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Abstract—Open Set Recognition (OSR) is the ability of a
machine learning (ML) algorithm to classify the known and
recognize the unknown. In other words, OSR enables novelty
detection in classification algorithms. This broader approach
is critical to detect new types of attacks, including zero-days,
thereby improving the effectiveness and efficiency of various ML-
enabled mission-critical systems, such as cyber-physical, facial
recognition, spam filtering, and cyber defense systems such as
intrusion detection systems (IDS). In ML algorithms, like deep
learning (DL) classifiers, hyperparameters control the learning
process; their values affect other model parameters, such as
weights and biases, which affect the performance of OSR algo-
rithms. Moreover, OSR introduces additional parameters, mak-
ing DL classifiers bigger and training them more computationally
intensive. Determining the suitable set of hyperparameters and
parameters is a computationally expensive task. Alternative
OSR algorithms have demonstrated promising results on image
datasets, but only limited studies have been performed in the
context of IDS. This paper proposes OpenSetPerf, an empirical
investigation of three prominent OSR algorithms using a current,
real-world network intrusion detection systems (NIDS) bench-
mark dataset to discover the relationship between the DL-based
OSR algorithm’s hyperparameter values and their performance.
OpenSetperf evaluates these algorithms using quantitative studies
with widely used ML performance evaluation metrics.

I. INTRODUCTION

Network Intrusion Detection Systems (NIDS) [1] are one
of the most effective lines of defense against attacks designed
to steal information, gather cyber-intelligence [2], and tamper
with communications [3]. Machine Learning (ML) models
are highly effective in detecting cyber-attacks [4] and have
therefore been widely adopted [5].

Computer systems generate network packets to transfer in-
formation from one computer to another. Various information
contained in the packets are used to train ML models to
classify the activities performed within the network. However,
the majority of ML-based NIDS operate in a closed-world
setting [6], meaning that they are tested against classes known
at training time and are therefore unable to classify previously
unseen examples of classes correctly. The packets generated
by malicious actors performing cyber-attacks that the system
is not trained to classify, or adversarial actions specifically
created to evade ML classifiers make it possible for novel

cyber-attacks to remain undetected or their nature misjudged
due to this closed-world assumption. Effective detection sys-
tems must be capable of adapting in open-world settings,
where analysis of unknown traffic patterns is both possible
and accurate. Designing NIDS based on open-world scenarios,
where the likelihood of unknown network traffic is high, is
essential to defend against advanced cyber-attacks.

Open Set Recognition (OSR) techniques [7] have achieved
promising results in recognizing unknown inputs in various
domains, such as language modeling where OSR could help
recognize new sets of text characters [8], [9], new sets of
unknown images in computer vision [10], as well as new types
of items in object detection [11]. Therefore, they can also
be adapted to NIDS [12] to use Artificial Neural Networks
(ANN) to monitor network traffic in order to detect, and alert
users from novel network attacks. Although deep learning
(DL) based NIDS capable of OSR are acknowledged [13]
within the research community, there still exist a gap between
research and industry adoption. OSR adds an extra layer to DL
algorithms, making DL-based NIDS extensive and computa-
tionally costly. Also, DL algorithms use hyperparameters [14]
to control their learning process, which poses the challenge
of selecting the optimal range of hyperparameters values that
achieve favorable results under different scenarios.

This paper conducts an in-depth evaluation of prominent
DL-based OSR algorithms and examines the impact of fac-
tors such as hyperparameters on the performance of these
algorithms. The work constructs a DL-model with OSR ca-
pabilities and evaluates the performance of hyperparameter
needs for various OSR approaches. We modify the deep neural
network architecture’s end layer to incorporate the various
OSR implementations. This modification ensures that all OSR
algorithms are evaluated on the same inputs, base neural
network, and hyperparameters. This approach also modifies
the traditional single architecture neural network to incorporate
a multi-architecture evaluation technique comprised of a 1D
convolutional neural network and a fully-connected neural
network. In doing so, the various OSR algorithms in the
final layer can be evaluated on multiple architectures, while
maintaining the same hyperparameters.
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The specific contribution of this paper is that we show the
impact of hyperparameters on the performance of OSR algo-
rithms, enabling the identification of the hyperparameters that
are more important and significantly affect the performance of
DL-based OSR algorithms.

II. OPEN SET RECOGNITION

Open Set Recognition algorithms are ML algorithms capa-
ble of recognizing the unknown. Open sets refer to how we
wish to approach classification problems. As a simple exam-
ple, assume that we have a traditional multi-class classifier
that classifies network intrusion attacks as either Denial of
service (DOS) attacks, Web attacks, or Secure Shell (SSH)
brute-force attacks. If an attacker performs an SSH brute-force
attack, the multi-class classifier can classify this traffic as SSH
Bruteforce. Any traffic fed to the multi-class classifier will
only fall between those closed sets of three classes previously
mentioned due to the closed set nature of traditional ML
models (See Figure 1-A). On the other hand, when we give the
classifier traffic related to a buffer overflow attack, which is
an attack aiming to run malicious codes to gain unauthorized
access to corporate systems, it will not belong to any of the
three classes. Despite not belonging to any classes, the model
still classifies this traffic as a DOS or a Web attack, therefore,
the classifier will be faulty. Ideally, an OSR algorithm will
enable this model to label the traffic as unknown, as it is not
part of the trained classes. OSR modifies the output layer of
the deep neural network to allow the prediction of unknown
classes (Figure 1-B).

Opening a machine learning algorithm to involve unknowns
introduces additional issues. For example, unbounded open
space problem [6] creates infinite possibilities of input space
via which classification input can arise.

A. Unbounded Open Space Risk

An Open Space is an area far from the training examples.
A traditional classifier without open space awareness is bound
to the open space risk and will classify everything, including
unknown items ”???”. We observe an open space risk when
input data found anywhere within a particular open space are
classified as one of the defined known classes even if they
don’t necessarily belong to that class. Classification algorithms
always classify inputs into one of their predefined classes.
Since there is no boundary to where the input vectors need to
belong to be classified under a specific class, the input space
continues forever. Let f be a measurable function that can
recognize a set of inputs X ∈ {X1, X2, ..., XN} under known
classes Ĉ. Let UĈ be the union of all balls with radius r

having all training data for all known input examples x ∈ Ĉ,
and let O be a certain open space where O ⊆ X − UĈ . The
set of class Ĉ with an open space risk OR(f) is represented
as :

OR(f) =

∫
O
fC(x) dx∫

UĈ
fĈ dx

(1)

Web
Attack

DOS
attack

DOS
attack

Web
Attack

SSH
Bruteforce

Attack

A. Multi-class closed set
recognition of NIDS

B. Multi-class open set
recognition of NIDS

??

??

?? ??

??

Fig. 1. Multi-class classification of both open set and closed set recognition
using NIDS benchmark data-set

where open space risk can be defined as a measure of
positively labeled open space relative to an overall measure
of positively labeled space.

The unbounded nature of the open space risk problem can
be solved using the compact abating probability model (CAP).
We threshold the CAP to create a bounded open space. CAP
models demonstrated value in novelty, anomaly, and outlier
detection [6].

B. Non-OSR Algorithms

Machine learning is a branch of artificial intelligence (AI)
that uses data and algorithms to mimic how the human brain
learns and recognizes items. Deep learning is a particular
form of machine learning in which an algorithm with multiple
layers of artificial neurons learns on a vast dataset. An artificial
neuron is a mathematical function that simulates the behavior
of biological neurons, a neural network. An artificial neural
network consists of these artificial neurons. When we add
multiple layers of neural networks, we build a deep neural
network. The output layer is a layer of the neural network that
makes the final decision. It often does this by an algorithm
called Softmax, representing the final layer that determines
whether an input belongs to a specific class or not. The typical
way Softmax accomplishes this is by normalizing the output
of a deep neural network logits, or the final layer before
the activation function is applied to a probability distribution
over a set of predicted output classes. The Softmax output
layer determines the confidence of an output specifically from
the Softmax score, where a higher score indicates greater
confidence of belonging to the class.

Let the output of a Softmax be the vector V⃗ , which
represents the probability of each possible outcome or class;
the vector x⃗ represents the input to a Softmax function Sf .
x⃗i is the ith element of the input vector with values between
−∞ and +∞ and N is the number of possible outcomes or
classes. Mathematically, Softmax is represented as,
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Sf (x⃗i) =
ex⃗i∑n
k=1 e

y⃗j
(2)

where
∑

ey⃗j is a normalization term that ensures that values
from the output vector Sf (x⃗i) sum to 1 for the ith class and
that each ith class is in the range 0 and 1, making up a proper
probability distribution.

Softmax has infinite open set risk or infinite area, where
something can be classified as one of the known classes. It
has this risk because it is still just a set of lines with an
infinite area on either side. Since Softmax does not solve
the open space risk problem, DL algorithms using softmax
are not considered to be OSR algorithms. However, there are
numerous algorithms that solve the open space risk problems
in various ways.

C. OSR Algorithms

1) OpenMax : The OpenMax concept first appeared in
Abendale et al. [15], where the authors present a method
for adapting deep networks for open set recognition by in-
troducing a new model layer, OpenMax, which estimates
the probability that an input belongs to an unknown class.
A critical element of estimating the unknown probability is
adapting Meta-Recognition concepts to the penultimate layer
of the network’s activation patterns. OpenMax reduces the
number of obvious errors made by a deep network by rejecting
“fooling” and unrelated images. An open set recognition
solution is provided formally by the OpenMax concept, which
achieves bounded open space risks.

OpenMax is an improvement of Softmax, enabling it to
recognize unknown inputs. Assume we have a set of classes
i = 1, 2, 3, ..., N possessing multiple data points in which each
class is represented as a point, a mean activation vector (MAV)
with the mean µi, computed over only the correctly classified
training example. They measure the distance between the
MAV and an input sample. The lack of uniformity in the
activation vector (AV) for different classes presents a greater
challenge; hence, OpenMax uses a per-class meta-recognition
model. OpenMax uses libMR [16] library to provides core
MetaRecognition and Weibull fitting functionality, FitHigh.
MetaRecongition is the ability of a machine learning algorithm
to be aware of its learning process. The Weibull fitting func-
tion, in the form of Weibull cumulative distribution function
(CDF) probability, W (t) = 1−e−( t

λ )k , where λ and k are the
scale and shape parameters respectively. The Weibull function
provides a flexible way to detect outliers in the input data
by fitting on the largest distances between all correct positive
training instances and the associated µi. This results in a
parameter ρi, a simple rejection model used to estimate the
probability of input being an outlier with respect to class i.

2) Energy-based Out-of-distribution Detection: Weitang et
al. [17] proposed an energy-based framework for out-of-
distribution (OOD) detection, demonstrating that energy scores
distinguish in- and out-of-distribution samples better than
traditional softmax scores. Energy scores are less sensitive to
overconfidence than softmax confidence scores because they

are theoretically aligned with the probability density of the
inputs. Using this framework, energy can be flexibly used as
an objective scoring function for pre-trained neural classifiers
and as a trainable cost function to shape an energy surface for
OOD detection.

To understand how OOD works, consider a discriminative
neural classifier f(x) : RD → RK , where an input x ∈ RD

maps K real-valued digits known as logits. The softmax func-
tion, P (y|x) = efy(x)/T∑k

i efi(x)/T uses logits to derive a categorical

distribution. Where fy(x) denotes the yth index of f(x), i.e.
the logit for the yth class label and T is the temperature
parameter. For a given input x, we can define the free energy
E(x, f) over x ∈ RD parameterized by the neural network
f(x) as follows: E(x; f) = −T.log

∑k
i e

fi(x)/T

III. PERFORMANCE ANALYSIS OF DEEP-LEARNING
BASED OPENSET RECOGNITION ALGORITHMS

In this section, we define our approach to evaluate the
performance of OSR algorithms on NIDS benchmark datasets,
we detail the experimental setup, the different evaluation
metrics used to measure the performance of the different
algorithms, the dataset used, and the techniques used to fix
data imbalances.

A. Evaluation Architecture

We propose an architecture which evaluates various OSR
algorithms while maintaining the various hyperparameters.
This is done by modifying the traditional single architecture
neural network to incorporate a multi-architecture evaluation
technique comprising a 1D convolutional neural network and a
fully-connected neural network. By doing so, the various OSR
algorithms at the end layer can be evaluated on multiple archi-
tectures while preserving the same hyperparameters. In order
to maintain a single configuration for all OSR algorithms, we
create a configuration file which can be tuned to adapt with
the variations in hyperparameter settings. Figure 3 shows a
simplified representation of the architecture used for our test.
The figure contains an input, which is the network intrusion
detection dataset fed to the DL-algorithm. After the input layer,
the neural network possesses N − 1 layers, and the N th layer
contains the OSR algorithms. The predicted outputs for the
various algorithms are collected and evaluated. Our code and
reproducibility instructions are open-sourced 1.

An OSR algorithm classifies the input NIDS benchmark
dataset into either known or unknown attack classes. Evalua-
tion metrics are used to assess the algorithm’s ability to detect
unknown inputs. According to Fairuz et al. [18], accuracy,
precision, false alarm rate (FAR), and recall are the most
widely used metrics for evaluating ML models. In this study,
accuracy, precision, recall, as well as F1-score are calculated
for the various OSR algorithms. A single metric cannot objec-
tively measure [19] an algorithm. For instance, consider the
difference between accuracy and false positives (FP). A good
accuracy rating is based on the number of correctly classified

1https://github.com/bayegaspard/OpenSetPerf.git
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Fig. 3. Evaluation architecture for DL based OSR algorithms using NIDS
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samples, while a good FP rating is based on the number of
false alarms. Imagine a dataset where most examples fall into
the positive category, and only a few fall into the negative
category. Naive classifiers that classify all samples as positive
would have a low FP but a good accuracy score.

1) Recall and Precision: Equation 3 represents the Recall,
which is the proportion of all true positive (TP) classifica-
tions compared to the sum of all true positives and false
negatives (FN). For NIDS, it is the proportion of samples
correctly classified as malignant to those that are malignant
[1]. Precision [1], equation 4, is the ratio describing the correct
predictions, TP with respect to all positive predictions, TP and
False Positive (FP).

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

2) F1 − score: F1 − score [20] of a model is defined
as the harmonic mean between its precision and recall. The
F1 − score is particularly useful when there is a heavy class
imbalance and when false positives and false negatives have

different costs. For example, when dealing with imbalanced
data, the F1 − score is a more accurate metric than accuracy.
As a rule of thumb, an F1−score of 1.0 indicates a successful
classifier, while 0 indicates a failed one.

F1 − score = 2× Precision× recall

precision+ recall
(5)

3) Accuracy: Accuracy measures how many samples were
correctly classified compared to how many samples were
totaled. It is only appropriate to use the metric when the dataset
is balanced. Leevy et al. [21] and Ahmad et al. [22] do not
recommend using accuracy for NIDS due to their imbalanced
nature.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

B. Dataset
This work uses a CSV (comma separated values) dataset

from the popular NIDS benchmark PCAP (packet capture)
format CIC (Canadian Institude of Cybersecurity) IDS 2017
[23] dataset. Generally, network traffic is captured and stored
using PCAP files. The CSV dataset is generated using the
Payload Byte [24] tool. Unlike other packet extraction tools,
this tool enables the extraction and labeling of network packet
features, including the payloads. A payload is the section of
a network packet that carries the data during communication.
Attackers often use this section to hide malware or malicious
code. Capturing information about the payload is necessary to
create a complete real-world NIDS dataset.

The dataset contains 1, 410, 255 datapoints under 15 dif-
ferent classes. Each class is composed of multiple packets,
all classified under benign and attack network traffic. Each
packet has eight features, subdivided into packet header and
packet data. The packet header contains information used by
the destination computer to decode the packet and extract
the payload. The packet header includes source IP (internet
protocol), destination IP, source port, destination port, and pro-
tocol (user data protocol or transmission control protocol). The
packet data carries the payload, which is the data, represented
in bytes transmitted over the network.
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IV. RESULTS

This section illustrates the performance of three prevalent
OSR algorithms on the NIDS benchmark dataset. The test was
conducted on various hyperparameters. From the conducted
experiments, we realized that some hyperparamters such as the
learning rates, batch size and percentage of unknowns impacts
the various OSR algorithms meanwhile the number of epochs
have limited effect on OSR algorithms.

Fig 4 shows a graph of the number of epochs versus perfor-
mance shown as F1− score, recall, precision, and accuracy.
The number of epochs represents the number of rounds the
algorithms receive training data. As we vary the number of
epochs (10, 50, 100), the performance of Softmax increases but
those of Energy and OpenMax are not affected sifnificantly.
In every round, OSR algorithms only detect unknown patterns
rather than trying to have better outcomes per more rounds.
Hence, more rounds still facilitate fairly constant the detection
of unknowns.

Fig 5 shows the variations of learning rate versus the
performance captured as F1 − score, recall, precision, and
accuracy. The learning rate determines the algorithm’s learning
step size. As we vary the learning rate (0.01, 0.05, 0.1), we
can see that the F1-Score of all three algorithms decrease.
Even though we have many performance measures for the
unbalanced dataset, F1-score is often the best performance
indicator in some instances because it captures the bigger
picture. The decrease is because the algorithm starts taking
wider steps and fails to converge at the local minimum.

The batch size is the number of samples processed before a
model update. Fig 6 represents the variation of batch sizes
versus the algorithm’s performance, such as F1 − score,
recall, precision, and accuracy, exhibiting slight changes in
performance as we vary the size of batches from 10, 50,
100. This is primarily because as the size of data changes,
the number of unknown data per batch also slightly changes,
leading to a change in performance. In this graph, Sofmax
shows some performance impacts due to its ability to classify
most data samples within a batch.

Fig 7 shows the percentage of unknowns versus the per-
formance, represented as F1 − score, recall, precision, and
accuracy. The graph shows an increase in the percentage of
unknowns, i.e., the number of classes not present at training
time, from 26%, 40%, and 66% leading to an increase in the
performance of OSR algorithms. However, we can also see that
Softmax performance reduces as we increase the percentage of
unknowns. This is because Softmax is not inherently designed
to understand unknowns, but OSR algorithms are developed
to identify unknowns.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed an architecture to evaluate DL-
based OSR algorithms on the NIDS, determining which hy-
perparameters had the highest impact. As our experimentation
is ongoing, we have observed the following trends in our
preliminary results. Energy-based OOD and OpenMax demon-
strate superior capabilities in identifying unknowns when

Fig. 4. Number of epochs

Fig. 5. Learning rates

Fig. 6. Batch size
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Fig. 7. Percentages of Unknonws

compared to SoftMax. Notably, Energy-based outperforms
both OpenMax and Softmax with regards to the percentage of
unknowns, while OpenMax exhibits better performance with
larger batch sizes. Conversely, Softmax performs best with
a lower percentage of unknowns as expected. Furthermore,
our analysis suggests that OpenMax and Energy have similar
impacts on learning rates.

In future work, we plan to conduct more detailed studies
on the performance of various OSR algorithms in order to be
able to increase resilience of NIDS in the presence of unknown
network traffic. Automated hyperparameter tuning and on-the-
go algorithm selection based on experienced network traffic
when the NIDS performance start to drop will contribute to
the research in the field of resilience of NIDS. We will further
perform research on generative models to identify strengths
and weaknesses of resilient NIDS.
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