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The survival probability of solitons diffusing on a 
one-dimensional lattice with traps is studied numerically. The 
solitons are assumed to collapse once they collide with one 
another or reach the traps. It turns out that as the density of the 
traps increases the decay profile tends to change into an 
exponential-like form from the extremely nonexponential one 
specific to the geminate recombination on a trap-free lattice. The 
randomness of the distance between adjacent traps, as well as 
the disorder of the intersite energy barriers for the hopping 
motion of solitons, functions to reduce the deviation of the decay 
profile from the case of the trap-free lattice. Our calculation 
reproduces the temperature-dependent decay profiles of the 
photoinduced neutral solitons observed recently in an MX-chain 
compound {[Pt(en)2][Pt(en)2Cl2]}3(CuCl4)4·12H2O well. It is 
suggested that the traps are located at every 7 to 8 segments of 
the lattice and the height of energy barriers is irregular to some 
extent. The periodicity of the valence of Cu ions is discussed on 
the basis of this result. 
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1.  Introduction 

In conjugate polymers such as trans-polyacetylene1,2) and quasione-dimensional 

halogen-bridged mixed-valence metal complexes which are often called MX-chain 

compounds3–5), soliton and antisoliton pairs can be created by the interband optical excitation 

of electron-hole pairs or charge-transfer excitons. For the last several decades, the problems 

how unequilibrated states survive or disappear and how their distribution changes with time 

have attracted much attention because of their unique, nonlinear transient properties. Indeed, 

dynamics of nonlinear dissipation of nonequilibrium quasiparticles states is a basic, important 

subject of physics and chemistry.6) Therefore many studies have been accumulated so far, 

particularly on the survival probability of random walkers executing the geminate coalescence 

on a one-dimensional medium. 

Torney and McConnell (hereafter abbreviated as TM) have derived the exact solution 

for the first time for the diffusion-limited reaction in an infinitely long continuum medium.7) 

Placing nonequilibrium particles randomly in the medium as the initial condition, TM have 

shown that the survival probability  of a particle is given by S

 

             )8(erfc)(8exp)( ζζζ =S ,          (1) 

 

where  signifies the complimentary error function xerfc xerf1−  and ζ  is the 

dimension-less variable defined as 

 

         ,           (2) 

 

with the initial density of particles , the diffusion coefficient of particles  and time t  

after the start of reaction. The nonlinearity of the reaction manifests itself in the fact that  

depends on .  

tDN 2
0=ζ

0N D

S
2
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To take account of the hopping motion of localized particles in solids, Sasaki and 

Nakagawa (hereafter abbreviated as SN) have extended the stochastic theory of TM to the 

process on a one-dimensional, discrete medium, that is, lattice.8) For the same initial condition 

as that of the TM theory SN have obtained the solution 
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where  is the lattice constant and  is the hopping rate of a particle between consecutive 

lattice sites. It is worth stressing that 

a w

)(ζS  of eq. (1) falls vertically at 0=ζ , while  

of eq. (3) exhibits a certain slope at 

)(tS

0=t . This is because in a continuum medium there exist 

particles almost contacting each other even at 0=t , while in a discrete medium a waiting 

time is needed for particles residing on consecutive sites to collide with each other. Apart from 

this difference in the initial behavior, the two theories yield the same the gross feature of the 

decay profile of nonequilibrium particles. Since proximal particle pairs react earlier than 

others, more isolated particles survive for a longer time. Consequently,  exhibits a 

strikingly nonexponential time evolution.  

)(tS

These theoretical works have been successfully applied to the interpretation of the 

experimental results on long-lived solitons in MX-chain compounds.9,10) By irradiation with 

visible light, a midgap absorption band due to neutral solitons is generated in crystals of 

[Pt(en)2][Pt(en)2Cl2](ClO4)4 and [Pt(en)2][Pt(en)2Cl2](BF4)4, where (en) denotes 

ethylenediamine. The midgap band exhibits an extremely nonexponential time decay obeying 

eqs. (1) and (3). It lasts longer than 10 min even at room temperature. From the temperature 

dependence of the decay profile, the photoinduced solitons are suggested to execute a 

thermally activated random walk jumping over the energy barriers with the height of 0.4–0.5 

eV. These large barrier height and the long life time have led Kuroda and coworkers to 

conceive that there might be some local disorders serving as energy barriers which physically 

divide Pt-Cl chains into segments and that there should be a relaxation mechanism for the 

photogenerated charge-transfer excitons to decompose into solitons and antisolitons separately 

in different segments.11,12)

It has been found further that solitons may survive much longer if the energy barriers 

are irregular.11) According to a numerical simulation within the framework of the 

aforementioned situation of Pt-Cl chains, as the irregularity of the energy barriers evolves,  

is transformed into the stretched exponential form

S
12–14) 

 

        , ])/(exp[)( /1
βζζζ eS −= 10 << β ,   (4) 

 

where e/1ζ  is a constant, in agreement with the empirical knowledge15–18) that the decay 
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profiles of nonequilibrium states in disordered systems often have a form of the stretched 

exponential function. If the Gaussian distribution is assumed for the height of energy barriers, 

the value of the argument β  decreases from 0.43 to 0.35–0.25 as the Gaussian width 

increases from 0 to 0.1 eV. It has been confirmed also that if β  is adjusted eq. (4) reproduces 

the decay profiles observed for different samples of the BF4 salt of the PtCl-chain compound 

very well.  

Recently, a novel characteristics has been observed in another PtCl-chain compound 

{[Pt(en)2][Pt(en)2Cl2]}3(CuCl4)4·12H2O.19) In this compound the decay profile of the 

photoinduced midgap band contains a significant amount of the exponential component. In 

addition, the decay rate becomes faster as temperature is elevated, so that at 150 K the midgap 

absorption band almost disappears at  = 200 s, in quite contrast to the observations in ClOt 4 

and BF4 salts. It is evident that the pictures of geminate recombination, which have been 

mentioned hitherto, cannot explain this phenomenon, suggesting the existence of additional 

processes that promote extinction of solitons.  

In this relation we recall that Zozulenko and his coworkers have theoretically paid 

attention to reactions of quasiparticles in a segment of a one-dimensional medium with 

absorbing traps at the ends.20–22) They have derived a formula for  in the form of double 

infinite series, showing that at  satisfying  it is asymptotically represented 

as 

 

)(tS

t 1/5 22 >>nwtπ

    ,    (5) 

 

where  is the segment length. Furthermore, extending this result they have shown that if 

traps distribute randomly in a long chain  changes to a stretched exponential form of 

 for , where  is the trap concentration.  

)/5exp()( 22 nwttS π−=

n

)(tS

])10)(2/3(exp[ 3/122 wtcπ− 110 22 >>wtcπ c

In light of these works of Zozulenko and his coworkers, it is likely that traps play a 

crucial role in the PtCl-compound of CuCl4 · H2O salt. Unfortunately, however, in their theory 

a single pair of particles is put on every segment of medium as the initial condition, although 

from the experimental point of view the number of particles confined initially between traps 

should be arbitrary. Moreover, to introduce the disorder to the system Zozulenko et al. have 

postulated a chaotic distribution for the length of each segment. Such an extreme randomness 

is not necessarily an appropriate condition for the CuCl4 · H2O salt since the traps could be 

originated for some reasons relating to the crystal structure.23,24) Nevertheless, to the authors’ 
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knowledge, no studies on the collaboration between geminate recombination and trapped 

annihilation under arbitrary conditions have been conducted to date.  

In the present work we investigate the kinetics of nonequilibrium particles on the 

one-dimensional lattice with traps by numerical simulation. The initial number of particles, 

the density of the traps and the degree of the disorder of the barrier height are chosen arbitrary. 

The calculation procedure is described in the next section. In §3, the dependence of the decay 

profile on the disorder of the arrangement of traps is studied. The results of the simulation of 

the experimental data and discussions about the search for optimum parameters are also 

presented in §3. 

 

2.  Calculation Procedure 

Our numerical calculation targets the neutral solitons walking randomly on a 

one-dimensional lattice, jumping over the energy barriers as schematized in Fig. 1 (a). In our 

model, the annihilation of solitons is executed in two ways irreversibly. One of them is by 

geminate recombination of mutually adjoining solitons. It occurs when they come into the 

same segment for an instant. Then, a pair of solitons is removed immediately from the 

segment. The other is by traps, which are set uniformly or randomly on the lattice. The trap 

captures the soliton and removes it instantaneously from the chain, even if it is a single 

unpaired soliton, when the soliton enters the site with a trap. The removal of an unpaired 

soliton by traps does not disarrange the phase of the order of solitons and antisolitons because 

there is no distinction between a soliton and an antisoliton originally if they are neutral 

solitons. Hence, the consecutive pair recombination is not disturbed by this removal. 

In a real crystal, a segment consists of one or more lattice sites, if the energy barrier 

originates in defects. However, here, we treat one segment as one lattice site since a soliton is 

considered to move very rapidly in a segment compared with its velocity that is controlled by 

energy barriers and there exists no essential difference in calculation. In this case, the energy 

barrier is put at each intersite of the lattice as illustrated in Fig. 1 (b). In an argument on the 

kinetics of solitons, this treatment does not cause loss of generality. It reduces the computation 

time and is expected to actualize the local properties of the lattice. Here, we are noting for the 

following discussion that one or more segments exist in a region between adjacent traps on the 

lattice. 

The simulation is carried out with respect to a lattice ring comprised of  sites as 

the standard model and it is elongated to  sites if necessary.  

510
710
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In order to handle the lattice with a disorder, we introduce the Gaussian distribution 

with the width of σ  onto the height E  of the energy barrier as follows: 

 

       0
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σ ,    (6) 

 

where  is the mean height of 0E E . 

Solitons hop from a site to neighboring sites across the barriers at the rate 

 

               kT
E

eww
−

= 0 ,     (7) 

 

where ,  and 0w k T  denote the hopping rate constant, Boltzmann constant and temperature, 

respectively. For σ  = 0, this equation gives the diffusion coefficient as 

 

         kT
E

ewaDD
0

0
2

0

−
== ,     (8) 

 

where  is the lattice constant. a

Initially, assuming photogeneration of solitons, an even number of solitons are 

distributed at random on the sites of the chain on the basis of binomial occupation. However, 

the condition of an even number is not very important in the present model where an unpaired 

soliton is eliminated.  

In this computation, there is arbitrariness in setting the value of either  or 0E T  

since the hopping rate  is determined only by the ratio  in the present model, as is 

obvious by eq. (7), if 

w TE /0

σ  and  are kept constant and 0w T  remains in the range where the 

energy barrier can limit the kinetics of solitons. We fix  and  at 0.4 eV and  

step , respectively, as in the previous simulation.

0E 0w 610

1− 12–14) The value of  has been adopted 

based on the experimental studies.

0E
9,11) Then, we treat  as a calculation parameter and 

write it as .  

TE /0

(cal)0 )/( TE
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3.  Result and Discussion 

3.1 Effect of trap 

Figures 2 (a) and (b) show typical simulated decay curves at 200, 240 and 300 K as 

functions of ζ  for the cases of uniformly arranged traps and randomly distributed ones, 

respectively. Here, the trap density to the number of lattice sites is set to be 0.1 and the initial 

density of solitons is selected to be 0.02. 

In each figure, the curve labeled SN is the survival probability on an ordered trap-free 

lattice, for comparison. When particles repeat arbitrary hopping to the right or left nearest 

neighbor site on a one-dimensional ordered lattice, the probability that any of the particles 

meets another particle and results in pair annihilation is proportional to  and . Hence, 

SN converges on a single curve independent of  and 

2
0N 0D

0N T  if it is scaled by ζ .  

The survival probability on a disordered lattice (labeled σ  = 0.05 eV) with traps 

decreases faster than that given by SN. It is considered that this fast decay is caused with the 

trap, because the soliton survives much longer when the irregularity of barriers increases on a 

trap-free lattice. The mean diffusion coefficient of this disordered lattice is estimated to be 

. The increase of the mean diffusion coefficient with elevating 

temperature is reduced due to the factor  that decreases by an order of 

magnitude upon the temperature change from 200 K to 300 K. The spreading of these curves 

is caused by this reduction, regardless of the existence of traps.  

]2/)/exp[( 2
0 kTD σ

]2/)/exp[( 2kTσ

For an ordered lattice (labeled σ  = 0 eV), the decay curves converge on a single 

curve, although the traps exist. The survival probability on an ordered lattice decreases further 

faster than that on a disordered lattice. In particular, it is notable that these decay curves seem 

to approach an exponential-like form by introducing the uniformly arranged traps. On the 

contrary, the randomly distributed traps do not transform the decay form into an 

exponential-like one. Additionally, the uniformly arranged traps contribute to the decay more 

than the randomly located ones. 

In order to quantify the similarity of simulated  to an exponential form, we have 

obtained the best fit of the stretched exponential function  to the 

simulated  at 300 K. The value of 

)(tS

])/(exp[)( /1
βτ etts −=

)(tS β  indicates the similarity. This fit is not highly 

accurate in the region of small density of randomly distributed traps. Nevertheless, it is simple 

and practically useful for our purpose. 

Figure 3 (a) shows β  and the  decay time e/1 e/1τ (steps in computation) as 
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functions of trap density for ordered lattices with uniformly and randomly located traps. For 

the case of uniformly arranged traps, as the trap density approaches 0.5, uniformβ  (closed 

circles) asymptotically approaches unity, although the trap density of 0.5 is an unreal value. 

This signifies that the decay curve is transformed from the SN form to an exponential one and 

that exponential-like decay is possible in this case. On the contrary, randomβ  (open circles) for 

the randomly distributed traps remains ≈  0.6. In this case, solitons of various lifetimes 

coexist, because the distance between traps is various. Accordingly, the decay curve does not 

approach an exponential form.  

The value _random/1 eτ  (open squares) for the randomly distributed traps is larger than 

_uniform/1 eτ  (closed squares) for the uniform arrangement of tarps particularly at small trap 

density. The reason for this is that in a random distribution of traps, wide and narrow intervals 

are allowed between traps. The solitons located between widely separated traps will exhibits a 

decay profile which is similar to the SN curve, whereas the solitons located between closely 

spaced traps will disappear more quickly. Conversely, for a uniform distribution of traps, as 

the traps capture solitons at the same rate throughout the lattice, they reduce the curvature of 

the nonexponential SN curve. Therefore, _uniform/1 eτ  is smaller than _random/1 eτ . This implies 

that in the case of uniformly arranged traps, the solitons cannot survive for a longer time than 

that in the case of randomly distributed traps. 

Figure 3 (b) shows β  and e/1τ  for a disordered lattice of σ  = 0.02 eV with traps. 

The curve of uniformβ  (closed circles) indicates that the transformation of the decay to an 

exponential form is reduced by the disorder even if the trap distribution is uniform. Further, 

randomβ  (open circles) for randomly distributed tarps is reduced to some extent by the disorder, 

although its dependency on the trap density is similar to the case of an ordered lattice.  

 

3.2 Comparison with experiment 

Here, we introduce a certain index in order to quantitatively evaluate the extent to 

which a simulated decay curve approaches or is congruent with the experimental decay one, 

paying attention to the difference between the areas of the regions which are encircled with 

the respective decay curves and the axes of a Cartesian coordinates of  and . We call it 

“congruity” expediently, though the difference of the areas rather signifies the dissimilarity. 

The smaller the congruity is, the larger the level of congruence is. The area of the region is 

calculated by employing quadrature by parts. Furthermore, we introduce a conversion ratio 

t )(tS

r  
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(s/step) of a simulation step to the real time as a parameter in order to attain the best congruity. 

When we seek the best conversion ratio r  that minimizes the congruity, it is necessary to 

minimize the difference in these areas at each temperature at the same value of r . Hence, we 

define the congruity as the least square sum of the difference in the areas of these curves at 

each temperature. The best value of r  is sought scanning the calculation parameters of 

, (cal)0 )/( TE σ ,  and the trap period through trial and error. The trap period is the inverse 

of the trap density converted to an integer.  

0N

The novel time decay profile of the photoinduced midgap band recently observed in 

{[Pt(en)2][Pt(en)2Cl2]}3(CuCl4)4·12H2O,19) which is mentioned in §1, is indicated with 

markers in Figs. 4 (a) and (b) for 110–135 K and 140–150 K, respectively. Because it has been 

presented that the thermal activation energy of excited states in this complex changes at about 

 = 136 K by the measurement of temperature dependence of a decay of the midgap 

states,

aT
19) the temperature is divided into two ranges on the boundary of  in these figures. 

This report has suggested that this change is not due to the structural phase transition.  

aT

As the consequence of calculation, the uniform arrangement of traps is applied and the 

random distribution is rejected. The optimum values of the calculation parameters that yield 

the least congruity are listed in Tables I and II for aTT <  and , respectively. 

Figure 5 shows the congruity as a function of the trap period for both  and , 

where the optimum values listed in Tables I and II have been used. From this figure, it appears 

that the traps exist at every 7 or 8 sites along the lattice chain in the temperature ranges of 

 and , respectively. However, it is considered that this difference in the 

periodicities of traps between  and  is not intrinsic to the lattice but arises 

due to the error margin of the experimental data, since it is noisy for  and is few for 

. Adopting 8 sites as the trap period for both temperature ranges, the simulated 

survival probability  that best reproduces the experimental result at each temperature is 

given by the solid lines in Figs. 4 (a) and (b).  

aTT >

aTT < aTT >

aTT > aTT <

aTT < aTT >

aTT <

aTT >

)(tS

The decay profile of the photoinduced midgap illustrated in Figs. 4 (a) and (b) seems 

to exhibit an exponential-like form and to approach even zero owing to a significant amount 

of the exponential components. These features are reproduced well by the simulated . 

The fitting parameters 

)(tS

β  and e/1τ  to the reproduced curve at each temperature are listed in 

Tables I and II. Here, e/1τ  is converted to the real time by multiplying it by r . β  and e/1τ  
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are also presented in Fig. 6 as functions of . The temperature dependence of T/1 β  is small 

as the factor  of the mean diffusion coefficient  only 

doubles on changing the temperature from 110 K to 135 K and it is smaller from 140 K to 150 

K. The mean value of 

]2/)/exp[( 2kTσ ]2/)/exp[( 2
0 kTD σ

β  is 0.76 for aTT <  and 0.84 for . Further, the lattice 

irregularity 

aTT >

σ  is 0.02 eV for aTT <  and 0.005 eV for  as a result of the 

optimization.  

aTT >

The value of e/1ζ  is 0.195 regardless of  and 0N T  in SM or TM. Since the optimal 

value of  is a constant, the Arrhenius plot of 0N e/1τ  ( ) yields the mean 

height of the energy barriers , which is estimated at 0.10 eV for 

eDN /1
12

0 ζ−−=

0E aTT <  and 0.24 eV for 

 from the slope of the fitting lines to aTT > e/1τ  as illustrated in Fig. 6. These very well 

reproduce the corresponding experimental values of 0.11 eV and 0.23 eV reported in ref. 19, 

although the intersection of two fitting lines, which indicate the temperature at which  

changes, shifts lower by about 5 K compared with the experiment.  

0E

There remains slightly a tendency to decay fast at an early stage and to decay slowly at 

a later stage in the reproduced decay curve compared with the experimental one. However, it 

is considered that this tendency is reduced if the accuracy of the experimental data is higher.  

A segment corresponds to a lattice site in our model. Therefore, it should be said that 

traps are located periodically at 7 to 8 segments as for the calculation result. The removal of 

solitons by traps can be interpreted as follows: The lattice is substantially subdivided into 

short lattices at the sites with traps and solitons are eliminated at the cutting edges of the 

shortened lattices. We call a piece of this shortened lattice a fragment here in order to 

distinguish it from the segment which is a lattice area partitioned by energy barriers. 

Accordingly, to set the traps at every 7 to 8 segments is equivalent to chopping the lattice into 

short fragments that consist of segments of the same number.  

From the fact that the periodically arranged traps can reproduce the experimental 

result well, it is natural to consider that tarps are generated due to some aspect related to the 

periodicity of MX-chain structure. 

The crystal structure of the CuCl4 · H2O salt consists of double one-dimensional chains 

called the main chain and the sub chain. The former is composed of the halogen-bridged 

[PtII(en)2] and [PtIV(en)2] units which are alternately stacked and the later, the halogen-bridged 

Cu[I] units.23,24) Because the composition of the main chain is similar to ClO4 and BF4 salts, it 

is expected that halogen ions that bridge Pt atoms are displaced from the center point of the Pt 
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atoms, forming a CDW state, and kinks are generated at the boundaries of twofold 

degenerated states; the photogenerated state is expected to be a solitonic kink. In fact, by ESR 

measurement, it has been confirmed to be consistent with the neutral solitons originated in 

PtIII of the ClO4 · H2O salt.23,24)

A sub chain is peculiar to the CuCl4 · H2O salt. It has been pointed out in the refs. 23 

and 24 that a sub chain queues up parallel to the main chain in the phase in which a Pt atom in 

the main chain and a Cu atom in the sub chain are opposite to a Cl¯ ion of the mutually 

opposed chains; in a sub chain, the valence transition of some Cu[I] ions into Cu[II] ions has 

been detected by ESR measurement. Though the place where the paramagnetic Cu[II] ion 

exists in a sub chain is not clarified, it is considered that it may function as a trap to eliminate 

the random-walking solitons in the main chain due to some reason. This possibility is 

enhanced by the report that the creation of solitons of PtIII is controllable by adjusting Cu[II] 

ions in the counterion.23,24)  

If the elimination is due to the paramagnetic ion, it chops the main chain and/or the 

sub chain into short fragments. Our result strongly suggests the periodicity. However, the 

number of lattice sites included in a segment is not necessarily uniform. If the periodicity of 

the crystal structure is reflected in the distribution of the paramagnetic ions, it is supposed that 

the distance between the adjacent paramagnetic ions is uniform. It makes the number of lattice 

sites included in a segment uniform, because the fragments consist of the segments of the 

same number.  

The more discussion for the origin of the tarp is further issues that need to be 

addressed because information for this problem is hardly provided for us until now. 

This chopping the lattice into fragments does not contradict the long-range order of the 

lattice chain having a periodic structure.  

The trap density is 0.125 if the trap period comprises 8 sites. It is larger than the 

soliton density, which is selected to be 0.02 as the optimum initial condition. This implies that 

the probability of the elimination of solitons by traps is predominant compared with that by 

pair annihilation. However, the process of pair annihilation is not weakened in this condition 

and still contributes to the decay. It is confirmed from the fact that the computation result 

changes and the reproducibility degrades when  and (cal)0 )/( TE σ  vary from the above 

values. 
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4.  Conclusions 

In conclusion, we have numerically investigated the composite decay of 

diffusion-controlled nonequilibrium neutral solitons on a one-dimensional lattice. The 

composite decay involves the elimination of unpaired solitons by traps and the geminate 

recombination of solitons. As the density of traps increases, the decay profile approaches an 

exponential-like form from the extremely nonexponential one specific to the geminate 

recombination on a trap-free lattice. The randomness in the trap period, as well as the disorder 

of the intersite energy barriers for hopping motion of solitons, reduces this change of the 

decay profile. 

Unprecedented exponential-like time decay of the photoinduced neutral solitons 

observed in {[Pt(en)2][Pt(en)2Cl2]}3(CuCl4)4·12H2O is reproduced adequately for all measured 

temperature range by applying our model in which traps are arranged periodically and some 

irregularity is introduced in the energy barrier, without losing the information of the change of 

the thermal activation energy contained in the experimental data. The periodicity of the 

electronic structure and the lattice irregularity of this complex are discussed on the bases of 

the prediction made by optimization. 
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Fig. 1. (a) A schematic representation of an MX-chain lattice with local disorders and traps. (b) 

The model of a disordered linear lattice chain with traps employed for calculation.  and 

 denote the mean height of energy barriers and the lattice constant, respectively. The lattice 

area partitioned by adjacent energy barriers is the segment and the area subdivided by adjacent 

traps is the fragment. 

0E

a

 

Fig. 2. Examples of simulated decay curves as functions of ζ  with temperature variation on 

a lattice with (a) uniform trap distribution and (b) random trap distribution. SN indicates the 

decay on an ordered lattice without traps, for comparison. Three curves labeled σ  = 0.05 eV 

are the decays on a disordered lattice with traps. The lowest curves labeled σ  = 0 eV which 

overlap and result in a single curve are the decays on an ordered lattice with traps. The trap 

density to the number of lattice sites is 0.1 here. 

 

Fig. 3. The similarity of the simulated survival probability  to an exponential form 

expressed with 

)(tS

β  for (a) the ordered lattice and (b) the disordered lattice. e/1τ  denotes the 

 decay time (steps in computation). The suffixes “uniform” and “random” symbolize 

uniformly and randomly distributed traps, respectively. The broken lines are guides for the 

eye. 

e/1

 

Fig. 4. The time decay profile of solitons in {[Pt(en)2][Pt(en)2Cl2]}3(CuCl4)4·12H2O obtained 

experimentally (markers) and that reproduced by the simulation (solid lines) for (a) aTT <  

and (b) . Here, the trap period is chosen to 8 sites. aTT >

 

Fig. 5. The degree of congruence of the simulated decay curve to the experimental one as a 

function of the trap period (at every  sites). The smaller “Congruity” is, the larger the 

degree of congruence is. The broken lines are guides for the eye. 

n

 

Fig. 6. The temperature dependence of the fitting parameters β (▼,▲) and e/1τ (■,♦) of the 

stretched exponential function  to the reproduced  curve. ])/(exp[)( /1
βτ etts −= )(tS β  is 

expressed with a linear scale; whereas e/1τ , with a log scale.  denotes the mean height of 

the energy barriers obtained from the slope of the fitting lines to 

0E

e/1τ , which changes the 
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value at . aT
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Table I. Optimum calculation parameters for aTT < .  

T  denotes the temperature at which the experiment have been conducted.  is 

a calculation parameter that decides the hopping rate . 

(cal)0 )/( TE

w β  and e/1τ  are fitting parameters 

of a stretched exponential function  to the simulated decay curve at ])/(exp[)( /1
βτ etts −=

T . r  denotes the conversion ratio of a simulation step to the real time. σ  and  are 

calculation parameters, which are the lattice irregularity and the initial density of solitons, 

respectively. 

0N

e/1τ  is converted to the real time by multiplying it by r  here.  

 

 T     (cal)0 )/( TE β  e/1τ  

(K)  (eV/K)   (s) 

 

 110  0.753 1416 31042.1 −×

 120  0.748  570 31035.1 −×

 125  0.765  379 31031.1 −×

 130  0.778  253 31028.1 −×

 135  0.778  181 31025.1 −×

 

r  = 7.95 s/step, σ  = 0.02 eV,  = 0.02. 0N
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Table II. Optimum calculation parameters for .  aTT >

Refer to Table I for the display items.  

 

T     (cal)0 )/( TE β  e/1τ  

(K)  (eV/K)   (s) 

 

140   0.856  61 31034.1 −×

145    0.837  28 31028.1 −×

150   0.829  16 31024.1 −×

 

r  = 1.59 s/step, σ  = 0.005 eV,  = 0.02. 0N
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