ethernet

frames during TB that have the same active destination and prepare in this queue

a burst to be written to the shared buffer, leads to an architecture that includes a

set of queues with a cardinal number equal to that of the active destinations, while

it still keeps the high throughput at the shared buffer.

Considering the above, the VOQs architecture is comprised of: first, the Shared

Memory (buffer), second the Memory Map depicted in Figure 2.2 and third, the

VOQs controller. The detailed architecture of the VOQs controller is shown in

Figure 2.3: it is a design of the VOQs controller that includes four (4) active

destinations and the corresponding queues, based on a hypothesis that the appli-

cation asks for four active destination and as shown in Figure 2.3 there is one

queue to support each active destination. In order to define the length of the time

window TB we consider the following facts. The design of the shared buffer

employs a Dynamic Random Access Memory (DRAM) that can reach the consid-
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erable throughput of 80 Gbps at its interface; this performance will be feasible if

the entire VOQs architecture can operate with burst transactions for reading and

writing from/to the shared buffer, thus exploiting the DRAM interface, which re-

quires a minimum burst time tmb depending on the DRAM specifications. The

performance of the DRAM organization degrades significantly when the size of

the burst size decreases. We note here that, this performance degradation cannot

be expressed (defined) as a function of the burst size, e.g. proportional. Therefore,

reading and writing from/to a page in the shared buffer (in the linked list assigned

to a destination) must be performed in bursts and each burst has to consist of mul-

tiple Ethernet frames, in the order of Kbytes. Therefore, we need an architecture

of queues able to gather into a single queue all the incoming Ethernet frames that

have the same destination; in that queue, the controller will formulate a burst of

these Ethernet frames. Finally, it will operate in burst mode to store these frames

into the page of the linked list of that destination.

Figure 2.3: VOQs Controller Architecture Overview
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We consider the time window TB and the number of queues for active destinations

k to be calculated by the following reasoning. At a clock cycle T0, given that are

available k queues storing Ethernet frames of k different IPs, there will be Ethernet

frames arriving to at most all of these queues and at the clock cycle Tb that at least

one of these queues has completed a burst, and this queue can write the burst to the

buffer. Therefore, this queue can formulate another burst either for the IP that it

was supporting up to Tb or the queue can be reassigned by the controller to serve

another IP. Thus, in this scenario, the worst case is that we have to keep the k

queues serving their IPs for as long as no queue has completed a burst: assuming

that each queue receives an Ethernet frame in a round robin fashion TB is at most

equal to k × tmb.

According to the above, the efficiency of the VOQs architecture is defined as the

maximization of the utilization of the available resources and the DRAM buffer

throughput. For this purpose, the design has to: a) include k queues for preparing

the bursts, so that each queue prepares a burst that will be stored in an active

destination’s linked list of pages; b) minimize latency and c) minimize the number

of the k queues along with their size. The succeeding paragraphs describe how we

achieve the above goals and they describe in detail the operations of the VOQs

Controller as well as its functional blocks and components.

The ToR switch is connected with 10G Ethernet to the servers through its south

ports. First, the Ethernet Frames that arrive from the servers at the rate of 10G

are buffered in the port queue of the 10G Ethernet module and then are forwarded

and buffered to the two Input Frame Queues (Figure 2.3) in the following way:

we start counting the incoming frames and depending on the arrival sequence the

odd numbered incoming Ethernet Frames are stored in the first Input Frame Queue

(the upper queue on Figure 2.3) and the even Ethernet Frames to the second queue.

This dual queue architecture gives us the necessary time in order to perform in
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real-time the two following operations on the Ethernet Frames: while we store

a frame in one of the Input Frame Queues, we calculate its size and extract its

destination’s IP, which then are stored to two queues of significantly lesser size,

the IP ID queue and the SIZE queue, which are positioned close to each Input

Frame Queue in the design of Figure 2.3.

Each frame’s IP stored in the Input Frame Queues is passed as input (address) to

a LUT, named BRAM in Figure 2.3. The LUT will specify (will give as output)

the id of an Active Destination Queue (on Figure 2.3 we show an example design

with four queues): in the specified Active Destination Queue we will buffer all

the Ethernet Frames with the current active destination IP, in order to form a burst

that it will be stored in the linked list of pages of that destination in the DRAM

buffer. Apart from the id of the Active Destination Queue in that BRAM location

is also stored a flag (0/1). When the flag is equal to “1”, it specifies the case in

which the Active Destination Queue id (stored in the LUT) is granted to the active

destination IP. Alternatively, the case when the flag equals to “0” indicates that the

frame’s destination IP is not yet served by any of the Active Destination Queues

and hence, the controller has to assign an Active Destination Queue to this IP. Now,

we consider the case of an Ethernet frame arriving at the ToR and its IP address

does not correspond to any of the Active Destination Queues. If we have correctly

calculated (during the design of the ToR) the minimum required number of the

Active Destination Queues that it is sufficient to serve the application demands,

the VOQs controller will have an empty Active Destination Queue available for

assignment to a newly arrived Ethernet frame that requests an Active Destination

Queue to buffer the following frames with the same IP destination. All the id

(numbers) of the unused Active Destination Queues are buffered in the queue

named Empty Queues in Figure 2.3. At the same clock cycle that we read from

the BRAM the id of the Active Destination Queue that serves the frame’s IP along
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with the “1/0” (assigned to a queue or not) flag, we also read the first empty

queue id from the Empty Queues. The multiplexer shown at Figure 2.3 bellow the

BRAM is controlled by the flag in order to select: a) the BRAM output when the

flag equals “1” and b) the Empty Queues output if the flag is “0”. In the first case

where we will use the BRAM output, the empty queue id that was just extracted

from Empty Queues will be returned back in the Empty Queues, since it was not

used. The above design minimizes the latency for the assignment of an active

queue to the new destination.

We have to mention that in order to exploit the high throughput of the DRAM

interface, we have to write the Ethernet Frames in the shared buffer as a burst

of contiguous words of a significant length (512 bits in the example implementa-

tion of the proposed architecture). We note here that, in a writing burst of Eth-

ernet frames the last 512-bit word might not be completely filled with Ethernet

frames payload and for completing the burst we add 0xFF as padding. The simple

padding provides the advantage of simplifying the control and it reduces the la-

tency at the cost of the dummy data overhead in many pages in the shared buffer.

This padding overhead becomes larger for small Ethernet frames and it is reduced

significantly in the case of full Ethernet frames. Note here that, when it’s time to

transmit a TDMA frame the shared memory will provide us with a page: we must

be informed regarding the exact number of the useful data in this page in order

to remove the padding. For this purpose, we store in the header of each page the

useful size along with the actual page size, which is the overall sum of the useful

size and the size of the padding stored in the shared buffer.

A small size dual port memory shown in Figure 2.3 as Queue-ID Memory, stores

the IP that it is currently served by each Active Destination Queue. Each address

X of the Queue-ID Memory corresponds to the Active Destination Queue with id

X . The data at that address X of the Queue-ID Memory is the destination’s IP
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that is accommodated by this Active Destination Queue. When it is the first time

that an Ethernet Frame is stored in an empty Active Destination Queue the id of

this queue is used as the address to the Queue-ID Memory, and in that address,

we store the frame’s IP. During the whole time that this Active Destination Queue

serves the IP, the Queue-ID Memory keeps the IP in that address. Only when an

Active Destination Queue is left with all its data forwarded to the shared buffer, we

will: first, erase the contents of the served destination in the BRAM by acquiring

the address (IP) from the Queue-ID Memory and second, write the queue id to

the Empty Queues to refresh the Active Destination Queues that are vacant and

they can be granted to another destination IP. Consequently, the location in the

Queue-ID Memory will be overwritten by the new IP, which will be served by the

corresponding Active Destination Queue.

The proposed design minimizes the time required to perform all the previously

mentioned operations with respect to clock cycles. The architecture can achieve

the time minimization due to the parallelization of the operations and as a result,

the VOQ architecture diminishes the latency of each stage. Consequently, the

Active Destination Queues can be as many as the application dictates as upper

bound. Moreover, the length of each queue doesn’t need to grow beyond the size

of the burst that it is specified by the DRAM controller for reaching its maximum

throughput.

The block called Memory Map stores all the information related to each linked

list in the shared buffer associated to each destination IP. The memory map entries

are shown in Figure 2.4, 2.5 in two working examples. Each entry of the Memory

Map block has the following pointers: one at the address of the first page of the

list noting from what page we are currently reading data to transmit; one to the

last page, required to inform the VOQs that this is the page, which currently stores

all the Ethernet frames for the associated destination; one for the “next to write”
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Figure 2.4: Memory Map Organization while Buffering

address of the last page (writing position in Figure 2.4), one for the “next to read”

address of the first page (reading position in Figure 2.5). Moreover, the Memory

Map entry provides the exact number of useful data in the page: this information

is used to compute the total volume of data of the Ethernet frames with or without

the padding.

The pointers at each Memory Map block location are refreshed during each burst

write/read transaction. Thus, at the beginning of a write/read operation to/from

the DRAM buffer we know the exact number of the data (bytes) that will be writ-

ten/read. We operate the linked list of pages as a queue since we always transmit

the head page of the list. The memory map architecture is able to concurrently
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Figure 2.5: Memory Map Organization Concurrent Write & Read Operations

write and read from the same linked list of pages as shown in Figure 2.5.

A noteworthy advantage of the novel VOQ technique is the scalability of the ar-

chitecture, which can be easily configured to accommodate various numbers of

Active Destination Queues, the size of the DRAM shared buffer and the size of

the Memory Map block. The pointers and the size of the linked list of pages for

each destination are stored in block rams (BRAM) in the FPGA. The required size

of the BRAMs is proportional to: first, the DRAM memory size, and second the

number of destinations in the data center network. In case the size of the map-

ping information is relatively large, hence constraining the implementation of the

Memory Map block with internal BRAM memory, the proposed Memory Map

can be stored on external Static Random Access Memory (SRAM).
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2.5 FPGA Implementation Details

We have realized an example VOQs design with four (4) active destinations (k

= 4 is adequate for most applications in accordance with our TB and k calcula-

tions). The development of the example implementation was made on the NetF-

PGA SUME board using the Xilinx Vivado development tool. The design includes

3 Intellectual Property (IP) hardware Cores from Xilinx: a) 10GbE Subsystem,

which includes the MAC and the 10GbE PCS/PMA b) Integrated Block for PCI

Express c) Memory Interface Generator (MIG) for the shared DRAM buffer. The

NetFPGA board receives the scheduling commands from the host desktop PC,

which is running Linux and communicates with the data center’s controller, which

runs on a different PC in the same local network.

The resources occupied in the NetFPGA SUME for the VOQs Controller are pre-

sented in the Table 1, reported by the Vivado tool. The input small sized queues

are all performing at 156 Mhz clock and use 64 bits word length, in order to

comply with the 10G Ethernet physical layer standard. The Active Destination

Queues and memories alongside of them in our implementation are performing at

200 MHz with 512-word length to match the bus width of the Advanced Micro-

controller Bus Architecture (AMBA) Advanced eXtensible Interface 4 (AXI4) of

the Double Data Rate 3 (DDR3) DRAM controller.

Table 2.1: Resource Utilization of VOQs Controller

Resource Utilization

LUT 2639
LUTRAM 1285
FF 4848
BRAM 62
DSP 50743
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3 | Tools for Data Center Control

3.1 Introduction

Currently, the integration of Information Technology (IT) activities and applica-

tions takes place in data centers, which also include the necessary devices for com-

munication, high performance computing and data storage. Data centers play an

important role in organizations based on IT services, as they provide the means for

fast responses to business demands, they facilitate the IT operations and their uti-

lization leads to the reduction of the capital expenditures and the operating costs.

Targeting the improvement of data centers, researchers and engineers focus on the

use of optical switching due to the bandwidth capabilities that it provides. A sig-

nificant contribution to this design effort features optical links connected through

optical PoD switches to the ToR switches, SDN with OpenFlow organization, an

Agent connecting the SDN controller and the data plane and an enhanced agent

management tool (Kyriakos, Tsavalos, & Reisis, 2017) , which all integrate in the

Nephele data center (Bakopoulos et al., 2018).

The current Chapter presents a management tool for the Agent of the Nephele’s

data center. The advantage of creating and using the proposed management tool

is that the data center designers and engineers can create their own schedule as the

tool’s GUI users and then transfer that schedule to each data plane ToR switch.

The user can control graphically in real time the transmission of Nephele frames

originating at the ToR switch to the other Nephele ToRs in the data center network.

Moreover, the management tool can be of even further use if it will be extended

to create the scheduling tables of a PoD switch in the Nephele network. The first

Section of the Chapter highlights the Control of the Nephele data center and the

Agent. The second Section presents the Agent’s management tool.
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3.2 Background on Nephele’s Data Center Control

The Nephele is based on a dynamic optical network infrastructure for scale-out,

disaggregated datacenters that leverages optical switching with SDN control and

orchestration to overcome current datacenter limitations. The Nephele design fol-

lows vertical end-to-end development approach extending from the data center

architecture to the overlaying control plane and its interface to the application, in

order to deliver a fully-functional networking solution, extending network virtual-

ization to the optical layer. The Nephele design achieves dynamic reconfiguration

by utilizing the slotted operation of the network based on the Time-Division Mul-

tiple Access (TDMA). Moreover, the SDN control can effectively manage the data

plane elements. The OpenFlow protocol communicates the SDN control’s mes-

sages to the data plane (McKeown et al., 2008). Nephele uses an Agent to realize

the communication between the SDN controller and the data plane. The Agent

includes functions filtering the control plane (SDN controller and the Agent) in-

structions that are transmitted through the OpenFlow messages; the Agent trans-

lates these messages and forwards them to the corresponding ToR switch. Al-

though, the Agent can be classified as a back-end process, there is a need for an

interactive management tool that allows the interaction of the designers and the

future users with the Agent. The need for the above tool appeared in the course

of the data center’s design and implementation phase, it became more emphatic

during the integration and finally the validation and testing phases. Similar inter-

active tools are reported in the literature as important tools for the management,

testing and evaluation of networks (Lin & Geigel, 1997), (Turon, 2005), (Corazza

& Reale, 1992).

Focusing on providing an effective tool mainly for advancing, testing and mon-

itoring the Agent’s functionality and performance (Landi et al., 2017), the cur-
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rent Chapter presents a management tool for the Nephele Agent. The proposed

Agent’s tool is able to access all the information that it is directed to the data plane.

Moreover, it can be used to create the commands for the data plane, monitor the

commands transmission to the devices and also, the corresponding responses of

the devices to the Agent. Furthermore, it provides the ability to request all the in-

formation with respect to the status of the devices. The use of the proposed man-

agement tool contributed significantly to the development of the entire Nephele

data center and consequently the testing phase. Additionally, it benefits the entire

system because it will still be most suitable for effectively monitoring the Agent’s

performance during normal operation and also it provides the means for realizing

scenarios in the cases of demonstrations and presentations (Landi et al., 2017).

The architecture of the Nephele data center is presented in Chapter 2, in this chap-

ter we will elaborate on the control plane of the data center. The Nephele data

center is designed for an operation that includes dynamic and efficient sharing of

the optical resources and a collision free network operation by using Time Divi-

sion Multiple Access (TDMA). The control plane is based on a Software Defined

Network (SDN). The SDN controller is divided in two distinct interfaces, namely

the Northbound Interface and the Southbound Interface. A high-level view of the

Nephele control plane architecture is presented on Figure 3.1.

The Application to Controller Plane Interface defined by ONF (Open Network-

ing Foundation) in the SDN architecture is realized by the Northbound Interface

of the Nephele SDN controller. This interface allows the interaction between the

core services of the Nephele SDN controller and the upper layer network appli-

cations, which implement the logic of the network resource allocation in the data

center. The Nephele’s design follows the approach of an overall centralized archi-

tecture. For this purpose, all the scheduling plans are carried out according to the

algorithms that are performed by the central controller’s Traffic Offline Schedul-

24



National and Kapodistrian University of Athens Physics Department

Figure 3.1: Nephele SDN Control Plane

ing Engine (Christodoulopoulos et al., 2016). Considering the optimization of the

utilization of the entire network the Offline Scheduling Engine is equipped with

mechanisms able to allocate resources of the data center network in the long term.

The data-controller plane interface defined by ONF in the SDN architecture is

realized by the Southbound Interface of the Nephele SDN controller. The com-

monly used in these cases OpenFlow has been chosen as a standardized commu-

nication channel for this interface. It executes two main tasks: to command and

configure the data plane devices via the device specific Agents. A device specific

Agent performs as a proxy for the data plane switching devices. Consequently, the

Agent should have two communication interfaces the Agent-Controller interface

and the Agent-FPGA interface. The Nephele Agent’s is mainly devoted to filter
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the control plane instructions, that are included in the OpenFlow messages. Addi-

tionally, the Agent translates these instructions and then, it forwards them to the

corresponding FPGA via a PCI Express interconnection. The Agent is a back-end

process. It is activated at the beginning of each Nephele scheduling period and

it will communicate the new schedule instructions in order to configure the data

plane switches. The instructions come in the form of scheduling tables; the format

of these scheduling tables is presented by Figure 3.2.

Figure 3.2: The Format of the Scheduling Table

3.3 The Management Tool of the Agent

The present section describes first the graphical user interface (GUI) architecture

of the management tool of the Agent; second, the tool’s usability and third, the

back-end of the management tool.

3.3.1 The GUI Architecture

The Agent’s management tool is implemented by using the JavaFX software plat-

form of the Java programming language; JavaFX consists of a set of graphics and

media packages, which provide the means to the developers for the design, cre-

ation, testing, debugging, and deployment of rich client applications that operate

consistently across diverse platforms. The management tool includes a GUI that

presents to the user a Nephele network of smaller size as an image-map. This

image-map includes clickable areas, which are illustrated graphics created on a

26



National and Kapodistrian University of Athens Physics Department

raster graphics editor and enhanced with interactive attributes. This design has

led to the implementation of a graphic environment, which, considering the in-

teraction of the user with the management tool, ensures both, optimized usability

and user experience, compared to an environment using the standard widgets, pro-

vided by JavaFX.

The user of the management tool sees the data center network, the scheduling

table, an explanatory image and a menu, which are brought to her/him as the

main scene of the GUI. This main scene is shown in Figure 3.3. The smaller scale

network includes four PoDs residing in the network and connected via four WDM

(Wavelength Division Multiplexing) rings. Each of the PoDs includes four PoD

elements; these are divided into the disaggregated rack and the ToR switch.

The GUI includes an explanatory image, that is located over the menu in the right

top corner. The image presents an enlargement of a PoD element in higher reso-

lution and it is augmented with annotations, so that the user is able to understand

what the image portrays.

In order to present the graphic display of the PoD elements three objects of the

ImageView class were stacked in a StackPane object (Johan Vos, 2014). This

design has been implemented as follows: three image layers have been aligned

one over another (depicted by Fig. 3.4), so that they appear as a single solid

object and at the same time the developer can handle each one independently. The

ImageView object is a type of Node object in the JavaFX Scene Graph that is used

for painting a view; the painting is carried out by using data contained in an Image

object. The StackPane is also a type of Node object acting as the layout container

and it contains the ImageView objects. The three ImageView objects include the

images that represent the ToR switch, the disaggregated rack and a visual effect.

In the GUI, the ToR switches are the interactive parts of the management tool: the

27



National and Kapodistrian University of Athens Physics Department

Figure 3.3: The GUI Main Scene

user can select by clicking on them and she/he can create the scheduling table of

the data center. Each ToR is a clickable area and it can be used by the user as

the source and/or the destination in the scheduling table entry. In our case, the

upper left ToR is chosen by default as the host Agent PC scheduling engine. This

is the source ToR and the remaining ToRs are the destinations. The interactive

feature is accomplished by registering an event handler on the ImageView object

that includes the ToR image. An event handler is an implementation of the Even-

tHandler interface. The handle() method of this interface will let the code filling

the entries in the scheduling table to perform if the ToR image is clicked. Upon the

cursor click event, all the necessary code is executed to fill in the required fields

of a scheduling table’s entry. The management tool fills the Destination field with

the identity (id) of the ToR switch where the event occurred. The Timeslot field
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takes the value of the time sequence of the event, which is calculated based on

a counter. The Wavelength field is filled with a value selected from a closed in-

terval of integer values. Finally, the VLAN (Virtual LAN) field entry represents

the identification number that is assigned to the WDM ring, through which the

data transmission will occur. Furthermore, when the ToR is clicked, as depicted

in Figure 3.4, it will trigger the effect displaying that it is the selected ToR. The

effect is represented by a brighter image enclosing the ToR switch. The effect

is set not to be visible at first, it will be set to full opacity if the ToR is selected

and it will return to zero opacity with a two seconds lasting fade transition. The

fade transition is an instance of the FadeTransition class, which is a subclass of

the JavaFX Animation class and it changes the opacity of a node over a given

time. The same effect has been implemented similarly to the WDM rings and it

indicates graphically what WDM ring is chosen based on the VLAN field in the

scheduling table entry.

All the aforementioned elements of the tool’s design let the user to construct the

scheduling table and provide the option of editing it; this operation can be carried

out by the use of the menu. The menu consists of four buttons and inherits its

attributes from the Vbox class, which is a container that sorts its contents into a

single vertical column. The menu buttons were created as a separate class. It is

distinct from the Button class of JavaFX and is created by stacking a TextField

object over a filled Rectangle object. This object’s filling is colored by an in-

stance of the LinearGradient class, in order to apply effects that are suitable to

the entire design of the GUI and preserve the uniformity to the user eye. These

effects are triggered by the events originating from the mouse cursor and their

implementation is based on switching the order of the colors in the gradient fill.

Each time the user clicks the Add menu button she/he will start a new session of

constructing a scheduling table and the source ToR will be automatically selected
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Figure 3.4: Effect of clicking the ToR

and indicated. A scheduling period of the Nephele network can accommodate

up to eighty entries, as the corresponding allowed time slots. If the user exceeds

that ceiling, a pop-up dialog box will emerge with the corresponding message,

prompting her/him to stop importing entries. The dialog box prevents the user

from interacting with the main application window but it keeps the window visible

in the background. When the user has completed the creation of the scheduling

table, she/he is able to review it and delete any misplaced entries by using the

delete button from the menu. If the key is pressed and no entry is selected or the

scheduling table is empty, a pop-up window will be called informing the user of

the corresponding case. As a final step the user presses the send button, an action

which transmits the scheduling table to the FPGA data plane devices.

The conclusion of the transaction is marked by the appearance of a pop-up window

that it will be shown to the user. The window includes all the values that were sent
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Figure 3.5: Pop-up Window with the Values sent to FPGA

to the FPGA in a format that resembles that of a logic analyzer. The pop-up

window is shown in Figure 3.5 and the corresponding output of the logic analyzer

is depicted in Figure 3.6. The logic analyzer exports the output as a CSV file

(Comma-Separated Values); this file can be processed by the management tool

and in this case, the file’s values will be forwarded to the pop-up window. The

pop-up window incorporates the graphical theme of the management tool and is

designed to model the layout of the logic analyzer.

3.3.2 Usability of the Agent’s Management Tool

Figure 3.6: Output of the Logic Analyzer

The use of the management tool is of great importance to the development and

operation of the data center, since the users can create their own traffic schedule

and then transfer that schedule to the data plane ToR switch. The engineers are

able to control the data plane switches, during the development and testing phase
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of the physical layer of the data center network as shown in Fig 3.7. The tool’s

GUI allows to construct the commands directly in the format of the scheduling

tables of the FPGAs (instead of using the OpenFlow protocol). Additionally, it is

straightforward to extend the management tool for creating the scheduling tables

of a PoD switch in the Nephele network. Given the fact that there is a ToR Agent

PC for each ToR switch in the network, the tool is executed on the Agent computer

and it provides the user with the means for the scheduling of the network from the

view point of the specific ToR switch. The user can control graphically and more

importantly in real-time the transmission of Nephele frames originating at the ToR

switch (that is controlled by the Agent computer) to the other Nephele ToRs in the

data center network (Chen JW, 2007).

Figure 3.7: Nephele Data Plane Development

The benefit of designing, developing and effectively using the proposed manage-

ment tool has already been proven during test procedures and demonstrations. An

illustrious example is the application, which has been shown during a presentation

of the control plane of the Nephele data center. The scenario for this demonstra-
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tion has as follows: the control plane includes parts of the FPGA’s implementa-

tions of the data plane, the Agent, and the SDN controller. Given that a functional

data center Agent was not available, we presented the control plane by dividing it

into two experiments. The first experiment demonstrates the SDN controller and

the second the FPGA’s operation controlled by the management tool. The man-

agement tool has successfully imitated the functions of the Agent; the majority

of the people that interacted with the management tool understood the concepts

behind the architecture of the Nephele network and the function of the Agent in

the Nephele data center. The demonstration as shown in Figure 3.8 consists of the

SDN controller software presentation, the FPGA that represents the ToR switch,

and the Desktop PC that executes the management tool, which is connected to the

FPGA board via PCI Express. The user can interact with the management tool

and give his/her own commands to the demonstration system.

3.3.3 Back-End of the Agent’s Management Tool

In the Nephele data center the ToR switch design includes multiple FPGAs; all

the FPGAs that belong to a single ToR implementation use PCI Express to com-

municate with the host ToR Agent computer. The management tool divides the

scheduling information into distinct parts, so that each part corresponds to the

scheduling information concerning the corresponding FPGA; then it creates dis-

tinct threads to complete the entire operation. We use a single thread to communi-

cate with a single FPGA and transfer the respective part of the ToR switch traffic

schedule. Note here that, the communication is performed in parallel for all the

FPGAs belonging to the same ToR switch.

In order to develop the PCI Express interface of the FPGAs we used the Xilinx IP

Core for PCI Express and the RIFFA (Reusable Integration Framework for FPGA

Accelerators) framework (Jacobsen et al., 2015). The framework consists of an
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Figure 3.8: Live Demo of the Management Tool

API (Application Programming Interface), a driver/kernel module and an IP core

for the FPGAs. All the above parts are open-source. It is designed to perform

with the Xilinx IP core that handles the physical layer of the PCI Express inter-

face. The API is designed to support multiple languages like C/C++, Java and

Python. Moreover, it includes the necessary function/methods that the manage-

ment tool needs to invoke, in order to communicate with the FPGA. The entire

API is designed to be executed by threads and the design of the management tool

takes full advantage of this capability.

The communication that is directed from the Agent PC to a FPGA operates ac-

cording to the following steps. In the first, the application initiates the transac-
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tion by calling the fpga_send method. Then, the thread invokes the operation of

the kernel driver, which writes to the FPGA configuration registers the necessary

information to begin the transaction. The FPGA uses DMA (Direct Memory Ac-

cess) to read the scatter gather elements (Jacobsen et al., 2015) that the driver

instructed. At the time that the transaction will be completed the driver will read

the final count of the data passed, the amount of the data is then returned to the

management tool as the return value of the fpga_send method.

In the design of the tool special attention was paid to the operation of the RIFFA

API, because the RIFFA’s driver requires all the data in contiguous memory loca-

tions (in an array). Note here that, the Java’s Array object can’t be used in this

case. An attractive solution to this problem is the employment of the ByteBuffer

Class of Java, which is a class that is created to handle a stream of raw data.

The operations on the buffer can be carried out byte by byte, but casting is also

supported for the user to be able to write a whole Java data type, like an integer.

Finally, the endian of the data has been tackled as follows. The JVM (Java Virtual

Machine) stores class files in big endian byte order, where the high byte comes

first. Multibyte data items are always stored in big-endian order. Given that the

Xilinx FPGAs operate in little-endian byte order, the change of the endianness

could be arranged either during the construction of the ByteBuffer or at the re-

ceiving buffer in the FPGA. The latter choice has been proven more efficient and

gave us the advantage of the ByteBuffer casting, which would not be useful in the

case of changing the order of the byte inside the ByteBuffer in the Java applica-

tion.

35



4 | Neural Networks on FPGA

4.1 Introduction

The evolution of FPGAs with respect to the increased hardware resources and the

efficiency of their programming tools has affected significantly the applications

with real-time specifications. Deep Learning techniques (Mordvintsev, Olah, &

Tyka, 2015) and CNNs, benefit by the utilization of FPGAs as accelerators to

accomplish real-time performance (Abdelouahab et al., 2018). FPGAs are advan-

tageous for these tasks because of their ability to reconfigure and/or reprogram

the architectures and consequently, the designer can follow the continuous im-

provement of the CNN algorithms and techniques. Among the aforementioned

processes, those that are destined for edge, mobile and on-board satellite (OBC)

computing have to use accelerator designs that are performance, power and re-

source efficient. Aiming at improving the performance of these tasks, the current

chapter presents a design approach for real-time classification FPGA accelerators

that can be implemented with the logic and memory resources of a single FPGA

device and it shows its advantages by developing a Vessel Detection FPGA Ex-

ample Accelerator.

The proposed approach is effective for CNN applications with relatively low fea-

ture space (Lei, Liu, Dai, & Ling, 2020), (Kyriakos, Kitsakis, Louropoulos, Pap-

atheofanous, & Patronas, 2019), (Li, Lin, Shen, & Brandt, 2015) such as the clas-

sification problems that share similar characteristics between classes (Sermanet &

LeCun, 2011), (Airbus Ship Detection Challenge, 2019), (L. Wang et al., 2018)

and CNNs requiring few convolution layers such as SAT-4/SAT-6 (Gorokhovatskyi

& Peredrii, 2018). The proposed FPGA design approach includes three phases

with each phase targeting distinct design and performance gains. The first phase
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introduces guidelines that lead the CNN design process with TensorFlow to a

model of reduced computational and memory requirements but of high classifi-

cation accuracy. In the second phase, the model is transformed into a fixed-point

bit-accurate model (BAM) simulating the hardware calculations and allowing the

designer to decide on the arithmetic representation of the model’s parameters that

provide the optimal trade-off between bit-width reduction and accuracy losses.

For the third phase, we developed a library of algorithm specific blocks in VHDL

implementing the CNN functions with fixed-point arithmetic. These blocks, along

with our proposed methodology for mapping the CNN to the FPGA, provide the

means to the FPGA designer to initiate the third phase and implement a distinct

module for each CNN layer. The completion of the third phase places these mod-

ules in a pipeline fashion forming a streamline architecture, to result in an effi-

cient FPGA accelerator with respect to power consumption and resource utiliza-

tion while saving significantly on the development time.

The chapter is organized with the following section reporting the background

work in the area of the CNN accelerators in the literature. Section 4.3 introduces

the approach for designing the CNN and mapping them on the FPGA. Section 4.4

describes the example FPGA accelerator. Subsection 4.4.1 presents the necessary

background for the target example application that is the vessel detection. In sub-

section 4.4.5 the corresponding FPGA and performance results are presented in

detail.

4.2 Background on CNN FPGA Accelerators

Researchers have studied and provided FPGA accelerator solutions for CNNs

based mainly on the automated software development tools like the HLS (Kim et

al., 2017), (Solovyev et al., 2018), (Zhang et al., 2015), (Sankaradas et al., 2009),
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(Peemen et al., 2013), (B. Liu et al., 2019), due to short development time and

hardware abstraction. The approach followed in (Kim et al., 2017) improves the

time of the entire design process by parallelizing the CNN C code with Pthreads

and optimize the FPGA accelerator through software/constraint changes only. The

authors of (Solovyev et al., 2018) target feasibility at low cost by choosing inex-

pensive FPGA devices and cores for their accelerator. The authors of (Zhang et

al., 2015) focus on optimizing the accelerator’s performance by considering the

architecture’s throughput combined with the external memory’s throughput. The

FPGA accelerator of (Sankaradas et al., 2009) interfaces with a host PC and it

utilizes off-chip memories with the loading/storing of the intermediate results op-

timized for higher bandwidth. The (Peemen et al., 2013) reports an FPGA accel-

erator template with an HLS FPGA architecture consisting of a cluster of Multiply

Accumulate Processing Elements for convolutions acceleration; this work focuses

on a design flow selecting processing schedules that minimize external memory

accesses and buffer size by means of data reuse. The authors in (B. Liu et al.,

2019) present an accelerator based on a single-processing engine that targets stan-

dard and depthwise separable convolution. In this work the authors aim to reduce

the delay added by the off-chip memory data exchange by using a data stream

interface and ping-pong on-chip cache. All the HLS design approaches though

prevent experienced designers from optimizing the HDL code towards a more

efficient FPGA architecture with respect to resource utilization, throughput and

energy consumption (Pelcat et al., 2016). The authors in (Rapuano et al., 2021)

present an on board satellite FPGA accelerator for CNN inference, which utilizes

a single processing unit with external DRAM memory, developed with VHDL

code. Note here that, the current work focuses on streamline architectures that

implement the contiguous CNN layers in a pipeline fashion and differs to the im-

plementation of a systolic array that is reconfigured each time it computes a CNN
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layer (Zhang et al., 2015). Hence, the advantages of the proposed designs are to

avoid idle computing and memory (Y. Zhao et al., 2019) resources, use only the

on-chip (FPGA) memory and extensive pipeline, features that lead to improved

resources utilization, reduced latency and power consumption (Sze et al., 2017),

(Lamoureux & Luk, 2008).

4.3 CNN Design Approach

The current section introduces the three distinct phases of the proposed FPGA ac-

celerator design approach. It begins by presenting the first phase with the guide-

lines for the CNN model design. Then, for the second phase, it describes the

development of the fixed-point BAM representation of the CNN floating-point

model based on the factors, that play a key role in the design of the entire FPGA

accelerator. Finally, the third phase introduces the configurable VHDL blocks

and the mapping methodology of the CNN layers to the FPGA by utilizing these

blocks. The result is to map the CNN layers on a pipeline of modules, where

each module is optimized to the corresponding layer computations. The proposed

streamline architecture designs save significantly on the FPGA resources com-

pared to the architectures that implement all the CNN layers on a systolic array

(Zhang et al., 2015) and leave idle resources as the layers progress.

4.3.1 CNN Design Space Exploration

This work focuses on single FPGA device solutions for classification applications

and more specifically, binary and limited feature space classification tasks. Conse-

quently, the design process has to consider all the factors reducing the resources’

requirements. For this purpose, in the first phase the designer will use the Ten-

sorFlow estimator API to design the CNN’s model targeting to fit within a single
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FPGA’s resources. Focusing on all the key factors of the data under consideration

the designer can develop the model by keeping to the following guidelines for the:

• Number of Layers: the neural networks for the low feature space classifica-

tion applications can achieve a high accuracy rating even with a relatively

small number of Convolution Layers (Gorokhovatskyi & Peredrii, 2018).

• Size of convolution kernels: considering the input is relatively small, the rec-

ognized objects tend to occupy a large portion of the input data and hence,

large and medium size convolution kernels suffice.

• Choosing the size of the Pooling Layers windows: the feature space is rel-

atively limited and hence, the use of 4 × 4 pooling layers will not affect

the accuracy meanwhile it will improve significantly the resources’ require-

ments of the succeeding layers.

• Avoid padding: this should be implemented throughout the CNN because-

most of the time it does not affect the accuracy at all.

• Divisibility: it refers to the divisibility of each convolution layer’s output

size by the kernel size of the succeeding pooling layer. If it is applied, it

will: a) allow the omission of padding with no accuracy loss and b) lead to

efficiently pipeline these contiguous layers.

4.3.2 Bit-Accurate Model Development

During the second phase the designer develops the BAM of the designed and

trained CNN. The BAM emulates the exact same fixed-point calculations that the

hardware accelerator will perform. For the BAM, we perform quantization of the

CNN model trainable parameters, starting from the 32-bit floating point represen-

tation provided by TensorFlow to a desired Qm.n fixed-point representation. The
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number of bits for the integer part m and fractional part n are accepted as input

parameters to the BAM. This allows the designer to perform a trade-off study

between saving on FPGA resources due to the reduced bit-width of the CNN pa-

rameters and maintaining high classification accuracy as a result of the reduced

arithmetic precision.

4.3.3 VHDL Blocks

The proposed approach combines the VHDL advantages with an efficient, with re-

spect to the developing time, design methodology for CNN accelerators. Multiple

instances of configurable and reusable VHDL blocks, each with different config-

uration, are used for the development of each layer. The following subsections

present these reusable VHDL blocks developed in this work.

4.3.3.1 Input Block

This block consists of a Block RAM that stores one input data channel and a Win-

dow Generator as shown in Fig. 4.1. The Window Generator formulates the

input to the following Convolution Layer as windows (matrices) of size equal to

the Convolution Layer’s n × n kernel (e.g. 3x3, 5x5, etc). It uses n shift regis-

ters with each register containing one image row, in order to avoid the indexing

of pixels and thus, lead to improved performance. The Kernel Window Controller

FSM of the Window Generator reads n rows from the Block RAM and copies them

into the first set of n Shifting Registers. The DSP Decoder formulates the n × n

window: the first n pixels (memory words) of each of the n Shifting Register, are

routed in parallel to the input of the following Convolution Layer. To create the

next window we shift the n registers by one pixel. There are two sets of Shifting

Registers forming a double input buffer. If the following Convolution Layer uses

n×n kernels, the n shift registers forward an input n×n window per cycle to fully
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pipeline the two layers. Configurable are the: a) input data sizeb) the n registers,

c) the kernel n× n and d) pixel bit-depth.

Figure 4.1: Input Block Architecture

4.3.3.2 Convolution Block

The Convolution Block (Fig. 4.2) receives a single channel of the input data (or a

single feature map) in the format of kernel sized matrices (n×n) and it calculates

the convolution of a single filter’s kernel with the input. The Convolution Block

includes n × n multipliers; each multiplier has input one element of the n × n

matrix and the corresponding kernel weight. Different filter kernels are stored at

the on-chip ROM of the Convolution Block. To calculate the output of the Convo-

lution Block a tree of adders (of height ⌈log2(n× n)⌉) completes the addition of
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all the products of the multipliers in a pipeline fashion.

Figure 4.2: Convolution Block Architecture

4.3.3.3 Pooling Block

The Pooling Block (Fig. 4.3) receives the feature map produced by a preceding

Convolution Layer: a k× k array forwarded one value at each cycle. The Pooling

Block selects the maximum value of each l × l matrix, for all the matrices in the

feature map with stride l (e.g. 2×2 or 4×4 max pooling) and outputs the k/l×k/l

array of the above maximum values. In detail: first, from the k×k matrix the sub-

block Row Max Pooling FSM gets the maximum of each l-tuple of values of each

row to provide a k × k/l array; l registers are written in l consecutive cycles and
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we choose the max of the l registers. There are l Pooling FIFOs: the Row Max

Pooling FSM stores the result in the next available FIFO and marks it as the active

Pooling FIFO, i.e. the k/l results of the rows 0l, 1l, 2l, etc. will be stored in the

first Pooling FIFO, those of the rows 0l + 1, 1l + 1, 2l + 1, etc. in the second

and so on. When l rows of the output feature map (l × k/l values) are stored at

the Pooling FIFOs the Column Max Pooling FSM starts the vertical max pooling;

it chooses the maximum of l data (one from each Pooling FIFO) to produce the

k/l × k/l matrix.

Figure 4.3: Pooling Block Architecture

4.3.3.4 Vector Multiplier

The Vector Multiplier realizes a Fully Connected Layer neuron; it computes the

dot product of the 1-D input vector I (the flattened result of the preceding layer),

received one point at a time, with the corresponding row of the Fully Connected

Layer’s weight matrix. The weight matrix W is stored in a ROM, where each
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memory word contains the weights of every neuron for each input. At each cycle,

the input value of I and the corresponding row of W are multiplied and the block

accumulates the result, which will be forwarded to the following blocks. This

block is implemented with clock gating to limit the dynamic power consumption

because it is operational for a short time compared to the rest of the modules. Dis-

abling the clock for the design blocks that perform no computations at a given time

prevents signal transitions limiting power consumption (Osborne, Luk, Coutinho,

& Mencer, 2008).

4.3.3.5 ReLU and Output Block

The ReLU Block is a 2-to-1 multiplexer. The select bit of the multiplexer is the

Most Significant Bit (MSB) of the input value. If the MSB/select is “1”, the input

is a negative number and the multiplexer outputs zero, otherwise it forwards the

input to the output.

The Output Block is the CNN’s final Fully Connected Layer. Its architecture is

shown in Fig. 4.4. It executes the matrix multiplication of the flattened input

array I with the weights W of the output neurons and then adds the Bias. In a

pipeline fashion, it is executed once for each output neuron/class.

4.3.4 Methodology for Mapping the CNN on the FPGA

The current section describes the major considerations and recommendations for

mapping the CNN functionality on a VHDL architecture by utilizing the above

blocks. The proposed approach uses the mapping to result in a streamline ar-

chitecture that implements all the layers of the CNN as a pipeline of modules:

each module implements a CNN layer’s computations. This allows flexibility in

the parallelization strategy of the computations of each layer (implemented as a
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Figure 4.4: Output Block Architecture

module) and our proposed approach aims at parallelizing the layers in a way that

enables extensive pipelining between them and minimizes the use of intermediate

buffers. In more detail, for the acceleration of binary and limited feature space

classification tasks with shallow CNNs that this approach targets, the streamline

architectures and the proposed design approach have the following benefits:

a) High efficiency in resources utilization and computing since all hardware is

generated specifically for each CNN layer (module) and the layers are pipelined.

b) Significantly reduced memory requirements for the intermediate results and
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use of buffers only on the on-chip memory. The extensive pipeline of the pro-

posed approach allows for succeeding layers (modules) to directly consume the

data generated by the preceding ones and thus minimize the buffering of the inter-

mediate results.

c) Reduced latency for shallow CNNs designed for the target limited feature space

classification tasks. This is achieved by the parallelization strategy, the pipelining

between the VHDL implemented layers (modules) and the use of only low-latency

on-chip RAM. Moreover, pipelining a design can reduce the amount of energy

used per operation compared to the non pipelined version at the same clock fre-

quency (Wilton, Ang, & Luk, 2004).

The resource utilization, and power efficient design approach has to focus on the

following characteristics. The key issue is to keep the memory and DSP require-

ments of the CNN accelerator design within the limits of the target FPGA device.

Consequently, the objectives of CNN accelerator’s design are first, the minimiza-

tion of the buffering between consecutive layers second, the required memory of

each layer and third, the real-time performance of the accelerator. The methods

for improving the key issues of the FPGA accelerator are:

• Buffers between layers and Speed-up: The effort is given to parallelize the

N filters in each Convolution Layer (except the first). Assuming that a Con-

volution Layer is designed with N filters, then the accelerator can have K

parallel Convolution Blocks to complete the N convolution filters in N/K

steps. The accelerator design with K = N is preferable because first, it

maximizes the speed-up second, it allows the pipelining of the input to ev-

ery Convolution Block and avoids the buffer between this and its preceding

layer.

• Reduce the memory of each layer: each Convolution Layer produces N
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feature maps and apart the first accumulates these in N memories. The size

of each of these N memories depends on the size and the number of the

preceding Pooling Layers. We denote by (spi)
2 the dimensions of the (i +

1)th pooling layer. If the input data are sized Q×Q and there are p Pooling

Layers of sizes sp0 × sp0, sp1 × sp1, . . . , spp−1 × spp−1 each memory (of

the N memories of the current layer) has size [Q×Q]/
∏i=p−1

i=0 (spi × spi).

Hence, higher dimension pooling layers reduce the memory size and allow

to implement N parallel filters with their individual memories.

• The First Convolution Layer. The proposed parallelization technique for

this layer leads to the balance of the speed-up against the available num-

ber of DSP Blocks and Block RAMs of the target FPGA device. The key

computational role is realized by a parallel Structure consisting of one Con-

volution Block per channel; these blocks compute the convolution of all the

input data channels (e.g. 3 channels and 3 corresponding blocks in the case

of an RGB image). Each block completes the convolution in real time and

it forwards each result to the following Pooling Layer without a buffer, a

design feature that significantly improves the memory requirements since

the First Convolution Layer operates on the full size input data (without any

downsampling). The use of one (1) Structure to complete all the filters of

the First Convolution Layer is resource efficient. Depending on the target

FPGA’s resources, we can use k instances (k ≤ (sp0)
2, where (sp0)

2 the

dimensions of the first pooling layer) of this Structure in parallel to improve

the speed-up by k. We note here that each additional parallel Structure

first, adds a set of Convolution Blocks (one for each input data channel) in-

creasing the use of the FPGA DSP Blocks, second it adds another memory

buffer at the interface between the First Pooling Layer and the Second Input

Layer. However, the size of each additional input buffer is considerably re-
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duced due to the high dimensions of the First Pooling Layer. Using k such

Structures and the k buffers is limited by the available DSP Blocks.

• Scalability. The aforementioned techniques lead to a scalable FPGA ac-

celerator design. The architecture of the First Convolution Layer enables

the engineer to opt for more performance or optimize the design for FPGA

devices with limited resources. Moreover, the Fully Connected Layers can

use a Vector Multiplier per neuron: parallelizing the neurons is advanta-

geous leading to a layer design irrespective of the size and the number of

the feature maps produced by the preceding layer; and more importantly it

is scalable.

4.4 Vessel Detection FPGA Accelerator Example

Considering as target application the Vessel Detection, we exploit the proposed

approach to design an example accelerator within a single FPGA device, which

decides whether there is a vessel (Airbus Ship Detection Challenge, 2019), in the

input image. This image classification task utilizes a CNN trained for the Planet’s

“Ships in Satellite Imagery" dataset (Planet: Ships-in-Satellite-Imagery, 2019)

and the resulting FPGA accelerator using the resources of only the Xilinx Vir-

tex 7XC7VX485T device (operating on a Xilinx VC707 board) achieves almost

98% prediction accuracy and high throughput by classifying a 80 × 80 RGB 24

bits/pixel image in 0.68 msec. Moreover, the accelerator can be used in a sliding

window application for scenes up to 4K. To compare the FPGA’s performance we

execute our code on the low power Intel’s Myriad2 processor (Barry et al., 2015)

used for cameras and OBC (España Navarro et al., 2021), (Rapuano et al., 2021)

and the edge-computing NVIDIA’s Jetson Nano (Nvidia Jetson Nano, 2020) either

on the Jetson’s ARM processor or the GPU.
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The following sections employ the proposed design approach, presented in Sec-

tion 4.3 to develop a Vessel Detection Example FPGA accelerator that can also

be used in sliding window applications of large images. The use of the example

Vessel Detection FPGA accelerator can be realised in the context of an FPGA

system, in which the accelerator interfaced with a host processor/FPGA-engine,

is receiving windows of 80x80 for classification of an larger image stored in cen-

tral Mass Memory (e.g. 3081x1597 in Planet’s dataset used) obtained from the

camera sensor.

4.4.1 Background on Vessel Detection

The vessel detection is among the most important tasks of the Maritime Domain

Awareness (Dekker et al., 2013), (Kanjir, Greidanus, & Oštir, 2018) including

all the activities associated with the maritime activities that could impact upon

the security, safety, economy, or the environment and which are related to any

navigable gateway and the associated infrastructure, people, cargo and vessels.

For the corresponding applications the vessel detection is keystone because it has

a very extended scope of applications in the areas of maritime safety and rescue

missions, marine traffic control, sea pollution, maritime spatial planning, manage-

ment of remote fisheries, area fishing control, illegal migration, customs control,

observation of naval borders, etc. Calling as vessels the ships and all the floating

manufactured objects and given that it is rather straightforward to distinguish an

object in optical images produced either by space or drones or harbor cameras, the

processes that identify the vessel in the image frames play a key role in the above

applications.

Moreover, note that for the ships greater than 300 tons is mandatory to use ship-

borne transponders to report their position. Smaller ships though, do not have to

own and use these devices and also, the ships that contact illegal operations either
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turn them off or they try to deceive the authorities with false reports of their po-

sition. Hence, vessel detection comes to support effectively the maritime domain

awareness. Consequently, the exploitation of images and especially satellite ones

plays a key role for locating vessels on the sea surface. Notable example is the

satellite-based radar images most often as Synthetic Aperture Radar (SAR) that

are of common use for maritime surveillance because they provide the ability to

detect the vessels either in the case of cloudy skies or clear ones. The interest

though in using optical images in the applications of maritime surveillance esca-

lated significantly due to the availability of optical imaging satellites.

Considering the problem definition, the vessel detection can be envisaged as a task

of detecting an object given that the background in most cases has the characteris-

tics of the surface of the water. Following the latter model the researchers and the

engineers focused on providing solutions in terms of automated analytical meth-

ods for remote sensors. These efforts are the consequence of the existence of the

large number of Earth-orbiting sensors and their ability to generate and transmit

big volumes of data. Hence, the detection systems have to process large volumes

of sensor data and in many cases to conform to near-real or real time requirements.

Accordingly, the limitations in the execution time as well as the restrictions in the

power consumption and the resource utilization, call for power and resource ef-

ficient hardware accelerators (España Navarro et al., 2021). A generic approach

for the vessel detection is to receive an input image of size k× k pixels, on which

it will perform the calculations of the trained CNN model, the convolution with

the filters kernels, the max-pooling and finally the classification with a fully con-

nected neural network. This operation is repeated on overlapping image patches

extracted from an large image of size x × x pixels, where x >> k, gathering the

patches that contain vessels and discarding the remaining.

Regarding the results related to the Vessel Detection (Dekker et al., 2013), (Kanjir
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et al., 2018), that the current work has as target application, most of the published

results exploit algorithmic techniques to improve the execution time. Widely

known are the R-CNNs (Girshick, Donahue, Darrell, & Malik, 2013), Faster-

RCNN (Ren, He, Girshick, & Sun, 2015), You Only Look Once (YOLO) (Redmon,

Divvala, Girshick, & Farhadi, 2015), and Single Shot MultiBox Detector (SSD)

(W. Liu et al., 2015). Another approach in (H. Zhao, Zhang, Sun, & Xue, 2019)

recognizes the key parts of the vessel and classifies the ship’s identity by using

these key parts. These classification results are then voted for the decision of

the ship’s identity with achieved highest accuracy 92.63%. Hardware accelera-

tors developed solely for Vessel Detection are in (Ji-yang, Dan, Lu-yuan, Jian, &

Yan-hua, 2016) but without CNNs: they propose a technique based on statistical

analysis, of the inspected and neighboring areas to distinguish the “possible ship"

to other objects and by the geometric features of the target they decide whether the

target is a ship achieving 90% success rate. The large number of approaches, algo-

rithmic techniques and results related to the vessel detection is due to the attention

that vessel detection as a task has gained the last two decades.

4.4.2 Model Architecture and Training

The model was trained with the “Ships in Satellite Imagery" Kaggle dataset. It

contains 4000 80x80 RGB images in total, labeled with either “ship” or “no-ship”

binary classification: 3K images were selected for the training process and the

remaining for model validation.

A variety of training processes was performed with the TensorFlow Estimator API

in Python to create a CNN model close to optimal with respect to prediction ac-

curacy, number of operations and resources requirements. The CNN design space

exploration (described in 4.3.1) resulted in the final model architecture shown in

Fig. 4.5. The CNN model consists of 84K weights optimized using the Adam
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optimizer with the cross-entropy loss function; it achieves 97.6% accuracy after

50 epochs. It compares favorably to similar trained models due to the following

results of the design study:

• Number of Convolution layers: The proposed CNN with only 2 convolution

layers achieves accuracy 97.6% that is close to CNNs with more, e.g. a

CNN with 3 convolution layers before any of the proposed optimizations

achieved 98.5% accuracy.

• Ship Orientation: is limited and along with the proportion of the 80x80

image that the ship occupies, it leads to use 32 filters per convolution layer

for achieving the best accuracy-computational cost trade-off.

• Max Pooling layer: size 4 × 4 achieved accuracy similar to that of size

2× 2.

• The kernel’s size for each Convolution Layer: the first achieved improved

accuracy with a 5 × 5 kernel, while the choice for the Second Convolution

Layer is a 4×4 kernel because its output has to be divisible by the following

Max Pooling layer. As a result we don’t use padding in the convolutions

since this doesn’t induce accuracy loss.

• Fully Connected Layer’s neurons: 128 neurons of the fully connected layer

is the minimum number to use in order to avoid prediction accuracy loss.

4.4.3 Bit-Accurate Model (BAM)

The design flow, following the realization of the TensorFlow model for the Vessel

Detection, develops a bit-accurate model (BAM) that represents the exact opera-

tions and calculations in integer arithmetic that will take place in the FPGA. We

note here that, the input image is represented in RGB with 8-bits per pixel and the
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Figure 4.5: Model Architecture

BAM keeps (does not reduce) for each pixel the input bit-depth. Each parameter

of the CNN model (weights, biases) is represented as a fixed-point number with

1-bit for the sign, 1-bit integer part and 6-bit fractional part (Q2.6). Throughout

the BAM we preserve the 6-bit fractional part by truncating the result of each

multiplication. In order to avoid accuracy losses due to overflow after consecu-

tive additions the integer part is increased and the final results are represented in

Q11.6.

4.4.4 The Example CNN FPGA Accelerator

The example accelerator’s architecture consists of eight structural blocks on which

we map the functionality of the Software model blocks: a) the Input Layer, b) the

First Convolution Layer, c) the First Pooling Layer, d) the Second Input Layer,

e) the Second Convolution Layer, f) the Second Pooling Layer, g) the Fully Con-

nected Layer and h) the Output Layer. The overall architecture is illustrated in two

figures, Fig. 4.6 and Fig. 4.7. The example accelerator exploits the parallelization

of the CNN model in order to increase performance, minimize buffering and im-

prove the throughput via pipelining of its operations. The following paragraphs

present the significant details of the structure and operation of the accelerator’s
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Figure 4.6: FPGA Architecture of the Input Layer, First Convolution & Pooling
Layers and the Second Input Layer.

blocks and their advantages.

Figure 4.6 depicts the four leading blocks of the architecture (Input Layer, First

Convolution Layer, First Pooling Layer and Second Input Layer). The architec-

ture uses the blocks described in Section 4.3.3: the Input Layer with the Window

Generators and the First Convolution Layer including three Convolution Blocks.

Their output is forwarded to the ReLU and the First Pooling Layer consisting of

one Pooling Block configured for 4 × 4 max pooling. The Second Input Layer

includes a single input block. This design minimizes the memory required by the

proposed accelerator in two ways. The First Convolution Layer calculates and

adds in parallel the convolution of each input image channel with the correspond-

ing kernel producing one complete output feature map, pipelining each value to

the First Pooling layer without buffer use. The calculations are repeated for the

remaining 31 feature maps, with the corresponding filter kernels. The Second

Convolution Layer calculates the 32 filter convolutions on each received feature
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map in parallel and buffers the 32 results for accumulation. The required buffering

at the output of this layer is reduced to 32 arrays of 16× 16 13-bit values, because

at this stage we have already executed the First Pooling Layer (4 × 4 max pool-

ing). The latter shows the advantage of the proposed approach when it is used for

shallow CNNs, because considering a systolic array accelerator for the same task,

it would require a total of 2.03 Mbit to store the intermediate result of the output

of the First Convolution Layer. In contrast, the proposed streamline architecture

uses buffering of intermediate results only at the end of the Second Convolution

Layer, following the downscale of the data by previous pooling operations: this is

only 106.50 Kbit and hence, it achieves a 19.1x reduction in the required memory.

Another key element of the example accelerator’s architecture is the Input Layer

also depicted on Fig. 4.6; its design is based on the FPGA’s features. The FPGA

can support a variety of interfacing methods with the host such as PCIe, Ethernet

and USB to receive the image. The Input Layer stores each channel (RGB) of

the input image row by row in the corresponding Channel Block RAM (on-chip

memory), so that we can read a whole row in a single clock cycle. These blocks

along with the 3 Window Generators of the 3 Input Blocks constitute the Input

Layer. The Window Generators are configured to accept one 80 × 80 image (1

image channel each) and generate all the windows of size 5 × 5 of that image

channel; they operate as described in section 4.3.3.1. When the image is stored in

each Channel Block RAM, the 3 Window Generator blocks operating in parallel,

load the 3 distinct channel windows of size 5×5 in parallel to the 3 corresponding

Channel Convolution Blocks of the First Convolution Layer, as shown in Fig. 4.6.

Three distinct RGB windows of size 5 × 5 forwarded in parallel at each clock

cycle to the Convolution Blocks in a fully pipelined operation.

Figure 4.7 depicts the second half of the example accelerator’s architecture (the

Second Convolution & Pooling Layers, the Fully Connected Layer and the final
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Output Layer). The Second Convolution Layer includes 32 Filter Convolution

Blocks, each block configured for 4 × 4 convolution kernels. The Second Con-

volution Layer receives one by one the feature maps of the previous Layers and

performs the 32 filter convolutions of this layer in parallel with 32 Filter Convo-

lution Blocks, each of which accumulates the result in a dedicated Accumulator

RAM of size 16 × 16 words. Each Filter Convolution Block stores the kernel

weights associated with each input feature map in an internal Block RAM. The

results of this Layer are complete when every feature map of the previous Layer

is received and processed. At the final accumulation step, each filter’s bias is

added and the Accumulator RAM contents of each Filter Convolution Block are

forwarded, in a continuous stream (in filter order) to the Second Pooling Layer.

The Second Pooling Layer is similar to the First Pooling Layer, also configured

for 4 × 4 pooling, where memories act as a buffer in order to provide an uninter-

rupted flow of data to the succeeding Fully Connected Layer. Finally, the Fully

Connected Layer uses 128 parallel Vector Multipliers one for each neuron. When

all the multiply-accumulate steps are complete, the 128 parallel multipliers and a

tree of adders calculate the inference result.

Although the CNN Vessel Accelerator improves the performance of CPU, GPU

and edge processors, as will be shown in section 4.4.5.2, it is worth noting that

the entire CNN Vessel Accelerator architecture can be configured to operate on

two distinct input frames in a pipeline fashion. In that configuration while the first

frame processing will occupy the fully connected layer, the two convolutional

layers will be dedicated to the process of the second (following the first) frame.
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Figure 4.7: FPGA Architecture of the Second Convolution & Pooling Layers,
Fully Connected Layer and Output Layer.

4.4.5 Vessel Detection CNN FPGA Accelerator Results & Com-

parison

This section presents first, the results of the example accelerator’s implementation

on the Xilinx VC707 board and second, the comparison with the corresponding

performance of our code executed on: a) the low power Intel’s Myriad2 processor,

b) the edge-computing NVIDIA’s Jetson Nano Jetson’s ARM processor, and c) the

Jetson Nano GPU.

4.4.5.1 FPGA Implementation Results

The development and validation of the example accelerator targeted the Xilinx

Virtex 7 Development board (XC7VX485T) with the use of the Vivado develop-

ment tool. The resource utilization of the FPGA on the Virtex 7 board is pre-

sented in the Table 4.1. More specifically, the example accelerator uses 9.37%

of the FPGA’s BRAMs and 30.11% of the available DSP blocks of the FPGA

device. The example accelerator’s power requirements are 5.001 W reported by
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the Vivado power estimator. Figure 4.8 presents the on-chip power utilization per

resource type.

The FPGA implementation of the example accelerator has achieved a maximum

operating frequency (fmax) of 270 MHz. The number of operations per second of

the accelerator is 52.8 GOP/s and the processing time for a single input image (or

a 80 × 80 sliding window) is 0.687 ms. In order to showcase an indicative base-

line evaluation result, Table 4.2 presents the execution time comparison of the

example accelerator to the CPU and GPU software implementations. The CPU

and GPU software implementations are based on the TensorFlow implementa-

tion of the model executed with a single image as input and targeting the Intel(R)

Core(TM) i7-9700K CPU @ 3.60GHz and the NVIDIA GeForce RTX 3080 cor-

respondingly. The CPU processes a single input image in 4.696ms while the GPU

processes the same input image in 2.202ms. The example accelerator achieves a

speed-up of 6.836 and 3.205 when compared to the CPU and GPU correspond-

ingly.

Table 4.1: Resource Utilization

Resource Utilization Utilization %
LUT 50743 16.71
LUTRAM 4228 3.23
FF 70786 11.66
BRAM 96.5 9.37
DSP 843 30.11

Table 4.2: Performance Comparison to CPU & GPU

Execution Time (ms) FPGA Speed-up
FPGA 0.687 -
CPU 4.696 6.836
GPU 2.202 3.205
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Figure 4.8: Power Utilization

4.4.5.2 Comparison to Edge Devices and Low Power Processors

In order to evaluate the proposed approach we compared the performance of the

Vessel Detection CNN FPGA Accelerator to the other edge devices, which have

high performance at low power consumption according to their specs. Notable

representatives are the NVIDIA’s Jetson Nano and the Intel’s Myriad2 proces-

sor. The Jetson Nano of 472 GFLOPS (FP16) at 10W includes an ARM pro-

cessor and an 128-core Maxwell GPU targeting computer vision and deep learn-

ing applications. The Myriad2 processor is being utilized for on-board satellite

computing applications in missions (Giuffrida et al., 2022) and research projects

(España Navarro et al., 2021) due to the fact that it has undergone extensive ra-

diation characterization (Furano et al., 2020) in order to be deemed suitable for

space applications. It has two Leon and 12 SHAVE processors, it is optimized for

machine learning applications, that can aggregate 1000 GFLOPS (FP16) with at

most 1W consumption. Moreover, it includes a multicore on-chip memory sub-

system (2MB), called Connection Matrix (CMX) memory and low-power DDR3

DRAM (512MB).
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The comparison is based on a sequential C code for the vessel detection. This

is executed on a single core of the Jetson’s Nano ARM CPU and measured at

440 ms. From this point, we developed a custom CUDA accelerated application

taking advantage of the 128 CUDA cores. The mapping of calculations to grids

of thread blocks optimize the scheduling of warps on the 128 CUDA cores. The

shared memory is used to store global data in a thread block and the intermediate

results. The execution time of the CUDA application is 20.3 ms.

The development on the Myriad2 starts with the optimization of the sequential

C code, using efficiently the CMX, DDR and cache memories; this single core

application took 56.27 ms with less than 0.5 W. The parallel Myriad2 code uses

the 12 SHAVES, by dividing the CMX memory between them, minimizing the

required memory of each SHAVE by pipelining the operations of each processor,

the parallel code takes 14.6 ms at 1 W.

The detailed results are presented in Table 4.3. The example FPGA accelerator

achieves the highest performance, regarding execution time, median power con-

sumption but the highest performance per watt among the other two devices. The

Myriad2 is the most power efficient by consuming 1 W, while its performance is

one order of magnitude lower than the FPGA accelerator. The Jetson Nano falls

short in either metric with a consumption of 10 W and execution time in the same

order to Myriad2, but it provides the most developer friendly platform, which is

an advantage leading to short development time and effort. The example FPGA

accelerator has the highest performance per watt, followed by the Myriad2 and at

the last place is the Jetson Nano.

Finally, the benefit of introducing the approach for the image classification on a

single FPGA device, whenever this is feasible, can be shown by the Vessel Detec-

tion Accelerator performance and compared to optimized FPGA CNN accelera-
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tors (Zhang et al., 2015) and also to low cost ones (Solovyev et al., 2018).

Table 4.3: Performance & Power Comparison to Edge Devices

Execution Speed- Power
Time (ms) Up (W)

Jetson Nano CPU 440 - 10
Jetson Nano GPU 20.3 21.7 10
Myriad2 1 SHAVE 56.27 7.8 0.5
Myriad2 12 SHAVE 14.59 30.1 1
FPGA Accelerator 0.687 640.5 5

4.4.5.3 Comparison to Other FPGA Accelerators

This subsection aims to provide more context to the proposed approach by show-

casing where the proposed accelerator stands in the field of FPGA accelerators in

the literature. A straightforward comparison though of the resulting accelerator to

FPGA-based CNN accelerators is a challenging task (Zhang et al., 2015) because:

a) The same metrics between different FPGA accelerators may not be suitable for

direct comparisons due to different FPGA platforms, benchmarking methodolo-

gies, etc.

b) While the majority of related works focus on accelerators for well-known CNN

models, this work proposes a design approach that includes guidelines for de-

signing CNN models from scratch, resulting in a custom model for the Vessel

Detection application.

c) This work focuses on accelerator designs for shallow CNNs suitable for binary

and low feature space classification tasks while most works in the literature study

complex and larger CNN models and result in substantially different architectures.

Regarding these architectural differences, the proposed streamline architectures in

this work use contiguous modules for each layer of the CNN in a pipeline fashion.

These architectures have particular benefits for our target applications (described
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in section 4.3.4) and are further highlighted in the comparisons with other FPGA-

based accelerators and the corresponding analysis below.

Table 4.4: Reporting the Features of Related Results

Zhang et al., B. Liu et al., Rapuano et al., Example
2015 2019 2021 Accelerator

Precision fl. point fl. point fixed-point fixed-point
32 bits 32 bits 16 bits 17 bits

Frequency 100 100 156 270
(MHz)
FPGA Xilinx Virtex Xilinx Zynq Xilinx Zynq Xilinx Virtex

VC707 7100 ZCU106 VC707
CNN Size 1.33 N/A N/A 18.122

GFLOP MMAC
Performance 61.62 17.11 N/A 52.80
(GOP/s)
Power 18.61 4.083 3.4 5.001
(Watt)
Perf./Watt 3.31 4.19 N/A 10.56
(GOP/s/Watt)
DSPs 2240 1926 1175 843
DSP Efficiency 0.027 0.008 N/A 0.062
(GOP/s/DSP)

Taking into account the aforementioned considerations, Table 4.4 presents no-

table works on FPGA-based CNN accelerators, their most important features and

the corresponding results metrics. Note that the example accelerator achieves the

highest operating frequency of 270 MHz and this advantage is due to the custom

VHDL design of the proposed approach especially when compared to the 100

MHz of the HLS generated designs of (Zhang et al., 2015) and (B. Liu et al.,

2019). Moreover, the advantage of the streamline architecture as well as the uti-

lization of only the on-chip memory is observed when compared to the 156 MHz

of the Single Processing Unit VHDL design of (Rapuano et al., 2021).
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Regarding the performance, the accelerator of (Zhang et al., 2015), targeting a

much larger CNN model, exhibits a slightly larger performance of 61.62 GOP/s

compared to the 52.80 GOP/s of the example accelerator. However, considering

that both use the same FPGA device, the current work achieves this performance

by utilizing only 843 DSPs, compared to the 2240 DSPs of (Zhang et al., 2015)

and hence, it results in a significantly higher DSP efficiency of 0.062 GOP/s/DSP.

The reason for this improvement in hardware efficiency is the proposed mapping

methodology that produces a streamline architecture with multiple layers operat-

ing at the same time with extensive pipelining, in contrast to the systolic array

architecture implementing a single layer at a time (Zhang et al., 2015).

Considering power consumption, the authors of (Rapuano et al., 2021) report 3.4

Watt while our example accelerator consumes 5.001 Watt. However, in that work

there is no report of several features of the design that play a role in power con-

sumption such as CNN size and performance. The accelerator in (B. Liu et al.,

2019) reports power consumption of 4.083 Watt but achieves lower performance

per Watt compared to the example accelerator. Finally, the power measurements

in (Zhang et al., 2015) follow a different methodology by measuring the power

consumption of the entire FPGA board rather than on-chip power consumption

that we report and thus their measurement is not suitable for direct comparisons.
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5 | Conclusions and Future Work

The current thesis presented a VOQs architecture, which is efficient with respect

to latency and hardware resources and it supports a ToR switch that is adaptable to

any data center network operating under the TDMA scheme. The most notewor-

thy novelty of the proposed VOQs architecture is the efficient use of a single large

shared buffer, the performance of which is fully exploited. The VOQ organization

is based on the notion of Active Destination Queues that lead to maximize the uti-

lization of the shared buffer and reduces significantly the required number of the

Active Destination Queues to the number of the connections that are active during

a narrow time window. The control of the Active Destination Queues is efficient

due to the minimum latency that it induces to the operation of the ToR switch.

The proposed architecture is scalable with respect to the number (k) of the Active

Destination Queues, the scale of the data center network (number of destinations),

the shared buffer size and the Ethernet protocol (Ethernet type/Frame size).

Moreover, in this thesis we presented a management tool for the Agent of the

Nephele data center. The advantage of creating and using the proposed manage-

ment tool is that the data center designers and engineers can create their own

schedule as the tool’s GUI users and then transfer that schedule to each data plane

ToR switch. The user can control graphically in real time the transmission of

Nephele frames originating at the ToR switch to the other Nephele ToRs in the

data center network. The management tool can be of even further use if it will be

extended to create the scheduling tables of a PoD switch in the Nephele network.

Furthermore, in this thesis is presented a design approach for FPGA accelerators

for image classification CNNs with limited feature space targeting the data center,

edge, mobile and on-board satellite computing applications. The objective of this
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work is to achieve real-time performance by placing all the inference task com-

putations and memory within a single FPGA device. The benefits of the resulting

architecture are the low power consumption, the higher operating frequency and

the improved resources utilization. These advantages are shown by an Example

FPGA accelerator for the Vessel Detection that compares favorably to the perfor-

mance of notable edge and low power processors. The benefit of introducing the

approach for the image classification on a single FPGA device, whenever this is

feasible, can be shown by the Example Accelerator’s performance and compared

to optimized FPGA CNN accelerators and also to low cost ones.

Beyond any doubt, the results of the current thesis provide strong foundation for

future work. First, the area of future work considers the use of machine learn-

ing techniques in data center switches that utilize VOQs, to provide Quality of

Service (QoS) (L. Wang et al., 2018). The classification of the flow of data at

switch level between mice flows, which are data flows small in size with high oc-

currence frequency and elephant flows, which appear sparsely but contain large

amount of data, will enable the dynamic management of the VOQs of the data

center switch in real-time. Second, the state of the art network traffic classifica-

tion techniques are based on deep learning to extract the features of the data traffic

(Abbasi, Shahraki, & Taherkordi, 2021). More specifically, supervised machine

learning like the CNNs (Lim et al., 2019), (P. Wang et al., 2018), the recursive

neural networks (RNNs) (Lopez-Martin, Carro, Sanchez-Esguevillas, & Lloret,

2017) and the recursive Long Short-Term Memory (LSTM) neural networks are

used for the classification of traffic depending on its characteristics/features (Lee,

Xie, Ngoduy, & Keyvan-Ekbatani, 2019). Thus, the final objective of the future

work is to utilize the CNN Design Approach to enable on-chip traffic/flow classifi-

cation for the efficient real-time management of the VOQs in data center network

switches to support the QoS.
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