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Abstract

Ultrasound acquisition is widespread in the biomedical field, due to its properties of
low cost, portability, and non-invasiveness for the patient. The processing and anal-
ysis of US signals, such as images, 2D videos, and volumetric images, allows the
physician to monitor the evolution of the patient’s disease, and support diagnosis,
and treatments (e.g., surgery). US images are affected by speckle noise, generated
by the overlap of US waves. Furthermore, low-resolution images are acquired when
a high acquisition frequency is applied to accurately characterise the behaviour of
anatomical features that quickly change over time. Denoising and super-resolution
of US signals are relevant to improve the visual evaluation of the physician and the
performance and accuracy of processing methods, such as segmentation and classi-
fication. The main requirements for the processing and analysis of US signals are
real-time execution, preservation of anatomical features, and reduction of artefacts.

In this context, we present a novel framework for the real-time denoising of US
2D images based on deep learning and high-performance computing, which reduces
noise while preserving anatomical features in real-time execution. We extend our
framework to the denoise of arbitrary US signals, such as 2D videos and 3D images,
and we apply denoising algorithms that account for spatio-temporal signal properties
into an image-to-image deep learning model. As a building block of this framework,
we propose a novel denoising method belonging to the class of low-rank approxi-
mations, which learns and predicts the optimal thresholds of the Singular Value De-
composition. While previous denoise work compromises the computational cost and
effectiveness of the method, the proposed framework achieves the results of the best
denoising algorithms in terms of noise removal, anatomical feature preservation, and
geometric and texture properties conservation, in a real-time execution that respects
industrial constraints. The framework reduces the artefacts (e.g., blurring) and pre-
serves the spatio-temporal consistency among trames/slices; also, it is general to the
denoising algorithm, anatomical district, and noise intensity.

Then, we introduce a novel framework for the real-time reconstruction of the non-
acquired scan lines through an interpolating method; a deep learning model improves



the results of the interpolation to match the target image (i.e., the high-resolution im-
age). We improve the accuracy of the prediction of the reconstructed lines through
the design of the network architecture and the loss function. In the context of signal
approximation, we introduce our kernel-based sampling method for the reconstruc-
tion of 2D and 3D signals defined on regular and irregular grids, with an application
to US 2D and 3D images. Our method improves previous work in terms of sampling
quality, approximation accuracy, and geometry reconstruction with a slightly higher
computational cost.

For both denoising and super-resolution, we evaluate the compliance with the real-
time requirement of US applications in the medical domain and provide a quantita-
tive evaluation of denoising and super-resolution methods on US and synthetic im-
ages. Finally, we discuss the role of denoising and super-resolution as pre-processing
steps for segmentation and predictive analysis of breast pathologies.
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Chapter 1

Introduction

In the last few decades, several techniques have been developed for the acquisition of medi-
cal images (e.g., magnetic resonance imaging, ultrasonography, elastography, positron emission
tomography) and medical image processing has come into widespread use to assist diagnosis,
detection, monitoring, and treatment of patients’ diseases. Ultrasound (US, for short) acquisition
allows physicians to visualise soft tissues (e.g., internal organs) and its application is widespread
in the biomedical field, due to its low cost, portability, and non-invasiveness for the patient.
High-frequency sound waves are emitted by a probe and reflected off from different layers of
body tissues; the transducer converts the echoes into electrical signals that are used to create an
image and display it on a screen. The image is based on the frequency and strength of the sound
signal and the time the echoes took to return.

US signals have wide applications in medical specialities, e.g., analysis of muscle-skeletal
pathologies, identification of tumour masses, and diagnosis of pericardial and visceral organ
diseases. The processing of US signals is relevant for providing clear information to medical
experts or post-processing algorithms. The main issues of US acquisition are a significant loss
of information during the reconstruction of the signal, variability of the acquired data (e.g., ac-
quisition direction, resolution, frame rate), and speckle noise that corrupts the resulting image
and significantly affects the evaluation of the morphology of the anatomical district and the
patient disease. Main challenges are: the processing of large, complex (e.g., noise, low resolu-
tion, anisotropy, distortion), and heterogeneous (e.g., 2D/3D images and videos) US signals of
anatomical districts; the development of stable and accurate methods for US processing (e.g., ill-
posed problem, approximation and reconstruction accuracy); and related computational aspects
(e.g., real-time processing, memory storage).

Motivations and goals In healthcare and biomedical data management, denoising and super-
resolution represent two important processing steps within the chain of operations that goes from
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the acquisition of biomedical data to diagnosis. State-of-the-art denoising methods compromise
computational costs and method effectiveness in terms of noise removal and preservation of
the anatomical structures. In the context of US applications, it is relevant to develop a high-
quality denoising method that respects the real-time execution constraint, which corresponds to
a display frequency of 30Hz. Previous work on US images can not guarantee both the respect
of the real-time constraint and the biomedical denoising characteristics of anatomical structures
preservation and noise removal. State-of-the-art super-resolution methods, when applied to US
images affected by speckle noise, tend to generate artefacts (e.g., blurring) that penalise the
physician’s visual assessment. The development of a real-time super-resolution method that
prevents the generation of artefacts allows the probe to acquire low spatial resolution and high-
frequency video, with a software-based increase of the spatial resolution.

The overall goal of the Thesis is the study and development of real-time denoising and super-
resolution algorithms for the US images, which (i) take into account the high variability of 2D,
3D, and time-depending US signals, (ii) are general with respect to the underlying anatomical
(e.g., muscle-skeletal, abdominal, cardiac) districts, and (iii) are compliant with industrial re-
quirements in terms of computational cost and memory requirements (e.g., on commercial US
machines). Through deep learning techniques and high-performance computing, the proposed
denoising and super-resolution methods are not bound to a hardware-oriented optimisation, but
remain portable and limit the hardware requirements/costs for the US manufacturer. Further-
more, learning-based methods allow us to account for large biomedical data sets and specialise
our methods to various anatomical districts. Specific goals of the Thesis are the development of
a novel deep learning framework for

* real-time denoising of US 2D images, and its extension to 3D US images and videos. The
proposed framework combines denoising, deep learning, and high-performance comput-
ing, and is relevant in terms of noise removal, preservation of edges of the anatomical
features, and real-time computation. As a building block of this framework, we propose a
novel learning-based low-rank denoising method that learns the optimal thresholds of the
SVD from a training data set and applies a prediction of these optimal values to improve
image denoising. The proposed method applies to US 2D images from different anatom-
ical districts and can be inserted into our framework for the real-time denoise of US 2D
images, demonstrating the generality of the framework with respect to the denoise method;

* real-time super-resolution of US 2D images, by increasing the image resolution and re-
constructing non-acquired scan lines. Applying our approach to US videos with a low
spatial resolution and a high frequency (e.g., for the cardiac district), we can generate
high-frequency 2D US video with an increased spatial resolution of each frame, thus over-
coming the main limits of current US probes, whose spatial resolution decreases as the
acquisition frequency increases. In this context, we also introduce a novel kernel-based
sampling for signals approximation and reconstruction, and discuss its application to US
2D and 3D images.
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Novelties and contributions As the main contribution, the proposed deep learning framework
for the denoising of US images runs in real-time and is general in terms of the type, resolution
(e.g., low, isotropic, anisotropic images), dimensionality (i.e., 2D, 3D images) of the input images
and the underlying anatomical district. Our approach is also general in terms of the building
blocks and parameters of the deep learning framework; in fact, we can select different denoising
algorithms (e.g., WNNM, SARBM3D) and deep learning architectures (e.g., Pix2Pix, VGG19).
The proposed framework achieves the results of the best denoising methods in terms of noise
removal, anatomical feature preservation, and geometric and texture properties conservation, in
a real-time execution that respects industrial constraints.

The extension of the framework to US 3D images and 2D videos learns and replicates the de-
noising results of the spatio-temporal denoising in real-time with an image-to-image prediction.
In this way, we achieve real-time denoising that accounts for the specific properties of the input
signal and the anatomic district, thus maintaining good results in terms of denoising and edge
preservation and avoiding blurring and artefacts. Then, the novel low-rank denoising trains a
learning-based model to predict the optimal thresholds of the SVD. The proposed method im-
proves previous work on 2D image denoising, and it is general with respect to noise intensity.
It also provides an upper bound of the weighted nuclear norm minimisation for the denoising of
2D images and the learning results for the prediction of the optimal thresholds of the SVD. We
validate our denoising framework through a quantitative comparison between predicted and tar-
get images, and a qualitative visual evaluation of the prediction by US experts. Furthermore, we
perform a quantitative validation of our versus state-of-the-art denoising methods on synthetic
signals, such as 2D/3D images and 2D videos.

We introduce a novel framework for the real-time super-resolution of US 2D images where the
up-sampling is performed by an interpolating algorithm based on radial kernels, and the learn-
ing model optimises the visual accuracy of the prediction to match the high-resolution target.
Our approach improves previous work on US 2D images super-resolution, with a novel network
architecture in terms of the loss function and hyper-parameters. Finally, our kernel-based sam-
pling approximates an input signal on regular (e.g., a 2D or 3D image) and irregular (e.g., surface
meshes achieved by segmenting a 3D US image) domain as the sum of Gaussian kernels, whose
centres, supports, and weights are computed through the minimisation of an energy functional.
As the main contribution, we improve the sampling quality and the approximation accuracy and
achieve more accurate feature preservation with a slightly higher computational cost.

Thesis overview and structure The Thesis is organised into four parts.

Part I describes the background and reviews previous work on the acquisition, processing, and
analysis of US images and videos. In particular, we briefly review the main acquisition method-
ologies, such as X-ray, US, MRI, and PET, and discuss their main characteristics in terms of cost,
acquisition time, and risks for the patient (Chapter 2). We provide an in-depth description of US
acquisition, signals, and characteristics, including the acoustic properties of the US waves, the
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physical properties of the probe, and the interaction of the US waves with the body structures.
We describe the US signals (i.e., 2D/3D images, and 2D videos) in terms of spatial and temporal
properties and how these properties affect the processing of the US signal.

Then, we introduce the characteristics required for the denoising and super-resolution of US
signals, including the preservation of anatomical and geometrical structures, real-time execu-
tion, and quantitative and qualitative validation. We also discuss previous work on denoising,
super-resolution, and sampling; in particular, denoising methods are classified according to the
reference methodology (e.g., sparse representation, low-rank approximation) and to the dimen-
sionality of the input signal (e.g., 2D/3D image, 2D video), with a further overview on low-rank
methods. Both super-resolution and sampling related work for 2D images are classified accord-
ing to related methodologies.

We describe artificial intelligence methods and their applications to biomedical problems, with
an in-depth on deep learning, convolution operators, hyper-parameters, and state-of-the-art of
main network architectures (e.g., CNN, GAN) that are applied to the learning-based models for
image processing. We introduce high-performance computing tools in terms of properties of
distributed computation, hardware, and resources, and their application to deep learning both in
terms of data distribution and computation distribution. Then, we present imaging requirements
in the biomedical context, with a discussion on the DICOM standard, and the data security topics
that affect healthcare in terms of privacy and communication. Finally, we briefly describe the
experimental test setup, in terms of hardware, software, and data set.

Part II describes the contributions and novelties for the real-time denoising of US signals. We
present a novel deep learning and HPC framework (Chapter 3) for the real-time denoising of
2D US images, where we train a neural network to replicate the denoising results of the best
state-of-the-art methods. Then, real-time denoising is achieved through the prediction of the
trained network. The proposed framework combines low-rank denoising, deep learning, and
high-performance computing. In the experimental tests, we perform a quantitative comparison
of the prediction results compared with state-of-the-art denoising, a qualitative evaluation per-
formed by US experts on US images acquired from different anatomical (e.g., muscle-skeletal,
obstetric, and abdominal) districts, and an analysis of computational cost and execution time.

To show the generality of our approach, we propose a novel learning-based low-rank method
for denoising US 2D images. Our method improves the results of previous work and can be
inserted into our framework for the real-time denoise of US 2D images, thus demonstrating the
generality of the framework with respect to the denoise method. Given a training data set of
ground truth images, we apply artificial noise with different intensities and compute the optimal
singular values through a proper optimisation applied to the SVD. The input and optimal singular
values compose the training data set of the learning model, and the learning phase optimises a
matrix of weights to predict the optimal thresholds of the SVD and to reconstruct the denoised
image.
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We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D
images (Chapter 4): US 2D videos allow the physician to analyse the temporal variation of an
anatomical feature; 3D images offer a full understanding of the spatial anatomy of the acquired
region, against a more expensive tool for the acquisition; US 2D images are simple to acquire
and process, but they offer a limited view of the anatomical part of interest. Video-based and
volumetric-based denoising are required for the processing of these signals since they account
for the characteristics of the data (e.g., spatial/temporal redundancy, anisotropy). However, the
application of these methods requires that the signal is fully acquired before its processing, thus
making the denoise through these methods intrinsically non-real-time. We achieve real-time
computation and maintain good results in terms of denoising and edge preservation through the
extension of the framework proposed for 2D images to 3D images and 2D videos. In this appli-
cation, the framework learns and replicates the dedicated denoising algorithms with an image-
to-image prediction; this allows us to apply a denoising method that accounts for the properties
of the specific signal, with real-time execution.

Finally, we show the validation of the denoising methods on synthetic signals, with a quantita-
tive comparison between the ground truth and the output of the processing method (Chapter 5).
The lack of ground truth signals is one of the main limits of the analysis of processing methods
applied to biomedical data. The clinical validation and visual analysis performed by medical ex-
perts and engineers remain the main methods for assessing the quality of a processing method on
medical data. However, the validation with synthetic signals allows us to quantitatively measure
the accuracy of the proposed methods through specific metrics.

Part III describes the contributions and novelties of the real-time super-resolution of US signals.
In particular, we present a novel framework for the real-time super-resolution of US 2D images,
with an application to US 2D videos (Chapter 6). In the context of the dynamic acquisition,
the resolution of each US image is affected by the required frequency of the video, since some
anatomical districts (e.g., cardiac) require a high acquisition frequency, to accurately acquire the
behaviour of anatomical features that quickly change during time.

We propose a novel framework that reconstructs the non-acquired scan lines through an interpo-
lating method; then, a deep learning model improves the results of the interpolation to match the
target image (i.e., the high-resolution image). In the experimental tests, we perform a quantita-
tive and qualitative evaluation of our framework on a large collection of US images and videos
acquired from different anatomical (e.g., muscle-skeletal, obstetric, abdominal) districts.

For signal approximation and reconstruction, we propose a novel method for the kernel-based
sampling of 2D and 3D signals (Chapter 7). In the experimental tests, we apply our method to
US 2D and 3D images, and we discuss the quantitative approximation results on synthetic 2D/3D
images and 3D surfaces.

Part IV presents the discussion and future works. We summarise the results of the denoising
and super-resolution methods in terms of contribution and novelties in the broader context of
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healthcare data management, ranging from data acquisition to providing one or more feedback
to the physician (Chapter 8). Then, we discuss future work, in terms of analysis and development
of novel methods for the further processing of US signals, such as segmentation, morphological
and predictive analysis.
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Chapter 2

US image acquisition and processing

We introduce the main methodologies for the acquisition of biomedical data (Sect. 2.1), the pro-
cessing methods for ultrasound signals (Sect. 2.2), Al, HPC, and imaging standards (Sect. 2.3),
and hardware, software, and tools for the experimental tests (Sect. 2.4).

2.1 Ultrasound image acquisition: background

The X-ray technique is the first acquisition method for biomedical imaging, developed in the
late 19th century; the properties of the X-ray wave allow the physicians to visualise the internal
structures of a patient, with the subsequent introduction of contrast agents to improve soft tissue
visibility. After World War II, the introduction of the ultrasound technique allows physicians
to visualise internal structures without applying ionising radiation, thus reducing the damage
to human cells. US acquisition benefits many properties, such as low cost, portability, and no
harm to the human body; however, ultrasound waves are less robust to perturbation than X-rays,
generating noisy signals that affect the visualisation and processing of the images. In 1967, the
introduction of computed tomography (CT) exploits the Radon transform to reconstruct 3D im-
ages through the collection of multiple X-ray projections. The CT requires the processing of
the acquired data for image reconstruction, thus requiring more expensive hardware and longer
acquisition time compared to X-rays and US. Magnetic resonance imaging (MRI) is introduced
in the early 70s and applies strong magnetic fields to change the spin of atoms in human cells.
The detection and processing of these changes are used to reconstruct 3D images of internal
body structures. MRI does not apply ionising radiation, even if contrast agents can be applied
to improve the visualisation of soft tissues. The generation of multiple magnetic fields requires
specialised hardware that makes MRI an expensive acquisition method. The use of radioac-
tively labelled markers was firstly introduced in the 50s, with the significant introduction of
fluorodeoxyglucose F 18 radiotracer in 1976; the positron emission tomography (PET) accounts
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Table 2.1: Comparison of different biomedical acquisition techniques.

Exam | Cost ($) [SM05] Ior.liz?d Prep.aration Acql.lisition
radiation time time
X-Ray 410 High None 10min
MRI 2048 Low 0-30min 10min
PET 1138 High 60min 30-45min
CT 1565 High 30min 10-20min
US 410 None None Real-time

for the electron-positron annihilation events of the radiotracer, which becomes stronger in sites
of high metabolic activity. The gathering of the concentration of active radioactive compounds
allows physicians to visualise physiological processes, such as the metabolic process of human
cells. In recent years, the joint analysis of different acquisition techniques, such as MRI-PET
or CT-PET, is spreading. Instead, the ultrasound examination is applied in conjunction with CT
or MRI through co-registration techniques to support surgery and patients’ treatments. Table
2.1 summarises the main differences among biomedical acquisition techniques in terms of cost,
acquisition time, and human body damage. Fig. 2.1 shows the different image outputs of the
acquisition methods.

Ultrasound acquisition Ultrasound acquisition is applied in 1947 by Dr Karl Theo Dussik,
who built the first tool to visualise the human brain and ventricles through ultrasonic waves.
Nowadays, ultrasound is widespread as an imaging technology in biomedicine (Fig. 2.2). It is
cheap, portable, and free of ionising radiation compared to other imaging modalities such as CT
and MR. The images are acquired in real-time, thus providing instantaneous feedback for the
visual interpretation of the physician and interventional procedures such as regional anaesthesia.
Modern US devices apply sound waves in the range of 1-20 MHz and the acquisition is per-
formed through a pulse-echo approach with a brightness-mode (B-mode) display: small pulses
are transmitted from the ultrasound probe into the human body. The pulse is generated with two
or three cycles of the same frequency, with a pulse repetition frequency (PRF) from 1 to 10kHz
(Fig. 2.3). An ultrasonic wave is a longitudinal wave with a short wavelength; it propagates in
any human part and is widespread thanks to its physical properties of reflection, scattering, at-
tenuation, and Doppler effect. US waves have beam-emitting properties and propagate in one
direction with strong directivity and in a straight line through the medium; the direction of the
ultrasound wave along the beam is called the axial direction, and the direction perpendicular to
the axial one is called the lateral direction.

The ultrasound waves penetrate the body structures along their path; when they pass through
adjacent parts of the body with a different acoustic impedance, a fraction of the ultrasound pulse
returns as a reflected wave, generating an echo that returns to the probe, while the rest of the
wave continues to penetrate along the beam to greater tissue depths. The amplitude of the re-
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CT MRI

PET US

Figure 2.1: Images comparison of different acquisition methods. Images courtesy of [YTN116],
[NEK*20].

flected echo is proportional to the difference in acoustic impedance between two adjacent media.
For example, interfaces between soft tissue and dense organs (e.g., bones) generate very strong
echoes due to a large acoustic impedance gradient. The acoustic impedance is a physical property
of a medium defined as the density of the medium times the velocity of the wave propagation.
Human body tissues have different acoustic impedances (Table 2.2): for example, air-containing
organs (such as the lung) have the lowest acoustic impedance, while dense organs have an higher
acoustic impedance. Ultrasound transducers (or probes) contain multiple piezoelectric crystals
which are interconnected electronically and vibrate in response to an applied electric current; the
ultrasound probe works both as a speaker, generating the ultrasound wave, and a microphone,
measuring the returned echo.

The reflected echoes are combined and processed to generate an image. High-frequency ultra-
sound waves (short wavelength) offer images of high axial resolution; in contrast, low-frequency
waves (long wavelength) generate images of lower resolution but can penetrate deeper struc-
tures due to a lower degree of attenuation. Defining the half-value depth as the distance at which
50% of the ultrasound energy has been dissipated, 1-MHz continuous ultrasound has a half-value
depth of approximately 2.5cm, while 3-MHz ultrasound has a half-value depth of approximately
0.8cm, at a fixed wave intensity of 1 /cm? [DCC95]. In US images, most biologic tissues
shows scattering structures. The speckle signal that provides the visible texture in organs (e.g.,
liver, heart) is the result of the constructive and destructive interaction of the acoustic fields be-
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Figure 2.2: Esaote ultrasound acquisition machines: MyLab X9 (left) and MyLab Omega (right).
Image courtesy of [CP11].

Figure 2.3: Ultrasound wave emission. Courtesy of [CP11].

tween multiple scattered echoes produced within the volume of the incident ultrasound pulse.

Finally, ultrasound waves not only penetrate the human body but also interacts with body tissue.
Ultrasound at low frequency and high intensity is used in the treatment of biological tissues to
selectively destroy focal lesions. Table 2.3 summarises ultrasound ranges and applications.

Ultrasound signals The signal is acquired by an ultrasound machine with polar coordinates,
and it is transformed into an image defined on a regular grid m x n, where the number of lines m
corresponds to the number of sensors of the probe and the number of columns n corresponds to
the depth of the acquisition. We process US signals in their Cartesian coordinates since most of
the mathematical operations are straightforward in Cartesian space; after the processing, USI is

28



Table 2.2: Acoustic impedances of different body tissues and organs [CA09].
Acoustic impedance

Body tissue 10 x 10° Rayls

Air 0.0004
Lung 0.18
Fat 1.34
Kidney 1.63
Liver 1.65
Blood 1.65
Muscle 1.71
Bone 7.8

Table 2.3: Applications of US waves. Courtesy of [XLL*16].
Ultrasound

Classifications Applications
waves
Low-intensity Therapeutic medicine, imaging medicine,
Ultrasound 9 . . i .
. . ultrasound (< 3W/em?)  medical diagnosis, and drug delivery.
Intensity C o . .
High-intensity Surgery, cancer ablation, and
ultrasound (> 3WW/cm?)  palliative treatment.
Low frequency Drug delivery, surgery, cancer ablation,
Ultrasound  ultrasound (20-200 kHz)  and palliative treatment.
frequency Therapeutic medicine, such as bone-fracture
Medium frequency healing, soft-tissue lesions healing,

ultrasound (0.7-3.0 MHz) inhibiting inflammatory responses,
and erectile dysfunction treatment.
High frequency

ultrasound (1-20 MHz) Imaging medicine and medical diagnosis.

converted back into polar coordinates, for a visualisation consistent with the acquisition process.

US signals can be acquired at different planes, through the manual/automatic movement of the
probe; furthermore, the physician can acquire both static and dynamic signals. These acquisitions
are associated with different input signals: US images, dynamic 2D US images (i.e., videos), and
3D volumetric images. Each of these types of signals has its properties and advantages. US
videos are acquired at different anatomical districts (e.g., abdominal, cardiac) and allow the
physician to analyse the temporal variation of an anatomical feature (e.g., the movement of a
muscle, the volume of the ventricle). This variation can be generated either by the shift of the
probe or by the movement of the anatomical part. US videos are acquired through 2D probes,
which capture sequences of images at a given frequency. The resolution of each frame is affected
by the required frequency of the video, since some anatomical districts (e.g., cardiac) require a
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high temporal detail, to better analyse the behaviour of anatomical features that quickly change
during time; in particular, the relationship between image resolution and video frequency f is
given by f = ¢/(2-d - 1), where c is the speed of sound, [ is the number of lines, and d is the
depth of the acquisition.

Volumetric data are usually acquired at obstetric anatomical district through a 2D probe which
is installed into an automatic tool; through the oscillation within a given range, equally
spaced slices are acquired and stacked into the 3D volume; volumetric images are intrinsically
anisotropic, due to the different resolution of each slice, with respect to the resolution of the
probe in its movement direction. 3D volumetric images offer a full understanding of the spatial
anatomy of the acquired region, against a more expensive tool for the acquisition. US 2D images
are simple to acquire and process, but they offer a limited view of the anatomical part of inter-
est. Furthermore, the processing of US 2D images is computationally cheaper than volumetric
images and videos, but can not exploit the spatial and temporal redundancies of the signal.

2.2 US image processing: denoising and super-resolution

The processing of biomedical images is an interdisciplinary field, requiring medical, mathemat-
ical, informatics, physical, biological, and engineering knowledge. The application of classical
computer science techniques is combined with the understanding of the acquisition tools and
properties, the biological characteristics of the patient, and the requirements in terms of medical
post-processing. More specifically, the processing of ultrasound images faces several challenges:

* Anatomy of the analysed anatomical district in terms of structures, geometries and textures
is relevant to evaluate the quality of the applied processing method;

* Instrumentation affects the output signal in terms of noise, resolution, isotropy, and arte-
facts; the knowledge of the physical properties of the acquisition tools allows us to optimise
the application of the processing methods;

* Acquisition modality, such as manual vs. automatic, static vs. dynamic, affects the output
signal in terms of artefacts and processing requirements. The processing of different sig-
nals (e.g., 2D vs. 3D images) requires methods that account for the intrinsic properties of
the signal;

* the clinical evaluation is a fundamental step for the evaluation of the performance of the
processing methods due to the lack of biomedical ground truth references; for this reason,
the qualitative validation of experts of US images allows us to evaluate the results in terms
of preservation of the anatomical features;
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* Industrial requirements set boundaries to the processing algorithms. The main industrial
and clinical constraint in the pre-processing of ultrasound signals is real-time calculation.
The physician must be able to see in real-time the changes in the signal as the probe moves.
In particular, the required constraint is about 30 milliseconds per image, which corresponds
to a frame-per-second resolution of 30Hz. This result must be guaranteed on current ultra-
sonic machines equipped with modern CPUs and GPUs. We test the denoising prediction
on GPU-based hardware, which replicates the hardware of an ultrasound scanner currently
in use.

* The medical application in diagnosis or intervention provides the foundation and moti-
vation for USI analysis; the processing depends on many medical factors, such as the
suspected disease, the anatomical district, and the planned post-processing/clinical steps.

In this context, we discuss background and related work for US image denoising (Sect. 2.2.1),
super-resolution (Sect. 2.2.2), and approximation and sampling (Sect. 2.2.3).

2.2.1 US image denoising: background and related work

Ultrasound acquisition is a widespread technology in medical diagnosis, with several benefits
in terms of cost, portability, and non-invasiveness. The main issues of the ultrasound technique
are a significant loss of information during the reconstruction of the signal, the dependency of
the signal from the direction of acquisition, and an underlying noise that corrupts the image
and significantly affects the evaluation of the morphology of the anatomical district. In partic-
ular, speckle noise is a multiplicative noise that is generated when the scale of organ tissue’s
structures is close to the ultrasonic wavelengths; different waves are reflected back and overlap
generating the perturbation in the signals that appears in the output image as darker and brighter
grains. Speckle noise affects the evaluation of ultrasound images, resulting in poor image con-
trast degree, inadequate and non-identifiable characteristics of the tissue and structure features,
and making it more difficult to identify geometries and edges of anatomical features, thus influ-
encing the accuracy of diagnoses. In this context, denoising is relevant and widespread in US
processing, and many works propose various appropriate denoising methods to address the spe-
cific features of ultrasonic images (Sect. 2.2.1). Ultrasonic image processing through denoising
methods has pros and cons: noise reduction improves visual evaluation and the application of
post-processing methods that use local information and are therefore influenced by noisy ele-
ments that alter the accuracy of numerical operators, such as convolution and interpolation. At
the same time, applying a denoising algorithm means altering the image and therefore potentially
the contours and anatomical structures. Additionally, image denoising increases the time from
data acquisition to screen display for the physician. In this context, it is relevant to consider
denoising as an additional tool for the visualisation of biomedical information, which does not
delete the image affected by noise but accompanies it. Possibly joint analysis of the two im-
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ages (i.e., noisy and denoised) allows the physician to have a complete picture and improve the
diagnosis. For these reasons, a valid denoising algorithm must satisfy the following properties:

» smoothing of pixels with high-gradient features;

* preservation of anatomical structures, edges, geometries, and texture properties;
* reduction of artefacts and blurring effects;

* computational cost compatible with real-time visualisation constraint;

* memory consumption compatible with hardware requirement;

* versatility with different anatomical districts;

* adaptability to the visual perception of a different physician, through the proposal of soft
and hard smoothing;

* qualitative and clinical validation by an industrial or medical expert, due to the lack of
ground truth references for the evaluation of the denoising properties;

* signal-driven denoising, taking into account the spatio-temporal properties of the input
data, including 2D and 3D images, and 2D videos;

* hardware requirements, in terms of CPUs and GPUs computing power.

Denoising of ultrasound images is relevant both for post-processing and visual evaluation by
medical experts. Despite some relevant works consider raw ultrasound images and videos
for cardiac segmentation [LFL*21, OHG"20], several works show the benefits of denois-
ing for segmentation [YQX'12, TGS™10, ZLRQI19], feature extraction [IKMOS8], classifica-
tion [WDW ™20, SJ21], super-resolution [KAR18], registration [DSFC™13], and texture anal-
ysis [PPBNOS5]. Furthermore, main ultrasound machine manufacturers include a denoising
filter in their scanners [urlb, urld]. In terms of hardware requirements, several ultrasound
machines manufactured by main competitors (e.g., Esaote, Philips) are equipped with GPU
cards [urlb, urlc]. Furthermore, some recent denoising methods for ultrasound images are devel-
oped on GPUs [PXdFABCH11, BSD18]. Finally, the application of GPUs to image processing
for future medical ultrasound imaging systems [SCY Y 11] presents the advantages of GPUs over
CPUs in terms of performance, power consumption, and cost.

US denoising: related work

We review previous work on the denoise of 2D/3D images and 2D videos.
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Non-local methods The Non-Local Means (NLM) denoising [BCMOS5] uses the patterns’ re-
dundancy of the input image, and each patch is restored with a weighted average of all the other
patches, where each weight is proportional to the similarity among the patches. The Bayesian
non-local mean filter [KBCO7] improves the NLM with the introduction of a Bayesian estimator
as a distance measure among the patches, which allows the user to better determine the amount of
denoising by the noise variance of the patch. The anisotropic neighbourhood in NLM [MNB13]
uses an image gradient to estimate the edge orientation and then adapts the patches to match the
local edges. The characterisation of the patches through a redundancy index [MZY20] improves
the self-similarity computation among patches. The improvement on the structure of the search
window is achieved through the computation of an optimal search window for each pixel [VP17],
according to the denoising degree of the related patch.

Anisotropic methods The denoised image is computed as the solution to an anisotropic diffu-
sion equation [PM90, Pat15], where the gradient of the image guides the diffusion process. The
variant [ YAO2] exploits the Lee [Lee80] and Forst [FSSH82] filters, which are edge-sensitive to
speckle noise. An improvement of the previous results [AFALO6] is achieved by applying the
Kuan filter [KSSC85] in the diffusion equation and revising the selection of the neighbourhood
used for the estimation of the statistical parameters. The anisotropic method introduces a class
of fractional-order anisotropic diffusion equations [BF07], using the Fourier transform to com-
pute the fractional derivatives, and the discrete Fourier transform to compute the fractional-order
differences.

Spectral denoising Denoising based on spectral decomposition transforms a signal into its
spectral domain and exploits the sparsity of the transformed signal to remove noise through a
threshold operation. Several transformations have been applied to image denoising, such as
Wavelets [MKRM99, CYV00, PSWS03, LZC*17], Curvelets [SCD02], Contourlets [DCZDO06],
and Shearlets [YWNL14]. To reconstruct the denoised image, the 3D block-matching [DFKE06]
computes and stacks similar patches through NLM; each stack is transformed into its spec-
tral domain with wavelet decomposition, denoised through a hard/soft threshold, and recon-
structed in the space domain. The denoised patches are aggregated by a collaborative filter.
The synthetic aperture radar block matching 3D (SAR-BM3D) [PPAV11] introduces a speckle-
based variant of 3D block matching; the similarity among the patches is computed by consid-
ering the probability distribution of the speckle noise as a distance metric. Furthermore, the
hard/soft threshold of the wavelet transformed signal is substituted by a Local Linear Mini-
mum Mean Square Error (LLMMSE) filter. The principal component analysis block matching
3D (PCA-BM3D) [DFKEQ09] improves the stacking operation of 3D block-matching by using
shape-adaptive neighbourhoods, which enables its local adaptability to image features. The 3D
transformation of each stack to the spectral domain is performed through the PCA [WEG87] and
an orthogonal 1D transformation in the third dimension.
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Low-rank methods Low-rank approximation computes the denoised image as the solution to
a weighted minimisation problem, whose cost function is the Frobenius norm [SJ03, CNP21,
Pat15] or the /; norm [EVDH10], between the input and the target images. The relation between
local and non-local information [DSL12] allows us to estimate signal variances, by interpret-
ing the Singular Value Decomposition (SVD, for short) through a bilateral variance estimation.
In [RRB12], a high-order SVD is applied to 3D blocks, and the denoised image is achieved
with hard thresholding of the decomposed signal. The Weighted Nuclear Norm Minimisation
(WNNM) [GZZF14] computes the stacks as in the 3D block-matching method, performs the
SVD on the stacks and applies a weighted threshold to the singular values, where higher weights
correspond to lower singular values, which capture the noisy component of the image. The col-
laborative filtering of WNNM for the aggregation of the denoised patches is performed as in the
3D block-matching method. The weighted nuclear norm and the histogram preservation [ZD18]
are combined in a single constrained optimization problem, which is solved through the alter-
nating direction method of multipliers [BPC™11]. The WNNM is extended to image deblurring
with several types of noise [MXZ17].

External learning A learned simultaneous sparse coding method [MBP109] integrates sparse
dictionary learning with non-local self-similarities of natural images. The non-locally centralised
sparse representation (NCSR) [DZSL12] exploits the non-local redundancies, combined with lo-
cal sparsity properties, to estimate the coefficients of the sparse representation of the input image.
The dictionary is learned by clustering the patches of the image into K clusters through the K-
means [Mac67] method and then learning a PCA sub-dictionary for each cluster. This method
has been further improved in [XYJ17] with a fast version based on a pre-learned dictionary and
achieving an improvement of computational efficiency. The structured sparse model selection
over a family of learned orthogonal bases [MZ16] is applied to the deblurring of images with
Gaussian noise.

Deep learning methods for denoising In the Noise2Noise algorithm [LMH™ 18], the network
learns to denoise images only considering the noisy data, without any knowledge of the ground
truth. The Noise2Void algorithm [KBJ19] further expands this idea, and it does not require
couple of noisy images for the training. This approach is relevant in biomedical fields, where
there are no ground truth images. The Noise2Self method [BR19] proposes a self-supervised
algorithm that does not require any prior information on the input image, estimation of the noise,
or ground truth data. The denoising of images [FZ20] is achieved through the extraction of
features from the noisy image through a convolutional neural network (CNN) and combining
the edge regularisation with the total variation regularisation. The combination of CNN and
low-rank representation [FJZ*21] is applied to detect anomalous pixels in hyperspectral images.
The multilevel wavelet convolutional neural network [WLJ*20] is applied for restoring blurred
images affected by Cauchy noise. The block matching Convolutional Neural Network (BM-
CNN) [AC17] integrates a deep learning approach with the 3D block-matching method; the
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denoising of the stacks is predicted through a DnCNN [ZZC*17], which is trained with a data set
of 400 images corresponding to more than 250K training samples. A feed-forward Convolutional
Neural Network smooths images, independently from the noise level, by exploiting residual
learning and batch normalisation. Then, the blocks are aggregated and the image is reconstructed,
as in the 3D block-matching algorithm.

Denoising of 2D US videos and 3D images The extension Block Matching 4D
(BM4D) [MKEF12] of the BM3D algorithm to volumetric images exploits grouping and collab-
orative filters, where similar voxels are stacked together into 4D groups. A variant of non-local
means denoising to 3D biomedical images [MCMB™10] takes into account the spatially varying
noise levels across the volumetric data, and automatically adjusts the strength of the filter through
a noise estimation approach. The K-SVD algorithm [AEBO6] represents the signal as a sparse
linear combination of atoms from an over-complete dictionary; the atoms are iteratively updated
through an SVD of the representation error to better fit the data. A 3D blockwise version of the
non-local means filter with wavelet sub-bands [CHP"08] is applied to biomedical images. A
learning-based method is applied to denoise 3D biomedical data [RHC™ 19] through a residual
encoder-decoder Wasserstein generative adversarial network.

Vidosat [WRB18] applies online transform learning to 2D video denoising; the patches are com-
puted either from corresponding 2D patches in successive frames or using an online block match-
ing technique, fully exploiting the spatio-temporal data correlation. In VBM3D [MBFEI12], 3D
spatio-temporal volumes are constructed by tracking blocks along trajectories, which are defined
by the motion vectors. Then, the denoising of the blocks is achieved through collaborative fil-
tering, by transforming each block through a decorrelating 4-D separable transform; finally, the
shrinkage and inverse transformation generate the denoised output. The formulation of the de-
noising of mixed noise as a low-rank matrix completion problem [JLSX10] leads to a denoising
scheme without strong assumptions on the statistical properties of the noise. The application of
the non-separable oriented 3-D dual-tree wavelet transformation [SLO3] gives a motion-based
multi-scale decomposition for video and isolates in its sub-bands motion along with different
directions.

Among state-of-the-art methods, we select three denoising methods: 2D-based method (e.g.,
Weighted Nuclear Norm Minimisation - WNNM [GZZF14]), 3D-based method (BM4D), and
Vidosat. In particular, 2D and volumetric methods (i.e., WNNM, BM4D) account for the spatial
relationship among patches, to exploit data similarity and remove the noise component. In con-
trast, video denoising (e.g., Vidosat) exploits both the spatial and the temporal dimensions of the
data.
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Low-rank approximation problems

Given a noisy signal Y, we want to estimate the ground truth signal X with respect to the noisy
component N, as Y = f(X,N) where f is a generic operator (e.g., additive, multiplicative).
Both the signals and the noise can be defined as 2D matrices m X n or as continuous functions
X,Y,N:Q C R? — R. In this context, a denoising method aims at finding an approximation
of the noisy signal that penalises undesirable solutions through a form of regularisation

X:argm)én{HY—XHZ—i—)\P(X)}, 2.1)

where ||[Y — X||? is the discrete sum/integral over the domain of the squared difference of the
noisy and ground truth signal, in the discrete and continuous context respectively. The P(X)
denotes a penalty function which is A\-weighted and is higher as the solution recedes the target
one, according to the desired properties. In this context, several formulations describe different
classes of representation and regularisation.

In sparse-representation models (e.g., Fourier, Wavelet), the predicted signal is represented as
a sparse representation ® of a dictionary of basis functions W. The minimisation problem
(Eq. 2.1) finds the minimum number of basis to represent the noisy signal and the penalisation
expresses certain properties of the dictionary-based representation, e.g., the reduction of high-
frequency components of the Fourier transformation, as

O = argm(gn{HY - Wo|*+ AP(©)}.

Total variation method is a variational model

A

X = arg max {/Q (Y (t) — X(t))> + )\P(X)}

where the penalisation is the integral of the norm of the gradient of the solution P(X) =
Jo|VX(t)|dt

The nuclear norm minimisation (NNM) model penalises the nuclear norm, which is defined as
the sum of the singular values of a matrix || X||, = >_.]s;(X)| as

X = argm)én {1y - X||* + A I1X]], } -

NNM can be equivalently solved as a low-rank problem by soft-threshold the singular values
of the variable matrix through a fixed quantity A, as shown in [CCS10]. The NNM is further
generalised to the Weighted Nuclear Norm Minimisation (WNNM, [GZZF14]), where different
threshold values are applied to each singular value, as

A~

X — argm)én{||Y—X||2+ ||X||w7*}, (2.2)
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where || X||, . = >_.|wis;(X)], with w; > 0 is a non-negative weight assigned to s;(X). In
this context, we discuss some numerical and computational properties of the singular values
decomposition (SVD) of a matrix.

SVD: numerical properties Every matrix A € C™*" has a singular values decomposition,
which is the factorisation of A into the product of three matrices A = USV”. Uis m x m
orthogonal matrix, whose columns u, ..., u,, are m—dimensional orthonormal left singular
vectors of A; V is n x n orthogonal matrix, whose columns vy, ..., v, are n—dimensional
orthonormal right singular vectors of A; S is an m x n diagonal matrix with non-negative entries
sorted in decrescent order. The singular values are uniquely defined; if the singular values are all
distinct, then the right and left singular vectors are unique. On the contrary, when some sets of
singular values are equal, the corresponding singular vectors span some subspace and any set of
orthonormal vectors spanning this subspace can be used as the singular vectors.

The columns and the rows of U and V are computed as the eigenvectors of AAT and ATA
respectively, while the diagonal elements s; of S are the square roots of the n eigenvalues of
ATA, with sy > sy > --- > s,. Moreover, the 2—norm and the Frobenius norm of A are
|A]l, = s1and ||A|, = /s?+ -+ s2 respectively, where r is the rank of A. The image
space and the null space of A can be computed as range(A) =< uy,...,u, >and null(A) =<
Viit, ...,V >. Geometrically, a m X n matrix is an application from R" to R™ that performs
a rotation in the domain (multiplication by V1), followed by scaling plus adding or deleting
dimensions (multiplication by S), followed by a rotation in the range (multiplication by U).

The matrix A of rank r can be approximated through a low-rank matrix of rank k, as Ay =
Zle S; - uiviT. This is equivalent to A = UkSng, where U, and V, are the first & columns
of U and V respectively, and S;. are the first £ singular values, i.e., the first £ elements of the
diagonal of S. Ay is the best approximation of rank £ of the matrix A. In fact, for every m x n
matrix A, rank target & > 1, and m x n matrix B of rank k£, ||[A — Axl|, < ||A-BJ,
where Ay is the rank-%£ approximation derived from the SVD of A. Furthermore, we estimate
the approximation error of A; with respect to A as ||A — Ay|l, = sgy1 and ||[A — Ayl =

Sy.q + -+ + s2. The low-rank approximation Ay, requires O(k(m + n)) instead of O(m - n)
memory. Finally, the solution of Eq. 2.2 can be computed through the weighted threshold of the
SVD decomposition as X = USV, where

A

. . _oQx 2 *
S = argmin { IS = S°II} + 18", }

SVD: computational properties Most of the algorithms developed for the computation of the
SVD find square roots of eigenvalues of AT A without actually computing the matrix-matrix mul-
tiplication, which is a computationally expensive operation. The reduction of the input matrix to
a bidiagonal form through the Householder transformation [Hou58] allows several algorithms to
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compute the SVD through bisection [DK90], divide and conquer [GE95], and QR factorisation
[Dem97] methods. Other algorithms directly apply on the input matrix through diagonalising
rotations, which are a typology of orthogonal transformation that keeps track of a matrix’s eigen-
values, eigenvectors, singular values, and singular vectors as well as angles and lengths. The
application of a sequence of rotations A* converges to the diagonal matrix of the singular val-
ues, i.e., lim, .. A¥ = S; in particular, the Jacobi rotation annihilates a symmetric pair of
off-diagonal entries. In [Kog55], the analogous of the Jacobi method for symmetric matrices is
applied. The application of the cyclic Jacobi method [FH60] consists of an iteration of sweeps
which does not require the determination of the largest off-diagonal element of A* and an or-
thogonal reduction of the m X n input matrix generates an output matrix where all the non-zeros
are in the upper n X n portion. The Hestens-Jacobi method [Hes58] accounts for the equivalence
between the orthogonalisation of two vectors and the annihilation of a matrix element by means
of orthogonal plane rotations.

Recently, the development of methods for the SVD accounts the parallel computation, favour-
ing those algorithms that allow a distribution of the operations among different processes. In
[SHAO3], a small increase in the computational cost of the method by sacrificing the conver-
gence rate allows the algorithm to distribute the calculation over several processes with benefits
in terms of computational cost. For further details on the SVD decomposition and its application
for low-rank problems, we refer the readers to [RV15], [CD06] and [KL80].

2.2.2 US super-resolution: background and related work

Through US videos, the physician analyses the temporal variation of an anatomical feature (e.g.,
the movement of a muscle, the volume of the ventricle), which can be generated either by the
shift of the probe or by the movement of the anatomical part. 2D US videos are acquired through
2D probes, which capture sequences of images at a given frequency. The resolution of each
image is affected by the required frequency of the video, since some anatomical districts (e.g.,
cardiac) require a high acquisition frequency, to accurately acquire the behaviour of anatomical
features that quickly change over time. The underlying image has a resolution of [ x d, where [ is
the number of scan lines (i.e., the lateral resolution), and d is the depth of the acquisition of each
scan line (i.e., the axial resolution). Axial resolution refers to the ability to discern two separate
objects that are longitudinally adjacent to each other in the ultrasound image; lateral resolution
refers to the ability to discern two separate objects that are adjacent to each other; the lateral
resolution is usually lower than axial resolution in ultrasound. The resolution of the image in
terms of lateral direction (i.e., the direction perpendicular to the US propagation along the beam
line) is primarily determined by the width of the ultrasound beam and the number of elements
(i.e., the piezoelectric crystals) that are activated to generate the US waves. Current probes vary
the number of beam-lines acquired by activating/deactivating piezoelectric crystals thus reducing
lateral resolution and image acquisition time. The axial resolution can be varied by changing the
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length and frequency of the pulses, which affect the penetration of the ultrasound wave. In this
context, we focus on lateral low-resolution image acquisition, reduce the acquisition time, and
subsequently reconstruct the high-resolution image without losing information in terms of data
depth. The US image super-resolution is relevant to improve the quality of the image, its vi-
sual interpretation by the physician, and post-processing steps, e.g., classification [ANMM™17],
diagnoisis [BSGR"21], and segmentation [LZT*22].

The spatial resolution of an ultrasound imaging system is limited by the diffraction limit to length
scales of approximately half of the wavelength of the transmitted beam; two or more point reflec-
tors that are spaced more closely than this limit can not be distinguished. We mention that super-
resolution microscopy [HW94] is a series of methods in optical and acoustic microscopy that ap-
ply fluorescence photo-activated localisation to break the diffraction limit of the sound wave and
visualise microvascular structures in the order of tens of micrometres. In this context, the super-
resolution microscopy is applied for the segmentation [BGH20], co-registration [ATK21], and
morphological analysis [SZA"21] of anatomical structures.

Finally, ultrasound images are affected by a significant speckle noise, which in addition to wors-
ening the visual interpretation by the physician, makes it more difficult to apply the classic super-
resolution methods, based on interpolation and/or deep learning. In fact, the presence of noise
can lead to an approximation of the reconstructed grey intensities that is incorrect and far from
the real values. In this context, the required characteristics of the super-resolution method are:

» Features preservation, including the edges and geometries of organs and tissues;

Artefacts reduction in terms of blurring and shading;

Real-time processing, due to the industrial and clinical requirements of USI processing
methods;

Up-sampling factors, the super-resolution methods apply to lateral resolution only, with
up-sampling factors of 2X and 4X;

Anatomical districts, with specialised methods for different anatomical organs, e.g., car-
diac, muscle-skeletal;

Input signal, 2D and 3D images, 2D videos.

US image super-resolution: related work

We review previous work on super-resolution for both generic and US images.
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Deep learning super-resolution of generic images In the last years, deep learning methods
for super-resolution are widespread. A sparse representation of patch pairs over two dictionaries,
one for both low-resolution (LR) and high-resolution (HR) images [PE14] captures the statisti-
cal dependencies between the sparsity patterns of the low and high-resolution coefficients of the
corresponding representations. In [DLHT14, DLHT15]. A fully convolutional neural network
exploits a large filter size in the non-linear mapping layer and accounts for three colour chan-
nels to train and predict HR images from LR images. A data clustering, which groups patches
and a Bayes strategy for patch selection [SPP15] provides a fast up-sampling based on external
learning. The main novelties of the enhanced deep super-resolution network [LSK™17] are a sim-
plification of the conventional residual network architectures and a multi-scale super-resolution
network that reduces the model size. A super-resolution generative adversarial network (SR-
GAN) [LTH'17] applies a deep residual network with skip-connection and a perceptual loss
between generated and target images. The reduction of artefacts of the previous method is ad-
dressed by the Enhanced SRGAN [WYW 18], which improves the network architecture, the ad-
versarial and the perceptual loss, removes the batch normalisation layer, and applies the residual
scaling and smaller initialisation values. The perceptual quality of ESRGAN is improved by the
ESRGAN+ method [RR20] through a novel Residual-in-Residual Dense Residual block, which
increases the network capacity without affecting its complexity. The introduction of weight nor-
malisation and wider features before rectified linear unit activation function [YFH20] achieves
good up-sampling results, with a low computational cost. Additional methods, classified ac-
cording to supervised/unsupervised approach, and domain-specific applications, are discussed
in [WCH20].

Vision-based super-resolution of generic images The interpolating up-sampling with cubic
kernels [Key81] offers high accuracy with low computational cost, through appropriate bound-
ary conditions and constraints on the kernel functions. The interpolated values are computed as
weighted average of pixels in the 2X2 (bilinear, [GIB03]) or 4X4 (bi-cubic, [MMP" 14]) neigh-
bourhood. A fast implementation of bilinear and bi-cubic interpolations [KAJ20] is applied to
Field Programmable Gate Array (FPGA), reducing the computational complexity and the FPGA
resources while providing an excellent trade-off between image quality and calculation simplic-
ity. After the training of two dictionaries for LR and HR patches [YWHMI10], the similarity
of the sparse representation of LR and HR patches with the respective dictionary is exploited
to generate the high-resolution image. Anchored neighbourhood regression [TDSVG13] and
its improved version [TDSVG14] learn a regression to correlate LR and HR images for each
atom of the dictionary and precomputed neighbourhood. The search of recursive patches within
an image [HSA15] is extended by allowing geometric variations, incorporating the geometry
by localising planes, and accounting plane parameters to estimate the deformation of recurring
patches. Bivariate rational fractal interpolation [ZFBT 18] improves the approximation results
with respect to polynomial kernels, preserving image edges and textures.

40



Learning-based US super-resolution The main novelties of the enhanced deep super-
resolution network [LSK™17] are a simplification of the conventional residual network archi-
tectures and a multi-scale super-resolution network that reduces the model size. Exploiting the
sparsity of the signal in the Fourier domain, the interpolation of missing data [YY18] allows
reconstructing the HR US image with a low computational cost. A super-resolution generative
adversarial network (SRGAN) [LTH™ 17] applies a deep residual network with skip-connection
and a perceptual loss between generated and target images. The reduction of artefacts of the
previous method is addressed by the Enhanced SRGAN [WYW 18], which improves the net-
work architecture, the adversarial and the perceptual loss, removes the batch normalisation layer,
and applies the residual scaling and smaller initialisation values. The perceptual quality of ES-
RGAN is improved by the ESRGAN+ method [RR20] through a novel Residual-in-Residual
Dense Residual block, which increases the network capacity without affecting its complexity.
The application of the SRGAN to US images [CKH™ 18] preserves both the anatomical structures
and the speckle noise pattern, thus improving the perceptual quality of the upsampled images.
Dilated convolution [LL18] extracts the internal recurrence information from the test image;
this method upsamples LR images when LR-HR examples are reduced. Fully convolutional
U-net [VSSB19] obtains high-resolution vascular images from high-density contrast-enhanced
US signals. In [TB20], the deep learning method exploiting feature extraction blocks, repeating
blocks, and upsampling layers apply an up-sampling factor in the range 2-8. A Self-supervised
CycleGAN [LLH'21] only requires the LR US image, and generates perceptually consistent
up-sampling results. Combining CycleGAN, two-stage GAN, and the zero-shot super resolu-
tion [DZTN21], it is possible to obtain super-resolution images with low blurring artefacts.

Vision-based US super-resolution Learning-based methods suffer from artefacts and blurring
when dealing with noisy signals. Several vision-based methods have been proposed, through
the years. The interpolating up-sampling with cubic kernels [Key81] offers high accuracy with
low computational cost, through appropriate boundary conditions and constraints on the kernel
functions. In [AMP*11], a novel deconvolution-based method applies the maximum a posteriori
estimation to the restoration of the tissue response and is validated with several tissue-mimicking
phantoms with specific scatterer concentrations. The Alternating Direction Method of Multipli-
ers [INWY10] is applied to the super-resolution of US images including deblurring and denois-
ing [MBK12] through a combination of ¢/; and /5 minimisation. In [YZX12], a deconvolution
method models the envelope radio-frequency and point spread function is robust to noise and
does not require the knowledge of the centre frequency of the acquired signal. Assuming a
Gaussian distribution for both the unknown signal to be restored and the point spread function,
in [ZBKT15] the reconstructed image is built through a posterior model with hybrid Gibbs sam-
pling [GG84]. The properties of the decimation matrix in the Fourier domain [ZWB™16] are
exploited to solve the super-resolution problem with a /,-norm regulariser, with p € [1,2]. The
envelope of radio frequency signal [KAR18] applies repetitive data in the non-local neighbour-
hood of samples.
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Device-based US super-resolution The second harmonic image [TJ04] contains less noise
and blur than the first harmonic image. Furthermore, the lateral resolution is increased, as the
harmonic pulse is auto-focused because the higher harmonics are generated in the centre of the
beam. Then, the image super-resolution is achieved by combining the first and second harmonic
images. Both spatial and temporal deconvolutions [Lin04] are achieved by accounting for the
transmit and receive processes, electrical transducer characteristics, and transmit focusing laws.
Combining phase-contrast imaging, angular spectral decomposition, and a super-resolution re-
construction technique [CHHOS], it is possible to recover the location and dimensions of objects
smaller than the imaging wavelength. The reconstruction through generalised Tikhonov regu-
larisation [LKOOQ6] is evaluated as a function of transmit-receive bandwidth and a focal number
of the transducer, by comparing the results with traditional B-mode imaging. The Time-domain
Optimized Nearfield Estimator [VEWO07] assumes an observation model based on the superpo-
sition of spatial responses; then, a maximum a-posteriori estimation finds the distribution and
amplitude of hypothetical targets that match the observed data with minimal target energy. As
a further improvement, the Diffuse Time-domain Optimised Near-field Estimator [EVW10] rep-
resents each hypothetical target in the system model as a diffuse region of targets rather than
a single discrete target, thus inducing a better signal approximation. The cellular microscopy
technique of multi-focal imaging[DGA ™ 17] is applied to localise the unique position of the scat-
terer of the signal; three foci receive multiple overlapping curves, and a maximum likelihood
estimation allows the identification of the source of the scatter.

Multi-frame US super-resolution The Bilinear Deformable Block Matching [BLM'08],
which is a registration method that accounts for the complex and deformable motion of soft
tissues, is applied to reconstruct the HR image by exploiting the shifting property of the Fourier
transform and the aliasing relationship between the continuous Fourier transform of the HR im-
age and the discrete Fourier transform of LR images [MBPK12]. The use of deep learning
for motion estimation among different frames [ANO16] reduces the effect of noise and arte-
facts and reconstructs HR images from a sequence of LR images. The modelling of the spatial
correlation of the speckle noise [COMS19] is applied to standard reconstruction methods, with
tissue-mimicking phantom and co-registered multi-images.

2.2.3 Image approximation and sampling: background and related work

Point sampling is widely used in several Computer Graphics applications, such as point-based
modelling [PKKGO3] and rendering [SP04], image and geometric processing [PJH16, Mit87].
Point sampling is strictly related to image half-toning [LAO1], which consists in simulating the
full tone range of an image through a proper pattern of dots. This problem was raised with
earlier mechanical printers, in order to reproduce the photographs in newspapers, using only
one colour of ink for recreating a 256 grey levels image. The image is replicated by placing
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more points in darker areas, according to local patterns, geometries, and colour intensities. The
technical evolution of modern printers has achieved very good results in replicating continuous-
tone images; for example, a modern laser printer can reach the resolution of 3K Dots per Inch.
Point sampling has been applied also to image reconstruction [TV91], anti-aliasing [KHOI1],
dithering [FHO2], QR codes reconstruction [CCLM13], and artistic visualisation [OH95].

Important aspects of point sampling are adaptation to the input signal in order to guarantee that
the sampling density is proportional to the image density or to the complexity of the signal in
a given area; feature preservation without either over-smoothing or artefacts in the sampling or
in the reconstructed signal; and spectral properties (e.g., blue-noise property) that allow us to
achieve visually superior images, as the distribution of photoreceptors in a primate eye possesses
the blue-noise characteristic [ Yel83].

Signal sampling and approximation is applied in the biomedical context for registra-
tion [RHAO7], features detection [SLW120], and reconstruction [MU19] problems.

Approximation and sampling: related work

We briefly review previous work on signal sampling, according to six main classes: physics-
based sampling, Gaussian mixture models and kernel-based sampling, stochastic sampling,
kernel-based image sampling, tessellation-based sampling, and optimal transport.

Physics-based sampling is driven by physical equations, such as fluid dynamics, engineering,
and electromagnetism. In [SGBW10], the particles (i.e., samples) are placed through a model
inspired by electrostatics. The particles’ attraction and repulsion are governed by the Coulomb
laws, and the optimisation of the particles’ position leads to an electrostatic equilibrium of the
system. In [FHHA19], the particles’ density is optimised by solving the Lagrangian formulation
of the governing equations of compressible flow. In [FT16], the principles of natural selection
acting on biological organisms are applied to the definition of a genetic algorithm for sampling,
where the population (i.e., the samples) evolves with crossover and mutation events until an
optimal solution is reached. In [Bos96], the interaction among particles is simulated through
mechanical laws, including particles’ interaction, and neighbouring effects. In [PS04], the mesh
is optimised by solving a static force equilibrium in a truss structure, where the edges of the
grid correspond to bars and the points correspond to the joints of the truss. The L,-Gaussian
kernels [ZZH19] reproduce the inter-particle energy to set up the sampling patterns, and the
surface is reconstructed by exploiting the distribution of the particles. In [ZGW13], the input
anisotropic mesh is transformed into a high-dimension isotropic space; then, the mesh vertices
are computed through the optimization of an energy functional. The sampling of images domi-
nated by low frequencies [HSD13] exploits the link between Fourier analysis and spatial statis-
tics, iteratively applying a force to the samples, that depends on the geometry of the samples,
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without generating artefacts (e.g., aliasing).

Gaussian mixture models (GMMs) approximate an input signal as a mixture of probability
distributions and have been successfully applied to different research problems such segmenta-
tion [GRGO6], denoising [TAF15], inverse problems [YSM12], inpainting [YSM11], registra-
tion [RGC*18]. GMMs are also relevant for clustering [BCGO00], where the most challenging
aspects are the variables’ selection [MCMMO09], initialisation [ YLL12], and partitioning [SDO7].
Finally, GMMs are ubiquitous in engineering [KS13], chemistry [DP20], biomedical [RB10],
and signal processing [YKY13].

Kernel-based sampling In [She04], the samples are associated with kernel functions, whose
linear combination with constant coefficients approximates the input signal. In [Fatl1], the in-
put signal is approximated in order to generate a point set with blue-noise properties. Each
kernel function has a predefined support, and a statistical model is defined to allow solutions
that further reduce the minimum of the energy functional. In [ZH16], Gaussian kernels with
fixed support are applied to sample the input image, through an optimisation algorithm, whose
variables are the samples’ position. In [OAG10], the optimal sampling conditions are obtained
by combining spectral analysis with kernel functions, and the samples are used to reconstruct
a continuous surface with the desired smoothness. In [CP99], super-resolution images are re-
constructed by applying a convolution operation and assuming a similarity among correlated
neighbours. In [CGW™13], a sampling method with blue-noise properties is defined by con-
sidering both spatial and non-spatial properties and by modulating the samples’ position with
a domain-independent similarity. In [Han14], Gaussian kernels are used for approximating a
continuous probability density function.

Stochastic sampling applies a probabilistic approach to generate a sampling where points are
tightly packed, with a minimum distance constraint. Dart throwing [Coo86] places the sam-
ples sequentially; if the new sample does not satisfy the constraint, then it is rejected. This
method can be applied to surface sampling [BWWM10] and image rendering [DW85]. In the
hierarchical approach of the dart throwing algorithm [WCEQ7], the domain is subdivided into
quad-tree regions, and the samples are placed only at active squares (i.e., where a sample is
not already present). In [DHO6], a very efficient algorithm for generating Poisson-disk distribu-
tions is achieved by representing the available neighbourhood for the insertion of a new sample
through a data structure called scalloped region.

Kernel-based image sampling optimises the approximation accuracy of the input image,
through the minimisation of an energy functional. In [PQW08], the input image is compared
with its sampling according to three metrics: luminance, contrast, and structure, integrated with
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the tone similarity. In [FP04], a perceptually-based approach is proposed for progressive render-
ing, where samples are added through an iterative refinement, by computing the distance between
the original image and its approximation with contrast maps corresponding to spatial frequency
bands [PFFG98]. Constraints on the edge [Li06] and greyscale [AA92] preservation are also
added to improve the quality of the image sampling.

Tessellation-based sampling methods apply a centroidal Voronoi tessellation, whose vertices
provide a sampling of the input domain. Lloyd’s method [L1082] computes the centres of the tes-
sellation through an iterative algorithm, where the vertices are updated by computing the mass
centroid of the Voronoi regions. In [DHVOSO00], the Lloyd’s algorithm is specialised in half-
toning applications. In [BSD09], a variant of Lloyd’s method is proposed by imposing that each
point has the same capacity, which is defined as the area of the related Voronoi region, weighted
with a density function. This method enhances the blue-noise characteristics and the density
function adaptation of the sampling. In [Sec02], a variant of Lloyd’s method is defined by con-
sidering weighted centres. In [DOO07], the Voronoi tessellation is built according to a density
function defined on the input domain. In [CYC*12], a variational approach is defined by com-
bining the centroidal Voronoi tessellation with the capacity-constrained one. In [SG95], bubbles
are placed on the domain and are governed by inter-bubble forces; when a stable configuration
is reached through a dynamic simulation, the tessellation is formed by connecting the centres of
adjacent bubbles. In [CZC™"18], surface sampling and reconstruction are computed through iter-
ative centroidal Voronoi tessellation, based on a local approximation of the surface with a best-
fitting plane. The generation of blue-noise sampling through Wang tessellation [KCODLO06] is
achieved with a recursive approach, which adaptively splits the tiles and relaxes the tessellation
to match the point set.

Optimal transport [KMM 03] is applied to generate high dimensional sampling for the com-
putation of the Monte Carlo integration of a generic function. In [DGBODI12], the capacity-
constrained Voronoi tessellation is formulated as a continuous minimisation problem based on
optimal transport and is applied to generate a blue-noise sampling without local artefacts. The
optimal transport problem is progressively solved on a sequence of discrete measures [Mérl1]
that converge to the optimal solution. In [PBC*20], the sliced optimal transport projects and
solves the problem onto repeated 1D dimensions; in particular, the distance to be minimised is
defined as the integral over the slice directions between the projections of the input points on
the selected direction and the orthogonal projection of the density function. In [QCHC17], a
multi-class sampling is computed as a constrained barycentre of probability measures.
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2.3 Al HPC, and ultrasound imaging standards

We introduce artificial intelligence (Sect. 2.3.1), high-performance computing (Sect. 2.3.2), and
imaging standards (Sect. 2.3.3) background for the management and processing of ultrasound
data.

2.3.1 Artificial intelligence

Nowadays, the use and applicability of artificial intelligence for signal processing, in particular
images and videos, is widespread through the availability of large data sets and the development
of hardware and parallel computing techniques. The development of artificial intelligence meth-
ods that are efficient for the processing, approximation, and classification of images becomes
relevant. Artificial intelligence methods take advantage of image redundancy, recognise com-
plex patterns, and provide quantitative assessment for images (e.g., classification), showing high
potential to assist the user in the acquisition of accurate and reproducible results. Machine learn-
ing (ML) is a branch of artificial intelligence that deals with large data sets to create systems
that learn or improve their performance. Through the optimisation of a network of variables, ML
methods allow us to learn a proper transformation from an input set to an output set. Deep learn-
ing is a subset of ML that processes and automatically learn mid-level and high-level abstract
features from large data sets of images through multi-layered neural networks.

The area of Al in health and healthcare has seen rapid developments due to the increasing avail-
ability of health data, combined with unprecedented advances in Al and computation capabil-
ities. Al systems can support humans allowing them to optimise the diagnostic examination
workflow and improve the analysis of diagnostic images. The most recent algorithmic progress
improves the quality of the acquired data and reduce the scan time; moreover, they can speed up
the diagnosis and increase the diagnostic accuracy, by supporting the physician in the analysis
of the images (e.g., ultrasound and magnetic resonance) and in the analysis of laboratory or his-
tological data. Through quantitative information extracted by Al tools, radiologists might spot
problems that are not immediately obvious to the human eye, especially in the case of advanced
imaging techniques, such as functional imaging. AI, ML, and DL allow medical specialists
to integrate imaging data with information from electronic medical records (e.g., longitudinal
patient data, population health platforms) to provide a rich source of new insights for medi-
cal research, such as the identification of new protocols for imaging. Combining acquired data
with predictive analysis, ML and DL methods provide significant benefits also supporting the
management and prioritisation of medical analysis, improving intervention planning and pre-
venting unnecessary re-admissions and further testing. From the technological perspective, all
these aspects imply the need to expand their intra-operative capabilities, create operative equip-
ment compatible with different imaging methodologies or with the procedural environment, and
develop devices/accessories for navigation and interaction.
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In this context, deep learning is widespread in the analysis of US images, for lesion/nodule
classification, organ segmentation, and mass detection. The application of deep learning and
task-specific clinical knowledge [LGL*19] allows us to automatically detect and classify thy-
roid nodules, with different types of nodule diagnosis and achieves better performances than
experienced radiologists; in [LBK" 18], the presence of metastatic lymph nodes is evaluated
through DL techniques as a prognostic indicator for thyroid carcinomas. In the breast anatomi-
cal district, several works apply learning models for the classification of tumours; transfer learn-
ing and colour conversion [BGOF'19] are applied to classify tumours, comparing the results
with the assessment of experienced radiologists. The segmentation of ROIs is also crucial to
help the physicians and processing algorithms to evaluate and classify tumours; Sobel opera-
tors are applied to obtain a gradient magnitude image [GLR ™ 16] to classify breasts tumours into
three major types: cyst/mass, fatty tissue, and fibro-glandular tissue. In the obstetric anatomical
district, several clinical assessments are performed through Al techniques, such as respiratory
morbidity [BAPMCG™19], identification and classification of fetal standard planes [YTN'18],
and prediction of follicles’ maturity during the reproductive cycle [LFL*20]. Other applica-
tions of deep learning in US concern texture analysis for the prediction of hypertension in preg-
nancy [GBL*21], quantitative analysis for evaluating COVID-19 pneumonia [CHY*21] and
spontaneous preterm birth [BPMJ 18], co-registration with 3D MRI and CT [WHA"21], real-
time guidance for screw insertion for scaphoid bone fixation after a fracture [ASR'15]. The
application of deep learning methodologies in ultrasound processing requires attention to the
design of the training data set, metrics, and learning architecture, to prevent the generation of
patterns/artefacts. For a further review of deep learning methods for ultrasound processing, we
refer the readers to [LWY 19, vSCE20].

Deep learning background Deep learning is a class of machine learning methods with multi-
ple levels of representation, and it is composed of several non-linear layers that, starting with the
raw input, transform the representation from the previous level into a representation at a higher
level, with a reduction of the number of parameters that are applied to represent the image. With
the account of large data sets and the composition of a large set of layers, deep learning methods
attain very complex features and inferences. In this class of methods, one of the main distinc-
tions is between image-to-label and image-to-image models: the goal of image-to-label models
is to classify the training data according to two or more classes, for example, objects family or
biomedical pathologies; the goal of image-to-image models is to start from an image and recon-
struct another image as output with certain properties, as denoising or super-resolution problems.
Deep learning methods are also classified between supervised and unsupervised, according to the
prior knowledge of the output label/image.

Among deep learning methods, the convolutional operator is widespread for its property of lo-
cal description and interpretation of images; its application leads to a sub-class of deep learning
models named convolutional neural networks (CNNs). The convolution operator captures impor-
tant features inside the images, such as contrast pixels and edges that are more representative of
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the objects in the image, resulting in the reduction of memory use and computational cost. Also,
the convolution operator allows to share the parameters (i.e., the variables of the model) among
different patches of the images; this property allows the network to account for the information
redundancy inside each image.

Each layer of a convolutional network generally performs three steps (Fig. 2.4). In the first step,
the layer applies multiple convolutions through a set of operators (i.e., kernel filters). Next, the
pooling function applies further changes to the output of the layer, according to the statistical
values of nearby outputs. For example, max pooling modifies an output value according to
the maximum value of its rectangular neighbourhood region, while mean pooling considers the
average value of the neighbourhood region. The pooling operator generalises features extracted
by convolutional filters and helps the network to recognise the features independent of their
location in the image, thus emphasising the convolutional aspect of CNNs where neighbourhood
values have an impact on any given node. Finally, activation functions introduce a non-linear
element into the processing of the data of the network that allows each layer to operate on the
input data and feed or not the output information to the next layer. The role of an activation
function is to produce a mapping from an input real number to a real number within a specific
range to determine whether or not the information within the node is useful. The values produced
by the activation function depend on the type of activation function which is used, e.g., sigmoid,
rectified linear unit, softmax.

Each kernel filter is associated with a set of variables (i.e., weights) that are optimised until
the network is able to approximate the desired output with a proper accuracy. The number and
dimension of each kernel depend on the architecture/purpose of the network, and these are two
of the main hyper-parameters to be optimised for the improvement of the network’s accuracy.
Additional relevant hyper-parameters are the number and connections of the layers (i.e., the
depth of the network) and the accuracy of the optimisation method.

Given a network with L layers, a set of kernel filters F' each of size m X n, usually selected as
odd numbers (e.g., 3 x 3), we apply the convolution at layer [ of the filter f to the input X ([) as

Xij(l+1 Zth /2] k=21~ Xig (1)

h=1 k=

Some relevant parameters are the padding, which allows the convolution operator to process
boundary values, and the stride, which allows the operator to process all the data or a selection
of it. In addition, the bias adds a variable as a linear component of the convolution filter to
improve the approximation of linear transformations between consecutive layers. Finally, the
dropout regularisation is a computationally cheap way to regularise a deep neural network by
probabilistically removing inputs to a layer and generating more robust networks.

We introduce forward propagation, where the data is provided to the first layer and advances the
network through the designed layers. The starting values of the variables are initialised through a
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Figure 2.4: Example of Convolutional Neural Network.

proper method (e.g., normal distribution), and then optimised through an optimisation algorithm
(e.g., Adam [Zhal8]). After the computation of the predicted output y of the network, this value
is compared with the expected output y through a loss function, as mean squared error (Eq. (2.3)),
mean averaged error, or logarithmic-based error. With n input data samples, the loss function is
defined as

1 & R
L= ;Z“%_%‘Hz' (2.3)
=1

Backpropagation is one method of training a network by minimising the loss function, which
represents the accuracy of the network to predict the desired output. To minimise the loss, a
gradient descent optimisation algorithm [Rud16] is applied and the errors are back-propagated
from the last up to the first layer of the network. Gradient descent computes each weight as the
negative of the learning rate multiplied by the partial derivative of the loss function with respect
to the weights. Backpropagation reduces the number of calculations required to compute the
gradients compared to forward propagation and reduces the approximation error of the network.

Among image-to-image deep learning methods, several architectures are defined by the number
of layers, their connections, and the setting of the hyperparameters. Autoencoders (Fig.4) are
widespread for their efficiency and are composed of two main steps: the encoding phase projects
the information extracted by convolution operators into a smaller representation, composed of
a reduced number of elements in a higher-dimensional space; the decoding phase projects back
to a dimensional space and resolution as the expected output data, which may or may not be
the same as the input. The optimiser learns the reduced number of variables that codify the
representation of the image from the encoded data to the decoded data. Furthermore, connections
among layers of the decoding and encoding phase allow the network to increase the accuracy of
the approximation.

Generative adversarial networks (GANSs) efficiently represent the training data, making it more
effective at generating predictions similar to the expected target of the data set (Fig. 2.6). A GAN
is composed of two concurrent networks: a discriminator D and a generator (G. The generator,
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Figure 2.5: Example of an auto-encoder network. Image courtesy of [JTJT20].

for example, an autoencoder network, generates a prediction from an input image; the optimiser
trains the network to generate a predicted output that resembles the expected output (i.e., the
target of the data set), according to a defined loss. The discriminator is a network that is trained
to classify target images and generated images; the weights of the network are optimised to
recognise the first ones from the second ones. The communication between the two networks
is bidirectional and concurrent: the generator provides its output to the discriminator, which
classifies it as a target or generate. At the same time, the discriminator provides its feedback to
the generator as a quantification of the number of fake images that have been correctly classified
as the output of the generator itself. Unlike standard CNNs, where the measure of the accuracy
of the prediction is performed through a static indicator (e.g., the mean squared error), GANs
analyse the accuracy of the prediction with respect to the target through an additional network,
which increases the accuracy of the prediction with respect to the expected target. A complete
survey on deep learning methodologies for image processing is presented in [PC20].

Deep learning methods for image-to-image regression The VGG19 [SZ14] introduces Con-
volutional Neural Networks (CNN) pushing the depth to 1619 weight layers, using small con-
volution filters of 3 x 3 size, with an application to large scale images classification. The
Pix2Pix [1ZZE17] method i1s a Generative Adversarial Network (GAN), where the generator is a
U-net [RFB15], the discriminator is an encoding network [KSH17], and the loss function is based
on the binary cross-entropy. The deep convolutional generative adversarial network [RMC135]
applies unsupervised learning for image classification and the generation of natural images, ex-
ploiting batch normalisation, rectified linear unit activations, and removing fully connected hid-
den layers. CycleGan [ZPIE17] learns to translate between domains without paired input-output
examples. The addition of a perceptual loss as an optimisation target of the generator [GEB16]
allows the network to improve structure preservation. The introduction of a spectral normalisa-
tion as weight normalisation technique [MKKY 18] allows to stabilise the training of the discrim-
inator in a GAN. For a further discussion of image-to-image deep learning methods, we refer the
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Figure 2.6: Example of Generative Adversarial Network. Image courtesy of [FFC*20].

reader to [KK19].

2.3.2 High-performance computing

Nowadays, technological evolution allows us large data acquisition that is elaborated by com-
plex multidisciplinary applications. Parallel computing enables us to solve big data problems
exceeding the limits of memory and reducing the computation time through the synchronised
usage of more processes. The method and/or the data are divided into multiple portions that are
allocated to one or more processes and solved concurrently. In this context, the application of
high-performance computing (HPC) methodologies, the accounting for modern HPC resources
(e.g., computing clusters, cloud computing), and the development of proper parallel implemen-
tations of processing algorithms become relevant to accelerate intensive computation for solving
problems in numerous data science applications.

Modern HPC resources are typically highly heterogeneous systems, composed of multiple CPUs
and accelerators; the latest generation CPUs are hierarchical, accounting of multicore processors
and supported by powerful specialised accelerators, such as graphics processing units (GPUs).
These resources offer significant computational power in the order of TFLOPS, which is achieved
by exploiting such huge parallel architectures. The development of efficient software takes into
account efficient data management; the computational performance is dominated by communica-
tions among processes and memory traffic, rather than floating-point operations of the individual
process; moreover, the different kinds of processors and accelerators pose new and major issues
in terms of memory management and data access.

Over the past decade, HPC has been increasingly introduced into image processing and biomed-
ical applications to solve computational and big data challenges. In this context, HPC is
widespread for the training of learning models in US processing; for example, for the localisa-
tion of common carotid artery transverse section through RCNN [JGB*20], automatic segmen-
tation of the carotid artery and internal jugular veins [GVV120], fetal standard planes recogni-
tion [PLLZ21], and segmentation and classification of anatomical structures [PBAT19]. HPC

51



Figure 2.7: Amdahl’s Law showing the speed-up (y—axis) with respect to the number of pro-
cesses (rx—axis) for different fractions of sequential code.

and cloud computing also poses new challenges in terms of medical data privacy and secu-
rity. For a deeper analysis of HPC for biomedical data, we refer the reader to the DeepHealth
project [CGB19].

High-performance computing background The main reasons for using a parallel environ-
ment are the access to larger memory and higher computational power. Parallel computing can
be divided into two main categories: data parallelism and model parallelism. In the first case, all
the processes execute the same algorithm on different data, while in the second case all the pro-
cesses access the same data while executing different parts of the algorithm. The choice between
the two approaches depends on the complexity of the data rather than the independence of the
algorithm’s subroutines. In both cases, communication and balancing among processes and data
distribution become relevant for optimising the computational cost without facing bottleneck is-
sues. Unfortunately, the memory and/or the overall computing power can not be calculated as
the simple sum of the individual components, due to the complexities arising from the commu-
nication between the processes and the sharing or duplication of the necessary data.

To measure the efficiency of a parallel implementation, we introduce some quantitative measures
that account for the computational performance with respect to single-process execution. Given
p processes, and defining 7' as the execution time of an algorithm on a single processor and
T, as the execution time on p processors, we define the speedup as S, = T/T,. In practical
cases, S, < p, since the execution time on p processes is higher than the execution time on
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Figure 2.8: Example of HPC architecture with CPUs, GPUs, and inter-nodes communication.
Image courtesy of [WLL16].

one process divided by the number of processes, i.e., 7, < T3 /p. To quantify the efficiency of
our parallelisation, we introduce a quantitative measure £, = S,/p that accounts the distance
of our parallelisation from an ideal distribution of the algorithm among the processes; in fact,
E, < 1. There exist different reasons for the loss of efficiency in parallelisation: the use of
different processes includes the addition of communication among them and synchronisation in
the data communication that leads to barriers in the method and consequently to an increase in
the execution time. Then, the load unbalance among processes implies that they do not have
exactly the same amount of work, leading to idle time for some processes. Finally, the algorithm
has subroutines that are inherently sequential and their execution times can not be reduced inde-
pendently of the number of processes adopted. The addition of these overheads implies a loss of
efficiency in the parallel code.

This result is summarised by Amdahl’s Law (Fig. 2.7). Given Fj be the sequential fraction of a
code, and F), the parallel fraction with p processes, with [, + Iy = 1, the global execution time 7},
is given by the execution time of the sequential part F77 plus the execution time of the parallel
part F,,(11/p), where T} is the execution time of one process; as result: T, = T} (Fs + F,/p). In
addition, the parallelisation introduces a communication overhead among processes, that further
reduces the speed-up. Amdahl’s Law is then refined as

T,=T(Fs+ F,/P)+ T,

where 7. is a fixed communication time and establishes that the number of processes should not
grow over the ratio of scalar execution time and communication overhead, since the efficiency
tends to decrease as the number of processes increases.
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HPC resources for deep learning HPC resources are usually composed of multiple nodes,
each one composed of a set of multi-core CPUs and a set of GPUs. Each node shares the same
private memory, while the passage of data between different nodes is managed through inter-
nodes communication methods (Fig. 2.8). The parallelism inside a single node is more efficient
when the number of processes is not greater than the number of cores since the communication
among processes is faster but the quantity of memory is limited. On the contrary, multi-node
parallelisation allows the HPC model to account for an increased quantity of memory and to
apply a higher number of processes.

In this context, we can exploit HPC for deep learning as

* Data parallelism by splitting the images among different processes;

* Model parallelism by splitting the algebraic operations among different processes.

The data parallelism involves the distribution of the images among the nodes of the computing
resource. This allows us to increase the batch size, i.e., the number of images loaded and pro-
cessed simultaneously for each process. The model parallelism involves the parallelisation of
the operations performed by the layers of the network. In particular, the convolution operation
between the input data X and the convolution filter K is equivalent to multiplying the input data
by a Toeplitz matrix. Given X as a n X n matrix, and K as a m x m matrix, with n = 3 and
m = 2, we unroll k into a sparse matrix of size (n —m + 1)? x n?, and X into a n? x 1 vector.
We can compute the sparse matrix-vector multiplication as

Xll
X12
X3
X21
X22 =
Xa3
X1
X
X33

Kii; Kiz 0 Ky Ky 0 0 0 0
0 Ki Ki2 0 Ky Ky 0 0 0
0 0 0 Ki Kio 0 Ky Ky 0
0 0 0 0 Ki Kiz2 0 Ky Ky

K1 X1 + KipXgp + Kg1 Xy + K2 X22
K11 X2 + Ki2Xi3 + K91 Xopp + K32 X23
K11 X1 + Ki2Xos + K91 X1 + K32 X32
K11 X + Ki2Xo3 + K91 Xs + K32 X33

and convert the result into a n — m + 1 square matrix

K1 X1 + KXo + Ko Xo; + Ko X222 K1 X + K2 X3 + Ko Xogg + K9 X23
K1 X9 + Ki2Xos + K91 X351 + Ko X32 K1 X9 + Ki2Xo3 + Ko X3 + K92 X33.

This operation has lower complexity than a fully general matrix-matrix multiplication and is
parallel among the processes inside each node.

2.3.3 Imaging standards

Nowadays, with the development of different imaging techniques (e.g., US, MR), numerical
technologies are dominant in diagnostic imaging. Thus, the management of medical images is
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inherently based on information technologies, making computers at the core of generation, mem-
orisation, transmission, and access to those images. In this context, it is necessary to determine a
universal standard system for the transmission of biomedical images. All the companies supply-
ing equipment for the production of images apply as communication protocol the digital imaging
and communications in medicine (DICOM) standard to guarantee a high interconnection and in-
teroperation capability. The DICOM standard is composed of a multi-part document made of
18 modules (Fig. 2.9). Part 3 Information Object definitions specify the information objects to
be exchanged and the definition of the semantics of each data element. This part is very long
due to the various existing imaging modalities, that require many technical parameters. Part 4
Service Class specifications describe the services for exchanging information, like the images
themselves or other information useful to manage the images. Part 16 Content Mapping Re-
source defines the terminology, specifically how existing terminological resources can be used in
DICOM, and how to reuse grouped content items in DICOM Structured Reporting documents.
Part 5 Data Structure and Encoding describes how to organise the information objects specified
in Part 3 into a linear bitstream, in order to be sent over a network connection or stored in a file.
This comprehends all aspects related to image compression. Finally, Part 2 Conformance spec-
ifies how to claim conformance to the DICOM standard for a particular product, meaning how
to write the document called conformance statement in detail. This standard not only defines a
transmission protocol for images but also regulates the memorisation of those images. Together
with the image, this standard permits the achievement of different other pieces of information
that identify the patient, the exam parameters, and the image itself. Indeed the information of the
DICOM element is composed by:

a tag that identifies the element and the group to which the packet belongs to. Where the
group is the DICOM entity associated with the data and the element is the type of attribute
contained in the packet. As an example, group 0100 identify the patient entity, and in this
entity, element 0010 identifies the surname;

a type indicator that identifies the format of the information memorisation;

the byte length of the transmitted information;

the real principal information in the format indicated by the previous fields.

Besides the public tag, which is present in all the data saved through the standard, there are also
private tags, that are inserted by the specific company, and contain information that depends on
the specific implementation. However, such information can be fundamental for the processing
and correct visualisation of the image. An in-depth analysis of DICOM standard [Pia08] dis-
cusses several properties, such as communication protocols, storage and archiving, encoding and
compression, anonymisation, encryption, and disaster-proof design.
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Figure 2.9: DICOM standard multi-document organization [Gib08].

Data security The availability of large amounts of data allows us to apply artificial intelligence
techniques for signal processing. While a lot of synthetic and natural data are available, the
access to medical data is limited, both for patients’ privacy reasons and for the exclusivity of
the data linked to hospitals and medical companies. Large biomedical data sets provide huge
opportunities to improve the health sector; data analytics allow hospitals to monitor diseases and
outbreaks, predict patients’ behaviours, and provide risk stratification for individual patients.

In this context, the detail and diversity of information collected in the healthcare system and
biomedical research are largely increasing, with clinical and administrative health data being
complemented with radiomics data. The processing of large amounts of data in the biomed-
ical field must take into account the privacy and protection of information. In fact, the data
sets contain metadata regarding the patient’s personal and clinical information, such as patients’
identification, their psychological or medical conditions, and medical services provided. Data
privacy in healthcare is critical since keeping patients’ information secure and confidential helps
in building trust between patients themselves and the whole healthcare system, including physi-
cians and hospital services. Also, the evolution of technologies for cloud storage and the online
processing of data support the development of blockchain cryptography [SS21] and communi-
cation protocols [AHRH™"17]. Some advances in biomedical privacy problems and perspectives
are discussed in [MEO13] and [Mit19].
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2.4 Experimental set-up

Data set of ultrasound signals

We refer to 2D images as m x n matrices, 2D videos as m X n X t tensors, where each frame has
am x n resolution, and ¢ frames are acquired. We refer to 3D (volumetric) images as m X n X p
tensors, where p planes are acquired, and each plane has a m x n resolution. Finally, 3D meshes
can be extracted from 3D images; in this case, the signal is represented as a set of vertices } and
an adjacency matrix /C, e.g., a set of triangles.

Biomedical data For our tests, Esaote made available a large data set of images, videos, and
volumetric images, belonging to different anatomical districts. This allows us to apply the learn-
ing techniques and specialise the developed methods on the type of data and anatomical district.
In particular, our data set contains more than 10K ultrasound images at different resolutions
and is acquired from different (e.g., muscle-skeletal, obstetric, abdominal) anatomical districts.
Also, we consider 2D videos (e.g., 90 cardiac district videos, 600 x 300 x 170frames exemplary
resolution, and 3D images (e.g., 80 obstetric district 3D images, 600 x 500 x 128 exemplary
resolution).

Synthetic data In some contexts, synthetic signals are required for testing specific methods.
Synthetic signals shall respect the properties of US signals, that are affected by speckle noise.
As synthetic data, we consider the SIPI data set [Web97], which is composed of 44 ground truth
images of different sizes, organised in different classes (e.g., humans, landscapes). We apply
artificial speckle noise with different levels of intensity: given a noisy image ¥ = X + N X,
where X is the normalised ground truth image, we define the artificial multiplicative noise
N(z) = V120u, where u ~ U(—0.5,0.5), U is a uniform distribution, o is the noise intensity,
and x is a pixel of the image. We also consider volumetric images (e.g., phantom cyst) and 2D
videos (e.g., man talking): on volumetric images, noise is applied slice by slice, while in 2D
videos, noise is applied frame by frame. Finally, we test some of our methods with different
types of noise: Gaussian, Salt & Pepper, Exponential, and Poisson.

Hardware and software

HPC Cluster We exploited the large computational performance of the CINECA cluster to
apply our methods to a parallel environment. The CINECA Marconil00 cluster occupies the 21st
position in the top500 list [urla]. The cluster uses 980 nodes, each with IBM Power9 AC922 at
3.1GHz 32 cores and 4x NVIDIA Volta V100 GPUs per node, with NVlink 2.0 16GB. We have
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access to 40K hours on Marconi V100 through two ISCRA-C projects: US-ML-SR and IMG-
DEN. We have performed the training on the Marconi V100 cluster, exploiting the HPC resources
on both CPUs and GPUs through a parallel implementation of our deep learning framework on
multiple nodes.

Workstation We perform some of our tests on a standard workstation with 2 Inteli9-9900KF
CPUs (3.60GHz), 1 Nvidia GeForce RTX 2070 GPU, and 32 GB RAM.

Software We implement our training model in Python, through the scientific library Tensorflow
2.7.0. The low-rank denoising method is implemented in Matlab 2020a.
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Chapter 3

Real-time denoising of 2D US images

Ultrasound imaging uses high-frequency sound waves to visualise soft tissues, such as inter-
nal organs, and support medical diagnosis for muscle-skeletal, cardiac, and obstetrical diseases,
due to the efficiency and non-invasiveness of the acquisition methodology. Ultrasonic sound
waves are reflected off from different layers of body tissues. The main issues of the ultrasound
techniques are a significant loss of information during the reconstruction of the signal, the de-
pendency of the signal from the direction of acquisition, and an underlying noise that corrupts
the image and significantly affects the evaluation of the morphology of the anatomical district.
In this context, the denoising of ultrasound images is relevant both for post-processing and visual
evaluation by the physician.

Real-time framework Our main goal is the definition of a novel deep learning framework for
the real-time denoising of ultrasound images (Fig. 3.1). After the design of a training data set,
composed of raw images and the corresponding denoised images, we train a neural network that
replicates the denoising results. Then, real-time denoising is achieved through the prediction of
the trained network. The proposed framework combines three elements: low-rank denoising,
deep learning, and high-performance computing (HPC, for short).

We select WNNM-Weighted Nuclear Norm Minimisation [GZZF14] as the best denoising
method, which is then specialised for ultrasound images as a “new” funed-WNNM denois-
ing, by tuning its parameters. The choice of WNNM is based on a qualitative and quantita-
tive comparison of five denoising methods, i.e., WNNM, SAR-BM3D - SAR Block-Matching
3D [PPAV11], BM-CNN - Block Matching Convolutional Neural Network [AC17], NCSR -
Non-Locally Centralised Sparse Representation method [DZSL12], PCA-BM3D Principal Com-
ponent Analysis Block Matching 3D [DFKEQ09]) belonging to the spectral, low-rank, and deep
learning classes (Sect. 2.2.1).

To achieve a real-time denoising of ultrasound images, we propose a deep learning framework
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Figure 3.1: Pipeline of the proposed framework, with a magnification of prediction (red) and
target (blue) images (right side). Our framework applies deep learning and HPC to learn and
replicate the denoising results of the state-of-the-art low-rank method (i.e., tuned-WNNM), in
real-time and with a specialisation to anatomic districts.

that is based on the learning of the tuned-WNNM and HPC tools (Sect. 3.1). The training is per-
formed offline and can be further improved with new data, a-priori information on the input im-
ages or the anatomical district, and denoised images selected after experts’ validation. Through
our framework, the execution time of denoising only depends on the network prediction, which
is achieved in real-time on standard medical hardware.

As the main contribution, the proposed denoising of ultrasound images runs in real-time and
is general in terms of the input data, resolution of the input images (e.g., isotropic, anisotropic
images), acquisition methodology, anatomical district, and speckle noise intensity. Our approach
is also general in terms of the building blocks and parameters of the deep learning framework; in
fact, we can select different denoising algorithms (e.g., WNNM, SARBM3D) and deep learning
architectures (e.g., Pix2Pix, VGG19).

As experimental validation (Sect. 3.2), we perform a quantitative (e.g., PSNR, SSIM) and quali-
tative evaluation of the selected denoising methods on ultrasound images acquired from different
anatomical (e.g., muscle-skeletal, obstetric, and abdominal) districts. Then, the results of the
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deep learning and HPC frameworks are quantitatively and qualitatively analysed on a large col-
lection of ultrasound images. The industrial requirement of real-time denoising is verified in
terms of the execution time of the network prediction on GPU-based hardware installed in com-
mercial ultrasound machines.

Novel denoising method As an original contribution to the denoising algorithm inside the
framework, we propose a novel learning-based low-rank method for the denoising of 2D images,
with an application to ultrasound images (Sect. 3.3). Our method improves the results of previous
work and can be inserted into our framework in place of tuned-WNNM for the real-time denoise
of ultrasound 2D images, demonstrating the generality of the framework to the denoise method.

In this context, our goal is the definition of a novel denoising method belonging to the low-rank
class, based on the Singular Value Decomposition (SVD) and the learning and prediction of the
optimal thresholds. Given a training data set of ground truth images (Fig. 3.2), we apply both
speckle noise at several intensities and different types of noise (e.g., Gaussian, salt & pepper,
Poisson, exponential) and extract 3D blocks through the block matching algorithm [DFKEQ6].
Then, we compute the optimal singular values through a proper optimisation applied to the SVD
of each 3D block. We iterate this approach, where the input image of each iteration is the de-
noised image at the previous step.

The input and optimal singular values compose the training data set of the learning model; the
singular values of the training data set are classified according to four parameters: noise type
and intensity, number of iterations of the method, and clustering of the singular values. This
classification allows us to design specific networks and improve the accuracy of the learning
model. The learning phase optimises a matrix of weights, is applied to train the model and pre-
dicts the optimal thresholds of the SVD. For image denoising, we compute the 3D blocks and
the SVD, the four parameters of each 3D block, and the thresholds through the network’s predic-
tion. Finally, the block-matching aggregation is applied to reconstruct the denoised image. As
main contributions, we train our learning-based model to predict the optimal thresholds of the
SVD. In contrast, learning-based methods [TFZ"20] predict the denoised image; low-rank meth-
ods [HNTL18] manually select the SVD thresholds; the block-matching 3D (BM3D) [DFKE06]
applies a wavelet decomposition, with a manual selection of the thresholds. Our denoising
method is independent of the type of noise and provides an upper bound to the accuracy of the
denoising of 2D images through the SVD. Our approach can be generalised to different transfor-
mations of the noisy signal, e.g., spectral (wavelet, shearlet), factorisation (e.g., SVD, HOSVD),
or to volumetric data through spherical harmonics and Laplacian eigenpairs. Trained networks
are available at https://github.com/cammarasanal23/denoise.
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Figure 3.2: Learning-based for denoising: pipeline.
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Raw image WNNM SAR-BM3D Esaote algorithm

PCA-BM3D NCSR BM-CNN Tuned-WNNM (Ours)

Figure 3.3: Raw images of a muscle-skeletal district and denoised images, visualised in a scan-
converted format.

3.1 Real-time denoising: proposed framework

We propose a novel deep learning framework for the real-time denoising of ultrasound images.
We discuss the motivation and contribution of our framework, the design in terms of deep-
learning and HPC architectures, and the data set and metrics for the evaluation of the accuracy of
the results. For a detailed discussion of the experimental results, we refer the reader to Sect. 3.2.

The main requirements of a denoising algorithm for ultrasound images are the magnitude of
the removed noise, edge preservation, and real-time computation. The main denoising methods
satisfy these requirements, except for the execution time, which does not satisfy the real-time
need of ultrasound applications. To achieve real-time computation and to maintain the good
results of the best denoising methods in terms of noise removal and edge preservation, we identify
two strategies. After the identification of the denoising method that best fits our requirements for
ultrasound images: (i) we develop a computationally optimised version of a selected denoising
algorithm, exploiting HPC tools, CPUs and GPUs, and low-level programming languages; (ii)
we design and implement a deep learning framework that learns to replicate the output of the
selected denoising algorithm. In this context, we analyse state-of-the-art denoising methods to
identify the one that best fits our requirements in terms of noise removal and preservation of
anatomical structures and geometries.

Tuned-WNNM  We compare five denoising state-of-the-art methods, which are either specific
for speckle noise (e.g., SAR-BM3D) or independent of the type of noise (e.g., WNNM). Accord-
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ing to the results in Sect. 3.2, WNNM has been selected as the best denoising method among
five state-of-the-art methods belonging to the spectral, low-rank, and deep learning classes. To
improve the quality of the denoised image, we propose a novel approach to the tuning of WNNM
parameters, and we refer to this method as tuned-WNNM.

Given a pixel z, the patch P, is the set of pixels in the neighbourhood of z; each pixel of the
image has a related patch. The search window is the set of patches selected for searching the
closest ones to a reference patch, under a certain metric. The stack, or 3D block, is the set of
patches that are similar to a reference patch; these patches are stored in a 3D structure, and
the redundancy of the stack is exploited to remove the noise. Within this setting, we identify
and optimise the following parameters: the number of patches is no more limited by the step
value (e.g., 1 patch every 2 or 3 pixels) and we assign a patch for each pixel; this parameter
allows us to increase the number of processed patches, thus improving the data redundancy. The
block-matching algorithm is now performed every iteration, instead of one every two iterations;
the selection of the searching window and the size of the stack are now larger than in previous
work. These parameters allow us to improve the measure of the similarity among 3D blocks and
the accuracy of the denoising method. Furthermore, we specialise in the tuned-WNNM method
for ultrasound images, by varying the denoising intensity through a parameter that affects the
threshold of the singular values of the SVD.

The implementation of a computationally optimised, and potentially real-time, version of the
tuned-WNNM is a very tough requirement; the main iterative cycle of the algorithm is not par-
allelisable, due to the dependency of the data among the iterations. Furthermore, the cubic
computational cost for the evaluation of the SVD of each block is no further optimisable. The
real-time requirement needs a specific hardware-based implementation, and any modification
to the method requires a new implementation of the parallel algorithm. This approach needs
dedicated and more expensive hardware, which is in contrast with the cheapness of ultrasound
acquisition.

Proposed approach and contributions The proposed real-time denoising is based on the
training of a neural network to learn and replicate the tuned-WNNM behaviour. In the first
phase, the network is trained on a data set of ultrasound images of the same district. The data
set for the training of the learning method is composed of a set of couples of ultrasound images:
the input (i.e., the raw image) and the target (i.e., the image denoised with the tuned-WNNM
filter). The ground truth is not available in ultrasound applications; for this reason, the target of
the learning method is the output of the tuned-WNNM filter. Then, the trained network provides
the denoised output through a real-time prediction of the test images. As the main contribution,
the proposed deep learning framework is general in terms of the input data, i.e., type of noise
(e.g., speckle, Gaussian noise), resolution (e.g., isotropic, anisotropic) of the input images, ac-
quisition methodology, and the anatomical district. Our deep learning framework is also general
in terms of building blocks and parameters: since different methods (e.g., NCSR, SAR-BM3D,
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Raw image WNNM SAR-BM3D Esaote algorithm

PCA-BM3D NCSR BM-CNN Tuned-WNNM (Ours)

Figure 3.4: Raw data set of an abdominal district and denoised images, visualised in a scan-
converted format.

custom methods) have good performances, the generality of our framework allows us to use a
different denoising algorithm and exploit its different characteristics in terms of denoising and
edge preservation. Alternative denoising methods can be used for different types of noise (e.g.,
speckle, Gaussian noise) and signals (e.g., 3D images, time-dependent ultrasound videos, see
Chapter 4).

In our approach, we specialise the training phase to specific anatomical districts or types of
noise. For instance, we train a specific network for each district, thus obtaining a more precise
result when predicting the denoised image, as each network is specialised to the input anatomical
features. We also improve the WNNM denoising in terms of real-time computation based on
offline training. Our framework maximises the performance of the denoising method: in fact,
our tuning improves the WNNM results with an increase in execution time; however, the real-
time requirement is achieved by the network prediction, while the denoising is applied offline for
the generation of the training data set. Our tuning does not affect the real-time execution of the
proposed framework, which depends only on the execution time of the network prediction.

Deep learning architecture To evaluate the proposed framework, we analyse several networks
and perform an image-to-image regression; among them (Sect. 2.3.1), we select Pix2Pix, which
guarantees good results in terms of learning. We specialise Pix2Pix to ultrasound images, with
two updates: (i) the introduction of a validation data set of the same district of the training data
set, which forces the exit condition when the validation error increases, and (ii) the introduc-
tion of padding and masking pre-processing operations, which allow us to deal with images of
different resolution, without an image resize that would imply a distortion artefact. In fact, the
Pix2Pix architecture requires input images of constant size. Through padding, the images are
resized according to the input required by the architecture; after that, a masking filter allows the
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Table 3.1: Execution time computed as an average value of a set of Esaote images at 600 x 485

resolution.
Method ‘WNNM SAR-BM3D BM-CNN NCSR PCA-BM3D ‘ Esaote algorithm

Execution

. 215 55 356 380 95 real-time
time [s]
Raw image WNNM SAR-BM3D Esaote algorithm
PCA-BM3D NCSR BM-CNN Tuned-WNNM (Ours)

Figure 3.5: Raw data set of an obstetric district and denoised images, visualised in a scan-
converted format.

network to process only the numerical values of the image and not the values added by padding.
A comparison between Pix2Pix and Matlab CNN is discussed in Sect. 3.2.2.

HPC framework for learning The experimental tests on the CINECA Cluster are supported
by the ISCRA-C Scientific Project IMG-DEN. We define a HPC implementation of the proposed
deep learning framework, taking advantage of a large ultrasound data set with 10K ultrasound
images, and of the CINECA-Marconi100 cluster, exploiting both CPUs (IBM POWER9 AC922)
and GPUs (NVIDIA Volta V100). Given a training data set, composed of raw images and the cor-
responding denoised images, we implement a parallel and distributed deep learning framework
in TensorFlow2. Then, we define a batch file for the execution of the deep learning framework
on the cluster, which specifies the number of nodes, CPUs, GPUs, and memory of the cluster.
Through the proposed HPC framework, we train multiple networks with large data sets in a rea-
sonable time for the target medical application, thus increasing the specialisation to anatomical
districts, and consequently the accuracy of the deep learning framework. The HPC framework
generates a network model that is stored and used for predicting the output results. Furthermore,
we can improve the offline training with new data, a-priori and/or additional information on
the input data (e.g., input anatomical district, noisy type/intensity, image resolution, acquisition
methodology/protocol). The update of the existing training data set is always performed offline,
through the addition of new images after expert validation of the denoising results.
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Training data sets & metrics We consider the Esaote private data set, which contains more
than 10K ultrasound images at different resolutions, and is acquired from different (e.g., muscle-
skeletal, obstetric, abdominal) anatomical districts. In this data set, we compare the performance
of different denoising methods applied to ultrasound images, and analyse the performance of
the proposed framework, through the training and the prediction of the learning-based network,
with a specialisation to anatomic districts. We generate and test different data sets, by varying
the number of images for the training phase, and the anatomical district for the prediction phase.
The custom Pix2Pix network is trained on four data sets of obstetric images, respectively: (a)
500, (b) 1500, (c) 3500, and (d) 5000 images. Each data set is composed of the input images
(i.e., the raw Esaote data set) and the target images (i.e., the corresponding images denoised with
the tuned-WNNM). The validation data set is composed of an additional set of different images
(i.e., about 10% of the training data set) of the same district. Then, we evaluate each of the
four networks (i.e., the networks trained with a different number of images) with two different
test data sets of 50 images each, respectively from the (i) obstetric and (ii) muscular anatomical
districts.

As quantitative metrics, we consider the peak-signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM) for the comparison of the raw input with the predicted denoised
image provided by the proposed framework. The PSNR measures the mean squared error (MSE)
through a logarithmic scale; the SSIM measures the perceived similarity of two images, calcu-
lated on different windows. Given two identical images, the PSNR and SSIM values are equal
to 400 and 1, respectively. Furthermore, we integrate the quantitative metrics with a qualitative
discussion on the quality of the denoised images, in terms of blurring and edge preservation.

The qualitative validation is performed by Esaote experts with experience in ultrasound image
processing. The main parameters for the validation are the preservation of edges and anatomical
geometries, the non-alteration of grey levels and image properties (e.g., brightness), the genera-
tion of artefacts (e.g., blurring, dragging effects) or patterns.

3.2 Real-time US 2D image denoising: experimental results

We present the results of denoising methods with a specialisation to ultrasound images
(Sect. 3.2.1) and the prediction results of the proposed framework on US 2D images (Sect. 3.2.2).

3.2.1 Comparison of denoising methods

We evaluate the denoising results on different anatomical districts of the Esaote data set
(Figs., 3.3, 3.4, 3.5): WNNM, NCSR, and PCA-BM3D have been judged as the best methods
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Input image Tuned-WNNM: (a) Tuned-WNNM: (b) Tuned-WNNM: (c)

Figure 3.6: Ultrasound image of an abdominal district and denoised images achieved by applying
the tuned-WNNM and varying the denoising intensity from low (a) to high (c).

in terms of denoising, and WNNM outperforms all the other methods in terms of edge preser-
vation and enhancement. In particular, WNNM well preserves the edges of the muscular fibres
(Fig. 3.3) and the internal organs (Figs. 3.4, 3.5). The output of SAR-BM3D shows a granular
effect, which negatively affects the preservation of the anatomical features, and BM-CNN gen-
erates artefacts, which are typical of a deep learning approach. Finally, the discussed methods
improve the results of the algorithm currently implemented at Esaote, which runs in real-time and
moderately removes noise from the raw image. According to these results, we select WNNM as
the best method for the denoising of ultrasound images. However, we underline that the other
methods have their characteristics in terms of denoising and edge preservation, and they could
be included in the framework as alternative denoising algorithms.

Then, we evaluate and compare the denoising results of runed-WNNM (Figs., 3.3, 3.4, 3.5). Also,
we analyse the role of the parameter that affects the threshold of the singular values of the SVD,
and consequently the intensity of the smoothing. Increasing this parameter, the method improves
in terms of removed noise, though introducing a low blurring effect. To select the best tuning for
denoising intensity, we select the output image that best fits the medical requirements, among
three different levels of denoising intensity (Fig. 3.6). In particular, Fig. 3.6(b) shows the best
result as a compromise between noise removal, edges preservation, and blurring effect; in fact,
it preserves the geometry of the internal tissues, while enhancing the edges of the anatomical
structures. Additional analysis is presented in the experimental tests and validation with synthetic
data (Sect. 5.1).

Execution time Our tests (Table 3.1) are executed with Matlab R2020a, on a workstation with
2 Intel 19-9900KF CPUs (3.60GHz), 32 GB RAM, and none of these methods achieves real-time
computation. In particular, WNNM takes more than three minutes to process a 600 x 485 image,
and the fastest method (i.e., SAR-BM3D) takes about one minute; however, real-time computa-
tion in an ultrasound environment requires a processing time in the order of a few milliseconds.
This result motivates the proposed development of a deep learning framework for the real-time
denoising of ultrasound images, further optimised with a HPC framework (Sect. 3.1).
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Raw image Prediction:(a) Prediction: (b)

Target Prediction: (c) Prediction: (d)

Figure 3.7: Raw, target, and prediction images, related to the obstetric data set (i). Training set:
(a) 500 images, (b) 1500 images, (c¢) 3500 images, (d) 5000 images (Sect. 3.1).

Increasing this parameter, the method improves in terms of removed noise, though introducing
a low blurring effect. To select the best tuning for denoising intensity, we select the output
image that best fits the medical requirements, among three different levels of denoising intensity
(Fig. 3.6). In particular, Fig. 3.6(b) shows the best result as a compromise between noise removal,
edges preservation, and blurring effect; in fact, it preserves the geometry of the internal tissues,
while enhancing the edges of the anatomical structures.

3.2.2 Framework prediction results

We present the prediction results of our framework through a quantitative and qualitative evalua-
tion, analysing the properties of the training data set and the learning architecture, and discussing
the execution time and computational cost.

Qualitative results Regarding the deep learning framework, and the large ultrasound data set
(Sect. 3.1), Fig. 3.7 shows the prediction results of the four networks, when tested with obstetric
images (i). The predicted images are very close to the target image in all four cases; the edges
and the grey-scale values are well reproduced by the network. Furthermore, the predictions
do not generate artefacts or spurious patterns. Varying the number of images of the training
data set from 500 to 5K (Figs. 3.7(a-d)), the predicted images are slightly better than the target
denoised images. Nevertheless, the results are good even with a small training data set of 500
images. Fig. 3.8 shows the prediction results of the four networks when tested with muscle-
skeletal images (ii). Predicting the output images with the networks trained with obstetric images
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Raw image Prediction:(a) Prediction: (b)

Target Prediction: (c¢) Prediction: (d)

Figure 3.8: Raw, target, and prediction images, related to the muscle-skeletal data set (ii). Train-
ing set (Sect. 3.1) with (a) 500, (b) 1500, (c) 3500, and (d) 5000 images.

(Figs. 3.8(a-d)), the results are slightly worse than the corresponding case in Fig. 3.7, even if the
predicted images do not show any artefact of pattern repetition. These networks are trained with
images from a different (i.e., obstetric) district, with different anatomical features. This result
confirms that each district requires a specific network and that a single network for all the districts
gives lower quality results.

Quantitative results Table 3.2 reports the quantitative metrics (Sect. 3.1) computed between
the target and the predicted images. The network trained with 5K images (d) tested with obstetric
images (i) has a median PSNR and SSIM value of 36.13 and 0.964, respectively, while the same
network tested with muscle-skeletal images (ii) has a median PSNR and SSIM value of 26.58
and 0.881. Both the metrics have a very slight improvement when passing from a training set
of 500 to a training set of 3500 images, confirming the results of the qualitative analysis. An
additional increase of the training data set size to SK images further improves the quantitative
results for both the test data sets. Fig. 3.9 shows the box plot of the PSNR and SSIM metrics
for four training data sets and two test data sets. Increasing the number of images of the training
data set, the range of the metrics tends to decrease; this behaviour has a lower variability on
the prediction of the output image. These results confirm that a network specialised in a single
anatomical district reaches the best denoising quality. The prediction of muscle-skeletal images
from a network trained with obstetric images highly reduces the performance of our framework;
in fact, the network learns that replicates not only the denoising algorithm itself but also its
adaptation to the anatomic structures and features of each district.
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Figure 3.9: PSNR and SSIM boxplot for each of the four training data set (i.e., (a-d)) and the two
test data sets (Sect. 3.1): (top-left) PSNR, obstetric test data set; (top-right) SSIM, obstetric test
data set; (bottom-left) PSNR, muscle-skeletal test data set; (bottom-right) SSIM, muscle-skeletal
test data set.

Table 3.2: Concerning the four training data sets and the two test data sets (i.e., obstetric: Ob., and
muscle-skeletal: Msk.) described in Sect. 3.1, we report the PSNR and SSIM metrics computed
between the target and the prediction images, as median value among the 50 test images.
Metrics PSNR SSIM
Test data set Ob. Msk. | Ob. Msk.
Training with
(a) 500 images | 35.93 25.88 | 0.973 0.886
(b) 1500 images | 34.52 26.33 | 0.957 0.854
(c) 3500 images | 36.07 26.31 | 0.962 0.878
(d) 5000 images | 36.13 26.58 | 0.964 0.881

Single versus multiple districts We compare the prediction results of our framework with
three different training data sets. The first two data sets have 500 and 1500 ultrasound images
of the same district (i.e., the obstetric one), respectively. The third one is composed of 1500
images of different districts; in particular, we select 500 images from the cardiac, obstetric, and
muscle-skeletal districts. Due to the different resolutions of the images, padding has been applied
to obtain the same input resolution for each network. We evaluate the prediction results on four
test data sets: the first three are composed of 50 images from the cardiac, obstetric, and muscle-
skeletal districts, respectively. The fourth is composed of 50 images randomly selected from the
aforementioned three districts. The prediction results (Fig. 3.10 and Table 3.3) show that the
networks trained with obstetric images (i.e., the single district networks) give the best results
with the obstetric test data set: the predicted image of the single district network shows fewer
scattering artefacts than the multiple districts network. Also, the single district networks have
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Input image Target image

Single district (a)  Single district (b) Multiple district

Figure 3.10: Prediction results of the obstetric district, with the networks trained with 500 (a)
and 1500 (b) images from the obstetric district, and 1500 images from multiple districts (500
obstetric, 500 cardiac, 500 muscle-skeletal images).

better results in terms of quantitative metrics: adding further images from different districts to
the training data set worsens the results; in fact, the single district network with 500 obstetric
images has a PSNR value of 35.93, while the multiple districts network has a PSNR value of
33.70.

Comparing the results on the other test data sets (e.g., cardiac Fig. 3.11 and Table 3.3), the net-
work trained with images of multiple districts has better results than the networks trained with
obstetric images only. The multiple district network better generalises on the denoising algo-
rithm, more than on the anatomic features, thus generating fewer artefacts on the prediction.
Furthermore, the multiple district network includes 500 cardiac images in its training data set,
thus improving the prediction results in this district. These features allow the multi-district net-
work to reduce the artefacts on the edges of the anatomical features. A similar result is present in
the muscle-skeletal test data set, where the results of the network trained with multidistrict im-
ages generalise better than the network trained with obstetric images; in fact, the single district
network with 1500 obstetric images has a PSNR value of 26.33, while the multiple districts net-
work has a PSNR value of 28.41. As the main conclusion, a dedicated network for each anatomic
district is the best solution for the prediction of the denoised ultrasound images of each specific
district, if a sufficiently large data set is available for the training.

Deep learning architectures We compare the prediction results of two different networks:
Pix2Pix and the (Matlab) CNN, as part of our deep learning framework. Fig. 3.12 shows that
Pix2Pix has better results than CNN, in terms of blurring reduction, noise removal, and edge
preservation. We also compare the quantitative metrics between the target images and the pre-
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Input image Target image

Single district (a)  Single district (b) Multiple district

Figure 3.11: Prediction results of the cardiac district, with the networks trained with 500 (a) and
1500 (b) images from the obstetric district, and 1500 images from multiple districts.

Table 3.3: Concerning the results in Figs. 3.10, 3.11, we report the PSNR metric computed
between the target and the prediction images, as the average value among the 50 images of
each test data set: obstetric (Ob.), muscle-skeletal (Msk.), cardiac (Card.), and multiple districts
(Multi.). The networks are trained with: single district (a, 500 obstetric images), single district
(b, 1500 obstetric images) and multiple district images.
Test data set Ob. Msk. Card. Multi.
Training with
Single district (a) | 35.93 25.88 28.46 29.47
Single district (b) | 34.52 26.33 28.63 29.51
Multiple district | 33.70 28.41 33.82 30.33

dicted images, on the test data set of 50 ultrasound images of the obstetric anatomic district
(Sect. 3.1). Pix2Pix has a PSNR average value of 36.07, and an SSIM average value of 0.878,
while CNN has a PSNR average value of 25.69, and an SSIM average value of 0.651. This
result underlines that Pix2Pix outperforms CNN as network architecture for our deep learning
framework.

Execution time and computational cost To test the training phase of the deep learning frame-
work on the HPC environment, we exploit 8 nodes, each one composed of 32 cores and 4 accel-
erators, for a theoretical computational performance of 260 TFLOPS, and 220 GB of memory
per node. The parallel implementation of the deep learning framework and the high hardware
performance reduce the computation time of the training phase by at least 100 orders less than a
serial implementation on a standard workstation.
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(b) Target

Prediction: (c) Ours (d) CNN

Figure 3.12: (a) Input, (b) target, (c) our prediction with Pix2Pix, and (d) prediction with CNN,
for the obstetric district.

The prediction’s execution time is crucial for our framework’s real-time implementation. We
test the denoising prediction on GPU-based hardware, which replicates the hardware of an ultra-
sound scanner currently in use. Given a set of ultrasound input images from different districts, the
average execution time is 25 milliseconds; this result confirms that we achieve the real-time com-
putation target, required by the industrial constraint. After the industrialisation of the proposed
framework, the execution time can be further reduced with a hardware-oriented implementation
that optimises the prediction operations of the neural network in terms of computation.

We underline that the input resolution of the network is 600 x 600, which is reached through
the zero-padding of each input image. The computational cost of the prediction depends on the
resolution of the input image and on the architecture of the network: in particular, the computa-
tional cost of a convolution operation is O(r/s,. - ¢/s.) - (f, - fe) - f; in our application, the input
image has a resolution of » = ¢ = 600, the kernel-filter size on rows and columns is f, = f. =4,
the stride on rows and columns is s, = s, = 2, we use 10 convolution and 10 deconvolution
operators, and a number of kernel-filters from 32 to 512.

3.3 Learning-based low-rank denoising

An input image Y = f(X, IN) is composed of the ground truth X and the noisy component N,
where f defines the combination of one or more type of noise (e.g., additive, impulsive, multi-
plicative). Low-rank approximations recover the underlying low-rank matrix from its degraded
observation. In this class, the nuclear norm minimisation recovers an estimation X of the ground
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truth signal through the minimisation of the energy functional ||[Y — X||% + A||X]|., where the
nuclear norm || X||. is the sum of the singular values of X and measures the compliance of the ap-
proximated image to the high-frequency components of the input image. This problem is equiv-
alent to recover the approximated image X = U(7(S))VT, where Y = USVT, S := diag(s),
is the SVD of the noisy signal, and 7(S) = diag(s — A\) with A constant vector. The thresh-
olding 7(S) improves the image reconstruction by removing the noise component while pre-
serving image features. Weighted thresholds imply a different shrinkage to each singular value,
as Spn, — A\, where Sy, is the (h, h) entry of S. The proposed learning-based method trains a
network to predict the optimal thresholds \,. We present the computation of the optimal thresh-
olds and the related denoising accuracy (Sect. 3.3.1), the setting and optimisation (Sect. 3.3.2) of
the learning model for the prediction of the thresholds, and the experimental results on US 2D
images (Sect. 3.3.3).

3.3.1 Denoising with optimal threshold values

The computation of optimal thresholds through a minimisation problem allows us to apply the
optimal weights to the weighted nuclear norm minimisation problem and set an upper limit to
the accuracy of the denoising through the method introduced in Eq. (2.2).

Optimisation model for the computation of the optimal thresholds Given a n x n ground
truth image X and a noisy instance Y = f(X, IN), we compute the optimal thresholds A through
the minimisation of the distance between the ground truth and the reconstructed signal X, as

B =) Xy — Xy (3.1)

i=1 j=1

where the reconstructed signal is computed through the SVD of the Y signal with weighted
thresholds, i.e., X;; = 22:1 Uin(Shn — An) V. The first-order derivatives of the energy func-
tional £ () concerning the variables of the optimisation problem A is

DE(N)

I, =2 Z Xij — Z Uin(Sun — M) Vi | Ui Vi,

i,j=1 h=1

The minimum of Eq. (3.1) is computed through the iterative optimisation method L-BFGS
(Limited-memory Broyden, Fletcher, Goldfarb, Shanno) [ZBLN97], which finds the roots of the
derivative of the energy functional. L-BFGS is an optimisation algorithm in the family of quasi-
Newton methods that approximates the Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS)
using a limited amount of computer memory. Analogously to BFGS, the L-BFGS solver esti-
mates the inverse Hessian matrix for the minimum search in the variable space; however, the
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L-BFGS method represents the approximation implicitly through a few vectors, thus involving
a limited memory requirement. At each iteration, a small history of the past updates of the
variables () and the gradient of the energy functional E(-) in Eq. (3.1) is used to identify the
direction of steepest descent and to implicitly perform operations requiring vector products with
the inverse Hessian matrix. For the L-BFGS method, the memory storage is O(u?) and the com-
putational cost is O(uv) at each iteration, where u is the total number of variables, and v is the
number of steps stored in memory.

Application of optimal thresholds for denoising The direct application of the optimal thresh-
olds to the input noisy image has reduced accuracy, due to the complexity of the geometries of
the image and the difficulty in distinguishing the edges and structures from the noise compo-
nents. Therefore, the introduction of a block-matching algorithm allows us to compute stacks
of similar patches with redundancy properties and apply the SVD and the optimal thresholds to
these stacks, where our method can identify and then remove the noisy component, maintain-
ing the geometric and texture structures. Furthermore, the application of the optimal thresholds
through an iterative approach allows for progressively improve the accuracy of the solution.

Block-matching Given a pixel y, the patch P, is the set of pixels in the neighbourhood of . The
search window is the set of selected patches used to search the closest ones to a reference patch,
according to certain metrics. The stack, or 3D block, is the set of patches similar to a reference
patch. The block-matching algorithm stacks similar patches into a 3D structure and uses the
redundancy of the stack to remove the noise. Then, the patches are aggregated by a collaborative
filter to compose the denoised image.

Iterative approach We compute the optimal denoising of three images with a different noise.
The method is applied for 20 iterations: at each iteration, the denoised image of the previous
iteration is used as a noisy image, while the ground truth is fixed. We compute the 3D blocks
with the block-matching algorithm and extract their ground truth counterparts from the ground
truth image. Then, we compute the optimal thresholds \; for the SVD through the minimisation
of Eq. (3.1) for each 3D block, and we reconstruct the denoised image. The results are discussed
in the validation on synthetic images (Sect. 5.3).

3.3.2 Learning model: setting and optimisation

We design the data set and the learning model for the computation of the optimal thresholds.

Training & clustering data set Applying an arbitrary noise to a set of input images, we build a
data set of ground truth and noisy images to train a learning-based method to predict the optimal
thresholds. In particular, the input of the network is the vector of the singular values of the noisy
block and the target is the vector of the optimal thresholds (Eq. (3.1)).
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Instead of defining a single data set for all the images, we organise the images according to four
parameters: (i) type of noise, (ii) iteration, (iii) noise intensity, and (iv) singular values clustering.
This classification improves the specificity of the network and the accuracy of the prediction of
the thresholds. The four parameters are nested: for each image noise (i) and iteration step (ii), we
compute the 3D block’s noise intensity (iii) with the nonlinear noise estimator (NOLSE) [LTF13]
metric and define c intervals so that the NOLSE values are uniformly distributed into ¢ classes.
We cluster the singular values (iv) into k& groups with the k-means algorithm; then, we train a
Support Vector Machine (SVM) [CSTO00] to classify the vectors of singular values according to
the k-means labels. For each combination of the four parameters, we define the matrix P =
{Py}Y_,, with Py = [py,...,p,]", where N is the number of 3D blocks and n is the lower
dimension of the 3D block; the p elements are the singular values computed through the SVD.
These values are associated with the corresponding optimal thresholds Q = {Q;,}Y_,, computed
as the minimisation of Eq. (3.1).

This classification is applied to the training of the learning-based networks to improve the spe-
cialisation of each prediction; the training is performed on synthetic images (Sect 5.3) where the
ground truth is available. The trained network is applied to predict the optimal denoising for
US images (Sect. 3.3.3); in this context, we apply our learning-models trained on images with
speckle noise at different intensities; then, we apply five iterations with the respective trained
network, computing the noise intensity and k-means prediction for each block.

Optimisation model For each combination of the four parameters (Sect. 3.3.2), we compute a
dedicated learning-based network. Given the singular values of a 3D block, we train a network
to predict the thresholds that reconstruct the best approximation of the ground truth block. The
network weights are defined through the matrix W of dimension n x n, and are computed by
minimising the distance between the target and the predicted thresholds, as

N 2
:ZZ‘ij—ij

k=1 j=1

) (3.2)

where ij = Z?:l W,,;P;;, are the predicted thresholds. The first-order derivatives of Eq. (3.2)

are
OF (W
awlm = —22 (ka - ZPMWW> Py, (3.3)

and the second-order derivatives are

82
= 22 [P

Since the functional in Eq. (3.2) is quadratic and its second-order derivatives are always strictly
positive, the functional F'(+) is strictly convex, and it has a unique minimum.
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(a) (b)

Figure 3.13: (a) Minimisation of the functional (Eq. 3.2) value (y—axis) normalised on the
number of vectors N = 200, with respect to the number of iterations (z—axis); (b) frequency
(y—axis) of the difference between the optimal and the predicted thresholds (x—axis) of the first
singular value of the SVD, for all the blocks of the cameraman image.

Fig. 3.13(a) shows the convergence of the minimisation to the optimal solution computed with
the L-BFGS algorithm (Sect. 3.3.1). The solver takes 67 iterations to converge to the minimum
of the functional. Fig. 3.13(b) shows the frequency of the error between the optimal and the
predicted thresholds for the first singular value #;{x € (Q1x — Qlk) chy <z < hii}, with h
bins of the histogram. The average error is 0.3 and the upper and lower bounds of the error
are £1.5.

The minimisation of the functional in Eq. (3.2) is equivalent to the solution of the linear sys-
tem VF(W) = (PP")W — PQT™ =0 (c.f., Eq. (3.3)), with n x n coefficient matrix PPT
and rank(PPT) = n when N is sufficiently greater than n. Increasing the number N of vectors
of singular values (i.e., the columns of P and Q) from 250 to 2500 (Fig. 3.14a), the cogc}ition
number of the coefficient matrix passes from 2. i}v x 101° to 1.5 x 10'°; given the solution W, the

approximation error of the linear system ||V E(W)||r/N passes from 8.3 x 10712 to 8.4 x 107!
(Fig. 3.14b).

3.3.3 Experimental results on US 2D images
The main results of the training and prediction of the learning model are presented in the synthetic

validation results (Sect. 5.3). We present the results of the application of the denoising method
to ultrasound images.
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(a) (b)

Figure 3.14: (a) Conditioning of the coefficient matrix (y—axis) with respect to NV (z—axis). (b)
Approximation error of the linear system (y—axis) with respect to N (x—axis).

Experimental results We compare our denoising method with previous work, on ultrasound
images from the different anatomical districts (Fig. 3.15). In particular, we apply our learning-
models trained on images with speckle noise at different intensities: o = 0.05 (Fig. 3.15, ours(i)),
and 0 = 0.10 (Fig. 3.15, ours(ii)). The learning model trained with images with higher noise
applies larger thresholds to the singular values of the SVD, resulting in more intense smoothing.

Our method correctly preserves the edges of the obstetric district (Fig. 3.15a) and the mass of the
abdominal districts (Fig. 3.15b) while removing the noise component; this result is perceptible
in the magnification, comparing our method with previous work.

Computation time The execution time for denoising each 3D block is 0.015 seconds; this time
is composed of the noise intensity computation through the NOLSE metric (66%), the SVD (5%),
the SVM prediction of the label of the singular values (14%), and the network prediction of the
optimal thresholds (15%). Due to the operations performed for each 3D block, our method
(330 secs.) increases the execution time for the denoising of a 256 x 256 image, compared to
previous work: BM3D (1 sec.), WNNM (100 secs.), and NCSR (180 secs.). This execution time
does not satisfy the real-time constraint for the Ultrasound application. However, our framework
(Sect. 3.1) can learn the method and predict the output for real-time denoising of the US image.
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Figure 3.15: Comparison between previous work and our denoising with low (i) and medium (i1)
smoothing intensity.
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Chapter 4

Real-time denoising of US 2D videos and
3D images

Ultrasound images can be acquired at different planes, through the manual/automatic movement
of the probe; furthermore, the physician can acquire both static and dynamic images. These
acquisitions are associated with different input signals: 2D images, 2D videos, and 3D volumetric
images. Each of these types of signals has its properties and advantages: dynamic 2D US images
(i.e., videos) allow the physician to analyse the temporal variation of an anatomical feature (e.g.,
the movement of a muscle, the volume of the ventricle). This variation can be generated either
by the shift of the probe or by the movement of the anatomical part. 3D volumetric images offer
a full understanding of the spatial anatomy of the acquired region, against a more expensive tool
for the acquisition (e.g., automatic 3D probes). US 2D images are simple to acquire and process,
but they offer a limited view of the anatomical part of interest.

In this context, our goal is the development of a real-time method for denoising of ultrasound 2D
videos and 3D images. We extend the framework proposed for US 2D images (Chapter 3), train-
ing an image-to-image learning network to replicate the behaviour of the denoising algorithms
(e.g., BM4D, Vidosat). The network learns to predict images, which have been denoised through
an algorithm that exploits the properties of the signal (e.g., temporal/spatial redundancy); then,
the 2D videos / 3D images are reconstructed as ordered sequences of frames/slices. With this
approach, we use a standard learning architecture, still exploiting the characteristics of the de-
noising algorithm. We also avoid the use of more complex architectures (e.g., spatio-temporal
networks), and we avoid managing videos with different lengths for the training of the net-
work. We specialise the training phase to specific anatomical districts and input signals. The
real-time computation depends only on the execution time of the network prediction. As the
main contribution, the proposed method is general in terms of the input data (e.g., 3D im-
ages, time-dependent US videos), type of noise (e.g., speckle, Gaussian noise), resolution (e.g.,
isotropic, anisotropic) of the input signals, acquisition methodology, and anatomical district.
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For further details on the tests, we refer the reader to the video available at the URL: https:
/ /www.dropbox.com/s/27rdwez8dibwdxa/ICIAP21-HPC-3D-2DT.mp4?2d1=0

We review previous work on signals denoising and introduce the real-time denoising method
for US 2D videos and volumetric images (Sect. 4.1) as an extension of the learning and HPC
framework for 2D images (Chapter 3), and discuss the experimental results (Sect. 4.2).

Related publications

Cammarasana, Simone, Paolo Nicolardi, and Giuseppe Patane. “Fast Learning Framework for
Denoising of Ultrasound 2D Videos and 3D Images.”, Lecture Notes in Computer Science, Vol-
ume 13373 (2022). https://doi.org/10.1007/978-3-031-13321-3\_42 [Con-
ference Proceedings]

Cammarasana, Simone, Paolo Nicolardi, and Giuseppe Patane , “A General Frame-
work for Smoothing Arbitrary Signals in Computer Graphics and Biomedicine”, Arca-
chon, July 2022. https://cs2022.sciencesconf.org/data/pages/cs2022\
_abstracts.pdf [Extended Abstract]

4.1 Real-time denoising of US 2D videos and 3D images: pro-
posed framework

The main requirements of a denoising algorithm for US signals are the magnitude of the removed
noise, edge preservation, and real-time computation. The best results are achieved when a spe-
cific method is applied for the type of signal, a method that exploits the characteristics of the
data (e.g., spatial, temporal redundancy, anisotropy). Video-based and volumetric-based meth-
ods well suit these requirements; however, the application of these methods requires that the
signal be fully acquired before it can be processed, making the denoising through these meth-
ods intrinsically non-real-time. To achieve real-time computation and maintain good results in
terms of denoising and edge preservation, we extend the deep learning and HPC framework pro-
posed for 2D images to 3D images and 2D videos. In this application, the framework learns and
replicates the dedicated denoising algorithms with an image-to-image prediction; this allows us
to apply a denoising method which accounts for the properties of the specific signal, with real-
time execution. The experimental tests on the CINECA Cluster are supported by the ISCRA-C
Scientific Project IMG-DEN.

US Signals US signals include 2D videos of different anatomical districts (e.g., abdominal,
cardiac, and obstetrical) and volumetric 3D images. 2D videos are acquired through a 2D probe,
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Figure 4.1: Denoising of US volumetric image 312 x 146 x 36 of the obstetric district.

which captures sequences of images at a given frequency. The resolution of the images is affected
by the acquisition frequency of the video since some anatomical districts (e.g., cardiac) require
a high frequency to better analyse the behaviour of anatomical features that quickly change over
time. Volumetric 3D images are acquired through probe oscillation within a given range; equally
spaced slices are acquired and stacked into the 3D volume. Volumetric images are intrinsically
anisotropic, due to the different resolution of each slice with respect to the resolution of the probe
in its movement direction. We encode 2D images as m X n matrices, 2D videos as m X n X t
tensors, where each frame has a m x n resolution, and ¢ frames are acquired. We represent
3D (volumetric) images as m X n X p tensors, where p planes are acquired, and each plane has
am X n resolution.

Proposed framework We extend the framework presented in Chapter 3 to the training of a neu-
ral network to learn and replicate the behaviour of the denoising algorithms applied to arbitrary
signals. In the first phase, the denoising of different input signals is performed through dedi-
cated algorithms (e.g., BM4D, Vidosat) which exploits the spatio-temporal redundancy. Then,
the network is trained on a collection of pairs of US images: the input (i.e., the raw image) and
the target (i.e., the image denoised with the proper filter). We train a specific network for each
district, thus obtaining a more precise result when predicting the denoised image, as each net-
work is specialised to the input anatomical features. Furthermore, images from different input
signals (e.g., 2D videos, 3D images) are used to train specific networks. The real-time denoising
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Figure 4.2: Ray-casting [Rot82] rendering of Fig. 4.1.

depends only on the execution time of the network prediction.

2D denoising methods WNNM is natively applicable to 2D images, and it is applied to 2D
videos, through frame-by-frame denoising, and to 3D volumetric images, through slice-by-slice
denoising. The application of WNNM to 2D videos/3D images does not exploit any knowledge
of the temporal/spatial redundancy of the signal.

3D volumetric denoising methods BM4D is natively applicable to 3D volumetric images,
which will be applied to 2D videos; in this case, the temporal dimension is assumed as the third
dimension of the volumetric data. We follow two main approaches; given a 2D video m X n X t,
where m X n is the resolution of a single frame, and ¢ is the number of frames, BM4D can be
applied to

* the full video: in this case, the m x n x t tensor is the input video and the output is a tensor
representing the smoothed video;

* consecutive portions of the video: in this case, the smoothing of each frame ¢; is performed
through the denoising of the tensor m x n x 2k, where 2k is the interval of frames centred
in ¢, from ¢ — k to ¢« + k. This procedure is repeated starting from the frame k, for each
frame of the video, i.e., t — k times.

2D video denoising methods Vidosat is natively applicable to 2D videos but can be applied
to volumetric images, by considering the third spatial dimension as the temporal dimension of
dynamic data. Both full video and consecutive portions (i.e., blocks of frames) can be considered
as input of the denoising algorithm.
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Figure 4.3: Denoising of 2 frames of a 2D US video (560 x 359 x 256) of the abdomen.

4.2 Real-time denoising of US 2D videos and 3D images: ex-
perimental results

We present the results of US 2D videos and 3D images denoising through dedicated algorithms
(Sect. 4.2.1) and the prediction results of the proposed framework (Sect. 4.2.2).

4.2.1 Comparison of denoising methods on US signals

Fig. 4.1 shows the denoising results of WNNM, BM4D, and Vidosat, with US volumetric images.
Analysing the images sectioned in the slice direction, WNNM and BM4D have better results in
terms of noise removal and anatomical feature preservation, while Vidosat has a slight scattering
effect. To integrate this evaluation, we apply a ray-casting algorithm [Rot82] to visualise a 2D
rendering of the volumetric data (Fig. 4.2). This visualisation allows us to better analyse the con-
sistency among slices; in fact, BM4D has a smoother rendering than WNNM, which is affected
by a scattering effect, due to the phase shift between adjacent slices. Finally, Vidosat rendering
is affected by the lower noise removal and BM4D has the best results in denoising 3D volumet-
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(a) (b)
Figure 4.4: Denoising of 2 frames of a 2D US video (592 x 168 x 233) of the cardiac district.

ric images, in terms of noise removal, anatomical features preservation, and slice consistency.
Figs. 4.3, 4.4, and 4.5 show the denoising results on 2D videos, on different anatomical districts:
abdominal, cardiac, muscle-skeletal. We select the window-moving version of BM4D, WNNM
is applied frame by frame, and Vidosat is applied on the whole 2D video. Vidosat shows the best
results in terms of noise removal and anatomical feature preservation; also, the blurring effect
is barely present. WNNM is not affected by blurring effects, since it is applied frame by frame.
However, the noise reduction of WNNM is lower than BM4D and Vidosat, since WNNM does
not exploit any knowledge among consecutive frames. BM4D has a higher blurring effect and
a lower noise reduction than Vidosat. Indeed, we select BM4D and Vidosat for generating the
target images from 3D images and 2D videos, respectively.

4.2.2 Framework prediction results

We compare the qualitative, quantitative and execution time results of the proposed framework
applied to US 2D videos and 3D images.

Qualitative results Our learning-based framework allows us to predict the denoised output of a
2D video (Fig. 4.6), and a 3D image (Fig. 4.7). In both cases, the predicted image is very similar
to the target image; the output appears smooth, still preserving anatomic features and edges.
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(a) Ground truth - frame 6 (b) Ground truth - frame 129

WNNM BM4D Vidosat

()

(b)
Figure 4.5: Denoising of 2 frames of a US video (600 x 380 x 155) of the muscle-skeletal district.

The predicted images do not present any artefacts or blurring effects. The smoothing intensity
depends on the target images in the training data set; images with higher smoothing generate a
network that learns higher denoising of the input image. Furthermore, our framework allows the
user to train several networks with different levels of smoothing and to select the preferred output
among different choices.

Quantitative error Table 4.1 summarises the quantitative error computed between the target
and the predicted images, for different signals (e.g., 2D videos, 3D images) and anatomical
districts (e.g., obstetric, cardiac), and measured through the PSNR and SSIM metrics. Images
extracted from volumetric data and 2D videos are used to train separated networks. Each network
is specific for an anatomical district (e.g., obstetric, cardiac). The selection of the anatomical re-
gions depends on different parameters: the type of probe, the acquisition modality, the quantita-
tive/qualitative analysis (e.g., segmentation, morphological evaluation), and the post-processing
algorithms. Furthermore, different anatomical districts lead to different types of signals: for
example, in the cardiac district, the movement of the cardiac valve is acquired by the probe,
while in the abdominal district, the movement of the probe is performed by the physician. The
experimental results show that our framework can correctly denoise the signal through an image-
to-image prediction, for both 3D images and 2D videos. For example, the prediction of obstetric
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Target Prediction

Figure 4.6: Framework prediction for 2 muscle-skeletal frames (a,b) of a 2D video.

Input Target Prediction
(b) (a) (b) (@) (b)

Figure 4.7: Framework prediction for two slices (a,b) of a 3D image of the obstetric district.

3D images shows an average PSNR value of 33.15, while the prediction of cardiac videos shows
an average PSNR value of 34.62.

Execution time and computational cost Table 4.2 shows the execution time of the denois-
ing methods, with different data set (i.e., 2D video, volumetric image). BM4D is the fastest
method, taking 75 seconds for processing a 408 x 120 x 36 volumetric image, while Vidosat and
WNNM take 161 and 1260 seconds, respectively. None of these methods reaches the real-time
requirement for denoising.

The analysis of the execution time of the framework is divided into an offline training and an
online prediction. To test the training phase of the deep learning framework on the HPC imple-
mentation (Sect. 4.1), we exploit 8 nodes, each one composed of 32 cores and 4 accelerators,
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Table 4.1: PSNR and SSIM metrics computed between the target and the prediction image, as
average value among the 20 signals of each test data set: muscle-skeletal videos (Msk.), cardiac
videos (Card.), obstetric 3D images (Ob.).

Signal | Msk. Card.  Ob.
PSNR | 28.12 34.62 33.15
SSIM | 0.963 0.978 0.970

Table 4.2: Concerning the tests in Figs. 4.1 and 4.5, we report the execution time of the denoising

methods tested on 2D video and volumetric data.
Method | WNNM BM4D  Vidosat

2D video [s] | 26820 1506 3338
3D image [s] 1260 75 161

for a theoretical computational performance of 260 TFLOPS, and 220 GB of memory per node.
The parallel implementation of the deep learning framework reduces the computation time of
the training phase by at least 100 orders of magnitude compared to a serial implementation on a
standard workstation, with an average execution time of fewer than 0.1 seconds per epoch on a
single image, i.e., about 2 hours on a data set of 500 images, with 150 epochs. For the volumetric
data set, we use 15 3D images composed of 36 stacks, for a total amount of 540 2D images. For
the video data set, we use several videos of different lengths for each anatomical district; we train
each network with a minimum amount of 500 2D images. All the images/videos are part of the
private Esaote S.p.A. data set.

The execution time of the network prediction of our framework for the 2D image denoising
is about 25 milliseconds, as already discussed in Sect. 3.2 and can be further optimised, thus
confirming the real-time computation. The proposed framework allows the user to denoise each
image during the acquisition of the video/volumetric signal since the spatio-temporal information
is not required.
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Chapter 5

Denoising: further experimental tests

The lack of ground truth signals is one of the main limits of the analysis of processing meth-
ods applied to biomedical data. The validation of the processing methods on synthetic signals
allows us to have a quantitative measure of the accuracy of the method, comparing the available
ground truth with the output of the processing method. In particular, synthetic signals allow
us to compare the results of different methods, have an objective and reproducible comparison
value, numerically compare parameter tuning (e.g., more or less intense smoothing), and present
results and statistics aggregated over a large test data set. However, the use of synthetic data may
not be fully representative of the biomedical image and the related anatomical structures, due to
the different geometries and textures. Furthermore, the generation of synthetic noise, which is
random, may differ from the noise generated by medical acquisition, which has physical signif-
icance. For these reasons, the clinical validation and the visual validation performed by experts
in the medical sector remain the main methods of assessing the quality of a processing method
on medical data.

5.1 Comparison among denoising methods on 2D images

We extend the comparison of the performance of the denoising methods (Sect. 3.2.1) on synthetic
images (Sect. 5.1), and we compare WNNM with our tuned-WNNM method (Sect. 5.1).

Quantitative comparison We compare the five selected denoising methods on synthetic im-
ages, by adding speckle noise with different levels of noise intensity: given a noisy image
Y = X + NX, where X is the normalised ground truth image, we define the artificial multi-
plicative noise N(z) = v/120u, where u ~ U(—0.5,0.5), U is a uniform distribution, o is the
noise intensity, and x is a pixel of the image.
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Input image Noisy im WNNM SAR-BM3D

PCA-BM3D NCSR BM-CNN

Figure 5.1: Input (SIPI data set, van image), noisy (speckle noise intensity ¢ = 0.10), and
denoised images. For error metrics, we refer the reader to Table 5.1.

Table 5.1: PSNR and SSIM metrics of the denoising methods tested on the SIPI data set. For
each o value (i.e., the intensity of the speckle noise), we report the average metric computed on
the 44 images of the data set.
Metric PSNR SSIM
Method | o 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3
WNNM 25.57 | 24.68 | 23.35 | 22.32 | 0.681 | 0.659 | 0.630 | 0.602
SAR-BM3D | 27.36 | 26.01 | 24.71 | 23.65 | 0.730 | 0.699 | 0.673 | 0.651
PCA-BM3D | 25.09 | 2436 | 23.05 | 22.10 | 0.652 | 0.640 | 0.614 | 0.585
NCSR 26.60 | 2536 | 23.61 | 22.36 | 0.665 | 0.669 | 0.619 | 0.588
BM3D-CNN | 26.85 | 2420 | 20.21 | 17.26 | 0.733 | 0.569 | 0.31 0.215

The SIPI data set [Web97] is composed of 44 ground truth images of different sizes, organised in
different classes (e.g., humans, landscapes). We evaluate the efficiency of the denoising methods:
WNNM has very good results in terms of noise removal, edge preservation (e.g., vehicles shape
(Fig. 5.1), and hat feathers (Fig. 5.2). SAR-BM3D has the best results in terms of noise removal;
however, it does not correctly preserve the grey-scale values (e.g., boy’s sleeve in Fig. 5.2) and it
generates a blurred effect (e.g., grass and bushes in Fig. 5.1). PCA-BM3D and NCSR show minor
preservation of edges and details than WNNM (e.g., boy’s face in Fig. 5.2). Finally, BM-CNN is
not able to correctly remove the noise; this result underlines the importance of the training data
set (e.g., the type and the intensity of the applied noise) when using a deep learning approach,
and the necessity of using data-specific networks, instead of a generic-purpose one.

Table 5.1 summarises the results of the five denoising methods on the SIPI data set; we compute
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Noisy image WNNM SAR-BM3D

PCA-BM3D NCSR BM-CNN

Figure 5.2: Input (SIPI data set, man image), noisy (speckle noise intensity o = 0.20), and
denoised images. For error metrics, we refer the reader to Table 5.1.

the average value of each metric (i.e., PSNR and SSIM) among 44 images of the data set, and
report the average values when varying the intensity of the speckle noise. SAR-BM3D has the
best results under these metrics, outperforming all the other methods. The NCSR, WNNM, and
PCA-BM3D methods have good and similar results in terms of PSNR and SSIM indices. These
four methods show a small degradation of the metrics values when increasing the noise intensity;
this result is significant for ultrasound images, which generally have a different noise intensity,
according to the anatomical district, the type of probe, and the data acquisition modality. Finally,
BM-CNN shows a higher degradation of the PSNR and SSIM values, when increasing the noise
intensity. Quantitative analysis is useful to compare methods with numerical measures, instead
of performing only a visual evaluation. However, the main comparison among methods is the
qualitative evaluation performed by the medical experts on ultrasound images, through the eval-
uation of the speckle noise removal and the preservation of anatomical features. We underline
that, even if SAR-BM3D has better results than WNNM on synthetic images, WNNM has bet-
ter performance on ultrasound images. Furthermore, our framework is general enough to use
different denoising methods; two different learning networks can be trained, with WNNM and
SAR-BM3D, to offer the physician the comparison between two denoising results.

WNNM vs. tuned-WNNM  Comparing the baseline WNNM with the tuned-WNNM on syn-
thetic images, we improve the denoising quality (Fig. 5.3) in terms of quantitative metrics; in
fact, the output of WNNM has a PSNR value of 26.67, while the output of tuned-WNNM has
a PSNR value of 26.74. Nevertheless, the execution time of WNNM is 94 seconds, while the
execution time of tuned-WNNM is 260 seconds. We also compare tuned-WNNM and WNNM
on the SIPI data set (Table 5.2). The aggregated results show that tuned-WNNM has slightly
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Table 5.2: PSNR and SSIM metrics of WNNM and tuned-WNNM, tested on the SIPI data set.
For each o value (i.e., the intensity of the speckle noise), we report the average metric computed
on the 44 images of the data set.
Metric PSNR SSIM
Method | o 0.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3
WNNM 25.57 | 24.68 | 23.35 | 22.32 | 0.681 | 0.659 | 0.630 | 0.602
tuned-WNNM | 25.60 | 24.76 | 23.49 | 22.61 | 0.685 | 0.663 | 0.642 | 0.627

Input image - Noi

WNNM  Tuned-WNNM

Figure 5.3: Input (256 x 256), noisy (speckle noise intensity o = 0.05), and denoised images
with WNNM and the tuned-WNNM.

better performance with low noise intensity, while the results improve when the speckle noise
is higher. For example, WNNM has an average PSNR value of 22.32 with a speckle noise of
intensity o = 0.3, while tuned-WNNM has a PSNR value of 22.61.

5.2 Comparison among denoising methods on 2D videos and
3D images

We discuss the results of denoising arbitrary signals on synthetic signals (i.e., video and volu-
metric image) concerning the methods introduced in Sect. 4.2.1. For video denoising, we use
generic 2D image sequences. For volumetric denoising, we consider a phantom through 3D
spheres of different size, with faded boundaries. For both videos and volumetric data, artificial
speckle noise with different intensities is applied to compare ground truth with denoised results.

Volumetric image Fig. 5.4 shows the denoising results of WNNM, BM4D, and Vidosat, with
synthetic volumetric data with artificial speckle noise applied. WNNM has good results when
we divide the volume in the same direction the filter has been applied, i.e., slice direction
(Fig. 5.4(a)). In contrast, a scattering effect due to phase shift between adjacent slices is vis-
ible in the other directions, e.g., the white sphere in Fig. 5.4(b). This denoising approach does
not consider any correlation between adjacent slices, generating artefacts. BM4D and Vidosat
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Input Noisy WNNM BM4D Vidosat

Figure 5.4: Denoising results of a phantom volumetric image with speckle noise applied: 230 x
256 x 80 resolution, o = 0.05 speckle noise.

have better results, both in terms of denoising and consistency among slices, in all the sections.
In particular, BM4D better preserves edges, while Vidosat has a higher blurring effect. At the
same time, Vidosat better removes noise than BM4D.

2D video Fig. 5.5 shows the denoising results of WNNM, BM4D, and Vidosat, with a synthetic
2D video with artificial speckle noise applied. BM4D and Vidosat show good results in terms
of noise removal, and main features preservation (e.g., man details, books in the background);
in particular, BM4D better reduces the blurring effect than Vidosat (e.g., man’s hand). WNNM
shows a higher blurring effect, with a higher loss of details than the other two methods.

Quantitative comparison Synthetic data allow us to compute quantitative metrics between
ground truth and denoised images. Table 5.3 summarise PSNR and SSIM values of the three
denoising methods with volumetric data. Both BM4D and Vidosat have good results, while
WNNM has slightly lower PSNR and SSIM values. Also, we underline that the results degrade
when we increase the noise intensity. Table 5.4 reports the PSNR and SSIM values of the three
denoising methods with 2D videos. Vidosat has the best results, as expected on 2D videos;
however, BM4D has comparable results, showing the versatility of this method with different
data structures.

97



Ground truth Noisy

WNNM BM4D Vidosat

Figure 5.5: Denoising results on a 2D video with speckle noise applied: 352 x 288 x40 resolution,
o = 0.025 speckle noise.

5.3 Properties and tests of learning-based low-rank denoising

Signals acquired by digital sensors are generally affected by different types of noise,
such as speckle [Bur78] and exponential [SSGLO7] noise on biomedical images, salt-and-
pepper [AZA18], Gaussian [Rus03], and Poisson [TZ12] noise on images acquired through cam-
era sensors. In this context, we discuss the validation of the results of our low-rank denoising
method (Sect. 3.3) on synthetic images with different types and intensities of noise.
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Table 5.3: PSNR and SSIM metrics of the denoising methods tested on the volumetric data.
Results refer to Fig. 5.4.

Noise | Method | WNNM BM4D Vidosat
0.05 PSNR 39.18 3995 3945
SSIM 0.935 0.983 0.988
01 PSNR 36.88 37.60 37.45
SSIM 0.925 0.973 0.974
0.2 PSNR 33.32 34.5 35.12
SSIM 0.923 0.956 0.985

Table 5.4: PSNR and SSIM metrics of the denoising methods tested on 2D video. Results refer
to Fig. 5.5.

Noise | Method | WNNM BM4D Vidosat
0.05 PSNR 25.34 2843  29.25
SSIM 0.696 0.777 0.803
0.1 PSNR 25.01 28.16 28.92
’ SSIM 0.636 0.780 0.798
0.2 PSNR 24.02 27.69 28.61
’ SSIM 0.618 0.749 0.794

5.3.1 Denoising with optimal threshold values

The denoising with optimal thresholds (Sect. 3.3.1) is validated on synthetic images, comparing
the ground truth with denoised images. Considering the Gaussian, speckle, and salt & pepper
noise (Fig. 5.6), the denoised images after 20 iterations are very close to the input image, thus
showing that the weighted nuclear norm minimisation recovers the ground truth image with any
type of noise, when the proper thresholds are selected. Most of the details are well reconstructed,
such as the cameraman’s face, the boat profile, or the mandrill zygoma. Images with a different
noise, in terms both of type and intensity, have a different reconstruction accuracy. This result
motivates us to distinguish learning-based networks according to the type of noise (Sect. 3.3.2).
The optimal PSNR plot (Fig. 5.7, 1st row, blue line) provides the upper bound of the optimal
denoising and allows us to compare the accuracy of our learning-based method with the optimal
achievable results.

In Fig. 5.7(2nd row), the averaged optimal thresholds at the first iteration:
Nit=l = Zle )\ﬁfj:l /B, where B is the total number of 3D blocks. Different types of
noise have similar behaviour; for example, in (a) the first singular value is reduced to an average
value of 0.14, which is less than the 1% of the average input value. Then, the optimal thresholds
increase up to 1.2 for the fourth singular value, which is more than the 73% of the input singular
value. Finally, the thresholds decrease: the reduction of the 49th singular value is about 0.2.
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Figure 5.6: Input/noisy (1st row) and optimal denoising (2nd row) for: cameraman (256 x 256),
with speckle noise and 0 = 0.05; boat (256 x 256), salt & pepper noise with density 0.05;
mandrill (256 x 256) Gaussian noise with ;o = 0,0 = 0.01.

Table 5.5: PSNR and SSIM metrics of our denoising, compared with previous work: (a) speckle,
(b) salt & pepper, and (c) Gaussian noise.

Metrics PSNR SSIM

Image Fig. 5.8 | (a) (b) (©) (a) (b) (©)
BM3D 28.05 26220 2599 [0.786 0.720 0.734
WNNM 2691 24.17 26.13 | 0.796 0.642 0.743
NCSR 27.69 25.64 25.89 | 0.794 0.689 0.727
Our method 28.69 27.02 26.01 | 0.843 0.758 0.729

5.3.2 Training and denoising

We present the learning-model training, the threshold values prediction, and the denoising results
with different noise types and intensities, comparing our results with previous work.

Training results We select the SIPI data set composed of 44 images of different resolutions
and subjects. We apply an artificial noise to the images (e.g., Gaussian noise with mean 0 and
variance 0.01); then, we compute the 3D blocks with block-matching. We compute the input
singular values and the target thresholds (Sect. 3.3.1). Images are classified according to the
noise type (e.g., speckle, Gaussian) and intensity (e.g., ¢ = 0.05 in speckle noise) of the input
image. Then, we split the data into ¢ = 5 3D block noise intensity classes, and k = 3 k-
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Figure 5.7: 1st Row: PSNR (y—axis) comparison of the number of iterations (z—axis) between
optimal (Sect. 3.3.1) values (blue), and our method’s values (red). 2nd Row: average opti-
mal thresholds (y—axis) of each singular value (z—axis). (a) Cameraman (256 x 256), speckle
noise (o = 0.05); (b): boat (256 x 256), salt & pepper noise (density 0.05); (¢): mandrill, Gaus-
sian noise (;4 = 0,0 = 0.01). Results refer to Fig. 5.8.

means labels (Sect. 3.3.2), for a total of 15 instances for each iteration. The final data set is
composed of a set of 15 matrices n x IV, where NV is the total number of 3D blocks, and n is the
number of singular values (i.e., 49 in our tests, corresponding to a 7 x 7 patch). This approach
is repeated at each iteration: for the computation of the data set at iteration ¢, the block matching
is applied for (¢ — 1) iterations. At each iteration, the proper networks previously computed by
the minimisation model (Sect. 3.3.2) are used to predict the thresholds and denoise the related
3D block. At iteration ¢, the optimal thresholds are computed through an optimisation step
(Eq. (3.1)). In our tests, we apply 5 iterations of the training, for a total number of 75 networks
(i.e., 5 x 3 x d) for each type of noise and noise intensity. As a matter of example, the training data
set of the Gaussian noise with z = 0 and o> = 0.01 is composed of more than 257K elements,
each one composed of a couple of vectors (i.e., input and optimal target) in R*. Fig. 5.10a
shows the partition of these elements, according to the 3D block noise intensity and the k-means
classification. Since each 3D block noise intensity class contains the same number of elements,
we have a regular partition of the training data set. In contrast, the k-means classification does
not provide a uniform partition of the elements; indeed, some networks are trained with more
data than others. However, each network has a sufficient number of elements due to the huge
data set; in fact, the minimum number of elements is N = 4204, related to 3D block noise
class ¢ = 1 and k-means label £ = 3.
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Figure 5.8: Comparison between previous work and our denoising: (a) cameraman (256 x 256),
speckle noise with o = 0.05; (b) boat (256 x 256), salt & pepper noise with density 0.05; (c)
mandrill, Gaussian noise with u = 0,0 = 0.01; (d) magnification.

Computation time The computation of the input/optimal thresholds (Eq. (3.1)) and of the network
weights (Sect. 3.3.2) are performed offline. For the computation of the training data set, we used
44 images, for a total number of 257,240 couples of input/target vectors for each noise type and
iteration. The execution time for the generation of the data set of each noise type/intensity is
approximately 120 minutes for each iteration. For the computation of the weights, the variables
of each network are 49 x 49 matrices; we consider 3 types of noise (i.e. salt & pepper, speckle,
Gaussian), 5 iterations for each noise, 5 3D block’s noise intensity classes, and three £ — means
labels, for a total number of 225 networks. The execution time of the training of each network is
about 15 minutes. Tests have been executed with Matlab R2020a, on a workstation with 2 Intel
19-9900KF CPUs (3.60GHz), and 32GB RAM.
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Figure 5.9: PSNR (y—axis) average values of our and state-of-the-art methods (z—axis) with
Gaussian (a), speckle (b), salt and pepper (c) noise.

Figure 5.10: Partition of the elements (i.e., input and target vectors) for the training. Each noise
intensity class (z—axis) is divided into 3 k-means classes (blue, orange, and yellow); y—axis
shows the cumulated number of elements of each class.

Thresholds prediction Fig. 5.11b shows a comparison among the input, optimal, and predicted
singular values of a specific 3D block. The optimal singular values reflect the thresholds in
Fig. 5.7(2nd col.); for example, the shrinkage of the second singular value is larger than the first
one. The predicted singular values are very close to the optimal singular values; in fact, the error
for the prediction of a 49—dimensional vector is 0.6, which means an average error of (.01 for
each element of the vector. Analysing the error between the prediction and the optimal singular
values (Q;x — ij);ﬁl (Sect. 3.3.2), the first values show a higher prediction error than the last
ones (Fig. 5.11c), due to the different magnitude and variability of these values. However, there
is not a clear correlation between these factors. The correlation between the prediction error of
the thresholds and the data clustering (Sect. 3.3.2) shows that the error increases with the 3D
block noise intensity (Fig. 5.11d), as the noise intensity implies a more irregular distribution of
the singular values, which is harder to train and predict. Instead, the SVM-predicted classes and
the prediction error of the network do not show any correlation.
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Figure 5.11: (a) Input (blue), optimal (orange), and predicted (yellow) singular values (y—axis)
of the cameraman image with speckle noise, for the 49 (r—axis) singular values. (b) Prediction
error (y—axis) of the 49 singular values (z—axis) of a 3D block of the cameraman image with
speckle noise. (c) Partition of the prediction error (y—axis), when varying the noise intensity
classes (r—axis): each class is composed of three SVM-predicted classes (i.e., blue, orange, and
yellow).

Denoising results We discuss the generality of our method from the type of noise applied.
Applying a speckle noise with o = 0.05 (Fig. 5.8a), our method improves previous work and
shows better preservation of the main features and details (e.g., the face of the man, the folds of
the man’s trousers), and good noise removal (e.g., the sky in the background). Furthermore, our
method does not introduce blurred patterns. In comparison, WNNM removes a larger amount
of noise, while losing several details (e.g., man’s mouth), and increasing the blurring effect.
On the boat image with salt & pepper noise with 0.05 density (Fig. 5.8b), our method better
preserves the main details, such as the clouds, or the geometries of the boat. In comparison,
BM3D does not remove the “salt” noise on the bottom side of the boat. On the mandrill image
with ;o = 0 and 0% = 0.01 Gaussian noise (Fig. 5.8¢), all methods have similar results, correctly
removing the noise and preserving the main features of the image (e.g., the nose and the eyes of
the mandrill). Only the mandrill’s pupil in the NCSR method is less uniform than our method.

Table 5.5 summarises the quantitative metrics of our method and previous work. With Gaussian
noise, our method has comparable results with state-of-the-art methods, which are specific for
this type of noise. In (c), the PSNR value is 26.01 for our method, 26.13 for WNNM (best
result), and lower than 26 for BM3D and NCSR. Instead, our method has better results when
other types of noise (e.g., salt and pepper, speckle) are applied. In Fig. 5.7, we compare the
PSNR of our method with the optimal PSNR results (Sect. 3.3.1); in (a), our method has a
PSNR value of 28.69 after 4 iterations, while the optimal PSNR value is 30.53. The error of the
network prediction of the thresholds, even if small, leads our method to diverge from the optimal
reconstruction. After five/six iterations, our method is not able to further improve the image
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PSNR: 42.03 PSNR: 35.98 PSNR: 37.87 PSNR: 31.71

Figure 5.12: Input/noisy (1st row) and optimal denoising (2nd row) and respective PSNR for:
peppers, exponential noise with ¢ = 0.02; wall, speckle noise with o = 0.10; Barbara, Poisson
noise; rice, Gaussian noise with ;. = 0, 0% = 0.02.

approximation. Considering a large data set [RGBP18] of natural images of different resolutions
and subjects, and applying different types of artificial noise, our method has slightly better results
than previous work in the case of Gaussian noise, while it widely improves the PSNR values in
the case of speckle and salt and pepper noise (Fig. 5.9).

Denoising results: additional noise types We further compare our method with previous
work on four images with different noise types and intensity: Gaussian (1 = 0,02 = 0.02),
speckle (o = 0.10), exponential (u = 0.02), and Poisson (Fig. 5.12, first row). The denoising
with optimal thresholds (Eq. (3.1)) has very high accuracy (Fig. 5.12, second row), showing that
the weighted nuclear norm minimisation with the optimal thresholds recovers the ground truth
image with any noise type and intensity.

Then, we show the generality from the noise type and intensity of our denoising method with
predicted thresholds. In addition to previous work tested in Sect. 3.3.3, we compare our method
with deep universal blind image denoising (DUBD) [SC21], shearlab [KLR16], and texture vari-
ation adaptive image denoising with nonlocal PCA (ACVA) [ZLLQ19]. Fig. 5.13 shows the
average PSNR on a large data set [RGBP18]; our method outperforms previous work with all
types of noise. In particular, our method has an average PSNR value of 38.02 with exponential
noise, while the other methods have an average PSNR value lower than 33.00.

The visual comparison (Fig. 5.14) and the respective quantitative metrics (Table 5.6) show that
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Figure 5.13: PSNR (y—axis) average values of our and state-of-the-art methods (z—axis) with
exponential ;1 = 0.02 (top-left), speckle o = 0.10 (top-right), Poisson (bottom-left), Gaus-
sian u = 0, 02 = 0.02 (bottom-right) noise. (i) BM3D, (ii) SHEARLAB, (iii) ACVA, (iv)
DUBD, (v) WNNM, (vi) NCSR, (vii) Our denoising.

our method generally has better performance than all the other methods, in terms of edges preser-
vation, noise removal, and low generation of artefacts. Learning-based method (DUBD) does not
correctly remove noise in images where high-intensity noise is applied, such as speckle noise (b)
and Gaussian noise (d). Shearlet-based method (SHEARLAB) generates artefacts with all types
of noise, e.g., in the background of rice image (d); the preservation of edges and geometries is
good. ACVA has good results with all types of noise, showing good generality properties. In
particular, this algorithm correctly removes noise in (a,c,d), while it is not able to correctly pro-
cess high-intensity speckle noise (b). BM3D does not correctly process high-intensity speckle
noise (b). WNNM and NCSR show good results in terms of noise removal with all types of noise
while losing some details (e.g., the edges of the window (b)).

Our method has better results than the aforementioned algorithms; it correctly processes different
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Table 5.6: With reference to Fig. 5.14, we report the PSNR metric of our denoising, compared
with previous work: (a) exponential, u = 0.02, (b) speckle, 0 = 0.10, (c) Poisson, and (d)
Gaussian noise, i = 0, 02 = 0.02.
PSNR (a) (b) (c) (d)
DUBD 31.79 16.01 28.11 17.35
SHEARLAB | 2340 27.89 26.85 25.82
ACVA 3295 2525 3411 28.12
BM3D 32.18 2556 3398 27.98
WNNM 32.08 2829 33.87 28.45
NCSR 3220 2837 3330 27.15
Our method | 38.82 29.18 34.43 28.18

types of noise (a,c,d), preserving the geometries (e.g., the edges of peppers and rice grains),
without generating artefacts. Furthermore, our method well denoises high-intensity speckle noise
(b), removing noise while preserving main geometries.
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Figure 5.14: Comparison between previous work and our denoising: (a) peppers, exponential
noise with 1 = 0.02 ; (b) wall, speckle noise with o = 0.10; (c) Barbara, Poisson noise; (d) rice,
Gaussian noise with ;. = 0, 0% = 0.02. 108
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Chapter 6

Real-time super-resolution of US 2D
images and videos

Ultrasound acquisition has many advantages compared to magnetic resonance and tomogra-
phy, such as its efficiency, cheapness, and non-invasiveness. Furthermore, its real-time acquisi-
tion provides instantaneous feedback to the physician, for example during regional anaesthesia.
Through US videos, the physician analyses the temporal variation of an anatomical feature (e.g.,
the movement of a muscle, the volume of the ventricle), which can be generated either by the
shift of the probe or by the movement of the anatomical part. 2D US videos are acquired through
2D probes, which capture sequences of images at a given frequency. The resolution of each
image is affected by the required frequency of the video, since some anatomical districts (e.g.,
cardiac) require a high acquisition frequency, to accurately acquire the behaviour of anatomical
features that quickly change over time.

Our goal is the design of a novel deep learning framework for the super-resolution of 2D US
images, by increasing the image resolution and reconstructing non-acquired scan lines. Applying
our approach to US videos with a low spatial resolution and a high frequency (e.g., for the cardiac
district), we can generate high-frequency 2D US video with an increased spatial resolution of
each frame, thus overcoming the main limits of current US probes, whose spatial resolution
decreases as the acquisition frequency increases.

First, we compare several state-of-the-art up-sampling algorithms among the ones discussed in
the related work section (Sect. 2.2.2) and identify the best method in terms of quantitative metrics
and visual evaluation. Then, we train a neural network to improve the results of the up-sampling,
to match the target image (i.e., the high-resolution image). Our network does not perform the
interpolation of the missing lines; in fact, this task is already performed by up-sampling. In con-
trast, our network learns how to transform the up-sampled lines into the target lines. To improve
the quality of the up-sampling, we train multiple networks, each one specialised to the input
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Figure 6.1: Proposed framework: training of the learning-based model and spatial up-sampling
of US videos.

anatomical district (e.g., cardiac, abdominal) and its low-resolution image (e.g., 0.5X, 0.25X).
This specialisation improves the quality of the up-sampling since we specialise the network to a
specific prediction. The execution time of the super-resolution depends on the up-sampling and
the network prediction; the prediction is achieved in real-time on standard medical hardware.

As the main contribution (Sect. 6.1), we propose a novel learning-based architecture, which im-
proves the Wide Activation for Efficient and Accurate Image Super-Resolution (WDSR)[ YFH20].
The kernel size is selected according to the dimension of the low-resolution image to guarantee
that at least two original lines (i.e., two lines that are acquired by the probe) are always included
in the convolution operation. Then, we modify the loss function to improve the visual accuracy
of the prediction. Our logarithmic-based loss includes only up-sampled lines, excluding lines
acquired by the probe.

Our approach is general in terms of the building blocks of the framework; in fact, we can select
different up-sampling algorithms, e.g., Single Image Super Resolution (SISR) [PE14], Enhanced
Super Resolution Generative Adversarial Network (ESRGAN) [WYW™18] and deep learning
architectures, e.g., Pix2Pix [IZZE17] and VGG19 [SZ14]. As experimental validation (Sect. 6.2),
we perform a quantitative and qualitative evaluation of our framework on a large collection of US
images acquired from different anatomical (e.g., muscle-skeletal, obstetric, abdominal) districts.
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Target Input Prediction

[] []

Figure 6.2: Prediction on the raw images of the obstetric district: 2X up-sampling (first line); 4X
up-sampling (second line).

Target Input Prediction
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Figure 6.3: Prediction on the raw images of the cardiac district: 2X up-sampling (first line); 4X
up-sampling (second line).

Related publications

Cammarasana, Simone, Paolo Nicolardi, and Giuseppe Patane, “Super-Resolution of 2D Ultra-
sound Videos.”, submitted at Medical & Biological Engineering & Computing [Journal Paper]

6.1 Real-time super-resolution framework

Ultrasonic sound waves are emitted by the probe and straightly propagate till they encounter
a tissue variation; the reflected echo depends on the tissue property (i.e., acoustic impedance),
which is measured by the probe. The echo signals are processed and combined to generate the
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Target Input Prediction
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Figure 6.4: Prediction on the raw images of the abdominal district: 2X up-sampling (first line);
4X up-sampling (second line).

underlying image, which has a resolution of [ x d, where [ is the number of scan lines (i.e., the
lateral resolution), and d is the depth of the acquisition of each scan line (i.e., the axial resolution).
The resolution of the image in terms of lateral direction (i.e., the direction perpendicular to the
US propagation along the scan line) depends on the number of elements (i.e, the piezoelectric
crystals), which are activated to generate the US waves. In this context, we focus on the super-
resolution of US images to increase the lateral resolution of the image; this is relevant to improve
the quality of the image, its visual interpretation by the physician, and post-processing steps, €.g.,
classification [ANMM™17], diagnoisis [BSGR"21], and segmentation [LZT*22].

We also mention that our super-resolution framework can be extended to the up-sampling
of ultrasound localisation microscopy imaging where a high acquisition frame rate is re-
quired [EPP™ 15]; this approach allows us to acquire anatomical structures in the order of tens of
micrometers and reconstruct through our super-resolution scheme the missing information in the
lateral direction.

Proposed framework Our framework is composed of two steps: first, we up-sample the low-
resolution image through an interpolating method; after the comparison of state-of-the-art meth-
ods (Sect. 6.2.2), we select Cubic Convolution as the up-sampling algorithm. Then, we apply a
learning-based network to improve the visual accuracy of the up-sampling.

We consider the Esaote data set, which contains more than 10K US images at different res-
olutions, and is acquired from different anatomical districts (e.g., obstetric, cardiac). Given a
high-resolution image (i.e., the target) acquired by the probe, we build the corresponding low-
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(a) Obstetric district (b) Cardiac district (c) Abdominal district

Figure 6.5: PSNR box-plot district (left) of the (a) obstetric, (b) cardiac, and (c) abdominal
districts, and error histogram (right): prediction (blue) vs. input (red): 2X (first line) and 4X
(second line) results.

2X Upsampling ‘ 4X Upsampling

Obstetric Cardiac Abdominal Obstetric Cardiac Abdominal

Figure 6.6: Concerning Figs. 6.2,6.3,6.4, we report the absolute value of the distance between
the input and the prediction, for both 2X (first row) and 4X (second row) up-sampling factors.

resolution image by removing one line each 2 (0.5X) or 4 (0.25X). This approach is consistent
with the acquisition of the US image, where the probe can acquire at the full, half, or a quarter
of the maximum number of scan lines, depending on the activation of the piezoelectric crystals.
We up-sample the low-resolution images through Cubic Convolution at 2X (applied to 0.5X low-
resolution) or 4X (applied to 0.25X low-resolution). Then, we use the couples of up-sampled
and target high-resolution images to analyse the proposed framework, through the training and
the prediction of the learning-based network, with a specialisation in anatomic districts.

We generate a separate data set of 1.5K images for each anatomical district and two different up-
sampling resolutions of 2X and 4X. Our approach requires the interpolation of the missing rows
to the up-sampling method, while the learning model deals with the prediction of the target values
from the interpolated values of the up-sampling method (Fig. 6.1). As quantitative metrics, we
consider the PSNR for the comparison of the high-resolution target with both the up-sampled
image and the prediction of the network. We also compare the histogram of the absolute value of
the prediction error, to analyse the number of pixels whose error is lower than a certain threshold.
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Target Input Prediction

Brightness: 28 PSNR: 47.51 PSNR: 47.5

Brightness: 131 PSNR: 43.46 PSNR: 43.55

Figure 6.7: Input and prediction of the raw images of the abdominal district 2X with different
levels of brightness: low brightness (first row) and high brightness (second row).

Deep learning network We select WDSR [YFH20], an architecture that exploits residual
blocks since it improves the prediction of images where the difference between the input and
the target is small. We propose an improved version of this network: custom-WDSR. Given
an y = L x D target image, and its approximation g, our loss function is defined as

. Zl Y1 yldH—e, mod(l, s) =0,
LOSS(y,y) = 1d=1

0, otherwise,

where s allows us to exclude the lines acquired by the probe (e.g., s = 4 when 4X up-sampling
is applied); ¢ = 10~* avoids a null error for the logarithmic loss, and k& = 5 determines the
curvature of the logarithmic loss function. We enhance the pixels where the loss is less than 5
on the 0-255 range, to improve the visual similarity between the prediction and the target image.
The size of the kernel of the convolution filter depends on the up-sampling factor; in the case of
a 2X up-sampling, we apply a 3 x 3 filter; for a 4X up-sampling, we apply a 5 x 5 filter. This
choice allows us to include at least two lines acquired by the probe, in the convolution operator.
Finally, we set the number of layers to 16 and the number of kernels to 10. The learning rate
iteratively decreases, up to 107%, and the number of epochs is set to 200. The input and output
layers of the network are #batch x L x D size.
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Target Input Prediction

Brightness: 54 PSNR: 31.01 PSNR: 31.48

Brightness: 108 PSNR: 30.02 PSNR: 30.45

Figure 6.8: Input and prediction of the raw images of the obstetric district 4X with different
levels of brightness: low brightness (first row) and high brightness (second row).

6.2 Experimental results on US 2D images and videos

We discuss the results of the proposed super-resolution of 2D US images and videos (Sect. 6.2.1)
and compare our results with previous work (Sect. 6.2.2).

6.2.1 Framework prediction

Our real-time framework applies to US 2D images, with an image-to-image learning model.
Then, the application to each frame of a sequence of frames allows us to increase the spatial
resolution of a US 2D video.

Super-resolution of US 2D images We train each learning-based network (custom-WDSR)
with 1.5K images, where the input is the outcome of the selected up-sampling method (i.e., Cubic
convolution), and the target is the original high-resolution image. We recall that input and target
images have the same resolution, as the reconstruction of the missing lines has been already
performed by Cubic convolution. Figs. 6.2,6.3,6.4 show the results of the network prediction,
compared with the input and the target images.

Our framework visually improves the results, in terms of blurring and artefacts. This result is
more evident in the magnification of the ear of the foetus (Fig. 6.2), the mitral valve (Fig. 6.3),
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Target Down-sampling Cubic Convolution

Figure 6.9: Comparison of up-sampling methods vs. our method on the obstetric district: 0.5X
low-resolution and 2X up-sampling. See also Table 6.1.

and the mass edges (Fig. 6.4). Fig. 6.5(a-b-c, left) shows the box plot of the quantitative metrics,
comparing the target images with the prediction and the Cubic convolution, respectively. The
metrics are computed on a data set of 50 images of the same district and with the same up-
sampling factor. We report that the PSNR median value improves of 1.5% on obstetric 4X
images, 3.7% on cardiac 2X images, and 7.1% on abdominal 4X images.

Fig. 6.5(a-b-c, right) shows the histogram of the absolute value of the error with respect to the
target image, of the prediction and Cubic convolution results, respectively. The histograms show
the number of pixels where the prediction error is lower than 5 (i.e., the first bin of the histogram),
which means very similar to the target when visually analysing the images. From the Cubic
convolution to the predicted images, this value increases of 9.0% on obstetric 4X images, 2.9%
on cardiac 4X images, and 2.0% on abdominal 4X images.

The analysis of the absolute value of the difference between the input and the prediction of the
network (Fig. 6.6) shows that the alteration of our prediction to the pixel values ranges from O to
a maximum absolute value of 20; furthermore, the black uniform areas are less affected by the
prediction. In terms of the distance between the input and the prediction, we do not observe a
significant difference among anatomical districts and between 2X and 4X up-sampling.

We also verify the robustness of our method on images at different brightness. Characterising
the brightness of an image as the average value of all pixels, we test images with high and
low brightness on different anatomical districts and up-sampling factors. Figs. 6.7, 6.8 show
that the prediction performed with our trained network is robust to different value of image
brightness, never lowering the output accuracy or generating artifacts. Comparing the input and
the prediction of our network with the target image, we improve the PSNR value from 43.46 to
43.55 with high brightness images from the abdominal district 2X up-sampling, and from 31.01
to 31.48 with low brightness images from the obstetric district 4X up-sampling.
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Target Down-sampling Cubic Convolution

Figure 6.10: Comparison of up-sampling methods vs. our method on the abdominal district:
0.25X low-resolution and 4X up-sampling. See also Table 6.1.

Super-resolution of US 2D videos Applying our approach to US videos with a low spatial
resolution and a high frequency (e.g., for the cardiac district), we can generate high-frequency
2D US video with an increased spatial resolution of each frame, thus overcoming the main limits
of current US probes, whose spatial resolution decreases as the acquisition frequency increases.
The relationship between image resolution and video frequency f is given by f =¢/(2-d - 1),
where c is the speed of sound. The acquisition of low-resolution US images allows the physician
to increase the acquisition frequency. The probe acquires a reduced number of lines: we refer
to 0.5X and 0.25X low-resolution images, as [/2 x d and [/4 x d resolution, respectively. For
the experimental tests on the spatial super-resolution of 2D US videos, we refer the reader to
the uploaded video (see URL below). In the video, the input signal is a 2D US video at full
resolution L x D x T with L lines, D depth, and T frames. We down-sample each image at L /2
or L/4, and apply our framework for the spatial super-resolution, to reconstruct the full res-
olution 2D video. Video URL: https://www.dropbox.com/s/p42pzxxvgf9gacl/
SuperResolution-US.mp4?2dl1=0.

Execution time and computational cost The experimental tests on the CINECA Cluster are
supported by the ISCRA-C Scientific Project US-ML-SR. We define a HPC implementation of the
proposed framework on the CINECA-Marconil00 cluster, exploiting both CPUs (IBM POWER9
AC922) and GPUs (NVIDIA Volta V100). We train multiple networks with large data sets
for the target medical application, thus increasing the specialisation of anatomical districts, and
consequently the accuracy of the prediction. The training data set can be periodically updated
with the up-sampled images after the expert validation of the super-resolution results. To test
the training phase of the learning-based networks in the HPC environment, we exploit 8 nodes,
each one composed of 32 cores and 4 accelerators, for a theoretical computational performance
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Figure 6.11: Prediction on the denoised images of the obstetric district: 2X up-sampling (first
line); 4X up-sampling (second line).

of 260 TFLOPS, and 220 GB of memory per node.

The computational cost of the prediction depends on the resolution of the input image and on
the architecture of the network: in particular, the computational cost of a convolution operation
is O(r/s,-¢/sc)(fr fe)- f;in our application, the input images have variable resolutions, with a
maximum value of » = ¢ = 600, the kernel-filter size on rows and columns is f, = f. = 3 on 2X
applications and f, = f. = 5 on 4X applications, the stride on rows and columns is s, = s, = 1,
we use 16 convolution operators, and 10 kernel filters.

We test the prediction on GPU-based hardware, which replicates the hardware of a US scanner
currently in use. Given a set of US input images from different districts at different resolutions,
the average execution time is 14 milliseconds.

Super-resolution with denoised images To evaluate the effect of denoise pre-processing for
the super-resolution of US images, we apply a soft denoising filter to the input raw images. In
particular, we apply our low-rank denoising method 3.3, which allows us to select the intensity of
the smoothing. This approach generates denoised images that are visually similar to raw images,
and simultaneously more uniform. Then, we generate down-sampled images (0.5X and 0.25X)
and apply the Cubic convolution up-sampling. These couples of images (i.e., denoised at full
resolution and up-sampled) are used to train the learning-based network (Sect. 6.1). With this
approach, we verify the performance of both the up-sampling algorithm and our learning-based
prediction when applied to the input denoised images.

Fig. 6.11 shows the results of the prediction of the network, compared with the input and the
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Figure 6.12: PSNR box-plot of the obstetric district with denoised images (left) and error his-
togram (right): prediction (blue) vs. input (red): 2X (first line) and 4X (second line) results.

target denoised images of the obstetric district. Our framework visually improves the results, in
terms of blurring and artefacts. Fig. 6.12 (left) shows the box plot of the quantitative metrics,
comparing the target images with the prediction and the Cubic convolution, respectively. The
PSNR metric is computed on a data set of 50 images, belonging to the same district, and with
the same up-sampling factor. Concerning the corresponding raw images (Fig. 6.5 (a, left)), the
denoising allows the network to significantly improve the results of the up-sampling and the
prediction. In particular, comparing the target images with the predicted images, the median
PSNR value of obstetric 2X denoised images is 51.8, compared to the median PSNR value of
obstetric 2X raw images which is 36.9.

Fig. 6.12 (right) shows the histogram of the absolute value of the error with respect to the target,
of the prediction and Cubic convolution respectively. This result shows that our framework
increases of 1.7% and 14% (2X and 4X, respectively) the number of pixels where the prediction
error is lower than our defined threshold, and the prediction is very similar to the target when
visually analysing the images, and improved compared to the learning framework applied to raw
images. Finally, the denoise pre-processing can be performed in real-time through our learning-
based denoising framework (Chapter 3).
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Table 6.1: Concerning Figs. 6.9, 6.10 we report the PSNR metric computed between the target
and each up-sampling method, as the mean value among the 50 test images.

Test Obstetric 2X | Abdominal 4X
Cubic Convolution 36.52 42.17
EDSR 32.08 3491
SRGAN 33.70 36.35
SISR 34.75 38.58
OURS 37.00 44.35

6.2.2 Comparison with previous work

We show both the comparison among state-of-the-art algorithms that are used for the selection
of the up-sampling method of our framework and the comparison of our results with previous
work. Among up-sampling STAR methods, we test four methods belonging to different classes:
Cubic Convolution [Key81], a kernel-based interpolating method; Enhanced Deep Residual Net-
works - EDSR [LSK'17], a learning-based method trained on generic images; Enhanced Super-
Resolution Generative Adversarial Network Plus - ESRGAN+ [RR20], a learning-based GAN
method, specialised on US images with a dedicated training; Single Image Super Resolution -
SISR [PE14], an up-sampling method which exploits sparse representations. We evaluate the up-
sampling results of the selected methods on different anatomical districts and resolutions: obstet-
ric district with 0.5X down-sampling (Fig. 6.9); abdominal district with 0.25X down-sampling
(Fig. 6.10).

Table 6.1 summarises a comparison with the PSNR metric, on a test data set of 50 images. Cubic
convolution has a mean PSNR value of 36.52 and 42.17 for 2X and 4X upsampling, respectively.
According to these results, we select Cubic convolution as the best method for the up-sampling
of US images. This method interpolates the missing lines, without generating artefacts. Also,
Cubic convolution has a reduced computational cost (O(kn), with n pixels) that well suits an
application in a real-time context.

In comparison, our method improves the results of previous work (Fig. 6.9, Fig. 6.10, Table 6.1),
with a mean PSNR value of 37.00 and 44.35 for 2X and 4X super-resolution, respectively. Fi-
nally, we underline that 4X super-resolution on the abdominal district has better results than 2X
super-resolution on the obstetric district, due to the complexity and variety of each anatomic
district data set.
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Chapter 7

Kernel-based sampling of US and arbitrary
signals

In the context of signal super-resolution, the sampling and approximation of an input signal are
relevant to interpolate the input data and reconstruct it on a denser grid. Our starting point is
the kernel-based sampling [ZH16], which approximates an input signal on a regular grid (e.g.,
a 2D or 3D image) as the sum of Gaussian kernels, whose centres are computed through the
minimisation of an energy functional. The kernels have a fixed size and the same energy, to
provide the same weight to the energy functional. This choice generates artefacts in the sampling
of images with complex patterns and limits the approximation accuracy and the distribution of
the samples in case of irregularly distributed data.

Starting from the kernel-based sampling, we introduce a set of additional variables, which allow
us to improve the quality of the kernel-based sampling in terms of the distribution of the samples,
and to further reduce the approximation error. More precisely, we introduce the (o, o) kernel-
based sampling (Sect. 7.1), where o controls the kernel width and « is the vector of coefficients
that express the input signal as a linear combination of the Gaussian kernels.

As main contributions with respect to previous work on samplings, we improve the sampling
quality and the approximation accuracy, also achieving more accurate feature preservation, with
a slightly higher computational cost related to 2n additional variables, where n is the number of
samples. Analogously to Gaussian Mixture Models (GMMs), we approximate the input signal as
a linear combination of radial basis functions (RBFs), whose parameters are optimised through
the minimisation of an energy functional; the kernel-based sample corresponds to the mean of
the Gaussian function in 1D, the kernel width is equivalent to the standard deviation, and the
kernel weight corresponds to the kernel scale. Our method is independent of the dimensionality
and spatial organisation of the input data and can be extended to 3D images, unstructured data,
solutions to PDEs on arbitrary 2D/3D domains, and vector fields. We apply our method to
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Figure 7.1: (a) Input image of cardiac district (168 x 580), (b) image reconstruction, and (c)
kernel-based sampling with 5K samples.

sample and reconstruct ultrasound 2D images of different anatomical districts. Then, we extend
the experimental tests to 2D/3D images (Sect. 7.2).

Related publications

Cammarasana, Simone, and Giuseppe Patane. ”Kernel-Based Sampling of Arbitrary Signals.”,
Computer-Aided Design (2021): 103103. https://doi.org/10.1016/7.cad.2021.
103103 [Journal Paper]

Cammarasana, Simone, and Giuseppe Patane, “Kernel-Based Sampling of Arbitrary Data.”,
(2020) - Eurographics Italian Chapter Conference. 10.2312/stag.20201252 [Conference
Proceeding]

7.1 Kernel-based sampling method and application to US 2D
images

The kernel-based sampling [ZH16] approximates an input signal as a linear combination of Gaus-
sian kernel functions, whose centres (i.e., the samples) are computed through the minimisation
of the energy functional. We propose a novel method, the (o, ) kernel-based sampling, that
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approximates an input signal C'(x) on R? as a linear combination

{ Crecon(X, p, @, ) = kZ] 1 G (x, 1y, 05),

- (7.1)
G<X7 ,u'ijJ> = mexf)( %)

of functions G(x, ,LLJ,O']) with centres p = {p;}7_;, weights @ = (a;)}_,, widths o :=
(0;)}=1, and k = [, C(x)ds/n as a constant term. Then, the variables (p, o', &) are computed
by minimising the energy functional

Elp, a,0) /|C — Crecon(X, , v, )| ?ds, (7.2)

In the discrete case, the input signal is known at a set of points P = {x;}/, and the integral
in Eq. (7.2) is discretized as a finite sum over the input points. Introducmg the integrand term
S2%(x, u, o, ) of the energy functional (7.2), the minima of E(-) are computed as the roots of
its partial derivatives with respect to u, o, o i.e.,
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We now focus on the properties of the (o, &) kernel-based sampling, the evaluation of the en-
ergy functional, and its computational cost. The (o, &) kernel-based sampling involves n(d+2)
variables, i.e., nd variables for the d coordinates of the n samples p, n variables for the coeffi-
cients a, and n variables for the Gaussian width . We specialise this method to four variants,
by freezing a subset of the free variables in the approximating function (Eq. 7.1):

* (p) kernel-based sampling (or (p)-method): we select a; = 1, 0; = 0, Vj, and o is a
constant, thus reducing to the original kernel-based method [ZH16], with nd variables;

* (o) kernel-based sampling (or (o )-method): we select o; = 1, V5 and the corresponding
energy functional involves n(d + 1) variables;

* (o) kernel-based sampling (or (ov)-method): we select 0; = o, V7, and o is constant. The
corresponding energy functional involves n(d + 1) variables;

* (0) kernel-based sampling (or (o)-method): we select a; = 1, 0; = o, Vj, and o is a
variable. The corresponding energy functional involves nd + 1 variables.
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Figure 7.2: (a) Input image of muscle-skeletal district (500 x 600), (b) image reconstruction, and
(c) kernel-based sampling with 5K samples (c).

Signal reconstruction and error metrics Once the samples have been computed, we recon-
struct the input signal at any point y as a linear combination of the kernel functions, by comput-
ing Crecon(y) := Crecon(y, i, @, ) in Eq. (7.1). Then, we evaluate the reconstruction accuracy
as the difference |Ciecon(X;) — C'(x;)| between the input and the reconstructed signals at x;, Vi.
Given m input points, we evaluate the normalised cross correlation (NCC)

ZZJOrecon (xi) — érecon] [C(x;) — O]
(57 [Crecon (%) = Creeonl?] " [ [Cx:) — CP2]

where C..,, and C are the average values of the reconstructed and input signal respectively, and
the normalised root mean square error (NRMSE)

S [Crecon(x:) — C(x4)]? 1/2
> [C (i) ’

The Py-percentile is defined as the percentage of input points whose reconstruction error is lower

than £, i.e.,

~ #1{1 | Creeon(%3) — C(x3)| < k}

= - )
In the paper examples, we also visualise the error as the difference between the input and the
approximated images, where white corresponds to a null error and black represents the maximum
error equal to one (c.f., Fig. 7.4).

NCC = (7.3)

1/2°

NRMSE =

Py,

Numerical solver and computational cost The minimum of the discrete energy functional
is computed through the iterative optimisation method L-BFGS (Limited-memory Broyden,
Fletcher, Goldfarb, Shanno) [ZBLN97], which finds the roots of the derivative of the energy
functional. We briefly recall that L-BFGS is an optimisation algorithm in the family of quasi-
Newton methods that approximates the BFGS using a limited amount of computer memory. At
each iteration, a small history of the past updates of the position (u, ¢, o) and the gradient of
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(a) Input image (b) Reconstruction with 10K samples

(c) Sampling: 1K samples

Views Zoom

Figure 7.3: (a) input MR image (156 x 73 x 36), (b) reconstruction (50K samples), and (c)
different views and zoom on the sampling with 1K samples.

the energy functional F(-) in Eq. (7.2) is used to identify the direction of steepest descent and
to implicitly perform operations requiring vector products with the inverse Hessian matrix. The
computational cost of the kernel-based sampling is O(u+m), where u is the number of variables
and m is the number of input points, and the memory storage is O(u?).

Experimental tests on US 2D/3D images We apply our kernel-based method to the sampling
and reconstruction of US 2D images of different anatomical districts (Fig. 7.1, 7.2), and US 3D
image of the obstetric district (Fig. 7.3). Our method permits us to accurately reconstruct the
input signal, both in the 2D and 3D case. Even with a reduced number of samples (e.g., Fig. 7.1,
5K samples vs. 100K input points resolution), our method preserves the anatomical structures
and geometries of the input image)
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Figure 7.4: Variants comparison: (a), (w@)-method; (b), (o)-method; (c), (a)-method;
(d), (o, a)-method, with 5K samples. The first column shows the input image (256 x 256),
and the colour-map.

7.2 Further experimental tests

We introduce the experimental results of the kernel-based sampling on 2D/3D images and 3D
point clouds.

Kernel-based sampling of 2D images We compare the results of the proposed variants of the
kernel-based sampling (Fig. 7.4), and we refer the reader to [CP21] for a complete discussion of
the results. The main geometric features of the input image are preserved by all the variants; in
particular, the tail and the mane of the horse, or the “Ferrari” label. The reconstruction of the
input image with the original kernel-based sampling presents some defects, such as a blurring
on the letter “R”, noise around the letter “I”, and a dot-like effect on the grey background of
the logo. The (o )- and ()-methods provide some improvements to the previous results. In
the (o )-method, the dot-like effect on the grey background is barely visible. The characters are
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Sampling Reconstruction Error Zoom-in
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Figure 7.5: Accuracy of the (o, a)-method, with a different number of samples: (a) n = 1K
b)n=2K;(c)n=4K.

well reconstructed, apart from the letter “R”, which is still blurred. The noise around the letter
“I” is not present.

A different reconstruction accuracy of the “R” letters (i.e., the first one is more blurred than
the second and the third ones) depends on the overall number of samples and on the number
of samples that belong to this area of the image; in (a), 190 samples are placed in the first
“R” letter, 273 and 282 samples are placed in the second and third “R” letter respectively, thus
leading to a different approximation and reconstruction of this area. The number of samples for
each “R” letter depends on two factors: the samples’ initialisation and the iterative optimisation
of the energy functional. Since the optimisation of the energy functional is deterministic and
the samples’ initialisation is stochastic [ZH16], a different initialisation of the method leads
to a larger or smaller number of samples for each “R” letter, and consequently, to a different
reconstruction of the corresponding area of the image.

The (a)-method is affected by a dot-like effect on the grey background; furthermore, the “Fer-
rari” label looks more jagged and irregular. The reconstruction accuracy of the (o, a)-method
is very good; in fact, there is no blurring or dot-like effects, the background is very uniform,
and the grey distribution of the original image is preserved. Furthermore, all the letters of the
“Ferrari” label are perfectly reconstructed. Considering the error distribution between the input
and the reconstructed images, the (p)-method has a visible error on most of the characters of
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(a) (p)-method (b) (0)-method (¢) (o)-method

(d) (ax)-method (e) (o, a)-method

Figure 7.6: Concerning Fig. 7.4, we report the convergence of the iterative minimisation, in terms
of the objective function value (y-axis) with respect to the number of iterations (x-axis).

“Ferrari”; in particular, on the letter “R”. Also, the error is higher on the external boundary of
the shapes. Then, the error of the (o)- and («)-methods is significantly reduced (e.g., in the
logo background and the letter “R”), and it is barely visible in the (o, a)-method, including the
“Ferrari” label.

We conclude that the (o )-method provides better results than (a)-method, particularly in the
background reconstruction; indeed, the use of the o variables improves the quality of the ap-
proximation of the input image with respect to the ¢ variables, despite the number of variables
remains unchanged. The (o, a)-method gives the best results, with an excellent sampling, ap-
proximation, and reconstruction of the input image.

Approximation accuracy In Table 7.1, we present a comparison of the five kernel-based sam-
pling methods, in terms of the error metrics described in Sect. 7.1. First of all, each variant of the
kernel-based sampling further reduces the numerical value of the objective function with respect
to the (p)-method. The minimum of the energy functional is computed on a larger trust region.
The (p)-method has an objective function value of 150, a Py 1o value of 94.2% and a NCC value
of 0.988. The (¢)-method has an objective function value of 112, it improves the P, 1o value to
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Figure 7.7: NCC error (y-axis, right): (u)- (red continuous line) and (o, a)-(red dashed line)
kernel-based samplings; Hausdorff distance (y-axis, left) of the corresponding samples (blue
line), with respect to their number (z-axis). Image: Dante, 256 x 256.

Ramp
[BSD09] [DGBODI12]
[Fatl1] [QCHC17]
[ZH16] Our

Figure 7.8: Ramp image (192 x 75) and sampling (1K samples) comparison among state-of-the-
art methods; the percentages of each quarter show the number of samples in that portion of the
grid, compared with the ink density of the input image.

95.3%, and the NCC value to 0.990. The (o )-method has an objective function value of 29.8;
it has very good Py o5 and Py 1o values, 96.4% and 98.8% respectively. The (a)-method has an
objective function value of 73; the NCC, the F o5, and the I 1o values are similar to the ones of
the (o)-method. Finally, the (o, &)-method significantly improves all the metrics for the error
evaluation, since it has an objective function value of 6.65, the F; 1o value is 99.5%, and the NCC
value is 0.998.

The (0)-method has better results than the original method, with the addition of one variable only.
The (o)- and (a)-methods have worse results than the (o, a)-method, and the (o )-method has
better results than the (a)-method, despite the same number of variables. Finally, the (o, a)-
method significantly improves the (u)-method under all the metrics.

Approximation accuracy with respect to the number of samples Since the (o, a)-method
has the highest approximation quality, we further analyse its accuracy with respect to the number
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(a) (b)

Figure 7.9: Comparison of the reconstructed ramp image, between (a) [ZH16], and (b) ours.

Image Sampling Reconstruction Error

(a)

(b)

Figure 7.10: Sampling initialisation on (a) Supermario (256 x 256 input points, 16K samples,
m = 4, (b) Biosphere (512 x 512 input points, SOK samples, m = 16).

of samples. Selecting a different number of samples (i.e., from 1K to 4K), the blurring and
the dot-like effects are more accentuated with a lower number of samples; however, the overall
features (e.g., the horse shape, the “Ferrari” label), are well reconstructed. The reconstruction
error decreases as the number of samples increases; especially on the letter “R” and on the
background of the logo (Fig. 7.5).

Comparing the error metrics (Table 7.2), the (o, &)-method is very accurate, even when we
use only 1K samples (i.e., the 1.5% of the input pixels). In fact, 77% of the points have a
reconstruction error lower than 0.05, and 85% of the points have an error lower than 0.10. We
underline that the accuracy of the (o, a)-method with 2K samples is comparable to the (u)-
method with 5K samples (Table 7.1).

Computation time Table 7.3 shows the variation of the execution time and the number of
iterations of the L-BFGS algorithm to converge, compared to the original kernel-based sampling
(i.e., the (p)-method). Tests have been performed on a workstation with 3.1 GHz Dual-Core Intel
Core i7, and 16GB RAM. The (p)-method takes 67 iterations and 24 seconds to converge to the
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(a) Input image (b) Reconstruction with 50K samples

(c) Sampling: 50K samples

Views Zoom

Figure 7.11: (a) input MR image (128 x 128 x 24), (b) reconstruction, and (c) different views
and zoom on the sampling with 50K samples.

solution. The (¢)-method increases the execution time by 2.3 times and the number of iterations
to 149. The (o )-method has a very high execution time, due to the much larger number of
variables, and the slow convergence of the algorithm (357 iterations). The (a)-method takes only
83 iterations, thus resulting very close to the original kernel-based sampling, but its execution
time is increased by 1.9 times. The (o, a)-method increases the execution time by 9.1 times,
and it takes 674 iterations to converge to the solution.

Fig. 7.6 shows the value of the objective function (y-axis) with respect to the number of iterations
(z-axis) for the five methods. The (o)- and the (o, a)-methods have a slower convergence to
zero with respect to the other variants of the kernel-based sampling. According to Table 7.4 and
selecting n = 5K samples, the allocated memory increases of about four times, when passing
from the (u)- to the (o, a)-method. Table 7.5 shows the execution time and the number of
iterations of the (o, a)-method, when varying the number of samples. Decreasing the number
of samples the number of iterations increases, as the solver converges more slowly.

Comparison between samplings We compare the () and (o, ) kernel-based samplings
in terms of their Hausdorff distance and the approximation accuracy of the reconstructed sig-
nals. We recall that the symmetric Hausdorff distance of two point sets X, ) is defined
as d(X,)) :=max{dx(Y),dy(X)}, with dy()Y) := maxyex{mingey{||x — y||2}} one-side

133



(b) (d)

Figure 7.12: (a) input point cloud (30k points) and (b) our sampling (5k samples) of the ulna; (c)
input point cloud (15k points) and (d) our sampling (3k samples) of the scaphoid .

Table 7.1: With reference to Fig. 7.4, we report the approximation accuracy of the five kernel-
based sampling variants, with the best results in bold.

Method ) (@) (o) (o (o,0)
Objective function | 1499 112.0 29.8 73.0 6.65
NCC 0.988 0.990 0.996 0.992  0.998
NRMSE 0.048 0.044 0.025 0.043  0.019

Poos 86.5% 86.5% 96.4% 86.3% 96.9%

Po1o 94.2% 953% 98.8% 952% 99.5%

Hausdorff distance.

In Fig. 7.7, we show the NCC error of the (u)- and the (o, a)-methods, and the Hausdorff
distance (y-axis) between the sampling of the two methods, when varying the number of samples
from 500 to 5K (z-axis). The variation of the values of the Hausdorff distance shows that the
samplings of the two methods remain different as we increase the number of samples. The
NCC trend shows that the (o, &) kernel-based sampling remains more accurate than the standard
sampling. In Table 7.6, we report the Hausdorff distance between the sampling of the four
variants (b-e) and of the (p)-method (i.e., the kernel-based sampling [ZH16]); the sampling of
the (o )-method is the closest one to the original kernel-based sampling, while the sampling of
the (o)-method is the farthest.

We also compare our approach with state-of-the-art sampling methods on an intensity-increasing
image, counting the number of samples for each quarter of the ramp image (Fig. 7.8). Our
method achieves results analogous to [ZH16] and is comparable with state-of-the-art methods,
in terms of sampling. Furthermore, it better reconstructs the input signal with respect to [ZH16]
(Fig. 7.9), improving the preservation of grey-scale values and reducing the scattering effect.
Considering the quantitative metrics of the reconstructed images, the NCC value is 0.987 and

134



Table 7.2: With reference to Fig. 7.5, we report the error metrics for the (o, )-method with a
different number of samples; best results are in bold.

Samples 5K 4K 3K 2K 1.5K 1K
Objective function | 6.65 17.5 50.1 123.2  200.2 3504
NCC 0998 0997 0.995 0989 0982 0.971
NRMSE 0.019 0.025 0.033 0.048 0.064 0.088
Poos 96.9% 92.8% 89.4% 83.8% 80.6% 77.4%
P10 99.5% 99.4% 983% 94.6% 90.3% 84.7%

Table 7.3: With reference to Fig. 7.4, we report the increment of the execution time and the num-
ber of iterations for the five variants, with respect to the execution time 7" = 24s (in seconds s)
of the (p)-method.

Method W (@ (0 (@ (o
Execution Time [s] T 23T 84T 19T 9.1T
Iterations 67 149 357 83 674

the NRMSE value is 0.084 for our method, while these values are 0.946 and 0.151 respectively
in [ZH16].

Kernel-based sampling and least-squares approximation Once the samples have been com-
puted, we reconstruct the input signal as

CLS(X) = Z ’YjG<X, M, Uj) ~Eq.(7.1) Crec0n<xa 12230 0 0'), (7.4)
j=1

where ~ is the n x 1 coefficients’ vector that solve the least-squares linear system G~ = C.
Here, G is the m x n Gram matrix associated with the Gaussian kernel, evaluated at the m
points (x;)i,, and at the n samples (p;)’_;, C := (C(x;))i2, is the m x 1 vector associated with
the input signal. According to Table 7.7, the least-squares reconstruction has a better accuracy
than the standard kernel-based reconstruction through Eq. (7.1) when using the ()-method,
while the two reconstruction approaches have the same accuracy when the (o, a)-method is
used.

Sampling initialisation For the sampling initialisation, our goal is to increase the number of
samples and the resolution of the input image, overcoming memory limits that previous methods
might encounter when computing/allocating the partial derivatives and evaluating the minimum
value of the energy functional (Table 7.4). To this end, we split the input image into a set of
images, and we work independently on each of them. More precisely, given a 2D image (2,
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Table 7.4: Memory allocation of the kernel-based sampling, when using n = 5K samples; each
variable is stored as a double precision number.
Method W () (0 (@ (0.
Memory allocation [GB] | 0.74 0.74 1.68 1.68 2.98

Table 7.5: With reference to Fig. 7.5, we report the reduction of the execution time and the
number of iterations for the (o, )-method with a different number of samples, with respect to
the execution time 7' = 216s with 5K samples.

Samples 5K 4K 3K 2K 15K 1K
Execution time [s] | T T 0.67 04T 04T 0.2T
Iterations 657 896 785 929 891 1052

we split it into m 2D images (€2;),, and the number of samples of each sub-image is defined
according to its grey intensity Cq, = le C(x)ds as ng, = (Cq,/Cq)ng, where ng is the overall
number of samples. In this way, we avoid too many samples being placed in those regions where
the white colour is predominant.

To further improve the reconstructed image, we add a small overlay to the sub-images to be
sampled: Supermario (Fig. 7.10(a), 256 x 256) is divided into four sub-images of 132 x 132,
with an overlap of 132 x 8 for each couple of adjacent sub-images, and has been sampled with an
overall number of n = 16 K" samples. Similarly, the Biosphere image (512 x 512) is divided into
16 sub-images of 136 x 136 resolution, with an overlap of 136 x 16 for each couple of adjacent
sub-images, with n = 50K samples. Then, the reconstructed image in the overlapped area is
computed as the average between the two reconstructed sub-images.

For both examples, the sampling and the reconstructed image preserve the main features of the
two subjects. In Supermario, the samples are well localised in dark areas (e.g., the hat, the
body, the moustaches), and all the features are well reconstructed (e.g., the letter “M”). The
reconstruction error is very low and uniform. The Biosphere is more difficult to be sampled
and reconstructed, due to its high resolution, and the presence of complex geometries and their
overlaps, e.g., the sphere, clouds, plants, and shadows on the sea. The approximation error is
lower on the sphere structure, which is well reconstructed, and generally higher on the clouds
and the sea shadows. According to Table 7.8, the approximation accuracy is very good for
both the examples, due to a high number of selected samples. In particular, the NCC value of
Supermario is 0.9996, compared to the NCC value of 0.9954 when using 5K samples.

Kernel-based sampling of 3D data Fig. 7.11 and Table 7.9 show the results of the sam-
pling and reconstruction of a volumetric MR image, with size 128 x 128 x 24; the initialisation
(Sect. 7.2) with 50K samples is applied to 8 sub-images of size 128 x 128 x 3. The sampling cov-
ers the entire brain, and the reconstructed image accurately approximates the main features of the
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Table 7.6: With reference to Fig. 7.4, we report the Hausdorff distance normalised with the
diagonal of the image, between the four variants (b-e) and the original kernel-based sampling
(i.e., the ()-method).
Method (o) (o) () (o, a)
Hausdorff distance | 0.0157 0.0104 0.0117 0.0105

Table 7.7: NCC values for the reconstruction associated with the (u)-, and (o, a)- methods and
applied to Pinocchio 256 x 256.

Num. samples | Reconstr. method (n) (o,a)
K Gaussian kernels (Eq. (7.1)) | 0.6612 0.7944

Crs (Eq. (7.4)) 0.7962 0.7944

SK Gaussian kernels (Eq. (7.1)) | 0.8805 0.9637

Crs (Eq. (7.4)) 0.9372  0.9637

input data. In this test, the samples are denser where the input signal is higher (e.g., white parts
of the image), and our method improves the results of [ZH16], as the NCC value increases from
0.82 to 0.91, and the F, 1o metrics increases from 0.1 to 0.4. Due to a larger number (i.e., 250K)
of variables, the execution time (2700s) increases with respect to [ZH16] (i.e., 150K variables).

Kernel-based sampling of 3D point clouds For the sampling of an arbitrary point
cloud, the samples are computed through the minimisation of the energy functional
E(p) = w1 Ey(p) + weEa () + E3(p), where

ni
||X—Mz||2
ex ds;
/Z 270 )4 P 202 T
NI Sy BT v
270 )¢ 202 ’

n  ns3

&mzzzriﬁmwwiﬁ%

s=1 i=1

The terms F1 () and Ey(p) force the samples to be close to the input points. F3(u) forces the
samples not to overlap. Here, w; and w, are the weights of the components of the energy func-
tional. The difference between the definition of F; () and Es(p) is in the way the neighbours
are computed; in F4 (), we search the ny nearest samples for each input point, and in Fy () we
search the no nearest input points for each sample. The derivative of the terms £y, Es, and Fj3
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Table 7.8: With reference to Fig. 7.10, we report the approximation accuracy of the sampling

optimisation.

Image

Supermario Biosphere

NCC

0.9996 0.985
0.0125 0.0884
99.3% 78.4%
99.9% 95.3%

Table 7.9: With respect to Fig. 7.11, we report the quantitative metrics and the execution time of
our method and the kernel-based sampling [ZH16].

Method [ZH16] Owurs
NCC 0.82 0.91
NRMSE 1.00 0.83
Po.os <01 0.18
P10 <0.1 0.59
Execution time][s] 1020 2700
are
( 0En(p) _ -1 f ex (||X—Mi||§)(x_ -)ds h=1.2
O (\/ﬂ)dad+2 Q P 202 i ) )
OF5(p) 1 & lpes — pill3
= exp(— 5 B2y (9 (py — i)+
iexp(_||ll’s_“h||%)2( o )]
20_2 ul l’l'h .
h=1
L hi

Our model is applied to the 3D point cloud of an ulna and a scaphoid (Fig. 7.12); our sampling
well preserves the main geometrical features of the input point cloud. For further experimental

tests on 2D/3D point cloud sampling, we

refer the reader to [CP20].
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Discussion and future work






Chapter 8

Conclusion and future work

Denoising and super-resolution are part of a broader context of healthcare data management,
ranging from data acquisition to providing one or more feedback to the physician (Fig. 8.1). In
this context, we discuss the results of the proposed denoising and super-resolution and future
work.

Conclusion

The denoising of US signals is relevant for post-processing and visual evaluation by medical ex-
perts. Several works show the benefits of denoising for classification [CSJ*10], feature extrac-
tion [IKMOS], segmentation [HLZ17], and quantitative analysis [KBSAOQO], for a more accurate
estimation of patient diseases (e.g., the dimension of a tumour, the identification of a certain
tissue).

Denoising aims to achieve the best compromise between noise removal, feature preservation,
and real-time execution. Fast handcrafted methods [GK19] have lower results in terms of noise
removal and edges enhancement; GPU-based methods [FM16] have higher hardware require-
ments than our method; other denoising methods [XZZ18] have good results in terms of noise
removal, but they can not reach a real-time implementation, due to high computational cost. To
bypass these limits, we have presented a novel deep learning framework with HPC tools for the
real-time denoising of US images. The use of deep learning in our framework allows us to apply
state-of-the-art denoising methods to the real-time context of US image processing, overcoming
the computational limits and preserving the effectiveness of these methods in terms of noise re-
moval and anatomical feature preservation. Our framework is general enough to be applied to
different anatomical districts and noise levels, and supports the tuning of the denoising param-
eters (e.g., tuned-WNNM) to obtain the best denoising results, as this tuning only affects the
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Figure 8.1: Healthcare: biomedical data management chain.

training phase, while the real-time computation of the denoised image is performed through the
prediction of the network. The development of our framework to US 2D videos and 3D images
shows the generality of our approach, even allowing the extension of inherently non-real-time
methods (e.g., Vidosat) in the context of real-time US processing. Finally, our low-rank method
shows that Al techniques can also be applied within classical denoising methodologies, extend-
ing learning-based methods to the processing of low-dimensional data extracted from images
with traditional decomposition and representation techniques. The quantitative and qualitative
validations on US and synthetic signals confirm the effectiveness of the proposed framework.

Super-resolution of US images is relevant in many medical specialities, such as oncol-
ogy [GADI12], neurology [SEDP19], nephrology [FZI"17], and rheumatology [HCIJB*18]. We
have introduced a novel deep learning framework for the real-time super-resolution of US im-
ages, which improves the quality of the up-sampling of a selected state-of-the-art algorithm by
training a neural network to match the target high-resolution image. Our framework extends
state-of-the-art up-sampling algorithms to the US application, also improving the accuracy of
the super-resolution and reducing artefacts and blurring in real-time execution. In the context of
signal approximation, we have presented our novel method of kernel-based sampling that opti-
mises the centres, supports, and coefficients of the reconstructed signal, with an application to
US 2D and 3D images. Our method improves the signal approximation and reconstruction, by
preserving the original characteristics of the input signal in terms of features and grey intensities.

Finally, through learning and high-performance computing, the proposed denoising and super-
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Vidosat BM4D WNNM

Figure 8.2: Displacement analysis of the mitral valve in the cardiac district: optical flow (Ist
row), optical magnitude (2nd row), magnitude magnification (3rd row). The denoising through
specific algorithms allows us different characterizations of the morphological features of the
anatomical part.

resolution algorithms have been specialised to different anatomical districts, and to shift the com-
putational demand to centralised hardware resources with a real-time execution of the network’s
prediction on local devices.

Limitations As main limitations, our denoise and super-resolution models use learning meth-
ods trained on large data sets of US images and videos acquired from various anatomical districts
and made available by Esaote. The used data sets are private while the availability of public data
may be subject to corporate or hospital privacy constraints and it is often limited in terms of quan-
tity and variety of images. Qualitative validation needs one or more industry/clinical experts and
possibly multi-disciplinary skills, such as physicians specialised in different anatomical districts
(e.g., cardiologist, orthopaedic). Furthermore, qualitative reviews are difficult to compare and
reproduce within the scientific community. While using HPC hardware and methodologies for
training can be done offline, the testing part would require a cloud infrastructure for managing
the communication between local machines and central hardware; this would require a reorga-
nization of procedures, hardware, and information flow. Finally, the transition from synthetic
(training) to biomedical (tests) data sets for the application of learning models can lead to losses
in accuracy due to the different characteristics of the data in terms of complexity, geometry,
texture properties of the image.
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(a) (b) (c)

Figure 8.3: (a,b) Two different slices of denoising and super-resolution of Fig. 4.1 with our
methods at a resolution of 624 x 292 x 36; (c) Ray-tracing of the volume.

Future work

Denoising and super-resolution are also applied as pre-processing for improving visualisation,
segmentation, and predictive analysis. The analysis of the optical flow [HS81] of US videos by
evaluating the movement of relevant anatomical features (Fig. 8.2) shows us that the denoising
through Vidosat and BM4D improves the characterisation of the movement of the mitral valve,
with a better estimation of its movement during the opening/closing phases. Combining de-
noising with super-resolution (Fig. 8.3) improves (i) the quality of the rendering of US images
through ray-casting [Rot82] (Sect. 4.2) and (i) the accuracy of the segmented contours of breast
tumours; then, the extraction of geometric and texture-based parameters through our preliminary
method from both the US 3D image and the mesh allows us to classify tumours according to
benign against malignant labels (Fig. 8.4).

Starting from these preliminary results, as future work we plan to develop novel methods for
the analysis and processing of US signals, where denoising and super-resolution are applied as
pre-processing operations. In particular, the main further research activities are:

» Segmentation of the region of interest, for the detection of the boundaries of a tu-
mour [ICM21], or the shape of the heart wall [LCW?20];

* Morphological and quantitative estimation of anatomical parameters for the quantifica-
tion and monitoring of the temporal variation of anatomical parameters (e.g., bones ero-
sion progression, cartilage damage) with the integration of volume-based approaches and
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Figure 8.4: (a) US slice (400 x 300) of a volumetric image (400 x 300 x 36) of breast district;
(b) segmentation mask; (c) extracted mesh, 15K points, 30K triangles; (d) classification of breast
tumours in benign (blue) and malignant (magenta).

surface-based approaches (i.e., defined on the segmented surfaces extracted from US vol-
ume). Main examples include the pleural line properties (e.g., thickness, roughness) in
lungs [WZH'21], or geometric features of segmented tumours in the breast anatomical
district [TMDCSN21];

* Classification and prediction of the image according to pre-defined classes, such as clas-
sification of benign vs. malignant tumour of the thyroid gland [WJJ*16], or prediction of
coronary artery disease [RFG*18];

* Clinical validation of the denoising and super-resolution results performed by Esaote qual-
ity department and expert radiologists, based on an interdisciplinary approach that involves
engineering, medical science, physics, and computer science.
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