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Abstract

Over the past decades, industrial revolutions hinted to future fully automated
scenarios, where humans would have taken on the role of mere supervisors. However,
the need for mass product customization, rather than mass production, has led to a
new concept of production line, where robots share workspaces with humans. The
solutions envisaged by Industry 5.0 are human-centred and flexible manufacturing
setups, where fixed-base and mobile robots collaborate with humans. This interaction
has yet to become smooth given the difference in cognitive capabilities. Hence, to
teach robots the correct and safe behaviour during collaboration, artificial intelligence
can be leveraged to enable operation recognition and allow for learning.

In order to implement a robot able to cooperate and collaborate with human
operators, an Autonomous Mobile Robot (AMR) demonstrator has been imagined as
a way to support an Automated Guided Vehicle (AGV) network, serving as a meta-
sensor, i.e., a distributed sensor. The meta-sensor AMR is made able to detect human
obstacles, so as to overcome them conservatively. When needed, the meta-sensor
AMR is capable of following a supervised safe path, using a modified version of the
A* global planner, triggering an online global-plan re-computation when a human is
detected. Then, with the aim of enabling robot learning to improve collaboration, the
AMR has been upgraded to be able to monitor the scene where the human is working,
to collect data on the operator’s 2D motion as map images, used for training a deep
neural network to learn how to recognize performed operations. Lastly, the role of
fixed-base manipulators have been approached through an interface to supervise the
execution of a desired assembly task, along with a proposal for exploiting simulation
to improve interactive imitation learning (IIL).

These contributions feature the integration of open source tools, libraries and
data, to tackle the challenge of improving collaborative manufacturing tasks. In
particular, the provided solutions aim at upgrading existing networks of AGVs
with new technologies represented by the meta-sensor AMRs. Also, a data-driven
framework, able to recognize human operations from 2D images featuring the human
2D motion, demonstrates that minimal but useful results can be achieved even in
case of data scarcity, exploiting data that is independent of the specific features of
the operator. Finally, the concept research idea making a fixed-based cobot exploit
simulation to regulate interactive demonstrations in IIL, represents an effort towards
less demanding learning processes for the user, in terms of time and expertise.
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Preface

It is undeniable that the development of humanity and technology has been closely
connected for decades. What was important before is no longer so. This is be-
cause, given technological support, some aspects are now entrusted to machines
and automation. In particular, in the manufacturing context, mass production is no
longer suitable for the market demand, fueled by a new awareness and sensitivity to
sustainability. Indeed, overproduction and current industries and production systems
have proved to be not sustainable and seen as responsible for environmental degrada-
tion [1]. Nevertheless, what has deeply transformed the structure of production lines
is today’s market demand in developed countries, which shifted its interest from
mass production to products on request.

When it comes to product on request, the optimization parameters differ as
the focus shifts towards quality optimization by leveraging human expertise (often
experience-based) at the cost of production efficiency, particularly in terms of time.
In addition, the COVID-19 crisis has resulted in many Small-and Medium-sized
Enterprises (SMEs) incurring losses, making them more vulnerable to slow recovery
and less resilient to declining demand than big players [2]. The custom product
production vision can aid SMEs and support the revival of local businesses. In
particular, given the limited resources of SMEs, an ideal solution would prioritize
enhancing human manual operations systematically by collaborating with robots and
utilizing Artificial Intelligence (AI) algorithms to enhance overall efficiency instead
of optimizing machines for custom production.

The concept of products on request goes beyond simple customization, as it
involves specific design, construction, and testing procedures for each individual
product, leading to higher costs and longer manufacturing times than standard mass-
produced products. Mass production offers lower costs but higher risks, while custom
manufacturing offers greater sales security but requires higher labor costs due to the
need for human operators with unique cognitive abilities. Although certain tasks
require human intelligence and cannot be replaced by AI, automation can reduce the
need for human involvement in the production process, minimizing human error [3].
However, the challenge of custom manufacturing is to achieve the same level of cost
and production time as mass production while meeting the specific needs of each
product. To standardize custom manufacturing production, collaborative robotics can
be a key enabler, leading to the evolution of a smart custom manufacturing system.
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Therefore, being the human foreseen to be a relevant and irreplaceable component
of the flexible production line, increasing focus is put on the perception of personal
well-being in the workplace, leading to new requirements for applications involving
humans, in terms of safety and health. To be a resilient society we need to foresee
how the societal changes will undoubtedly affect the production system paradigms
to be prepared to comply with the new needs, where for sure a lot of attention will be
dedicated to the human comfort, independently of the worker specific features. This
implies that research should aim at unbiased solutions: inclusive, gender neutral
and body type neutral, more in general intersectional solutions are key as, more and
more, human operators will see further representation. Research is slowly getting
sensitive to the issue, e.g., authors in [4] borrow feminist principles to guide the
design of more ethical human-robot interaction.

This manuscripts will walk the reader through the evolution that industrial robots,
namely fixed-base and mobile robots, underwent during the industrial revolutions.
The research works I contributed to will accompany the reader through a journey from
“dumb” automated machines, through cooperation in human-shared workspaces, up
to collaboration, and eventually robot learning. Interaction of humans and robots
has yet to become smooth given the difference in cognitive capabilities. To achieve
proactive human-robot collaboration (HRC), the two must interact as a team. As
such, communication, interpretation, safe cooperation are important aspects. To
teach robots the correct and safe behaviour during collaboration, AI can be leveraged
to enable correct surroundings interpretations and allow for learning.

Robots slowly learn to behave as human teammates,
possibly exploiting unbiased AI-based solutions to
improve HRC in flexible manufacturing applications.

This thesis seeks to provide steps forward to answer the following questions:

• How can the planning and navigation of an autonomous mobile robot be made
safe when working in cooperation or collaboration with human workers?

• How can we teach robots how to behave? To this aim, how to overcome the
cognitive mismatch to improve collaborative interactions?

• Is there a trade-off between complex/data-hungry solutions and sustainable
but feasible minimal ones, exploiting unbiased data?

A content roadmap for the reader

This section guides the reader through the thesis contents, so as to give a high level
overview of how the reported contributions are linked, complemented by some
motivation on the manuscript structure.
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The research focused on the evolution of differential drive mobile robots from
human-free to human-shared workspace. In particular, to implement a robot able
to cooperate and collaborate with human operators, an Autonomous Mobile Robot
(AMR) demonstrator has been made capable of:

• representing a support for Automated Guided Vehicle (AGV) networks [5]
• following a supervised safe path generated exploiting attractive curves and

barrier functions, using a modified version of the A∗ global planner [6]
• detecting human obstacles, through a state-of-the-art neural network-based

object detection algorithm, so as to overcome them conservatively [7]
• triggering the online re-computation of global plans to follow the safe curve

when a human is detected [8]

Then, with the aim of enabling robot learning to improve collaboration the AMR has
been upgraded to be able to:

• monitor the scene where the human is working [9]
• collect data on the operator’s 2D motion as map images [10] (as an outcome

after investigation of the main Human-Robot Perception methods [11])
• use map images for training a deep neural network to learn how to recognize

performed operations [12]

Lastly, also the evolution of fixed-based manipulator collaborative robots (cobots)
have been investigated. In particular the role of manipulators have been approached
through:

• An interface to supervise a cobot to execute a desired sub-task [13]
• A concept proposal for exploiting simulation to improve interactive imitation

learning 1.

Some other works, not mentioned above, namely [14], [15], and [16], are con-
tributions I have co-authored, in the development of which I was not on the front
lines. Nevertheless, all works have been referenced in this manuscript, although with
variable emphasis. In particular, works have been arranged based on their content
level of generality, relevance within the thesis topic, degree of involvement and
their technology readiness level (TRL), which are used to measure the advancement
and maturity of a technology [17]. In fact, according to definitions in [18], the
reported research works range from basic principles observations (TRL 1), to proofs
of concept (TRL 3), up to experimental validation through laboratory demonstrators,
i.e., a maximum of TRL 4, as expected for academic research. For a direct mapping
of thesis sections to research papers, refer to Table 1.

1submitted as F. Sibona, J. Luijkx, B. van der Heijden, L. Ferranti, and M. Indri, “EVal-
ueAction: a proposal for policy evaluation in simulation to support interactive imitation
learning,” in IEEE International Conference on Industrial Informatics (INDIN23).
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Table 1 Published co-authored research works and where to find them.

Research paper Ref. Section/s

Smart sensors applications for a new paradigm of a production line [5] 1 / 2.1
Supervised global path planning for mobile robots with obstacle
avoidance

[6] 1.2.1

Sensor data fusion for smart AMRs in human-shared industrial
workspaces

[7] 2.1.3

Online supervised global path planning for AMRs with human-
obstacle avoidance

[8] 2.2.1

Sen3Bot Net: a meta-sensors network to enable smart factories
implementation

[9] 2.1.2

Data-driven framework to improve collaborative human-robot flexi-
ble manufacturing applications

[10] 3.1

Human-Robot Perception in Industrial Environments: A Survey [11] 1.1 / 2.2.2
PoinTap system: a human-robot interface to enable remotely con-
trolled tasks

[13] 3.2.1

A framework for safe and intuitive human-robot interaction for
assistant robotics

[14] 3.1.2

Dynamic Path Planning of a mobile robot adopting a costmap layer
approach in ROS2

[15] 1.2.3

How to improve human-robot collaborative applications through
operation recognition based on human 2D motion

[12] 3.1.1

Path planning in formation and collision avoidance for multi-agent
systems

[16] 1.2.2

A simulation approach to support interactive imitation learning In review 3.2.2

About the above contributions, the following is worth mentioning:

• The work developed in [12], in addition to being presented at the IECON
2022 conference – 48th Annual Conference of the IEEE Industrial Electronics
Society, in Brussels in October 2022, has been presented in a 3 minutes video
(available at [19]), for participation at the IES-SYPA (IES Student and Young
Professionals Paper Assistance Program) 3M Video contest 2022. As a winner
of the IES-SYPA 3M Video contest, my participation to the conference has
been fully funded by IES. Moreover, after my 3-minutes pitch presentation
during the conference, the video has been selected as one of the best 5 out of
44 winning videos, for higher financial assistance.

• The research presented in Section 3.2.2, has been investigated during my
visiting at TU Delft, from September 2022 to January 2023, at the Reliable
Robot Control (R2C) Lab within the Cognitive Robotics (CoR) Department,
supervised by Prof. Laura Ferranti. The preliminary research work brought on
there led to a concept idea introduced in a paper I co-authored, currently under
review, submitted to the INDIN 2023 IEEE conference.

The remainder of the manuscript is organized as follows. Chapter 1 first gives
a general overview of the evolution of robots across industrial revolutions, then in
Section 1.1 the main approaches for HRP are presented (Section 1.1.1), with focus
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on the methods and sensors used in industry (Section 1.1.2). Then, Section 1.2
directs the attention towards industrial mobile robots; in particular, Section 1.2.1
presents a supervised global path planning for mobile robots with obstacle avoidance,
Section 1.2.2 briefly reports the results obtained for an approach for path planning in
formation and collision avoidance for multi-agent systems, and Section 1.2.3 outlines
a dynamic path planning method based on costmap layers in ROS2.

Chapter 2 core is the mobile robot navigation metamorphosis to adapt to human
presence. First a proof of concept (POC) for a network of AMRs is provided (Section
2.1), introducing the concept of meta-sensor and Sen3Bot (Section 2.1.1). The
working principles of such network are outlined in Section 2.1.2, while a preliminary
working implementation of a Sen3Bot is provided in Section 2.1.3. The application
of the Sen3Bot are explored in Section 2.2. Namely, the Sen3Bot capabilities are
used to update online the previously introduced supervised global path planning
algorithm (Section 2.2.1), and to be used as the base for a POC Sen3Cobot, described
in Section 2.2.2.

Chapter 3 showcases the steps towards achieving robots that learn to behave in
the human presence. Specifically, Section 3.1 introduces a data-driven framework
designed to improve collaborative human-robot flexible manufacturing applications,
whose implementation -exploiting a Sen3CoBot that monitors and recognizes hu-
man operations- is detailed in Section 3.1.1, along with a POC Sen3Cobot mobile
manipulator (Section 3.1.2). Furthermore, Section 3.2 briefly describes the evolution
of industrial fixed-base manipulator from automated production machines to human
collaborators. Section 3.2.1 briefly reports a HRI aiming at implementing a super-
vised collaborative assembly task, then a concept idea for exploiting simulation for
improving interactive imitation learning is presented in Section 3.2.2.

Finally, the Conclusions of this manuscript summarize the main results that the
research brought on in the last three years led to, along with lessons learned and
open issues, with relative research challenges and opportunities. Methods and Tools
can be found as Appendix A.

Curiosities

• The thesis’ and chapters’ covers have been generated using AI. In fact, I have fed the title of the
thesis and of each chapter to the Text To Image - AI Image Generator API available
at https://deepai.org/, exploiting the Old Drawing Generator API for image styling.
Following several image generations, the final images have been selected to my taste. It was
interesting to note how for the thesis’ cover and Chapter 3 cover, I had to force the input text
in order to obtain images featuring a woman: yet another demonstration of the data bias in big
data AI – the model apparently has been trained over (supposedly online) data that associate a
context containing a robot straight off to a male gender human.

• In the last publications I co-authored, when possible, I always have tried to include a female
user/operator in the paper’s figures, because I strongly believe in the power of representation
and love the idea of reinforcing in female students/researchers the feeling that they belong
to STEM (Science, technology, engineering, and mathematics) topics. Images featuring a
woman working with robots can be found in contributions [7], [9], [10], [11], [12], and [13].



Chapter 1
Robots in industry: from cages to

autonomous navigation
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I
NDUSTRIAL development has undergone several revolutions, strictly
connected to the technological and social development of humankind.
In fact, all of the industrial revolutions are, in a way or another, linked
to a certain degree of automation introduced by the use of machines.

The first industrial revolution (1760-1840) saw the transition from manual labor
to the use of steam engine, which powered machinery. This led to a transformation in
manufacturing and transportation industries, disrupting the way goods were produced
and distributed. This cooperation between humans and machines was boosted during
the second industrial revolution (1870-1914) with the use of electricity and the
introduction of the assembly line, representing a turning point also from the social
point of view, as mass production became possible at that time.

Since the start of the third industrial revolution, also known as the digital rev-
olution, in the 60s, industries exploited electronics and information technology to
automate production, making use of two major inventions: programmable logic
controllers (PLCs) and robot manipulators. Furthermore, the widespread use of
computers and the Internet changed the way that people communicated and accessed
information as well as their perception of automated machines in the industrial and
everyday contexts.

The integration of these technologies and of further advanced technologies,
such as artificial intelligence, the Internet of Things (IoT), and robotics into various
industries and areas of society has enabled new forms of automation and connectivity,
and has had a profound impact on the way that goods are now produced, services
are provided, and people live and work. The possibility of managing big amounts
of data at low cost, together with the almost infinite data processing capacity, is
leading to industrial plants free from classical, rigid constraints, which are no more
considered as insurmountable. Furthermore, the need to transfer huge quantities of
information in a fast and reliable way, demands advanced communication methods,
drawing extensive research interest towards forefront wireless networks able to solve
performance requirements issues and to meet the increasingly stringent requirements
of specific industrial applications [20].

Hence, this fourth revolution can be framed as the result of both (i) technology
push, thanks to the advances in enabling technologies allowing for new frameworks
and devices, and (ii) market pull as new technologies and paradigms have been
dictated by the need for a flexible setup of production lines. This led to a whole new
industry concept known as Industry 4.0. The term was first introduced in 2011 in a
high-tech strategy by the German government, and popularized in 2015 by Klaus
Schwab, executive chairman of the World Economic Forum [21].
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New paradigms of production lines are being implemented and are in the process
of being integrated, characterized by a strict collaboration between humans and
robots, and by a high degree of flexibility. Various examples of ideal systems
projected over the next decade can be found, e.g., the Multi-silhouette production
line by PSA [22], as well as pilot plants, like the one proposed by Kuka in [23],
based on the matrix production paradigm, which represents a recent effort to break
down the conventional linked production line into standardized and categorized
manufacturing cells, placed along a grid layout.

Due to a change in market demand, the big challenge has now become the
production of custom versions of specific products, in quantities that may change
on demand, relying on an enhanced flexibility of the production lines [24], [25].
The increasing demand on customized products requires the combined efforts of
intelligent manufacturing systems along with unique human skills, such as creativity,
complex reasoning and socio-emotional intelligence [26]. The resulting manufactur-
ing system has high-precision automation and flexible infrastructure able to react
to dynamic needs, thanks to the synergy between intelligent machines and humans
with flexible problem-solver and decision-maker skills. In fact, even though the 4th
industrial revolution is still ongoing, research is gathering more and more awareness
of some deep changes that are going to shape the whole perspective of automation,
fostered by the quick evolution of AI-based solutions and digital technologies in
the recent years. Moreover, the necessity to improve the productivity without pe-
nalizing human operators in the manufacturing industry is becoming a challenge.
Instead of implementing the Industry 4.0 solutions, where all the tasks are automated
while ignoring the human during the process optimization, it is possible to adopt the
solutions envisaged in the so-called Industry 5.0 [27], where the factory is human-
centered, meaning that the autonomous robots are perceptive and aware about human
intentions. Human activity recognition is widely investigated, leveraging sensors for
multiple modalities to enable specific applications [28]. In the Industry 5.0 context,
the robot is able to actively observe and learn patterns from human workers using
machine learning algorithms, so as to predict the human actions and attempt to help.
With these features, it is possible to enable mass customization instead of mass
production [29]. A timeline of the industrial revolutions, along with their relative
main features, can be see in Figure 1.1.

Fig. 1.1 Industrial Revolutions timeline [30].
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All the envisaged improvements, leading to the smart Factories of the Future,
have sensors and their proper usage as fundamental pillars [31]. The desired more
adaptive production lines and the whole product life cycle have to be supported by
a smart choice of heterogeneous sensors and/or a heterogeneous choice of smart
sensors, through which not only the final goals can be achieved, but also a smooth
transition can be set up from the current industrial standards toward a flexible
and human-centered industrial scenario. In particular, robot perception can be
implemented with several levels of detail and understanding, depending on the
application and on the environment the robot has to operate in. Hence it is clear the
importance of how the robot perceives its surroundings, as this affects how the robot
acts and behaves.

1.1 The importance of perception

The perception ability is necessary for robots to perform tasks requiring an interaction
with the environment, e.g., motion planning, localization, and object recognition.
For example, robots can use visual sensors to inspect products for defects or use
force sensors to detect the position and orientation of parts during assembly. In fact,
in industrial settings, perception has a major role in several applications, such as
quality control, and assembly. By accurately perceiving their surroundings, robots
can perform these tasks more efficiently, accurately, and safely.

Perception not only is applicable to manipulators or mobile platforms but also
to industrial workstations. Enhancing the perception capabilities of a workstation
allows for innovative applications. The original combination of multiple sensors
and actuators together with human contribution is another example of innovation
and application of the 4.0 methodologies to today’s industry. Current trends are
aimed at leading the quality and repeatability levels of manual stations closer to
automated cell standards. Several solutions are available on the market, possibly
given by a unique, complete station or by sub-systems integrated to obtain a sta-
tion. Sarissa Assistance Systems, produced by Sarissa GmbH [32] is made up by
ultrasonic emitters and receivers that allow to locate the position of the tool in a
three-dimensional environment. The receiver collects the data and sends it to a
Box-PC via an USB connection. The Box-PC elaborates the information from the
receiver and sends the xyz-coordinates to a PLC controller or a PC controller via
Ethernet TCP/IP connection. Der Assistent, produced by ULIXES Robotersysteme
GmbH [33] mainly consists in a projection system that highlights the process steps
through graphics, photos and videos, projecting directly into the processing area and
into a 3D vision system that controls the correct sequence of operations. Light Guide
Systems, produced by OPS Solutions [34] is composed by colour-coded, animated
light beams and visual prompts in the form of text, symbols, graphics, blueprints or
video projected on any workstation or off-line training area. This solution eliminates
the operator reliance on printed work instructions, computer screens or memory for
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assembly guidance. The main points of comparison among the different solutions
found on the market are summarized in Table 1.1.

Table 1.1 Comparison of relevant manual station digitalization solutions.

Feature Sarissa OPS Solution Ulixes
Lights False 2D Beamer 2D Beamer
Sensors 3D Ultrasound False 3D Vision
Tool Tracking 3D Ultrasound False False
Gesture/Speech Recognition False False False/True

The SMARTMAN 4.0 workstation

In [5], thanks to a strict academia-industry collaboration between Politecnico di
Torino and COMAU S.p.A., we investigated different aspects of the described
industrial renewing process, aiming for a new paradigm of a production line. The
proposed SMARTMAN 4.0 solution, showcased how digital systems can be used
to support a worker during the execution of his/her activities, in order to optimize,
monitor and control the quality of the work in a complete way. Objectives of
the SMARTMAN 4.0 project were both the streamlining of the personnel training
phases and the maintenance of a constant and high quality of the produced objects.
Streamlining staff training has a strong impact in the case of small productions,
concentrated in time or that change very quickly. In these cases, reducing the
time devoted to pre-production stages (e.g., for staff training) can be a significant
advantage, with a view to minimize costs for small production series.

With the proposed solution, the quality is guaranteed through a constant and
step-by-step supervision of the entire production process. This objective is achieved
by a strict control of sequences and localization in space and time of the activities
of the operator, e.g., in manual assembly stations, logistic picking stations, or more
generally whenever there is a manual station where a worker has to perform a process
that needs to be verified. The employed elements can be collected in different clusters:
a System Control Unit, a Pointing System and a Sensors Remote Unit.

The System Control Unit is basically the PC, on which the necessary algorithms
are implemented and which is responsible for supporting the graphical interface to
the operator. The Pointing System, exploiting a laser pointing system produced by
Z-LASER [35], is mainly dedicated to indicate to the operator where it is needed
to perform an operation and to return a visual feedback of the execution status,
ensuring projections on non-coplanar surfaces without distortions, and the possibility
of automatically re-adjusting the reference frame used for the projections, in case of
processes or supports where position and orientation may vary. The Sensors Remote
Unit, a SmartRobots three-dimensional camera [36], is able identify and trace the
hands of the operator and return their positions. This camera processes both three-
dimensional and colour information and returns the position of the operator’s hands,
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distinguishing the right from the left. To help the system to correctly identify the
right operator, it was decided to let the operator wear colour-coded gloves. Thanks
to this simple adjustment, the camera is guaranteed to "capture" the correct worker,
even in the case of several people appearing within the camera visual space.

The SMARTMAN 4.0 stations is able to learn from an expert operator the set
of operations and the relative sequence, through a specific recording work-flow
(Figure 1.2a). Then, during a working phase (Figure 1.2b), the system guides the
operator along the correct sequence of operations, checks the correct positioning
and, only in case of congruence, enables the equipment to perform the task, thus
generating an interlock between correct sequence and manual activity, ensuring a
constant quality of production. In this sequence there are no direct interactions
between the operator and the System Control Unit if everything is done correctly; in
case the operator takes too long time to perform the operation the system signals a
time-out. In the event of time-out, the operator can set the repetition of the step or
the abortion of the whole sequence, again, via voice interface.

Particular attention has been paid to the HMI (Human-Machine Interface) issues.
The use of graphic symbols directly drawn on the worker’s hands, as a feedback
during teaching and working phases, along with the speech recognition and synthesis,
enhance the ergonomics of the station. Thanks to the adopted solutions, the operator
is not forced to shift the gaze, each time focusing elsewhere on HMI supports, or to
make wearying continuous movements of the neck.

The described system can therefore be positioned, with respect to the state of
the art, as indicated in Table 1.2, which puts in evidence the completeness of the
SMARTMAN 4.0 solution.

Table 1.2 Comparison of current manual station solutions and SMARTMAN 4.0.

Feature Sarissa OPS Solution Ulixes SMARTMAN 4.0
Lights False 2D Beamer 2D Beamer 3D Laser
Sensors 3D Ultrasound False 3D Vision 3D Vision
Tool Tracking 3D Ultrasound False False 3D Vision
Gesture/Speech
Recognition

False False False/True True

The SMARTMAN 4.0 station is a sensor system, or more briefly over-sensor,
born from the intelligent fusion of information and specific capabilities of individual
existing objects, which is going to improve, in an alternative way, a complex and
structured reality, without the need for a long complex and expensive development.
A smooth transition from the current industrial methods toward a fully integrated
4.0 reality is simplified by the design of a modular sub-system to be easily added to
existing items. The modularity of the sub-system can be exploited in the future also
for new major additions in a production cell, increasingly oriented to cooperation
between humans and collaborative machines.
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(a) Workflow for recording phase of SMARTMAN
4.0.

(b) Workflow for the working phase of SMART-
MAN 4.0.

Fig. 1.2 SMARTMAN 4.0 phases.

Indeed, perception is significantly important for human–robot interaction, as it
enables robots to detect and respond to human presence and actions. This is essential
for tasks that require close collaboration between humans and robots, such as in the
medical or service industries.

In [11], we analysed various sensors and perception methods utilized in applica-
tions involving HRI, robot guidance and collision avoidance for all the main types
of robotic systems commonly used in industry, such as fixed-base manipulators,
collaborative robots (cobots), mobile robots and mobile manipulators. The analysis
investigates how these robotic systems perceive the presence of human operators
and how they react for cooperative and collaborative applications. Also, various
applications, strongly relying on HRP to achieve HRC, are reviewed with a particular
focus on the handled type of data, the need to fuse the information that comes
from different sensors to guarantee an efficient and safe HRI, as well as the specific
requirements of the perception tasks (e.g., the perception range, the safety issues,
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the environmental influences, etc.). Particular attention is devoted to vision and
distance sensors, which are the most employed for human perception in various
types of robotic systems. Monocular RGB (Red Green Blue), stereo, RGB-D (Red
Green Blue-Depth), and more recent event-based cameras stand out among the vision
sensors, whereas the most used distance sensors are based on light scan technology,
such as the LIDAR.

To meet the growing demands of the market, which are becoming faster and more
cost-effective, upcoming industrial settings will necessitate a considerable degree
of automation to enable flexibility and adaptability. Autonomous and collaborative
robots able to adapt to varying and dynamic conditions of the environment, including
the presence of human beings, will have an ever-greater role in this context. However,
if the robot is not aware of the human position and intention, a shared workspace
between robots and humans may decrease productivity and lead to human safety
issues. The survey we conducted provides an outline of various sensors and methods
for perception. Various types of robotic systems commonly used in industry, such as
fixed-base manipulators, collaborative robots, mobile robots and mobile manipula-
tors, are considered, conducting an analysis of the most useful sensors and perception
techniques for identifying and responding to the presence of human operators in
cooperative and collaborative industrial scenarios.

The perception capabilities of robots will gain ever-greater importance in the
next smart factories. As discussed, the robot has been assuming a progressively
important role within factories and warehouses, recently witnessing a boost in its use
as a support to human workers, as a team member or a flexible part of manufacturing
processes. Autonomous and collaborative robots will be increasingly involved in
operations requiring a shared working space with human actors. Most of the activities
will have to be done avoiding obstacles, working collaboratively with human beings,
autonomously locating and identifying the parts to be worked or moved.

This perspective of collaborative environment between humans and robots in
production settings goes beyond the concept of Cyber Physical Production System
(CPPS) [37,38]. In CPPSs, a smart production plant is itself a Cyber Physical System
(CPS) integrating cyber aspects as computation, communication, control, and net-
working technologies into the underlying physical system. A CPS can quickly react
and adapt to market changes negotiating production resources as in [39], or using
some intelligent reasoning tools as suggested in [40], but humans are generally
considered to be intruders into the automated tasks. CPSs should be able to repro-
gram their activities reacting to the presence of humans or other mobile systems,
but generally they do not interact or collaborate actively with them. This leads to con-
ceive the next future evolution of the CPSs towards Cyber Physical Human Systems
(CPHSs) [41, 42], where the control, communication and automation technologies,
physical plants and humans must pursue a common goal. This recent development
poses some challenges regarding the traditional understanding of Cyber-Physical
Systems (CPSs), where humans were very often considered to be independent pas-
sive entities that operate, use or consume the CPS resources. This also motivates the
research for new solutions for developing trustworthy, safe, and efficient Human-
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Robot (HR) perception to achieve an enhanced HR Interaction (HRI) in collaborative
work environments, thus allowing the development of CPHSs.

In the context of CPHS, the adoption of HR teaming is still hampered by the lack
of clear guidelines for safety, interfaces and design methods [43]; the HR Perception
(HRP) step and its requirements are crucial for the successful implementation of the
paradigm of CPHSs, as the core of the Factory of the Future (FoF). The digitalization
of the whole manufacturing system requires managing plenty of heterogeneous
sensors able to share and fuse the information provided by other sensors, as well as
enhancing the capabilities beyond detection.

To fully digitalize the manufacturing process, a multitude of heterogeneous
sensors must be managed, capable of exchanging and merging data collected from
other sensors, while also broadening their scope beyond detection. Indeed, a high
technological level is needed by the sensors, which have not only to read the data
and reduce the noise effects, but also to process them (edge computing) to enable
predictive maintenance operations [44]. In such a scenario, the availability of sensors
for the HRP becomes a key issue for managing the operations of HRI in the FoF.
The choice of the type of perceptive system to be used is highly related to the task to
be fulfilled, to the level of autonomy to be guaranteed, and to the kind of HRI that
must be established. It is worth highlighting that there exist three types of HRI in the
industrial scenario [45]:

• HR Coexistence, where humans and robots share the same working space,
but performing tasks with different aims; here, the human is perceived as a
generic obstacle to be avoided, and the robot action is limited to collision
avoidance only.

• HR Cooperation, in which humans and robots carry out distinct activities, but
with identical objectives that must be achieved in a synchronized manner in
both temporal and spatial dimensions. Under these circumstances, the collision
avoidance algorithm includes human detection techniques, so the robot can
differentiate the human operator from a generic object.

• HR Collaboration (HRC), where a direct interaction is established between
the human operator and the robot while executing complex tasks. This can be
achieved either by coordinated physical contact or by contactless actions, such
as speech, intentions recognition, etc.

The aim of the Sections 1.1.1 and 1.1.2 is to provide useful information to
accomplish several robotic tasks in HR collaborative industrial environments, and to
offer to the reader a quite complete overview of the different solutions proposed in
the literature and of the modalities with which they have been applied to different
types of robotic systems. The carried-out analysis provides detailed and aggregated
information about the various types of sensors adopted to handle the presence of
human operators in several industrial scenarios, as well as about the sensors and
algorithms combinations that seem to offer the best performance.
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1.1.1 Robotic systems and Human-Robot Perception
(HRP)

In this section, several types of robotic systems commonly used in industry (i.e.,
fixed-base manipulators, cobots, mobile robots and mobile manipulators) are con-
sidered with the aim of illustrating how they perceive and react to the presence of
human operators or static obstacles in the industrial scenarios, for cooperative and
collaborative applications.

Fixed-Base Manipulators and Cobots

HRC in the context of fixed-base robots is a matter of considerable interest in recent
research. In the various applications in which humans and robots coexist in the same
environment, two scenarios may be considered:

(i) A full awareness of the human presence and the environment is necessary.

(ii) Only the safe management of the shared spaces can be sufficient, guaranteeing
that humans cannot be injured during the robot motion.

In (i), different types of sensors are used to track humans or obstacles in the
manipulator workspace, obtaining a complete 3D model of the environment. In such
a way, it is possible to monitor the distance between the robot and any object in the
workspace, whereas a high-level controller can re-plan the robot trajectory to avoid
collisions or stop the system, if necessary. In (ii), collisions are generally detected
estimating the dynamic properties of the robot, together with the information coming
from the proprioceptive sensors, which industrial robots are usually equipped with.
The robot’s motion is then re-planned and controlled to limit the contact forces, so
that potential collisions with humans or obstacles result being no more critical.

This section investigates the enhancements achieved in recent HR applications
mainly using exteroceptive sensors, without leaving out the available proprioceptive-
based methods to estimate the robot contact forces through the knowledge of the robot
dynamics. Without the use of exteroceptive sensors, the robot has not a perception
of the 3D external environment: the interaction contact forces are kept limited,
leaving the robot unaware of the presence of humans and obstacles. Therefore,
by using proprioceptive sensors only, collisions are not avoided, but they become
not dangerous for humans. Typically, commercial cobots mainly implement force-
restriction approaches, sidestepping the use of vision sensors. Thanks to their smooth
surfaces and operating velocities that are suitable for the collaboration with humans,
cobots work together with the operator, even if they actually do not perceive his/her
presence, but only the possible contact.

Some solutions have been proposed to also make the traditional manipulators
able to establish some kind of collaboration with humans [46], according to ISO/TS
15066:2016 [47].
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The method proposed in [48] limits the force for a traditional industrial manipula-
tor, and detects collisions without the use of external sensors. It adopts time-invariant
dynamic models and supervised feed-forward input-delay neural networks on sig-
nal processing to estimate the required current signals for a given robot motion.
The predicted current signals are then compared with the actual absorbed motor
currents, which are persistently gauged by the robot controller; the detection of
a collision takes place as the current required by the manipulator is greater than
the predicted one. Another approach is proposed in [49], which avoids the use of
external force sensors, generally not present in standard manipulators, and exploits
the dynamic model of the robot in both dynamic and quasi-static modes to detect the
external forces.

To surmount the existing limits in HR applications, the use of exteroceptive
sensors, in particular vision sensors, can be a viable solution, even if there are
still problems related to the accuracy and repetitiveness. Indeed, vision sensor
performance is highly affected by environmental conditions, such as exposure,
brightness, reflectiveness, etc. However, such sensors are the most suitable for
providing the robot complete awareness of the environment, to avoid obstacles and
re-plan trajectories. Consequently, vision sensors are generally used to check the
workspace, allow humans safety and detect the presence of objects, notwithstanding
their critical issues.

The most used vision systems for HR collaborative applications are stereo cam-
eras, RGB-D (Red Green Blue—Depth) cameras, proximity sensors or laser scanners.
Obstacle tracking data can be employed to estimate human intentions, to create mod-
els of the 3D environment, to calculate distances between the robot and the obstacle,
to integrate data coming from virtual and real world to test an application in simu-
lation, and so on. This section reviews the current state of the art, emphasizing the
three essential aspects for the development of HR applications:

• Type of sensor: the sensor output depends on the sensor technology. Therefore,
the algorithms used to process the data can be quite different.

• Methodology to detect obstacles in the scene: the chosen methodology depends
on the type of sensor but also on its location. The sensor can be positioned
somewhere in the environment to monitor the entire scene or can be mounted
on the robot arm. In the first case, it is necessary to distinguish humans and
obstacles from the manipulator, otherwise the robotic system can identify itself
as an obstacle. In the second case, the sensor position is not fixed and must be
estimated to recreate the 3D scene.

• Anti-collision policy: once the obstacle is detected on the robot path, and hence
the risk of a possible collision, the robot can be stopped providing some
warning (e.g., sounding an alarm) or its trajectory can be automatically re-
planned to avoid the obstacle.

Numerous studies suggest employing a Kinect RGB-D sensor, which provides
RGB and depth space images to reconstruct the 3D environment. In [50], the Kinect
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sensor is used to generate 3D point cloud data and to study the collision prediction of
a dual-arm robot (Baxter). To detect obstacles in the scene and prevent self-collision
avoidance, the authors proposed a self-identification approach that relies on the over-
segmentation method using the forward kinematic model of the robot. To improve
the processing speed, a region of interest is determined based on the skeleton of the
robot, then a collision prediction algorithm estimates the collision parameters in real
time for trajectory re-planning. Flacco et al. [51] presented a fast method to calculate
the distance between several points and moving obstacles (e.g., between robot joints
and a human) in depth space with multiple depth cameras (Kinect). The robot
kinematics is used to identify the point cloud data representing the robot itself to
eliminate it from the scene. The distance is used to generate repulsive vectors that
control the robot while executing a motion task, thus achieving a collision avoidance
application. Also, in [52], the Kinect sensor was used to add data coming from real
obstacles in a virtual scene, where the robot is modelled. Their method seeks to test
re-planning algorithms and HR interaction in safe conditions, simulating possible
scenarios where humans and robots must collaborate. However, in all these works the
Kinect sensor shows its limits in terms of accuracy and reliability. In [53], a method
was proposed to improve the accuracy of the Kinect sensor merging real and virtual
world information; in particular, some accuracy problems are overcome using a
skeletal tracking approach. A highly detailed avatar is created to represent human
behavior in the 3D scene, consisting of thousands of polygons. Then, the Kinect
sensor is used as an input device for skeletal tracking and positioning of the user.
Nevertheless, there are different types of low-cost RGB-D cameras; valuable insights
concerning the choice among the most used in research can be found in [54], where
sensor performance is compared in an agriculture application.

The use of a simple RGB camera to detect obstacles was put forth in [55], in a
case study in which an industrial manipulator is used. The robotic system is provided
with smart sensing capabilities, such as vision and adaptive reasoning, for real-time
collision avoidance and online path planning in dynamically changing environments.
The machine vision module, composed of low-cost RGB cameras, employs a color
detection technique based on the hue saturation value space to make the robot aware
of environmental changes. This approach allows the detection and localization of a
randomly moving obstacle; the path correction to avoid collision is then determined
by exploiting an adaptive path planning module along with a dedicated robot control
module. It must be underlined that using only a standard RGB camera, the obstacles
detection can be performed in 2D assuming a constant height along the third direction.
This solution may be valid for manipulators employed for simple pick-and-place
tasks and it can be executed in a fast-working cycle.

Another approach that integrates sensors used for virtual world interaction, is
proposed in the field of robotics surgery, where any possible collision between
the robot and the medical staff is considered to be critical [56], but some of its
characteristics could be exploited in different contexts, such as the manufacturing
one, for applications that necessitate a strict HR collaboration. The HTC VIVE PRO
controllers are used as an Internet of Things technology to measure the distance
between surgeons and the robot. When the distances between humans and the robot
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-gauged through the smart controllers- become critical, a virtual force is applied
to the manipulator to move the robot elbow in a spare workspace. This avoids the
direct hands-on contact of the surgical robot arm by applying the virtual force to
move the swivel angle of the KUKA iiwa. Due to the kinematic redundancy of
the manipulator, a swivel motion with the robot elbow can be performed without
moving the robot tool pose avoiding compromising the surgical intervention. In [57],
the same authors previously investigated the cartesian compliance strategy that
involves online trajectory planning to avoid violation of some defined constraints.

A novel sensor proposed in [58], which consists of skins with proximity sensors
mounted on the robot outer shell, provides an interesting solution to occlusion-
free and low-latency perception. The collision avoidance algorithms, which make
extensive use of these properties for fast-reacting motions, have not yet been fully
investigated in this work. A collision avoidance algorithm for proximity sensing
skins is put forward as a first solution, by formulating a quadratic optimization
problem. The authors highlight that compared with common repulsive force methods,
the algorithm confines the approach velocity to obstacles and keeps motions pointing
away from obstacles unrestricted.

It is noteworthy that a good HRC requires good HR interfaces and the possibility
for the human operator to easily establish some kind of communication with the
collaborative robot [59]. A proper use of adequate sensors is fundamental to this aim.
Cameras can be employed, but better results can be achieved integrating also specific
sensors such as the Leap Motion, which can be used to recognize coded operator’s
gestures as input commands for the robotic systems (e.g., as for the teleoperated
robotic arm in [60]), but also to enhance the perception capabilities provided by
cameras, as in [61]. Here, a multi-source heterogeneous vision perception framework
is proposed to acquire information regarding the human workers in various conditions
and on the working environment during HRC tasks in manufacturing. The proposed
system includes RGB-D cameras (i.e., Kinect sensors), located around the working
area to produce 3D point cloud data, and Leap Motion sensors on the workbench to
track the worker’s hands. Thus, a wide and clear perception is achieved of both the
working area and the worker.

In [62], a system composed by five Inertial Measurement Unit (IMU) sensors is
used to recognize human gestures. The IMU sensors are distributed in the upper part
of the operator’s body, along with an ultra-wide band positioning system. The latter
activates the collaborative mode when the human operator is in close proximity to
the robot. Static and dynamic gestures used to command the robot are processed
and classified by an Artificial Neural Network (ANN). A similar work related
to gestures in the industrial context is presented in [63], in which IMUs and a
stereophotogrammetric system are used to track and analyze the human upper body
motions, in particular when he/she picks and places several objects at different
heights. The gestures sequences are collected in a database, and can be used to
optimize the robot trajectories and guarantee the safety of the human operator.

A sensor data fusion algorithm is proposed in [64] to estimate and predict the
human operator occupancy within the robot workspace. The algorithm merges the
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information coming from two different depth sensors, a Microsoft Kinect and an
ASUS Xtion, defining a set of swept volumes that represents the space occupied by
the human. In this way, the motion of the robot can be re-planned to be compliant
with the safety constraints, thus avoiding any collision with the human operator.

More insights into hand gestures recognition by means of the Leap Motion and
other solutions for HR interaction are provided in the following subsections.

Mobile Robots

The Autonomous Mobile Robot (AMR) is gradually taking over a fundamental role
in the new dynamic and productivity-oriented industrial environment, in which flexi-
bility leads the production line development. Spatial and temporal flexibility, when
considering production plants, can improve productivity and reduce overall down-
time, for example, when the production sequence configuration must be changed.
Usually, an AMR is equipped with an heterogeneous set of sensors whose output
data streams are processed by complex control systems [65]. It is well known that
merging the information coming from several sensors improves the efficiency and
robustness of the measurements, yet increasing the complexity of the hardware and
software required for merging and processing the information deriving from different
sources [66].

It is clear that the optimization of processes has a pivotal role for the overall
efficiency (e.g., productivity, energy consumption) of a working setup. A mobile
robot’s perception of its surroundings thus acquires relevance for achieving optimal
integration with other CPS elements, going beyond the basic role in the localization
of the platform during navigation. In particular, autonomous navigation of AMRs
introduced a further need for effective HRP approaches. Indeed, for what concerns
cooperative operations, effectiveness may be undermined by the perception that
human operators have of moving autonomous agents. Conversely, the mobile base
task execution could be slowed down by ill-managed perception of humans. As a
matter of fact, the pre-definition of Automated Guided Vehicle (AGV) motion paths
guarantees predictability in opposition to the AMRs motions, which are often hard for
a human operator to interpret. The perception systems of traditional AGVs [67] have
undergone heavy changes [68, 69] to achieve navigation autonomy and advanced
perception of the environment and humans in industrial scenarios [70], favoring the
investigation of real-time approaches [71]. Moreover, due to the gradual and now
extensive use of fixed-base collaborative robots along the production line, the imple-
mentation of safe collaborative operations using IMRs has been attracting a lot of
interest. Industrial mobile platforms then need to elevate their perception level from
a merely informative approach to a semantic interpretation of the robot surroundings.

Although advanced perception of humans appears to be a still relatively new
topic within the industrial context, it has already been widely explored and adopted in
other fields, from assistive service robotics to agricultural ones, where robotics plays
a significant role in the process chain. Hence, it is relevant and interesting to report
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some of the approaches to HRP developed in these fields, since it is highly probable
that the FoF will implement similar or comparable approaches on intelligent IMRs.
In [72], a non-intrusive solution to robot aware navigation is presented, where the
behavior of the robot is determined by the user’s preferences in a domestic workspace
sectioned in virtual areas. In [73], the human and the mobile robot share a common
task, since the robot is teleoperated by an operator, whose visible 360-degree scene
is enriched by interactive elements drawing the attention to information-rich areas;
a 360-degree camera is exploited, and its frames are processed using the You Only
Look Once (YOLO) Convolutional Neural Network (CNN)-based framework [74].
In this case, the goal achievement is common, and the perception of the human
operator and the robot somehow enhance each other. Also, in [75] teleoperation is
implemented, using a hybrid shared control scheme for HRC. The operator sends
commands to a remote mobile robot using an electromyography (EMG) signal sensor
to reflect muscle activation; the human collaborator is equipped with a haptic device,
which receives a force feedback to inform about the existence of an obstacle.

The work presented in [76] aims at highlighting challenging natural interactions
between a mobile robot and a group of human participants sharing a workspace in
a controlled laboratory environment, demonstrating that humans follow less jerky
and irregular paths when navigating around one autonomous navigation condition
than around a teleoperated robot. The experiments are performed on autonomous
mobile robots using optimal reciprocal collision avoidance, social momentum and
teleoperation as navigation strategies. In [77], an approach named RObot Perceptual
Adaptation (ROPA) is proposed. This algorithm learns a dynamical fusion of multi-
sensory perception data, capable of adapting to continuous short-term and long-term
environment changes; a special focus is set on human detection, based upon different
types of features extracted from color and depth sensors placed on the mobile robot,
with the aim of achieving long-term human teammate following. A structured light
camera is used for color-depth data and a digital luminosity sensor for luminosity
data. Similarly, in [78], the authors introduced a representation learning approach
that learns a scalable long-term representation model, for scene matching. The fea-
tures of multiple scene templates are learned and used to select, in an adaptable
way, the most characteristic subset of templates to build the representation model
for the current surrounding environment. The latter procedure is performed with
the aim of implementing long-term delivery of information in collaborative HRP
applications, exploiting Augmented Reality (AR). Moreover, what seems clear from
works reviewed within the agricultural field, concerning collaborative applications
and relative perception between humans and robots, is the focus on safety without
leaving out comfort of the interaction [79, 80].

The work presented in [81] proposes a planning model based on RNNs (Recurrent
Neural Networks) and image quality assessment, to improve mobile robot motion in
the context of crowds. Acquired images are pre-processed exploiting OpenCV (Open
Computer Vision) calibration tools and then the background noise is filtered out
using the designed RNN-based visual quality evaluation. Additionally, concerning
the assistance service robotics context, the bidirectional meaning of perception
is particularly evident, since the robot should be perceived by users as naturally
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as possible, and the robot itself must have capabilities of intention recognition to
be actually beneficial for the human partner, e.g., in Sit-To-Stand assistance [82].
Moreover, the SMOOTH robot project, presented in [83], provides an example of
adaptive sensory fusion computed via a single multi-sensory neuron model with
learning, to boost perception of human capabilities of a welfare robot. The robot
is equipped with a front safety laser scanner and two cameras, one front and one
back facing. Finally, the survey presented in [84] emphasizes the significance of data
fusion in improving the perception capability of mobile robots. The reviewed works
consider data coming from multiple sensors (e.g., LIDAR, stereo/depth and RGB
monocular cameras) to obtain the best data for the tasks at hand, which in this case
are autonomous navigation tasks such as mapping, obstacle detection and avoidance
or localization.

Given these example approaches, it is easy to envision how they could greatly
impact the emerging HRP research in the industrial context. Many algorithms are
being developed with the aim of being ideally applicable in any context involving
humans and robots. The need for a unified framework to enable Social-Aware
Navigation (SAN) is stressed in [85], where a new method is presented by the
authors for an autonomously sensed interaction context that can compute and execute
human-friendly trajectories. The authors examine various contexts and implement
an intent recognition feature at the local planning layer.

Regarding the industrial logistics context, the authors of [86] put forth a range
finder-based SAN system to implement collaborative assembly lines with a special
emphasis on human-to-robot comfort, considering the theory of proxemics. A cost
function is assigned both to assembly stations and operators to affect the costmap
for the mobile robot navigation. In [87], a human-aware navigation framework
is proposed, to work within logistics warehouses. The simulated mobile robot
is equipped with a laser scanner and an RGB-D camera to detect a person and
estimate the pose to consider it as a special type of obstacle and avoid it accordingly.
The presented strategy is made up of 2-steps: (i) the use of the depth information for
clustering and identifying 3D boxes that are likely to enclose human obstacles, then
(ii) the computation of a confidence index for human presence based on the RGB data.
Instead, the approaches proposed in [88] seek to demonstrate the integration of AR as
an enabler for enhanced perception-based interactions along assembly Manufacturing
Execution Systems (MES). The authors propose an application involving mixed
reality smartglasses for AR implementation for collaboration with a cobot, and a path
visualization application for humans working with AGVs, using an AR computing
platform. Another work proposes a solution to HRI using (i) gesture control and eye
tracking technologies for the robot to interpret human intentions, and (ii) a pocket
beamer to make robot information interpretable by the human operator [89]. Finally,
in [90] the authors propose an HR skill transfer system: instructions are given to
a mobile robot to follow a trajectory previously demonstrated by a human teacher
wearing a motion capturing device, an IMU in this case. A Kinect sensor is employed
for recording the trajectory data, used to model a nonlinear system called a Dynamic
Motion Primitive. Then, exploiting multi-modal sensor fusion, the pose and velocity
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of the human teacher undergo a correction process and a novel nonlinear model
predictive control method is proposed for motion control.

Mobile Manipulators

Manipulators have found widespread use in various applications, leading to improved
efficiency in industrial production lines. However, these are usually located in fixed
positions along the line, which is a limitation for some applications that need to
cover large working spaces, as in the automotive or aerospace industry. To overcome
this problem, it is possible to rely on mobile manipulation. For a variety of tasks,
the flexibility of the system is improved when a manipulator is attached to a mobile
platform, since the redundancy offered by a mobile manipulator allows the planning
of human-like motions while avoiding singularity configurations. Given the mobility
advantages, it is also used for intralogistics and service robotics applications [91, 92].

The prevalent configuration for mobile manipulators in the market comprises a
collaborative lightweight manipulator and a mobile platform combined. The mobile
platform in these cases may be collaborative or not. It is worth highlighting that for a
long time no safety standards specific to these hybrid systems were available, making
it necessary to combine two or more standards, e.g., ISO/TS 15066 [47] and/or ISO
10218-1 [93] for manipulators, and ISO 3691-4 [94] for mobile robots. Nevertheless,
new regulations terms are including platforms equipped with manipulators, as defined
in ISO 19649:2017 Mobile robots — Vocabulary [95], which was last reviewed and
confirmed in 2022 [96].

Since the collaborative manipulator itself was designed for collaborative appli-
cations, it can react to the human operator’s physical contact without causing any
harm. However, to allow the robot to perceive better its environment, and therefore
improve the decision-making process for the motion planning needed for a specific
task, other sensors may be integrated to the robot. The way the robot may sense
its surroundings and the way it reacts to the human actions strongly depend on the
application. In fact, there are applications in which vision sensors are widely used to
emulate the decision making based on the human vision.

As an example, the mobile manipulator proposed in [97] is designed for HRC
tasks, in which object detection and manipulation are considered to be critical skills.
As stated by the authors, using an RGB-D camera is more robust than using stereo
vision cameras, since the latter ones only rely on image features. The images
and videos coming from RGB-D cameras are also useful for either (i) configuring
the motion constraints based on the human presence, differentiating human-type
obstacles from the generic ones, or (ii) predicting the human activity, so the robot
can respond appropriately based on the actions of the operator [98]. A sensor system
that provides reliable 2½D data for monitoring the working space is presented
in [99]. The system processes information obtained from three sets of grayscale
stereo vision cameras and a Time-of-Flight camera that monitors the motion of
the human operator collaborating with the manipulator. The area monitored by
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the sensor system corresponds to the safety zone, in which specific actions of the
robot are enabled when the hand of the human operator is in close proximity of the
manipulator tool.

The mobile manipulator proposed in [100] uses two sensors able to perceive the
environment: an RFID sensor that lets the robot know where the objects are in the
space and an RGB-D camera that identifies tags with unique IDs, which contain
semantic information and properties of the world entities. The paper did not specify
if the robot is working with a human or not, but the interesting aspect is that the
robot has the ability to acquire knowledge through experience, and each time it must
perform an action, the motion planning comes from experiential knowledge and the
geometric reasoning for doing such task.

To give more information to the robot regarding the human intentions or actions,
gestures and speech are commonly used for controlling a robot. Nevertheless, hand
gestures are preferred over speech, since the industrial environment is often noisy,
and so verbal communication is difficult [101]. The gesture recognition is performed
by analyzing two features from an RGB-D camera: a convolutional representation
from deep learning and a contour-based hand feature. This permits the robot to
recognize the hand gestures of the human and execute specific commands. Moreover,
the same authors proposed alternative methods for human tracking [102], such as
applying multi-sensor integration (for example, mounting low costs laser range
finders and camera systems at specific poses) and using laser readings and train the
tracking system according to human body patterns. The authors in [103] suggest
that a 3D sensing system is important for human detection and for understanding
the behavior. In that regard, a redundant sensory system, such as a combination of
2D laser scanners and sensors that reconstruct the environment in 3D using stereo
vision, may ensure safety and be compliant with the ISO 10218-1 and ISO/TS 15066
regulations, which are related to safety for collaborative robots. Nevertheless, those
standards involve collaborative manipulators, so the safety concerning the mobile
platform should be also considered, as discussed in [104] that analyzes the possible
hazards of mobile robotic systems in industry and proposes some countermeasures
for those risks. Therefore, the use of sensor fusion or artificial intelligence-based
methods are suggested, since they increase the coverage of the information from
different sensors and overcome safety problems.

A framework referred to as ConcHRC [105], which represents a more extensive
version of the previous FlexHRC framework [106], allows the human operator to
interact with several robots simultaneously for carrying out specific tasks. The archi-
tecture is composed of three layers: perception, representation and action. In particu-
lar, the perception layer elaborates the information related to the human activities
and object locations in the robot workspace. The overall scene is measured through
motion capture sensors, the objects to be manipulated are detected by employing an
RGB-D camera, while the data related to the operator action comes from the inertial
sensor of a smart watch.

The teleoperated mobile manipulator presented in [107] is controlled according
to the posture for the operator’s hand. The tracking of the operator’s hand is achieved
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by employing a Leap Motion sensor, in which a Kalman filter is used for the position
estimation while the orientation is computed by a particle filter. A similar contactless
hand gesture recognition system is presented in [108] for safe HRI. This multi-modal
sensor interface uses proximity and gesture sensors, and it can identify real-time
hand gestures to control the robot platform. An ANN is used for the recognition
of hand gestures. Further approaches, such as the one presented in [109], allow
to work with a human through an admittance interface, enabling conjoined action.
If the human is not in close proximity, the mobile manipulator can perform its
routine work autonomously. In particular, the admittance interface is a mechanical
connection from the robot hand to the human wrist, and transmit the interaction
forces of the human to the robot to perform conjoined movements. When the human
needs assistance, the robot can be "called" using the armband that recognizes the
human operator’s gestures.

1.1.2 An overview of sensors and methods for HRP in
industry

Currently, most of the sensors used for robotic systems to perceive the environment
and the human operators are of vision type. In particular, in the field of human
collaboration with manipulators, the most used sensor is the RGB-D camera. Indeed,
the use of new types of sensors may require huge effort to define new algorithms and
exploit their characteristics. Moreover, the already developed obstacle detection algo-
rithms would need to be rethought to work with different data types. An interesting
new vision sensor is proposed in [110], as Dynamic and Active-pixel VIsion Sensor
(DAVIS). This novel sensor seems to have great potential for high-speed robotics
and computer vision applications and incorporates a conventional global-shutter
camera with an event-based sensors in the same pixel array, enabling the integration
of their advantages as well: low latency, high temporal resolution, and very high
dynamic range. However, additional algorithms would be needed to fully utilize
the sensor properties and cope with its unconventional output, which consists of
a stream of asynchronous brightness changes (called “events”) and synchronous
grayscale frames. In those applications in which the employment of vision sensors is
not sufficient or accurate, other kinds of sensors are used instead.

For what concerns IMRs, applications involving human perception mainly exploit
laser range finders, to perceive the environment (humans included), usually used
in combination with a vision sensor to perform data fusion. The massive use of
laser range finders for human-perception goals is expected and justified, as they
are present on IMRs both for localization and navigation, and for industrial safety
guidelines (safety-rated scanners).

Likewise, mobile manipulators exploit predominantly laser sensors for navigation,
while vision sensors are mainly used for the manipulator to perceive the human
operator, in particular, to have some visual guidance and be able to replicate the
movements of the human. Most of the vision sensors used in mobile manipulators
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are of RGB-D type, as they provide accurate information related to the image and
depth of the detected object. An alternative way for the robot to perceive the human
actions is to make use of an inertial sensor, attached to the human wrist. This lets the
robot predict and react based on the detected human movements.

Figure 1.3 gives a visual overview of the most relevant sensors used for HRP
depending on the robot type, according to our research.

Fig. 1.3 Relevant sensors for HRP within the industrial context. Vision sensors are highlighted
in blue, safety laser scanners rays in red, and wearable sensors in orange.

In order to offer an overview of relevant sensors and methodologies, obtained
from the described state of the art analysis, the following material is introduced:

• Figures 1.4 and 1.5 aggregate the sources based on the employed sensors types,
also carrying information about the used robot type. It is worth noting that by
splitting sensors according to their presence on robots or on human operators,
it is clear how (based on what has been analyzed) the sensory equipment for
HRP are currently mainly positioned on the robot counterpart.

• Table 1.3 aims to enrich the overview presentation and ease the reader consul-
tation, focusing on algorithms to implement HRP.

Although it is true that the provided material is a useful tool for getting a taste of the
trending sensors and algorithms in HRP, it should be considered that it is limited to
the survey authors’ research and, for this reason, it may not be exhaustive.

In the light of the brought on analysis of sensors and algorithms combinations
for HRP in the industrial context, human–robot perception seems to be inevitably
interwined to robot-human perception: each information on the human partner
behavior is perceived by a robot, interpreted and transformed into action but, at the
same time, human reaction to the presence of a robot is affected by the perception the
operator has of the robot itself. An optimal reciprocal perception is however not easy
to implement, given the lack of a common ground for cognitive skills among humans
and robots, which affects the interaction. The robot needs to not only identify the
presence of a human but also comprehend the collaboration context, with the aim of
effectively assisting human collaborators.
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Fig. 1.4 Most relevant sensors for HRP which can be found on the robot.

Fig. 1.5 Most relevant sensors for HRP which can be found on the human operator.
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Table 1.3 Most relevant algorithms for HRP applications, grouped according to how the
perception is implemented.

Collision Avoidance

[48] Collision prediction using time-invariant models and neural networks on
signal processing.

[50] Collision prediction based on over-segmentation using forward kine-
matic model.

[51] Collision avoidance through generation of repulsive vectors.

[52] Collision avoidance and re-planning algorithms.

[53] Collision avoidance exploiting skeletal tracking and positioning of
the user.

[55] Collision avoidance using color detection and allows online path plan-
ning.

[56] Collision avoidance through virtual forces applied on the manipulator.

[58] The algorithm imposes velocity limitations only when the motion is in
proximity of obstacles.

Aware Navigation

[72] The robot travels in virtual areas defined a-priori by users.

[76] Social momentum, teleoperation and optimal reciprocal collision avoid-
ance are used as navigation strategies.

[81] The planning model is based on RNNs and image quality assessment,
to improve mobile robot motion in the context of crowds.

[85] An autonomously sensed interaction context that can compute and exe-
cute human-friendly trajectories.

[86] Robot navigation takes into consideration the theory of proxemics to
assign values to a cost map.

[87] A confidence index is assigned to each detected human obstacle, enclosed
in a 3D box, to avoid it accordingly.

Environment Representation

[77] The algorithm adapts to continuous short-term and long-term environ-
ment changes with focus on human detection, through feature extraction.

[78] Scene matching through a representation learning approach that learns a
scalable long-term representation model.

[100] Object localization and tags recognition allow the robot to gather seman-
tic information about the environment.
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Recognition of Objects and Behavior

[83] The robot assistance is improved using adaptive sensory fusion.

[60] Teleoperation using coded gestures recognition as input commands.

[61] Simultaneous perception of the working area and operator’s hands.

[89] Gesture control and eye tracking technologies are used by the robot to
interpret human intentions.

[90] The human motion here is registered and used for skill transfer purposes.

[99] The motion of the collaborating human operator is monitored to enable
specific robot actions.

Environment Representation

[101] Gesture recognition is performed considering a convolutional representa-
tion from deep learning and a contour-based hand feature.

[102] Human tracking is implemented and trained according to human
body patterns.

[103] Human detection and behavior recognition is implemented exploiting
redundancy of sources to reconstruct the environment.

[105] The information related to the human activities and object locations in
the robot workspace are used for the approach.

[107] The operator’s hand pose is estimated using a Kalman filter and a parti-
cle filter.

[108] Real-time hand gesture recognition is implemented using a ANN.

[62] The gestures used to command the robot are processed and classified by
an ANN.

[63] The motion of the human operator’s upper body is tracked, with a focus
on objects manipulation.

[64] Sensor data fusion algorithm for prediction and estimation of the human
occupancy within the robot working area.

Conjoined Action

[73] The 360-degree scene is enriched by interactive elements to improve the
teleoperated navigation.

[75] Teleoperated navigation is implemented through a hybrid shared con-
trol scheme.

[88] Enhanced perception-based interactions using AR for collaborative oper-
ations.
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[109] Interaction forces of the human are transmitted from the admittance
interface to the robot to perform conjoined movements.

To achieve a comparable level of cognition among humans and robots, multi-
modal sensor fusion is the preferred solution for the robot perception, either when
considering environment perception and human perception, which are obviously
interlinked. Autonomous systems rely on data fusion as an essential module to
implement perception. The fusion processing of multi-modal data involves analyzing
it at a raw level and interpreting it at a higher level to extract meaningful features.
Fusing together data coming from a set of multi-modal sensors can potentially bring
out interesting information which, if single-source data only were considered, would
have not emerged. This facilitates the implementation of a more informed perception
of the environment and the humans within it.

Additionally, what emerged is that safety considerations strongly affect the
choice of algorithms and sensors: their combination must aim at being compliant
with safety requirements imposed by standards. Moreover, along with safety, an
adequate interface design has a crucial impact on the development of HRC tasks.

It is clear that where sensor accuracy is lacking, algorithmic complexity aims for
compensation, to achieve an overall reliable interaction. As can be easily inferred,
the balance between the accuracy of the sensor and the computational effort of the
algorithm is highly dependent on the available resources and on the application re-
quirements.

1.2 Industrial mobile robots: a quest for au-
tonomous navigation

Mobile robots have been widely employed in many different fields, since they can
be adapted to a vast range of applications. As mentioned before, service robotics
brought in innovative technologies and solutions that are slowly migrating to the
industrial sector, where smart robots will be able to learn tasks without formal
programming, and to autonomously cooperate with other smart devices and factory
workers [111].

Mobile manipulators (i.e., robotic arms on mobile bases) are entering warehouses
and factories, making obsolete the idea of an industrial robot strictly associated to a
fixed and caged manipulator: AMRs, fixed-base cobots, mobile manipulators, mobile
cobots and enhanced manual workstations –fully integrated within the automated
lines– are going to characterize the smart factories of the future [112].

Although the concept of autonomous mobile robots is not new (first generic
AMR patent is from 1987 [113]), its application to an industrial context has come up
in recent developments and is expected to significantly increase in the near future.
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In fact, logistic systems, e.g., AGVs, were foreseen to make up 66% of the total
forecast of service robots (with different degree of autonomy) from 2019 to 2021
(Figure 1.6) and, Industrial Mobile Robots (IMRs), in general, represent essential
elements of the present and future production line and logistics workspaces, as
foreseen by a report by the International Federation of Robotics (Figure 1.7).

Fig. 1.6 Service robots for professional use in main applications. Unit sales 2016 and 2017,
forecast 2018 and 2019-2021 [114].

Fig. 1.7 Service robots for professional use. Top 3 applications unit sales 2018 and 2019,
potential development 2020–2023 (thousands of units) [115].

In particular, AMRs fall within the so called new robots, i.e., robotic systems
compliant with collaborative operations, characterized by a higher degree of auton-
omy and capable of autonomous decision making. According to a new IDTechEx
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research [116] about New Robotics and Drones forecast on the 2018-2038 period,
we will see a dramatic increase in new robotics deployment, with the support of
decreasing hardware and software development costs (Figure 1.8).

Fig. 1.8 Long-term forecasts of the market evolution for new robotics according to the New
Robotics and Drones IDTechEx report.

Fig. 1.9 Service robots and new robotics trends.

According to the "Mobile Robotics in Logistics, Warehousing and Delivery 2022-
2042" report by IDTechEx [117], the market for mobile robots (including trucks
and drones) in logistics, delivery and warehousing is likely to reach a staggering
$83 and $334 billion in 2032 and 2042, respectively. In particular, as AMRs do not
require any additional infrastructure change – saving cost and time, while allowing
for scalable and flexible fleets, it is assessed that the market for such technology will
continuously grow by 2042, backed up by prominent investments and acquisitions
on this technology in recent years.

Starting with the forth industrial revolution, the main components of the produc-
tion line were uprooted from their fixed position and role: industrial manipulators
enter the human operator working space in the guise of collaborative robots (or
cobots), the traditional Automated Guided Vehicle (AGV) gets smart, autonomously
finds its way through the distributed working stations and becomes increasingly
intelligent, turning into the present-day Autonomous Mobile Robot (AMR). The
AGVs are mobile platforms that typically perform repetitive tasks, such as material
transportation, following a pre-defined path within industrial environments [118].

Human-accessible workspaces are traditionally separated from the AGV opera-
tional space due to safety reasons, since most AGVs are not capable of intelligent
decision-making and require a particular infrastructure setup [70]. On the other hand,
an AMR is able to sense its surroundings in order to create a model of the environ-
ment and locate itself in it, leading to the capability of operating in an unknown
or partially known environment. Specifically, AMRs allow the improvement of
flexibility of the working setup, since they get rid of the path constraints of classical
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Automated Guided Vehicles (AGVs) [119]. As stressed previously, there are several
reasons behind the push towards autonomous IMRs in manufacturing and logistics,
including:

Flexibility. Autonomous navigation also allows AMRs to be more flexible in terms
of their operation. These machines can be programmed to navigate around
obstacles and adjust their routes in real time based on changing conditions.
This flexibility allows companies to adapt to changing production requirements
and handle unexpected events more effectively.

Efficiency. When needed, mobile robots able to navigate autonomously are able to
move across facilities quickly and efficiently, without the need for human inter-
vention. This can help to reduce cycle times and improve overall throughput,
relevant in industries with high production volumes.

Safety. By reducing the number of workers needed to perform manual material
handling tasks, companies can reduce the risk of accidents and injuries in the
workplace.

Scalability. AMRs with autonomous navigation capabilities can also help to enable
scalable operations. As companies grow and their production volumes increase,
they can easily add more AMRs to their fleet to meet demand. This scalability
makes it easier for companies to adapt to changing market conditions, e.g., to
handle unexpected spikes in production.

Cost savings. AMRs with autonomous navigation capabilities is that they can help
to reduce labor costs. By automating the transportation of goods within a
facility, companies can reduce the number of workers needed to perform
manual material handling tasks, achieving significant cost savings over time.

Nevertheless, considering the current and future direction unfolded in the previ-
ous sections, autonomous navigation has also to take into account human presence,
either for cooperation or collaboration in shared workspaces. Hence, autonomous
navigation can come in different flavours, depending on the application and the
environments constraints.

The following contributions highlight the different degrees of autonomous navi-
gation capabilities, including a planning algorithm to enable a soft transition from
the AGV’s fixed path towards autonomous but safe AMR navigation, patrolling for
multi-agent systems, and a proof of concept of mobile robots networks towards
human-shared scenarios.
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1.2.1 Supervised global path planning: from AGVs to
safe path-constrained AMRs

This section presents the implementation of a three-level path planning procedure,
which allows: (i) the imposition of a set of waypoints, tending to a safe path,
generated by a supervisory planner on the basis of a static map of the environment
(not necessarily fully updated), (ii) the generation of a global path including such
waypoints, grounded on a a cost-based algorithm, which also takes into account
the obstacles not included in the static map, but detected at the beginning of the
global planning phase, and (iii) the avoidance of dynamic obstacles appearing during
the robot motion, thanks to the action of a local planner. The procedure has been
experimentally tested to plan the motion of a differential mobile robot.

After a brief introduction on the topic and related works, a presentation of the
proposed procedure is given, at first providing some theoretical details about the
supervisory planner, then describing the algorithm implementation including the
obstacle avoidance capability. Finally, the results gathered from some testing are
provided.

Path planning for mobile robots

In general, path planning for mobile robots is mainly carried out at two levels: global
planning and local planning. The global planner computes (offline) the path for
a well known environment map, so allowing the robot to navigate from a starting
location to a destination one, avoiding the known static obstacles, while optimizing
specific objectives, e.g., searching the shortest path (so to reduce time traveling
and energy consumption). The local planner updates (online) the path of the robot,
taking into account the information coming from its sensors. This way, the robot still
follows the path generated by the global planner when possible, but has it modified
when unexpected obstacles appear, to avoid them.

Fig. 1.10 An example path plans visualization (top view). The global plan is coloured in blue
and the local plan in orange.
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Numerous algorithms have been proposed and developed by researchers for path
planning, depending on the tasks to be performed and the environment. Among the
heuristic-based algorithms, it is worth reporting the following:

• Dijkstra algorithm [120]: computes the shortest path between two nodes in a
map; however, its execution needs to evaluated too many nodes, making it an
overall low-efficiency process.

• A∗ algorithm [121]: based on Dijkstra, A∗ is able to solve the issue described
above. In this algorithm, a function evaluates the distances between nodes,
and their cost to reach the goal point. Nevertheless, this requires relatively
long computational time, making A∗ not suitable for performing sequential
tasks in real-time [122].

• D∗ algorithm [123]: allows to carry out such response time constrained tasks.
Based on A∗, D∗ is a dynamic re-planning algorithm, which takes into account
the direction of the robot position as expressed by a series of states, whose
values are updated each time the elements on the map change. Nonetheless,
this still requires high computational effort, since the re-planning phase needs
to calculate twice each state on the environment [124].

On the other hand, to mitigate the computational burden introduced by the
algorithms presented above, probabilistic methods come in handy. Two relevant
examples are:

• Probability Roadmap (PRM) [125]: free spaces on the map are randomly
sampled, and the planner tries to connect the generated points into a roadmap
feasible motion. This method is commonly exployed in case of large maps,
where the use of other algorithms may increase the overall computational cost.
Although, this method does not guarantee the shortest path [126].

• Rapidly-exploring Random Tree (RRT) [127]: feasible trajectories are obtained
by growing expanding trees starting from the starting point, across random
points called seeds, until the tree is connected to the goal point.

Since the release of the original RRT algorithm, researchers have proposed several
other improved versions. For example, the method presented in [128] consists in
“planting” a tree in both the starting and the goal points, and then expanding both
trees in the whole world map until an intersection point is found; the algorithm
presented in [129] controls the tree edges growth direction and density of the RRT*
variant (an RRT version converging to the shortest path [130]). The main drawback
of sampling based stochastic searches is that, in general, path cost is not taken into
account, leading to a solution solution that is not necessarily the optimal one [131].

Other planning algorithms are inspired by natural phenomena. One of the most
popular is the Genetic Algorithm (GA) [132], based on the natural selection theory
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and applied as a path searching algorithm in the field of robotics. The cost function
for computing the best path is structured similarly to a chromosome, where each
location is considered as a gene [133].

Another frequently employed method consists in computing off-line the consid-
ered safe path and controlling the robot in such a way that it goes to the destination
point following a set of waypoints. In this case, it is possible to use the feedback
linearization technique, in order to design a control system for path following, like
in the fuzzy logic based control architecture proposed in [134]. Likewise, some
researchers proposed navigation functions based on artificial potential fields to solve
the robot motion planning [135], and a feedback control law that guarantees the
robot reaches the destination point while avoiding obstacles [136].

The proposed supervisory algorithm

The developed supervised planning takes advantage of the algorithm developed
in [137]. In particular, it integrates a supervisory planner on top of the common two-
level planning hierarchy, seeking to make the robot reach a goal position traversing
a virtual track previously identified as safe (background details in Appendix A).
Consider an industrial scenario, e.g., a warehouse or factory plant, where wheeled
mobile robots move along predefined routes that are considered safe for a mobile
platform to move (no unexpected obstacle is assumed): the a-priori desired path
computed by the algorithm, proposed in [137], tends by construction to a curve
representing a safe route. The computed path takes on the role of the guide tapes in
the most traditional industrial mobile navigation set-up of AGVs.

The path planning algorithm we propose has a hierarchical structure based on
three levels: the Supervisory Global Planner (SGP), the Global Planner (GP) and
the Local Planner (LP). Going down across these levels, the robot awareness of its
surroundings increases, transitioning from a “blind" planning (only based on the
static map) to a dynamic-obstacles aware system (Figure 1.11).

We integrated the planned waypoints at the GP level, allowing the robot to follow
the supervisory planned trajectory (if possible) thanks to a cost-based algorithm. The
avoidance of unexpected obstacles that may appear during the robot motion is left
to the standard, lowest level LP, which further modifies on-line the path computed
by the GP, when necessary. The outcome of the algorithm designed in [137] is
computed upon a known environment and is collision free (i.e., it does not intersect
the curves describing the boundaries of the obstacles), and tends to a preassigned
algebraic curve, which is considered safe for motion.

The aim of the supervisory plan is to obtain a path that tends to a planar curve V ,
where

V := {x ∈ R2 : p(x) = 0}. (1.1)

Here, p(x) is a given polynomial function. By using the algorithm given in [138]
(omitted here for brevity), it is possible to compute two vector fields φ(x) and ψ(x),
whose entries are polynomials in x, such that the curve V given in (1.1) is attractive
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Fig. 1.11 Planning hierarchy schematics.

and invariant with respect to the dynamical system

ξ̇ = φ(ξ )+ψ(ξ )α(ξ ), (1.2)

where α(ξ ) is an arbitrary function. Although the trajectories of system (1.2)
converge to the set V , they are not necessarily collision free. Thus, in order to ensure
collision avoidance, the results given in [138] are coupled with classical navigation
functions [135].

Let b(x) be a function describing the boundaries of the obstacles (i.e., b(ξ ) = 0
implies that the point ξ belongs to the boundary of one of the obstacles) and let

W := {x ∈ R2 : b(x)> 0}

be the workspace of the mobile robot, which is assumed to be a connected set.
Furthermore, we assume that

V ∩{x ∈ R2 : b(x) = 0}= /0,

i.e., that V is actually safe for motion. Thus, define

r(ξ ) :=
p2(ξ )

b(ξ )
, η(ξ ) :=

(
∂ r(ξ )

∂ξ

)⊤
.
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By construction, the function r(ξ ) is nonnegative ∀ξ ∈W , it is zero if ξ ∈ V , and
it tends to +∞ if ξ tends to W . This implies that, letting β (ξ ) be a nonnegative
function such that b(ξ ) = 0 =⇒ β (ξ ) ̸= 0, the trajectories of

ξ̇ =−η(ξ )β (ξ ) (1.3)

are collision free (see [137, Prop. 2]).

Thereby, the supervisory algorithm is obtained coupling systems (1.2) and (1.3).
Namely, by letting ζ (ξ ) be an arbitrary function (which is amenable for further
optimization, see [136]) and k be a positive constant, it can be guaranteed that the
trajectories of the dynamical system

ξ̇ = b2(ξ )φ(ξ )+b2(ξ )ψ(ξ )ζ (ξ )− k p2(ξ )η(ξ ) (1.4)

tend to V , while avoiding collisions with the obstacles.

Integration with ROS planners

The algorithm has been validated in [137] only in a pure theoretical context, here we
integrated it in a three-levels planning procedure and tested on a differential robot. In
order to adapt the theoretical algorithm to a physical implementation, the supervisory
algorithm has been executed using a real environment map (the laboratory we have
mapped) and taking into account the physical dimensions of the performing robot.
Note that, at this level of description, we will omit map details and parameters
tuning/adjustment specific to the chosen robot (more details about the physical set-up
are provided later on) to highlight the general validity of the approach.

The SGP algorithm has been written in MATLAB, while the navigation driving
the robot takes advantage of ROS (Robot Operating System) [139] tools. Specifically,
the ROS Navigation Stack [140] (NavStack) provides the user with off-the-shelf
packages for mapping, localization, navigation and reference frames tracking. In
order to guarantee an accurate interpretation of the supervisory algorithm output (i.e.,
a set of 2D desired points converging to the preassigned safe curve to be traversed on
the static map), the ROS /world frame origin (reference frame for the whole ROS
coordinate frames transform tree, managed by the tf package) has been aligned to the
frame origin used in MATLAB. Then, the output plan has been conveniently packed
in an array of desired positions stored on the ROS Parameter Server, exploiting the
MATLAB Robotics System Toolbox™ [141]. The ROS framework provides the
actionlib library stack [142], that allows the user to interact through a standardized
interface with preemptable tasks, which in our case correspond to the desired poses
for the mobile platform to reach. A custom Python ROS node is in charge of
sending a request, through a ROS Action Client, to the Action Server, via a message
containing the information about the next goal position to be reached. ROS actions
represent the ideal Client-Server-based mechanism for goal achieving, since while
the whole operation is brought on, a feedback message about its status can be sent to
the client node. A sketch of the software set-up is presented in Figure 1.12.
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Fig. 1.12 Software setup for implementation of the proposed algorithm.

In our case, the GP main role is that of generating a plan that must be as close as
possible to the path computed by the SGP. Instead, the LP algorithm computes a short-
term plan considering a local costmap and a predefined portion of the GP-generated
long-term plan, while exploiting sensors’ data to guarantee obstacle avoidance
of unexpected objects (either moving or fixed). Moreover, the whole planning
performance relies on a series of tunable costmap parameters, whose values depend
on the final planning objective and on the physical characteristics of the robot.
ROS package move_base, as part of the ROS NavStack, provides several ready-
to-use global planners (e.g., planner implementing Dijkstra and A∗ algorithms. To
deepen what was briefly introduced before, A∗ is a combination between Dijkstra’s
algorithm and Best First Search algorithm, meaning it is a weight-based process,
or informed algorithm, where the graph is explored and expanded only in nodes
resulting convenient, based on an assigned cost with heuristic content. Indeed, A∗
inherits the benefits of a uniform-cost search from Dijkstra’s, adding heuristics to
efficiently find an optimal solution in less time [143].

Supervisory planner costs-mechanism

Our GP algorithm is built upon the A∗ cost-based structure (background details
in Appendix A): with the aim of forcing the robot to follow the set of waypoints
computed by the SGP within the GP, a low cost is assigned to the preferred points
to be traversed. To clarify how this works, the cost mechanism of the A∗ search
algorithm is outlined hereafter. Consider a pathfinding problem, where an optimized
path must be found between two points on a 2D costmap: at each main loop, starting
from the source cell the algorithm expands the most suitable, and for construction
most “convenient", cell depending on a function f (c), defined as

f (c) = g(c)+h(c), (1.5)

where c is the currently expanded cell, g(c) denotes the cost from the source position
to the current one, and h(c) represents the heuristic estimated cost from the current
cell to the goal (destination) cell. At each iteration the expanded cell, i.e., the cell
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whose neighbour cells are visited and their costs computed (Figure 1.13), is the one
having the lowest f (c).

Fig. 1.13 Expansion of the most convenient cell.

Therefore, the f (c) function encloses an estimated path cost from the source cell
to the destination cell, traversing cell c. While g(c) can be easily calculated, h(c)
computation usually involves an approximation method, since the exact heuristics
computation, i.e., computing the actual value attained by the cost-to-go function at
cell c, would be unfeasible especially in terms of time. Among the approximated
heuristic functions at disposal, the Euclidean distance has been chosen, obtaining an
h(c) function defined as:

h(c) =
√

(c.x−dest.x)2 +(c.y−dest.y)2, (1.6)

where dest is the destination cell and the expressions .x and .y extract the fields
corresponding to the x and y coordinates of the considered cell, respectively.

To ensure path following, a low cost is associated to the positions produced by
the SGP, so to guarantee their presence in the output plan. In particular, the passage
on these positions is favoured by the introduction of a new cost hWP, defined as

hWP(c) =
√
(c.x−WP.x)2 +(c.y−WP.y)2, (1.7)

where WP is the next expected waypoint and the expressions .x and .y extract the
fields corresponding to the x and y coordinates of the considered cell, respectively.
The quantity in (1.7) is the Euclidean distance from the next expected waypoint,
and assigns costs which penalize positions far from the desired path, based on
four possible cases: (i) the currently visited neighbour cell n is a waypoint, (ii)
the currently expanded cell c is a waypoint, (iii) all waypoints have been already
traversed, and (iv) none of the previous cases is valid.

This way, the planner will acts as A∗ when far from the SGP-computed path.
Note that we consider all discrete points making up the supervisory algorithm output
path as waypoints that we would like the robot to traverse when in their proximity.



40 Robots in industry: from cages to autonomous navigation

Further details on how the costs have been assigned to achieve an overall equili-
brated and suitable cost system are given in Algorithm 1 at page 45, reporting the
pseudocode for the proposed algorithm. Handling of the above enumerated possible
cases can be found at lines 10, 12, 14 and 16, respectively. Note that highlighted
lines point out edits with respect to the original A∗, to have a direct comparison. The
inputs to the algorithm are the environment map and the start and destination cells,
while the output is the computed path. The proposed GP boasts the capability of
reaching a goal position not necessarily in the shortest way, but as safely as possible.

Hardware and Software setup and testing

In order to test the supervisory algorithm with path following and obstacle avoidance
we have decided to employ a Pioneer 3DX mobile robot [144] equipped with a SICK
LMS200 laser range finder [145] with 10-meter range and scanning angle of 180
degrees, and a Raspberry Pi [146] 3 Model B mounting an ARM Cortex-A53 (x4
core) CPU (1.2 GHz) and 1-GB RAM as a processing unit

Note that the physical specifications of the robot (Figure 1.14) are crucial for
modelling the kinematic equations necessary for executing the supervisory algo-
rithm, to suitably adapt ROS visualization and map inflation parameters, and to
generate proper commands taking into account the maximum allowed speeds and
accelerations.

Fig. 1.14 The Pioneer3Dx mobile base dimensions [144].

Figure 1.15 shows the interplay between hardware components: the Raspberry
Pi receives environment states via laser scan data and sends proper commands to the
robot. Simultaneously, the robot states and environment information are exchanged
between the Raspberry Pi board and a computer: on both processing units are running
specific processes (nodes) of the ROS framework, respectively the ROS master node
and sensor drivers nodes on the former, and navigation and visualization nodes on
the latter, constituting a typical distributed ROS system.

As already said, the first step towards a practical implementation of the SGP
algorithm has been that of feeding the algorithm implemented in MATLAB with
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Fig. 1.15 General schema mapping hardware to the software distributed system.

the real map of the environment in which the robot can move, where fixed obstacles
have been conservatively isolated, by describing their boundaries. The map has
been generated by ROS through the gmapping [147] package, which provides laser-
based SLAM (Simultaneous Localization and Mapping) built upon the OpenSlam’s
Gmapping algorithm [148]. The output map (saved as a .pgm file) describes the
environment using the binary occupancy grid format, in which a black-coloured cell
represents an occupied area (obstacles), while a white one indicates free space. Such
described map is interpreted by the ROS visualization tool, rviz [149], as a base
upon which building the costmap. A costmap inflates costs based on the occupancy
grid information and physical features of the performing robot. In our case the
original map of the whole research laboratory has been restricted to an area where
unexpected obstacles are less probable, to fall within the assumed conditions, leading
to a 160x190 cells grid with a resolution of 0.05 m/cell.

To integrate our algorithm in the ROS planners structure, the default global plan-
ner of the navfn package has been replaced exploiting the ROS plugin mechanism,
in order to have access to a simpler standalone piece of code, to be customized
for the integration of the required path following capabilities. We have used the
ROS cpp library to adhere to the nav_core::BaseGlobalPlanner C++ interface
provided by the nav_core package (by overriding some specific methods), and
employed by the move_base package to drive the mobile platform. The employed
local planner exploits the TrajectoryPlannerROS wrapper, which adheres to the
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nav_core::BaseLocalPlanner interface. This local planner version implements
the so called trajectory rollout algorithm: the robot’s control space is discretely
sampled and, for each sampled velocity a forward simulation is executed starting
from the current robot state, to predict the robot motion if the considered velocity
were applied for a restricted period of time. Each simulated trajectory is assessed
based on some evaluation parameters, e.g., proximity to the global path, to obstacles,
to the goal, and the speed. Among the evaluated trajectories, those which would
potentially lead to a collision are discarded, while the trajectory obtaining the highest
score is chosen and the relative velocities are sent to the mobile robot. This procedure
is looped at each motion step [150]. In order to make the resulting path track as
precisely as possible the plan provided by the upper level, the knowledge of the LP
about the GP long term path is reduced, influencing the short-term plan generation,
since a wider overview on the tracked plan would result in local path optimization.

Experimental results

The aim of the executed tests is to demonstrate the capability of the robot of reaching
the desired goal position traversing the safest path as soon as possible. Note that
the algorithm execution time is affected by: (i) the chosen GP and LP, (ii) the
computational capability of the computer executing the navigation and planning
instructions, and (iii) the goal to be reached. Hence, the given execution times
(relative to each specific test case) are to be considered for our specific choice of
planners, for reaching a specific goal position, and running the heavier algorithm
nodes on a high-performing computer.

The chosen values for the local costmap dimensions represent a tradeoff for
ensuring (i) a faithful tracking of the GP plan and (ii) obstacle avoidance. For all
the tests, the starting and destination points (expressed in meters) with the format
(x,y) have been set to (4,7) and (2.5,2), respectively (Figure 1.16); as can be seen,
the SGP plan tends to the the desired safe curve, avoiding any intersection with the
curves surrounding the obstacles present in the static map. The execution of the
algorithms in all test cases has been collected in the video that can be found in [151].

Test Case 1: absence of unexpected obstacles

Here we consider no unexpected obstacles, i.e., not present in the static map (Figure
1.17a). As shown, the GP (green line) faithfully tracks the SGP generated path, and
the LP also follows precisely the GP, thanks to the ad-hoc tuning of local costmap
parameters. Note that, if the A∗ algorithm were used, it would generate a straight
plan towards the goal position. However, we search for an optimal solution (in terms
of safety) that leads the robot to reach a safe virtual track as soon as possible, making
it part of the plan. The time needed to reach the goal position is 43.05 s.



1.2 Industrial mobile robots: a quest for autonomous navigation 43

Fig. 1.16 MATLAB simulation plot for the SGP algorithm. Red lines: obstacles’ boundary
curves. Blue dashed line: desired safe curve. Green solid line: SGP plan; a subset of the
computed waypoints is highlighted with green dots.

Test Case 2: behaviour with obstacles not in static map

Here we consider the presence of an unknown object, i.e., not included in the static
map, but detected before the GP path computation (Figure 1.17b). The reported
screenshot shows that the GP-generated path deviates from the desired path since the
sensor data detected an unexpected obstacle; being the global costmap updated with
this new information, the traversed path going backwards, i.e., from the destination
point to the starting point, will be the same. The execution time is 57.34 s.

Test Case 3: behaviour with dynamic obstacles

Here we deal with the appearance of an obstacle during the robot motion, i.e., after
the GP has computed the path (Figure 1.18). As can be seen, initially the GP
algorithm calculates a path consistent with the desired one as no new obstacles are
present from the beginning. Instead, when an unexpected obstacle is detected , the
LP re-plans the path in order to avoid it, trying to go back to the desired curve, when
possible. The present test case has been considered in order to show that, while the
robot moves towards the safety curve, if something or someone enters the scene, a
safe behaviour is preserved, as shown in the “Test Case 3" section of the video, in
which a human operator appears at 05:55 and the reaction of the LP lets the robot
avoid him. The execution time is 52.39 s.
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(a) rviz view during Test Case 1 execution. (b) rviz view during Test Case 2 execution.

Fig. 1.17 Test Cases 1 and 2.

Fig. 1.18 rviz view during Test Case 3 execution. The left figure reports the plan before the
obstacle appears, while the right one shows the re-planning action.

Therefore, through the presented supervisory planner algorithm, the physical
safe paths that AGVs traditionally followed are upgraded to virtual safe paths that
autonomous AMRs can be induced to follow in those areas where safety has greater
relevance than time efficiency, e.g., in human-shared spaces where mobile robots are
expected to follow their lane. In fact, the SGP’s plan induces the AMR towards a
path considered to be safe. Then, the GP extrapolates waypoints from the SGP path
and follow it using a modified version of the well-known A∗ algorithm. Moreover,
given the custom cost-based mechanism of our algorithm, the original A∗ path
search (including obstacle avoidance) is executed when the mobile robot is located
significantly far away from the waypoints. In such a way, whenever the platform
is sufficiently close to one of the desired waypoints, it is “attracted" by the path
computed by the SGP.
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Algorithm 1 Proposed algorithm with path following.
Input: map, start position, goal position
Output: path
/* Set-up cell expansion lists */

1 openList // Declare the open list
2 closedList // Declare the closed list
/* Insert starting cell in the open list */

3 openList.insert(start)
while openList is not empty do

/* Pop cell c with lowest f (c) off the openList */
4 c = openList.pop()

/* Push cell c into the closedList */
5 closedList.push(c)

foreach neighbor n of cell c do
6 if neighbor n is the destination cell then
7 n.parent = c // Assign parent node
8 Stop searching

9 else if neighbor n /∈ closedList and is not blocked then
10 if n is a waypoint then
11 Assign minimum values to n.g, n.h and n.hWP

12 else if c is a waypoint then
13 Assign minimum values to n.h and n.hWP

14 else if waypoints have been traversed all then
15 Assign minimum values to n.hWP

16 else
17 if ( n ∈ openList) and ( new f (n)> old f (n) ) then
18 Ignore n

19 else
20 n.g = n.g + distance from c to n

n.h = distance from n to destination cell
n.hWP = distance from n to next waypoint
/* Compute f (n) */

21 n. f = n.g+n.h+n.hWP
/* Assign parent cell */

22 n.parent = c
/* Insert cell n in the openList */

23 openList.insert(n)

/* Trace the output path from the destination cell */
24 p = dest

while p.parent is not null do
25 Path.push(p)

p = p.parent

26 Path.push(p)
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1.2.2 Path planning in formation and collision avoid-
ance for multi-agent systems

The attraction towards predefined curves can also be exploited to achieve multi-
agent collision-free patrolling and formation control. To this aim, a research work I
contributed to and presented in [16], showcases a centralized algorithm grounded
on (i) stability analysis of hybrid systems, (ii) algebraic geometry, and (iii) classical
potential functions. Note that the co-author researchers from Università Tor Vergata
(Rome, Italy) mainly conceived the presented idea and developed the theory behind
it, while all authors participated to the design of experiments, discussion of results
and final manuscript writing.

The objective is achieved by designing a Lyapunov-based hybrid strategy that
autonomously selects the navigation parameters. Tools borrowed from algebraic
geometry are adopted to construct Lyapunov functions that guarantee the convergence
to the desired formation and path, while classical potential functions are exploited
to avoid collisions among agents and the fixed obstacles within the environment
(background details in Appendix A).

The use of a team of mobile robots, cooperatively acting toward a common
objective, has seen a notable increase in various applications over the past few years,
including but not limited to automation and logistics scenarios for monitoring and
target searching, as well as in surveillance and rescue missions. The advantages of
employing a group of robots instead of a single mobile agent lie in the possibility of
obtaining a robust, efficient collaboration among the members of the team, and on
their ability of suitably moving to carry out the assigned task, avoiding any collision
with other elements in the environment and between themselves.

Multi-robot path planning techniques are aimed at finding the optimal path for
the members of the robotic team according to some criteria. The problem has been
tackled by using graphs and minimizing over specific objectives [152], or trying to
provide constant factor makespan (i.e., the last arrival time) optimal solutions on
average over all problem instances on grids and grid-like environments [153]. Such
path planning algorithms, however, do not allow to impose a desired arrangement to
the robotic agents while they are moving.

Nevertheless, a desired arrangement of robotics agents can be provided by
formation control approaches, which are often based on the definition of suitable
navigation functions, originally introduced in [154] using artificial potential functions
for a single robot, and subsequently extended to the multi-robot case (e.g., in [155],
[156]). These approaches exploit the knowledge of the environment topology and of
the obstacles present in it to build control policies that guarantee the convergence
of the team of robotic agents to the assigned formation scheme, while avoiding
collisions. A quite complete survey of multi-agent formation control approaches can
be found in [157], where the types of sensed variables used in the different solutions
are investigated, classifying the existing schemes into position-displacement and
distance-based control approaches.
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Several formation control approaches are based on leader-follower strategies,
mainly with the aim of achieving a simpler and easily scalable architecture, with
reduced communication requirements; the downside of this kind of solutions is a
potential weakness in practice, if the substitution of the predefined leader is not
envisaged or it is even impossible in case of some fault.

Also, centralization and decentralization of the control strategy is a key issue: a
centralized architecture, including a single control law, can be more complex from
the computational point of view, but it can generally guarantee the completeness of
the solution. On the other hand, decentralized solutions allow for scalability.

The centralized approach proposed in this work solves the patrolling and for-
mation control problems for a group of unicycle-like mobile robots, guaranteeing
that the trajectories of the multi-robot system are collision-free. In particular, being
centralized, this approach allows for several desirable features that are difficult to
achieve in a decentralized setting

• The motion planning architecture does not rely on a leader-follower hierarchy
and, hence, it is intrinsically robust with respect to faults of one of the robots.

• The hybrid design proposed to tune online the navigation parameters can be
used to optimize the trajectories followed by the team of mobile robots. Such
an optimization cannot be easily carried out using a decentralized approach.

• This centralized design strategy allows also to guarantee robustness of the
navigation scheme with respect to measurement and implementation errors.

The originality of the contribution is given by the use of a hybrid controller
to ensure the convergence to a prescribed set, and the combination of algebraic
techniques and methods inspired by the classical navigation functions to achieve
the convergence to the desired path in formation, avoiding collisions among the
agents and with static obstacles in the environment. More in detail, the guarantee of
convergence provided by the hybrid system approach ensures patrolling in formation,
while the adopted barrier function prevents collisions during the transient time.
Preliminary results were developed in [158] for the single-robot case and in [137]
for the multi-robot case.

Algorithm overview

We want to design paths of motion for unicycle-like mobile robots moving on the
Euclidean plane (see Fig. 1.19), described by equations of the form [159]

Ẋ = cos(Θ)v, (1.8a)
Ẏ = sin(Θ)v, (1.8b)
Θ̇ = ω, (1.8c)
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where (X(t),Y (t)) ∈ R2 denotes the Cartesian position of the center of mass, Θ(t) ∈
R denotes the orientation with respect to the horizontal axis, v(t) ∈ R and ω(t) ∈ R
represent the linear and the angular velocity inputs, respectively.

By hinging upon well-known techniques for instance illustrated in [160, 161]
and recalled in [158], the relative dynamics of any point on the robot that does not
belong to the segment connecting the two wheels (referred to as P in Fig. 1.19) can
be feedback linearized and consequently arbitrarily assigned.

P
L

Θ

X

Y

XP

YP

Fig. 1.19 Schematic representation of a unicycle-like mobile robot. The hatched areas
represent the actuated wheels of the mobile robot, the filled gray area represents its passive
wheel, the point P is the center of mass of the robot, and the length L is the distance of
such a point to the line connecting the two wheels. In this two-wheels configuration, the
input v represent the mean velocity of the two wheels whereas the input ω represents their
differential velocity.

Namely, the dynamics of the Cartesian position (XP,YP) ∈ R2 of the point P are
given by

ẊP = vcos(Θ)−Lω sin(Θ),

ẎP = vsin(Θ)+Lω cos(Θ).

In the following, we select P as the center of mass of the mobile robot.

Thus, assuming that L ̸= 0, i.e., that the center of mass of the mobile robot does
not belong to the line connecting the two wheels, and letting[

v
ω

]
=

[
cos(Θ) sin(Θ)

−sin(Θ)

L
cos(Θ)

L

][
uX
uY

]
, (1.9)

where u = [ uX uY ]⊤ is an auxiliary input, the dynamics of the point P are de-
scribed by virtual single integrators of the form

ẊP = uX , (1.10a)
ẎP = uY . (1.10b)
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Therefore, letting xi = [ XP,i YP,i ]⊤, i = 1, . . . ,N, denote the position of the
center of mass of the i–th mobile robot and letting its inputs vi and ωi be[

vi
ωi

]
=

 cos(Θi) sin(Θi)

−sin(Θi)

Li

cos(Θi)

Li

ui, (1.11)

the main objective of the approach briefly described in this section is to design
the input ui so to guarantee that the corresponding solution constitutes a collision
free path for the i–th agent, with i = 1, . . . ,N, and the set of all solutions steers the
mobile robots to patrol a preassigned path in controlled formation. This problem is
addressed by combining:

(i) A hybrid controller that autonomously tunes the weights of a parametric
continuous-time system to ensure convergence to a prescribed set.

(ii) An algebraic technique that allows us to design parametric vector fields such
that the solution to the associated dynamical system achieves patrolling, for-
mation control and obstacle avoidance.

(i) Hybrid stabilization of parametric continuous-time systems. The devel-
oped novel hybrid strategy autonomously tunes the parameters of a parametric
vector field to ensure that a given set is asymptotically stable for the corre-
sponding dynamical system. Such a strategy is then coupled with an algebraic
geometry technique, which allows to jointly design parametric vector fields
having a given variety as attractive and invariant set and the corresponding
Lyapunov function to solve the motion planning in formation with collision
avoidance problem.
Consider the parametric nonlinear system

ẋ = f (x,k), (1.12)

where x(t) ∈ Rn denotes the state, k ∈A is a vector of parameters, A ⊂ Rm

is the compact set of admissible values for the parameters, and the mapping
f : Rn×Rm→ Rn is assumed to be Cz for some sufficiently large z ∈ N.

Definition 1. A compact set V ⊂ Rn is locally asymptotically stabilizable
for (1.12) if there exist k◦ ∈A , an open set W ⊂Rn containing V , a function
V ∈ C1, functions α1,α2 ∈K∞, and a function ρ ∈PD(V ) such that, for all
x ∈W ,

α1(∥x∥V )⩽V (x)⩽ α2(∥x∥V ), (1.13a)
⟨∇V (x), f (x,k◦)⟩⩽−ρ(x). (1.13b)

By classical Lyapunov arguments [162], if (1.13) holds, then the set V is
locally asymptotically stable for the system ẋ = f (x,k◦). Therefore, if the aux-
iliary inputs u1, . . . ,uN appearing in (1.11) are designed as [ u1 · · · uN ] =
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f (x,k◦), where x = [ XP,1 YP,1 · · · XP,N YP,N ]⊤, and the set V describes
the target patrolling curve in formation, then the inputs v1,ω1, . . . ,vN ,ωN con-
stitute a local centralized solution to the patrolling in formation problem for
the considered team of mobile robots.

Following constructions similar to those given in [163], a control design
technique that guarantees global asymptotic stability of the set V for a hybrid
implementation of system (1.12), under the following Assumptions 1 and 2
have been obtained.

Assumption 1. Set V is locally asymptotically stabilizable for (1.12) and
functions V and ρ such that (1.13) holds are given.

Assumption 2. For all x ∈U ⊂ Rn there is κ ∈A such that

ℓ(x,κ)⩽−ρ(x). (1.14)

Note that under Assumption 1, it results that W ⊂U . A technique to design
functions V and ρ such that (1.13) holds, hence ensuring that the set V is
locally asymptotically stabilizable for (1.12), is proposed hereafter.

(ii) Design of a vector field to obtain patrolling, formation control and obstacle
avoidance. The main goal is the design of an algorithmic procedure to compute
a parametric vector field f (x,k), together with functions V and ρ satisfying
Assumptions 1 and 2, such that the solutions the system (1.12) constitute a
path for mobile robots that is collision-free and that steers them to patrol a
preassigned path in controlled formation.

This goal is pursued by combining algorithms that use tools borrowed from
algebraic geometry with methods inspired by classical navigation functions.
The former allow to automatically construct Lyapunov functions certifying the
convergence to the desired path in formation, in the absence of obstacles, while
the latter allow to avoid collisions among agents and with fixed obstacles.

Hence, two control methods have been proposed, one for solving the patrolling
and formation control goals alone, whereas the second to only guarantee that the
trajectories of the multi-agent system are collision-free. In particular, firstly an ideal
obstacle-free scenario is considered and patrolling of a desired path is ensured, having
the robots maintaining a specific formation among them. Then, the obtained vector
fields are modified in order to avoid collisions. These resulting control methods have
been suitably combined together to solve the patrolling in formation and collision
avoidance problem.

For the details and mathematical step of how this was achieved, refer to the
complete work presentend in [16].
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Experimental validation: simulation to reality

The approach has been tested for groups of three or four mobile agents, both in
simulation and in experimental tests, carried out using a remotely accessible robotic
testbed (namely, Robotarium [164]). The results achieved in all the tests confirm
the effectiveness of the proposed solution, which is expected to be applicable up
to ten robots, or even more for simple agents like the ones of the remote testbed.
Indeed, the scalability of the approach is also affected by the computational and
communication capabilities of the available hardware/software architecture.

Please note that alle experiments results are here reported at a high level, omitting
details that can be found in [16].

Simulation results

In this section, the two control techniques described before are tested via numerical
simulations. In particular, Example 1 shows how the proposed hybrid mechanism
can be used to steer the agents to desired target positions, Example 2 shows how it
can be used to let the agents patrol a selected algebraic curve, and Example 3 shows
how it can be used to let the leader patrol a selected curve while the other agents
keep a prescribed formation.

Example 1. Let N = 4 and suppose that the size of the 4 agents is ri = 0.3, i= 1, . . . ,4.
The objective of this example is to steer the four robots to the target points

xt,1 =

[
−1
−0.5

]
, xt,2 =

[
1

0.5

]
,

xt,3 =

[
−1
0.5

]
, xt,4 =

[
1
−0.5

]
,

Also, assume that in the workspace of the multi-agent system, there are four obstacles
with boundaries that make the the actual workspace of the multi-agent system the
interior of the rectangle [−1.4,1.4]× [−0.8,0.8]⊂ R2.

As reported in Figure 1.20, the hybrid implementation generates collision-free
path of motions for the mobile robots that avoid collision and that steers the agents
toward the desired target points. Note that the hybrid implementation triggers a
change in the parameters k at time t = 9.4818 ·10−4 so to guarantee convergence
of the path of motion to the desired target points. This emphasizes the fact that
the proposed navigation algorithm is capable of autonomously changing the initial
values of the parameters k so to ensure convergence. △

Example 2. Let N = 3 and suppose that the size of the 3 agents is ri = 0.3, i = 1,2,3.
The objective of this example is to let the three robots patrol an affine variety. Note
that the workspace is as defined in Example 1. The resulting trajectories of the
hybrid implementation of system (1.12) are collision-free path of motions for the
multi-agent system.
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Fig. 1.20 Solution of the hybrid implementation for the problem considered in Example 1.

As shown by Figure 1.21, the hybrid implementation generates collision-free
path of motions for the mobile robots that avoids collision and that let the agents
patrol the desired curve. The trajectories attained by the agents are dependent just on
the initial condition (x(0),k(0)), which uniquely determines the state-evolution of
the (autonomous) hybrid system. It is worth noticing that the hybrid implementation
triggers a change in the parameters k at time t = 1.4950 so to guarantee convergence
of the path of motion to V . △

Example 3. Let N = 3 and suppose that the size of the 3 agents is ri = 0.3, i = 1,2,3.
The objective of this example is to let the first robot (the leader) patrol a circle while
letting the other two agents be at prescribed distance, equal to 0.5.
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Fig. 1.21 Solution of the hybrid implementation for the problem considered in Example 2.

Let the workspace be as in Examples 1 and 2. The resulting trajectories of the
hybrid implementation of system (1.12) are collision-free path of motions for the
multi-agent system.

As shown by Figure 1.22, the hybrid implementation generates collision-free
path of motions for the mobile robots that avoid collision and that let the leader
patrol the desired curve while letting the other agents be in formation. Note how,
in such a simulation, the hybrid implementation does not trigger any change in the
constants k. △
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Fig. 1.22 Solution of the hybrid implementation for the problem considered in Example 3.

Experimental results

Experiments have been carried out using the Robotarium, a remotely accessible
robotic testbed, designed to help users quickly prototype and validate their control
strategies through implementation on physical robots without the overhead of setting
up their own hardware or high-fidelity simulation.

In particular, Experiment 1 shows how the control law given in Example 1 can
be employed to steer four mobile robots to a desired target point. In Experiment 2,
the control method outlined in Example 2 is employed to make three mobile agents
patrol a given curve. Lastly, the control law simulated in Example 3 is validated,
letting the leader patrol a circle while keeping the other two agents at a prescribed
distance.
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To ease the description of the experimental results, relevant snapshots are pro-
vided, supported by a proper labeling of the involved robots; see [165] for the full
video.

The single-integrator dynamics corresponding to the hybrid implementation have
been converted to unicycle dynamics using a suitable linearizing feedback, i.e., the
team of mobile robots has been controlled using the centralized control law. Further,
since the trajectories of the system ẋ(t) =𭟋(t) f (x(t)) are the same as those of the
system ẋ(t) = f (x(t)), provided that 𭟋(t)> 0 for all t ∈ R, the linear and angular
velocities resulting from (1.9) have been uniformly scaled so to meet the actuation
constraint. Namely, letting vi and ωi be the linear and angular velocities resulting
from (1.9) for i = 1, . . . ,N, and letting v̄ and ω̄ be the maximal admissible linear and
angular velocities of the mobile robots, the parameter 𭟋(t) above has been selected
as

𭟋= min
{

1,
v̄

2maxi{|vi|}
,

ω̄

2maxi{|ωi|}

}
.

Experiment 1. The control law given in Example 1 has been used to steer four robots
to a target position. The initial poses of the robots are X1(0) =−1.2m, Y1(0) = 0m,
Θ1(0) = 0rad, X2(0) =−0.4m, Y2(0) = 0m, Θ2(0) = π

2 rad, X3(0) = 0.4m, Y3(0) =
0m, Θ3(0) = π rad, X4(0) = 1.2m, Y4(0) = 0m, Θ4(0) = 3

2π rad. Figure 1.23 reports
some snapshots of the corresponding experiment.

(a) Time t = 0s. (b) Time t = 4s.

(c) Time t = 8s. (d) Time t = 12s.

(e) Time t = 16s. (f) Time t = 20s.

Fig. 1.23 Result of the experiment with the control law given in Example 1.
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As shown, the proposed control method allows to steer the four agents to their
target positions avoiding collisions among themselves and with fixed obstacles
despite the actuators saturation and the robots nonidealities. However, by comparing
Figures 1.20 and 1.23, it can be observed a slower convergence to the target points
due to the saturation introduced to satisfy the actuators limitations. △

Experiment 2. The control law given in Example 2 has been used to let three
robots patrol a given curve. The initial poses of the robots are X1(0) = −0.5m,
Y1(0) = 0.5m, Θ1(0) = π rad, X2(0) = 0m, Y2(0) = 0.5m, Θ2(0) = π

2 rad, X3(0) =
0.5m, Y3(0) = 0.5m, Θ3(0) = 3

2π rad. Figure 1.24 reports some snapshots of the
corresponding experiment.

(a) Time t = 0s. (b) Time t = 10s.

(c) Time t = 20s. (d) Time t = 30s.

(e) Time t = 40s. (f) Time t = 50s.

Fig. 1.24 Result of the experiment with the control law given in Example 2.

As demonstrated by such a figure, the proposed control method let the three
agents patrol the desired curve avoiding collisions among themselves and with fixed
obstacles. However, note that the resulting trajectory is slightly different from the
one depicted in Figure 1.21 due to position measurement errors, which, however,
do not affect the convergence of the proposed navigation method by the robustness
analysis reported in [16]. △

Experiment 3. The control law given in Example 3 has been used to let the leader
patrol a circle while letting the other two robots be at a prescribed distance. The
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initial poses of the robots are X1(0) =−1m, Y1(0) =−0.6m, Θ1(0) = 0rad, X2(0) =
−0.5m, Y2(0) = 0m, Θ2(0) = 0rad, X3(0) = −1m, Y3(0) = 0.6m, Θ3(0) = 0rad.
Figure 1.25 reports some snapshots of the corresponding experiment.

(a) Time t = 0s. (b) Time t = 10s.

(c) Time t = 20s. (d) Time t = 30s.

(e) Time t = 40s. (f) Time t = 50s.

Fig. 1.25 Result of the experiment with the control law given in Example 3.

As shown by such a figure, the proposed control method allows the leader to
patrol the desired curve while keeping the other agents at a prescribed distance and
avoiding collisions among the robots and with fixed obstacles. △

The main contribution of this work compared to the afore mentioned preliminary
results is that here the navigation strategies envisioned in [137, 158] are coupled
with a hybrid framework, which autonomously selects and updates navigation pa-
rameters so to guarantee the achievement of the desired formation and patrolling
task while avoiding collisions with fixed obstacles in the environment and among
agents. Furthermore, a robustness analysis of the proposed navigation strategy is
carried out: even in the case of inaccurate measurements of the agents’ positions and
imperfect implementation of the nominal strategy, the method ensures patrolling in
prescribed formation . It is worth to be noted that, thanks to the centralization of
the proposed approach, there is no predefined leader among the robots: the desired
patrolling paths can be assigned to some or all the agents of the team, thus enhancing
the robustness of the scheme.
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1.2.3 Dealing with dynamic obstacles: a costmap layer
approach

In previous sections, we have seen how it is possible to control AMRs to au-
tonomously navigate both in environments shared with humans or for the purpose of
obtaining formation and patrolling applications in dedicated environments.However,
considering an AMR motion in an environment with dynamic obstacles, being able to
tune navigation based on the speed of such moving obstacles is useful for improving
the performance and safety of the motion itself.

To this aim, the work we have presented in [15] seeks to provide a strategy for
dynamic obstacle handling, which can be easily integrated with the current ROS2
Navigation Stack (Nav2), thus being a flexible and modular solution for the problem
of navigation in dynamic environments. In particular, our Dynamic Obstacle Layer
(DOL) approach can be used as a plug and play solution to integrate the current Nav2
with the dynamic obstacles information coming from a generic 2D LiDAR sensor,
starting from some preliminary results available in [166].

The proposed approach is reported here at a high level, omitting details that can
be found in [15].

Background

Navigation can be decomposed into the following tasks [167]: (i) modelling the world
as a map, (ii) computing collision-free trajectories, and (iii) path following while
avoiding collision with obstacles. Tasks (ii) and (iii) make up the motion planning
problem [168], which over the years boosted the development of several algorithms
for its solution, based on different mathematical approaches and technologies [169].

As already stated in Section 1.2.1, path planning algorithms are typically per-
formed within two hierarchy levels: global and local planners.

Within the ROS1 NavStack1, the local planners made available are:

• Dynamic Window Approach (DWA), an online collision avoidance algorithm
that takes into account the dynamics of the mobile robot. Taking into ac-
count a robot’s velocity and acceleration constraints: firstly, a valid velocity
search space is generated, and then the optimal solution is selected through a
cost function evaluating the trajectories scores [170] (background details in
Appendix A).

• Elastic Band (EBand) deforms the global path when new obstacles are detected,
using an artificial force model [171]. An elastic band is created by a contraction
force that pulls the robot towards the goal position, while a repulsive force
pushes the path away from obstacles.

1ROS currently has two versions: from now on we will refer to the original version as ROS1.



1.2 Industrial mobile robots: a quest for autonomous navigation 59

• Timed Elastic Band (TEB) is an improvement of the EBand, in which the time
information is added to the path computation. Nevertheless, issues arise when
the dynamic obstacle intercepts the recomputed path, so three elastic bands are
created as alternative paths and the shortest one compliant with the planning
requirements is chosen [172].

The selection of the most suitable planner depends on the navigation require-
ments, and is usually a compromise among precision, speed and performance. For
instance, according to [173, 174], DWA planner stands out for its small computing
power requirement and repeatability in consecutive tests, while EBand provides more
accurate results, and TEB is the fastest to react to the dynamic obstacles, although it
requires more computer resources as it tries to optimize multiple trajectories.

For our DOL approach we used ROS2 and the relative Nav2 stack, which still
does not embed a strategy for dynamic obstacles handling, as raised by the ROS2
community [175]. Indeed, navigation is performed on the basis of a costmap repre-
sentation of the environment, where static occupied costmap cells are inflated by an
exponentially decreasing cost decay rate, irrespective of whether they are occupied
by static or dynamic objects. Thus, the robot plans a more pessimistic trajectory and
keeps a larger distance from obstacles than actually required by collision avoidance,
but without the awareness of the temporal evolution of the occupancy grid. Con-
sequently, the navigation performance is affected by unnecessary delay, leading to
lower productivity and preventable downtimes in dynamic industrial setups.

Dynamic path planning: the DOL approach

Being the current flexible production plants highly demanding environments, re-
search is brought on with the aim of enhancing the ROS1 NavStack to make it
compliant with industrial highly dynamic and ever-changing environments [176],
along with ROS1 to ROS2 migration processes to take advantage and improve well-
established frameworks, providing valuable capabilities, e.g., task planning [177].

Several works about laser range finder data processing for dynamic obstacles
detection and tracking are available in literature [178–180]. Here, the dynamic
obstacles detection is achieved applying some heuristic algorithms directly on the
LiDAR pointclouds, clustering the obstacles based on parameters such as the cluster
radius or the distance between points.

In the proposed approach, dynamic obstacles are detected and tracked taking
advantage of the occupancy grid provided by the Nav2 packages, making it a modular
solution such as the ROS1 costmap_converter package implemented in [181]. In
this way, the DOL is less dependent on the type of used sensor. Then, a policy for
translating the obstacles velocity and orientation information into the costmap has
been defined exploiting the available Inflation Layer structure and applying a risk
level set concept similar to the one presented in [182].
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The DOL approach developed in this work is articulated in three steps:

(i) Object detection. Starting from the costmap representation of the environment,
dynamic obstacles are identified and divided from static ones, applying image
processing algorithms and running average filters.

(ii) Object tracking. A Kalman Filter is applied to estimate the velocity of detected
dynamic obstacles as they are tracked.

(iii) Cost assignment. A developed costmap layer assigns costs around each mov-
ing obstacle in the local_costmap, according to a 2D Gaussian shape, with
variances proportional to the obstacle velocity and oriented along its moving
direction.

(i) Object detection. During this phase, the robot’s costmap representation of the
surrounding environment is handled as an image. This means that the foreground
indicates whatever is moving, while the background is everything that is static.
Background subtraction is obtained applying two running average filters to each
pixel – a “fast” and a “slow” filter.

Pf (t +1) = β [(1−α f )Pf (t)+α fC(t)]+
1−β

8 ∑
i∈NN

Pf ,i(t)

Ps(t +1) = β [(1−αs)Ps(t)+αsC(t)]+
1−β

8 ∑
i∈NN

Ps,i(t)

where Pf (t) and Ps(t) represent the output of the fast and the slow running average
filters at time t, respectively. β denotes the ratio between the contribution of the
central cell filter and the effect of the neighbouring cells to Pf (t) and Ps(t), so to
capture the running average filter of the 8 Nearest Neighbour (NN) cells, since large
objects form blocks of cells in the local costmap. The gains α f and αs define the
effect of the current costmap C(t) on both filters. Therefore, the two filter rates are
chosen such that 0≤ αs < α f ≤ 1.

Then, two thresholding steps are performed to filter out the high and low fre-
quency noise and identify those pixels occupied by dynamic obstacles. Namely, the
fast filter classifies a cell as foreground if it exceeds threshold c1, and the difference
between the fast and the slow filter has to exceed a threshold c2 in order to eliminate
quasi-static obstacles with low frequency noise:

Pf (t)> c1

Pf (t)−Ps(t)> c2

The values c1 and c2 have been set heuristically based on the range of values that
cells can assume in a Nav2 costmap (from 0 to 255), with the same settings adopted
in [181]. The output binary map has all the dynamic pixels marked with “1”, as it is
shown in the general scheme of the DOL approach reported in Figure 1.26.
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Fig. 1.26 Dynamic Obstacle Layer method steps.

Then, the SimpleBlobDetector heuristic algorithm, provided by the OpenCV
library [183], clusters the dark pixels in the binary image into blobs representing
each dynamic obstacle in terms of contours – a list of the cells which define the blob
contours – and centroid – the coordinate of the cell (pixel) in the weighted center of
the blob.

(ii) Object tracking. The centroid of dynamic obstacles progresses with each
costmap update and subsequent foreground detection. The assignment of blobs in
the current map to obstacle tracks constitutes a data association problem. In order to
disambiguate and track multiple objects over time, the current obstacles are matched
with the corresponding tracks of previous obstacles. A new track is created for any
new obstacle that appears and is not being tracked yet. Tracks that are not assigned
to current objects in the foreground frame are temporarily maintained. If an object is
no longer detected for a prolonged period of time, its track is removed.

The assignment problem is solved by the Hungarian algorithm [184], which
solves weighted assignment problems by minimizing the total Euclidean distance
between the tracks and the current set of obstacle centroids. Then, a Kalman filter
estimates the current velocity of tracked obstacles assuming a first order constant
velocity model, since it is sufficient to capture the prevalent motion patterns of
humans and robots in indoor environments.

(iii) Cost assignment. To include the dynamic obstacles information into the
costmap, the region around each detected obstacle is inflated with a 2D Gaussian
shape, whose peak is associated with the magnitude of the obstacle velocity. This
way, faster obstacles are inflated more than slower ones. This has the aim to make
the local planning aware of the obstacle with a sufficient heads-up for replanning.

Moreover, the orientation information makes possible to inflate more the cells
along the moving direction of the obstacles. To achieve this, two 2D Gaussian shapes
are blended: one inflating the cells in front of the obstacle, and the other inflating
the cells on its back region. Given an obstacle O with centroid in c(x,y) in the map
reference frame, we define a local coordinate system with origin in c, X-axis oriented
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along the velocity vector direction, Z-axis pointing outwards the costmap plane and
Y-axis set according to the right-hand rule (Figure 1.27a).

Fig. 1.27 (a) Local obstacle reference frame (black) with respect to the global (map) reference
frame (red). (b) A point q within the back area. (c) A point q in the frontal space.

Hence, the obstacle inflation region is represented by the combination of Gaussian
functions that inflate the frontal and the back area of the obstacle, respectively.
Through the tuning of a specific parameter, the correct Gaussian function is selected,
depending on whether the considered cell is in the frontal or back space of the
obstacle (Figs. 1.27b and 1.27c).

Each Gaussian function is computed as:

Φc,Σ(q) = Aexp

{
− [d cos(ϑ −ϑc)]

2

2σ2
x

− [d sin(ϑ −ϑc)]
2

2σ2
y

}

where d is the Euclidean distance between q and c(x,y), A is an amplitude
parameter set to the maximum cost possible on the costmap, i.e., 255, and σ2

x , σ2
y

are the diagonal entries of the Σ covariance matrix, which determines the shape of
the inflation region. In particular, the two covariance matrices are defined as follows:

Σ f ront =

(
σ2

x_ f ront 0
0 σ2

y_ f ront

)

Σback =

(
σ2

x_back 0
0 σ2

y_back

)
Therefore, σx and σy can be tuned to model a generic shape at will. Here, in

order to take into account the obstacle velocity magnitude, a maximum obstacle
speed max_speed has been set. Then, in order to inflate more the front region, we
defined the speed ratio r = vel

max_speed , where vel is the estimated obstacle speed.

Finally, the variances are modified according to heuristics functions that make
the Gaussian shape lengthened in the direction of the obstacle motion and narrowed
in the lateral area.
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Implementation in ROS2

The presented approach has been implemented exploiting ROS2 Foxy on an Intel
NUC8 with a Linux Ubuntu 20.04 environment. For testing purposes, during the de-
velopment phase, a virtual environment has been created using the Webots simulator,
while Rviz has been used for outputs visualisation and debugging. The simulated
robot is the TurtleBot3, for which both Webots and Nav2 already provide a physical
model and interface packages. Nevertheless, the DOL still remains independent of
the robot which is considered.

Nav2 comes with a modular and (run-time) reconfigurable core, consisting in a
Behavior Tree (BT) navigator [185] and task-specific asynchronous servers: Planner,
Controller and Recovery servers (see Figure 1.28).

Fig. 1.28 Navigation 2 architecture.

They are action servers hosting the environmental representation used by the al-
gorithm plugins to compute their outputs, under the orchestration of the BT navigator.
In particular:

• The Recovery behaviours are plugins triggered by the BT when a navigation
failure occurs.

• Controller plugins replace the local_planner of the NavStack of ROS1: they
compute a feasible control effort to follow the global plan, based on a local
environmental representation, thus performing local planning.

• The task of Planner plugins is the computation of a valid, and potentially
optimal, path from the current pose to a goal pose, serving the function of
global planning.

The Planner and Controller servers work on two different costmap representa-
tions of the environment, the global_costmap and the local_costmap, respectively.
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The dynamic obstacle handling is usually faced in motion planning at a local level,
in this case by the Controller Server. Among the Controller Server plugins for local
planning deployed in Nav2 there are the DWB Controller (nav2_dwb_controller),
and the TEB Controller (teb_local_planner). In particular, the former is the successor
to the DWA controller in ROS1.

The huge potential of the costmap representation in Nav2 lies in the adoption of
the costmap layers method [186]: unlike traditional monolithic costmaps, where all
the data are stored in a singular grid of values, in the costmap layers approach, each
layer tracks one type of obstacle or constraint, and then modifies a master costmap
that is used for the path planning. The base layers in Nav2 are essentially three: (i)
static layer – stores the costs associated with the static map provided at launch time,
(ii) obstacle layer – continuously marks and clears cells according to sensor data, and
(iii) inflation layer – propagates cost values out from occupied cells that decrease
with distance, in order to provide a safety margin for the robot navigation.

The DOL has been thought as an additional costmap layer plugin to the lo-
cal_costmap, embedding the information of dynamic obstacles velocity and orienta-
tion information into the occupancy grid, together with the existing controller plugins.
As shown in Figure 1.29, the ros2_costmap_to_dynamic_ obstacles package provides
the nodes implementing the obstacle detection functions and publishing the blobs
corresponding to detected obstacles through a specific custom ROS2 message type
on the /detection topic. The kf_hungarian_tracker package provides a subscription
to this topic, so that it can perform object tracking.

Then, it publishes the dynamic obstacles and their estimated velocities on the
local_costmap/tracking topic, which is created when Nav2 is launched. Finally, the
costmap layer, implemented through nav2_dynamic_costmap_layer_plugin, pro-
cesses this information to calculate the Gaussian costs, and then updates the master
costmap, which the robot uses for navigation.

Fig. 1.29 Interaction scheme between internal SW functional blocks and the simulated
external environment.

Simulation tests and analysis

The path planning approach available in ROS2 (DWB Controller) and the DWB
integrated with the proposed Dynamic Obstacle Layer method (DWB + DOL) are
compared through simulations for a preliminary evaluation of the DOL approach.
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The simulations have been executed on Webots employing a TurtleBot3 burger
robot, a two-wheeled robot equipped with a RPLIDAR A3 LiDAR sensor providing
a maximum distance range of 25 m, an angular resolution of 0.225◦ and a scan rate
of 15 Hz. Webots allows to create realistic 3D virtual worlds including the physical
properties of each object. In particular, it is possible to specify the dynamic behaviour
of robotic objects (Robot Nodes) through a Webots Controller.

The world created for testing is an empty rectangular arena 10m× 6m where
dynamic obstacles are simulated as wooden boxes of 20cm×20cm base and 50cm
tall, configured as Robot Nodes (Figure 1.30).

Fig. 1.30 Virtual world on the right and Rviz output on the left with DOL plugin.

Each box is designated an initial position and moves at a constant speed in a
back-and-forth motion, covering the entire arena along the short side direction. A
Webots Controller has been coded for each obstacle and the speed can be tuned when
the world is launched, so that simulations scenarios can be easily modified. To obtain
the static map of the virtual environment (without boxes) for navigation, SLAM was
performed exploiting the turtlebot3_cartographer package.

So as to compare the performances of the baseline DWB with the DWB + DOL
configuration, the TurtleBot3 is commanded to navigate in the virtual world N times,
from one side of the rectangular arena to the opposite side, covering a total distance
of 8m (Figure 1.31). The Planner plugin used for computing the global path is
nav2_navfn_planner/NavPlanner. A brief demo video showing the experimental
setup and behaviour using DWB alone and DWB + DOL can be found at [187].

The parameters recorded for the evaluation purpose are: the travel time, the
number of wait recovery behaviours triggered during travel and if any collision
occurred. Such data have been collected from experiments conducted in two different
conditions: obstacles (boxes) moving at constant speed set to 0.6m/s (Test set 1) and
0.8m/s (Test set 2). The performance indices considered for each set are described
hereafter.
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Fig. 1.31 Test scheme.

Smooth navigations. It indicates how many times the TurtleBot3 smoothly navigated
to the goal position. It includes also the cases in which the robot stopped briefly
to avoid collisions with a moving box in its proximity.

Wait recoveries. It is the number of times the wait recovery behaviour has been
triggered, still successfully reaching the goal. A wait recovery is usually
triggered when obstacles come suddenly too close and the Controller Server
cannot find an affordable path by a given timeout interval.

Collisions. It corresponds to the percentage of unsuccessful navigation due to a
collision of the TurtleBot3 with a moving box.

Successful navigations It is the total amount of times in which the robot successfully
reached the goal position, either performing a smooth navigation or after
triggering the recovery behaviour.

Test set 1. For the first test set, N1 = 50 simulations have been launched for both
DWB and DWB + DOL configurations. Table 1.4 sums up the navigation results.

Table 1.4 Navigation results at 0.6m/s obstacles speed.

DWB + DOL DWB
Smooth navigations 86,0% 82,0%
Wait recoveries 10,0% 0,0%
Collisions 4,0% 18,0%
Total successful
navigations

96,0% 82,0%
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As can be seen, the proposed method combined with DWB reported a greater
successful navigation rate than the simple DWB: 96% against 82%, respectively.
In particular, the ‘smooth navigations’ percentage is quite similar with the two
approaches, but the DWB + DOL solution reported fewer collisions, because the
wait recovery was triggered more times. This means that the dynamic obstacle
layer provides a safer navigation if it is combined with the actual DWB planner.
Indeed, the Gaussian costs forewarn the robot about an approaching obstacle and the
Recovery Server is triggered on time if moving on would result in a collision. On the
other hand, with the chosen obstacle speed (0.6m/s) and the same Nav2 parameters
settings, DWB does not react on time if an obstacle suddenly approaches.

It can be noted that the number of ‘smooth navigations’ for DWB + DOL and
DWB over the total number of tests is similar (86% and 82%, respectively), but the
travel time performances are different. Figure 1.32a shows the box plots representing
the travel time data of all the ‘smooth navigations’ achieved by the robot with the
two approaches. One can notice that the DWB distribution is more asymmetric and
for sure non-Gaussian. Also, the mean travel time reported in DWB + DOL is lower
than that of DWB, even if only of 1s. Nevertheless, the most important result is that
the interquartile range (IQR) for DWB + DOL is smaller than DWB box. Thus, it
seems that the proposed method ensures to estimate a more confident travel time for
a given environment and settings. Note that outliers lay all below the box plot for
the DWB + DOL (shorter travel times), while they are all longer travel times for the
DWB plot. This suggests that carrying out more tests might produce less overlapped
box plots and so more accurate considerations.

Test set 2. The obstacle speeds have been set to 0.8m/s. This value has been
chosen in order to push the available DWB Controller to its limits. Indeed, in this
case, only N2 = 30 simulations are sufficient to clearly prove the poor performance
of the DWB compared to the DWB + DOL approach. Note that with respect to the
previous test set, the obstacle speed is the only value that has been changed. Results
are shown in Table 1.5.

Table 1.5 Navigation results at 0.8m/s obstacles speed.

DWB + DOL DWB
Smooth navigations 50,0% 43,3%
Wait recoveries 36,7% 0,0%
Collisions 13,3% 56,7%
Total successful
navigations

86,7% 43,3%

It is worth noting that the number of collisions during the simulations launched
with only DWB have remarkably increased (from 18,0% at 0.6m/s to 56,7%);
likewise, for the DWB + DOL, collisions increased from 4,0% at 0.6m/s to 13,3%.
Nevertheless, for the DWB + DOL case, the percentage of triggered recoveries has
increased as well, ensuring 86,7% of successful navigations, while the percentage of
success in case of DWB has halved with respect to Test set 1. Despite this, for the
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(a) Test set 1

(b) Test set 2

Fig. 1.32 Box plot of the travel times during ‘smooth navigations’ for both test sets.

second test set, travel time data have been collected over N2 = 30 data points (Figure
1.32b). Given that the ‘smooth navigations’ indices are equal to 50% (DWB + DOL)
and 43,3% (DWB), it is worth pointing out that no robust consideration can be made.

Furthermore, median values of both test sets are very similar. The first remarkable
difference is that in Test set 2, due to the small amount of data, the DWB + DOLbox
plot has a greater variance. This is also because the faster are the obstacles, the
more corrective actions are performed by the robot, making the travel time more
unpredictable. Concerning the data for DWB, the variance has been considerably
reduced with respect to the previous test set. However, the data sample is too small,
since the robot performed successfully a smooth navigation 13 times out of 30.
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As it is shown by the simulation results, the DOL approach definitely reports
some performance improvements in terms of collisions rate, but still collisions
occur, even at the lower obstacle speed of 0.6m/s. One reason behind this could
be the not optimal communication between the Webots virtual environment and
the Navigation Stack, that may cause delays in the obstacle detection and costs
computation. However, this is strictly related to the computational performances
of the whole ROS2 and Linux environment installed on the Intel NUC platform.
Yet specific Nav2 parameters could be tuned to reduce the collisions rate with the
adopted HW/SW setup (see the complete paper [15] for further details). For what
concerns the Gaussian cost assignment, the variances (Gaussian shape parameters),
have been set empirically and based on an hypothetical obstacle maximum speed.
As alternative, an additional function could be introduced to compute the costs
combining the obstacle speeds with the robot speed.

Hence, the proposed Dynamic Obstacle Layer approach seems to provide a safer
navigation in presence of dynamic obstacles. At the same time, in the majority of the
test cases, the DOL allows to plan a smoother trajectory than the DWB Controller
alone, resulting in reduced travel times starting from the same conditions. Indeed,
despite the TurtleBot has a maximum speed lower than the set obstacle speeds, it
manages to adjust the trajectory when an obstacle is reported by the DOL, dodging it
or passing behind it, even if there is still much room for improvements of the travel
time performance.

In conclusion, the research contributions described above provided a possible
development path towards the autonomy of mobile robots in the industrial sector,
considering different application requirements. However, as already stressed, is
now essential that IMRs are able to operate in cooperative and/or collaborative
environments with human operators. The next chapter will provide a roadmap
through the research work undertaken to address autonomous navigation in human-
shared environments, while complying with safety and efficiency requirements.
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Mobile robots navigation towards
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A
UTONOMOUS mobile robots in industrial plants and warehouses can
have a number or roles, ranging from patrolling to material transporta-
tion. However, given the need to achieve upgraded capabilities to carry
out complex tasks, human and robotic workers must be able to co-exist.

This co-existence may imply either cooperation or collaboration, or both. In the
first case, humans and robots work on dedicated tasks while being aware of each
other’s presence, while the latter case would involve an interaction between the two
to achieve a common final goal, represented by the task execution.

To achieve this kind of co-existence, the robots need to be aware of their surround-
ings in a fashion that goes beyond the awareness needed for autonomous navigation:
information on other mobile agents, on human workers and on special areas in the
workspace become crucial for decision-making based on the target application. Also,
the concept of team assumes relevance when shared information lead to improved
skills. Teams of mobile robots, either AGVs and/or AMRs, can achieve what a single
one would not, unlocking potentialities that bring research a step forward towards
teams of humans and robots. Such potentialities have been investigated, leading to
the works presented hereafter.

2.1 AMRs as meta-sensors

The work presented in [5], was published within the HuManS – Human centered
Manufacturing Systems project, funded by Fondo Europeo Sviluppo Regionale (POR
FESR Piemonte 2014-2020), relative to the whole concept of new production line.
The main goal of the HuManS project, which involved COMAU, Politecnico di
Torino, and several industrial and academic partners, was the creation of a new man-
ufacturing paradigm, in which the human operator is at the center of the production
system, by means of innovative technical solutions that allow the execution of highly
complex operations, through a safe and efficient interaction among operators, robots
of different nature, and working stations.

One of the contributions to the project dealt with the development of an advanced
robotic architecture for a flexible production line. We proposed there for the first
time the idea of the AMR as a meta-sensor. In this view, the AMRs act as mobile
sensors, distributed and reallocated as a supporting net to traditional AGVs, so to
reduce as much as possible the need for infrastructural interventions. This way, the
AMRs integrate the AGVs knowledge of the environment, so to avoid the use of a
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fixed sensor net that would imply infrastructural interventions, limiting the flexibility
of the line itself. The proof of concet of such architecture is illustrated in this section.

The current and future trend aims at “setting free” all industrial robots, allowing
human-robot cooperation by de-caging the manipulators and by slowly getting rid
of the virtual cage enclosing the AGVs. The evolution of conventional AGVs goes
toward AMRs, generically indicating infrastructure-free, highly autonomous mobile
platforms, which position themselves as a solution to industrial flexibility issues.

Giving a unique and unambiguous definition of AMR is nowadays very difficult
due to the current development of the concept, which depends on the field of applica-
tion and operational requirements. Nevertheless, in order to highlight the features
that characterize the new concept of AMR (in an industrial context), the following
criteria are pointed out:

Degree of autonomy One of the main characteristics of the AMR is the capability of
understanding its surroundings and being able to navigate dynamically. Indeed,
the presence of on-board more advanced systems allows for sophisticated
decision-making capabilities [188]. An AMR is, at its most autonomous
version, capable of avoiding static and dynamic obstacles, including human
operators. The degree of autonomy may vary, based on the requirements.

Degrees Of Freedom The definition of AMR not only includes a “simple” moving
platform (as standard AGVs), but may include other systems on top of it
extending the autonomous mobile robot DOF. Indeed, mobile manipulators,
i.e., mobile robots coupled with a robot arm on it, are used for many industrial
operations that can involve cooperation with human operators [189]. Thus, the
presence of additional automated structures extends an AMR capabilities and
application possibilities (Figure 2.1).

Application Depending on the robot kinematics and sensors set, the applications
can vary. For example, a mobile manipulator can support factory workers with
repetitive and precision industrial processes in a flexible way, transferring the
production line where needed (this is not possible with fixed base cobot arms,
i.e., collaborative robot arms). Mobile robots are employed in logistics tasks
(e.g., the transport of different loads between areas) that can be dull, repetitive
and/or hazardous for human workers. Autonomous mobile robots are also
used for moving products and goods between workers and stations, allowing
to minimize idle time. Another utilization is maintenance tasks in restricted
access areas and inventory processes at predefined schedules, allowing for
optimized inventory process times in huge warehouses [190]. Furthermore
some AMRs can implement person following skills, docking to machinery and
voice control.
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(a) The MiR200 is a safe, cost-effective mobile robot. It can be equipped with customized top
modules, including lifts, bins and cobots [191].

(b) The RB-KAIROS is a completely integrated Collaborative Mobile Manipulator (CMM), designed
for the development of industrial tasks [192].

(c) Fetch robot AMRs collection [193].

Fig. 2.1 Examples of AMRs.
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Ease of integration An automated guided vehicle follows fixed routes, usually
along wires or magnets embedded in the ground. This implies that a small
change in the working space configuration is constrained by the AGVs road-
paths: adding a new AGV to an existing fleet is a difficult process, and
extending the working space for the AGVs is not immediate. On the other
hand, AMRs are not dependent on the infrastructure since they dynamically
determine the best route according to pre-learned maps. In this way, AMRs
motion does not depend on the environment setup and allows for fast integra-
tion in the factory/warehouse workflow, without the need for expert staff or
any re-layout.

Scalability As a consequence of the ease of integration of AMRs in a factory set-up,
the number of smart mobile robots can be increased without being hindered
by structural changes. A system of AMRs is thus highly and easily scalable.

Safety standards As already mentioned, autonomous mobile robots are accessing
spaces usually reserved for human operators and manned vehicles. Indeed,
with respect to AGVs and, obviously, the traditional fixed automation ele-
ments, the AMRs are free to roam around: no fences and predefined routes
imply major safety concerns. Indeed, for several years the available standards
addressed AGVs, e.g., the ANSI/ITSDF B56.5-2012 – Safety Standard for
Driverless, Automatic Guided Industrial Vehicles and Automated Functions of
Manned Industrial Vehicles. This standard “defines the safety requirements
relating to the elements of design, operation, and maintenance of powered, not
mechanically restrained, unmanned automatic guided industrial vehicles and
the system of which the vehicles are a part” [194].

Thereby, this standard is defined for classical AGVs and does not take into
account the higher degree of autonomy of current AMR systems: no real-
time path re-planning and optimized routing is considered. Nevertheless,
there are several safety regulations for Industrial Mobile Robots by ISO, e.g.,
the ISO 3691-4:2020 [94]; also the Robotic Industries Association (RIA)
together with the American National Standards Institute (ANSI) developed
safety requirements for industrial mobile robots [195].

Artificial Intelligence Even though the motion environment of an AMR is overall
structured (factory/warehouse map), it is dynamic due to moving platforms
and factory workers. Consequently, the AMR needs a set of sensors whose
information, intelligently fused, are the input to sophisticated algorithms
providing artificial intelligence to the platform. Object detection, surroundings
perception and many other capabilities are critical for the AMR autonomy.

Cost The use of AMR in preexisting workspaces does not imply an infrastructure re-
configuration, which translates in less-costly integration. Furthermore, newer
technologies result in faster and cost-effective performances. Therefore, AMR
solutions are overall less expensive with respect to traditional AGV systems.
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Having defined the characteristics of an AMR, some projects can be considered as
important reference points for the transition from traditional AGVs to AMR systems.

In [196], the mobile robot, the environment and planning are modeled as au-
tomata, exploiting modular supervisory control theory. In this way the robot is able to
navigate in the presence of unpredictable obstacles: two supervisors guide the mobile
robot enforcing the path it has to follow while ensuring collision avoidance, task
management and static versus dynamic obstacles. The research presented in [197]
aims at applying cyber-physical systems to the design of AGV systems and fosters
efficiency, taking care of urgent tasks, allowing overtaking. In this system, AGVs
become smart agents thanks to the physical layer where perception, decision-making
and communication are implemented with sensors, a computing module and a Wi-Fi
module, respectively.

In [198] the Plug and Navigate (PAN) Robots project is presented, which aims at
providing an advanced logistic system involving smart AGVs. These AGVs are able
to compute autonomously their motion along a set of virtual paths, called roadmap,
pre-computed using a semi-automated map creation process [199]. The mobile
platforms are capable of overtaking obstacles found on (or near) the predefined path,
exploiting local deviations [200]: the detouring operation is assisted by a centralized
data fusion system that gathers together on-board sensing and the data output from
an infrastructure-based environment perception system.

The autonomous mobile robot is thus an evolution of the automated guided
vehicle, adapted to the imperative need of the industrial evolution to break the now
obsolete and inefficient fixed production line paradigma. Moreover, the AMR main
intelligence lies in the sensor data fusion, fostered by the use of the latest sensing
technologies. Therefore, the AMR sensing system should represent an added value
not only for the AMR platform itself, but for the whole smart factory ecosystem,
made up of inter-connected, on-line, real-time devices.

In the work-in-progress project presented in this section, the idea is to exploit
the mobile platforms as a distributed sensor infrastructure, and as a support net to
existing traditional AGV systems. The aim is to design a system of AMRs taking on
the role of meta-sensors, going beyond the distinction between smart entities and
sensing systems, at a higher level of abstraction.

2.1.1 Sen3Bot: a proof of concept

The system is thought for ideally any flexible production line, made up of classical
AGVs, workstations, cobots, in spaces accessible to human operators. The system
can be described by the macro-elements composing it:

(i) meta-sensor AMR fleet

(ii) Sensors Synergy Center

(iii) AGV Coordination Center Interface
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At a high-level, we can identify the goal system as an Industry 4.0 sensor system,
supporting non-autonomous agents. Note that, in this case, the word “sensor” com-
prehends both sensors and meta-sensors. The meta-sensor entities integrate the
AGVs knowledge about their surroundings, allowing to smartly react to foreseeable
approaching dynamic obstacles, e.g., factory workers. The aim is to provide real-time
fully-conscious reactions to the changing environment, which would be unachievable
with a fixed sensor net.

Information gathered from the AMRs are combined together within a data fusion
center, called the Sensors Synergy Center (SSC), which generates an overall updated
picture of the plant traffic status. Furthermore, an ad-hoc interface lets translate
significant data into commands, to accordingly modify motions planned by the AGV
Coordination Center (AGV CC). Note that, the AGV CC represents the generic
pre-existent classical AGV manager. Communication between the two centralized
systems (SSC and AGV CC) is bi-directional: indeed, the AGV CC can forward task
requests to AMRs.

(i) AMR as meta-sensor

As mentioned above, the meta-sensor AMR aims at increasing the traditional AGV
consciousness about obstacles on its route, especially when blind intersections are
involved. In this case, the AMR is a sort of AGV extension, an integral part of its
sensor system: it is a meta-sensor, whose activity is related to the following issues.

Navigation The AMR exploits the ROS (Robot Operating System) [139] NavS-
tack, which uses relationships between coordinate frames, sensor values and
odometry information to perform planning, obstacle avoidance and, at will,
localization in a previously created map, using the KLD-sampling (Adaptive)
Monte Carlo localization approach [201]. The Global planner can implement
the Dijkstra or the A∗ algorithm while the vehicle task allocation is entrusted
to the preexistent AGV CC in order to integrate the AMRs according to known
and tested rules.

Vision Recent computer vision developments provide object recognition and de-
tection, fundamental components for sorting out the appropriate reaction for
mobile robots. A benchmarking to find the best option for the vision infor-
mation is currently going on: conventional solutions are compared to new,
unexplored alternatives. FireWire (IEEE1394a or IEEE1394b) cameras are
well supported by ROS, which provides an image pipeline useful for camera
calibration and raw image low-level processing, e.g., distortion rectification
and color decoding [202]. In order to get depth information, a stereo vision
camera could be a choice. However, the combination, fusion, of two or more
sensors can produce a more robust piece of information, since disadvantages
can be neutralized and advantages summed up. A solution under evaluation
is combining a laser range finder for depth information, with a monocular
camera, e.g., a low-cost PTZ IP camera.
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Nowadays, PTZ IP cameras can be easily set up since they usually come with
a plug-and-play application, which lets the user connect the camera to the
preferred wireless access point Wi-Fi signal. An IP camera is a standalone
unit, accessible via its IP address. The majority of IP cameras are compatible
with the ONVIF protocol, a set of web services-based specifications, using
open standards, e.g., XML, to determine how communication occurs between
electronic devices over an IP network [203]. The IP camera RTSP (Real
Time Streaming Protocol) output stream has been caught using the GStreamer
tool [204], a pipeline-based media processing framework, and processed so as
to obtain a jitter-free, de-payloaded, RGB stream, re-directed as a Linux virtual
video device. This video has been read as an ordinary video device, using
the ROS tool gscam [205], that, leveraging GStreamer, can attach itself to a
specially formatted pipeline. Thanks to gscam, the stream can be broadcasted
as a standard ROS image message. In this way the image is processed through
the ROS image pipeline and can be accessed by other ROS distributed nodes
(e.g., the SSC processes). Moreover, the low level parameters of ONVIF
compatible devices can be accessed and modified using Python libraries,
making it possible to manage via ROS the motion of this kind of cameras.
Other options, in combination with laser scanners, will be evaluated, such as
omni-directional cameras for wider field of view and stereo cameras, to allow
depth information redundancy.

Safety For what concerns safety measures, the idea is to complement safety compli-
ant sensors (e.g., safety-rated laser scanning systems) with non-conventional
and/or low-cost sensors that may not be intrinsically safe but providing an
overall secure piece of information, as a result of sensor data fusion, performed
within the SSC.

Network Communication A further key enabler of advanced manufacturing is
wireless communication. Wireless networks comply with many Industry
4.0 requirements, e.g., operational flexibility and easier setup, unlike wired
alternatives. Cost-effectiveness is another advantage supporting the low-cost
and high-performance aims. Since we consider a factory/warehouse scenario,
we expect to work with indoor robots, allowing to consider a Wi-Fi connection
for smart elements intercommunication.

For this aim, ROS provides a well-documented network setup, where all
distributed nodes are networked via a local Wi-Fi router: robot data are
shared among nodes within the same network, through ROS communication
paradigms (e.g., ROS topics) [206]. However, ROS heavy dependency on
TCP/IP standards leads to issues, e.g., reliability problems, bandwidth lim-
itations, jitter and delays [207]. With regard to these challenging network
problems, ROS2 [208] promises to ensure native real-time and multi-robot
performance-enhancing features, through the use of Data Distribution Ser-
vice (DDS) as networking middleware. However, given its state of initial
development, ROS2 does not represent a robust choice, at the moment.
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Thus, ROS can be a good network choice for the prototyping of the foreseen
system, but obviously in the knowledge that (i) there are limitations and
shortcomings in the network communication management, which need to be
compensated for (through the implementation of ad-hoc nodes or external
support frameworks making up for deficiencies) during the development of the
real implementation, and (ii) emerging technologies, e.g., 5G networks and
5G architectures, aim at meeting latency, resilience, coverage, and bandwidth
requirements, possibly overcoming present issues [209].

In its “Guide to Industrial Wireless Systems Deployments” [210], NIST (Na-
tional Institute of Standards and Technology) provides manufacturers and
users with best practice guidelines, depending on operating requirements and
environments. These guidelines have been established following a joint in-
dustrial wireless workshop with IEEE, exploring latest and future wireless
technologies [211]. The guide points out key features on which to select
the proper wireless network, e.g., network throughput, addressing method,
reliability, safety, size of the system (number of device), that will be for sure
taken into account for the project development.

(ii) Sensors Synergy Center

Sensors data from each meta-sensor AMR are gathered in a centralized system where
information is processed to obtain appropriate control commands that, sent to the
AGV CC through the dedicated interface, regulate the AGVs motion according to the
identified objects. The sensor fusion process comprehends both intra-AMR sensors
fusion and inter-AMR data fusion, returning an overall overview of the plant state.
Currently, images are gathered and input in the advanced state-of-the-art, real-time,
object detection algorithm YOLO (You Only Look Once) v3 [212], in order to
identify objects and accordingly perform decisions. YOLO applies a single neural
network to the full image, dividing it into regions and predicting bounding boxes and
probabilities for each region. Detection can be performed using a pre-trained model
(on the COCO detection dataset [213]) and computations can be performed on a GPU,
since the used neural network framework, the open source Darknet framework [214],
is written in C and CUDA.

The SSC has the aim of representing a centralized computation node, allowing to
unload heavy computations from distributed agents. The AGV CC receives the plant
traffic overview while informing the SSC about the AGV poses, allowing for object
matching. Moreover, when needed, the AGV CC can send task allocation request, for
tasks that may not be completed by AGVs due to unavailability or too-long waiting
time. Indeed, a meta-sensor AMR, while still providing crucial sensing information,
can assist a human operator in collaborative operations or to perform urgent tasks,
if requested. Note that tasks should be assigned to the AMR if the requirements
are within its payload and/or precision capabilities.A possible implementation for
information transmission between computational centers would involve the network
communication intrinsically provided by ROS.
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The SSC addresses the AMR towards spots where AGVs are supposed to travel
(Figure 2.2), according to the route allocation provided by the AGV CC, so as to
ensure a safe passage, by advertising the presence of an obstacle/human operator
(Figure 2.3).

Fig. 2.2 The AMR is sent in the neighborhood of blind intersections, which are foreseen to
be travelled by AGVs.

Fig. 2.3 The AMR can detect human operators and obstacles (e.g., racks) and inform the
SSC that will warn the AGVs (through the AGV CC), just in time.
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AGV Coordination Center Interface

In order to enable communication between the SSC and the AGV CC, an interface
has to be implemented. Keeping in mind the intention of using ROS as a software
development framework, the idea is to exploit the message-based communication
paradigm to easily map information from the AGV CC to the SSC. Examples can
be the AGVs poses translated into “tf ” ROS messages, and a task allocation request
implemented as a ROS Action. On the other hand, the plant traffic overview output
by the SSC must be translated into information useful for the AGVs route selection.
The AGV CC Interface should be made up of adaptable methods, translating data
formats from one system to the other. The SSC side can be kept untouched, while
the AGV CC interface side implementation depends on the pre-existent coordination
system in the plant where the meta-sensor system has to be deployed. In Figure 2.4
are represented the dynamics at play within the meta-sensor and AGV systems.

Fig. 2.4 Interactions going on in the foreseen system. Communication between the SSC and
the AGV CC is bi-directional: the former generates the overall plant traffic map, by gathering
data from the AMR fleet, while the latter updates the AGVs poses in the SSC traffic map and
deals with the AGVs coordination.

The aim of the meta-sensors network is to enrich the factory/warehouse ecosystem
with a net of autonomous mobile agents, serving the role of blind intersections
sentries. Each meta-sensor is equipped with safety-rated sensors, whose data are
combined with possibly non-conventional low-cost vision sensors data. The system
aims at exploiting data fusion and open source tools to achieve an optimized system
behaviour, representing a solution within just anyone’s reach.

The working principles of this meta-sensors system, introduced here as a proof
of concept, have been detailed in later works, along with a meta-sensor demonstrator
implementation, as described in the following sections.
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2.1.2 A meta-sensors network: Sen3Bot Net

As metioned in Section 2.1.1, the safe motion of traditional Automated Guided
Vehicles in human-shared workspaces can be achieved thanks to the support of a
fleet of Autonomous Mobile Robots, acting as a net of meta-sensors, able to detect
the human presence and share the information. The localization and perception
information of each meta-sensor can be shared among all mobile platforms. In
particular, the information about the dynamic detection of human presence can be
combined and uploaded in a shared map, increasing the awareness of the mobile
robots about their surroundings in a specific working area.

The work reported in this section envisions an architecture integrating a network
of meta-sensors with an existing net of Automated Guided Vehicles, with the aim
of enhancing systems based on outdated mobile agents that seek for Industry 4.0
solutions without the necessity of a complete renewal. Refer to [9] for more details. A
distributed multi-agent system should efficiently split and execute tasks. However, the
methodology adopted for this kind of system is usually focused on the algorithms for
a particular category, such as motion planning for delivery operations. Nevertheless,
the Highway Code implementation proposed in [215] focuses on how to handle
safety between robots and human operators. Simulations are highly recommended,
since the experimental testing in real world environments would be dangerous and
time consuming. In this way, it is possible to perform a list of risks assessments
according to the available ISO standards for Human-Robot Collaboration (HRC)
operations [216].

A distributed control architecture for multi-robot task allocation is presented
in [217]. Distributed messages are used for the communication system between the
robots. Each robot has a task tree, that allows the communication with its teammates,
the identification of its own tasks and the ones performed by the other robots. In
addition, the architecture allocates tasks in such a way that the robots work together
to complete the operations, respecting all the motion constraints. Also, in [218], the
authors present a multi-Mobile Sensor Agents (MSAs), in which task decomposition
and task allocation problems are solved using the "Region allocation tree" method
for coordinating the robots. The proposed method was developed in MATLAB.
Regarding the multi-sensor data fusion, they applied Bayesian tracking framework,
focused on discrete-state implementation.

Ensuring safety in a workspace where mobile robots and human operators work
together is crucial, and it is necessary to comply with the strict constraints mandated
by international standards. This could pose a challenge in setting up the AGVs.
Indeed, industrial manufacturing systems that employ only AGVs may need to find
a trade-off between an ad-hoc smarter solution and a more traditional one having
a wider application even if less efficient. This becomes necessary since traditional
AGVs have technical limitations and, on the other hand, their enhancement is
expensive [219]. In contrast, AMRs have a better equipment, which allows them
to perform reactive tasks, such as collision avoidance of dynamic obstacles and the
relative autonomous path re-planning.
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There are alternative methods to ensure safety within the industrial environment
where mobile robots and human operators coexist. One approach is to install fixed
sensors around the working space, which can monitor the activities of both the
mobile agents and the human operators. These sensors create virtual barriers that
may deactivate or slower down the robot if the human presence is detected. In
[220], particular areas are classified by colors, which indicate the operations carried
out by the robots and the relative potential dangerousness for the human operator.
Nonetheless, having a fixed network of sensors hampers flexibility.

Cyber-Physical Systems (CPS) are emergent technologies that integrate function-
alities for connecting operations in the real world with computing and communication
infrastructures through a well-defined network [221]. In this context, sharing rela-
tive information about the real world among all agents can facilitate collaborative
planning in the manufacturing process and help ensure safety within the working
space. When considering CPS, many researchers have developed multi-agent system
algorithms that measure and share the relative position of each robot and of all the
obstacles within the environment.

The integration of information coming from different sources can be achieved by
applying sensor data fusion methods. The combination of data from different sensors
allows to overcome the limitations of each sensor, including a limited field-of-view.
For example, in [222], a control method that preserves the visibility among robots
when they are equipped with limited field-of-view sensors (such as LIDAR, cameras
and optical sensors) is proposed. The aim is to maintain multiple lines-of-sight
formed by the robots while they are moving. The visibility is modeled using graphs
and the edges of the line-of-sight of each robot within the network.

Furthermore, a sensor fusion method for cooperative trail-following tasks is
proposed in [223]. The decision making of each robot is based on its own visual
data and the shared information from other robots, which is periodically exchanged
among them. The authors combined the visual information coming from ground
and aerial robots, and tested it in the real-world environment, successfully dealing
with the “limited view” problem, typically found in single-robot systems. Similarly
in [224], the use of an air-ground robot combined with ground robots is presented.
By aligning the data from the Unmanned Aerial Vehicle (UAV) and the ground
robots camera frames it is possible to estimate the global pose of each ground robot.
However, it is not always feasible to combine ground and aerial robots, as the latter
may not be suitable for every indoor environment.

Managing dense information coming from a sensor may lead to false positives.
For this reason, there are researchers that combined different methods with Kalman
Filters to obtain robust measurements. The multi-sensor fusion strategy proposed
in [225] is able to detect and eliminate spurious data before undergoing the fusion
procedure, exploiting divergence computation between the a-priori and a-posteriori
distributions of the Information Filter. The framework was applied to a multi-robot
system moving within an indoor environment with the aim to improve the localization
integrity of the overall system, also known as the Collaborative Localization (CL),
in which each robot detects the others and computes relative observations.
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Cooperative localization consists in environmental measurements performed by
multiple robots. In this way, the robots can share their local information to improve
their localization. One of the applications is the Cooperative-SLAM , in which the
map is created by the combination of each robot independent map. The tests were
performed in simulation and in real robots by changing the sensors on-board and the
communication rate. An analysis of cooperative localization is presented in [226].

In [227], a hybrid distributed and centralized cooperative fusion is proposed;
in particular, the authors refer this methodology as the Edge Cloud Cooperative
Localization (ECCL), which combines several distributed Kalman Filters in nodes
edge and a centralized system that works as a fusion unit in the cloud server. In order
to ensure a robust data fusion, the authors applied a localization validation method
called the Cooperative Redundancy Validation (CRV), that takes into account all the
available observations.

In [228], a mobile robot sensor network for cooperative localization is proposed.
In particular, the mobile robot is used for performing SLAM tasks and simultaneously,
each sensor node tracks the robot pose and combine their information in order to
obtain an accurate localization for both the robot and the sensor network. The sensor
fusion algorithm is based on the Kalman Filter, while the sensor network works
under the Parallax-Based Robot Pose Estimation algorithm.

It is worth noting that most of the algorithms for cooperative localization of
mobile agents are designed with the idea of introducing new robots with better
functionalities to substitute the old ones. However, many worldwide industries are
still working with non-collaborative robots and a total replacement would require
a huge investment [229]. In contrast to larger firms, a complete renewal for Small,
Medium and Micro Businesses (SMMEs) for becoming smart factories may be a
problem, due to the high cost and limited resources [230].

By exploiting concepts related to CPS, it is possible to integrate intelligent agents,
e.g., AMRs, with the existing elements within the industrial infrastructure without
the need of a total technology replacement, while still obtaining the advantages of
Industry 4.0 solutions. Moreover, since the future scenario envisages robots and
human operators working very closely in the same environment, there is the need
for a shared acceptance of the robots as part of the process and feedbacks must
be taken into account. Indeed, the probabilistic behaviour of an AMR leads to a
skeptical attitude from workers, since they cannot predict the unexpected motions of
the robot [231].

As reported in Section 2.1.1, the meta-sensors system introduced in [5] was
described at a very high conceptual level, leaving out the expected behaviour spec-
ifications and the functional details, which, in fact, are provided in this Section.
Additionally, the meta-sensor AMR module, there only hinted at, is here taken into
account as a fully functional module, whose desired features have implemented and
tested in [7] and will be provided in Section 2.1.3.
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Meta-sensors architecture: working principles

In the proposed architecture, each meta-sensor AMR, equipped with a heterogeneous
selection of sensors, becomes a sensor itself, with the specific function of facilitating
the monitoring of industrial scenarios, as a support to an existing net of traditional
fixed-path AGVs. Thereby, the meta-sensor AMRs must not be considered as an
evolution of traditional AGVs, but as AGVs enhancers, to enable smart factories
benefits. To achieve this, the relative localization information of each AMR along
with the information about its surroundings are fused and shared to all the mobile
agents. Significant emphasis will be placed on the dynamic detection of human
workers; when one or more AMRs detect the presence of human workers in a specific
area, the relative position of the latter ones will be updated on the shared map. The
AGVs coordination interface will process all the gathered information from the meta-
sensors and send the proper commands to the AGVs depending on the dangerousness
of the area and on the activities of the operator.

This section outlines the working principles of the envisioned architecture, to
describe the coordination and decision-making interface of the AGVs with the
measurements obtained from the meta-sensors. The architecture is imagined to be
integrated in a flexible production line setting, where traditional AGVs, workstations,
cobots, and human operators co-exist. Moreover, it has the following main compo-
nents: (i) a meta-sensor AMR fleet, (ii) the Sensors Synergy Center (SSC) and (iii)
the AGV Coordination Center Interface (AGV CCI).

Henceforth, the terms Sen3Bot (Sentry roBot) and smart AMR will be used to
refer to the meta-sensor AMR. Note that these terms are used interchangeably. The
Sen3Bot component, whose implementation details will be provided in Section 2.1.3,
has the capability of detecting and identifying humans. Its vision information is
integrated with the corresponding distance value through camera-laser data sensor
fusion, allowing to correctly place the identified humans within the plant map, and
to impose a more conservative behaviour around them (higher inflation radius). The
SSC element is in charge of performing sensor-fusion and map traffic updates, re-
ceiving the current poses of the AGVs by interfacing the existing AGV Coordination
Center (AGV CC), to take decisions for the Sen3Bots task allocation and execution
based on the AGVs currently pursued tasks. The AGV CCI then allows to convert the
significant data gathered by the SSC (through the Sen3Bots) into proper commands
that the AGV CC will use to suitably adjust the AGVs motion. Some implementation
details of components (i) and (ii) have already been described in Section 2.1.1, but a
more functional overview of both elements, whose behaviour is inevitably strictly
correlated, is provided in this work.

The S3B Net (Sen3Bot Network) is a network of autonomous and interacting
agents, i.e, intelligent robots that can autonomously perform actions on the basis
of a planning algorithm while being able to sense and act when an environmental
change occurs. Based on a recognized design workflow pattern [232], we describe
the system according to the following characterizing blocks.
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Task decomposition

The S3B Net main goal is to ensure a safe motion for each AGV of the pre-existent
system. This task can be achieved by the so-called meta-sensor fusion, i.e., the
integrated information gathered from the involved monitoring Sen3Bots. Note that,
apart from its main task, each Sen3Bot can be exploited for moving tools or bringing
materials to human operators depending on the availability. In fact, when not busy
with its sentry role, the Sen3Bot can take on traditional AMR tasks.

Coalition formation

The coalition formation in the S3B Net is assumed to be defined a-priori and depends
on the critical level of the different areas of the factory visited by the AGVs during
their tasks. To better understand what is meant here by critical level, some reference
to standard definitions are introduced to explain the concept.

According to ANSI/ITSDF B56.5 “Safety Standard for driverless, automatic
guided industrial vehicles and automated functions of manned industrial vehicles”
[194], we can identify several zones in an industrial environment. Hazardous or
restricted areas are not taken into account here, since by standard these are clearly
marked areas where personnel has no access. What is relevant for the working
scenario are non-restricted areas, defined in ANSI/ITSDF B56.5-2019 as areas where
the guide-path is installed and that are shared by personnel. Based on the ANSI/RIA
R15.08-1-2020 [195] standard, which defines safety requirements for Industrial
Mobile Robots, we consider the following regions:

• free space, where the IMR (Industrial Mobile Robot) can plan a path

• keep-out zone, excluded from the free space

• monitored space, corresponding to the volume around the IMR where percep-
tion systems can monitor.

Taking into consideration the co-existence of both AGVs and meta-sensor AMRs in
the working scenario, the Sen3Bot monitored space must cover as much as possible
the non-restricted area that the supported AGV is going to cross, in order to provide
a real-time awareness of the situation before the AGV even reaches the location.

Additionally, since today’s smart factories and the ones of the very near future
have enhanced manual stations and cobots workstation fully integrated within the
automated lines [233], we can identify zones where the presence of human operators
is highly probable and therefore we consider them to be areas of interest.

We can thus distinguish the following areas:

1. Critical areas. This type of areas include: 1.1 Non-restricted areas with
limited visibility for the approaching AGV (blind intersections); and 1.2 Areas
where human operators are likely to pass, like transition areas. This area type
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may include also particular areas that may fall somewhere in between the
definitions of areas of type 1. and 2.

2. Sub-critical areas. These include cobots workstations and manual stations
locations where human operators are likely to be present, but expected to be
mostly static.

3. Non-critical areas. These comprehend restricted areas known to be human
free or full visibility areas where human passage is rare. Note that safety is
anyway guaranteed by safety-rated sensors on the AGV.

Therefore, our areas of interest are critical and sub-critical ones: as soon as an
AGV is assigned its path, if the latter crosses areas of interest, there can be various
approaches for the a-priori coalition formation, depending on the level of criticality
of the first crossed area. If a critical area (1.1 or 1.2) is crossed, two Sen3Bots
are assigned to monitor it. On the other hand, when a sub-critical area is foreseen
to be crossed, only one Sen3Bot is sent to the scene, to scout the area. Moreover,
the final number of Sen3Bots needed to monitor the scene (until the AGV will
overcome the area) also depends on a new real-time information gathered by the
meta-sensor AMRs, once they reach their respective monitoring poses: the detected
human operators’ speeds and directions. These additional data can be used to decide
whether the number of Sen3Bots sent to the scene is suitable for the scenario. Note
that areas of type 1.1 are the most critical ones, since making up for the lack of
visibility is crucial to avoid undesired collisions. For this reason, if the crossed area
is of type 1.1, two Sen3Bots are required at all times, until the AGV leaves the area.
Less strict policies are adopted when considering types 1.2 and 2 areas. Table 2.1
summarizes the architecture coalition formation policy.

Table 2.1 Coalition formation in the Sen3Bot Net

Area Type Area ID Initial # of
Sen3Bots

Human
behaviour

Final # of
Sen3Bots

Critical Area 1.1 2 static 2
dynamic 2

Critical Area 1.2 2 static 1
dynamic 2

Sub-critical Area 2 1 static 1
dynamic 2

As shown, the detected human behaviour influences the final number of employed
Sen3Bots. Indeed, if the detected humans are quite static, the information to be sent
to the AGV does not require redundancy. Instead, a dynamic situation necessitates
robust data to be shared: in this case, a redundant information about the human
operators is preferred.
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In order to define how a static and a dynamic behaviour are distinguished in
the Sen3Bot detection, it is worth recalling how human obstacles are represented
in the shared map. As described in Section 2.1.3, human obstacles are enclosed in
virtual cages, i.e., they are provided a greater safety radius value with respect to other
obstacles. In fact, a virtual obstacle is published in correspondence of each detected
human, and the extension of this virtual obstacle depends on the human bounding
box extension (detected at the image processing stage). This virtual cage remains
integral with the operator movements, dynamically adjusting to the detected person
bounding box. Moreover, the human obstacle is conservatively enclosed since the
safety distance is maintained based on the left and right edges of the vision derived
bounding box. The described behaviour is shown in Figure 2.5.

Fig. 2.5 The Sen3Bot human obstacle avoidance behaviour.

Then, for the sake of simplicity, the human behaviour is classified depending on
the following criteria: when the center of the human obstacle moves more than 1 m
from the first detected position, in either direction, the human operator is considered
to be dynamic. Otherwise, it is considered to be static. Furthermore, each Sen3Bot
(if more than one are monitoring the scene) will provide such data from different
perspectives, thereby allowing to capture a more complete information about the
human motion. Note that the threshold value may be adjusted depending on the area
features and user needs.

Additionally, depending on the area criticality and the behaviour of the detected
human operators, a priority index p is assigned to every task pursued by a meta-
sensor AMR. This way, it is possible to classify tasks based on their priority, to allow
for flexibility in the case that a smart AMR is required for a higher priority task.
Suppose a Sen3Bot is pursuing a classical AMR task, e.g., moving material, and
the system requires a Sen3Bot to assist the passage of an AGV in a critical zone of
type 1.1: if the mentioned Sen3Bot is eligible for being assigned this task, it will
interrupt the pursued low priority task (postponing it) and move to the critical area.
The maximum priority is given by p = 0 and increased when the priority of the task
decreases. The flowchart in Figure 2.6 provides a schema of the overall behaviour.
As shown, if human operators are detected, the AGV CCI gathers the information
from the shared map and through the AGV CC (which we assume corresponds
to the generic pre-existent classical AGV manager) slows down the AGV when it
approaches the area of interest.
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Fig. 2.6 Flowchart for the Sen3Bot Net coalition formation decision process.
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Task allocation and execution

Once the system detects that an AGV has been assigned a task, it deploys the
necessary number of smart AMRs to monitor the AGV’s passage. In our case, task
allocation is based on two criteria: (i) distance of the Sen3Bot from the area requiring
the monitoring and (ii) the Sen3Bot availability/priority of the task it is busy with.

Before describing how task allocation is managed, it is worthwhile to provide a
general assumption about the initial pose of the meta-sensor AMRs. We assume that
the power charging stations for the Sen3Bots are positioned in such a way that the
Sen3Bots monitor the most critical areas in the factory, while charging or while at
home (in close proximity to the station). This enables the S3B Net to be responsive
when areas requiring the most attention are involved. This allows to get rid of the
limitations inevitably introduced by fixed sensors, enabling flexibility while ensuring
safety. Note that if the Sen3Bot is not assigned any task, it goes back to its home
pose and p = 2 is set (low priority); of course, p = 0 is set when the Sen3Bot is
heading to its recharging station due to detected low battery.

The priority value p together with the distance of each Sen3Bot from the interest
area are taken into account in order to identify the eligible Sen3Bots for standing
sentry in the area. To facilitate a faster S3B Net response, the list of all Sen3Bots is
sorted depending on how distant they are from the scene and then selected only if
the task they have been assigned to is of priority 1 or 2 (i.e., medium or low priority).
In the case the Sen3Bot has been assigned a p = 1 task, it is selected but can be
replaced if a more distant Sen3Bot with p = 2 is found. The selection process iterates
until the number N of required Sen3Bots is reached. Refer to Figure 2.7 for more
details about what the workflow would be. It should be noted that the total number
of Sen3Bots available in the plant is mainly dependent on the number of areas of
interest and on the client necessities; a good trade-off could be reached considering
that a minimum coverage of all critical areas should be guaranteed.

Furthermore, the proof of principle simulations reported in this work consider
the case in which a central system manages the task allocation for a relatively small
number of agents. Indeed, the complexity of the overall system increases with the
number of smart AMRs, so a distributed control strategy could be preferable in some
cases. If a large number of mobile agents is required for the application scenario, the
proposed architecture can be implemented over separate distributed modules, with
each module operating in a specific area. However, in order to maintain synchronized
the whole system, which would include other mechatronic systems within the smart
factory, i.e., cobots, these modules still have to communicate with a centralized
supervisor that assigns the tasks at a high level. This way, the performance of
the entire manufacturing system can be improved through sequences of minimal
corrective actions, as in [234], established by integrating the performance indicators
of the production process with the capabilities and working functionalities of the
robotic systems and agents.
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Fig. 2.7 Flowchart for the Sen3Bot Net task allocation decision process.

Simulation: case scenarios

Some proof of principle simulations are have been performed, with the aim of
demonstrating the S3B Net behaviour. The video featuring the considered demo
cases is available online at [235].
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The simulations have been executed on ROS [139] Kinetic Kame, with the
corresponding compatible version of the Gazebo Simulator [236]. It must be noted
that version 7 of Gazebo does not allow to spawn animated person models (actors)
in the simulated environment. However, this does not hinder the simulation aim of
demonstrating the architecture behaviour. The created Gazebo world represents a
portion of a plant accessible to human operators (non-restricted area). Rows of racks
and a workstation are present, to provide the minimum conditions for a demonstrative
simulation. In Figures 2.8–2.10, the top view for each simulated scenario is shown:
on the left the simulated industrial workspace, on the right the rviz visualization,
where laser data of all mobile robots, along with the cost maps are visible.

Scenario 1, Figure 2.8: the left mobile platform represents a traditional AGV
(green laser points), while the right one simulates a meta-sensor agent (red laser
points). This proof of principle focuses on the core role of the meta-sensor AMR
concept, i.e, integrating the AGV knowledge about the path it is going to travel along
before reaching the area of interest. Specifically, as seen in Figure 2.8A, the AGV
is aware of the human presence, even if it is out of its scope, thanks to the SSC
processed information coming from the S3B Net. Should the AGV on-board obstacle
avoidance sensors the only to be considered, the human operator would be detected
too late (Figure 2.8B): the Sen3Bots meta-sensor fusion allows for a smart and safer
behaviour. Note that the simulation does not consider the coalition formation rules,
to simplify the scene for the sake of clarity.

Fig. 2.8 Sen3Bot Net simulation: meta-sensor concept demonstration.
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Scenario 2, Figure 2.9: a critical area of type 1.1 (see paragraph 2.1.2 for area
types reference) has to be crossed by the AGV: two Sen3Bots are sent to the scene and
inform the AGV about the presence of one human operator. Figure 2.9A identifies
the different mobile robots involved in the simulation. The AGV CC gathers this
information from the SSC and accordingly modifies the AGV motion as it approaches
the scene (Figure 2.9B). Then, since the human activity is perceived as dynamic, the
two Sen3Bots are instructed to both stand sentry in the area (Figure 2.9C).

Fig. 2.9 Sen3Bot Net simulation: critical area 1.1 and dynamic human operator.

Scenario 3, Figure 2.10: an AGV has to cross a workstation area, usually
classified as area of type 2, which is positioned in a way that visibility is hindered
by racks and thus considered a critical area 1.2. (see Figure 2.10A for a recap of
each mobile robot role in the simulation). Two Sen3Bots are preliminarly sent to
the scene. However, during the AGV passage the human obstacles are detected to
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be quite static, allowing for the system to set one of the meta-sensor AMRs to a
priority p = 2 (Figure 2.10B). Then, as shown in Figure 2.10C, as the Sen3Bot is set
available for pursuing other tasks, a monitoring is requested in a very near area and
meta-sensor AMR 1 is selected and sent to the requested sentry pose (for reference
on task allocation see paragraph 2.1.2).

Fig. 2.10 Sen3Bot Net simulation: critical area 1.2 and static human operator.

Our architecture would allow to upgrade obsolete pre-existent systems integrating
it with intelligent AMRs. This is in contrast with the on-going trend of entirely
substituting the existing mobile robot set-up with a new network of intelligent AMRs.

Given this deeper description of how the proposed meta-sensors network (Sen3Bot
Net) would work, a step towards a real framework implementation is to provide a
working Sen3Bot demonstrator, detailed hereafter.
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2.1.3 Sen3Bot: preliminary implementation

In this section, a preliminary working implementation of one meta-sensor AMR is
presented: it exploits camera-laser data sensor fusion techniques to ensure a safe
behavior when specific objects are detected, e.g., humans. Human detection has to
be guaranteed in a safe way through a proper SW/HW architecture including both
safe and not safe devices, from the industrial point of view.

As thoroughly discussed in Section 1.1.2, depending on the application, one may
combine different types of sensors in order to cover a wider range of measurements or
duplicate the data to avoid false positives. For instance, a combination of vision and
distance sensors is commonly used to equip AMRs working in industrial applications
where safe behavior between machinery and human operators must be ensured.
These combinations are often cameras with Radio Detection And Ranging (RADAR)
systems [237] or cameras with Laser Imaging Detection and Ranging (LIDAR)
sensors [238], [239]. The vision sensor is typically used for object recognition or
identification of particular geometric patterns, but is influenced by environmental
conditions, e.g., the ambient lighting. On the other hand, a distance sensor provides
high accuracy on measurements, even though its performance may be affected by (i)
the reflection properties of the object to be detected, in the case of LIDARs, and (ii)
by external radio wave frequencies, when using RADARs. Inspite of the limitations
of each sensor type, by combining them it is possible to associate a detected object
with its corresponding distance in the robot coordinate system.

One approach to sensor fusion is the machine learning approach. In [240], the
authors use the data set coming from RGB-D cameras and compare the performance
of several CNNs in order to robustly detect and localize a person. The work in [241]
proposes a person detection algorithm based on the linear Support Vector Machines
(SVM) learning process that extracts laser features and Histograms of Oriented
Gradients (HOG) features from image data. Other approaches, e.g., in [242], combine
a Kalman filter with the Global Nearest-Neighbour method, in order to predict and
resolve the data association problem for people tracking.

Furthermore, a considerable body of literature treats the LIDAR and vision data
fusion as an extrinsic calibration problem: the two sensors’ coordinate systems are
put in relation through a rigid body transformation, so to align the data derived from
both sensors [243]. For the purpose of computing this transformation, usually an
external object is required, such as a checkerboard pattern [244], [245] or a trirectan-
gular trihedron [246], to match the correspondences between the two sensors and
obtain a mapping that transforms the points from the laser to the camera coordinate
system, and thereafter to the image plane.

Although most of the researchers use stereo cameras and 3D LIDARs to model
the environment (since they can give a detailed representation of the surroundings),
these devices are expensive, and most of the time it is possible to overcome this
problem by using transformation matrices when using a 2D LIDAR and an entry-level
camera [247].
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For our implementation, unlike other commonly adopted methods, where the
sensor system is trained at the beginning to combine the data from different sources,
we take advantage of a pre-trained NN for human identification. The outputs of
the NN are the elements of the image already classified and labeled, which are
subsequently used for the sensor fusion algorithm, avoiding the creation of a further
dataset. Our aim is then to provide an affordable solution, which takes advantage of
sensor fusion to integrate state-of-the-art object detection algorithms taking data from
low-cost vision sensors (that may not be intrinsically safe, when used on their own)
to complement standard safety compliant sensors (e.g., safety-rated laser scanning
systems). Moreover, the use of non-infrastructural sensors provides greater flexibility
and scalability compared to other solutions that rely on centralized systems gathering
data from infrastructure monitoring.

Sensor data fusion algorithm for a meta-sensor AMR

In order to give a background and motivation to the features that have been built up
for this entity, a brief description of the working scenario is provided hereafter. More
details on the proposed architecture can be found in Sections 2.1.1 and 2.1.2. Three
main components characterize the Sen3Bot Net: (i) a meta-sensor AMR fleet, (ii) the
Sensors Synergy Center (SSC) and (iii) the AGV Coordination Center Interface. The
work presented here covers points (i) and (ii): note that the developed structure/model
for the AMR meta-sensor entity can be replicated for other elements of the fleet.

The smart AMR (Sen3Bot) has to be considered a feature-enhancer entity more
than a mere evolution of the classical AGV; it is a part of the AGV net, the “brain”
behind the system synergy, leveraging sensor data fusion to improve the AGV fleet
awareness about the environment’s dynamical changes. In this case, we consider the
human operator as the object of interest to be detected and advertised to all agents
moving within the system.

Solution overview within the meta-sensor system

Having fixed the AMR role in the system, we can identify the behaviour and features
we would like the AMR element and SSC to have. In order to achieve smart
navigation in a human-shared workspace, we need to gather informative data from
the surroundings. With this aim, we decided to equip a mobile robot with a (low cost)
monocular camera and a 2D laser range finder in order to perform data association.

So to perform a correct mapping of information, the transformation between
the laser and the camera must be computed (extrinsic calibration). The human
perception and detection is entrusted to the vision part of the sensor system (human-
obstacle detection). As the obstacle absolute position is computed, we want the
Sen3Bot to share this information with other agents and define a reaction rule in the
presence of this particular kind of obstacle (human-obstacle avoidance).
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1) Extrinsic calibration: required to transform the laser points in the camera
reference frame and project them onto the image plane. To do so, first the internal
and external parameters of the camera are determined, and then the rigid body
transformation between the laser and the camera coordinate systems is computed.

• Camera Calibration. The camera calibration consists in estimating a relation-
ship between the information of the camera coordinate system and the image
frame, along with the relative pose of the camera with respect to the world
reference frame [248]. Assuming the pinhole model of the camera, the trans-
formation of the 3D points Cp = [X ,Y,Z,1]T to the 2D points cp = [u,v,1]T is
defined as:

cp ∼K · [R t] ·Cp (2.1)

where K ∈ R3×3 is the so-called camera intrinsic matrix, R ∈ R3×3 and t ∈ R3×1

are the extrinsic parameters of the camera, which relate the world 3D informa-
tion to the camera coordinate system.

The intrinsic matrix K is a projective transformation of the 3D points from the
camera coordinates into the 2D image coordinates and is defined as:

K =

α1 s cx
0 α2 cy
0 0 1

 (2.2)

where α1 and α2 are the focal lengths in pixel units, cx and cy the coordinates
of the principal point of the image in pixel units, and s the skew coefficient
between the axis of the image.

To correct the distortion present in the images captured by real cameras, we
estimated the radial and tangential distortion coefficients, as the ideal pinhole
camera model may not accurately represent the image, given that it does not
include a lens [249].

• Camera-Laser calibration. After camera calibration, we applied a laser to
camera extrinsic calibration algorithm based on [245], taking into account the
physical characteristics of the sensors, so to estimate the relative pose of the
camera with respect to the laser range finder. Let’s consider a point Cp ∈ R4×1

in the camera coordinate system, located in Lp ∈ R4×1 in the laser reference
frame. The rigid transformation between the two coordinate systems can be
expressed as:

Lp =

[
ΦΦΦ ∆∆∆

0 0 0 1

]
·Cp (2.3)

where Φ ∈ R3×3Φ ∈ R3×3
Φ ∈ R3×3 is the rotation matrix of the camera with respect to the laser

range finder and ∆ ∈ R3×1∆ ∈ R3×1
∆ ∈ R3×1 the relative translation vector.
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2) Human-obstacle detection: in general, the aim of object identification is to
determine the presence, in some given image or frame, of any instance of objects
categorized into classes. The recognized objects spatial locations within the image
reference frame are returned, e.g., via bounding boxes. Object detection perfor-
mances have been boosted up with the introduction of deep learning techniques,
which let a machine automatically learn feature representations from data. With
deep learning, in general, patterns are classified using statistical techniques based on
sample data and processing it with multi-layered neural networks [250], [251].

The Convolutional Neural Networks (CNNs) are among the most popular ar-
chitectures for deep-learning: they are designed to receive multiple arrays data as
input, e.g., a three-channel (RGB) image array structure. Many methods handle
detection as a classification problem, i.e., object proposals are produced and fed to a
classifier. However, some other methods formulate detection as a regression prob-
lem, having spatially separated bounding boxes and associated class probabilities as
output [252]. Most recent methods are region-based, i.e., they perform a selective
research to obtain region proposals, despite this kind of approach often represents a
speed bottleneck. Regression-based methods getting rid of the region proposal step
have represented a suitable choice for our purposes.

Indeed, we need to identify a specific object class with some index of confidence
(i.e., the output class probabilities for the detected objects), and locate these objects
in a suitable spatial representation in a reasonable time. Figure 2.11 represents the
adopted human detection process at high level.

Fig. 2.11 Human obstacle detection process.
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3) Human-obstacle avoidance: as a human obstacle is detected, its absolute
position in the map reference frame is extracted and shared among all Sen3Bots. The
smart AMR reaction to a human obstacle has been made conservative in terms of
safety distance separating the moving agent and the detected obstacle. The human
target positions can then be enclosed in virtual cages, i.e., areas considered not
accessible by the network of mobile robots, characterized by a greater safety radius
value with respect to other obstacles.

Solution implementation

In order to test the sensor data fusion algorithm for human detection and avoidance,
we have employed a Pioneer 3DX mobile robot [144] equipped with a SICK LMS200
laser range finder [145] with 10-meter range and scanning angle of 180◦, an entry
level IP camera (ONVIF [203] standalone unit, accessible via its IP address). As a
processing unit for receiving data and controlling the robot, we used a Raspberry
Pi [146] 3 Model B mounting an ARM Cortex-A53 (x4 core) CPU (1.2 GHz) and
1-GB RAM; the code that required a higher computational effort has been run on a
desktop PC with a Intel Core i7-7700 CPU and a dedicated GTX1060/6GB GPU.
The monocamera has been placed above the laser range finder and its orientation set
such that the image plane intersects the laser plane as shown in Figure 2.12.

Fig. 2.12 Representation of the sensors reference frames.

The steps taken for the solution software implementation are described below.

1) Laser-Camera transformation computation:

• Intrinsic Calibration: the intrinsic calibration of the camera was performed
using the MATLAB Computer Vision Toolbox, which requires a collection of
20 images to be captured with a checkerboard positioned at various orienta-
tions, assuming that all inclination angles are kept below 45◦ with respect to
the camera plane [141]. The camera provides an image resolution of 1280 x
720 pixels, leading to the following intrinsic matrix:



2.1 AMRs as meta-sensors 99

K =

1.3046 ·103 0 727.7219
0 1.3064 ·103 241.5278
0 0 1


• Extrinsic calibration and laser point projection: the extrinsic calibration was

computed by collecting simultaneously data from both the vision and range
finder sensors, i.e., 20 images of the checkerboard in several orientations
and their corresponding laser readings. Considering the specifications of the
available sensors, we applied a modified version of the extrinsic calibration
algorithm proposed by Zhang and Pless in [245], obtaining the following
transformation matrices:

ΦΦΦ =

1 0 0
0 0.9848 0.1736
0 −0.1736 0.9848

 , ∆∆∆ =

−0.0215
−0.2065
0.0304


With the rotation matrix ΦΦΦ and translation vector ∆∆∆, it is possible to calculate
the laser points in the camera reference frame, and project them in the image
plane. In fact, by defining the matrix H ∈ R3×4 as:

H(i, j) =ΦΦΦ−1(i, j), for i = 1, ...,3 and j = 1, ...,3
H(i,4) =−∆−∆−∆(i), for i = 1, ...,3

and combining (2.2) and (2.3) the vector cp is obtained as:

cp = K ·H ·Lp (2.4)

Note that the world 3D reference frame coincides with the camera coordinates
one, making R the identity matrix and t a null vector. In order to have a correct
representation of the points in the image, the vector cp must be normalized
with respect to the third component, leading to a vector in the form ĉp = [u,v]T .

Hence, we obtained a projection of the laser points in the image plane (Figure 2.13),
which is quite reasonable, since the mapped points are coherent with the hit surfaces.

Fig. 2.13 Laser points projected in the image plane.
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2) Relevant bounding box information extraction: since the image processing
requires a set of different tools, we have decided to group all the related software
within a Docker [253] container, which leverages the GPU computational capabilities
and removes the burden of installing ad-hoc tools, fostering portability and scalability.
As a human detection system we have chosen the You Only Look Once (YOLO)
real-time object detection system [254], a commonly used Neural Network (NN)
for object classification in an image or video frame. YOLO applies a Convolutional
Neural Network (CNN) to the full image, dividing it into regions and performing the
bounding boxes prediction and relative probabilities computation for each region.
The bounding boxes that have high confidence scores are kept as final predictions,
resulting in detections (background details in Appendix A).

This object detection system satisfies our requirements (as specified in Section
2.1.3). YOLO processes the IP camera stream, previously interpreted as a generic
webcam output using the gstreamer [204] tool. The original code that generates the
bounding boxes on screen has been modified, so to save their coordinates information
in a text file. This file is used as a source for a ROS [139] node that reads it and
wraps into ROS topic messages only the information we are interested in (i.e., the
lines identified by a “person” label). All communications between the container and
the other ROS distributed nodes happen through the host network. It is worth noting
that simply reading the stream output by a low-cost IP plug-and-play camera lightens
up the already computationally heavy image processing step.

3) Mapping laser data to the image plane: The information published by the
laser range finder is processed within a specific ROS node and projected on the
image plane, exploiting the estimated calibration parameters. This same node is also
in charge of comparing such information with the messages published on the topic
related to the human-obstacles bounding boxes coordinates: data are synchronously
gathered from topics, by exploiting the ApproximateTimeSynchronizer class that is
included in the message_filters ROS package.

Once a correspondence between pixel coordinates is identified, the relative points
of interest are expressed in the global map reference frame, using the calculated rigid
transformation between the sensors and the robot model reference frames (all made
available through the tf ROS publishing system).

4) Detected humans as virtual obstacles: Thus, combining the human boundary
boxes and the laser range finder measurements, the location of the detected operator
in world coordinates is obtained, and the safe distance mechanism can be executed.
To ensure the desired safe behaviour in the presence of human obstacles, we have
taken advantage of the Timed Elastic Band (TEB) local planner [255].

In fact, the TEB plugin also allows to define custom virtual obstacles by speci-
fying their location and shape. This local planner can be integrated with the global
planner provided by the ROS navigation package. This way, all points falling into
each person bounding box are published in the map as circular obstacles with a
user-defined radius: the detected human horizontal extension influences the obstacle
shape. Thus, a human presence adds a constraint for the re-planning process of the
robot, ensuring safety between humans and robots (refer to Appendix A).
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Figure 2.14 summarizes the algorithm workflow at a software level: the YOLO
C++ software has been edited in order to select all the “person” labeled objects and
append them to a .txt file, whose content is fed to a ROS node for its translation into
ROS messages. Another node is in charge of filtering synchronized data to identify
laser points falling into the pixel ranges corresponding to humans. Finally, virtual
obstacles are published in correspondence of the human coordinates, with a radius
that is added to the rviz inflation one.

Fig. 2.14 Sketch of the process workflow.

Experimental results

The following section outlines the outcomes achieved using the proposed sensor
data fusion technique, which allows for a safe meta-sensor AMR reaction to human
presence. In addition, to showcase the achieved results, a sample working scenario is
taken into account in the video available at [256]. The key aspects of our algorithm
are highlighted in several relevant time frames of the video, which can be summarized
as follows:

• In Figure 2.15, a human is detected and its location (perceived by the laser and
inflated by ROS) is reinforced by the publication of a set of virtual obstacles
(red squared markers). The path computed by the local planner conservatively
stays out of the inflation radius imposed by ROS, since the obstacle position is
computed not only as detected by the laser range finder, but as the result of the
latter and the YOLO processed information.

• Figure 2.16 illustrates how the virtual obstacle publication depends on the size
of the bounding box detected during the image processing stage.

• Our algorithm is able to identify, and consequently publish, two human ob-
stacles simultaneously: this influences the re-planning process for the mobile
robot, as can be seen in Figure 2.17.



102 Mobile robots navigation towards human-shared workspaces

Fig. 2.15 Human detection and relative virtual
obstacle publication at 02:37.

Fig. 2.16 The local planned path depends on
the virtual obstacle.

Fig. 2.17 Several human obstacles can be simultaneously detected (04:32).

Note that, since the overall execution time depends on (i) the chosen planner, (ii)
the adopted algorithms, and (iii) on the computational capability of the computer
executing the sensor data fusion code, the reaction of the robot might fall within the
standard definition of soft real-time processes or not. Also, the application is feasible
when the relative motion between the robot and the human is slow, so that the robot
has enough time to react and re-plan the trajectory, avoiding thus the human operator.

Moreover, the calibration procedure implies an offline data collection phase: de-
spite this is convenient as it has to be performed just once, it relies on the assumption
that the involved sensors are well and definitely fixed in place. Enhanced solutions
would be given by the implementation of an online calibration procedure, or the
application of deep-learning algorithms for data association.

Finally, with the described solution, the information on the human obstacle is
considered to be spread to other meta-sensor AMRs, so to influence their local
behaviour. However, an ideal implementation would trigger a re-planning at a global
computation, allowing for a more aware navigation. This feature has been achieved
through the contribution described in the next section.
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2.2 Applications for meta-sensor AMRs

The works presented in this sections showcase how the meta-sensor AMR, i.e., the
Sen3Bot, can be used to improve the Supervised Global Planner algorithm and how
it could be exploited as a base for the implementation of collaborative interactions.

2.2.1 Online Supervised global path planning

In this work, the smart AMR implementation is exploited to improve the three-level
planning approach presented in 1.2.1. Namely, a set of waypoints belonging to
a safe path is computed by the supervisory planner and, depending on the nature
of the detected obstacles during navigation, the re-computation of the safe path
may be enabled as the collision avoidance action provided by the local planner is
triggered. Specifically, the supervisory planner is triggered as the detected human
gets sufficiently close to the Sen3Bot, allowing it to follow a new safe virtual path
while conservatively overcoming the operator.

This work is thus an improvement of the SGP [6], which integrates an online
update of the computed path, exploiting the human detection capability presented
in [7]. In the case of static scenarios, the position of the obstacles in the environment
are well known, so the generated path can be considered as a safe path. However,
when the robot deviates due to the presence of a human operator, the local planner
reacts to that obstacle, and the SGP is triggered starting from the current robot pose.

The ability of the smart AMR to follow, when needed (e.g., depending on the
area), predefined safe paths in order to minimize the risk of unexpected obstacles
(similarly to the fixed paths followed by traditional AGVs) is enriched by the ability
of simultaneously handling the presence of dynamic obstacles, guaranteeing a safer
avoidance policy in case of humans and the return to the safe path as soon as possible.

The path planning algorithm run by the SGP has a deterministic and repetitive
behaviour (i.e., given the initial and final poses, the path will always be the same).
It is then considered as safe not only because it automatically avoids all the known
static obstacles, but also because it provides a fixed path followed by the mobile
robots, if no variation occurs in the environment along such a path. This way, the
human operator who is working cooperatively with mobile agents is aware about
the trajectory of the robot, and can possibly avoid intersecting the robot safe path.
Nevertheless, a human operator may unintentionally cross the dedicated predefined
route: the proposed algorithm allows to conservatively avoid obstacles identified
as humans even though the latter ones are not expected. The combination of the
mentioned features ensures an overall safe behaviour, since the robot (i) follows a
safe virtual path, (ii) has the ability of re-planning when a human obstacle is close
and (iii) can adapt its behaviour to the environment’s changes.
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Online Supervisory algorithm with human obstacle avoidance

The original SGP algorithm is based on the collision-free motion planning presented
in [137], that generates a path that tends to an algebraic curve. In particular, the SGP
takes into account the kinematic model of the unicycle robot, and the safe curve
is obtained letting the intersection of the obstacle space and a set of polynomial
functions describing the possible trajectories be empty. Note that the equations
describing this curve will be omitted here for brevity, since they were already
provided and experimentally validated in [6] (background details in Appendix A).

Note that the original supervisory algorithm computed the waypoints offline:
whenever the LP deviated the robot due to the presence of unknown obstacles, it
was not ensured to resume the motion along the SGP computed path. In fact, the
modified A∗ algorithm is intrinsically attracted by the imposed safe curve when the
robot is sufficiently near to it, while only the pure A∗ mechanism is kept otherwise.

Moreover, obstacles were detected but not identified, i.e, a human obstacle was
treated in the same way as a generic object. Indeed, thanks to the capabilities
introduced by the Sen3Bot implementation, the human operator can be identified
and published as a virtual obstacle to be overcome conservatively. In terms of safe
path conservation, an event-based trigger is added to the SGP.

This planner will be referred in the next sections as the Online Supervisory
Global Planner (OSGP). The hierarchical planning structure is shown in Figure 2.18.

Fig. 2.18 Hierarchical structure of the online supervised global planning.
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OSGP algorithm implementation

The SGP is coded in MATLAB and provides as output a set of waypoints from
a starting pose towards a final goal. The MATLAB function also registers as a
ROS node, in order to convey the planning information onto the ROS Parameter
Server. The communication with the robot ROS network is performed through
the MATLAB ROS Toolbox, that allows the local machine to compute and send
the waypoints, and read the status of the robot in order to trigger the re-planning
behaviour. The waypoints values are then suitably namespaced to ease potential
multi-robot implementations, and made available to the system ROS nodes. The
whole MATLAB part is run in headless mode, i.e., the code is run from the command
line with specific options that suppress the display server, the splash screen display,
and the desktop version modules, which significantly reduces the CPU usage.

Following a system of event-based triggers, the SGP algorithm is re-computed
only when strictly necessary, to ensure a deterministic and time-efficient behaviour.
As previously mentioned, the path computed by the OSGP can be considered as
safe, since it is based on a binary occupancy grid map in which static obstacles are
conservatively enclosed by ellipses of minimum radius; also, the GP implements
a modified A∗ algorithm where waypoints calculated by the OSGP are favoured
in terms of cost, for the heuristic global plan computation. As a human obstacle
is detected and sufficiently close to the AMR, the LP deviates the robot and a
trigger is sent to the OSGP for path re-computation. Note that in order to let the
robot trigger the OSGP planning while already overcoming the human obstacle, a
small delay is introduced. The Sen3Bot current pose used as a starting pose for the
collision-free motion planning algorithm. The LP is utilized to steer clear of dynamic
obstacles, while YOLO is employed to detect and avoid human obstacles applying
a conservative (more details can be found in Section 2.1.3). The overall algorithm
flow is showed in Figure 2.19.

Moreover, in order to better highlight the core difference from the SGP algorithm
proposed in [6], the expected behaviour is represented in Figure 2.20. When using
the offline SGP version, a significant deviation from the supervisory path could result
in the activation of the pure A∗ mechanism, which computes the shortest path (grey
dotted line) to reach the final goal. However, this is undesirable, since we want the
Sen3Bot to resume its plan along the path considered safe. To make up for this
unwanted behaviour, the SGP safe virtual path is re-planned online, taking as starting
pose the current one (blue solid line).

The proposed OSGP algorithm presents some implementation measures that can
improve the technology criticality level [257] and can be considered as catalyst for
an eased transferability to real industrial contexts.

• Containerization as portability facilitator. The OSGP algorithm with human
obstacle detection and avoidance has been containerized using Docker [253].
Robot-agnostic elements have been grouped based on their main task, e.g.,
AMR vision, AMR navigation, and SGP computations. Therefore, to ease
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Fig. 2.19 Flowchart for the OSGP algorithm.

up the migration to other hardware specifications and software environments,
all the robot-specific elements and tuning parameters have been grouped
to enable suitable edits. The use of containers can speed up the transfer
from laboratory demonstrators to commercially available AMRs: in fact, the
Linux containers technology is considered a lightweight alternative to virtual
machines [258], and allows the end-user to run the containerized application
having the installation of Docker on the target machine as only constraint.

• Cost-efficient improvements as technology transfer enablers. Using cost-
efficient sensors enhanced by deep learning algorithms can be considered a
key enabler for technology transfer in contexts that would, as a matter of
principle, not consider it. By exploiting sensors which may not fall within
the classification of high-end and/or high tech devices, the focus is moved
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Fig. 2.20 SGP behaviour versus OSGP behaviour.

from the economic value to the innovation meaning of a resulting solution.
Upgrading obsolete equipment can favour the adoption of new technologies
avoiding to exacerbate low technology transfer rates that may affect Small and
Medium Enterprises [230].

Experimental results

The testing scenario emulated an industrial context, involving a mobile platform
moving in a closed space shared with human operators, as warehouse corridors with
racks or assembly workstations with conveyors would be. The tests working space is
shown in Figure 2.21, reporting the MATLAB occupancy grid map and OSGP path
plot, and the corresponding GP path plan visualization on ROS rviz.

Fig. 2.21 Top: MATLAB OSGP path plot. Bottom: rviz visualization of the static map used
for SLAM navigation.

.



108 Mobile robots navigation towards human-shared workspaces

We employed a Pioneer 3DX mobile robot equipped with a SICK LMS200 laser
range finder (10 m range, 180◦ scanning angle). The video stream from an entry
level IP camera served as vision source, fed to the YOLO real-time object detection
system. The core processes were performed on a desktop PC with a Intel Core
i7-7700 CPU and a dedicated GTX1060/6GB GPU.

It is worth pointing out that some open issues identified in the practical imple-
mentation of the offline SGP algorithm, have been solved. Among these, a smoother
behaviour have been achieved by substituting the TrajectoryPlannerROS local
planner with the TebLocalPlannerROS, implementing the TEB algorithm [172].
As anticipated, the MATLAB code has been run with its GUI switched off (headless
mode), since no interaction is needed during the algorithm execution. In particular,
the supervisory planner function is run according to specific trigger flags which let
MATLAB and the ROS system interact and automate the re-computation process.

The overall high level setting representation is shown in Figure 2.22; the execu-
tion of the online SGP algorithm in different test scenarios is showcased in the video
available at [259], whose relevant timestamps can be found in each test description.

Fig. 2.22 High level algorithm implementation schema.

Test scenario 1 – OSGP re-planning behaviour (Figure 2.23): we tested the
re-planning behaviour of the OSGP when a human obstacle is identified. In this
case, the person represents a human worker performing some operations in front of a
workstation. At timestamp 00:41, the AMR starts moving along the SGP safe path,
tracked by the GP plan (blue solid line); as a person is detected, the LP (orange solid
line) starts its standard obstacle avoidance mechanism. As the human gets closer, the
OSGP is eventually triggered (00:58) to compute a new reference path for the GP.
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Fig. 2.23 Test scenario 1: rviz view of the OSGP re-planning behaviour after human detection.

In such a way, the Sen3Bot is always brought back towards the safe path even
if its motion is significantly deviated. As expected, the robot overcomes a person
maintaining a conservative distance imposed by the virtual obstacle publication.

Test Scenario 2 – human detection without re-planning (Figure 2.24): at 01:15
of the video, an operator performing some quick checks along a rack is detected but,
being far enough from the Sen3Bot, the OSGP path re-computation is not triggered.

In this case the human presence does not disturb the AMR activities and a re-
planning would just introduce unnecessary overhead. Note that the operator pose is
published as a virtual obstacle in the map (red dots).

Fig. 2.24 Test scenario 2: OSGP behaviour when a human obstacle is sufficiently far from
the AMR.
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Test Scenario 3 – generic obstacle avoidance (Figure 2.25): the last test sce-
nario, as shown at 01:37 of the video, considers the case in which a generic obstacle
(not present in the static map) is encountered: the smart AMR is able to avoid it
without triggering a new safe path computation, which helps to save computation
time. In fact, the absence of a human operator in the robot vicinity does not impose
a reactive resume of the safe virtual path. In conclusion, the presented online super-

Fig. 2.25 Test scenario 3: OSGP algorithm reaction to a generic obstacle detection.

vised planning algorithm allows to track a path imposed by the supervised planner
towards a safe path, while ensuring a conservative overtaking of human obstacles.
Indeed, in the absence of changes in the environment, the motion of the AMR always
follows the SGP plan to the safe virtual path. This feature can potentially increase
the workers’ confidence in sharing the workspace with mobile robots, since their
overall motion can be predicted. Besides, using YOLO, the AMR can distinguish if
an obstacle is a generic object or a human operator, and gather its distance through
camera-laser data fusion.

Starting from this degree of autonomy, suitable for a cooperative application, i.e.,
a situation in which humans and robot co-exist working on specific and independent
tasks, a step toward collaboration would be introduced by the capability of the
Sen3Bot to interpret the surrounding environment to act accordingly.

2.2.2 Sen3CoBot: a proof of concept

The proof of concept presented here and proposed in [11] features a collaborative
extension of the Sen3Bot. In the envisaged extension, the Sen3Bot becomes a
Sen3Cobot, acting as a collaborative mobile robot able to recognize trained operators
and perform collaborative actions, directly requested by the operators through a
pre-defined sequence of movements. First of all, to lay the groundwork for a col-
laborative approach, the Sen3Bot human avoidance behavior could be incorporated
with relevant factors coming from the proxemics theory, e.g., speed adjustment and
direction of approach. It is undeniable that safety is the foremost consideration
in the design of IMRs that operate alongside human workers [260]. Note that for
the proposed POC, the workspace is divided in areas according to the definitions
provided in 2.1.2.



2.2 Applications for meta-sensor AMRs 111

When taking in consideration the cooperative scenario where a Sen3Bot moves
according to the OSGP plan, the inflation radius assigned to the identified human
can possibly be so large that the robot may have problems to move in narrow spaces.
An improvement to this system could be the identification of human operators so
as to distinguish trained operators from general staff and, in the first case, reduce
the safety radius surrounding the operator. Also, collaborative interactions can be
achieved by improving the surroundings interpretation capabilities of the smart AMR.
To illustrate the idea, the following assumptions will be considered:

(i) In the light of the envisioned collaborative extension:

• If the area has the highest criticality level (area of type 1), the Sen3Bot
must work in cooperative mode, implying that conservative avoidance of
humans is implemented.

• If the area has the medium criticality (area of type 2), the Sen3Bot can
switch between two modes, cooperation or collaboration with human
operators.

(ii) We consider an area with criticality level equal to 2, i.e., a sub-critical area,
corresponding to a zone that includes cobots workstations and manual stations
where human operators are likely to be present, but expected to be mostly
static.

(iii) In such a sub-critical area, the human operators are assumed to be mainly
trained ones, i.e., they are aware that the area is shared with AMRs and know
how to interact with them. We assume that operators of this type are identified
by a tag, e.g., a QR code, on the front and the back of a wearable leg band.

(iv) According to the Sen3Bot Net rules, if a critical area of type 2 is foreseen to be
crossed by an AGV, two Sen3Bots are sent to the scene if the human operator
is moving within the environment.

Collaborative extensions of the Sen3Bot Net can then be developed in the sce-
nario described hereafter, under the above listed assumptions. The presence of two
monitoring Sen3Bots in a sub-critical area ensures redundancy and, in principle, both
AMRs can act as collaborative mobile robots. Nevertheless, once on the scene, only
one enters a wait4col state, i.e., an idle state where the AMR waits for a triggering
command, signalling its state via a visual indicator, e.g., a led. As the operator is
recognized as trained, proximity rules can be less conservative: the robot can reduce
the inflation radius around the detected human, since the latter is supposed to be
aware of the former’s behavior. If the operator needs assistance from one of the
Sen3Bots, he/she will have to perform a pre-defined sequence of movements:

• The operator approaches the AMR in wait4col idle mode.

• The operator stops at a fixed distance Df in front of the mobile robot to let
it read the front leg band tag, for a time Tf. The leg tag contains relevant
information (e.g., the operator ID).
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• If the operator turns around, letting the robot read the back tag for a time
Tb, then the collaborative mode of the Sen3Bot is activated. We imagine the
above sequence to trigger several collaborative applications, e.g., Follow-Me,
assistance with materials or tools.

Feasible values for Df are in the range of 0.5 m–1 m, while Tf and Tb can be
chosen between 2 and 3 seconds. Notice that the time and distance parameters
considered in the sequence take into account a suitable tolerance. Furthermore, if
the operator executes such sequence for the second time in front of the same robot,
the collaborative mode of the mobile agent is deactivated; in which case, the Sen3Bot
can be re-assigned a new task, for example monitoring a different area.

The described Front-Back sequence intends to emulate the human interaction that
is likely to take place when two persons are conversing. In this way, the mobile agent
can understand this common human intention demonstration, allowing a narrowing of
the gap between the different cognitive skills between human and robots. A schematic
representation of the Sen3Bot modes characterizing the proposed collaborative
approach is given in Figure 2.26. In particular, the HUMAN REQUEST flag is set by
default to 0, since the robot starts with the cooperative mode and becomes 1 when
the conditions of the first Front-Back sequence are valid, allowing the robot to switch
to the collaborative mode. The flag is reset to 0 when the human operator performs a
valid Front-Back sequence for the second time to the same robot.

Fig. 2.26 Modes switching schema for a Sen3Bot monitoring an area of type 2, enabled to
wait for collaborative task triggering, i.e., with wait4col == 1.

The proposed concept could potentially reduce the time needed for human
workers to be trained in working with mobile robots within an industrial environment.
This is because the interaction with the robots would mimic human-like behavior.
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Moreover, wearing a leg band with a tag represents a low-cost solution for identifying
operators, to track their activities. In fact, a tag such as a QR code may contain
all the needed information for the robot and the overall system. However, it is not
possible to state how robust the solution is, at least, not until a real implementation in
a real industrial scenario is tested. Furthermore, running an algorithm that identifies
the human operator, tracks his/her location within the map and at the same time
filters and processes relevant information coming from the QR code, may need a
high-performance system for computing the perception algorithm.

Finally, taking into consideration the current implementation of the Sen3Bot
agent, such envisioned collaborative module could be implemented by taking advan-
tage of tools for tag recognition such as Zbar, for which a ROS (Robot Operating
System) wrapper node is available [261]. Also, other tools are present as Open-
Source material, mainly based on the OpenCV library, whose ROS compatibility is
well-established as well. Please note that this additional collaboration module would
not imply the need for further sensors, since the already available IP camera video
stream would allow the application of the afore-mentioned vision tools.

In this section, we have seen how a network of mobile agents can contribute
to monitoring workspaces shared between human operators and robots, and how,
depending on the needs, it is possible to switch from supervised navigation to a fully
autonomous one. A homogeneous team of AMRs can help a homogeneous fleet of
AGVs by providing the opportunity to upgrade the overall mobile robots network,
which takes advantage of the diversity of both types of mobile robots. Similarly, the
heterogeneity between robots and humans is a source of richness in terms of skills,
and this can be the trump card to achieve fruitful collaboration. The next chapter will
show how the ability of robots to learn from humans is crucial to achieve such goal.



Chapter 3
Robot learning for improved

industrial collaborative applications
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L
EARNING is the transformative process resulting from experience that
enhances the potential for better performance and future learning [262].
We, as human beings, are used to learn from birth, through experience
and trial-and-error reinforcing our behaviour in a specific environment

while pursuing a certain task, also taking into account the overall context. The
concept of improving learning by doing what we are actually trying to learn to do
dates back to 1897 with the principles of the pedagogic theory of learning by doing,
according to which “an individual must interact with the environment and implement
action in order to learn, and thinking with the aim of problem solving occurs only
when confronted with a problem” [263]. The so-called artificial intelligence (AI), as
opposed to natural intelligence, is the concept within which the learning process for
a machine falls; the idea of machine learning (ML) originated from a mathematical
framework proposed in 1943 by the logician Walter Pitts and the neuroscientist
Warren McCulloch [264], and then popularized in 1959 by an American pioneer in
the field of computer gaming and artificial intelligence, Arthur Samuel.

Machine learning has then a relatively long history behind it, but its application
to robotics leads to a relevant learning outcome difference: robot learning differs
from traditional machine learning in that it places greater emphasis on producing
actions as output while taking in the environment as input [265]. To go back to
the considered context of human-robot collaboration in manufacturing, we recall
what has been introduced in Chapter 1. As said, the fourth industrial revolution
marked the turning point towards the industrial integration of all the technological
advances which allowed the implementation of a series of new types of systems,
leveraging the increase in computational power. Moreover, lean principles have
shaped technology and decision-making processes to reduce material waste and non
value-added activities [266], [267]. What has deeply transformed the structure of
production lines is today’s market demand in developed countries, which shifted its
interest from mass production to products on request.

Intelligent collaborative robotics can represent a key enabler of custom manu-
facturing production, to try and top mass production costs and production times,
evolving toward a smart custom manufacturing system. To do so, Human-Robot
Collaboration (HRC) and Interaction (HRI) should aim at identifying a balanced
synergy between the human and the robot (mobile or fixed base cobot) so as to
value and enhance the cognitive skills and experience of the former and the accuracy,
strength and efficiency of the latter. In fact, through performing essential but less
complex tasks, cobots enable humans to concentrate on assignments that demand
advanced reasoning and decision-making abilities.
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This increased involvement of human workforce in automated industrial pro-
cesses characterizes the Industry 5.0 concept, identifying humans as the enabling
element for mass customization [268]. Proactive HRC can be obtained with bi-
directional empathy and holistic understanding during the collaborative execution,
spatio-temporal cooperation prediction, estimating the interaction among all elements
involved (human, robot and workpiece - if any), and teamwork self-organization
learning as a result of converging knowledge [269]. Therefore, to make robots the
ideal human collaborators, they should possibly behave as human team members.
This is because making the robot capable of human-like behaviors and decision-
making would allow for smooth interaction with human workers. Indeed, if robots
were to learn how to behave with levels of artificial intelligence as comparable to
natural intelligence, this kind of human-robots collaboration could revolutionize the
integration of robots not only in the industrial field but in our everyday life.

To achieve such an advanced artificial intelligence there is still a long way to
go, but gradual changes are pursued towards such direction. Among the hindering
causes of smooth HRC there is traditional programming or rule-based programming
to make robots behave in a desired way per each specific case. In fact, in traditional
programming, a programmer writes code that defines the exact steps that a machine
should take to complete a task, making difficult to generalize and requiring a level
of expertise from the user in case the code has to be edited for ad-hoc online
adjustments.

The transition to ML-based methods enables the robot to learn patterns and make
decisions based on data, emulating the human capability of learning from doing and
improving the performance over time through experience. Moreover, these kind of
methods also allow to teach robots tasks that are difficult to execute using traditional
programming methods.The cognitive elements characterizing the human learning
process, namely attention, memory, perception, metacognition and motivation, can
all be mapped to robot learning aspects:

• Attention has similarities with the capability of a robot to identify patterns
in the incoming data, i.e., selectively attending to certain information in the
environment while ignoring others.

• Memory can be assimilated to the ability of a robot to avoid forgetting past
experiences for better future performance.

• Perception can be easily re-mapped to the perception capability of the robot of
its surrounding.

• Metacognition of human learning can be compared with a robot ability to learn
how to learn while being unsupervised.

• Motivation can be represented by cost functions that a learning robot tries to
minimize or the reward it tries to maximize.
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Artificial intelligence methods are usually grouped as shown in Figure 3.1. All
definitions made for machine learning can be transposed on robot learning, as robots
are simply machines that act in and interact with the surrounding environment.

Fig. 3.1 Conventional AI learning types schema [270].

Thereby, based on the level of human intervention required we can identify the
following types of robot learning methods [271]:

Supervised learning
In supervised robot learning, the robot is trained using labeled data, meaning
it is provided with inputs and the corresponding desired outputs or labels. The
goal is to learn a function that maps inputs to outputs based on the training
data, and use this function to make predictions on unseen data, which typi-
cally results in performing some action or behaviour adjustment. Among the
supervised learning algorithms there are linear regression, logistic regression
and decision trees. The main drawback of supervised learning is the need for
labeled data, whose collection can be expensive and time-consuming.

Unsupervised learning
In unsupervised robot learning, the training data consists of unlabeled exam-
ples, i.e., no specific desired outputs or actions to take are specified. The
goal is to learn the underlying structure or find patterns in the data, and make
predictions without any guidance or supervision. Example algorithms include
clustering, anomaly detection, and generative models such as autoencoders and
variational autoencoders. The main drawback of unsupervised learning is that
it can be difficult to evaluate the learned model performance, i.e., determine
whether the model has learned useful and relevant information or not.
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Reinforcement learning (RL)
This recalls the learning by doing theory: the robot learns through trial-and-
error, without requiring explicit programming for every possible scenario. In
fact, the robot is provided with a goal or objective, and then it must take
actions to achieve that goal: each taken action is either rewarded or punished,
based on whether it brings it closer to or further away from the objective. The
robot reinforces its behaviour given its own experiences, gradually learning
how to achieve the goal more effectively in potentially dynamically changing
environments. The main drawback is that learning can require a large amount
of data and time, leading to the exploration-exploitation dilemma.

All these learning methods can have a deep learning (DL) version, grounded on deep
neural networks (DNNs) that automatically learn and extract relevant features from
raw data without the need for manual feature engineering, which is a time-consuming
and often challenging task in traditional learning. This way, complex patterns and
relationships in data can be captured. Nevertheless, DL methods require a large
amount of data and computational resources. As can be noted, the leitmotiv that
unites the existing learning methods is the extensive use of data. As such, one
can straightforwardly understand how big data and learning algorithms are tightly
connected. Nevertheless, the need for a great amount of data to achieve good and
generalizable models, often represents a bottleneck for learning applications. It is
thus necessary to find a trade-off between model complexity, data quantity and quality
and required generalization, which all depend on the application requirements.

The contributions reported in this chapter seek to exploit robot learning in the
industrial context, in particular offering possible solutions to enable improved human-
robot collaboration in manufacturing flexible production lines.

3.1 Data-driven framework for robots col-
laboration with human workers

As thoroughly analysed, the manufacturing assembly lines of the future are foreseen
to dismiss fully unmanned systems in favour of anthropocentric solutions. However,
bringing in the human complexity leads to modeling and control questions that
only data can answer. The work first outlined in [10] (as a proof of concept, along
with its development feasibility analysis) –and presented hereafter– showcases a
data-driven framework to let human-robot collaborative processes overcome the
barriers to successful interaction. In a holistic vision, the human-robot system can be
interpreted as a component within the context of the well-known and well-established
concept of Cyber-Physical System (CPS).

In [272], the authors present an architecture to be used as a framework to achieve
self-organization and self-adaptation using a multi-agent based technology, in order
to achieve auto-reconfiguration without human intervention to comply with product
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customization requirements while reducing costs. The human operator is involved in
the task execution but not considered as part of the multi-agent system. The work
presented in [273] reviews the role of Multi-Agent systems (MASs) as main tool for
CPS implementation. According to the analysed works, a MAS technology reference
architecture should be technology and system agnostic to ease its instantiation and to
favour its co-existence and integration with pre-existing automation. The agent-based
solution reconfiguration is interpreted as not strictly related to physical modification
of the system but rather as a multi-objective reconfiguration, which could potentially
include sustainability aspects as energy saving, reuse of equipment and optimal use
of human resources.

In [274], the human operator interacts with CPSs exploiting a modular robotic
cell able to reconfigure itself according to the requested operation. In [275], the
Decentralised Manufacturing System is presented as an enabler of distributed pro-
duction layouts. To achieve optimal HR work distribution, the authors propose
an algorithm that assigns a collaboration potential to each movement in order to
distribute process capabilities. Moreover, in the context of MASs in smart manufac-
turing systems, the integration of human actions in the control system, also referred
as human-in-the-loop (HITL), allows to consider the human-machine cell as a single
agent with the ability of self-arranging its work locally [276]. The authors of [277]
claim that fully unmanned factories cannot be implemented not only due to ethical or
social reasons, but mainly to the unfeasibility of such complex control systems. To
achieve interoperability, they propose augmented reality as a rapid learning solution
and the use of machine learning (ML) techniques to enable self-predict capabilities
for implementing dynamic reconfiguration.

As a matter of fact, Human Cyber Physical Systems (HCPSs) are envisioned
to become the core of the factory of the future [43], suggesting an increasingly
clear transition towards anthropocentric approaches. Therefore, a desirable solution
would leverage human cognition skills and machines’ processing and data mining
capabilities to implement human capabilities augmentation. HRC potential could be
unlocked if the different cognition models of human operators and robotic agents
were suitably interfaced to allow effective and efficient communication [278]. One
possibility is the emulation of human interaction paradigms that typically imply
an anticipatory behaviour, proven to be the human natural and dominant mode
when performing interactive activities, e.g., driving [279]. This, intuitively, is
implementable if the system has prediction capabilities on its future states. However,
being a human agent part of the considered system, inferring the overall dynamics of
the system is not easy.

Indeed, much of the available literature on human intention recognition deals
with the problem of modeling and interpreting the human motion itself. In order to
infer the user intentions, many works consider a nonlinear joint model of the human
to estimate muscle activations by monitoring electromyography (EMG) signals using
wearable sensors [82]. However, given the measurement limitations linked to human
physiological parameters, other solutions, as the one proposed in [280], utilise ML
to estimate a neural network (NN) state model relating the human joint angles and
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EMG signals. In general, data-driven approaches using datasets to train activity
models that link events to activities allow to take into account the uncertainties of the
model with the disadvantage that (i) large dataset are needed to learn the model and
(ii) interpretability and generalization are limited [281]. Note that the time required
to produce such large datasets is not compliant with short setup times.

A large and growing body of literature has investigated the role of data synthesis
and relative data augmentation to solve the data scarcity problem. In fact, this
issue is becoming more and more relevant as the majority of AI-based methods
heavily depend on data. Most works concern low-data regime image classification
problems where small training datasets cause bad generalization, leading to models
affected by overfitting. The latter can usually be reduced through regularization and
drop-out techniques that, nevertheless, do not tackle the problem at its roots: here
is where data augmentation comes into play. Among the available techniques for
data augmentation, Generative Adversarial Networks (GANs) have demonstrated
their power allowing for much larger invariance space with respect to typical data
augmentation techniques that usually rely on linear transformations [282]. The use
of GANs as data augmentation method ranges from medical applications to emotion
classification and, when considering the industrial context, several examples can be
found that apply this technique to improve fault detection systems [283], [284].

To place the data-driven framework we propose, it is worth pointing out that
HRC in manufacturing applications have showed to have numerous facets depending
on specific parameters, such as the degree of collaboration, dictated by the product
characteristics [285], and the human operator long and short term attributes [286].
Keeping in mind these aspects, several approaches when considering close-proximity
interactions between human operators and robotic systems can be found in the
literature on HITL. The framework presented in [287] provides a remote human-in-
the-loop control mechanism that brings an enhanced reality visualization tool and
a gesture recognition system together to implement a natural interaction between
the human operator and two manipulator collaborative robots. The method provided
in [288] aims at recognising patterns by identifying maneuvers or motifs in time
series trajectory data generated in HITL applications. In particular, to perform pattern
extraction, the authors exploit ML algorithms on symbolic representations obtained
by clustering feature vectors, which in turn are derived from trajectory segments.
The work in [289] provides a deep learning (DL)-based visual prediction method in
which a multilayered neural network realizes recognition and prediction of various
human manipulation actions. Specifically, the algorithm uses partial sequences of
motion data, allowing to recognize and predict motions before the action takes place.

In [290], the human arm trajectory is segmented and partial segments are used
for human intention inference. Specifically, they apply time series classification,
which finds similarities between the current partial trajectory and each representative
trajectory of each task, corresponding to the average of all training trajectories.
Moreover, the methods in [291] exploit gaze approximations and skeletal data to
estimate the reaching goal intention. This information initializes a learning algorithm
on a nonlinear state-space model with the uncertain system dynamics modeled
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using a dynamic NN; the estimated human trajectory is then used as a reference
for safe and efficient robot motion. These examples highlight that, while some
research has been carried out on HITL collaborative applications involving standard
cobots, i.e., collaborative manipulators, frameworks involving Autonomous Mobile
Robots (AMRs) and mobile manipulators are not taken into account, supposedly
due to the lack of clear mobile-cobots safety regulations [11]. Nevertheless, mobile
robotics represents one of the key enablers of flexible manufacturing and should be
considered in HITL applications. Namely, in passive HITL, i.e., when the human
does not exercise control over the system [292], e.g., applications engaging the
robotic system for monitoring the human operator and autonomously adapting to the
situation.

Below we lay out the specifications for the proposed data-driven framework,
involving collaborative robotic systems at large, with the role of distributed sensors.
The system goal is to recognise the executed process, inferring it from the human
operator state, and make it known to the robotic system, with the aim of implementing
a suitable control to maximize execution performances. The outlined solution seeks
to reduce the complexity of available collaborative systems capable of behaviour
recognition, to investigate if less information can be more significant than what has
been considered so far.

Framework Outline

In this section, a preliminary definition of the proposed HITL framework is carried on.
To better describe its components, a use case scenario posed as a problem scenario is
considered and described hereafter. We consider a custom manufacturing context
where flexible production lines are implemented using both fixed-base and mobile
robots. This means that the execution of manufacturing processes is distributed
among agents, with the aim of complying with the flexibility requirements of custom
products and products on request, whose assembly often heavily relies on cognitive
and experience-based capabilities of human operators.

As mentioned before, fully-automated operations do not always represent the
most suitable solution to certain operations. In fact, several operations are still
necessarily brought on by hand, especially in the case of small-scale job shops.
For this reason, the robotic system collaborating with the human operator can be
considered as an apprentice, i.e., it exploits information coming from the human
counterpart to autonomously learn and gain awareness about the executed operation
or task. Note that we consider an operation as composed of a set of tasks, where
tasks are performed by the operator in collaboration with cobots, moving from one
workstation to the other.

An envisioned use case is that of a job shop operation where a human operator is
needed for the successful finalization of the product. The operation to manipulate or
assemble a product requires her/his presence at different manufacturing workstations
placed in the shop floor, depending on the product to be delivered (Figure 3.2).
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Fig. 3.2 A robot-assisted assembly use case for the presented collaborative framework. The
human operator needs to carry out several tasks performed at ad-hoc workstations. The
robotic system observes the operator to determine the current process to infer its own desired
behaviour.

Given the above scenario, the problem statement can be defined as follows: given
a collaborative operation, the robotic system should implement proactiveness to
maximize execution effectiveness and efficiency, complying with lean manufacturing
requirements. To face this problem, the idea is to have a robotic system able
to autonomously understand the on-going process to behave accordingly. This
improves the interaction during collaboration (the robotic system awareness allows
for anticipatory behaviour) leading to effective execution. Furthermore, it reduces
waiting times of the human operator, corresponding to a minimization of the overall
process execution time, hence of the execution efficiency.

The solution implementing the described idea has the following main objectives:
using human information to learn a model for process (operation or task) recognition,
and controlling the robotic system based on the process recognition output to imple-
ment anticipatory behaviour. The resulting framework is composed of the following
two physical components: (i) the human operator, representing the main source for
process classification, and (ii) the robotic system, serving as sensor data source and
used for anticipatory behaviour.

The framework considers the human-robot comprehensive system as a CPS
that implements a passive HITL manufacturing application by abstracting from
the mentioned two physical components what we refer to as the system functions.
The combination of such functions determines two levels of abstraction: the global



3.1 Data-driven framework for robots collaboration with human workers 123

functions of the system consist in operation-oriented classification and associated
control of AMRs and cobotic manipulators, and the local functions, in charge of
task recognition and related actions on behalf of standard cobots. From a practical
point of view, the system provides a global recognition of the human motion be-
tween workstations of the flexible production line (operation execution), and a local
classification of human manipulation and actions (task execution). To stress the need
to involve mobile robots in HITL manufacturing applications, the focus is put on the
description of the global functions of the framework. The framework functions can
be summarized as follows:

(i) Human operator modeling. From the global point of view, the human operator
is approximated by a 2D point on the plant map. Indeed, human modeling
is complex and with the goal of operation recognition, considering the 2D
motion of the human operator should be sufficient.

(ii) Data collection. In order to identify the 2D point position corresponding
to a human operator, an algorithm filters sensor data about the surrounding
environment to retrieve the relevant piece of information. In this case, data
are gathered by the robotic system itself, serving as a distributed network of
sensors.

(iii) Robotic system awareness. Globally, the estimated sequence of 2D positions
of the human operator is fed to a classification algorithm. Based on the classi-
fication capabilities of the model, the ongoing operation should be identified
and a reference trajectory for the mobile robotic system generated.

(iv) Robotic system control. The computed robot reference trajectory is employed
for controlling the mobile platform, which is then able to anticipate the ex-
pected motion of the human operator.

An overview of the framework is shown in Figure 3.3.

Fig. 3.3 Framework high level schema.
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Development feasibility analysis

In this section, the development analysis of the proposed framework is tackled,
mainly concerning the technical limitations and feasibility of the project itself.
Here, the possible implementation choices evaluation is reported. In particular, as
anticipated, we focus on the description of the global functions of the framework
and the physical components involved in it.

The following analysis can be interpreted as the evaluation of possible instan-
tiations of the abstract global functions of the framework. The authors consider
functions (i) and (ii), namely Human operator modeling and Data collection, as
already available. In fact, the Sen3Bot meta-sensor [7] has the specific function of
monitoring industrial scenarios while detecting human operators, implementing a
safe behaviour when approaching them. The Sen3Bot can be considered a sensor
itself, able to publish the 2D position of the human operators on a shared map, in
order to make it available to all the robotic systems’ components In [9] the possibility
of a collaborative behaviour has been introduced: within this HITL framework the
Sen3Bot would be upgraded to a collaborative Sen3Bot (Sen3CoBot) able both to
autonomously navigate and be aware of the executed process. As a side note, to
lighten the computer vision computational effort of the Sen3CoBot, downgrading the
Sen3Bot original software choices to favour edge computing should be considered.

The Robotic system awareness (global function (iii)) development and imple-
mentation should take into account several feasibility aspects. Given the intention of
employing Artificial Intelligence for this function, some technical details intrinsically
influence the algorithmic choice. First of all, data availability must be considered:
ML methods typically require structured data, implying accurate manipulation if
not available; on the other hand, DL algorithms often require a large quantity of
training data to avoid overfitting. Moreover, another aspect that must be taken into
account is the available hardware. Operations performed within DL models, such
as convolutions, are best executed on a GPU parallel architecture. A possible dis-
tributed solution could involve the use of edge computing systems, e.g., embedded
GPUs. Additionally, Cloud deep learning services offer several solutions, which take
advantage of shared powerful hardware.

Properly choosing an AI algorithm also implies selecting an unsupervised or a
supervised learning technique. The function requires the recognition of the executed
operation, thus a classification is necessary. Supervised learning requires a lot of
labelled data to train the model. In this case, however, there are no readily available
labelled datasets on 2D human trajectories during an operation, and labelling should
be done for each new recorded trajectory, which can be quite time demanding.
Conversely, unsupervised learning would allow to train and use the clustering model
with unlabelled data but, because there are no labels, there is no way to identify the
process and retrieve the associated reference trajectory for the robot. To face this
problem, a mixed method supported by GAN-based data augmentation could provide
a feasible solution. Clustering could be performed on large sets of synthetic data
generated by a GAN, then the obtained clustered data could be used for training a
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classification model. Note that we assume the number of clusters c, i.e., the number
of operations, to be known a-priori. However, depending on the required accuracy, it
could be necessary to bring on the labelling and feature engineering processes for
supervised classification.

Hence, to implement the operation recognition function, a suitable trajectory
time series data classification algorithm should be identified. Ideally the model is
trained and fed with partial trajectory data to implement the desired anticipatory
behaviour and, based on the confidence with which the trajectory is classified, use
the robot reference trajectory associated to the recognized operation to control the
robotic system. The first development step should identify the best data structure to
be used, since it must contain both the human operator trajectory and the Sen3CoBot
trajectory. In fact, during training the robot should be teleoperated to assist the
human operator when necessary, so as to record both the sampled human trajectory
xxxhhh and the Sen3CoBot trajectory xxxrrr. Once the operation is recognized by feeding the
model partial trajectory data, the Sen3CoBot is given xxxrrr from that instant k on, as the
reference to be tracked. The sampling interval, at first, could be fixed and assigned,
while a more dynamic tuning could be implemented to discretize the trajectory based
on some relevant criteria. A summarizing schema of the Robotic system awareness
function instantiation is shown in Figure 3.4.

Fig. 3.4 Robotic system awareness summarizing schema.

Finally, the Robotic system control function will receive the Sen3bot reference
trajectory xxxrrr associated with the recognized operation. The Sen3CoBot control
could implement a mission planner to deal with exceptions, such as an obstacle
present in the next goal position in the reference trajectory. Moreover, if no robot
motion is predicted to be necessary within the recognized operation, the Sen3CoBot
could go in an energy saving mode/state to minimize battery consumption. A
further functionality that would be interesting for the Sen3CoBot control, is a sort
of proactiveness of the robotic system, that through visual or sound outputs could
cause a reaction in the human behaviour, for example to signal possible delays with
respect to the expected operation execution time.

The next section reports the implementation we have brought on as a solution for
one of the main data-driven framework global functions.



126 Robot learning for improved industrial collaborative applications

3.1.1 Sen3CoBot learns how to recognize operations
based on 2D map human motions

The solution unfolded in this section, and presented in [12], aims at achieving opera-
tion recognition by monitoring the human collaboration motion on a 2D map. Many
human-robot collaborative applications in flexible manufacturing involve manipula-
tor cobots, whereas little attention is given to the role of mobile robots. In our case
we consider the information provided by a monitoring Sen3Bot (2.1) to demonstrate
that human behaviour prediction for improving human-robot collaboration applica-
tions can attain satisfying results by classifying the corresponding human path on a
map, taken as an image data sample. Note that, this ability enables the Sen3Bot to
achieve collaboration with a human operator, making it an additional feature of the
collaborative Sen3Bot, i.e., the Sen3CoBot, introduced in Section 2.2.2.

Human-robot collaborative applications are generally based on some kind of
co-working of the human operator and the robot in the execution of a given task. A
disruptive change in the collaborative modalities would be given by the capability
of the robot to anticipate how it could be of help for the operator. In case of an
Autonomous Mobile Robot (AMR), this would imply not only a safe navigation
in the presence of a human operator, but the automatic adaptation of its motion to
the specific operation carried out by the operator. To this aim, we want to enable
a Sen3CoBot monitoring a human operator to translate his/her motion into a path
plotted on a 2D map, and then classify the operation based on the image sample.

A human trajectory tracking algorithm mixing human-oriented Global Nearest
Neighbour (GNN) data association and Kalman filter-based human tracking is pro-
posed in [293]. Vision-based approaches to detect humans and objects are widely
used; however, they do not provide accurate range information. For this reason,
the authors of [293] combined the information of a 2D lidar and a RGB-D-based
YOLO (You Only Look Once) system to correct missed information while tracking
the human motion. A dataset containing human motion trajectory and eye gaze data
is presented in [294]. The data of humans moving in a room are collected mainly
through a motion capture system enriched with 3D lidar, eye gaze detectors and a
RGB-D camera information; the recorded trajectories are available in 2D maps, and
used for training and motion prediction models of human motion. In [295], human
body pose and gaze are analysed to obtain an accurate prediction of the human’s
intentions. A Recurrent Neural Network (RNN) is used to predict sequences of
multiple and variable length actions, based on gaze and skeleton datasets.

A Multiple Predictor System (MPS) for human motion prediction is proposed
in [296]. Depending on the context, it automatically switches between three indi-
vidual classifiers: velocity-based position projection, time series classification and
sequence prediction. In order to enhance the robot’s ability to adapt its behaviour
in environments shared with humans, the MPS is added in the path planning algo-
rithm. In particular, the human’s head 2D coordinates are used as features for the
predictors [297]. In [298], a human motion prediction algorithm is proposed using
a Hidden Markov Model (HMM). The HMM learns a set of movements executed
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by a human operator in an assembly task and then generates motion transition and
observation probability matrices. In this way, it is possible to predict the motion of
the human operator and perform assistive motion planning in Human-Robot Col-
laborative applications. Similarly, HMM is proposed in [299] to recognise human
activities based on the principle object affordances, i.e., the relationship between the
activity and a particular object/tool.

AlexNet, a Deep Convolutional Neural Network (DCNN) is modified employing
transfer learning-enabled algorithm in [300], to enhance the robot’s capability to
learn human’s actions. In particular, human actions can be divided in: (i) generic
body motions, e.g., grasping or holding a tool and (ii) specific movements related to
a context, e.g., actions performed while using a tool. The training procedure involves
two separated deep neural networks, that analyse the human motion and identify the
tools associated to the tasks. A multisensor framework exploiting online transfer
learning techniques for human tracking is presented in [238]. The performance for
all possible combinations of 3D lidar, 2D lidar and RGB-D cameras are evaluated,
and in particular, the solution that combines 2D lidar and RGB-D camera achieved
the best results in terms of performance and precision to learn people’s movements
in the environment. In fact, the sensor’s choice may enhance the robot’s perception
of the human [11], and therefore improve its learning curve about human intentions.

Position-based Operation Recognition

This section briefly recalls the definitions and main concepts reported in Section 3.1
– Framework Outline. The main objective of the outlined framework is to exploit
human information to learn a model for operation and task recognition, to make a
mobile cobotic platform or manipulator aware of the ongoing process, allowing to
enable anticipatory behaviour for improved collaboration along a flexible production
line.

Problem and Idea

This work develops a global function of the framework, namely the recognition
of the executed operation. We consider a set of tasks as composing an operation,
and each task is brought on – at a “local” level – in collaboration with cobots at
specific workstations. Given a collaborative application, the present work aims at
allowing the system to learn to recognise the operation – at a “global” level – by
collecting information on the human operator motion: at each set of human poses
on the map corresponds a specific operation. Note that, learning from data with
sufficient generalization capabilities requires data availability. Moreover, being able
to straightforwardly identify the relevant information that a human gives back while
moving around and predict the often unpredictable human behaviour are both quite
complex objectives.
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The idea is to emulate how a human being usually perceives its surroundings:
the decision making anticipating an action is performed based on an approximated
observation of the surrounding environment, in favour of efficiency and resource
saving, i.e., when we look around we do not usually catch every single information
coming our way before taking a decision. The goal of the presented solution is to
demonstrate that the path traversed by a human operator is a sufficient information
to identify the performed operation, to possibly anticipate human behaviour in the
described restricted context scenario.

Solution

To capture a series of positions occupied by a human operator on a map, the proposed
solution exploits the Sen3Bot meta-sensor implementation (see Section 2.1), a smart
AMR whose role is to monitor and safely cooperate with humans. Within the
data-driven framework the project is brought towards a collaborative evolution, the
Sen3CoBot. Indeed, as specified in Section 3.1 – Framework Outline, the global
functions (i) and (ii), i.e., human operator modeling and data collection are resolved
by considering only the positions of humans, which are detected by a state-of-the-art
computer vision object detection algorithm.

The proposed solution tracks the set of positions and represents it as a path,
without including time information, as it is not relevant for operation recognition.
Rather, dropping the time information (i.e., preferring the path data with respect
to the trajectory data) enables the recognition of operations performed by different
operators, who may take varying amounts of time to complete each operation.
Thereby, the chosen solution considers that the digital representation of path data,
when plotted on 2D map, is simply a matrix; by dropping the time information
and given the duality of images as matrices, we translate a spatio-temporal data
recognition problem into an image classification problem. Interpreting the data in
this way has proven to be crucial, as it has expanded the pool of potential methods
for solving the problem by providing access to a wide variety of established and
well-documented architectures, libraries, and tools for implementing deep learning
models. As such, this has enabled us to tap into a large community of developers
who often make these tools available as open source material.

In the proposed solution the Sen3CoBot stack is extended by adding the capabil-
ity of understanding the executed human operation, i.e., implementing the framework
global function (iii) – robotic system awareness. In fact, the AMR currently imple-
ments passive HITL behaviour, as it monitors the area to gather position information
from the detected human, and interprets it as an operation to be recognized. How-
ever, in the context of the overall data-driven framework, recognizing operations
through this passive step is key for the mobile cobot to make informed decisions
before taking any action: based on the confidence of the classification, the robot
will be given different trajectories to follow. To this end, the robot will need to act
according to the probabilities associated to each class of operations. This means the
system will iteratively check, while gathering new data, if the guess has changed
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and send a different reference to the mobile cobot accordingly. With the aim of
dealing with the data scarcity problem, the solution takes data augmentation through
simple transformations as a first step toward model improvement. Opting for image
datasets instead of video datasets reduces the complexity of data and, to some extent,
minimizes the presence of noise in the dataset, since the images only contain relevant
information, i.e., the map and the path taken by the human operator.

Tools

We provide here a brief introduction to the main open source software tools that form
the basis of the presented solution. First, it is worth recalling that the data gathering
provided by the Sen3Bot is ROS 1-based (Robot Operating System), featuring a
containerized vision module exploiting YOLO (refer to Appendix A). Also, the addi-
tional recognition capability introduced by the proposed implementation has been
containerized. Containerization has been achieved using Docker [301], which allows
to build, run and manage Linux Containers. The development and testing of self-
contained applications can be done in a lightweight, clean environment. Allowing to
leverage GPU within containers, local resources are exploited for running – hundreds
of times faster than a regular CPU – Neural Network (NN) based algorithms, while
avoiding lag problems derived from using Cloud available GPUs, and security issues.

To solve the operation recognition/image classification problem, the fastai
deep learning library, specifically fastai v2 [302], has been chosen. This library
provides low, mid and high-level APIs to intuitively create deep learning models,
either from scratch exploiting the Python libraries it is built on (PyTorch, NumPy, PIL,
pandas and others), or allowing to use state-of-the-art architectures and techniques
made available following best-practices to get the most out of the available hardware.
The authors of fastai also made available an interactive book written with Jupyter
[303], an open source project providing notebooks. A notebook is an interactive
programming environment – whose cells’ code can be modified and run straightaway
– capable of working with different language backends, kernels, allowing to use
several different programming languages. For the sake of the recognition solution
validation, notebooks represented a simple playground for code development and
testing. We built our solution upon [304], which provides a docker image with pre-
installed fastai v2 libraries and notebooks, which has been adapted to solve the
considered problem. Figure 3.5 summarizes the overall structure and tool choices.

Before moving on to the description of the implementation choices, it is fun-
damental to put in evidence some assumptions, which influenced the development
of this preliminary solution. In order to develop a baseline model for our image
classification problem, we make the assumption that there is only one human opera-
tor present in the monitored area, without any other dynamic obstacles. Moreover,
to begin with a simple classification problem, the number of operation classes is
limited to two. Note that we refer to classes of operations since this enables the
possibility of fine-tuning pre-trained models using new operations, which may be
variants of the main class. In fact, since we defined an operation as a group of tasks
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Fig. 3.5 The proposed solution aims at recognizing – through image classification – the
operation executed by the human operator, by tracking the human position on a 2D map.
This information will then be passed as input to the robotic system control global function.

performed at specific workstations (providing the needed machinery/cobot to bring
on the necessary task), it is reasonable to assume that there may be variations in the
tasks performed within a single operation, leading to slightly different variants of
the main operation classes. Furthermore, the number of operations in a shop-floor is
indeed usually limited to the available equipment and setup for the manufacturing of
a certain product.

Implementation

This subsection illustrates the solution development and implementation details.

Positions collection In the Sen3Bot stack, the positions associated with the detected
human operator are published as virtual obstacles in the navigation local
costmap of the AMR: this allowed to enable safe overcoming of the human
obstacle. Within this work context, the published ROS topic provides a source
of position messages to be plotted graphically on the rviz visualization tool.

Path plotting The messages were subjected to filtering, since all points falling within
the detected human obstacle bounding box are published as virtual obstacles:
laser data may correspond to points behind the human obstacle surroundings
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(see Figure 3.6). Those points have been filtered out and, among the points
covering the bounding box width, only the nearest one has been maintained at
each sampling instant.
Each human 2D position is then collected by a ROS node that pushes it in a
type Path ROS message – a standard message type in the navigation stack –
which is then published on an ad-hoc ROS topic.
As can be observed in Figure 3.6, the resulting path is not very smooth. Nev-
ertheless, since it tracks a human motion, this can be considered an expected
output, due to the non-smooth human motion and detection noise. Also, the re-
sulting path is inevitably dependent on the detection and messages publication
(ROS node spin) frequencies.

Fig. 3.6 After data filtering, the detected human path is published, and its content plotted on
the 2D map by passing the type Path topic to an rviz Display.

Data collection Although simulation has been considered, a collection of real data
has been preferred. This is because training a learner on purely synthetic data
will unavoidably affect its capabilities of performing classification on real data
samples, to the extent that it might not be able to recognize any operation at
all. Nevertheless, real data collection combined with data augmentation can
improve overfitting issues. With the purpose of speeding up the data collection,
the operation executions have been video recorded and periodic screenshots of
the rviz map visualization have been generated.
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Dataset creation Disjoint subsets of such collected samples have been used for
training, validation, and testing of the algorithm, respectively. To enhance the
learning algorithm’s ability to generalize, samples were collected from the
motions of two distinct human operators. Data samples have been saved in
the dataset /train and /valid folders. Note that only images representing
completed operations are included in the training and validation sets. The
reason for including only completed operations images for training and valida-
tion is to allow the architecture to adjust its parameters using representative
samples of each operation class. Instead, to test the model capabilities to
recognize an operation from the very beginning of its execution, testing is
performed on samples of ongoing operation executions: this allows to observe
the model capability to improve its confidence as the operation/path goes
towards completion. Figure 3.7 shows the mean values for each training set for
each operation, so as to give a compact representation of the collected dataset
content. The mean of all the image tensors corresponding to a certain class of
operations is obtained by taking the mean along dimension 0 of the stacked
rank-4 tensor (RGB images).

(a) Class A operations mean value. (b) Class B operations mean value.

Fig. 3.7 Mean values images for each of the considered classes of operations, computed
among the samples in each corresponding collected dataset.

Architecture Since the operation recognition problem (interpreted as a plotted path
recognition) is now an image classification problem, the well-known “go to”
NN architectures for this kind of learning problems are Convolutional Neural
Network (CNN) models. Specifically, a Deep ResNet (Residual Network) ar-
chitecture has been used. ResNets address the degradation of training accuracy
(vanishing gradient) problem, i.e., the degradation of training accuracy, asso-
ciated with network depth [305]. A ResNet18 has been selected as learning
architecture, and for the optimization step, we choose cross-entropy as our loss
function, as it is the most common loss function used for binary classification
problems. This function will be minimized by the stochastic gradient descent
procedure during weight stepping. The learning rate has been set to 0.002,
as suggested by lr_find(), a fastai function that plots the loss against
learning rate values and outputs a suggested value, corresponding to the point
where the gradient is the steepest.
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Data augmentation A total of 300 image samples per class of operations have
been collected. Despite being aware of the problem of overfitting due to data
scarcity, the choice have been dictated by the purpose of testing the preliminary
solution recognition capabilities keeping the number of labelled images low,
for the sake of achieving a low complexity setup. Nevertheless, to improve
generalization capabilities and avoid overfitting, data augmentation methods
have been employed. As a pre-processing step, all samples within the dataset
have been resized to reduce their dimension, as – in our case – size reduction
does not seem to affect the model performance. Then, a set of transformations
have been selected, namely small rotations and warping, and lighting editing.
This set of transformations are defined along with their relative application
probabilities, i.e., the probability with which the transformation will be applied
to random batch elements during training. The batch size have been set to 64
and the training algorithm will take care of shuffling in a random way across the
training data set when choosing candidates for each mini-batch. Moreover as
a callback for every tweak of the training loop, we chose to apply the MixUp
method [306]. MixUp generates new data during the learning procedure
through convex combination of random pairs of images and associated labels.
A random sample can be seen in Figure 3.8.

Fig. 3.8 Sample of batch elements generated by MixUp algorithm. As can be seen, shuffled
samples are also affected by the randomly applied transformations for data augmentation.
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Model After setting the described hyperparameters, a one-cycle training policy
have been performed [307], which is a commonly used method for training
fastai models from scratch, i.e., without transfer learning. As expected,
most times the accuracy saturated to 1 during the first couple of epochs,
suggesting overfitting issues. However, the main aim of the developed work is
to test the obtained model on images representing the sequence of sub-paths
corresponding to an operation. Then, the number of epochs for training has
been limited to 1. An accuracy of about 0.93 has been achieved, with a training
time of 4 s, running on a PC equipped with a 4GB GDDR6 NVIDIA GeForce
GTX 1650 GPU. The trained model has been saved as a baseline model for
the considered problem. Figure 3.9 shows a subset of the top losses peaked
during training.

Fig. 3.9 Subset of samples that generated top losses. The title of each image shows: Predicted
class / Actual class / Loss / Probability of actual class.

Testing

It is worth recalling that, in order to demonstrate the feasibility of the proposed
solution for operation recognition problems to improve collaborative applications,
the obtained baseline model should have the ability to differentiate between various
operation classes. Additionally, it should ideally improve its confidence in guessing
the class of an operation as it is provided with a sequence of images that represent
the progression of the execution of the operation. In fact, in the proposed data-driven
framework, according to the currently recognized operation, a specific reference
trajectory will be fed to the mobile robot control system. In particular, a reference
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trajectory should be generated, resulting from the weighted combination of candidate
reference trajectories, were the weights are proportional to the associated operation
class probabilities. The baseline model has been first feed with progressive screen-
shots from a class A operation execution. Then, the same has been performed for a
class B operation.

Figure 3.10 reports the obtained testing results for class A operations testing
samples. As can be seen, for both sequences the model initially struggles to correctly

Fig. 3.10 Prediction labels and probabilities, along with the set of testing sample images,
corresponding to an operation A execution.

recognise the ongoing operation. This is expected, since the first part of each
representative path is identical for both classes of operations, as the first visited
workstation is the same. Nevertheless, in the case of operation A recognition the
classification results start with a couple of switching predictions, 74% A at step 1,
passing through 59% B at step 6, and reaching 67% A at step 7, which lead to a
prediction above 99% from step 8.
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As seen in Figure 3.11 the recognition of operation B generated similar results,
starting from high probabilities associated to the wrong class (95% probability
for A at step 1) and progressively switching to increasing probabilities for class B,
eventually reaching above 95%, starting from step 8.

Fig. 3.11 Prediction labels and probabilities, along with the input set of testing sample
images, corresponding to an operation B execution.

The reported contribution proposes a 2D human motion-based solution to perform
operation recognition in the context of human-robot collaborative applications. To
mainly demonstrate the solution feasibility with the tackled problem, a small dataset
have been prepared for training purpose. The obtained results showed signs of
overfitting issues, as expected due to data scarcity for training, but performed well
in generalization capabilities when tested on images containing sub-path of the
complete operation to be recognised. The results are nonetheless promising, and the
possibility to tune the context assumptions, the hyperparameters and the datasets
dimension, leaves room for significant improvements.

The next section introduces a proof of concept solution that could implement the
local functions of the HITL data-driven framework just described.
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3.1.2 Manipulator-equipped Sen3CoBot: a proof of
concept

In Section 3.1.1, the focus was put on the implementation of global functions of the
proposed framework. The following work, presented in [14], proposes a general
framework for mobile manipulators assisting human workers, in a context of mass
customization. This could be seen as a possible implementation of local functions
to improve collaboration at task level. In fact, according to the definitions given in
Section 3.1 – Framework Outline, each task is brought in collaboration with cobots
at specific workstations. In this case, the cobot would be a Sen3CoBot equipped with
a collaborative manipulator, hence a mobile manipulator Sen3CoBot, which could
potentially comply with both global functions and local functions implementations,
as it can move to collaborate according to the human operation and also provide
assistance for workstations tasks.

In order to develop a robotic assistant for manufacturing collaborative tasks,
it is crucial to incorporate functionalities for object/tool recognition and grasping.
In [308], a mobile manipulator able to autonomously navigate while detecting
humans and objects to automate small and medium-sized enterprises production
is proposed. A pointvoxel-region based convolutional neural network is used to
detect objects in a robust way, allowing to get rid of 3D point cloud data uncertainty
issues, while a 2D camera is employed to calibrate the cobot relative position to
workstations. In [309], an event-based robotic grasping framework for known and
unknown objects in a cluttered scene is presented. In particular, the model-based
solution consists of 3D scene reconstruction, object clustering according to Euclidean
distance, position-based visual servoing, and grasp planning of objects whose shape
is known a-priori. The mentioned works are part of a substantial body of literature
that exploits AI to implement object recognition and manipulation.

The problem of human action recognition have been investigated intensively
as the human role in AI adoption is getting more and more relevant. The use of
monitoring vision-based 2D and 3D data for action recognition has gained popularity
due to the advancement and accessibility of vision oriented AI methods [310], but
an interesting new direction exploits first person or egocentric videos to train deep
learning models [311]. Egocentric videos are recorded from the point of view of
the wearer, allowing to change perspective to what the operator sees during the
execution of the task. This kind of approach poses interesting and challenging
directions for computer vision action recognition. Also, approaches based on other
types of data are available. An example is presented in [312], where the focus is on
assembly operations recognition, achieved by exploiting two convolutional neural
network models with identical architectures, each one independently trained on
inertial measurements of the right and left operator’s hands.

Depending on the context and the specific operation being executed, the collabo-
rators involved may have varying levels of decision-making authority. For example,
the work presented in [313] uses a mobile manipulator as a flexible solution for
tending operations on computer-numerical-controlled and additive manufacturing
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machines. A semi-automated execution mode is preferred, due to the cost of the
required equipment. In this mode, the robot automatically computes low-level
decisions and grasping planning, while the human operator supervises high-level
decisions and pre-grasping poses. This way, the operator can perform risk-informed
decisions to accept, refine, or decline system-generated plans.

It is worth mentioning that recent research on human-robot collaborative tasks
often involves approaches that involve AI-enabled mobile manipulators, since they
embody the main capabilities demanded to a robotic assistant: flexibility, autonomous
mobility and improved dexterity. Even though some solutions opt for supervised
or semi-supervised collaboration, decision making data provided by the human
operator during this kind of applications could be collected with the aim of providing
a dataset to the AI-enabled cobot. In such a way, by training on human-generated
past collected information, a cobot would be able to perform high level decisions
on its own. In fact, the cobot can learn from monitoring data, which can be used to
either emulate the human operator’s motion or acquire it for future use; this is done
with the purpose of action recognition and prediction.

In the proposed framework, the mobile manipulator observes, analyses, learns,
and attempts to help the human operator working in an assembly line, by understand-
ing the intentions of the human operator with/without verbal communication.

Framework proposal

To the best of our knowledge, current solutions separately solve human action
prediction, object recognition, object affordance manipulation, safe motion control,
however, there is still a gap for what concerns the safe human-robot interaction
for assistive applications that involve object affordance. The role of the robotic
system in this case is to give assistance to the human, which can enhance the
performance of the overall production time. In particular, the proposed framework
will be focused on mobile manipulators as they offer increased versatility compared
to fixed base manipulators. This flexibility can be useful for tasks such as material or
tool handling, where items may need to be delivered to or from the human operator.
In order to develop this framework, the robotic system should have at least the
following features:

(I) An AI-based perception system for recognition and learning of human actions,
tools/instruments, context, working spaces, whose data come from the sensors
mounted on the robot and the ones used to monitor the workstation. The idea
is that the robot should exploit monitoring data captured while the operator is
performing some task, e.g., assembly or inspection tasks. Then, based on the
context, a sequence of tasks to be performed can be predicted. For instance,
in an assembly task, the human worker may use a type of screwdriver and
then use another kind of screwdriver or wrench. Once the human actions are
classified, the robot should be able to predict the next tool the human would
like to use and then take the tool that the human is no longer using.
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(II) A control system involving three blocks: (i) a safe trajectory generator, whose
output varies according to the tool that the robot is holding, (ii) a safe trajectory
tracking system, and (iii) a safe trajectory replanner/corrector for those cases
in which the robot needs to perform a trajectory correction or replanning its
trajectory while avoiding in a safe manner the human operator, in order to
avoid unintentional harm to him/her.

Framework feasibility analysis

This section examines the currently available solutions that would help develop the
key functional blocks of the envisioned framework. In this preliminary stage of the
framework development, some assumptions are made for the sake of simplicity and
to show correctly its workflow. It is assumed that the tasks carried out by the human
operator involve a limited number of tools and consist of a sequence of brief actions.

Human action recognition. In an assembly task in which the human may open
a device/product, inspect/modify it, and then seal it up, it is likely that the human
needs different tools in order to complete the task. The sequence in which the
human will use the next tool can be predicted by the robot. Hidden Markov Model
(HMM) algorithms are popular for human motion prediction, since the hidden state
transitions can be used when there are uncertainties due to weak motion recognition.
In [298], HMM is used to predict a sequence of human actions by generating motion
and observation probability matrices. Moreover, the principle of object affordance is
included in the HMM model proposed by [299] in order to give some context to the
human actions.

Tool identification. The tools can be classified a-priori by tool type, based
on their utility and also on how they are usually grasped/held/used by the human
operator. Identifying the tool may allow the robot to grasp it correctly and deliver
it in a safe manner. In fact, affordance detection [314] allows to localize, classify
and label the affordance of the detected objects, such that the graspable and non-
graspable parts of a tool can be identified. A possible solution is provided in [315],
where an object-agnostic affordance recognition neural network is presented. In
particular the system analyses and predicts affordances of object parts in an image.

Workspace organization. In a complex assembly task, a worker may require
multiple tools, but it’s preferable to have a clear workspace with only frequently used
tools within reach. On the other hand, dangerous, heavy, or rarely used tools should
be stored in a dedicated box or space that can be accessed when needed. In order
have a working space that can be easily classified and interpreted by the robotic AI
system, for convenience, the workspace can be divided in the following areas: (i) a
human workspace, where the human can perform the tasks normally, (ii) a tool area,
which in turn can be divided into two sub-areas, namely, a release area – where the
predicted next tool is released by the robot), and a collect area – where unused tools
are left and collected by the cobot to be put back in place in the tool deposit.
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Mobile manipulator control system. Especially in the context of collaborative
tasks, safety is a relevant issue. As such, hazardous situations must be avoided by
taking into account not only what is being executed but also how. For example,
tool-path smoothing methods as the one proposed in [316], demonstrated to ensure
better tracking performance in the motion control process. This could be exploited
to improve tracking of generated paths according to recognized human actions, to
ensure a reliable behaviour. Moreover, in order to ensure a safe interaction between
the robot and the human, a safe trajectory generator should be used for each tool
type, e.g., screwdrivers, hammers, pliers, as these tools can cause harm if they are
not handled correctly, in particular while being held by a moving robot. Then, based
on the object affordance information, the cobot should be able to act accordingly. To
do so, control and manipulation approaches can be borrowed from non-collaborative
frameworks. For instance, the work in [317] provides a high-accuracy method for
estimating a workpiece pose for workpiece exchange, which consists in compensating
the potentially poor positioning of the mobile base with a marker-based alignment of
the manipulator. In a preliminary stage of the proposed framework, the trajectory
tracking would consider only the kinematic model of the mobile manipulator, while
the safety issue will be dealt with using the onboard sensors, so as to avoid any contact
or unintended harm to the human. Future developments should consider the dynamic
model of the robot in case of force/torque interactions; for instance, an impedance
control architecture for collaborative material handling could be compliant [318].

The next section analyses the evolution of industrial fixed-based manipulators
interfaces and how this allowed to achieve today’s collaborative manipulators and
how, leveraging recent learning research directions, robots can be taught to behave
directly by humans.

3.2 Towards industrial manipulators 5.0

As introduced in Chapter 1, robots have been populating and starring in the industrial
production lines since the third industrial revolution, when industrial manipulators
–also known as robotics robotics arms– helped automatizing manufacturing processes.
In fact, robotic arms could perform repetitive tasks at high speed and high precision,
without getting tired or making errors – considered typical human weaknesses. As
such, for a long time industrial manipulators seemed to represent the future human
substitutes. However, as described before, the research direction suggests otherwise,
as humans will be irreplaceable and robots will be human teammates. Early industrial
manipulators were the Unimate robots, developed by George Devol and Joseph
Engelberger in the late 1950s [319], and first installed in a General Motors plant in
1961. Bulky and stationary, these primordial versions of the industrial manipulator
were utilized to bring on repetitive and hazardous tasks, e.g., painting and welding
and controlled by computers programmed using a punched paper tape, which was
fed into the robot’s controller. Thinking about this being a bit more than half a
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century ago, is really eye-opening on the fast pace technology is going forward.
Indeed, thanks to sensors development and sophisticated methods led industrial
manipulators to evolve towards today’s collaborative manipulators. A key aspect of
collaboration between humans and robots is the way the bidirectional communication
and interaction occurs.

Human-Robot interfaces and interactions modes changed hand in hand with hard-
ware and software improvements and new requirements, starting from offline control
to interactive robot learning. Interfaces play a crucial role in human-robot interaction,
as they allow communication between humans and robots, facilitating information
sharing and feedback, which are essential aspects for successful collaboration. In
fact, in any relationship involving collaboration, the teammates have a common goal
to reach –e.g., a task to perform– and information exchange along with coordination
of actions are paramount for achieve such aim. Overall, interfaces evolved from
physical devices to more abstract software layers. Yet, physical interfaces are still
necessary especially to ensure safety measures, as the human operator can hard-stop
the robot through physical interfaces if an action that could potentially damage equip-
ment or harm the operator or other humans in the workspace is being performed.
Also, safety can be achieved by providing visual or sound cues to anticipate the robot
motion, or to indicate when it is safe to enter the workspace.

Human-robot interfaces can be mono-directional or bi-directional, based on
whether either the human or the robot use the interface as an input source or an
output source, or both. For instance, interfaces can allow the operator to provide
feedback on the robot performance, to adjust its behavior or modify the task based
on the changing requirements, or they can enable the robot to signal or display some
kind of information to be interpreted by the human.

Considering manufacturing applications, the most common human-robot inter-
faces, aggregated by the involved human senses/robot modalities, are:

• Touch/Haptics:

→ Physical devices, including buttons, switches, and joysticks allow the
human operator to control the robot’s movement and actions. A typical
device to manually control industrial manipulators is the teach pendant.

→ Haptic interfaces can provide feedback to the human operator through
touch or force feedback. The provided information can be either related
to the robot surrounding environment, e.g., some kind of feedback on the
contact surface the robot is interacting with.

• Vision/Visual signals:

→ Graphical user interfaces (GUIs) may provide a visual representation of
the robot’s current status, allowing the user to input commands/adjust
parameters. Indeed, GUIs also fall within the tactile interfaces.

→ Virtual reality interfaces let the human operator control the robot through
a safe virtual environment, and can be used for complex tasks simulation.
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→ Augmented reality interfaces allow to render virtual visual representa-
tions over the real environment, allowing for a combined visual and touch
experience. Indeed, AR interfaces also fall within the tactile interfaces.

→ Visual/Light signalling of the robot is a possible way for it to communi-
cate to the operator a change of status.

→ Gestures interpretation can also be an intuitive way for the human to
provide control commands or feedbacks.

• Hearing/Speech/Sound signals:

→ Natural language interfaces allow communication from the user to the
robot using spoken or written language.

→ Sound signalling of the robot is a possible way for it to communicate to
the operator a change of status.

To the best of the author’s knowledge, at the time of publication of this manuscript,
the human senses of smell and taste have still not been exploited for human-robot in-
terfaces in manufacturing applications, leaving an interesting open research direction.
Note that, overall, the choice of human-robot interface will depend on the application
requirements and could involve a combination of different interface modalities to
avoid information ambiguities. In general, friendly human-robot interfaces can be
achieved by implementing interactions perceived as intuitive and natural by the
human operator, and providing personalized interfaces with custom configurations
and settings based on his/her preferences, work habits, and culturalization [320].

Another interesting classification consists in sorting by increasing degree of
autonomy of the robot the HR interaction modes, from a fully supervised to an
autonomously learning robot:

• Teleoperation The robot is controlled, hence fully supervised, by a human
operator using a remote interface such as a joystick, keyboard, or haptic device.

• Shared control The human and the robot share the control of the latter. Tasks
are performed autonomously by the robot, while the operator provides high-
level guidance or corrections when necessary.

• Task-level programming It enables the robot to perform a specific task or set
of tasks using high-level instructions. Task-level programming can be used for
tasks that have a well-defined structure or sequence of steps.

• Learning from demonstration A human teacher performs a task which is
learned by the robot by either watching it or experiencing it. The underlying
structure of the task is typically inferred using ML.

• Autonomous decision-making In autonomous decision-making, the robot is
capable of making decisions and taking actions without human intervention,
thanks to a advanced environment perception and task interpretation.
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The choice of HR interface and interaction mode, depends on the specific appli-
cation. In particular, when the aim is human-robot collaboration, all the described
interaction modes and interfaces can contribute to achieve such goal, depending on
the level of autonomy required to the robot.

In the context of flexible manufacturing, the collaborative assembly task represent
a manufacturing operation of high practical relevance. Having a heterogeneous team
of workers working collaboratively and simultaneously on a common operation
allows to achieve efficient labor division: the robot is typically allocated repetitive or
power demanding tasks, while the human perform highly dexterous operations [321].
When considering teleoperation, it can be interpreted as a sort of human-manipulator
collaboration as the capabilities of the latter are made available to the former in the
case of hazardous environments or to perform operations that can weary a human
operator in the long run. Taking into consideration an assembly task, the robot can
be instructed through an appropriate interface to preassemble pieces of a custom
product to be then finalized or inspected by the human operator.

The following section briefly reports a work that seeks to achieve a low cost
human-robot interface for remotely controlled preassembly tasks. In particular, in
the context of this thesis, the following work is re-framed to be applicable to a
collaborative assembly task where the human supervises the pieces selection and
then intervenes, for inspection or finalization, on the parts preassembled by the robot.
This perspective provides an example application that would take advantage of
learning from a human, as the latter is giving useful information about the assembly
parts selection from which the robot could learn some kind of pattern.

3.2.1 Human-robot interface for remotely controlled
assembly tasks

The work presented in [13], and summarized here, proposes a touchscreen interface
for supervised assembly tasks, using an LCD screen and a hand-tracking sensor.
Typical interfaces employed to teleoperate the robot are not so intuitive to use.
Difficulties in using a robot’s interface can prolong the learning and control processes,
and may even lead to increased stress and mental effort for the operator. The aim of
this work is to provide an intuitive remote controlled system offering a flexible way
to perform an assembly task, where high-level decisions are made by the human,
while the robot performs pick-and-place operations for the preassembly phase.

A typical device to manually control industrial manipulators is the Teach Pendant,
whose interface is similar to a joystick. However, this kind of interface is not very
intuitive, and it may require a lot of practice in some applications [322]. Approaches
based on conventional human-to-human communication interfaces like speech or
gestures can also be utilized to teleoperate robots. Industrial environments are
usually very noisy, so it is difficult to operate the robot using vocal commands, and
gestures are preferred over speech [101]. A common gesture used in human-human
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interaction is to point a part, a location or indicating a position. This is as simple as
it is useful to codify real-world assembly tasks [323].

There exist various other teleoperation interfaces available that can be adopted
to achieve a fast response, thereby enhancing the usability. In [324], it was seen
that people perceive more accurately and prefer a system they are more comfortable
with, such as a touchscreen. Nowadays, most of the human-robot interfaces include
a touch screen, becoming easy and intuitive to use [325]. It is important to consider
that in an industrial setting, operators may wear gloves for safety purposes. This
can make the use of Teach Pendants with touch screen interfaces less practical, as
the screens are typically small and difficult to operate with gloves on. A possible
solution to such problem could be that of enlarging the touch screen device. However,
this approach may not be suitable if the operator is wearing gloves for safety reasons,
and also, larger touch screen devices can be costly.

In [326], an infrared-matrix sensory system is used to emulate a touch screen
interface that recognizes the user’s actions and therefore, to control the manipulator
remotely. Furthermore, the interaction quality between a human and a teleoperated
manipulator can be enhanced by incorporating confirmation feedback into their
communication, as explained in [327]. Their study has shown that incorporating
confirmation feedback in human-robot communication can lead to improved interac-
tion quality and higher task selection accuracy compared to scenarios without any
feedback.

The scenario that suits the proposed solution could either consider (i) a production
environment that does not allow the presence of human operators due to safety
reasons but, however, requires the robotic system to be controlled onsite, or (ii)
a collaborative assembly task where the preassembly phase is entrusted to the
manipulator but needs to be supervised by a human operator as each next piece
must be selected according to the specific custom product. In fact, a considerable
literature has grown up around the theme of hybrid make-to-stock/make-to-order
manufacturing strategies [328]; make-to-order manufacturing involves high level
decisions aiming at the customization of final products. When some functional
features are available on the robot’s system, e.g., low level planning, sensory system
to monitor the workspace, status update and the possibility to receive tasks inputs
from the operator, it is possible to command the robot with high level tasks [329].
An interface that allows to control the robot with high level tasks reduces the human
operator workload, as demonstrated in [330, 331], since the robot is capable of
calculating the most efficient trajectories for performing the required actions without
requiring input on the motion of individual joints.

The proposed system emulates a touch screen behaviour exploiting a hand-
tracking sensor along with a liquid-crystal display (LCD). The latter is also em-
ployed to show a visual feedback to the operator. A monocular camera streams the
workspace where objects to be identified and grasped lie.
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Concept

The PoinTap interface exploits a simple LCD screen upgraded to an emulated
touchscreen, externally enabled using a hand-tracking device, inspired by the work
presented in [332]. Then, the emulated touchscreen is enriched with the possibility
of pointing to the screen while receiving a live visual feedback, so as to improve
the interaction experience of the human operator. In fact, the screen shows the
robot workspace scene, provided by a top-view camera, based on which the human
operator interacts through a “point at part” gesture, which is interpreted and output
it as a feedback mark on the screen. The system verifies that the pointed/tapped
area on the streamed image is actually corresponding to a recognized object and
transforms its coordinates into coordinates interpretable by the robot. Such a region
is then identified as an area of interest for a desired task by the robot.

The term PoinTap, introduced to denote the proposed solution, is just related
to such a capability of translating the operator pointing/tapping gesture. The block
diagram of the PoinTap interface is presented in Figure 3.12, illustrating the flow of
data (arrows), and indicating the input information required for each output.

Fig. 3.12 Block diagram of the proposed system.

The main system blocks act as an interface between the human and robot
workspaces. Note that several elements of the system can be customized (Table 3.1)
to adapt the generic system to both the specific resources and application.

Implementation

As anticipated, the considered use case is an assembly task where the robot performs
a set of pick and place operations to preassemble some parts. The human operator
visualizes the set of pieces on the screen, and by using a “point at part" gesture, the
user points at the piece of interest and, supported by the feedback mark, chooses
corresponding area on the screen. This is interpreted by PoinTap, which passes the
information to the robot as corresponding to the first object used in the preassembly
task. This operation is performed one or more times, according to the number of
pieces to be assembled.
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Table 3.1 PoinTap Blocks and relative features.

Block Features

Hand Tracking, Touch
Emulation (TE), TE Setup

The information needed as input is the position of the
tip of the index, independently of the source sensor.

Camera A custom camera can be chosen, but note that its
specifications affect the quality of the streamed image
of the robot working space.

Find Objects This block’s implementation depends on the selected
object recognition tool.

Touch Objects This block should be used as it is. Some adaptations
may be needed, depending on the software choices
for the previous and next blocks.

Feedback Marker This block strongly depends on the framework used
to implement the PoinTap Interface.

Robot The manipulator can be chosen according to the re-
quirements specific to the application or depending
on the available configuration.

LCD The LCD screen specifications (length, width and
height) are imply saved as parameters.

The interface exploits ROS as a middleware and the touch emulation uses the
Layered Touch Panel [332] software, with a Leap Motion (LM) sensor [333] as
a hand-tracking sensor. Both the LCD screen and the camera are both low cost
devices. The objects recognition task was entrusted to the find_object_2d [334],
a ROS package which integrates the Find-Object application [335] provided by
OpenCV [336] with the image stream coming from the webcam. The ROS visual-
ization tool, rviz, was exploited for the live feedback mark visualization, while the
well-established integration with the Gazebo simulator [236] allowed for a smooth
integration of the interface with a simulated version of the chosen robot manipulator.
More details on hardware and software can be found in [13].

The implemented interface, even if imagined for the mentioned industrial use
case, was tested on a research manipulator, given the possibility to validate it in
a laboratory environment. To this end, a Niryo One manipulator [337] was used.
It is worth mentioning that, to improve performances, it was decided to distribute
the system among several machines: the simulation software was run on a PC, the
camera and vision nodes were executed on a Raspberry Pi (RPI) board [146], and a
further RPI board ran the nodes in charge of interfacing and controlling the robotic
arm, adapted to our case. A summarizing schema of the blocks implementation of
the PoinTap system is reported in Figure 3.13.

As shown, the human workspace is composed of the LCD screen (serving both
as an input and an output device) and the LM sensor, both placed on a flat surface.
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Fig. 3.13 Block diagram of the PoinTap system implementation.

The latter was considered to be perpendicular to the plane where the LCD screen
lied, which is a common configuration for a working desk. In addition to its use
as an output device for displaying images from the camera and feedback marker,
the screen was also used as a reference for defining the touch and virtual panels.
Note that the only requirement for the chosen screen is that it must lie inside the
LM sensor field of view. For what concerns the robot workspace, the robot was
positioned at the center of the world frame while the camera was placed above it, in
such a way to visualise the whole workspace. Moreover, the image plane axes were
set to match the plane where the robotic arm and pieces are placed, so as to have a
direct correspondence of coordinates. The most relevant features of each block are
reported hereafter (the interested reader can find all the details in [13]):

Touch Emulation (TE) the development of this block was led by the identification
of the following problems in gesture recognition: (i) recognizing a pointing
finger gesture may require the operator to achieve a high level of precision, (ii)
timing associated to the pointing gesture is relevant, and a tradeoff must be
identified to allow recognition in an acceptable time, and (iii) the pointing line
was not easy to define and could lead to ambiguous and unnatural interaction.
To provide a solution independent of such issues, the TE system proposed in
this work provides a 1:1 scale among the scene image and the LCD screen,
which corresponds to the touching plane. Exploiting the concepts related to
the Layered Touch Panel [332], the real time feedback was implemented by
adding two virtual panels parallel to the LCD: one at a distance equal to the
touching distance – to catch touching events, the other at an hovering distance –
to capture an hovering event. (Figure 3.14). Notice that hovering and touching
distances are received as input.

Feedback Marker The LCD is used to (i) show the real workspace and, together
with the LM hand-tracking sensor, emulate a touchscreen, and (ii) display a
feedback marker in correspondence of the finger tip. The Feedback Marker
block is designed to receive two inputs: the image stream from the camera
and the hovering position from the TE block. When an image is available, the
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(a) Graphical representation of the two virtual panels. (b) Reference frames in rviz.

Fig. 3.14 The touch emulation implementation schema and setup reference frames.

block displays it. If the TE block sends a message with the hovering position,
a virtual marker (black circle) is added to the image. To do so, the position of
the tip of the index is scaled to the screen range and converted into pixels in
order to have a direct correspondence.

Find Objects The Find Object block receives the image stream provided by the
camera and a set of photos to be recognised in the workspace. During the setup
phase, the user can use the Qt-based GUI provided by the find_object_2d
package to load images of the objects to be recognized. Note that images of
the simulated pieces where used for recognition, both in the simulated case
and the experimental testing. As an object is recognised, a coloured polygon
is drawn around it, a unique numerical ID is assigned to it. Moreover, as soon
as an object is detected to be new in the scene, a message containing all the
pieces positions is generated.

Touch Object The Touch Object (TO) block receives as input the data generated
by the Find Objects and the Touch Emulation blocks. In particular, when the
message containing the positions of the identified objects is published, the TO
block stores the information in an internal variable. Then, as a new message
containing the touch position is made available by the TE block, the TO block
verifies if the position of the tip of the index lies on a piece and, if the latter is
true, it generates a message containing the relative object ID. This information
is then read by the robot and used for the task execution. The condition to be
checked is considered to be satisfied if the index’s tip position is inside the
rectangle inscribed in the polygon.

Testing

The main results achieved during the testing and validation phase of the PoinTap
interface, in the considered use case, are hereafter presented, obtained through
experiments conducted both in simulation and with an actual robot. In fact, being
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the system implemented using the ROS framework, it was possible to exploit such
implementation for both the simulated case and the experimental one. Twelve pieces
were placed around the robot along a horseshoe shape. Specifically, the pieces used
within the simulated environment (in Gazebo) were reproduced as accurately as
possible using cardboard, to perform the experimental validation.

As shown in Figures 3.15a and 3.15b, displayed objects were enclosed in coloured
polygons, indicating they were correctly recognized. As the human operator “point-
tapped” the first object on the touch-emulated screen, the feedback marker appears
(Figure 3.15c). Note that the simulated and real tests share the human workspace
configuration, the devices within it, and the core PoinTap system including the
robotic arm control and pick-and-place planning nodes. Indeed, simulation only
involved the robot workspace and the devices within it (robotic arm and camera).

(a) Visualisation of recognised objects in simulation. (b) Recognised objects in the real-world.

(c) Live feedback on the simulated workspace.

Fig. 3.15 (a),(b): object recognition visualization. (c): feedback marker feature.
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Simulation: to perform the assembly task, two pieces were selected by touching
the screen to be picked and placed by the simulated robot. As soon as the first object
was point-tapped by the operator and identified by the system, the simulated Niryo
One received the command and performed the first pick-and-place operation, then
waiting for the second object to be touched. As the second piece was recognized and
selected, the robot grasped and placed it next to the previous piece.

Experimental validation: two different pieces were selected by the operator,
which were then handled by the real robot to carry out the assembly task (Figure
3.16). The experimental validation results can be seen at [338].

(a) The human operator point-taps a piece. (b) The robot picks the selected piece.

Fig. 3.16 Interface and pick-and-place procedure in the real-world scenario.

The PoinTap system can enhance flexibility when a re-organization of the as-
sembly task is required. Indeed, the sequence of objects to be assembled can be
intuitively selected by point-tapping the LCD screen, without the need of trained
operators. Also, our method could overcome the limit of using touch screen devices
while wearing gloves. Given the possibility to train the object recognition system
as desired, the pieces shape is not relevant. Finally, since the touch panel distance
from the screen is tunable, PoinTap can be useful to avoid touching the screen so as
to improve hygienic conditions. This is a topic of interest when considering health
emergency situations such as the one we have and are witnessing. The limitations of
the interface are dictated by the sensors intrinsic limitations, e.g., the field of view
and accuracy, and by the available hardware combination. Moreover, due to the use
of a monocular camera to monitor the scene, the robot may not be aware of the actual
position of each piece. As a result, if some pieces are initially placed in positions
that differ from the expected ones, the robot may not be able to grasp them.

The reported contribution, as presented here, seeks to provide a low cost interface
for potentially collaborative assembly operations. On the other hand, the next
section presents an attempt to improve the process of providing demonstrations to
an intelligent collaborative manipulator, able to learn from human demonstrations
interactively.
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3.2.2 Exploiting simulation to improve interactive im-
itation learning

As anticipated, the emerging concept of Industry 5.0 envisages flexible production
lines that prioritize human-centered manufacturing, with collaborative robots pro-
viding support to human workers. One relevant aspect is that to facilitate seamless
collaboration between intelligent machines and their human counterparts, it is crucial
to design solutions that can be easily used by non-expert users. Learning from
demonstration has emerged as a promising approach to tackle this challenge. Nev-
ertheless, there is a need to prioritize the development of safe solutions that can
optimize the cost associated with the demonstrations collection, resulting in being
less demanding for the operator. The user effort can be measured in terms of (i) the
number of needed demonstrations to learn an acceptable policy, and (ii) the level of
understanding about the underlying learning process, required to provide efficient
and informative demonstrations. This contribution, introduced in a paper currently
under review [339], presents a preliminary framework called EValueAction (EVA)
that aims at overcoming the issues above.

EVA is designed to support humans in collecting interactive demonstrations
exploiting simulation evaluations and predictions, ensuring safety and avoiding
failures. The significance of this work is further strengthened by a case study that
highlights the criticality of informative demonstrations in improving generalization.

To enable real-time monitoring of processes and safe decision-making, simulation
and virtual representations of physical systems are increasingly taking hold as a way
to gather insight into the behaviour of assets in real-world conditions. Among the
projects pushing towards this direction, it is worth mentioning ASSISTANT [340], an
H2020 European project that seeks to lay the foundations to achieve a manufacturing
environment able to continuously learn from data, through AI-based digital twins,
towards sustainable and safe learning by integrating human experience with machine
intelligence.

In the context of smart manufacturing, the use of autonomous robots permits to
streamline processes, along flexible production lines shared with human operators.
Despite fully-automated plants have always been considered the main endpoint of
industrial developments, recent trends in market demand towards the realization
of custom products, has brought out the relevance of human complex and creative
reasoning, which is yet to be achieved by machines. Indeed, whilst factories are
gradually integrating Industry 4.0 paradigms into their processes, current and fore-
coming research is investigating a human-centric vision of production plants and
warehouses, the so-called Industry 5.0. Built upon the previous industrial revolutions,
Industry 5.0 envisions an industrial era in which skills, creativity, and problem-
solving abilities of humans are combined with robots and smart processes, to create
more sustainable and value-driven production processes [29].

When considering human-robot collaborative applications, a collaborative robot
(cobot) is expected to behave as a proper teammate able to perceive collaboration
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and interaction as another human would do. To do so and to overcome the cogni-
tive mismatch between humans and machines, the use of AI-based algorithms can
upgrade robots to interpret and adapt to human behavior. However, in established
human-robot collaborative frameworks, the user is typically required to have the
expertise to both understand the robot’s behaviour in correlation to the underlying
algorithm, and -when needed- to adjust it to change such behaviour. Such limitation
can be improved by having a cobot capable of learning on its own from human
demonstrations. Learning from Demonstration (LfD) techniques, also known as
imitation learning (IL), involves training a machine learning model to perform a task
by showing it examples of how the task should be executed. This of course implies
that the human operator is involved in the process of data collection, being asked to
provide informative demonstrations to be fed to a machine learning algorithm.

There are two major problems associated with this type of learning: (i) dataset
bias, which is caused by the teacher’s specific behavior or the lack of diversity in the
demonstrated situations, and (ii) overfitting, linked to models that are too finely tuned
or data scarcity in terms of the number of demonstrations provided. These problems
can limit the ability of LfD algorithms to generalize (also known as extrapolation),
resulting in difficulty adapting to new situations.

To address these challenges, human workers must be capable of providing (i)
informative and diverse demonstrations that are free of bias, as well as (ii) a sufficient
number of demonstrations. This would require additional mental and physical effort
on the part of the human teacher: a relevant problem, in light of the renewed centrality
of humans in manufacturing, where ethical and social considerations, including the
human workload, are given increasing relevance. Indeed, the time spent for demon-
strations, which could potentially turn out to be not informative demonstrations, can
be foreseen to be included in the future non-value adding activities, i.e., activities
hindering the transition towards lean manufacturing paradigms [341]. To enforce
this new perspective, the authors of [342] suggest that the metrics for evaluating
robot learning should prioritize time efficiency in order to accurately reflect the true
cost for humans.

Hence, achieving generalization using a limited number of informative demon-
strations remains a key research focus in the field of LfD. Seamless extrapolation
capabilities would let a robot adapt in unfamiliar situations, based on experience and
grounded on complex reasoning, as a human is capable to do. We briefly outline
the existing body of research tackling the problem of generalization, by aggregating
them based on how they deal with two aspects that can affect the generalization
capabilities of a learnt model, i.e., the quantity and the quality of demonstrations.

The literature review highlights the crucial role of the quantity and quality of
demonstrations in achieving successful generalization, irrespective of the inherent
capability of the methods used. Therefore, two primary goals can be identified to
minimize the "cost of generalization" from a human perspective: decreasing the
number of demonstrations required and enhancing their quality.

The works below seek to enhance generalization while maintaining a minimal
number of demonstrations. In [343], the authors propose a system that first learns,
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from few demonstrations, the distribution of the input trajectories conditioned on the
user set task parameters as a latent representation. If the system is queried outside
the learnt space, it attempts to adapt the skill representation through RL, and then
the simultaneous training is brought on over the demonstrated trajectories and the
newly explored ones, allowing for skills extension while preserving learnt ones.
In [344], goal oriented exploration is achieved through RL after a first phase of
learning from demonstration. In particular, their method couples a policy gradient
method with parameter perturbation in the framework of evolutionary algorithms,
reaping the benefits of both allowing for efficient goal-oriented exploration, as the
demonstrations guide the evolutionary process. The authors of [345] exploit adaptive
dynamic movement primitives, where RL is taking care of learning the coupling
terms and forcing terms’ weights of the model formulation. In such a way, the
trajectory profiles are effectively adapted to new tasks characterized by topologically
similar trajectories, alleviating human repetitive demonstration burdens. Despite the
simulation to reality mismatch, the learnt skill policies provided a good initialization
and improved the sample efficiency of the learning process in reality.

The authors of [346] achieve adaptability by incorporating into the model a set of
task variables, which describe the context under which demonstrations are performed.
They propose a framework that exploits variations in the replications, i.e., repeated
demonstrations for identical task variables, to retrieve an adaptive and robust policy.
The approach proposed in [347] seeks to facilitate generalization by conditioning the
learning process on different information sources conveying the task, e.g., pre-trained
embeddings of natural language or videos of humans performing the task.

Other works exploit dataset augmentation to achieve policy improvements for
learning task-parametrized skills without increasing the number of demonstrations.
For instance, in [348], the learning dataset is augmented by adding noise on recorded
paths. This allows to enhance demonstrations by scattering data-clouds and expand
the demonstration area, so that excessive demonstration paths are not necessary.
Also, the approach presented in [349] enables learning task-parameterized skills
with few demonstrations by augmenting the original training dataset with generated
synthetic data. Note that reducing the number of required human demonstrations
also trim the chance of ambiguous demonstrations.

Learning from offline human data is often challenged by the quality of the
demonstrations, which is considered one of the most critical factors [350]. In
some cases, informative demonstrations can determine the ability or not to achieve
good extrapolation [351]. In [352], authors assess the generalization ability of
demonstrations by measuring the performance of the learning model in the task
it has learned. They also point out that consistency in teaching does not directly
reflect the demonstration quality, as the latter may be affected by consistent errors
due to the teacher limited expertise; on the other hand, as the explicit definition and
quantification of the quality of demonstrations are still open questions, in [353],
the ability of the learning model to generalize is used as a measure to evaluate the
quality of demonstrations. Several other works try to exploit as much as possible
all available demonstrations. For instance, the framework proposed in [354] brings
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forth another interesting perspective on informative demonstrations, as it learns a
well-performing policy from demonstrations with varying optimality: by taking into
account confidence-reweighted non optimal demonstrations, it is possible to exploit
a larger number of data. The method proposed in [355] uses a generative model to
compute a generalized trajectory and builds attractor landscapes to reproduce the
motion over different start and end joint angles. The work in [356] takes advantage
of available expert demonstrations to train a proximity function. Task progress, in
terms of goal proximity, is used as a dense reward for the agent training, leading
it to reach high-proximity states. In [357], complex goal-oriented tasks are solved
by fully exploiting the demonstration dataset to build a compositional task latent
representation space, from which novel subtasks can be generated. This allows
for one-shot generalization to previously unseen tasks, as a single expert trajectory
as reference to guide the new task is sufficient. The authors of [358] propose a
continual learning from demonstration approach in which the robot learns individual
motions sequentially; skills are learned from demonstrations of different tasks and
are embedded into a unified model.

The framework introduced in [359], assesses various representations based on
a specified similarity metric, using only one demonstration, and recommends the
most similar replication of the demonstrated skill for novel conditions along with
its corresponding generalization capability. Furthermore, the researchers in [360]
intend to enhance the extrapolation abilities of LfD techniques by utilizing virtual
demonstrations produced through the use of the invariants method. Such demonstra-
tions offer improved consistency and quality compared to those generated by human
teachers. Additionally, the approach introduced in [361] utilizes epistemic and
aleatoric uncertainty data to identify feedbacks’ ambiguities, which helps in select-
ing the best learning samples. Meanwhile, the algorithm proposed in [362] leverages
topological persistence to detect ambiguity in a trained policy, prompting for user
demonstrations only when necessary and avoiding the collection of demonstrations
for already known scenarios. However, to achieve high-quality and sufficient quantity
of demonstration data for effective generalization, a system could be developed to
optimize the time cost for humans while ensuring generalization on novel situations.
This can be achieved by guiding the user’s interactive demonstrations.

The framework presented here, namely EValueAction (EVA), assists the user in
collecting informative demonstrations to enhance policy generalization. The system
also ensures safety by conducting simulations before executing actions in the real
world, to prevent failures.

Preliminaries

To provide some context for the proposed EVA system, it is important to describe
the case study that inspired the concept. This includes the assumptions made and
the outcomes of the trials conducted. The problem contextualization is described
as follows. In flexible manufacturing, collaborative assembly tasks are of high
practical relevance. Typically, robots are assigned repetitive or physically demanding
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tasks, while humans perform highly dexterous operations [321]. Adaptability to new
situations is crucial in collaborative assembly tasks, where workspace configurations,
positions, and shapes of assembly parts often change. According to the assembly
task subdivision introduced in [363], we consider an approaching phase and an
assembling phase. Such division is performed so as to prevent the potential under-
fitting caused by the variability of the demonstration data between the two assembly
stages. The approaching phase of collaborative assembly tasks is highly affected by
environmental constraints and part configurations, making extrapolation capability
crucial. As a result, an IL algorithm with good generalization capabilities, learned
from a few demonstrations, would be most beneficial for this stage, particularly in
scenarios where a human is teaching a cobot how to perform the desired approaching
phase. For instance, in a peg-in-hole collaborative assembly task, the approaching
phase could be simplified to a pick-and-place or hovering task.

As extensively investigated, the issue of poor generalization capabilities in IL has
been widely addressed in the research community. The following case study offers
a clear illustration of how the way demonstrations are performed can significantly
impact the generalization capabilities of IL methods.

A simplified learning scenario

For the execution of the trials, we have taken advantage of a combination of algo-
rithms presented in [364] and [365]. In particular, the first algorithm has been edited
to achieve a version that incorporated some features of the second. The Interactive
Learning of Stiffness and Attractors (ILoSA) framework allows to learn both the
desired attractor position and the desired stiffness as a function of the robot position,
by using a nonlinear feedback policy that is learned from kinesthetic demonstrations
and teleoperated corrections. The use of Gaussian Processes for policy learning
provides good generalization in the neighbourhoods of the demonstrations, while
providing confidence level of the corresponding prediction. The authors exploit this
information to understand if the robot state is currently in unvisited regions, and
implement a stabilizing attractive field to lead the robot towards minimum variance
regions. Since the latter algorithm recorded demonstrations within a global frame,
generalization was limited around the visited area. Hence, we borrowed from [365]
the use of the goal local reference frame so to be able to test over different final
positions. Note that we exploited this local reference frames version of ILoSA as a
kinesthetic motion imitation learning framework, i.e., without taking advantage of
the interactive corrections feature, and didn’t take advantage of the learned stiffness,
as we wanted to keep a simplified motion learning scenario.

In summary, we exploited ILoSA to learn from human demonstrations the at-
tractor distance for the robot impedance control, learned with respect to the final
position reference frame. The main objective of the trials was to achieve as many
new goals as possible by using only one informative demonstration.
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Demonstrations setup

The trials and demonstrations were conducted using a 7 degree-of-freedom Franka-
Emika Panda robot equipped with an impedance controller and a ROS communica-
tion network. The demonstration involved moving the robot from a reference home
position to a final position of interest. In the approaching phase scenario, it was
assumed that an assembly part was picked up from a location and brought to the
reference home position at each assembly task iteration. The learned policy was then
used to reach the final desired position before the assembly stage.

As expected, the employed IL algorithm was able to generalize in the neigh-
bourhood of a demonstrated trajectory task. Therefore, to assess the generalization
capabilities of the employed IL algorithm beyond the neighbourhood of the demon-
strated trajectory task, four goals of interest were selected (Figure 3.17).

(a) Points of interest in rviz. (b) Points in the real setup.

Fig. 3.17 Four goals of interest on the working plane have been chosen for the generalization
check trials.

Automatic demonstration recording

The ILoSA Jupyter interactive Python code (accessible online [366]) has been
adapted to allow the user to input a final goal point interactively. The input data is
used to name saved data and trained GPs models files/structures, and generate a .txt
file to record the tests and their outcomes. This .txt file can be later accessed, which
facilitates automatic tracking of the trials. Additionally, after recording, the modified
code enables the iterative testing of the learned policy over the set of interest points,
thereby accelerating data collection and consultation.
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Trials outcomes

Multiple trials were conducted, leading to the identification of three significant cases
that are detailed below. It was assumed that demonstrations with final destination
points A and B were the least generalizing, based on the results of the trials, thus
were not considered as demonstration points.

Medium expertise demonstration Destination hovering point is one among A, B, C,
and D (refer to Figure 3.18).

(a) (b)

(c) (d)

Fig. 3.18 Medium expertise demonstration on D.

A human teacher performed a demonstration with the position above point
D as the final position to be reached (Figure 3.18a), and the height recorded
during during the demonstration was kept as a hovering height for all desired
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goals on the worktable. After the policy training, the motion was learned in
the local reference frame leading the robot to areas with high confidence for
each final goal, as shown in Figure 3.18b. When the policy was tested on all
the points of interest, it generalized well on A and B, since the IL algorithm
attracted the robot towards the high confidence areas thanks to its stabilization
prior (Figure 3.18c). Then, when A was the input for policy testing, the cobot
was able to reach it (Figure 3.18d).

Expert knowledge demonstration Destination hovering point is not among the points
of interest (Figure 3.19).

(a) (b)

(c) (d)

Fig. 3.19 Expert demonstration on T.

The motion to reach the position above an empirically chosen test point T was
demonstrated by a skilled human teacher who had a good understanding of the
IL algorithm used for training (Figure 3.19a). Such demonstration intuitively
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would have allowed the trained policy to generalize on all points of interest.
Indeed, after GPs training, the policy generalized on A, B, C and D (Figure
3.19b–3.19d). It should be noted that in this case, the generalization ability
is impacted by the motion shape and stabilization fields. Depending on these
factors, the robot may or may not be drawn to the locally learned motion.

Little knowledge demonstration We proceeded to have a human teacher, who was
not informed about the IL algorithm used in the training process, demonstrate
a motion towards point D. Since the user was not aware of the influence that
the motion shape could have on the generalization capability, the resulting
policy surprisingly failed to generalize to the other points of interest, learning
only how to hover over D. It is worth noting that although the human teacher
had robotics expertise, they had no information on the learning process.

Main takeaways

The trials showed that if the operator is expert and well aware about the learning
process, a single demonstration can be enough to generalize over four points of
interest and their surrounding areas (including the testing point and its surrounding
area). However, if the operator is non-expert, it may happen that only one task can
be learned from a single demonstration. Regardless of the LfD method used and
the complexity of the learning task, these insights shed light on how robots can
enhance the quality of demonstrations and decrease their quantity. By leveraging its
knowledge of the policy, the machine could offer recommendations on which areas
would benefit most from new demonstrations and even simulate demonstrations
virtually, thereby reducing the number of demonstrations required from the human.
This led to the idea of utilizing simulations for policy evaluation, which could also
enhance the safety of collaborative tasks.

The proposed system

The proposed system, EVA, seeks to provide a framework to guide the human teacher
during the interactive demonstrations to improve the generalization over new states
of a learned policy. The main elements of the system would be: (i) the LfD method
of choice, (ii) automatic recording of demonstrations to populate a dataset, (iii) a
policy evaluation algorithm exploiting a digital twin, (iv) human-robot interface for
bidirectional information exchange.

Formalisation of the learning problem

The overall goal is to let the robot successfully perform a task by taking actions
aaa ∈ A , given observations ooo ∈ O , where A and O are the robot’s action and
observation spaces, respectively. These actions could, for example, be reference end-
effector configurations, while observations could comprise joint angle measurements
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and camera images. These observations result from states sss ∈S , i.e., ooo = O(sss)
where S is the state space and O the observation mapping O : S → O . We make
this distinction between states and observations, since full state information is often
not available in real world scenarios. Since actions follow from observations, the
aim is to find a policy π (which is a mapping from observations to actions, i.e.,
π : O →A ) such that a task is performed successfully. Furthermore, we would like
this policy to be successful starting from a set of initial states sss0 ∈S0 ⊂S . That
is to say, the robot policy does not have to be successful starting from all possible
states, but should be performing well for the actual distribution over initial states
it encounters, which we denote by p(sss0). Furthermore, successful completion of a
task can be determined by defining a goal state set Sg ⊂S . Note that goals could
be dynamic and part of the state sss. We can quantify the optimality of a policy by
defining a reward function R(sss). Given the reward function, we can define the value
of a state [367]:

Vπ(sss) = Eπ

[
∞

∑
k=0

γ
kR(ssst+k+1)

∣∣∣∣∣ssst = sss

]
, (3.1)

where Eπ [·] is the expected value given that policy π is executed, t is any time step
and γ is the discount rate with 0≤ γ ≤ 1. Intuitively, the value of a state says how
well the policy performs on average starting from that state following policy π . We
define the optimal policy π∗ as the one that has the highest expected value given our
distribution of initial states:

π
∗ = argmax

π∈Π

Esss0∼p(sss0)[Vπ(sss0)], (3.2)

where Π is the policy space and Esss0∼p(sss0)[·] denotes the expectation given that sss0 is
drawn from distribution p(sss0). However, in practice it is often not trivial to come
up with an appropriate reward function R(sss). This would particularly be the case
if we were to solve this problem with RL. In that case, the reward function should
ideally guide the robot towards successful behaviour [368], which would require
reward shaping [369]. This can be a time consuming process that could also lead to
suboptimal behaviour. Robotic RL also results in challenges related to data efficiency
and safety [368, 370]. Therefore, we choose to find π∗ by LfD. In this setting, it is
not required that R(sss) guides the agent and we can only reward success:

R(sss) =

{
1 if sss ∈Sg

0 else
. (3.3)

Worth noting is that with this reward function and γ = 1, the optimal policy π∗ will
simply be the policy with the highest success rate. By setting 0 < γ < 1, not only
success will be rewarded, but the robot learner will also be stimulated to solve the
task in minimum-time. This is desirable in our scenario, as time is related to cost in
most industrial applications.

Our method falls within the realm of Interactive Imitation Learning (IIL), since
demonstrations are given interactively. Compared to standard IL training, IIL can
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be more sample-efficient since demonstrations are also collected while executing
the novice policy, rather than the teacher’s policy alone [371]. This results in
demonstrations for states that the robot learner actually encounters, rather than
only demonstrations for states the teacher encounters. We can collect a dataset
with N demonstration trajectories D = {τττ0,τττ1, . . . ,τττN} and try to imitate the expert
policy. We consider demonstrations that consist of observation vectors, i.e., τττ =
[ooo0,ooo1, . . . ,oooT ] where T is the last time step of demonstration τττ . An estimate of
the optimal policy can be obtained by minimizing a loss between the demonstrated
trajectories and trajectories resulting from the policy:

π̂
∗ = argmin

π∈Π

L(π,D). (3.4)

A popular choice for L is the Kullback–Leibler divergence [372] between the distri-
bution of observations induced by the learner policy and teacher policy [373]. We
should however take into consideration that demonstrations are costly, since they can
be time consuming for the human and ideally we would like the system to have a
high level of autonomy to maximize efficiency. Therefore, we wish to optimize task
success while minimizing the number of demonstrations:

max
D

Esss0∼p(sss0)[Vπ̂∗(sss0)]−λ |D |

s.t. π̂
∗ = argmin

π∈Π

L(π,D),
(3.5)

where |D | is the cardinality of D (the number of demonstrated trajectories) and λ

a regularization parameter. In this way, we have arrived at an expression for the
optimal set of demonstrations. The maximization of the expectation of the state
values in (3.5) ensures that we maximize task success, while the regularization term
penalizes the number of demonstrations in our dataset. We choose to penalize the
number of trajectories τττ rather than their length, since a longer demonstration is
preferred over multiple short ones, both by the human and considering the potential
cost per demonstration for preparing and processing it.

Concept idea

Finding the optimal solution to the optimization problem in (3.5) is difficult, because
the problem does not have an analytical solution or gradient. It may be possible to
use numerical optimization methods that iteratively improve a candidate solution
until it satisfies some stopping criterion, such as reaching a certain tolerance level
(e.g., success rate) or a maximum number of iterations. However, when evaluations
are costly, the optimization problem can quickly become intractable, because it may
take a large number of evaluations to find a good solution. In the context of the
optimization problem in (3.5), evaluating the performance of a candidate solution
(i.e., a dataset of demonstrations) requires collecting human demonstrations and
physical experimentation to evaluate the performance, which can be time-consuming
and expensive. Then, it is important to design an optimization algorithm that balances
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the need for exploration and exploitation and is efficient in terms of the number of
evaluations required to find a good solution.

Simulation is a cost-effective means of evaluating candidate solutions without
the risks and expenses associated with real-world experimentation. Recent advance-
ments in parallelized physics simulation on accelerated platforms have enabled fast
simulations [374, 375]. However, the dissimilarities between the simulator and real-
world environments can hinder the transferability of policies learned in simulation to
real-world settings, due to modeling errors and differences in physical properties. As
learning methods tend to exploit these differences to maximize simulated rewards,
simulators’ conventional use results in overestimation of real-world performance.
This may lead to safety hazards and unexpected failures during deployment. Overes-
timating the real-world performance of a robot policy trained in simulation can lead
to safety hazards and unexpected failures during deployment.

To address this issue, we propose to swap the real-world and simulator’s roles to
synthesize policies using human demonstrations and evaluate them using accelerated
physics simulation. By doing so, discrepancies between simulation and reality lead
to an underestimation of real-world performance. Failures in simulation may be
attributed to either a sub-optimal policy or discrepancies. In case of success, the
policy was robust enough to achieve the goal despite the discrepancies. The proposed
solution does not rely on gradient information and instead uses a simulation based
search strategy to find a good solution for the problem in (3.5). The system comprises
two phases: pre-training and lifelong learning. During the pre-training phase, real-
world demonstrations are continuously provided by the human operator, until a
certain success rate is achieved in simulation or a maximum number of iterations is
reached (see Algorithm 2). After the pre-training phase, the robot enters the lifelong
learning phase, where it executes the policy independently. However, it will halt and
request a human-demonstration if it encounters a state that resulted in a low success
rate in simulation (see Algorithm 3).

Algorithms 2 and 3 provide the workflow of these two phases, while the involved
functions are detailed below.

evaluate: this function estimates the policy’s performance by computing the
value function Vπ , as defined in (3.1), which reflects the policy’s performance over the
induced state distribution, given a reward function R and the initial state distribution
p(sss0). Computing Vπ may be impractical due to the large number of real-world
evaluations required and limited access to the full state sss. Monte Carlo sampling and
an accelerated physics simulator can overcome such challenges (e.g., [374, 375]),
as both are suitable for parallel implementation, to estimate an approximate value
function V̂π(ooo) that is a function of the observations ooo, serving as a proxy for the
real value function. Depending on the problem, different function approximators
can be employed to represent V̂π(ooo). For simpler problems, a tabular representation
may be sufficient. However, for more complex problems, more expressive function
approximators such as artificial neural networks or Gaussian processes may be used.
If there are significant differences between the real-world and simulator, a policy
trained with real-world demonstrations may, in some cases, always fail to solve the
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Algorithm 2 Pre-training phase.
Input: Reward function: R(sss) // See Eq. (3.3)

LfD method: L(π,D) // See Eq. (3.4)
Initial states: sss0 ∼ p(sss0)
Initial policy: π0
Success threshold: α

Output: Pre-trained policy: π

Dataset: D
27 D ← /0 // Initialize empty dataset
28 π ← π0 // Initialize policy
29 V̂π ← evaluate(R, p(sss0),π) // In simulation
30 do
31 sssstart← suggest(V̂π) // Start state of demo
32 τττ ← demonstrate(sssstart) // In real-world
33 D ←D ∪{τττ} // Aggregate data
34 π ← optimize (L,D) // Update policy
35 V̂π ← evaluate(R, p(sss0),π) // In simulation
36 until Esss0∼p(sss0)[V̂π(O(sss0))]> α // Success rate

Algorithm 3 Lifelong learning phase.
Input: Reward function: R(sss) // See Eq. (3.3)

LfD method: L(π,D) // See Eq. (3.4)
Initial states: sss0 ∼ p(sss0)
Pre-trained policy: π // See Alg. 2
Dataset: D // See Alg. 2

37 V̂π ← evaluate(R,Sstart,π) // In simulation
38 sss← reset (p(sss0)) // In Real-world
39 while running do
40 ooo← O(sss) // Read sensor observations
41 if V̂π(ooo)> α then run
42 aaa← π(ooo) // Get action
43 sss← act(aaa) // In real-world

44 else request demonstration
45 sssstart ← sss // Demo from current state
46 τττ ← demonstrate(sssstart) // In real-world
47 D ←D ∪{τττ} // Aggregate data
48 π ← optimize (L,D) // Update policy
49 V̂π ← evaluate(R, p(sss0),π) // In simulation

50 if done then
51 sss← reset (p(sss0)) // In real-world
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task in simulation. In this case, we propose to use on-policy RL algorithms such
as [376] to address the discrepancies. Specifically, an agent can be trained to solve
the task with RL while constraining its policy to remain close to the real-world
policy. By allowing slight deviations from the real-world policy, we can mitigate the
differences between the real-world and simulator.

suggest: This function proposes a new starting state sssstart for the next demonstra-
tion based on the policy’s simulated performance, which is reflected by the estimated
value function V̂π(ooo). Note that the starting state does not necessarily have to lie
in the set of initial states S0. Proper selection of starting states can significantly
reduce the number of demonstrations needed to achieve adequate performance, a
task that is typically performed by an expert user with knowledge of the chosen LfD
method. Alternatively, meta learning, a technique for learning to learn and adapt
to new tasks, can be employed [377]. In this case, a meta learning model would be
trained to suggest the next starting state for a demonstration expected to improve the
current value function V̂π(ooo) the most. The system could be trained on examples of
demonstrations and their incremental impact on improving V̂ π(ooo).

demonstrate: This function requests the human to provide a human-demonstration
from a given starting state sssstart. Depending on the task, this could occur via, for
example, kinesthetic teaching or teleoperation [371]. Then, optimize estimates a
policy π̂∗, as defined in (3.4), by minimizing the loss function determined by the
selected method. Finally, act applies the action proposed by the robot’s policy π to
the system, and reset resets the real-world system to an initial state. In other words,
it samples a new state sss0 ∼ p(sss0).

In summary, this work is proposed as a means to reduce the cost of the demon-
strations process for the human teacher, while simultaneously achieving a balance
between exploration and exploitation for optimal generalization. The current imple-
mentation of the system serves as a POC for what the finalized version may look
like. For instance, a first implementation need to make the system user-friendly, and
the information presentation to the user would need to be conveyed in an intuitive
and easily understandable manner.
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The research work brought on in the last three years, features the integration of open
source tools, libraries and data, while taking advantage of well-established algorithms
or slightly modified versions of these, to create new solutions. This research journey
has a main bring away: knowledge sharing, cross-field contamination and tool
integration are key to research innovative approaches, and allow to speed up their
validation on laboratory demonstrators.

The AMR as a meta-sensor, or Sen3Bot, was first only imagined (Section 2.1.1),
and then implemented (Section 2.1.3), using cutting-edge object recognition methods
on a low-cost camera video sources, combined with distance information to detect
and avoid human obstacles. From the path planning point of view the AMR first
emulates AGVs fixed path, following a virtual safe path (Section 1.2.1), then inte-
grating the human-recognition capabilities (Section 2.2.1) to envision a network of
Sen3Bots (Section 2.1.2). This set of works provided an example of integrating new
technologies to upgrade existing and established equipment, which may be obsolete
but still working. Instead of completely replacing older systems, companies could
upgrade and integrate them with new technologies to increase efficiency and reduce
waste. This approach appear to be compliant with the circular economy principle
of re-use, allowing to favour sustainability of renewing processes, yet keeping in
mind that a trade-off between reuse and energy-efficient equipment adoption must
be found.

Moreover, the framework envisioned in Section 3.1 and implemented as reported
in Section 3.1.1 exploits deep learning models to recognize a human operation from
map images featuring the human 2D motion. This work demonstrates that minimal
but useful results can be achieved even in case of data scarcity, exploiting data that
is independent of the specific features of the operator. In fact, the mobile robot
actually learns by looking at human operations demonstrations, in order to be able
to accordingly make decisions about its own motion. The human is reduced to a
meaningful point on a map, stripped of details that are not useful for recognizing
the action. In some way, we want to make the robot learn from a human as another
human would do. In fact, when we learn, we do not actually overfit on the action
source but rather on the action itself, which of course is intrinsically characterized
by how that specific human executes it, but the learning process should get rid of
features that go beyond the teaching demonstration execution.
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Finally, the research idea introduced in Section 3.2.2 brings into the picture
simulation to regulate interactive demonstrations in human-in-the-loop imitation
learning, i.e., interactive imitation learning. IIL is a good example of how new
learning paradigms try to make the robot learn as a human would do. The robot
first learns from demonstrations, then learns further from the corrective actions it’s
subjected to while executing the task according to its own policy, hence actually
learning by doing. Moreover this work represent an effort towards reducing the
burden on humans, with the aim of making the teaching process less intense in terms
of teacher’s time and mental fatigue. For a direct mapping of thesis sections to
co-authored and published research papers, the reader is redirected to the Preface of
this manuscript.

The lessons learned from this research investigation are the following:

• Less is more.
When testing research ideas, simple initial scenario are enough to demonstrate
your point. As the aim is to validate a concept, overly complex situations may
hinder the purpose. Also, when considering the learning process, we ourselves
don’t start off with the most difficult situation or task. Similarly, it is important
to respect the robot’s learning process, gradually making a simple initial task
increasingly more complex, to build skills upon a solid base.

• Laboratory demonstrators are not prototypes.
The tested implementations are often not mature enough technologies, as their
aim is to validate a research idea in a controlled laboratory setting, within
use cases that rarely correspond to the real-world conditions ones. The same
is valid for the simulation testing phase. Hence, many aspects need to be
reconsidered in case a prototype has to be delivered, e.g., working conditions,
communication standards, proprietary software limitations, etc.

• Not all hardware needs to be high-end.
In particular, sensors don’t necessarily need to have advanced specifications,
unless they are algorithmically or computationally integrating the capabilities
of the onboard computer. In fact, the main performance minimal requirements
are related to the computational power necessary to execute machine learning
algorithms and to process a large amount of data. Low-cost sensors’ inaccuracy,
in some cases, can be compensated through sensor data fusion.

• Open-source is a precious source.
Open-source tools open the door to a worldwide shared knowledge. As such,
the open-source world is a bit cumbersome but full of information that, if
appropriately sourced, can be exploited for creating innovative material. ROS
is one of these tools, which really has represented a turning point for democra-
tizing robotics, beyond the research community. This way, the technological
development of fields the open-source philosophy reaches is accelerated, as a
whole community of coders and academics have your back while learning and
shared knowledge is freely accessible.
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In the context of the reported thesis, when looking at future directions of robotics
in manufacturing and production lines, I would like to share the following insights.

• Industrial robotics at the time of metaverse.
Simulation, as a model-based tool to predict the behavior of a system and
its outputs under different scenarios and conditions, has always been a key
tool for industrial processes preliminary safe testing and optimization. A step
forward has been made with the use of digital twins, i.e., simulation of physical
systems using real-time data, mainly used for predictive and evaluation, e.g.,
real-time monitoring, optimization, and maintenance. Considering a future
era where everything or everyone have a digital representation, at which
the metaverse concept hint, industrial robotics will most likely have digital
twins as a standard approach to prevent failures. Many projects are going
this direction, for example the NVIDIA Omniverse [378] platform, which
aims at facilitating collaborative, real-time, and immersive 3D simulation and
visualization of physical objects in a shared virtual environment, easing the
creation of powerful industrial digital twins.

• Human-centric factories and KPIs.
Future smart production processes will have to cope with the presence of
humans in the loop of production as a main component while satisfying
production KPIs (Key Performance Indicators). The manual execution of
some operations within the manufacturing process, as well as the presence
itself of human operators in the environment shared with robots, will have
to become an added value for the quality of the results, and not a potential
cause of low efficiency, to try and maintain acceptable KPIs. This goal can be
achieved only through a proper choice of sensors and techniques, suitable for
each particular kind of robotic system and application.

• Dataset creation for industrial robotics.
A possible further enhancement for the training process of learning robots,
would be represented by extending the existing dataset pool for industrial
robotics. For instance, industrial open dataset should be focusing on data
collection for operation recognition of standard operations or recognition of
objects specific to the industrial environment. Standardization of processes
and plants would help in the creation of datasets that could used as pre-
training phase of available models. Also, when considering human related data
collection, unbiased solutions transcending the specific person or situation will
be key to achieve adaptable learning robots.

In conclusion, robotics in collaborative manufacturing applications needs to
take into considerations many safety and performance requirements. A learning
collaborative robot acts and works closely to a human teammate to support his/her
work, so it needs to be cautiously designed for this aim. Robots nowadays are proving
to be important resources to support humans not only in the industrial production
environment but also in everyday household and social life, working around people.
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Precisely because many open challenges are there for robot learning, there is plenty
of room for research opportunities. The research community is not letting slip such
opportunities away and already started integrating cutting-edge technologies with
robotics. Just think of the “Chatgpt for robotics” project [379]: this project aims at
using the Chatgpt language model developed by OpenAI, to exploit natural language
processing in robotics tasks. The journey that will take robots to learn how to behave
is thus tough, but nonetheless it will be very exciting.
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Appendix A
Methods and Tools

Artificial potential functions
Artificial potential functions applied to the robot motion control problem, first
introduced by Oussama Khatib in [380], [381], are now a widely used approach for
robot motion planning and obstacle avoidance. The method uses a virtual potential
field to guide a robot towards a goal while avoiding obstacles. The robot is attracted to
the goal and repelled by the obstacles based on a potential field function. Navigation
functions, a class of potential functions originally defined in [382], [383] by Elon D.
Rimon and Daniel E. Koditschek, automatically provide a feedback control law for
the robot which also respects the robot’s actuators limits. In particular, navigation
functions are artificial potential energy functions encoding the motion task of a robot
towards an arbitrary destination without any collisions with obstacles, defined on
the robot’s configuration space.Using potential fields for navigation, allows to solve
the path planning, trajectory planning and robot control problems, by describing a
suitable navigation function, constructed on the a-priori known geometric description
of the free configuration space (Figure A.1).

Fig. A.1 A suitable potential function constructed on the robot free configuration space [383].
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Once the a suitable navigation function is constructed, the robot can follow the
gradient to move towards the goal while avoiding obstacles (energy is minimized by
following the negative gradient). As can be noted, the constructed potential function
global minimum corresponds to the motion task destination; the potential function is
designed such that the robot is attracted to low potential regions (the goal position)
and repelled from high potential regions (e.g., obstacles).

Artificial potential functions in this thesis
The navigation strategy proposed in [136], and reported as a Supervisory Global
Planner in Section 1.2.1 and Section 2.2.1, is based on techniques inspired by the
potential functions navigation approach. In particular, algebraic geometry tools are
exploited to compute a set of vector fields such that a specific affine variety V , a
geometric objects defined by polynomial equations, is attractive and invariant for
the associated dynamic system. This affine variety V denotes the desired patrolling
path, and a feedback control is designed by constructing a Lypunov certificate of
the convergence of the mobile robot to V , i.e., constructing a Lyapunov function
arbitrarily monotonically decreasing along the trajectories of the mobile robot.

However, attractiveness and invariance of V do not ensure a-priori a collision free
motion path. Then, an inverse optimal control formulation for collision avoidance is
provided with the objective of adjusting the feedback control input in such a way
that the agent avoids collisions with obstacles. That is, the algorithm selects a vector
field that minimizes the increase of a barrier function parameter, leading the robot
to stay as far as possible from the obstacles. The motion planning and patrolling
with collision avoidance problem is then solved by a feedback control input that
steers the robot from its initial position to a patrolling path V , and makes it move
along it with a prefixed patrolling speed, while avoiding collisions. Each obstacle
occupies a region in the configuration space, Ok ⊂ R2. Moreover, the obstacle Ok
is characterized by a boundary ∂Ok assumed to be elliptical. Hence, the obstacles
present in the static map are enclosed within an associated ellipse of minimal size,
resulting in a line in the case of straight walls (Figure A.2).

Fig. A.2 The obstacles in the static map used for navigation are enclosed by ellipses bound-
aries ∂Ok (red lines). The supervisory global planner computes a path (thick blue line),
which tends to the desired patrolling path V (fine dashed blue line).
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Furthermore, the contribution reported in Section 1.2.2 of this thesis, takes
advantage of the same theoretical framework extending it to the multi-agent case.
Specifically, each agent has a desired patrolling path Vi and a formation F that
agents aim at, i.e., a set characterizing the potential relative displacement from
the desired patrolling path. Then, a hybrid control strategy has been proposed to
automatically tune the parameters of a parametric vector fields to ensure that the set
V ×A (with A being the compact set of admissible values for the parameters) is
asymptotically stable for the corresponding hybrid implementation of the dynamical
system.

In practice, the overall hybrid framework allows for the automatic selection and
updating of navigation parameters to ensure the successful completion of the desired
formation and patrolling task. It achieves this while also preventing collisions with
both fixed obstacles in the environment and other agents.

A∗ algorithm
The A∗ algorithm, first introduced by Hart et al. in [384], is a search algorithm
for finding the shortest path between two points in a graph, guided by an heuristic
function. The name of the algorithm was chosen by the authors as it was easy to
remember and unlikely to be confused with other mathematical symbols.

In the case of shortest path finding, the graph nodes are the grid map cells and
edges costs are distances between cells. The A∗ algorithm explores the map cells
by starting from an initial node (cell) and evaluating its neighboring nodes to select
the next node to move to, based on the lowest cost. As reported in (A.1), the cost to
reach a particular node from the start cell c is the sum of the edge costs traversed to
that cell (known as g(c)), to which is added a heuristic function that approximates
the cost of moving from the current cell to the goal one (known as h(c)).

f (c) = h(c)+g(c) (A.1)

This way, the heuristic component leads the search towards the goal by priori-
tizing the exploration of nodes (cells) that are closer to the goal itself [385]. Note
that h(c) must satisfy the admissibility and consistency properties. An admissible
heuristic is one that never overestimates the true cost of reaching the goal node, while
a consistent heuristic satisfies the triangle inequality, meaning that the estimated cost
to reach the goal node from a given node is never greater than the actual cost plus
the estimated cost of reaching any successor node (neighbour cell).

Let h(c) be the estimated cost of the cheapest path from cell c to the goal cell and
let e(c,c′) be the cost of the edge from c to its neighbour cell c′. Then, a heuristic
function h(c) is consistent if:

h(c)≤ e(c,c′)+h(c′) (A.2)
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for every cell c and its neighbour c′. This means that the estimated cost of reaching
the goal cell from c is less than or equal to the actual cost of reaching c′ plus the
estimated cost of reaching the goal cell from c′.

An example grid map and computed shortest path is shown in Figure A.3.

Fig. A.3 An example grid map and path generated by the A∗ algorithm [386].

A∗ in this thesis
In general, the advantage of this approach is that the distance metrics used can be
modified or extended to incorporate other factors such as time, energy consumption,
or safety. In the case of the supervised global path planning algorithm proposed in [6]
and reported in Section 1.2.1 of this thesis, we considered the Euclidean distance as
heuristic function, namely:

h(c) =
√

(c.x−dest.x)2 +(c.y−dest.y)2, (A.3)

where dest is the destination cell and the expressions .x and .y extract the fields
corresponding to the x and y coordinates of the considered cell, respectively. Then,
to favour the passage on each way point (WP) included in the safe path computed by
the Supervisory Global Planner (SGP), we introduced an additional cost hWP as:

hWP(c) =
√

(c.x−WP.x)2 +(c.y−WP.y)2, (A.4)

This way, the overall cost associated with cell c is thus:

f (c) = g(c)+h(c)+hWP(c), (A.5)

which allows to obtain a global planning algorithm that acts as A∗ when far
from the SGP path, and associates a low cost to the SGP generated positions, so to
guarantee their presence in the output plan.
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Dynamic Window Approach (DWA)

The Dynamic Window Approach (DWA), first introduced by Fox et al. in [170], is a
motion planning algorithm for obstacle avoidance considering the robot’s current
state and the environment to generate a set of admissible velocities, among which
the best velocity is selected based on the robot current goal and velocity constraints.

The dynamic window refers to the time window dynamically adjusted to limit
the admissible velocities to those that the robot can achieve between two steering
commands, considering its limited accelerations. First the algorithm generates a
velocity space including reachable velocities within the dynamic window taking into
account the robot’s current state and goal (see Figure A.4). Then the trajectories
obtainable from the admissible velocities are evaluated individually considering their
distance to obstacles, distance to the final goal, and closeness to the desired velocity.

Fig. A.4 The overall search space (light gray) is reduced to the dynamic window (white),
which contains only the velocities that can be reached within the next time interval [387].

All the velocities that would lead to a collision are excluded and, among the
remaining velocities, the best candidate is chosen by maximizing a cost function
G(v,ω) over the discretized velocity search space (Equation (A.6)).

G(v,ω) = σ(α heading(v,ω)+β ·dist(v,ω)+ γ · velocity(v,ω)), (A.6)

where heading(v,ω) evaluates the alignment of the robot with the desired direc-
tion, dist(v,ω) indicates the distance of the nearest obstacle intersecting with the
curvature, and velocity(v,ω) is utilized to assess the advancement of the robot along
its intended path as a projection on the translational velocity v. In practice, the best
trajectory is the one that is closest to the goal, farthest from obstacles, and closest to
the desired velocity.
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DWA in this thesis
In order to perform obstacle avoidance, the information on detected obstacles must be
available to the local motion planner and is typically embedded in the ROS costmap
layers mechanism. In the contribution presented in Section 1.2.3, dynamic obstacles
are detected through background subtraction of costmaps, tracked estimating their
velocity using a Kalman filter, and assigned a cost determining a 2D Gaussian
inflation shape proportional to the obstacle velocity and oriented in its moving
direction. This information has been integrated within the local costmap used for
obstacle avoidance by the local planner.

In particular the employed local planner is the DWB planner in ROS2, an highly-
configurable extension of the DWA implementation (DW ”B” being incrementally
named). The integration of our dynamic obstacle layer, incorporating each object
direction and velocity in the Gaussian shape inflation, allowed for a more reactive
and informed selection of the best control input candidate (and relative trajectory)
among the ones predicted by the DWB planner.

You Only Look Once (YOLO) framework

YOLO (You Only Look Once) is a Convolutional Neural Network (CNN)-based
framework for object detection, introduced by Redmon et al. in [74] and improved
in later versions [388], [212], which can identify objects within an image or video
frame and localize them by drawing a bounding box around each object.

The YOLO system models detection as a regression problem: the input image
is divided into S× S grid cells, each of which predicts B bounding boxes and the
confidence that determines if the cell contains an object. Additionally, the model
predicts the likelihood of an object belonging to a particular class for each grid cell
(Figure A.5), making it possible to detect and classify multiple objects in an image.

By utilizing convolutional features, potential bounding boxes and their corre-
sponding scores are generated while imposing spatial constraints on the grid cell
proposals. This technique helps to alleviate the problem of multiple detections of the
same object. YOLO predicts the coordinates of bounding boxes directly using fully
connected layers on top of the convolutional feature extractor. With YOLOv2 [388],
the authors incorporated batch normalization and eliminated the fully connected
layers from YOLO architecture, exploiting anchor boxes to predict bounding boxes.
Anchor boxes are a set of predefined bounding boxes of different sizes and aspect
ratios that are used as reference templates during object detection, representing a sort
of prior knowledge to the algorithm, allowing it to better predict the location and
size of objects in the image. On top of this upgrades, YOLOv3 [254], among many
enhancements, improved accuracy by using a deeper feature extraction network, and
introduced a technique to capture objects at different scales.
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Fig. A.5 Each grid cell predicts B bounding boxes, confidence for those boxes, and C class
probabilities [74].

For each bounding box, the network predicts four coordinates: tx, ty, tw, th. The
position of the cell relative to the image’s top-left corner is denoted by the offsets
(cx,cy), while the bounding box dimension prior has a width and height of pw and
ph, respectively. The predicted coordinates correspond to the following:

bx = σ (tx)+ cx

by = σ (ty)+ cy

bw = pwetw

bh = pheth

(A.7)

The height and width of the bounding box is predicted as offset from the cluster
centroid, while the center coordinates of the box relative to the location of filter
application is predicted using a sigmoid function (refer to Figure A.6).

YOLO in this thesis
In the context of this thesis, we used a YOLOv3 pre-trained model, to achieve
human obstacles detection for the Sen3Bot laboratory demonstrator implementation
(Section 2.1.3, Section 2.2.1, and Section 3.1.1). In particular, the bounding box
coordinates bx,by,bw and bh and relative label of detected objects have been suitably
formatted and conveyed into a text file. This detection output file is then accordingly
read and filtered by a ROS node that wraps into ROS topic messages only the
information we are interested in (i.e., the lines identified by a “person” label. This
way the information about the location of a human obstacle in the image reference
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Fig. A.6 Bounding boxes with dimension priors and location prediction [254].
frame has been fused with the corresponding laser distance information, to obtain
coordinates in the navigation map reference frame. Virtual obstacles have been
placed in correspondence of such positions on the map, enclosing humans in virtual
cages, as the distance between the planned motion and the human is kept conservative
with respect to generic obstacles.

Timed Elastic Band (TEB) algorithm

The Timed Elastic Band (TEB) algorithm, introduced by Rösmann et al. in [389], is
a motion planning algorithm that represents the robot’s trajectory as a time-elastic
band in the configuration space. The TEB consists of a central trajectory and two
boundaries that define the robot’s maximum and minimum possible positions at any
given time. The TEB algorithm includes temporal information in addition to the
"elastic band" concept. By doing so, it is capable of accounting for the dynamic
constraints of the robot, and enables the modification of trajectories rather than just
paths.

The conventional "elastic band" is defined as a series of n robot configurations,
each consisting of the robot’s position (xi,yi) and orientation in a particular frame.

Q = {xi}i=0...n n ∈ N (A.8)

Augmented by the time intervals between consecutive configurations, the timed
elastic band represents a sequence of n−1 time differences ∆Ti.

τ = {∆Ti}i=0...n−1 (A.9)

Each time difference represents the duration of time that the robot needs to move
from one configuration to the next configuration in the sequence.
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TEB is defined as a tuple of both sequences:

B := (Q,τ) (A.10)

The TEB algorithm aims to optimize and adapt both the configurations and time
intervals in real-time using a weighted multi-objective optimization approach:

f (B) = ∑
k

γk fk(B)

B∗ = argmin
B

f (B),
(A.11)

in which B∗ denotes the optimized TEB, f (B) denotes the objective function,
defined as a weighted sum of components fk(B). In particular, two objectives are
considered simultaneously: reaching the intermediate waypoints of the original path
and avoiding static or dynamic obstacles. Specifically, the intermediate waypoints
attract the elastic band, while obstacles repel it.

In practice, the algorithm works by first generating a set of candidate trajectories
that satisfy the start and goal constraints, and then optimizing the trajectory using a
cost function that considers both the time and the clearance (distance to obstacles)
along the trajectory. The cost function is designed to favor trajectories that have high
clearance from obstacles, but also to penalize trajectories that deviate significantly
from the central trajectory.

A subset of admissible trajectories with distinctive topologies (candidate paths)
is optimized in parallel to allow the local planner to switch to the current globally
optimal trajectory among the candidate set in case the robot gets stuck in a locally
optimal trajectory due to obstacles. The distinctive topologies of the candidate paths
are obtained by utilizing the concept of homology/homotopy classes, which ensures
that each candidate path represents a unique way of navigating around obstacles
while reaching the desired goal [172]. A graphical representation of these steps is
represented in Figure A.7a.

TEB in this thesis
In the context of this thesis, the TEB algorithm has often been chosen as a local
planner as it generates a trajectory that optimizes both the robot’s motion and the
time intervals between consecutive configurations, which allows it to avoid obstacles
and navigate in a smooth and efficient way.

In particular, in the sensor data fusion algorithm for smart AMRs (Sen3Bots)
proposed in [7] and reported in Section 2.1.3 of this thesis, we exploited the TEB al-
gorithm as a local planner where virtual obstacles are overlaid on the detected human
obstacles (exploiting the YOLO framework), ensuring a conservative behaviour by
inflating the radius around the human. Figure A.7b shows how the TEB-generated
candidate paths (light green line) suggest two possible overtaking paths, while the
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global plan (dark blue) does not take into account obstacles that were not known at
mapping time as its costmap is constructed upon the static map.

(a) TEB algorithm steps representation
[390]. (b) Overtaking of a human obstacle.

Fig. A.7 TEB candidate paths and optimization sequence (a), and behaviour as a local planner
in the presence of an obstacle on the global planner computed path (b).


