
Efficient Design Techniques of Switches for

Optical Networks and Data Centers

Angelos Kyriakos

Physics Department

School of Science

National and Kapodistrian University of Athens

Dionysios Reisis

Supervisors: Hector Nistazakis

Anna Tzanakaki

A thesis presented for the degree of

Doctor of Philosophy

Athens 2023

Efficient Design Techniques of Switches for
Optical Networks and Data Centers

Τεχνικές Αποδοτικής Σχεδίασης Μεταγωγών

Οπτικών Δικτύων και Κέντρων Δεδομένων

Angelos Kyriakos
Physics Department

School of Science

National and Kapodistrian University of Athens

Dissertation Committee:

Dionysios Reisis 1, Prof. Hector Nistazakis1, Prof.

Anna Tzanakaki1, Assoc.Prof. Dimitrios Soudris2, Prof.

Antonis Paschalis1, Prof. George Tombras1, Prof.

Markos Anastasopoulos1, Assoc.Prof.

The research work was supported in part by the

Hellenic Foundation for Research and

Innovation (HFRI) Fellowship Number: 29

1NKUA
2NTUA

Copyright © 2023 by Angelos Kyriakos

All Rights Reserved

Acknowledgements

I would like to express my sincere gratitude to my professor and supervisor Diony-

sios Reisis for his invaluable advice, patience and support during my PhD study.

Additionally, this endeavor would not have been possible without the generous

support from the Hellenic Foundation of Research & Innovation, who founded in

part my research. I would also like to thank all the members of the Digital Sys-

tems Team of the Physics Department for the successful collaboration. Lastly, I’d

like to express my appreciation to my parents, without their tremendous under-

standing and encouragement in the past few years, it would be impossible for me

to complete my studies.

Abstract

The latest design approach for Data Centers follows the direction of exploiting optical

switching to interconnect Top-of-Rack (ToR) switches that serve thousands of data stor-

ing and computing devices. Optical switching provided the means for the development

of Data Centers with high throughput interconnection networks. A significant contribu-

tion to the advanced optical Data Centers designs is the Nephele architecture that em-

ploys optical data planes, optical Points of Delivery (PoD) switches and ToR switches

equipped with 10 Gbps connections to the PoDs and the servers. Nephele follows the

Software Defined Network (SDN) paradigm based on the OpenFlow protocol and it em-

ploys an Agent communicating the protocol commands to the data plane. A ToR’s usual

function is the Virtual Output Queues (VOQs), which is the prevalent solution for the

head-of-line blocking problem of the Data Center switches. An effective VOQs archi-

tecture improves the Data Center’s performance by reducing the frames communication

latency and it is efficient with respect to the implementation cost. The current thesis

introduces a VOQs architecture for the Data Center’s ToR switches that function with

Time Division Multiple Access (TDMA). The proposed VOQs architecture contains a

bounded number of queues at each input port supporting the active destinations and

forwarding the input Ethernet frames to a shared memory buffer. An efficient mecha-

nism of low latency grants each queue to an active destination. The VOQs constitutes

a module of a ToR development, which is based on a commercially available Ethernet

switch and two FPGA Xilinx boards, the Virtex VC707 and the Xilinx NetFPGA. The

VOQs architecture’s implementation and validation took place on the NetFPGA board.

Moreover, the current thesis presents a management tool for the control plane’s Agent

of the Data Center. The Graphical User Interface (GUI) of the Agent’s management

tool is utilized to configure the Agent, create commands, perform step operations and

monitor the results and the status. When used as a testing and validation tool, it plays

National and Kapodistrian University of Athens Physics Department

a significant role in the improvement of the Agent’s design as well as in the upgrade

of the entire Data Center’s organization and performance. Furthermore, aiming to im-

prove the Quality of Service (QoS) for diverse applications of the Data Center, recent

works utilize advanced Deep Learning techniques. The plethora of Machine and Deep

Learning applications involve complex processes that impose the need for hardware ac-

celerators to achieve real-time performance. Among these, notable are the Machine

Learning (ML) tasks using Convolutional Neural Networks (CNNs) for classification

applications.Aiming at contributing to the CNN accelerator solutions, the current thesis

focuses on the design of FPGA Accelerators for CNNs of limited feature space to im-

prove performance, power consumption and resource utilization, merits that ultimately

enable the use of CNNs locally at the Data Center’s ToR switches. The proposed CNN

design approach targets the designs that can utilize the logic and memory resources of

a single FPGA device and benefit numerous applications like the Edge, Mobile, Data

Center and On-board satellite (OBC) Computing. This work exploits the proposed ap-

proach to develop an Example FPGA Accelerator for Vessel Detection, on a Xilinx

Virtex 7 XC7VX485T FPGA device. The resulting architecture achieves an operating

frequency of 270 MHz, while consuming 5 watts, it validates the approach.

Keywords:FPGAs - Data Centers - Virtual Output Queues -GUI- CNN - Parallel Processing

ii

Περίληψη

Η σύγχρονη σχεδίαση των Κέντρων Δεδομένων εκμεταλλεύεται τις δυνατότητες που

προσφέρει η οπτική μεταγωγή με στόχο την διασύνδεση των μεταγωγών ικριώματος

μεταξύ τους, οι οποίοι εξυπηρετούν χιλιάδες συσκευές αποθήκευσης και υπολογιστι-

κά συστήματα. Οι καινοτομίες στον τομέα τον οπτικών επικοινωνιών και της οπτικής

μεταγωγής συνέβαλλαν σημαντικά στην ανάπτυξη των Κέντρων Δεδομένων με υψη-

λής διεκπεραιωτικότητας δίκτυα διασύνδεσης. Σημαντική συνεισφορά στα προηγμένα

οπτικά Κέντρα Δεδομένων παρουσιάζει η αρχιτεκτονική Nephele, η οποία χρησιμο-

ποιεί οπτικά επίπεδα δεδομένων, οπτικούς μεταγωγούς στα Σημεία Παράδοσης και

μεταγωγούς Ικριώματος με δυνατότητα διασύνδεσης της τάξης των 10 Gpbs μεταξύ

των Σημείων Παράδοσης και των εξυπηρετητών. Η αρχιτεκτονική Nephele ακολουθεί

την Δικτύωση Βασισμένη σε Λογισμικό, χρησιμοποιεί το πρωτόκολλο OpenFlow και

στηρίζεται σε έναν Πράκτορα Λογισμικού, ο οποίος υλοποιεί την μεταφορά των εντο-

λών του πρωτοκόλλου στους μεταγωγούς του επιπέδου δεδομένων. ΄Ενας μεταγωγός

Ικριώματος καλείται συνήθως να υποστηρίζει την λειτουργία των Εικονικών Ουρών

Εξόδου, οι οποίες αποτελούν την επικρατέστερη λύση στο πρόβλημα του αποκλει-

σμού μετάδοσης πακέτων που προέρχονται από την ίδια είσοδο σε πολλαπλές εξόδους

του μεταγωγού. Μία αποτελεσματική αρχιτεκτονική Εικονικών Ουρών Εξόδου βελτι-

ώνει την επίδοση του Κέντρου Δεδομένων μειώνοντας την λανθάνουσα καθυστέρη-

ση της επικοινωνίας πλαισίων δεδομένων και ειναι αποδοτική όσον αφορά το κόστος

υλοποίησης. Η συγκεκριμένη διατριβή εισάγει μία αρχιτεκτονική Εικονικών Ουρών

Εξόδου για μεταγωγούς Ικριώματος Κέντρων Δεδομένων τα οποία λειτουργούν σύμ-

φωνα με την μέθοδο πολλαπλής πρόσβασης διαίρεσης χρόνου. Η προτεινόμενη αρχι-

τεκτονική Εικονικών Ουρών Εξόδου περιλαμβάνει έναν περιορισμένο αριθμό ουρών

σε κάθε πόρτα εισόδου που υποστηρίζουν τους ενεργούς προορισμούς και αποθηκεύ-

ουν προσωρινά τα πακέτα Ethernet σε δυναμική μνήμη τυχαίας προσπέλασης. ΄Ενας

National and Kapodistrian University of Athens Physics Department

αποδοτικός μηχανισμός χαμηλής λανθάνουσας καθυστέρησης αντιστοιχεί κάθε ου-

ρά σε έναν ενεργό προορισμό. Οι Εικονικές Ουρές Εξόδου αποτελούν ένα δομικό

στοιχείο του μεταγωγού Ικριώματος, ο οποίος βασίζεται σε ένα εμπορικά διαθέσι-

μο μεταγωγό Ethernet και σε δύο κάρτες Xilinx FPGA , την Virtex VC707 και την

NetFPGA. Η αρχιτεκτονική των Εικονικών Ουρών Εξόδου υλοποιήθηκε και επαλη-

θεύτηκε μέσω δοκιμών στην κάρτα NetFPGA. Επιπλέον, η συγκεκριμένη διατριβή

παρουσιάζει ένα εργαλείο διαχείρισης για τον Πράκτορα Λογισμικού του Κέντρου

Δεδομένων. Η Γραφική Διεπαφή Χρήστη του εργαλείου διαχείρισης του Πράκτορα

Λογισμικού χρησιμοποιείται για την διαμόρφωση του Πράκτορα Λογισμικού, την δη-

μιουργία εντολών, την εκτέλεση λειτουργιών σε βήματα και την παρακολούθηση των

αποτελεσμάτων και της κατάστασης των μεταγωγών. Χρησιμοποιούμενο ως εργαλείο

δοκιμών και επαλήθευσης, διαδραματίζει ένα σημαντικό ρόλο στην βελτίωση της σχε-

δίασης του Πράκτορα Λογισμικού καθώς επίσης και στην αναβάθμιση ολόκληρης της

οργάνωσης του Κέντρου Δεδομένων και των επιδόσεων του. Επιπρόσθετα, με στόχο

την Διασφάλιση της Ποιότητας Υπηρεσιών για τις ποικίλες εφαρμογές των Κέντρων

Δεδομένων πρόσφατες έρευνες αξιοποιούν σύγχρονες τεχνικές Βαθιάς Μάθησης. Η

πληθώρα από εφαρμογές Μηχανικής και Βαθιάς Μάθησης περιλαμβάνουν πολύπλοκες

διεργασίες που επιβάλλουν την ανάγκη των Επιταχυντών Υλικού για την εκτέλεσή

τους σε πραγματικό χρόνο. Μεταξύ αυτόν, αξιοσημείωτα είναι τα Συνελικτικά Νευ-

ρωνικά Δίκτυα για εφαρμογές κατηγοριοποίησης. Με στόχο την συνεισφορά στον

τομέα των Επιταχυντών Υλικού Συνελικτικών Νευρωνικών Δικτύων, η παρούσα δια-

τριβή επικεντρώνεται σε νευρωνικά δίκτυα περιορισμένου αριθμού χαρακτηριστικών

για να βελτιώσει τις επιδόσεις, την κατανάλωση ενέργειας και την αξιοποίηση των

πόρων, στοιχεία που τελικά θα δώσουν την δυνατότητα για την χρήση τους τοπικά

στους μεταγωγούς ενός Κέντρου Δεδομένων. Η προτεινόμενη σχεδιαστική προ-

σέγγιση Συνελικτικών Νευρωνικών Δικτύων στοχεύει στην αξιοποίηση των πόρων

λογικής και μνήμης ενός FPGA, και ωφελεί πολυάριθμες εφαρμογές όπως Αποκε-

ii

National and Kapodistrian University of Athens Physics Department

ντρωμένες και Φορητές εφαρμογές, Κέντρα Δεδομένων και Δορυφορικές εφαρμογές.

Η συγκεκριμένη διατριβή εκμεταλλεύεται την προτεινόμενη σχεδιαστική προσέγγι-

ση, ώστε να αναπτύξει ένα Παράδειγμα Επιταχυντή για Αναγνώριση Πλοίων, στην

κάρτα Xilinx Virtex 7 XC7VX485T FPGA.Η παραχθείσα αρχιτεκτονική επιτυγχάνει

συχνότητα λειτουργίας 270 MHz , καταναλώνοντας 5 watt επαληθεύοντας την σχε-

διαστική προσέγγιση.

Λέξεις-κλειδιά:FPGAs - Κέντρα Δεδομένων - Εικονικές Ουρές Εξόδου - Γραφική Διεπαφή

Χρήστη - Συνελικτικά Νευρωνικά Δίκτυα - Παράλληλη Επεξεργασία

iii

Table of Contents

1 Introduction 1

1.1 Thesis Outline . 5

2 Virtual Output Queues 6

2.1 Introduction . 6

2.2 Background on the Nephele Data Center 6

2.3 The Architecture of the Top-of-Rack Switch 9

2.4 Virtual Output Queues . 12

2.5 FPGA Implementation Details 21

3 Tools for Data Center Control 22

3.1 Introduction . 22

3.2 Background on Nephele’s Data Center Control 23

3.3 The Management Tool of the Agent 26

3.3.1 The GUI Architecture 26

3.3.2 Usability of the Agent’s Management Tool 31

3.3.3 Back-End of the Agent’s Management Tool 33

4 Neural Networks on FPGA 36

4.1 Introduction . 36

4.2 Background on CNN FPGA Accelerators 37

4.3 CNN Design Approach . 39

4.3.1 CNN Design Space Exploration 39

4.3.2 Bit-Accurate Model Development 40

4.3.3 VHDL Blocks . 41

4.3.3.1 Input Block 41

i

4.3.3.2 Convolution Block 42

4.3.3.3 Pooling Block 43

4.3.3.4 Vector Multiplier 44

4.3.3.5 ReLU and Output Block 45

4.3.4 Methodology for Mapping the CNN on the FPGA 45

4.4 Vessel Detection FPGA Accelerator Example 49

4.4.1 Background on Vessel Detection 50

4.4.2 Model Architecture and Training 52

4.4.3 Bit-Accurate Model (BAM) 53

4.4.4 The Example CNN FPGA Accelerator 54

4.4.5 Vessel Detection CNN FPGA Accelerator Results & Com-

parison . 58

4.4.5.1 FPGA Implementation Results 58

4.4.5.2 Comparison to Edge Devices and Low Power

Processors . 60

4.4.5.3 Comparison to Other FPGA Accelerators 62

5 Conclusions and Future Work 65

Bibliography 67

Appendix A Publications 79

ii

List of Figures

2.1 The Nephele Data Center Network Architecture 8

2.2 The Nephele Top-of-Rack (ToR) Switch Architecture Overview . 10

2.3 VOQs Controller Architecture Overview 14

2.4 Memory Map Organization while Buffering 19

2.5 Memory Map Organization Concurrent Write & Read Operations 20

3.1 Nephele SDN Control Plane . 25

3.2 The Format of the Scheduling Table 26

3.3 The GUI Main Scene . 28

3.4 Effect of clicking the ToR . 30

3.5 Pop-up Window with the Values sent to FPGA 31

3.6 Output of the Logic Analyzer . 31

3.7 Nephele Data Plane Development 32

3.8 Live Demo of the Management Tool 34

4.1 Input Block Architecture . 42

4.2 Convolution Block Architecture 43

4.3 Pooling Block Architecture . 44

4.4 Output Block Architecture . 46

4.5 Model Architecture . 54

4.6 FPGA Architecture of the Input Layer, First Convolution & Pool-

ing Layers and the Second Input Layer. 55

4.7 FPGA Architecture of the Second Convolution & Pooling Layers,

Fully Connected Layer and Output Layer. 58

4.8 Power Utilization . 60

iii

List of Tables

2.1 Resource Utilization of VOQs Controller 21

4.1 Resource Utilization . 59

4.2 Performance Comparison to CPU & GPU 59

4.3 Performance & Power Comparison to Edge Devices 62

4.4 Reporting the Features of Related Results 63

iv

List of Abbreviations

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

AXI Advanced eXtensible Interface

BAM Bit-accurate Model

BRAM Block Random Access Memory

CMX Connection Matrix

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma Separated Values

CUDA Compute Unified Device Architecture

DDR Double Data Rate

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

FF Flip-Flop

FIFO First-In First-Out

FPGA Field-programmable Gate Array

FSM Finite-State Machine

GFLOPS Giga Floating Point Operations Per Second

v

National and Kapodistrian University of Athens Physics Department

GOPS Giga Operations Per Second

GPU Graphics Processing Unit

GTX Giga Texel Shader

GUI Graphical User Interface

HLS High-level Synthesis

IP Intellectual Property

IT Information Technology

JVM Java Virtual Machine

LSTM Long Short-Term Memory

LUT Lookup Table

LUTRAM Lookup Table Random Access Memory

MAC Media Access Control

MIG Memory Interface Generator

ML Machine Learning

OBC On-board Computing

ONF Open Networking Foundation

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PCS Physical Coding Sublayer

PMA Physical Medium Attachment

vi

National and Kapodistrian University of Athens Physics Department

PoD Point of Delivery

QoS Quality of Service

RAM Random Access Memory

R-CNN Region-based CNN

ReLU Rectified Linear Unit

RGB Red Green Blue

RIFFA Reusable Integration Framework for FPGA Accelerators

RNN Recursive Neural Network

ROM Read-Only Memory

SDN Software Define Networking

SHAVE Streaming Hybrid Architecture Vector Engine

SRAM Static Random Access Memory

SSD Single Shot MultiBox Detector

TDMA Time Division Multiple Access

ToR Top of Rack

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VLAN Virtual Local Area Network

VM Virtual Machine

VOQ Virtual Output Queue

WDM Wavelength Division Multiplexing

vii

National and Kapodistrian University of Athens Physics Department

YOLO You Only Look Once

viii

1 | Introduction

The ongoing research and innovation in the area of telecommunication networks

has enabled the development of data centers, comprising of very large numbers

of interconnected servers. The widespread availability of cloud applications to

billions of users and the emergence of software-, platform- and infrastructure-as-

a-service models led to the reliance on data centers. As traffic within a data cen-

ter (east-west) is higher than incoming/outgoing traffic (Cisco, 2014-2019), data

center’s interconnection networks play a crucial role in its performance. State-

of-the-art data center networks are based on electronic switches connected in

fat-tree topologies using optical fibers, with electro-opto-electrical transforma-

tion at each hop (Al-Fares, Loukissas, & Vahdat, 2008). However, fat-trees tend

to under-utilize resources, require a large number of cables and switches, suffer

from poor scalability and upgradability, and they result in very high energy con-

sumption (Benson, Akella, & Maltz, 2010), (Roy, Zeng, Bagga, Porter, & Sno-

eren, 2015). The introduction of optical switching in data centers plays a key

role in solving these shortcomings. Many recent works proposed hybrid electri-

cal/optical switched data center networks (Farrington et al., 2010), (G. Wang et

al., 2010), (Singla, Singh, Ramachandran, Xu, & Zhang, 2010), (Saridis et al.,

2016), (Kachris & Tomkos, 2012), (Bakopoulos et al., 2018). Optical switches

are mostly used in telecom networks as circuit switches. They passively redirect

light from any port to another (full cross-bar), but have high reconfiguration times

(tens of ms for high radix and tens of µs for low radix switches), posing barriers

to their applicability in data centers.

The significant increase in the available throughput in optical transmission sup-

ports the development of data center networks, optical transceivers achieve through-

put in the order of 10 Gbps and state of the art solutions aim at 100 Gbps (Zilberman,

1

National and Kapodistrian University of Athens Physics Department

Audzevich, Covington, & Moore, 2014). The design of hybrid data center nodes

that operate in the electrical domain aim to support the high throughput optical

interconnection and they have to sustain the same level of throughput in their

electrical and computational systems. Moreover, the design has to be efficient

regarding the implementation cost and the power consumption. Furthermore, all

aforementioned challenges are proportional to the size of the data center network

(Vahdat et al., 2010), (Han et al., 2013), thus the provided solutions must present

high scalability, in order to be suitable for the constantly growing in size data cen-

ters (Cisco, 2014-2019). The current thesis focuses in the study and development

of new techniques for the design and implementation of switches in the electrical

domain, utilized in state of the art optical interconnection data center networks.

First, the use of optical switches in data center networks introduces various chal-

lenges in the design of the data center switches, which has to compromise between

their size and the reconfiguration speed and also be able to scale for large data cen-

ter networks without increased cost. Top-of-Rack (ToR) switches must accommo-

date the incoming traffic of Ethernet Frames originating at the servers of the data

center to packets suitable to be transmitted through the optical data center net-

work, adhering to the scheduling of the central data center controller (H. Liu et al.,

2013), (Moor, 2013), (Patronas, Kyriakos, & Reisis, 2016). Moreover, data center

nodes have to internally minimize blocking probability, transmission latency and

eliminate the head of line blocking, packets originating from the same input port

destined to multiple output ports can be held up in a queue by the first packet. The

model of the Virtual Output Queues (VOQs) is the most prevalent solution to the

head of line blocking (Yébenes, Maglione-Mathey, Escudero-Sahuquillo, García,

& Quiles, 2016) however, the implementation is a challenge in large scale data

centers because of the need of large shared memory buffers, usually realized in

external Dynamic Random Access Memory (DRAM).

2

National and Kapodistrian University of Athens Physics Department

Second, hybrid data center networks typically use centralized control following

the Software Defined Network (SDN) paradigm (Christodoulopoulos, Lugones,

Katrinis, Ruffini, & O’Mahony, 2015), (Saridis et al., 2016), (Bakopoulos et

al., 2018). The working time is divided in time slots according to the method

of Time Division Multiple Access (TDMA) (Tokas et al., 2016), (Vattikonda,

Porter, Vahdat, & Snoeren, 2012). The control plane is based on a Central Con-

troller/Scheduler necessary for the scheduling of the data center network operation

with the following steps. First, it gathers the status information of the traffic from

every data center switch second, it computes the allocation of the resources/time-

slots for the next scheduling period, and third it configures the switches. The

distribution of the schedule has to be synchronized and executed as fast as possi-

ble, so that the remaining time between the scheduling periods can be allocated to

the computation of the schedule, a very challenging task to be solved in real-time.

A software Agent of the data center supervises the execution of the schedule and it

acts as a bridge between the Central SDN Controller and the data center switches.

The current thesis also considers the design and implementation of Convolutional

Neural Networks for classification applications in FPGAs. The Machine and

Deep Learning applications include complicated calculations that require large

amounts of memory and call for the use of FPGA accelerators (Abdelouahab, Pel-

cat, Sérot, & Berry, 2018), in order to achieve real-time performance. The goal

of this work is to propose a CNN design approach for the limited feature space

classification tasks that benefit various applications in the Data Center (Lim et al.,

2019), (P. Wang, Ye, Chen, & Qian, 2018), Edge (Choi & Sobelman, 2022), Mo-

bile (Howard et al., 2017) and OBC computing (Rapuano et al., 2021),(Pitonak,

Mucha, Dobis, Javorka, & Marusin, 2022), while utilizing the resources of a single

FPGA device with only on-chip memories, omitting the use of external DRAM.

This fact enables the possible integration of the CNN accelerator in data cen-

3

National and Kapodistrian University of Athens Physics Department

ter switches that use an external DRAM as a buffer for the incoming packets in

VOQs.

The use of High Level Synthesis (HLS) is prevalent in modern CNN FPGA Ac-

celerators mainly due to the short development time and the provided hardware

abstraction (Kim, Grady, Lian, Brothers, & Anderson, 2017), (Solovyev, Kalinin,

Kustov, Telpukhov, & Ruhlov, 2018), (Zhang et al., 2015), (Sankaradas et al.,

2009), (Peemen, Setio, Mesman, & Corporaal, 2013), (B. Liu et al., 2019). Al-

though, the HLS design approach impede the FPGA designers/engineers to de-

velop an efficient FPGA architecture with respect to resource utilization, energy

consumption and the achievable performance (Pelcat, Bourrasset, Maggiani, &

Berry, 2016). Few authors present solutions for CNN application with FPGA

accelerators developed with VHSIC Hardware Description Language (VHDL).

(Rapuano et al., 2021) present an On-board satellite FPGA accelerator for CNN

inference, implemented with VHDL which utilizes a single processing unit with

external DRAM memory. The current thesis focuses on streamline architectures,

developed with VHDL, that implement the contiguous CNN layers in a pipeline

fashion that differs to the implementation of a systolic array. The advantages of

the proposed design is first the avoidance of idle computing time by extensive

pipelining and second the reduced memory resources (Y. Zhao et al., 2019), lead-

ing to the use of only on-chip (FPGA) memory, features that combined improve

resources utilization, reduced latency and power consumption (Sze, Chen, Yang,

& Emer, 2017), (Lamoureux & Luk, 2008).

The proposed CNN design approach is divided into three phases. The first phase

introduces guidelines for the design stage of the CNN with a tool like TensorFlow

(Abadi et al., 2015), adhering to them produces a CNN model that is friendlier to

a hardware implementation, because the resulting CNN model has reduced mem-

ory requirements but keeps the same levels of classification accuracy. The second

4

National and Kapodistrian University of Athens Physics Department

phase transforms the CNN model into a fixed-point Bit-accurate Model (BAM)

performing the same calculations but in an arithmetic representation that can be

efficiently implemented in hardware that does not decrease classification accu-

racy. The third phase utilizes an already developed library of VHDL Blocks, in

order to save developing time, and along with the proposed approach’s mapping

methodology results in a streamline architecture FPGA accelerator with improved

performance, reduced power consumption and resource utilization.

1.1 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 — introduces the study and implementation of the Virtual Output

Queues architecture and its integration in the Top of Rack switch of the

Nephele data center.

Chapter 3 — demonstrates the management tool for the optical intercon-

nected data center Nephele, how is developed, the Graphical User Interface,

its usecases as well as its advantages.

Chapter 4 — presents the CNN design approach for real-time classifica-

tion FPGA accelerators that can be realised in a single FPGA device and it

proves its merits by developing an Example FPGA Accelerator for Vessel

Detection.

Chapter 5 — concludes this thesis and presents the major paths for future

work.

5

2 | Virtual Output Queues

2.1 Introduction

Data centers are comprised of a large number of servers running Virtual Machines

(VMs) and storage resources, which are installed in racks and communicate via

the local data center network. The data center’s performance depends on the avail-

able computing and data storing capacity, the architecture, the features as well as

the performance of the underlying network and the Top-of-Rack (ToR) switches

connecting the servers to the data center. A key factor in improving the perfor-

mance of the ToR switches is the solution of the head-of-line blocking issue that

is most often settled by embedding Virtual Output Queues architectures (Yébenes

et al., 2016), (Kyriakos, Patronas, Tzimas, Kitsakis, & Reisis, 2017).

The motivation for designing the proposed VOQs architecture came by the re-

quirements of the ToR switch included in the Nephele project but it can serve

any network, that receives an input of Ethernet frames and particularly those net-

works which operate under TDMA scheme, are software defined and their nodes

may have to overcome the head-of-line blocking. The following section briefly

highlights the Nephele data center architecture then section 2.3 introduces the ar-

chitecture of the Nephele ToR switch. Section 2.4 presents the organization of

the VOQs. Finally, Section 2.5 presents the details of the VOQs Controller FPGA

implementation.

2.2 Background on the Nephele Data Center

The performance of the data center networks depends on their interconnection

scheme, which usually adhered to the multi-layer approach, and they were based

6

National and Kapodistrian University of Athens Physics Department

on the Fat Tree or the folded Clos architectural schemes (Al-Fares et al., 2008),

(Greenberg et al., 2009), (Farrington, Rubow, & Vahdat, 2009). These approaches

nevertheless, are not efficiently scalable and also, in the case of data centers with

a large number of nodes, lead to the use of a considerable number of switches,

cables and transceivers, which increase power consumption.

In an effort to overcome these deficiencies researchers and engineers have intro-

duced data center interconnections including an optical circuit switching as well

as an electrical packet switching networks (Bazzaz et al., 2011), (Farrington et al.,

2010), (Tokas et al., 2016). A notable design is the all optical data center proposed

by the Nephele project (Bakopoulos et al., 2018).

The Nephele data center involves a slotted hybrid electrical/optical interconnec-

tion network that is advantageous with respect to the dynamic allocation of re-

sources. The network includes PoDs of racks that communicate with the so-called

innovation zones, which are the devices dedicated for the disaggregated comput-

ing, storage and memory resources. The innovation zones are connected to ToR

switches (Patronas et al., 2016). Each innovation zone can communicate to other

innovation zones through an all optical or an electro-optical channel.

The Nephele design adopts the Time Division Multiple Access (TDMA) mode

of operation in the optical data center network. Consequently, the transmissions

are completed within fixed time segments, namely the slots; each slot is assigned

for sending a TDMA frame on a specific path that connects a transmitter node

to a receiver node. The Nephele data center network is a Software Defined Net-

work (SDN) and all the arrangements regarding its operation are dictated by a

central data center controller. The controller is responsible for generating the

TDMA Schedule, which defines which nodes communicate during each time-slot

(Christodoulopoulos, Kontodimas, Yiannopoulos, & Varvarigos, 2016). The first

7

National and Kapodistrian University of Athens Physics Department

version of the scalable, high capacity Nephele network is able to accommodate up

to 1600 Top-of-Rack (ToR) switches and each ToR uses 20 links to connect to the

data center optical network.

Figure 2.1: The Nephele Data Center Network Architecture

The overall system topology of the data center network is depicted in Figure 2.1.

The network includes I (I ≤ 20) parallel planes, each consisting of I (I ≤ 20)

unidirectional optical rings. The rings interconnect P (P ≤ 20) Points of Delivery

(PoDs). A PoD comprises of I Wavelength Selective Switches (WSS) to connect

the I rings, and is connected to W (W ≤ 80) ToRs, through W pod-switches, one

for each ToR switch. Each ToR switch has I north ports, such that the ith north

port is directed to the ith PoD of each plane (each port is connected to a different

PoD switch). The south ports of the ToR switch connect the servers, through

network interface cards (NICs), with the data center network. The performance of

8

National and Kapodistrian University of Athens Physics Department

the ToR switch contributes significantly to the operation of the entire data center

and it depends on the utilization of its resources as well as on the efficiency of

the algorithms and the techniques that it employs. Among the techniques that are

critical with respect to the ToR’s performance is the handling of the Virtual Output

Queues (VOQs). VOQs is an attractive technique for overcoming the head-of-line

blocking cases (Yébenes et al., 2016).

2.3 The Architecture of the Top-of-Rack Switch

The ToR design is a switch and its ports are divided in two sets: a) the south

ports, which are 16 10GEthernet ports connecting the ToR with the servers b) the

corresponding 16 10Gbps north ports that are connected to the optical data center

network. The ToR switch consists of three fundamental blocks. The first is an Eth-

ernet 16×16 switch having all ports as 10GEthernet (Mellanox-Technologies, May

2013). The second is the North Extension. It is implemented on an FPGA and its

role is: a) the formation of TDMA frames that consist of Ethernet frames and

b) to implement the interface of the ToR to the network’s optical (PoD) switches

by using its north ports. The third block is the South Extension. This FPGA

based block connects the servers to the ToR. It has increased complexity and its

functionality includes: a) the execution of the scheduling commands, b) to be re-

sponsible for the communication of the ToR to the data center’s control plane, c)

to implement the VOQs design and d) to control all the functions of the ToR. The

prototype Nephele ToR switch includes a commercially available Ethernet switch

(Mellanox SX1024 (Mellanox-Technologies, May 2013)) and two Xilinx boards:

one Virtex VC707 and one NetFPGA SUME (Zilberman et al., 2014). The im-

plementation and validation of the VOQs architecture took place on the NetFPGA

board. This section briefly highlights the architecture of the Nephele ToR switch

9

National and Kapodistrian University of Athens Physics Department

Figure 2.2: The Nephele Top-of-Rack (ToR) Switch Architecture Overview

Figure 2.2 presents the ToR switch’s architecture as well as the functional blocks

dedicated to the upstream traffic. In the part of the South Extension the figure

shows the LUT MAC-ID that assigns a tag to each incoming Ethernet frame.

These 11 bit tags will be used within the ToR for addressing the Ethernet frames

and saving on the required resources for address bits with respect to the bits re-

quired for the MAC addresses of the destinations of the incoming frames. The

next action is to forward the Ethernet frames to the VOQs/Shared Memory block.

This block stores the Ethernet frames in pages. Each page includes a large num-

ber of Ethernet frames and its length matches the length of a TDMA frame (also

called Nephele frame). All the pages that belong to a destination are arranged in a

linked list. The pointers required for keeping the information of each destination’s

linked list are managed by the Memory Map block.

The Command Interpreter block (Figure 2.2) is responsible for the translation of

the SDN controller commands: it provides to this ToR the destination ToR, which

10

National and Kapodistrian University of Athens Physics Department

has to receive data in the upcoming TDMA slot. The ToR complies to this com-

mand and it retrieves the first page with Ethernet frames that belongs to the linked

list associated to the commanded destination and sends this page to the Ethernet

switch. There is a Lock mechanism (Figure 2.2) that grants either the storing oper-

ation of the input Ethernet frames to the shared memory or the reading operation

from that memory of the TDMA frames. In more detail, the Lock mechanism

divides the time into small time windows TL. Each TL is dedicated for either

writing to the shared buffer or reading from it. Hence, when the ToR reads from

the shared buffer it will continue buffering in the small size queues the incom-

ing traffic from the servers. The length of the TL is computed at design time to

balance: first, the throughput of the shared buffer, which requires long burst trans-

actions for improved performance and second, the need of the ToR operation for

writing/reading to/from the shared buffer at close time instances.

The role of the Ethernet switch in the upstream direction, is to forward the Ether-

net frames to the North Extension and particularly to the buffer of the correspond-

ing destination’s north port. In that buffer the Ethernet frames formulate the final

TDMA/Nephele frame, to which are also added first, the preamble and second,

a word required for each device synchronization. The Command Interpreter fol-

lows the schedule received from the control plane servers and it specifies (the red

control signal of Figure 2.2) the slot that the ToR will transmit that TDMA frame.

For the downstream direction, the Nephele design mandates the Ethernet switch to

just forward the frame from the north input port to the corresponding south port.

That is, the design complexity of the ToR is mostly related to the upstream path.

The communication of the ToR switch with the control plane is accomplished

through the PCI Express interconnection. The PCI Express interface in the pro-

posed architecture is implemented by the use of the Xilinx IP Core for PCIe

and RIFFA (Reusable Integration Framework for FPGA Accelerators) (Jacobsen,

11

National and Kapodistrian University of Athens Physics Department

Richmond, Hogains, & Kastner, 2015). The RIFFA framework consists of an API

(Application Programming Interface), a driver/kernel module for the host PC and

an IP core for the FPGA, all of which are open-source. The module provided by

RIFFA for the FPGA is designed as an extension to the Xilinx IP core for PCIe,

which handles the physical layer of the PCIe interface. The control of the ToR

switch is presented in the next Chapter, more specifically in subsection 3.3.3, in

which the implementation of the PCIe interface is presented in more detail.

2.4 Virtual Output Queues

This Section presents an efficient VOQ organization regarding the resource uti-

lization and the latency needed to assign the incoming Ethernet Frames to the

queues of matching destinations. The VOQ architecture introduced in this chap-

ter is advantageous due to the following: first, it is efficient with respect to the

required implementation area, because it reduces the resources needed to a sin-

gle shared buffer per output port. This buffer stores all the queues of data that

this output port will transmit. Second, the architecture is efficient with respect to

the utilization of the shared buffer’s bandwidth; this is because it maximizes the

throughput utilization of the buffer’s interface by utilizing for storing and read-

ing a paging organization, with each page containing a large number of Ethernet

frames. Third, the proposed VOQ architecture is scalable, which is an advantage

considering the scalability of the entire data center.

The proposed technique achieves the aforementioned goals based on the following

ideas. The receiving Ethernet Frames with the same destination are collected at

the input of the switch into pages of frames. This operation is accomplished by

using small sized queues positioned at each input Ethernet port. In the proposed

design the number of these small sized queues at the input is bounded by the sum

12

National and Kapodistrian University of Athens Physics Department

of the connections that are: a) serviced by each input Ethernet port and b) active

during a small window of time. The latency is minimized with respect to the time

required to associate each input Ethernet Frame to one of the queues. This is

accomplished by employing a mechanism that maps each small size queue to one

of the active destinations each time an Ethernet Frame arrives at the ToR.

The proposed VOQ design improves the required hardware resources based on

the following concept. During a narrow time window TB, the ToR switch re-

ceives Ethernet frames at its south ports for various destinations in the data center

network, which we define as active destinations. We consider that for all prac-

tical purposes, the number of active destinations, during a narrow time window

TB, has an upper limit, which can be an outcome of statistical measurements of

the network traffic patterns across the data center. The active destinations’ upper

limit is significantly smaller compared to the number of all the possible destina-

tions in the data center. Hence, letting a queue to keep all the incoming Ethernet

frames during TB that have the same active destination and prepare in this queue

a burst to be written to the shared buffer, leads to an architecture that includes a

set of queues with a cardinal number equal to that of the active destinations, while

it still keeps the high throughput at the shared buffer.

Considering the above, the VOQs architecture is comprised of: first, the Shared

Memory (buffer), second the Memory Map depicted in Figure 2.2 and third, the

VOQs controller. The detailed architecture of the VOQs controller is shown in

Figure 2.3: it is a design of the VOQs controller that includes four (4) active

destinations and the corresponding queues, based on a hypothesis that the appli-

cation asks for four active destination and as shown in Figure 2.3 there is one

queue to support each active destination. In order to define the length of the time

window TB we consider the following facts. The design of the shared buffer

employs a Dynamic Random Access Memory (DRAM) that can reach the consid-

13

National and Kapodistrian University of Athens Physics Department

erable throughput of 80 Gbps at its interface; this performance will be feasible if

the entire VOQs architecture can operate with burst transactions for reading and

writing from/to the shared buffer, thus exploiting the DRAM interface, which re-

quires a minimum burst time tmb depending on the DRAM specifications. The

performance of the DRAM organization degrades significantly when the size of

the burst size decreases. We note here that, this performance degradation cannot

be expressed (defined) as a function of the burst size, e.g. proportional. Therefore,

reading and writing from/to a page in the shared buffer (in the linked list assigned

to a destination) must be performed in bursts and each burst has to consist of mul-

tiple Ethernet frames, in the order of Kbytes. Therefore, we need an architecture

of queues able to gather into a single queue all the incoming Ethernet frames that

have the same destination; in that queue, the controller will formulate a burst of

these Ethernet frames. Finally, it will operate in burst mode to store these frames

into the page of the linked list of that destination.

Figure 2.3: VOQs Controller Architecture Overview

14

National and Kapodistrian University of Athens Physics Department

We consider the time window TB and the number of queues for active destinations

k to be calculated by the following reasoning. At a clock cycle T0, given that are

available k queues storing Ethernet frames of k different IPs, there will be Ethernet

frames arriving to at most all of these queues and at the clock cycle Tb that at least

one of these queues has completed a burst, and this queue can write the burst to the

buffer. Therefore, this queue can formulate another burst either for the IP that it

was supporting up to Tb or the queue can be reassigned by the controller to serve

another IP. Thus, in this scenario, the worst case is that we have to keep the k

queues serving their IPs for as long as no queue has completed a burst: assuming

that each queue receives an Ethernet frame in a round robin fashion TB is at most

equal to k × tmb.

According to the above, the efficiency of the VOQs architecture is defined as the

maximization of the utilization of the available resources and the DRAM buffer

throughput. For this purpose, the design has to: a) include k queues for preparing

the bursts, so that each queue prepares a burst that will be stored in an active

destination’s linked list of pages; b) minimize latency and c) minimize the number

of the k queues along with their size. The succeeding paragraphs describe how we

achieve the above goals and they describe in detail the operations of the VOQs

Controller as well as its functional blocks and components.

The ToR switch is connected with 10G Ethernet to the servers through its south

ports. First, the Ethernet Frames that arrive from the servers at the rate of 10G

are buffered in the port queue of the 10G Ethernet module and then are forwarded

and buffered to the two Input Frame Queues (Figure 2.3) in the following way:

we start counting the incoming frames and depending on the arrival sequence the

odd numbered incoming Ethernet Frames are stored in the first Input Frame Queue

(the upper queue on Figure 2.3) and the even Ethernet Frames to the second queue.

This dual queue architecture gives us the necessary time in order to perform in

15

National and Kapodistrian University of Athens Physics Department

real-time the two following operations on the Ethernet Frames: while we store

a frame in one of the Input Frame Queues, we calculate its size and extract its

destination’s IP, which then are stored to two queues of significantly lesser size,

the IP ID queue and the SIZE queue, which are positioned close to each Input

Frame Queue in the design of Figure 2.3.

Each frame’s IP stored in the Input Frame Queues is passed as input (address) to

a LUT, named BRAM in Figure 2.3. The LUT will specify (will give as output)

the id of an Active Destination Queue (on Figure 2.3 we show an example design

with four queues): in the specified Active Destination Queue we will buffer all

the Ethernet Frames with the current active destination IP, in order to form a burst

that it will be stored in the linked list of pages of that destination in the DRAM

buffer. Apart from the id of the Active Destination Queue in that BRAM location

is also stored a flag (0/1). When the flag is equal to “1”, it specifies the case in

which the Active Destination Queue id (stored in the LUT) is granted to the active

destination IP. Alternatively, the case when the flag equals to “0” indicates that the

frame’s destination IP is not yet served by any of the Active Destination Queues

and hence, the controller has to assign an Active Destination Queue to this IP. Now,

we consider the case of an Ethernet frame arriving at the ToR and its IP address

does not correspond to any of the Active Destination Queues. If we have correctly

calculated (during the design of the ToR) the minimum required number of the

Active Destination Queues that it is sufficient to serve the application demands,

the VOQs controller will have an empty Active Destination Queue available for

assignment to a newly arrived Ethernet frame that requests an Active Destination

Queue to buffer the following frames with the same IP destination. All the id

(numbers) of the unused Active Destination Queues are buffered in the queue

named Empty Queues in Figure 2.3. At the same clock cycle that we read from

the BRAM the id of the Active Destination Queue that serves the frame’s IP along

16

National and Kapodistrian University of Athens Physics Department

with the “1/0” (assigned to a queue or not) flag, we also read the first empty

queue id from the Empty Queues. The multiplexer shown at Figure 2.3 bellow the

BRAM is controlled by the flag in order to select: a) the BRAM output when the

flag equals “1” and b) the Empty Queues output if the flag is “0”. In the first case

where we will use the BRAM output, the empty queue id that was just extracted

from Empty Queues will be returned back in the Empty Queues, since it was not

used. The above design minimizes the latency for the assignment of an active

queue to the new destination.

We have to mention that in order to exploit the high throughput of the DRAM

interface, we have to write the Ethernet Frames in the shared buffer as a burst

of contiguous words of a significant length (512 bits in the example implementa-

tion of the proposed architecture). We note here that, in a writing burst of Eth-

ernet frames the last 512-bit word might not be completely filled with Ethernet

frames payload and for completing the burst we add 0xFF as padding. The simple

padding provides the advantage of simplifying the control and it reduces the la-

tency at the cost of the dummy data overhead in many pages in the shared buffer.

This padding overhead becomes larger for small Ethernet frames and it is reduced

significantly in the case of full Ethernet frames. Note here that, when it’s time to

transmit a TDMA frame the shared memory will provide us with a page: we must

be informed regarding the exact number of the useful data in this page in order

to remove the padding. For this purpose, we store in the header of each page the

useful size along with the actual page size, which is the overall sum of the useful

size and the size of the padding stored in the shared buffer.

A small size dual port memory shown in Figure 2.3 as Queue-ID Memory, stores

the IP that it is currently served by each Active Destination Queue. Each address

X of the Queue-ID Memory corresponds to the Active Destination Queue with id

X . The data at that address X of the Queue-ID Memory is the destination’s IP

17

National and Kapodistrian University of Athens Physics Department

that is accommodated by this Active Destination Queue. When it is the first time

that an Ethernet Frame is stored in an empty Active Destination Queue the id of

this queue is used as the address to the Queue-ID Memory, and in that address,

we store the frame’s IP. During the whole time that this Active Destination Queue

serves the IP, the Queue-ID Memory keeps the IP in that address. Only when an

Active Destination Queue is left with all its data forwarded to the shared buffer, we

will: first, erase the contents of the served destination in the BRAM by acquiring

the address (IP) from the Queue-ID Memory and second, write the queue id to

the Empty Queues to refresh the Active Destination Queues that are vacant and

they can be granted to another destination IP. Consequently, the location in the

Queue-ID Memory will be overwritten by the new IP, which will be served by the

corresponding Active Destination Queue.

The proposed design minimizes the time required to perform all the previously

mentioned operations with respect to clock cycles. The architecture can achieve

the time minimization due to the parallelization of the operations and as a result,

the VOQ architecture diminishes the latency of each stage. Consequently, the

Active Destination Queues can be as many as the application dictates as upper

bound. Moreover, the length of each queue doesn’t need to grow beyond the size

of the burst that it is specified by the DRAM controller for reaching its maximum

throughput.

The block called Memory Map stores all the information related to each linked

list in the shared buffer associated to each destination IP. The memory map entries

are shown in Figure 2.4, 2.5 in two working examples. Each entry of the Memory

Map block has the following pointers: one at the address of the first page of the

list noting from what page we are currently reading data to transmit; one to the

last page, required to inform the VOQs that this is the page, which currently stores

all the Ethernet frames for the associated destination; one for the “next to write”

18

National and Kapodistrian University of Athens Physics Department

Figure 2.4: Memory Map Organization while Buffering

address of the last page (writing position in Figure 2.4), one for the “next to read”

address of the first page (reading position in Figure 2.5). Moreover, the Memory

Map entry provides the exact number of useful data in the page: this information

is used to compute the total volume of data of the Ethernet frames with or without

the padding.

The pointers at each Memory Map block location are refreshed during each burst

write/read transaction. Thus, at the beginning of a write/read operation to/from

the DRAM buffer we know the exact number of the data (bytes) that will be writ-

ten/read. We operate the linked list of pages as a queue since we always transmit

the head page of the list. The memory map architecture is able to concurrently

19

National and Kapodistrian University of Athens Physics Department

Figure 2.5: Memory Map Organization Concurrent Write & Read Operations

write and read from the same linked list of pages as shown in Figure 2.5.

A noteworthy advantage of the novel VOQ technique is the scalability of the ar-

chitecture, which can be easily configured to accommodate various numbers of

Active Destination Queues, the size of the DRAM shared buffer and the size of

the Memory Map block. The pointers and the size of the linked list of pages for

each destination are stored in block rams (BRAM) in the FPGA. The required size

of the BRAMs is proportional to: first, the DRAM memory size, and second the

number of destinations in the data center network. In case the size of the map-

ping information is relatively large, hence constraining the implementation of the

Memory Map block with internal BRAM memory, the proposed Memory Map

can be stored on external Static Random Access Memory (SRAM).

20

National and Kapodistrian University of Athens Physics Department

2.5 FPGA Implementation Details

We have realized an example VOQs design with four (4) active destinations (k

= 4 is adequate for most applications in accordance with our TB and k calcula-

tions). The development of the example implementation was made on the NetF-

PGA SUME board using the Xilinx Vivado development tool. The design includes

3 Intellectual Property (IP) hardware Cores from Xilinx: a) 10GbE Subsystem,

which includes the MAC and the 10GbE PCS/PMA b) Integrated Block for PCI

Express c) Memory Interface Generator (MIG) for the shared DRAM buffer. The

NetFPGA board receives the scheduling commands from the host desktop PC,

which is running Linux and communicates with the data center’s controller, which

runs on a different PC in the same local network.

The resources occupied in the NetFPGA SUME for the VOQs Controller are pre-

sented in the Table 1, reported by the Vivado tool. The input small sized queues

are all performing at 156 Mhz clock and use 64 bits word length, in order to

comply with the 10G Ethernet physical layer standard. The Active Destination

Queues and memories alongside of them in our implementation are performing at

200 MHz with 512-word length to match the bus width of the Advanced Micro-

controller Bus Architecture (AMBA) Advanced eXtensible Interface 4 (AXI4) of

the Double Data Rate 3 (DDR3) DRAM controller.

Table 2.1: Resource Utilization of VOQs Controller

Resource Utilization

LUT 2639
LUTRAM 1285
FF 4848
BRAM 62
DSP 50743

21

3 | Tools for Data Center Control

3.1 Introduction

Currently, the integration of Information Technology (IT) activities and applica-

tions takes place in data centers, which also include the necessary devices for com-

munication, high performance computing and data storage. Data centers play an

important role in organizations based on IT services, as they provide the means for

fast responses to business demands, they facilitate the IT operations and their uti-

lization leads to the reduction of the capital expenditures and the operating costs.

Targeting the improvement of data centers, researchers and engineers focus on the

use of optical switching due to the bandwidth capabilities that it provides. A sig-

nificant contribution to this design effort features optical links connected through

optical PoD switches to the ToR switches, SDN with OpenFlow organization, an

Agent connecting the SDN controller and the data plane and an enhanced agent

management tool (Kyriakos, Tsavalos, & Reisis, 2017) , which all integrate in the

Nephele data center (Bakopoulos et al., 2018).

The current Chapter presents a management tool for the Agent of the Nephele’s

data center. The advantage of creating and using the proposed management tool

is that the data center designers and engineers can create their own schedule as the

tool’s GUI users and then transfer that schedule to each data plane ToR switch.

The user can control graphically in real time the transmission of Nephele frames

originating at the ToR switch to the other Nephele ToRs in the data center network.

Moreover, the management tool can be of even further use if it will be extended

to create the scheduling tables of a PoD switch in the Nephele network. The first

Section of the Chapter highlights the Control of the Nephele data center and the

Agent. The second Section presents the Agent’s management tool.

22

National and Kapodistrian University of Athens Physics Department

3.2 Background on Nephele’s Data Center Control

The Nephele is based on a dynamic optical network infrastructure for scale-out,

disaggregated datacenters that leverages optical switching with SDN control and

orchestration to overcome current datacenter limitations. The Nephele design fol-

lows vertical end-to-end development approach extending from the data center

architecture to the overlaying control plane and its interface to the application, in

order to deliver a fully-functional networking solution, extending network virtual-

ization to the optical layer. The Nephele design achieves dynamic reconfiguration

by utilizing the slotted operation of the network based on the Time-Division Mul-

tiple Access (TDMA). Moreover, the SDN control can effectively manage the data

plane elements. The OpenFlow protocol communicates the SDN control’s mes-

sages to the data plane (McKeown et al., 2008). Nephele uses an Agent to realize

the communication between the SDN controller and the data plane. The Agent

includes functions filtering the control plane (SDN controller and the Agent) in-

structions that are transmitted through the OpenFlow messages; the Agent trans-

lates these messages and forwards them to the corresponding ToR switch. Al-

though, the Agent can be classified as a back-end process, there is a need for an

interactive management tool that allows the interaction of the designers and the

future users with the Agent. The need for the above tool appeared in the course

of the data center’s design and implementation phase, it became more emphatic

during the integration and finally the validation and testing phases. Similar inter-

active tools are reported in the literature as important tools for the management,

testing and evaluation of networks (Lin & Geigel, 1997), (Turon, 2005), (Corazza

& Reale, 1992).

Focusing on providing an effective tool mainly for advancing, testing and mon-

itoring the Agent’s functionality and performance (Landi et al., 2017), the cur-

23

National and Kapodistrian University of Athens Physics Department

rent Chapter presents a management tool for the Nephele Agent. The proposed

Agent’s tool is able to access all the information that it is directed to the data plane.

Moreover, it can be used to create the commands for the data plane, monitor the

commands transmission to the devices and also, the corresponding responses of

the devices to the Agent. Furthermore, it provides the ability to request all the in-

formation with respect to the status of the devices. The use of the proposed man-

agement tool contributed significantly to the development of the entire Nephele

data center and consequently the testing phase. Additionally, it benefits the entire

system because it will still be most suitable for effectively monitoring the Agent’s

performance during normal operation and also it provides the means for realizing

scenarios in the cases of demonstrations and presentations (Landi et al., 2017).

The architecture of the Nephele data center is presented in Chapter 2, in this chap-

ter we will elaborate on the control plane of the data center. The Nephele data

center is designed for an operation that includes dynamic and efficient sharing of

the optical resources and a collision free network operation by using Time Divi-

sion Multiple Access (TDMA). The control plane is based on a Software Defined

Network (SDN). The SDN controller is divided in two distinct interfaces, namely

the Northbound Interface and the Southbound Interface. A high-level view of the

Nephele control plane architecture is presented on Figure 3.1.

The Application to Controller Plane Interface defined by ONF (Open Network-

ing Foundation) in the SDN architecture is realized by the Northbound Interface

of the Nephele SDN controller. This interface allows the interaction between the

core services of the Nephele SDN controller and the upper layer network appli-

cations, which implement the logic of the network resource allocation in the data

center. The Nephele’s design follows the approach of an overall centralized archi-

tecture. For this purpose, all the scheduling plans are carried out according to the

algorithms that are performed by the central controller’s Traffic Offline Schedul-

24

National and Kapodistrian University of Athens Physics Department

Figure 3.1: Nephele SDN Control Plane

ing Engine (Christodoulopoulos et al., 2016). Considering the optimization of the

utilization of the entire network the Offline Scheduling Engine is equipped with

mechanisms able to allocate resources of the data center network in the long term.

The data-controller plane interface defined by ONF in the SDN architecture is

realized by the Southbound Interface of the Nephele SDN controller. The com-

monly used in these cases OpenFlow has been chosen as a standardized commu-

nication channel for this interface. It executes two main tasks: to command and

configure the data plane devices via the device specific Agents. A device specific

Agent performs as a proxy for the data plane switching devices. Consequently, the

Agent should have two communication interfaces the Agent-Controller interface

and the Agent-FPGA interface. The Nephele Agent’s is mainly devoted to filter

25

National and Kapodistrian University of Athens Physics Department

the control plane instructions, that are included in the OpenFlow messages. Addi-

tionally, the Agent translates these instructions and then, it forwards them to the

corresponding FPGA via a PCI Express interconnection. The Agent is a back-end

process. It is activated at the beginning of each Nephele scheduling period and

it will communicate the new schedule instructions in order to configure the data

plane switches. The instructions come in the form of scheduling tables; the format

of these scheduling tables is presented by Figure 3.2.

Figure 3.2: The Format of the Scheduling Table

3.3 The Management Tool of the Agent

The present section describes first the graphical user interface (GUI) architecture

of the management tool of the Agent; second, the tool’s usability and third, the

back-end of the management tool.

3.3.1 The GUI Architecture

The Agent’s management tool is implemented by using the JavaFX software plat-

form of the Java programming language; JavaFX consists of a set of graphics and

media packages, which provide the means to the developers for the design, cre-

ation, testing, debugging, and deployment of rich client applications that operate

consistently across diverse platforms. The management tool includes a GUI that

presents to the user a Nephele network of smaller size as an image-map. This

image-map includes clickable areas, which are illustrated graphics created on a

26

National and Kapodistrian University of Athens Physics Department

raster graphics editor and enhanced with interactive attributes. This design has

led to the implementation of a graphic environment, which, considering the in-

teraction of the user with the management tool, ensures both, optimized usability

and user experience, compared to an environment using the standard widgets, pro-

vided by JavaFX.

The user of the management tool sees the data center network, the scheduling

table, an explanatory image and a menu, which are brought to her/him as the

main scene of the GUI. This main scene is shown in Figure 3.3. The smaller scale

network includes four PoDs residing in the network and connected via four WDM

(Wavelength Division Multiplexing) rings. Each of the PoDs includes four PoD

elements; these are divided into the disaggregated rack and the ToR switch.

The GUI includes an explanatory image, that is located over the menu in the right

top corner. The image presents an enlargement of a PoD element in higher reso-

lution and it is augmented with annotations, so that the user is able to understand

what the image portrays.

In order to present the graphic display of the PoD elements three objects of the

ImageView class were stacked in a StackPane object (Johan Vos, 2014). This

design has been implemented as follows: three image layers have been aligned

one over another (depicted by Fig. 3.4), so that they appear as a single solid

object and at the same time the developer can handle each one independently. The

ImageView object is a type of Node object in the JavaFX Scene Graph that is used

for painting a view; the painting is carried out by using data contained in an Image

object. The StackPane is also a type of Node object acting as the layout container

and it contains the ImageView objects. The three ImageView objects include the

images that represent the ToR switch, the disaggregated rack and a visual effect.

In the GUI, the ToR switches are the interactive parts of the management tool: the

27

National and Kapodistrian University of Athens Physics Department

Figure 3.3: The GUI Main Scene

user can select by clicking on them and she/he can create the scheduling table of

the data center. Each ToR is a clickable area and it can be used by the user as

the source and/or the destination in the scheduling table entry. In our case, the

upper left ToR is chosen by default as the host Agent PC scheduling engine. This

is the source ToR and the remaining ToRs are the destinations. The interactive

feature is accomplished by registering an event handler on the ImageView object

that includes the ToR image. An event handler is an implementation of the Even-

tHandler interface. The handle() method of this interface will let the code filling

the entries in the scheduling table to perform if the ToR image is clicked. Upon the

cursor click event, all the necessary code is executed to fill in the required fields

of a scheduling table’s entry. The management tool fills the Destination field with

the identity (id) of the ToR switch where the event occurred. The Timeslot field

28

National and Kapodistrian University of Athens Physics Department

takes the value of the time sequence of the event, which is calculated based on

a counter. The Wavelength field is filled with a value selected from a closed in-

terval of integer values. Finally, the VLAN (Virtual LAN) field entry represents

the identification number that is assigned to the WDM ring, through which the

data transmission will occur. Furthermore, when the ToR is clicked, as depicted

in Figure 3.4, it will trigger the effect displaying that it is the selected ToR. The

effect is represented by a brighter image enclosing the ToR switch. The effect

is set not to be visible at first, it will be set to full opacity if the ToR is selected

and it will return to zero opacity with a two seconds lasting fade transition. The

fade transition is an instance of the FadeTransition class, which is a subclass of

the JavaFX Animation class and it changes the opacity of a node over a given

time. The same effect has been implemented similarly to the WDM rings and it

indicates graphically what WDM ring is chosen based on the VLAN field in the

scheduling table entry.

All the aforementioned elements of the tool’s design let the user to construct the

scheduling table and provide the option of editing it; this operation can be carried

out by the use of the menu. The menu consists of four buttons and inherits its

attributes from the Vbox class, which is a container that sorts its contents into a

single vertical column. The menu buttons were created as a separate class. It is

distinct from the Button class of JavaFX and is created by stacking a TextField

object over a filled Rectangle object. This object’s filling is colored by an in-

stance of the LinearGradient class, in order to apply effects that are suitable to

the entire design of the GUI and preserve the uniformity to the user eye. These

effects are triggered by the events originating from the mouse cursor and their

implementation is based on switching the order of the colors in the gradient fill.

Each time the user clicks the Add menu button she/he will start a new session of

constructing a scheduling table and the source ToR will be automatically selected

29

National and Kapodistrian University of Athens Physics Department

Figure 3.4: Effect of clicking the ToR

and indicated. A scheduling period of the Nephele network can accommodate

up to eighty entries, as the corresponding allowed time slots. If the user exceeds

that ceiling, a pop-up dialog box will emerge with the corresponding message,

prompting her/him to stop importing entries. The dialog box prevents the user

from interacting with the main application window but it keeps the window visible

in the background. When the user has completed the creation of the scheduling

table, she/he is able to review it and delete any misplaced entries by using the

delete button from the menu. If the key is pressed and no entry is selected or the

scheduling table is empty, a pop-up window will be called informing the user of

the corresponding case. As a final step the user presses the send button, an action

which transmits the scheduling table to the FPGA data plane devices.

The conclusion of the transaction is marked by the appearance of a pop-up window

that it will be shown to the user. The window includes all the values that were sent

30

National and Kapodistrian University of Athens Physics Department

Figure 3.5: Pop-up Window with the Values sent to FPGA

to the FPGA in a format that resembles that of a logic analyzer. The pop-up

window is shown in Figure 3.5 and the corresponding output of the logic analyzer

is depicted in Figure 3.6. The logic analyzer exports the output as a CSV file

(Comma-Separated Values); this file can be processed by the management tool

and in this case, the file’s values will be forwarded to the pop-up window. The

pop-up window incorporates the graphical theme of the management tool and is

designed to model the layout of the logic analyzer.

3.3.2 Usability of the Agent’s Management Tool

Figure 3.6: Output of the Logic Analyzer

The use of the management tool is of great importance to the development and

operation of the data center, since the users can create their own traffic schedule

and then transfer that schedule to the data plane ToR switch. The engineers are

able to control the data plane switches, during the development and testing phase

31

National and Kapodistrian University of Athens Physics Department

of the physical layer of the data center network as shown in Fig 3.7. The tool’s

GUI allows to construct the commands directly in the format of the scheduling

tables of the FPGAs (instead of using the OpenFlow protocol). Additionally, it is

straightforward to extend the management tool for creating the scheduling tables

of a PoD switch in the Nephele network. Given the fact that there is a ToR Agent

PC for each ToR switch in the network, the tool is executed on the Agent computer

and it provides the user with the means for the scheduling of the network from the

view point of the specific ToR switch. The user can control graphically and more

importantly in real-time the transmission of Nephele frames originating at the ToR

switch (that is controlled by the Agent computer) to the other Nephele ToRs in the

data center network (Chen JW, 2007).

Figure 3.7: Nephele Data Plane Development

The benefit of designing, developing and effectively using the proposed manage-

ment tool has already been proven during test procedures and demonstrations. An

illustrious example is the application, which has been shown during a presentation

of the control plane of the Nephele data center. The scenario for this demonstra-

32

National and Kapodistrian University of Athens Physics Department

tion has as follows: the control plane includes parts of the FPGA’s implementa-

tions of the data plane, the Agent, and the SDN controller. Given that a functional

data center Agent was not available, we presented the control plane by dividing it

into two experiments. The first experiment demonstrates the SDN controller and

the second the FPGA’s operation controlled by the management tool. The man-

agement tool has successfully imitated the functions of the Agent; the majority

of the people that interacted with the management tool understood the concepts

behind the architecture of the Nephele network and the function of the Agent in

the Nephele data center. The demonstration as shown in Figure 3.8 consists of the

SDN controller software presentation, the FPGA that represents the ToR switch,

and the Desktop PC that executes the management tool, which is connected to the

FPGA board via PCI Express. The user can interact with the management tool

and give his/her own commands to the demonstration system.

3.3.3 Back-End of the Agent’s Management Tool

In the Nephele data center the ToR switch design includes multiple FPGAs; all

the FPGAs that belong to a single ToR implementation use PCI Express to com-

municate with the host ToR Agent computer. The management tool divides the

scheduling information into distinct parts, so that each part corresponds to the

scheduling information concerning the corresponding FPGA; then it creates dis-

tinct threads to complete the entire operation. We use a single thread to communi-

cate with a single FPGA and transfer the respective part of the ToR switch traffic

schedule. Note here that, the communication is performed in parallel for all the

FPGAs belonging to the same ToR switch.

In order to develop the PCI Express interface of the FPGAs we used the Xilinx IP

Core for PCI Express and the RIFFA (Reusable Integration Framework for FPGA

Accelerators) framework (Jacobsen et al., 2015). The framework consists of an

33

National and Kapodistrian University of Athens Physics Department

Figure 3.8: Live Demo of the Management Tool

API (Application Programming Interface), a driver/kernel module and an IP core

for the FPGAs. All the above parts are open-source. It is designed to perform

with the Xilinx IP core that handles the physical layer of the PCI Express inter-

face. The API is designed to support multiple languages like C/C++, Java and

Python. Moreover, it includes the necessary function/methods that the manage-

ment tool needs to invoke, in order to communicate with the FPGA. The entire

API is designed to be executed by threads and the design of the management tool

takes full advantage of this capability.

The communication that is directed from the Agent PC to a FPGA operates ac-

cording to the following steps. In the first, the application initiates the transac-

34

National and Kapodistrian University of Athens Physics Department

tion by calling the fpga_send method. Then, the thread invokes the operation of

the kernel driver, which writes to the FPGA configuration registers the necessary

information to begin the transaction. The FPGA uses DMA (Direct Memory Ac-

cess) to read the scatter gather elements (Jacobsen et al., 2015) that the driver

instructed. At the time that the transaction will be completed the driver will read

the final count of the data passed, the amount of the data is then returned to the

management tool as the return value of the fpga_send method.

In the design of the tool special attention was paid to the operation of the RIFFA

API, because the RIFFA’s driver requires all the data in contiguous memory loca-

tions (in an array). Note here that, the Java’s Array object can’t be used in this

case. An attractive solution to this problem is the employment of the ByteBuffer

Class of Java, which is a class that is created to handle a stream of raw data.

The operations on the buffer can be carried out byte by byte, but casting is also

supported for the user to be able to write a whole Java data type, like an integer.

Finally, the endian of the data has been tackled as follows. The JVM (Java Virtual

Machine) stores class files in big endian byte order, where the high byte comes

first. Multibyte data items are always stored in big-endian order. Given that the

Xilinx FPGAs operate in little-endian byte order, the change of the endianness

could be arranged either during the construction of the ByteBuffer or at the re-

ceiving buffer in the FPGA. The latter choice has been proven more efficient and

gave us the advantage of the ByteBuffer casting, which would not be useful in the

case of changing the order of the byte inside the ByteBuffer in the Java applica-

tion.

35

4 | Neural Networks on FPGA

4.1 Introduction

The evolution of FPGAs with respect to the increased hardware resources and the

efficiency of their programming tools has affected significantly the applications

with real-time specifications. Deep Learning techniques (Mordvintsev, Olah, &

Tyka, 2015) and CNNs, benefit by the utilization of FPGAs as accelerators to

accomplish real-time performance (Abdelouahab et al., 2018). FPGAs are advan-

tageous for these tasks because of their ability to reconfigure and/or reprogram

the architectures and consequently, the designer can follow the continuous im-

provement of the CNN algorithms and techniques. Among the aforementioned

processes, those that are destined for edge, mobile and on-board satellite (OBC)

computing have to use accelerator designs that are performance, power and re-

source efficient. Aiming at improving the performance of these tasks, the current

chapter presents a design approach for real-time classification FPGA accelerators

that can be implemented with the logic and memory resources of a single FPGA

device and it shows its advantages by developing a Vessel Detection FPGA Ex-

ample Accelerator.

The proposed approach is effective for CNN applications with relatively low fea-

ture space (Lei, Liu, Dai, & Ling, 2020), (Kyriakos, Kitsakis, Louropoulos, Pap-

atheofanous, & Patronas, 2019), (Li, Lin, Shen, & Brandt, 2015) such as the clas-

sification problems that share similar characteristics between classes (Sermanet &

LeCun, 2011), (Airbus Ship Detection Challenge, 2019), (L. Wang et al., 2018)

and CNNs requiring few convolution layers such as SAT-4/SAT-6 (Gorokhovatskyi

& Peredrii, 2018). The proposed FPGA design approach includes three phases

with each phase targeting distinct design and performance gains. The first phase

36

National and Kapodistrian University of Athens Physics Department

introduces guidelines that lead the CNN design process with TensorFlow to a

model of reduced computational and memory requirements but of high classifi-

cation accuracy. In the second phase, the model is transformed into a fixed-point

bit-accurate model (BAM) simulating the hardware calculations and allowing the

designer to decide on the arithmetic representation of the model’s parameters that

provide the optimal trade-off between bit-width reduction and accuracy losses.

For the third phase, we developed a library of algorithm specific blocks in VHDL

implementing the CNN functions with fixed-point arithmetic. These blocks, along

with our proposed methodology for mapping the CNN to the FPGA, provide the

means to the FPGA designer to initiate the third phase and implement a distinct

module for each CNN layer. The completion of the third phase places these mod-

ules in a pipeline fashion forming a streamline architecture, to result in an effi-

cient FPGA accelerator with respect to power consumption and resource utiliza-

tion while saving significantly on the development time.

The chapter is organized with the following section reporting the background

work in the area of the CNN accelerators in the literature. Section 4.3 introduces

the approach for designing the CNN and mapping them on the FPGA. Section 4.4

describes the example FPGA accelerator. Subsection 4.4.1 presents the necessary

background for the target example application that is the vessel detection. In sub-

section 4.4.5 the corresponding FPGA and performance results are presented in

detail.

4.2 Background on CNN FPGA Accelerators

Researchers have studied and provided FPGA accelerator solutions for CNNs

based mainly on the automated software development tools like the HLS (Kim et

al., 2017), (Solovyev et al., 2018), (Zhang et al., 2015), (Sankaradas et al., 2009),

37

National and Kapodistrian University of Athens Physics Department

(Peemen et al., 2013), (B. Liu et al., 2019), due to short development time and

hardware abstraction. The approach followed in (Kim et al., 2017) improves the

time of the entire design process by parallelizing the CNN C code with Pthreads

and optimize the FPGA accelerator through software/constraint changes only. The

authors of (Solovyev et al., 2018) target feasibility at low cost by choosing inex-

pensive FPGA devices and cores for their accelerator. The authors of (Zhang et

al., 2015) focus on optimizing the accelerator’s performance by considering the

architecture’s throughput combined with the external memory’s throughput. The

FPGA accelerator of (Sankaradas et al., 2009) interfaces with a host PC and it

utilizes off-chip memories with the loading/storing of the intermediate results op-

timized for higher bandwidth. The (Peemen et al., 2013) reports an FPGA accel-

erator template with an HLS FPGA architecture consisting of a cluster of Multiply

Accumulate Processing Elements for convolutions acceleration; this work focuses

on a design flow selecting processing schedules that minimize external memory

accesses and buffer size by means of data reuse. The authors in (B. Liu et al.,

2019) present an accelerator based on a single-processing engine that targets stan-

dard and depthwise separable convolution. In this work the authors aim to reduce

the delay added by the off-chip memory data exchange by using a data stream

interface and ping-pong on-chip cache. All the HLS design approaches though

prevent experienced designers from optimizing the HDL code towards a more

efficient FPGA architecture with respect to resource utilization, throughput and

energy consumption (Pelcat et al., 2016). The authors in (Rapuano et al., 2021)

present an on board satellite FPGA accelerator for CNN inference, which utilizes

a single processing unit with external DRAM memory, developed with VHDL

code. Note here that, the current work focuses on streamline architectures that

implement the contiguous CNN layers in a pipeline fashion and differs to the im-

plementation of a systolic array that is reconfigured each time it computes a CNN

38

National and Kapodistrian University of Athens Physics Department

layer (Zhang et al., 2015). Hence, the advantages of the proposed designs are to

avoid idle computing and memory (Y. Zhao et al., 2019) resources, use only the

on-chip (FPGA) memory and extensive pipeline, features that lead to improved

resources utilization, reduced latency and power consumption (Sze et al., 2017),

(Lamoureux & Luk, 2008).

4.3 CNN Design Approach

The current section introduces the three distinct phases of the proposed FPGA ac-

celerator design approach. It begins by presenting the first phase with the guide-

lines for the CNN model design. Then, for the second phase, it describes the

development of the fixed-point BAM representation of the CNN floating-point

model based on the factors, that play a key role in the design of the entire FPGA

accelerator. Finally, the third phase introduces the configurable VHDL blocks

and the mapping methodology of the CNN layers to the FPGA by utilizing these

blocks. The result is to map the CNN layers on a pipeline of modules, where

each module is optimized to the corresponding layer computations. The proposed

streamline architecture designs save significantly on the FPGA resources com-

pared to the architectures that implement all the CNN layers on a systolic array

(Zhang et al., 2015) and leave idle resources as the layers progress.

4.3.1 CNN Design Space Exploration

This work focuses on single FPGA device solutions for classification applications

and more specifically, binary and limited feature space classification tasks. Conse-

quently, the design process has to consider all the factors reducing the resources’

requirements. For this purpose, in the first phase the designer will use the Ten-

sorFlow estimator API to design the CNN’s model targeting to fit within a single

39

National and Kapodistrian University of Athens Physics Department

FPGA’s resources. Focusing on all the key factors of the data under consideration

the designer can develop the model by keeping to the following guidelines for the:

• Number of Layers: the neural networks for the low feature space classifica-

tion applications can achieve a high accuracy rating even with a relatively

small number of Convolution Layers (Gorokhovatskyi & Peredrii, 2018).

• Size of convolution kernels: considering the input is relatively small, the rec-

ognized objects tend to occupy a large portion of the input data and hence,

large and medium size convolution kernels suffice.

• Choosing the size of the Pooling Layers windows: the feature space is rel-

atively limited and hence, the use of 4 × 4 pooling layers will not affect

the accuracy meanwhile it will improve significantly the resources’ require-

ments of the succeeding layers.

• Avoid padding: this should be implemented throughout the CNN because-

most of the time it does not affect the accuracy at all.

• Divisibility: it refers to the divisibility of each convolution layer’s output

size by the kernel size of the succeeding pooling layer. If it is applied, it

will: a) allow the omission of padding with no accuracy loss and b) lead to

efficiently pipeline these contiguous layers.

4.3.2 Bit-Accurate Model Development

During the second phase the designer develops the BAM of the designed and

trained CNN. The BAM emulates the exact same fixed-point calculations that the

hardware accelerator will perform. For the BAM, we perform quantization of the

CNN model trainable parameters, starting from the 32-bit floating point represen-

tation provided by TensorFlow to a desired Qm.n fixed-point representation. The

40

National and Kapodistrian University of Athens Physics Department

number of bits for the integer part m and fractional part n are accepted as input

parameters to the BAM. This allows the designer to perform a trade-off study

between saving on FPGA resources due to the reduced bit-width of the CNN pa-

rameters and maintaining high classification accuracy as a result of the reduced

arithmetic precision.

4.3.3 VHDL Blocks

The proposed approach combines the VHDL advantages with an efficient, with re-

spect to the developing time, design methodology for CNN accelerators. Multiple

instances of configurable and reusable VHDL blocks, each with different config-

uration, are used for the development of each layer. The following subsections

present these reusable VHDL blocks developed in this work.

4.3.3.1 Input Block

This block consists of a Block RAM that stores one input data channel and a Win-

dow Generator as shown in Fig. 4.1. The Window Generator formulates the

input to the following Convolution Layer as windows (matrices) of size equal to

the Convolution Layer’s n × n kernel (e.g. 3x3, 5x5, etc). It uses n shift regis-

ters with each register containing one image row, in order to avoid the indexing

of pixels and thus, lead to improved performance. The Kernel Window Controller

FSM of the Window Generator reads n rows from the Block RAM and copies them

into the first set of n Shifting Registers. The DSP Decoder formulates the n × n

window: the first n pixels (memory words) of each of the n Shifting Register, are

routed in parallel to the input of the following Convolution Layer. To create the

next window we shift the n registers by one pixel. There are two sets of Shifting

Registers forming a double input buffer. If the following Convolution Layer uses

n×n kernels, the n shift registers forward an input n×n window per cycle to fully

41

National and Kapodistrian University of Athens Physics Department

pipeline the two layers. Configurable are the: a) input data sizeb) the n registers,

c) the kernel n× n and d) pixel bit-depth.

Figure 4.1: Input Block Architecture

4.3.3.2 Convolution Block

The Convolution Block (Fig. 4.2) receives a single channel of the input data (or a

single feature map) in the format of kernel sized matrices (n×n) and it calculates

the convolution of a single filter’s kernel with the input. The Convolution Block

includes n × n multipliers; each multiplier has input one element of the n × n

matrix and the corresponding kernel weight. Different filter kernels are stored at

the on-chip ROM of the Convolution Block. To calculate the output of the Convo-

lution Block a tree of adders (of height ⌈log2(n× n)⌉) completes the addition of

42

National and Kapodistrian University of Athens Physics Department

all the products of the multipliers in a pipeline fashion.

Figure 4.2: Convolution Block Architecture

4.3.3.3 Pooling Block

The Pooling Block (Fig. 4.3) receives the feature map produced by a preceding

Convolution Layer: a k× k array forwarded one value at each cycle. The Pooling

Block selects the maximum value of each l × l matrix, for all the matrices in the

feature map with stride l (e.g. 2×2 or 4×4 max pooling) and outputs the k/l×k/l

array of the above maximum values. In detail: first, from the k×k matrix the sub-

block Row Max Pooling FSM gets the maximum of each l-tuple of values of each

row to provide a k × k/l array; l registers are written in l consecutive cycles and

43

National and Kapodistrian University of Athens Physics Department

we choose the max of the l registers. There are l Pooling FIFOs: the Row Max

Pooling FSM stores the result in the next available FIFO and marks it as the active

Pooling FIFO, i.e. the k/l results of the rows 0l, 1l, 2l, etc. will be stored in the

first Pooling FIFO, those of the rows 0l + 1, 1l + 1, 2l + 1, etc. in the second

and so on. When l rows of the output feature map (l × k/l values) are stored at

the Pooling FIFOs the Column Max Pooling FSM starts the vertical max pooling;

it chooses the maximum of l data (one from each Pooling FIFO) to produce the

k/l × k/l matrix.

Figure 4.3: Pooling Block Architecture

4.3.3.4 Vector Multiplier

The Vector Multiplier realizes a Fully Connected Layer neuron; it computes the

dot product of the 1-D input vector I (the flattened result of the preceding layer),

received one point at a time, with the corresponding row of the Fully Connected

Layer’s weight matrix. The weight matrix W is stored in a ROM, where each

44

National and Kapodistrian University of Athens Physics Department

memory word contains the weights of every neuron for each input. At each cycle,

the input value of I and the corresponding row of W are multiplied and the block

accumulates the result, which will be forwarded to the following blocks. This

block is implemented with clock gating to limit the dynamic power consumption

because it is operational for a short time compared to the rest of the modules. Dis-

abling the clock for the design blocks that perform no computations at a given time

prevents signal transitions limiting power consumption (Osborne, Luk, Coutinho,

& Mencer, 2008).

4.3.3.5 ReLU and Output Block

The ReLU Block is a 2-to-1 multiplexer. The select bit of the multiplexer is the

Most Significant Bit (MSB) of the input value. If the MSB/select is “1”, the input

is a negative number and the multiplexer outputs zero, otherwise it forwards the

input to the output.

The Output Block is the CNN’s final Fully Connected Layer. Its architecture is

shown in Fig. 4.4. It executes the matrix multiplication of the flattened input

array I with the weights W of the output neurons and then adds the Bias. In a

pipeline fashion, it is executed once for each output neuron/class.

4.3.4 Methodology for Mapping the CNN on the FPGA

The current section describes the major considerations and recommendations for

mapping the CNN functionality on a VHDL architecture by utilizing the above

blocks. The proposed approach uses the mapping to result in a streamline ar-

chitecture that implements all the layers of the CNN as a pipeline of modules:

each module implements a CNN layer’s computations. This allows flexibility in

the parallelization strategy of the computations of each layer (implemented as a

45

National and Kapodistrian University of Athens Physics Department

Figure 4.4: Output Block Architecture

module) and our proposed approach aims at parallelizing the layers in a way that

enables extensive pipelining between them and minimizes the use of intermediate

buffers. In more detail, for the acceleration of binary and limited feature space

classification tasks with shallow CNNs that this approach targets, the streamline

architectures and the proposed design approach have the following benefits:

a) High efficiency in resources utilization and computing since all hardware is

generated specifically for each CNN layer (module) and the layers are pipelined.

b) Significantly reduced memory requirements for the intermediate results and

46

National and Kapodistrian University of Athens Physics Department

use of buffers only on the on-chip memory. The extensive pipeline of the pro-

posed approach allows for succeeding layers (modules) to directly consume the

data generated by the preceding ones and thus minimize the buffering of the inter-

mediate results.

c) Reduced latency for shallow CNNs designed for the target limited feature space

classification tasks. This is achieved by the parallelization strategy, the pipelining

between the VHDL implemented layers (modules) and the use of only low-latency

on-chip RAM. Moreover, pipelining a design can reduce the amount of energy

used per operation compared to the non pipelined version at the same clock fre-

quency (Wilton, Ang, & Luk, 2004).

The resource utilization, and power efficient design approach has to focus on the

following characteristics. The key issue is to keep the memory and DSP require-

ments of the CNN accelerator design within the limits of the target FPGA device.

Consequently, the objectives of CNN accelerator’s design are first, the minimiza-

tion of the buffering between consecutive layers second, the required memory of

each layer and third, the real-time performance of the accelerator. The methods

for improving the key issues of the FPGA accelerator are:

• Buffers between layers and Speed-up: The effort is given to parallelize the

N filters in each Convolution Layer (except the first). Assuming that a Con-

volution Layer is designed with N filters, then the accelerator can have K

parallel Convolution Blocks to complete the N convolution filters in N/K

steps. The accelerator design with K = N is preferable because first, it

maximizes the speed-up second, it allows the pipelining of the input to ev-

ery Convolution Block and avoids the buffer between this and its preceding

layer.

• Reduce the memory of each layer: each Convolution Layer produces N

47

National and Kapodistrian University of Athens Physics Department

feature maps and apart the first accumulates these in N memories. The size

of each of these N memories depends on the size and the number of the

preceding Pooling Layers. We denote by (spi)
2 the dimensions of the (i +

1)th pooling layer. If the input data are sized Q×Q and there are p Pooling

Layers of sizes sp0 × sp0, sp1 × sp1, . . . , spp−1 × spp−1 each memory (of

the N memories of the current layer) has size [Q×Q]/
∏i=p−1

i=0 (spi × spi).

Hence, higher dimension pooling layers reduce the memory size and allow

to implement N parallel filters with their individual memories.

• The First Convolution Layer. The proposed parallelization technique for

this layer leads to the balance of the speed-up against the available num-

ber of DSP Blocks and Block RAMs of the target FPGA device. The key

computational role is realized by a parallel Structure consisting of one Con-

volution Block per channel; these blocks compute the convolution of all the

input data channels (e.g. 3 channels and 3 corresponding blocks in the case

of an RGB image). Each block completes the convolution in real time and

it forwards each result to the following Pooling Layer without a buffer, a

design feature that significantly improves the memory requirements since

the First Convolution Layer operates on the full size input data (without any

downsampling). The use of one (1) Structure to complete all the filters of

the First Convolution Layer is resource efficient. Depending on the target

FPGA’s resources, we can use k instances (k ≤ (sp0)
2, where (sp0)

2 the

dimensions of the first pooling layer) of this Structure in parallel to improve

the speed-up by k. We note here that each additional parallel Structure

first, adds a set of Convolution Blocks (one for each input data channel) in-

creasing the use of the FPGA DSP Blocks, second it adds another memory

buffer at the interface between the First Pooling Layer and the Second Input

Layer. However, the size of each additional input buffer is considerably re-

48

National and Kapodistrian University of Athens Physics Department

duced due to the high dimensions of the First Pooling Layer. Using k such

Structures and the k buffers is limited by the available DSP Blocks.

• Scalability. The aforementioned techniques lead to a scalable FPGA ac-

celerator design. The architecture of the First Convolution Layer enables

the engineer to opt for more performance or optimize the design for FPGA

devices with limited resources. Moreover, the Fully Connected Layers can

use a Vector Multiplier per neuron: parallelizing the neurons is advanta-

geous leading to a layer design irrespective of the size and the number of

the feature maps produced by the preceding layer; and more importantly it

is scalable.

4.4 Vessel Detection FPGA Accelerator Example

Considering as target application the Vessel Detection, we exploit the proposed

approach to design an example accelerator within a single FPGA device, which

decides whether there is a vessel (Airbus Ship Detection Challenge, 2019), in the

input image. This image classification task utilizes a CNN trained for the Planet’s

“Ships in Satellite Imagery" dataset (Planet: Ships-in-Satellite-Imagery, 2019)

and the resulting FPGA accelerator using the resources of only the Xilinx Vir-

tex 7XC7VX485T device (operating on a Xilinx VC707 board) achieves almost

98% prediction accuracy and high throughput by classifying a 80 × 80 RGB 24

bits/pixel image in 0.68 msec. Moreover, the accelerator can be used in a sliding

window application for scenes up to 4K. To compare the FPGA’s performance we

execute our code on the low power Intel’s Myriad2 processor (Barry et al., 2015)

used for cameras and OBC (España Navarro et al., 2021), (Rapuano et al., 2021)

and the edge-computing NVIDIA’s Jetson Nano (Nvidia Jetson Nano, 2020) either

on the Jetson’s ARM processor or the GPU.

49

National and Kapodistrian University of Athens Physics Department

The following sections employ the proposed design approach, presented in Sec-

tion 4.3 to develop a Vessel Detection Example FPGA accelerator that can also

be used in sliding window applications of large images. The use of the example

Vessel Detection FPGA accelerator can be realised in the context of an FPGA

system, in which the accelerator interfaced with a host processor/FPGA-engine,

is receiving windows of 80x80 for classification of an larger image stored in cen-

tral Mass Memory (e.g. 3081x1597 in Planet’s dataset used) obtained from the

camera sensor.

4.4.1 Background on Vessel Detection

The vessel detection is among the most important tasks of the Maritime Domain

Awareness (Dekker et al., 2013), (Kanjir, Greidanus, & Oštir, 2018) including

all the activities associated with the maritime activities that could impact upon

the security, safety, economy, or the environment and which are related to any

navigable gateway and the associated infrastructure, people, cargo and vessels.

For the corresponding applications the vessel detection is keystone because it has

a very extended scope of applications in the areas of maritime safety and rescue

missions, marine traffic control, sea pollution, maritime spatial planning, manage-

ment of remote fisheries, area fishing control, illegal migration, customs control,

observation of naval borders, etc. Calling as vessels the ships and all the floating

manufactured objects and given that it is rather straightforward to distinguish an

object in optical images produced either by space or drones or harbor cameras, the

processes that identify the vessel in the image frames play a key role in the above

applications.

Moreover, note that for the ships greater than 300 tons is mandatory to use ship-

borne transponders to report their position. Smaller ships though, do not have to

own and use these devices and also, the ships that contact illegal operations either

50

National and Kapodistrian University of Athens Physics Department

turn them off or they try to deceive the authorities with false reports of their po-

sition. Hence, vessel detection comes to support effectively the maritime domain

awareness. Consequently, the exploitation of images and especially satellite ones

plays a key role for locating vessels on the sea surface. Notable example is the

satellite-based radar images most often as Synthetic Aperture Radar (SAR) that

are of common use for maritime surveillance because they provide the ability to

detect the vessels either in the case of cloudy skies or clear ones. The interest

though in using optical images in the applications of maritime surveillance esca-

lated significantly due to the availability of optical imaging satellites.

Considering the problem definition, the vessel detection can be envisaged as a task

of detecting an object given that the background in most cases has the characteris-

tics of the surface of the water. Following the latter model the researchers and the

engineers focused on providing solutions in terms of automated analytical meth-

ods for remote sensors. These efforts are the consequence of the existence of the

large number of Earth-orbiting sensors and their ability to generate and transmit

big volumes of data. Hence, the detection systems have to process large volumes

of sensor data and in many cases to conform to near-real or real time requirements.

Accordingly, the limitations in the execution time as well as the restrictions in the

power consumption and the resource utilization, call for power and resource ef-

ficient hardware accelerators (España Navarro et al., 2021). A generic approach

for the vessel detection is to receive an input image of size k× k pixels, on which

it will perform the calculations of the trained CNN model, the convolution with

the filters kernels, the max-pooling and finally the classification with a fully con-

nected neural network. This operation is repeated on overlapping image patches

extracted from an large image of size x × x pixels, where x >> k, gathering the

patches that contain vessels and discarding the remaining.

Regarding the results related to the Vessel Detection (Dekker et al., 2013), (Kanjir

51

National and Kapodistrian University of Athens Physics Department

et al., 2018), that the current work has as target application, most of the published

results exploit algorithmic techniques to improve the execution time. Widely

known are the R-CNNs (Girshick, Donahue, Darrell, & Malik, 2013), Faster-

RCNN (Ren, He, Girshick, & Sun, 2015), You Only Look Once (YOLO) (Redmon,

Divvala, Girshick, & Farhadi, 2015), and Single Shot MultiBox Detector (SSD)

(W. Liu et al., 2015). Another approach in (H. Zhao, Zhang, Sun, & Xue, 2019)

recognizes the key parts of the vessel and classifies the ship’s identity by using

these key parts. These classification results are then voted for the decision of

the ship’s identity with achieved highest accuracy 92.63%. Hardware accelera-

tors developed solely for Vessel Detection are in (Ji-yang, Dan, Lu-yuan, Jian, &

Yan-hua, 2016) but without CNNs: they propose a technique based on statistical

analysis, of the inspected and neighboring areas to distinguish the “possible ship"

to other objects and by the geometric features of the target they decide whether the

target is a ship achieving 90% success rate. The large number of approaches, algo-

rithmic techniques and results related to the vessel detection is due to the attention

that vessel detection as a task has gained the last two decades.

4.4.2 Model Architecture and Training

The model was trained with the “Ships in Satellite Imagery" Kaggle dataset. It

contains 4000 80x80 RGB images in total, labeled with either “ship” or “no-ship”

binary classification: 3K images were selected for the training process and the

remaining for model validation.

A variety of training processes was performed with the TensorFlow Estimator API

in Python to create a CNN model close to optimal with respect to prediction ac-

curacy, number of operations and resources requirements. The CNN design space

exploration (described in 4.3.1) resulted in the final model architecture shown in

Fig. 4.5. The CNN model consists of 84K weights optimized using the Adam

52

National and Kapodistrian University of Athens Physics Department

optimizer with the cross-entropy loss function; it achieves 97.6% accuracy after

50 epochs. It compares favorably to similar trained models due to the following

results of the design study:

• Number of Convolution layers: The proposed CNN with only 2 convolution

layers achieves accuracy 97.6% that is close to CNNs with more, e.g. a

CNN with 3 convolution layers before any of the proposed optimizations

achieved 98.5% accuracy.

• Ship Orientation: is limited and along with the proportion of the 80x80

image that the ship occupies, it leads to use 32 filters per convolution layer

for achieving the best accuracy-computational cost trade-off.

• Max Pooling layer: size 4 × 4 achieved accuracy similar to that of size

2× 2.

• The kernel’s size for each Convolution Layer: the first achieved improved

accuracy with a 5 × 5 kernel, while the choice for the Second Convolution

Layer is a 4×4 kernel because its output has to be divisible by the following

Max Pooling layer. As a result we don’t use padding in the convolutions

since this doesn’t induce accuracy loss.

• Fully Connected Layer’s neurons: 128 neurons of the fully connected layer

is the minimum number to use in order to avoid prediction accuracy loss.

4.4.3 Bit-Accurate Model (BAM)

The design flow, following the realization of the TensorFlow model for the Vessel

Detection, develops a bit-accurate model (BAM) that represents the exact opera-

tions and calculations in integer arithmetic that will take place in the FPGA. We

note here that, the input image is represented in RGB with 8-bits per pixel and the

53

National and Kapodistrian University of Athens Physics Department

Figure 4.5: Model Architecture

BAM keeps (does not reduce) for each pixel the input bit-depth. Each parameter

of the CNN model (weights, biases) is represented as a fixed-point number with

1-bit for the sign, 1-bit integer part and 6-bit fractional part (Q2.6). Throughout

the BAM we preserve the 6-bit fractional part by truncating the result of each

multiplication. In order to avoid accuracy losses due to overflow after consecu-

tive additions the integer part is increased and the final results are represented in

Q11.6.

4.4.4 The Example CNN FPGA Accelerator

The example accelerator’s architecture consists of eight structural blocks on which

we map the functionality of the Software model blocks: a) the Input Layer, b) the

First Convolution Layer, c) the First Pooling Layer, d) the Second Input Layer,

e) the Second Convolution Layer, f) the Second Pooling Layer, g) the Fully Con-

nected Layer and h) the Output Layer. The overall architecture is illustrated in two

figures, Fig. 4.6 and Fig. 4.7. The example accelerator exploits the parallelization

of the CNN model in order to increase performance, minimize buffering and im-

prove the throughput via pipelining of its operations. The following paragraphs

present the significant details of the structure and operation of the accelerator’s

54

National and Kapodistrian University of Athens Physics Department

Figure 4.6: FPGA Architecture of the Input Layer, First Convolution & Pooling
Layers and the Second Input Layer.

blocks and their advantages.

Figure 4.6 depicts the four leading blocks of the architecture (Input Layer, First

Convolution Layer, First Pooling Layer and Second Input Layer). The architec-

ture uses the blocks described in Section 4.3.3: the Input Layer with the Window

Generators and the First Convolution Layer including three Convolution Blocks.

Their output is forwarded to the ReLU and the First Pooling Layer consisting of

one Pooling Block configured for 4 × 4 max pooling. The Second Input Layer

includes a single input block. This design minimizes the memory required by the

proposed accelerator in two ways. The First Convolution Layer calculates and

adds in parallel the convolution of each input image channel with the correspond-

ing kernel producing one complete output feature map, pipelining each value to

the First Pooling layer without buffer use. The calculations are repeated for the

remaining 31 feature maps, with the corresponding filter kernels. The Second

Convolution Layer calculates the 32 filter convolutions on each received feature

55

National and Kapodistrian University of Athens Physics Department

map in parallel and buffers the 32 results for accumulation. The required buffering

at the output of this layer is reduced to 32 arrays of 16× 16 13-bit values, because

at this stage we have already executed the First Pooling Layer (4 × 4 max pool-

ing). The latter shows the advantage of the proposed approach when it is used for

shallow CNNs, because considering a systolic array accelerator for the same task,

it would require a total of 2.03 Mbit to store the intermediate result of the output

of the First Convolution Layer. In contrast, the proposed streamline architecture

uses buffering of intermediate results only at the end of the Second Convolution

Layer, following the downscale of the data by previous pooling operations: this is

only 106.50 Kbit and hence, it achieves a 19.1x reduction in the required memory.

Another key element of the example accelerator’s architecture is the Input Layer

also depicted on Fig. 4.6; its design is based on the FPGA’s features. The FPGA

can support a variety of interfacing methods with the host such as PCIe, Ethernet

and USB to receive the image. The Input Layer stores each channel (RGB) of

the input image row by row in the corresponding Channel Block RAM (on-chip

memory), so that we can read a whole row in a single clock cycle. These blocks

along with the 3 Window Generators of the 3 Input Blocks constitute the Input

Layer. The Window Generators are configured to accept one 80 × 80 image (1

image channel each) and generate all the windows of size 5 × 5 of that image

channel; they operate as described in section 4.3.3.1. When the image is stored in

each Channel Block RAM, the 3 Window Generator blocks operating in parallel,

load the 3 distinct channel windows of size 5×5 in parallel to the 3 corresponding

Channel Convolution Blocks of the First Convolution Layer, as shown in Fig. 4.6.

Three distinct RGB windows of size 5 × 5 forwarded in parallel at each clock

cycle to the Convolution Blocks in a fully pipelined operation.

Figure 4.7 depicts the second half of the example accelerator’s architecture (the

Second Convolution & Pooling Layers, the Fully Connected Layer and the final

56

National and Kapodistrian University of Athens Physics Department

Output Layer). The Second Convolution Layer includes 32 Filter Convolution

Blocks, each block configured for 4 × 4 convolution kernels. The Second Con-

volution Layer receives one by one the feature maps of the previous Layers and

performs the 32 filter convolutions of this layer in parallel with 32 Filter Convo-

lution Blocks, each of which accumulates the result in a dedicated Accumulator

RAM of size 16 × 16 words. Each Filter Convolution Block stores the kernel

weights associated with each input feature map in an internal Block RAM. The

results of this Layer are complete when every feature map of the previous Layer

is received and processed. At the final accumulation step, each filter’s bias is

added and the Accumulator RAM contents of each Filter Convolution Block are

forwarded, in a continuous stream (in filter order) to the Second Pooling Layer.

The Second Pooling Layer is similar to the First Pooling Layer, also configured

for 4 × 4 pooling, where memories act as a buffer in order to provide an uninter-

rupted flow of data to the succeeding Fully Connected Layer. Finally, the Fully

Connected Layer uses 128 parallel Vector Multipliers one for each neuron. When

all the multiply-accumulate steps are complete, the 128 parallel multipliers and a

tree of adders calculate the inference result.

Although the CNN Vessel Accelerator improves the performance of CPU, GPU

and edge processors, as will be shown in section 4.4.5.2, it is worth noting that

the entire CNN Vessel Accelerator architecture can be configured to operate on

two distinct input frames in a pipeline fashion. In that configuration while the first

frame processing will occupy the fully connected layer, the two convolutional

layers will be dedicated to the process of the second (following the first) frame.

57

National and Kapodistrian University of Athens Physics Department

Figure 4.7: FPGA Architecture of the Second Convolution & Pooling Layers,
Fully Connected Layer and Output Layer.

4.4.5 Vessel Detection CNN FPGA Accelerator Results & Com-

parison

This section presents first, the results of the example accelerator’s implementation

on the Xilinx VC707 board and second, the comparison with the corresponding

performance of our code executed on: a) the low power Intel’s Myriad2 processor,

b) the edge-computing NVIDIA’s Jetson Nano Jetson’s ARM processor, and c) the

Jetson Nano GPU.

4.4.5.1 FPGA Implementation Results

The development and validation of the example accelerator targeted the Xilinx

Virtex 7 Development board (XC7VX485T) with the use of the Vivado develop-

ment tool. The resource utilization of the FPGA on the Virtex 7 board is pre-

sented in the Table 4.1. More specifically, the example accelerator uses 9.37%

of the FPGA’s BRAMs and 30.11% of the available DSP blocks of the FPGA

device. The example accelerator’s power requirements are 5.001 W reported by

58

National and Kapodistrian University of Athens Physics Department

the Vivado power estimator. Figure 4.8 presents the on-chip power utilization per

resource type.

The FPGA implementation of the example accelerator has achieved a maximum

operating frequency (fmax) of 270 MHz. The number of operations per second of

the accelerator is 52.8 GOP/s and the processing time for a single input image (or

a 80 × 80 sliding window) is 0.687 ms. In order to showcase an indicative base-

line evaluation result, Table 4.2 presents the execution time comparison of the

example accelerator to the CPU and GPU software implementations. The CPU

and GPU software implementations are based on the TensorFlow implementa-

tion of the model executed with a single image as input and targeting the Intel(R)

Core(TM) i7-9700K CPU @ 3.60GHz and the NVIDIA GeForce RTX 3080 cor-

respondingly. The CPU processes a single input image in 4.696ms while the GPU

processes the same input image in 2.202ms. The example accelerator achieves a

speed-up of 6.836 and 3.205 when compared to the CPU and GPU correspond-

ingly.

Table 4.1: Resource Utilization

Resource Utilization Utilization %
LUT 50743 16.71
LUTRAM 4228 3.23
FF 70786 11.66
BRAM 96.5 9.37
DSP 843 30.11

Table 4.2: Performance Comparison to CPU & GPU

Execution Time (ms) FPGA Speed-up
FPGA 0.687 -
CPU 4.696 6.836
GPU 2.202 3.205

59

National and Kapodistrian University of Athens Physics Department

Figure 4.8: Power Utilization

4.4.5.2 Comparison to Edge Devices and Low Power Processors

In order to evaluate the proposed approach we compared the performance of the

Vessel Detection CNN FPGA Accelerator to the other edge devices, which have

high performance at low power consumption according to their specs. Notable

representatives are the NVIDIA’s Jetson Nano and the Intel’s Myriad2 proces-

sor. The Jetson Nano of 472 GFLOPS (FP16) at 10W includes an ARM pro-

cessor and an 128-core Maxwell GPU targeting computer vision and deep learn-

ing applications. The Myriad2 processor is being utilized for on-board satellite

computing applications in missions (Giuffrida et al., 2022) and research projects

(España Navarro et al., 2021) due to the fact that it has undergone extensive ra-

diation characterization (Furano et al., 2020) in order to be deemed suitable for

space applications. It has two Leon and 12 SHAVE processors, it is optimized for

machine learning applications, that can aggregate 1000 GFLOPS (FP16) with at

most 1W consumption. Moreover, it includes a multicore on-chip memory sub-

system (2MB), called Connection Matrix (CMX) memory and low-power DDR3

DRAM (512MB).

60

National and Kapodistrian University of Athens Physics Department

The comparison is based on a sequential C code for the vessel detection. This

is executed on a single core of the Jetson’s Nano ARM CPU and measured at

440 ms. From this point, we developed a custom CUDA accelerated application

taking advantage of the 128 CUDA cores. The mapping of calculations to grids

of thread blocks optimize the scheduling of warps on the 128 CUDA cores. The

shared memory is used to store global data in a thread block and the intermediate

results. The execution time of the CUDA application is 20.3 ms.

The development on the Myriad2 starts with the optimization of the sequential

C code, using efficiently the CMX, DDR and cache memories; this single core

application took 56.27 ms with less than 0.5 W. The parallel Myriad2 code uses

the 12 SHAVES, by dividing the CMX memory between them, minimizing the

required memory of each SHAVE by pipelining the operations of each processor,

the parallel code takes 14.6 ms at 1 W.

The detailed results are presented in Table 4.3. The example FPGA accelerator

achieves the highest performance, regarding execution time, median power con-

sumption but the highest performance per watt among the other two devices. The

Myriad2 is the most power efficient by consuming 1 W, while its performance is

one order of magnitude lower than the FPGA accelerator. The Jetson Nano falls

short in either metric with a consumption of 10 W and execution time in the same

order to Myriad2, but it provides the most developer friendly platform, which is

an advantage leading to short development time and effort. The example FPGA

accelerator has the highest performance per watt, followed by the Myriad2 and at

the last place is the Jetson Nano.

Finally, the benefit of introducing the approach for the image classification on a

single FPGA device, whenever this is feasible, can be shown by the Vessel Detec-

tion Accelerator performance and compared to optimized FPGA CNN accelera-

61

National and Kapodistrian University of Athens Physics Department

tors (Zhang et al., 2015) and also to low cost ones (Solovyev et al., 2018).

Table 4.3: Performance & Power Comparison to Edge Devices

Execution Speed- Power
Time (ms) Up (W)

Jetson Nano CPU 440 - 10
Jetson Nano GPU 20.3 21.7 10
Myriad2 1 SHAVE 56.27 7.8 0.5
Myriad2 12 SHAVE 14.59 30.1 1
FPGA Accelerator 0.687 640.5 5

4.4.5.3 Comparison to Other FPGA Accelerators

This subsection aims to provide more context to the proposed approach by show-

casing where the proposed accelerator stands in the field of FPGA accelerators in

the literature. A straightforward comparison though of the resulting accelerator to

FPGA-based CNN accelerators is a challenging task (Zhang et al., 2015) because:

a) The same metrics between different FPGA accelerators may not be suitable for

direct comparisons due to different FPGA platforms, benchmarking methodolo-

gies, etc.

b) While the majority of related works focus on accelerators for well-known CNN

models, this work proposes a design approach that includes guidelines for de-

signing CNN models from scratch, resulting in a custom model for the Vessel

Detection application.

c) This work focuses on accelerator designs for shallow CNNs suitable for binary

and low feature space classification tasks while most works in the literature study

complex and larger CNN models and result in substantially different architectures.

Regarding these architectural differences, the proposed streamline architectures in

this work use contiguous modules for each layer of the CNN in a pipeline fashion.

These architectures have particular benefits for our target applications (described

62

National and Kapodistrian University of Athens Physics Department

in section 4.3.4) and are further highlighted in the comparisons with other FPGA-

based accelerators and the corresponding analysis below.

Table 4.4: Reporting the Features of Related Results

Zhang et al., B. Liu et al., Rapuano et al., Example
2015 2019 2021 Accelerator

Precision fl. point fl. point fixed-point fixed-point
32 bits 32 bits 16 bits 17 bits

Frequency 100 100 156 270
(MHz)
FPGA Xilinx Virtex Xilinx Zynq Xilinx Zynq Xilinx Virtex

VC707 7100 ZCU106 VC707
CNN Size 1.33 N/A N/A 18.122

GFLOP MMAC
Performance 61.62 17.11 N/A 52.80
(GOP/s)
Power 18.61 4.083 3.4 5.001
(Watt)
Perf./Watt 3.31 4.19 N/A 10.56
(GOP/s/Watt)
DSPs 2240 1926 1175 843
DSP Efficiency 0.027 0.008 N/A 0.062
(GOP/s/DSP)

Taking into account the aforementioned considerations, Table 4.4 presents no-

table works on FPGA-based CNN accelerators, their most important features and

the corresponding results metrics. Note that the example accelerator achieves the

highest operating frequency of 270 MHz and this advantage is due to the custom

VHDL design of the proposed approach especially when compared to the 100

MHz of the HLS generated designs of (Zhang et al., 2015) and (B. Liu et al.,

2019). Moreover, the advantage of the streamline architecture as well as the uti-

lization of only the on-chip memory is observed when compared to the 156 MHz

of the Single Processing Unit VHDL design of (Rapuano et al., 2021).

63

National and Kapodistrian University of Athens Physics Department

Regarding the performance, the accelerator of (Zhang et al., 2015), targeting a

much larger CNN model, exhibits a slightly larger performance of 61.62 GOP/s

compared to the 52.80 GOP/s of the example accelerator. However, considering

that both use the same FPGA device, the current work achieves this performance

by utilizing only 843 DSPs, compared to the 2240 DSPs of (Zhang et al., 2015)

and hence, it results in a significantly higher DSP efficiency of 0.062 GOP/s/DSP.

The reason for this improvement in hardware efficiency is the proposed mapping

methodology that produces a streamline architecture with multiple layers operat-

ing at the same time with extensive pipelining, in contrast to the systolic array

architecture implementing a single layer at a time (Zhang et al., 2015).

Considering power consumption, the authors of (Rapuano et al., 2021) report 3.4

Watt while our example accelerator consumes 5.001 Watt. However, in that work

there is no report of several features of the design that play a role in power con-

sumption such as CNN size and performance. The accelerator in (B. Liu et al.,

2019) reports power consumption of 4.083 Watt but achieves lower performance

per Watt compared to the example accelerator. Finally, the power measurements

in (Zhang et al., 2015) follow a different methodology by measuring the power

consumption of the entire FPGA board rather than on-chip power consumption

that we report and thus their measurement is not suitable for direct comparisons.

64

5 | Conclusions and Future Work

The current thesis presented a VOQs architecture, which is efficient with respect

to latency and hardware resources and it supports a ToR switch that is adaptable to

any data center network operating under the TDMA scheme. The most notewor-

thy novelty of the proposed VOQs architecture is the efficient use of a single large

shared buffer, the performance of which is fully exploited. The VOQ organization

is based on the notion of Active Destination Queues that lead to maximize the uti-

lization of the shared buffer and reduces significantly the required number of the

Active Destination Queues to the number of the connections that are active during

a narrow time window. The control of the Active Destination Queues is efficient

due to the minimum latency that it induces to the operation of the ToR switch.

The proposed architecture is scalable with respect to the number (k) of the Active

Destination Queues, the scale of the data center network (number of destinations),

the shared buffer size and the Ethernet protocol (Ethernet type/Frame size).

Moreover, in this thesis we presented a management tool for the Agent of the

Nephele data center. The advantage of creating and using the proposed manage-

ment tool is that the data center designers and engineers can create their own

schedule as the tool’s GUI users and then transfer that schedule to each data plane

ToR switch. The user can control graphically in real time the transmission of

Nephele frames originating at the ToR switch to the other Nephele ToRs in the

data center network. The management tool can be of even further use if it will be

extended to create the scheduling tables of a PoD switch in the Nephele network.

Furthermore, in this thesis is presented a design approach for FPGA accelerators

for image classification CNNs with limited feature space targeting the data center,

edge, mobile and on-board satellite computing applications. The objective of this

65

National and Kapodistrian University of Athens Physics Department

work is to achieve real-time performance by placing all the inference task com-

putations and memory within a single FPGA device. The benefits of the resulting

architecture are the low power consumption, the higher operating frequency and

the improved resources utilization. These advantages are shown by an Example

FPGA accelerator for the Vessel Detection that compares favorably to the perfor-

mance of notable edge and low power processors. The benefit of introducing the

approach for the image classification on a single FPGA device, whenever this is

feasible, can be shown by the Example Accelerator’s performance and compared

to optimized FPGA CNN accelerators and also to low cost ones.

Beyond any doubt, the results of the current thesis provide strong foundation for

future work. First, the area of future work considers the use of machine learn-

ing techniques in data center switches that utilize VOQs, to provide Quality of

Service (QoS) (L. Wang et al., 2018). The classification of the flow of data at

switch level between mice flows, which are data flows small in size with high oc-

currence frequency and elephant flows, which appear sparsely but contain large

amount of data, will enable the dynamic management of the VOQs of the data

center switch in real-time. Second, the state of the art network traffic classifica-

tion techniques are based on deep learning to extract the features of the data traffic

(Abbasi, Shahraki, & Taherkordi, 2021). More specifically, supervised machine

learning like the CNNs (Lim et al., 2019), (P. Wang et al., 2018), the recursive

neural networks (RNNs) (Lopez-Martin, Carro, Sanchez-Esguevillas, & Lloret,

2017) and the recursive Long Short-Term Memory (LSTM) neural networks are

used for the classification of traffic depending on its characteristics/features (Lee,

Xie, Ngoduy, & Keyvan-Ekbatani, 2019). Thus, the final objective of the future

work is to utilize the CNN Design Approach to enable on-chip traffic/flow classifi-

cation for the efficient real-time management of the VOQs in data center network

switches to support the QoS.

66

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X.

(2015). TensorFlow: Large-scale machine learning on heterogeneous sys-

tems. Retrieved from https://www.tensorflow.org/ (Software

available from tensorflow.org)

Abbasi, M., Shahraki, A., & Taherkordi, A. (2021). Deep learning for network

traffic monitoring and analysis (ntma): A survey. Computer Communica-

tions, 170, 19-41. Retrieved from https://www.sciencedirect

.com/science/article/pii/S0140366421000426 doi:

https://doi.org/10.1016/j.comcom.2021.01.021

Abdelouahab, K., Pelcat, M., Sérot, J., & Berry, F. (2018). Accelerating CNN

inference on fpgas: A survey. CoRR, abs/1806.01683. Retrieved from

http://arxiv.org/abs/1806.01683

Airbus ship detection challenge. (2019). https://www.kaggle.com/c/

airbus-ship-detection.

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008, August). A scalable, commod-

ity data center network architecture. SIGCOMM Comput. Commun. Rev.,

38(4), 63–74. Retrieved from http://doi.acm.org/10.1145/

1402946.1402967 doi: 10.1145/1402946.1402967

Bakopoulos, P., Christodoulopoulos, K., Landi, G., Aziz, M., Zahavi, E., Gallico,

D., . . . Avramopoulos, H. (2018). Nephele: An end-to-end scalable and

dynamically reconfigurable optical architecture for application-aware sdn

cloud data centers. IEEE Communications Magazine, 56(2), 178-188. doi:

10.1109/MCOM.2018.1600804

Barry, B., Brick, C., Connor, F., Donohoe, D., Moloney, D., Richmond, R., . . .

Toma, V. (2015, Mar). Always-on vision processing unit for mobile appli-

67

https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/S0140366421000426
https://www.sciencedirect.com/science/article/pii/S0140366421000426
http://arxiv.org/abs/1806.01683
https://www.kaggle.com/c/airbus-ship-detection
https://www.kaggle.com/c/airbus-ship-detection
http://doi.acm.org/10.1145/1402946.1402967
http://doi.acm.org/10.1145/1402946.1402967

National and Kapodistrian University of Athens Physics Department

cations. IEEE Micro, 35(2), 56-66. doi: 10.1109/MM.2015.10

Bazzaz, H. H., Tewari, M., Wang, G., Porter, G., Ng, T. S. E., Andersen, D. G., . . .

Vahdat, A. (2011). Switching the optical divide: Fundamental challenges

for hybrid electrical/optical datacenter networks. In Proceedings of the 2nd

acm symposium on cloud computing (pp. 30:1–30:8). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/2038916

.2038946 doi: 10.1145/2038916.2038946

Benson, T., Akella, A., & Maltz, D. A. (2010). Network traffic characteristics of

data centers in the wild. In Proceedings of the 10th acm sigcomm confer-

ence on internet measurement (p. 267–280). New York, NY, USA: Asso-

ciation for Computing Machinery. Retrieved from https://doi.org/

10.1145/1879141.1879175 doi: 10.1145/1879141.1879175

Chen JW, Z. J. (2007). Comparing text-based and graphic user interfaces for

novice and expert users. In Amia annual symposium proceedings. doi:

PMID:18693811;PMCID:PMC2655855

Choi, K., & Sobelman, G. E. (2022, aug). An efficient cnn accelerator for low-cost

edge systems. ACM Trans. Embed. Comput. Syst., 21(4). Retrieved from

https://doi.org/10.1145/3539224 doi: 10.1145/3539224

Christodoulopoulos, K., Kontodimas, K., Yiannopoulos, K., & Varvarigos, E.

(2016, July). Bandwidth allocation in the nephele hybrid optical intercon-

nect. In 2016 18th international conference on transparent optical networks

(icton) (p. 1-4). doi: 10.1109/ICTON.2016.7550704

Christodoulopoulos, K., Lugones, D., Katrinis, K., Ruffini, M., & O’Mahony,

D. (2015, Mar). Performance evaluation of a hybrid opti-

cal/electrical interconnect. J. Opt. Commun. Netw., 7(3), 193–204. Re-

trieved from https://opg.optica.org/jocn/abstract.cfm

?URI=jocn-7-3-193 doi: 10.1364/JOCN.7.000193

68

http://doi.acm.org/10.1145/2038916.2038946
http://doi.acm.org/10.1145/2038916.2038946
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/3539224
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-7-3-193
https://opg.optica.org/jocn/abstract.cfm?URI=jocn-7-3-193

National and Kapodistrian University of Athens Physics Department

Cisco. (2014-2019). Cisco global cloud index: Forecast and methodology. Re-

trieved from https://virtualization.network/Resources/

Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5

_white-paper-c11-738085.pdf

Corazza, S., & Reale, S. (1992). Network management system graphical interface.

In Eighth international conference on software engineering for telecommu-

nication systems and services, 1992. (p. 135-138).

Dekker, R., Bouma, H., den Breejen, E., van den Broek, B., Hanckmann, P.,

Hogervorst, M., . . . others (2013). Maritime situation awareness capabil-

ities from satellite and terrestrial sensor systems. Proc. Maritime Systems

and Technologies MAST Europe.

España Navarro, J., Samuelsson, A., Gingsjö, H., Barendt, J., Dunne, A., Buck-

ley, L., . . . Steenari, D. (2021, jun). High-performance compute board

- a fault-tolerant module for on-boards vision processing. Zenodo. Re-

trieved from https://doi.org/10.5281/zenodo.5521624 doi:

10.5281/zenodo.5521624

Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya,

V., Fainman, Y., . . . Vahdat, A. (2010). Helios: A hybrid electri-

cal/optical switch architecture for modular data centers. In Proceedings

of the acm sigcomm 2010 conference (pp. 339–350). New York, NY, USA:

ACM. Retrieved from http://doi.acm.org/10.1145/1851182

.1851223 doi: 10.1145/1851182.1851223

Farrington, N., Rubow, E., & Vahdat, A. (2009). Data center switch architec-

ture in the age of merchant silicon. In 2009 17th ieee symposium on high

performance interconnects (p. 93-102). doi: 10.1109/HOTI.2009.11

Furano, G., Meoni, G., Dunne, A., Moloney, D., Ferlet-Cavrois, V., Tavoularis,

A., . . . Fanucci, L. (2020). Towards the use of artificial intelligence on the

69

https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf
https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf
https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf
https://doi.org/10.5281/zenodo.5521624
http://doi.acm.org/10.1145/1851182.1851223
http://doi.acm.org/10.1145/1851182.1851223

National and Kapodistrian University of Athens Physics Department

edge in space systems: Challenges and opportunities. IEEE Aerospace and

Electronic Systems Magazine, 35(12), 44-56. doi: 10.1109/MAES.2020

.3008468

Girshick, R. B., Donahue, J., Darrell, T., & Malik, J. (2013). Rich fea-

ture hierarchies for accurate object detection and semantic segmentation.

CoRR, abs/1311.2524. Retrieved from http://arxiv.org/abs/

1311.2524

Giuffrida, G., Fanucci, L., Meoni, G., Batič, M., Buckley, L., Dunne, A., . . .

Aschbacher, J. (2022). The -sat-1 mission: The first on-board deep neural

network demonstrator for satellite earth observation. IEEE Transactions

on Geoscience and Remote Sensing, 60, 1-14. doi: 10.1109/TGRS.2021

.3125567

Gorokhovatskyi, O., & Peredrii, O. (2018, 08). Shallow convolutional neu-

ral networks for pattern recognition problems.. doi: 10.1109/DSMP.2018

.8478540

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P.,

. . . Sengupta, S. (2009). Vl2: A scalable and flexible data center net-

work. In Proceedings of the acm sigcomm 2009 conference on data

communication (pp. 51–62). New York, NY, USA: ACM. Retrieved

from http://doi.acm.org/10.1145/1592568.1592576 doi:

10.1145/1592568.1592576

Han, S., Egi, N., Panda, A., Ratnasamy, S., Shi, G., & Shenker, S. (2013). Net-

work support for resource disaggregation in next-generation datacenters.

New York, NY, USA: Association for Computing Machinery. Retrieved

from https://doi.org/10.1145/2535771.2535778 doi: 10

.1145/2535771.2535778

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

70

http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://doi.acm.org/10.1145/1592568.1592576
https://doi.org/10.1145/2535771.2535778

National and Kapodistrian University of Athens Physics Department

. . . Adam, H. (2017). Mobilenets: Efficient convolutional neural networks

for mobile vision applications. arXiv. Retrieved from https://arxiv

.org/abs/1704.04861 doi: 10.48550/ARXIV.1704.04861

Jacobsen, M., Richmond, D., Hogains, M., & Kastner, R. (2015, sep). Riffa 2.1: A

reusable integration framework for fpga accelerators. , 8(4). Retrieved from

https://doi.org/10.1145/2815631 doi: 10.1145/2815631

Ji-yang, Y., Dan, H., Lu-yuan, W., Jian, G., & Yan-hua, W. (2016, Nov). A

real-time on-board ship targets detection method for optical remote sensing

satellite. In 2016 ieee 13th international conference on signal processing

(icsp) (p. 204-208). doi: 10.1109/ICSP.2016.7877824

Johan Vos, S. C. D. I. a. J. W., Weiqi Gao. (2014). Pro javafx 8: A definitive

guide to building desktop, mobile, and embedded java clients. Apress, 1st

edition.

Kachris, C., & Tomkos, I. (2012). A survey on optical interconnects for data

centers. IEEE Communications Surveys Tutorials, 14(4), 1021-1036. doi:

10.1109/SURV.2011.122111.00069

Kanjir, U., Greidanus, H., & Oštir, K. (2018). Vessel detection and classification

from spaceborne optical images: A literature survey. Remote sensing of

environment, 207, 1–26.

Kim, J. H., Grady, B., Lian, R., Brothers, J., & Anderson, J. H. (2017, Sep.). Fpga-

based cnn inference accelerator synthesized from multi-threaded c software.

In 2017 30th ieee international system-on-chip conference (socc) (p. 268-

273). doi: 10.1109/SOCC.2017.8226056

Kyriakos, A., Kitsakis, V., Louropoulos, A., Papatheofanous, E.-A., & Patronas,

G. (2019, 07). High performance accelerator for cnn applications. In

(p. 135-140). doi: 10.1109/PATMOS.2019.8862166

Kyriakos, A., Patronas, I., Tzimas, G., Kitsakis, V., & Reisis, D. (2017). Realizing

71

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.1145/2815631

National and Kapodistrian University of Athens Physics Department

virtual output queues in high throughput data center nodes. In 2017 pan-

hellenic conference on electronics and telecommunications (pacet) (p. 1-4).

doi: 10.1109/PACET.2017.8259971

Kyriakos, A., Tsavalos, T., & Reisis, D. (2017). Gui for the communication agent

of the “nephele” data center. In 2017 south eastern european design au-

tomation, computer engineering, computer networks and social media con-

ference (seeda-cecnsm) (p. 1-5). doi: 10.23919/SEEDA-CECNSM.2017

.8088237

Lamoureux, J., & Luk, W. (2008, June). An overview of low-power techniques for

field-programmable gate arrays. In 2008 nasa/esa conference on adaptive

hardware and systems (p. 338-345). doi: 10.1109/AHS.2008.71

Landi, G., Patronas, I., Kontodimas, K., Aziz, M., Christodoulopoulos, K., Kyr-

iakos, A., . . . Avramopoulos, H. (2017). Sdn control framework with

dynamic resource assignment for slotted optical datacenter networks. In

Optical fiber communication conference (p. Tu3L.1). Optica Publishing

Group. Retrieved from http://opg.optica.org/abstract.cfm

?URI=OFC-2017-Tu3L.1 doi: 10.1364/OFC.2017.Tu3L.1

Lee, S., Xie, K., Ngoduy, D., & Keyvan-Ekbatani, M. (2019). An

advanced deep learning approach to real-time estimation of lane-

based queue lengths at a signalized junction. Transportation Re-

search Part C: Emerging Technologies, 109, 117-136. Retrieved

from https://www.sciencedirect.com/science/article/

pii/S0968090X1830812X doi: https://doi.org/10.1016/j.trc.2019.10

.011

Lei, F., Liu, X., Dai, Q., & Ling, B. (2020, 01). Shallow convolutional neural

network for image classification. SN Applied Sciences, 2. doi: 10.1007/

s42452-019-1903-4

72

http://opg.optica.org/abstract.cfm?URI=OFC-2017-Tu3L.1
http://opg.optica.org/abstract.cfm?URI=OFC-2017-Tu3L.1
https://www.sciencedirect.com/science/article/pii/S0968090X1830812X
https://www.sciencedirect.com/science/article/pii/S0968090X1830812X

National and Kapodistrian University of Athens Physics Department

Li, H., Lin, Z., Shen, X., & Brandt, J. (2015, 06). A convolutional neural network

cascade for face detection. In (p. 5325-5334). doi: 10.1109/CVPR.2015

.7299170

Lim, H.-K., Kim, J.-B., Heo, J.-S., Kim, K., Hong, Y.-G., & Han, Y.-H. (2019).

Packet-based network traffic classification using deep learning. In 2019

international conference on artificial intelligence in information and com-

munication (icaiic) (p. 046-051). doi: 10.1109/ICAIIC.2019.8669045

Lin, Y.-B., & Geigel, J. (1997). A graphical user interface design for network

simulation. Journal of Systems and Software, 36(2), 181-190. Retrieved

from https://www.sciencedirect.com/science/article/

pii/0164121295002014 doi: https://doi.org/10.1016/0164-1212(95)

00201-4

Liu, B., Zou, D., Feng, L., Feng, S., Fu, P., & Li, J. (2019). An fpga-based

cnn accelerator integrating depthwise separable convolution. Electronics,

8(3). Retrieved from https://www.mdpi.com/2079-9292/8/3/

281 doi: 10.3390/electronics8030281

Liu, H., Lu, F., Kapoor, R., Forencich, A., Voelker, G. M., Papen, G., . . . Porter,

G. (2013). Reactor: A reconfigurable packet and circuit tor switch. In 2013

ieee photonics society summer topical meeting series (p. 235-236). doi:

10.1109/PHOSST.2013.6614526

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E., Fu, C., & Berg, A. C.

(2015). SSD: single shot multibox detector. CoRR, abs/1512.02325.

Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., & Lloret, J. (2017).

Network traffic classifier with convolutional and recurrent neural networks

for internet of things. IEEE Access, 5, 18042-18050. doi: 10.1109/

ACCESS.2017.2747560

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rex-

73

https://www.sciencedirect.com/science/article/pii/0164121295002014
https://www.sciencedirect.com/science/article/pii/0164121295002014
https://www.mdpi.com/2079-9292/8/3/281
https://www.mdpi.com/2079-9292/8/3/281

National and Kapodistrian University of Athens Physics Department

ford, J., . . . Turner, J. (2008, mar). Openflow: Enabling innovation in

campus networks. , 38(2), 69–74. Retrieved from https://doi.org/

10.1145/1355734.1355746 doi: 10.1145/1355734.1355746

Mellanox-Technologies. (May 2013). Sx1024: The ideal multi-purpose

top-of-rack switch. White Paper. Retrieved from https://

network.nvidia.com/related-docs/whitepapers/SX1024

-The-Ideal-Multipurpose-Top-of-Rack-Switch.pdf

Moor, . S. I. (2013). Intel’s disaggregated server rackv. Retrieved

from https://moorinsightsstrategy.com/wp-content/

uploads/2013/08/Intels-Disagggregated-Server-Rack

-by-Moor-Insights-Strategy.pdf

Mordvintsev, A., Olah, C., & Tyka, M. (2015). Inceptionism: Going deeper into

neural networks. https://research.googleblog.com/2015/

06/inceptionism-going-deeper-into-neural.html.

Nvidia jetson nano. (2020). https://developer.nvidia.com/

embedded/jetson-nano-developer-kit.

Osborne, W. G., Luk, W., Coutinho, J. G. F., & Mencer, O. (2008, July). Re-

configurable design with clock gating. In 2008 international conference

on embedded computer systems: Architectures, modeling, and simulation

(p. 187-194). doi: 10.1109/ICSAMOS.2008.4664863

Patronas, I., Kyriakos, A., & Reisis, D. (2016). Switching functions of a data

center top-of-rack (tor). In 2016 ieee international conference on electron-

ics, circuits and systems (icecs) (p. 364-367). doi: 10.1109/ICECS.2016

.7841208

Peemen, M., Setio, A. A. A., Mesman, B., & Corporaal, H. (2013, Oct). Memory-

centric accelerator design for convolutional neural networks. In 2013 ieee

31st international conference on computer design (iccd) (p. 13-19). doi:

74

https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://network.nvidia.com/related-docs/whitepapers/SX1024-The-Ideal-Multipurpose-Top-of-Rack-Switch.pdf
https://network.nvidia.com/related-docs/whitepapers/SX1024-The-Ideal-Multipurpose-Top-of-Rack-Switch.pdf
https://network.nvidia.com/related-docs/whitepapers/SX1024-The-Ideal-Multipurpose-Top-of-Rack-Switch.pdf
https://moorinsightsstrategy.com/wp-content/uploads/2013/08/Intels-Disagggregated-Server-Rack-by-Moor-Insights-Strategy.pdf
https://moorinsightsstrategy.com/wp-content/uploads/2013/08/Intels-Disagggregated-Server-Rack-by-Moor-Insights-Strategy.pdf
https://moorinsightsstrategy.com/wp-content/uploads/2013/08/Intels-Disagggregated-Server-Rack-by-Moor-Insights-Strategy.pdf
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

National and Kapodistrian University of Athens Physics Department

10.1109/ICCD.2013.6657019

Pelcat, M., Bourrasset, C., Maggiani, L., & Berry, F. (2016, July). Design produc-

tivity of a high level synthesis compiler versus hdl. In 2016 international

conference on embedded computer systems: Architectures, modeling and

simulation (samos) (p. 140-147). doi: 10.1109/SAMOS.2016.7818341

Pitonak, R., Mucha, J., Dobis, L., Javorka, M., & Marusin, M. (2022).

Cloudsatnet-1: Fpga-based hardware-accelerated quantized cnn for satel-

lite on-board cloud coverage classification. Remote Sensing, 14(13). Re-

trieved from https://www.mdpi.com/2072-4292/14/13/3180

doi: 10.3390/rs14133180

Planet: Ships-in-satellite-imagery. (2019). https://www.kaggle.com/

rhammell/ships-in-satellite-imagery.

Rapuano, E., Meoni, G., Pacini, T., Dinelli, G., Furano, G., Giuffrida, G., &

Fanucci, L. (2021). An fpga-based hardware accelerator for cnns in-

ference on board satellites: Benchmarking with myriad 2-based solution

for the cloudscout case study. Remote Sensing, 13(8). Retrieved from

https://www.mdpi.com/2072-4292/13/8/1518 doi: 10.3390/

rs13081518

Redmon, J., Divvala, S. K., Girshick, R. B., & Farhadi, A. (2015). You only look

once: Unified, real-time object detection. CoRR, abs/1506.02640. Retrieved

from http://arxiv.org/abs/1506.02640

Ren, S., He, K., Girshick, R. B., & Sun, J. (2015). Faster R-CNN: to-

wards real-time object detection with region proposal networks. CoRR,

abs/1506.01497.

Roy, A., Zeng, H., Bagga, J., Porter, G., & Snoeren, A. C. (2015, aug). Inside the

social network’s (datacenter) network. , 45(4), 123–137. Retrieved from

https://doi.org/10.1145/2829988.2787472 doi: 10.1145/

75

https://www.mdpi.com/2072-4292/14/13/3180
\ifx\scrollmode https://www.kaggle.com/rhammell/ships-in-satellite-imagery \scrollmode https://www.kaggle.com/rhammell/ships-in-satellite-imagery
\ifx\scrollmode https://www.kaggle.com/rhammell/ships-in-satellite-imagery \scrollmode https://www.kaggle.com/rhammell/ships-in-satellite-imagery
https://www.mdpi.com/2072-4292/13/8/1518
http://arxiv.org/abs/1506.02640
https://doi.org/10.1145/2829988.2787472

National and Kapodistrian University of Athens Physics Department

2829988.2787472

Sankaradas, M., Jakkula, V., Cadambi, S., Chakradhar, S., Durdanovic, I.,

Cosatto, E., & Graf, H. P. (2009, July). A massively parallel coprocessor

for convolutional neural networks. In 2009 20th ieee international confer-

ence on application-specific systems, architectures and processors (p. 53-

60). doi: 10.1109/ASAP.2009.25

Saridis, G. M., Peng, S., Yan, Y., Aguado, A., Guo, B., Arslan, M., . . . Sime-

onidou, D. (2016). Lightness: A function-virtualizable software defined

data center network with all-optical circuit/packet switching. Journal of

Lightwave Technology, 34(7), 1618-1627. doi: 10.1109/JLT.2015.2509476

Sermanet, P., & LeCun, Y. (2011, July). Traffic sign recognition with multi-

scale convolutional networks. In The 2011 international joint conference

on neural networks (p. 2809-2813). doi: 10.1109/IJCNN.2011.6033589

Singla, A., Singh, A., Ramachandran, K., Xu, L., & Zhang, Y. (2010). Proteus:

A topology malleable data center network. In Proceedings of the 9th acm

sigcomm workshop on hot topics in networks. New York, NY, USA: Asso-

ciation for Computing Machinery. Retrieved from https://doi.org/

10.1145/1868447.1868455 doi: 10.1145/1868447.1868455

Solovyev, R. A., Kalinin, A. A., Kustov, A. G., Telpukhov, D. V., & Ruhlov, V. S.

(2018). Fpga implementation of convolutional neural networks with fixed-

point calculations. CoRR, abs/1808.09945.

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2017). Efficient processing

of deep neural networks: A tutorial and survey. Proceedings of the IEEE,

105(12), 2295-2329. doi: 10.1109/JPROC.2017.2761740

Tokas, K., Spatharakis, C., Kanakis, I., Iliadis, N., Bakopoulos, P., Avramopou-

los, H., . . . Reisis, D. (2016, June). A scalable optically-switched dat-

acenter network with multicasting. In 2016 european conference on net-

76

https://doi.org/10.1145/1868447.1868455
https://doi.org/10.1145/1868447.1868455

National and Kapodistrian University of Athens Physics Department

works and communications (eucnc) (p. 265-270). doi: 10.1109/EuCNC

.2016.7561045

Turon, M. (2005). Mote-view: a sensor network monitoring and management

tool. In The second ieee workshop on embedded networked sensors, 2005.

emnets-ii. (p. 11-17). doi: 10.1109/EMNETS.2005.1469094

Vahdat, A., Al-Fares, M., Farrington, N., Mysore, R. N., Porter, G., & Radhakr-

ishnan, S. (2010). Scale-out networking in the data center. IEEE Micro,

30(4), 29-41. doi: 10.1109/MM.2010.72

Vattikonda, B. C., Porter, G., Vahdat, A., & Snoeren, A. C. (2012). Practical tdma

for datacenter ethernet. In Proceedings of the 7th acm european conference

on computer systems (p. 225–238). New York, NY, USA: Association for

Computing Machinery. Retrieved from https://doi.org/10.1145/

2168836.2168859 doi: 10.1145/2168836.2168859

Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T. E., Kozuch,

M., & Ryan, M. (2010). C-through: Part-time optics in data centers.

In Proceedings of the acm sigcomm 2010 conference (p. 327–338). New

York, NY, USA: Association for Computing Machinery. Retrieved from

https://doi.org/10.1145/1851182.1851222 doi: 10.1145/

1851182.1851222

Wang, L., Wang, X., Tornatore, M., Kim, K. J., Kim, S. M., Kim, D.-U., . . .

Mukherjee, B. (2018). Scheduling with machine-learning-based flow de-

tection for packet-switched optical data center networks. Journal of Op-

tical Communications and Networking, 10(4), 365-375. doi: 10.1364/

JOCN.10.000365

Wang, P., Ye, F., Chen, X., & Qian, Y. (2018). Datanet: Deep learning based

encrypted network traffic classification in sdn home gateway. IEEE Access,

6, 55380-55391. doi: 10.1109/ACCESS.2018.2872430

77

https://doi.org/10.1145/2168836.2168859
https://doi.org/10.1145/2168836.2168859
https://doi.org/10.1145/1851182.1851222

National and Kapodistrian University of Athens Physics Department

Wilton, S. J. E., Ang, S.-S., & Luk, W. (2004). The impact of pipelining on energy

per operation in field-programmable gate arrays. In J. Becker, M. Platzner,

& S. Vernalde (Eds.), Field programmable logic and application (pp. 719–

728). Berlin, Heidelberg: Springer Berlin Heidelberg.

Yébenes, P., Maglione-Mathey, G., Escudero-Sahuquillo, J., García, P. J., &

Quiles, F. J. (2016). Modeling a switch architecture with virtual out-

put queues and virtual channels in hpc-systems simulators. In 2016 in-

ternational conference on high performance computing simulation (hpcs)

(p. 380-386). doi: 10.1109/HPCSim.2016.7568360

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015). Optimiz-

ing fpga-based accelerator design for deep convolutional neural networks.

In Proceedings of the 2015 acm/sigda international symposium on field-

programmable gate arrays (pp. 161–170). New York, NY, USA: ACM.

doi: 10.1145/2684746.2689060

Zhao, H., Zhang, W., Sun, H., & Xue, B. (2019, 02). Embedded deep learning

for ship detection and recognition. Future Internet, 11, 53. doi: 10.3390/

fi11020053

Zhao, Y., Gao, X., Guo, X., Liu, J., Wang, E., Mullins, R., . . . Xu, C.-Z. (2019).

Automatic generation of multi-precision multi-arithmetic cnn accelerators

for fpgas. In 2019 international conference on field-programmable technol-

ogy (icfpt) (p. 45-53). doi: 10.1109/ICFPT47387.2019.00014

Zilberman, N., Audzevich, Y., Covington, G. A., & Moore, A. W. (2014). Netfpga

sume: Toward 100 gbps as research commodity. IEEE Micro, 34(5), 32-41.

doi: 10.1109/MM.2014.61

78

A | Publications

1. Angelos Kyriakos, Elissaios-Alexios Papatheofanous, Charalampos Bezaitis,

Dionysios Reisis, ”Resources and Power Efficient FPGA Accelerators for

Real-Time Image Classification”, J. Imaging 2022, 8, 114 April 2022.

2. Vasileios Leon, Charalampos Bezaitis, George Lentaris, Dimitrios Soudris,

Dionysios Reisis, Elissaios-Alexios Papatheofanous, Angelos Kyriakos,

Aubrey Dunne, Arne Samuelsson, David Steenari, ”FPGA VPU Co-Proces-

sing in Space Applications: Development and Testing with DSP/AI Bench-

marks”, 28th IEEE International Conference on Electronics, Circuits, and

Systems (ICECS), 2021, pp. 1-5 November 2021.

3. Joaquín España Navarro, Arne Samuelsson, Henrik Gingsjö, Julius Barendt,

Aubrey Dunne, Léonie Buckley, Dionysios Reisis, Angelos Kyriakos, Elis-

saios Alexios Papatheofanous, Charalampos Bezaitis, Peter Matthijs, Juan

Pablo Ramos, David Steenari, ”High-Performance Compute Board - A Fault-

Tolerant Module For On-Board Vision Processing”, European Workshop on

On-Board Data Processing (OBDP), June, 2021.

4. Tokas, K.; Patronas, G.; Spatharakis, C.; Bakopoulos, P.; Kyriakos, A.;

Landi, G.; Zahavi, E.; Christodoulopoulos, K.; Aziz, M.; Pitwon, R.; Gal-

lico, D.; Reisis, D.; Varvarigos, E.; Avramopoulos, H., ”End-to-End Real-

Time Demonstration of the Slotted, SDN-Controlled NEPHELE Optical

Datacenter Network”, Photonics 2020, 7, 44, June 2020.

5. Angelos Kyriakos, Elissaios-Alexios Papatheofanous, Bezaitis Charalam-

pos, Evangelos Petrongonas, Dimitrios Soudris and Dionysios Reisis, ”De-

sign and Performance Comparison of CNN Accelerators based on the Intel

Movidius Myriad2 SoC and FPGA embedded prototype”, 3rd International

79

National and Kapodistrian University of Athens Physics Department

Conference on Control, Artificial Intelligence, Robotics and Optimization

(ICCAIRO), Athens, Greece, December 2019.

6. Angelos Kyriakos, Vasileios Kitsakis, Alexandros Louropoulos, Elissaios-

Alexios Papatheofanous, Ioannis Patronas, Dionysios Reisis, ”High Perfor-

mance Accelerator for CNN Applications”, 29th International Symposium

on Power and Timing Modeling, Optimization and Simulation (PATMOS),

Rhodes, Greece, July 2019.

7. A. Kyriakos, T. Tsavalos, D. Reisis, ”Management Tool for the “Nephele”

Data Center Communication Agent”, Advances in Science, Technology and

Engineering Systems Journal, vol. 3, no. 6, pp. 144-150, November 2018.

8. A. Kyriakos, I. Patronas, G. Tzimas, V. Kitsakis, D. Reisis, ”Virtual Output

Queues Architecture for High Throughput Data Center Nodes”, Advances

in Science, Technology and Engineering Systems Journal, vol. 3, no. 5, pp.

97-104, September 2018.

9. K. Tokas, C. Spatharakis, I. Patronas, P. Bakopoulos, G. Landi, K. Christo-

doulopoulos, M. Capitani, A. Kyriakos, M. Aziz, R. Pitwon, D. Gallico, D.

Reisis, E. Varvarigos, E. Zahavi, H. Avramopoulos, “Real time demonstra-

tion of an end-to-end optical datacenter network with dynamic bandwidth

allocation”, 44th European Conference on Optical Communication-ECOC,

Rome, Italy, September 2018.

10. P. Bakopoulos, K. Tokas, C. Spatharakis, I. Patronas, G. Landi, K. Christo-

doulopoulos, M. Capitani, A. Kyriakos, M. Aziz, D. Reisis, E. Varvari-

gos, E. Zahavi, H. Avramopoulos, “Optical datacenter network employing

slotted (TDMA) operation for dynamic resource allocation”, SPIE OPTO,

2018, San Francisco, California, United States, February 2018.

80

National and Kapodistrian University of Athens Physics Department

11. G. Landi, I. Patronas, K. Kontodimas, M. Aziz, K. Christodoulopoulos, A.

Kyriakos, M. Capitani, A. Hamedani, D. Reisis, E. Varvarigos, P. Bakopou-

los, H. Avramopoulos, ”SDN Control Framework with Dynamic Resource

Assignment for Slotted Optical Datacenter Networks”, 2017 Optical Fiber

Communication Conference(OFC), Los Angeles, California, USA, March

2017.

12. Ioannis Patronas, Angelos Kyriakos, Dionysios Reisis, “Switching Func-

tions of a Data Center Top-of-Rack(ToR)”, 23rd IEEE International Con-

ference on Electronics Circuits and Systems on, Monte Carlo, Monaco, De-

cember 2016.

81

	Introduction
	Thesis Outline

	Virtual Output Queues
	Introduction
	Background on the Nephele Data Center
	The Architecture of the Top-of-Rack Switch
	Virtual Output Queues
	FPGA Implementation Details

	Tools for Data Center Control
	Introduction
	Background on Nephele's Data Center Control
	The Management Tool of the Agent
	The GUI Architecture
	Usability of the Agent’s Management Tool
	Back-End of the Agent’s Management Tool

	Neural Networks on FPGA
	Introduction
	Background on CNN FPGA Accelerators
	CNN Design Approach
	CNN Design Space Exploration
	Bit-Accurate Model Development
	VHDL Blocks
	Input Block
	Convolution Block
	Pooling Block
	Vector Multiplier
	ReLU and Output Block

	Methodology for Mapping the CNN on the FPGA

	Vessel Detection FPGA Accelerator Example
	Background on Vessel Detection
	Model Architecture and Training
	Bit-Accurate Model (BAM)
	The Example CNN FPGA Accelerator
	Vessel Detection CNN FPGA Accelerator Results & Comparison
	FPGA Implementation Results
	Comparison to Edge Devices and Low Power Processors
	Comparison to Other FPGA Accelerators

	Conclusions and Future Work
	Bibliography
	Appendix Publications

