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Abstract

Although Human Immunodeficiency Virus (HIV) was first discovered over 30 years ago,
there remains no cure or vaccine for HIV. In Australia, HIV transmission almost exclu-
sively occurs via sexual intercourse, with over 75% occurring as a result of anal intercourse.
Due to technological limitations, there are still major gaps in understanding how HIV is
transmitted across the human colorectum, with the role of key HIV target cells being
unclear. Additionally, traditional microscopy methods have not been able to visualize the
full repertoire of HIV target cells within tissue.
To investigate cellular interactions during early HIV transmission, we topically infect

fresh human colorectal tissue with HIV as a model of early HIV transmission in situ.
We then make use of Cyclic Immunofluoresecence, a high parameter microscopy imaging
approach, to visualise key HIV target cells, namely dendritic cells, macrophages and
CD4+ T lymphocytes could be observed within the same tissue section. Furthermore,
through the in situ hybridization technique RNAscope, we are able to visualize HIV with
single-virion sensitivity.
Cyclic Immunofluorescence and RNAscope provide a unique opportunity for visualiz-

ing the early events of HIV transmission, allowing the interactions of HIV with its target
cells as well as the colorectal tissue structure to be captured. However, given the recent
development of these techniques, the imaging data being produced provide many unique
challenges in terms of computational analysis. In particular, the presence of autofluores-
cence makes it difficult to reliably assign marker expression to cells while spatial analytical
techniques are limited when multiple cell types are measured simultaneously.
This thesis presents three publications which address these analytical gaps, while also

detailing the computational analysis techniques utilized in the analysis of the HIV imag-
ing dataset. The first publication presents an algorithm which identifies and removes
autofluorescence from fluorescent microscopy images, necessary for robustly identifying
the HIV and their target cells within each image. The second publication presents a novel
approach for performing inferences on changes in spatial co-localization across different
experimental conditions. Finally, the third publication outlines the experimental innova-
tions used to visualize early HIV transmission in human colorectal tissue. Additionally,
this publication presents a complete image analysis pipeline used to characterize the cel-
lular composition and interactions within human colorectal tissue, integrating the tools
developed in the first two publications. This paper presents the main biological findings
of this thesis, revealing for the first time the early events that underly HIV transmission.
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Foreword

The purpose of this thesis is two-fold. Firstly, the overarching aim of this thesis will be
to utilize the high parameter imaging technique cyclic immunofluorescence to understand
the early transmission of HIV in colorectal tissue. The complexity of the images acquired
has necessitated the need for image analysis strategies to quantify the cell-cell and cell-
HIV relationships captured with microscopy. Hence, the second overarching aim of this
thesis will be to develop computational strategies for analyzing this dataset, as well as
high parameter images in general.
Chapter 1 of this thesis will provide a brief introduction to what is currently under-

stood with regards to early HIV transmission in human colorectal tissue. The remainder
of this chapter will be a review of different computational approaches and analysis strate-
gies that have been developed for analyzing high parameter microscopy images. This
section is largely based on a review of Mass Cytometry Imaging published in Frontiers in
Immunology (Baharlou, Canete et al. 2019).
Chapters 2-4 consists of 3 publications. Chapter 2 presents a publication in Bioinfor-

matics (Baharlou, Canete et al. 2020) which describes a novel post-acquisition algorithm
for identifying and removing autofluorescence from autofluorescent microscopy images.
Chapter 3 presents a publication in Bioinformatics (Canete et al. 2022) which describes
an R package for performing inference on changes in spatial co-localization between cell
types. Finally, Chapter 4 presents a publication in Cell Reports (Baharlou et al. 2022)
which describes the full pipeline used for the analysis of the HIV CyCIF image dataset
acquired by the host lab. My contributions to each project is outlined by a brief preface
at the beginning of each chapter.
While Chapters 2-4 contain a standalone discussion section, Chapter 5 of this thesis

will contextualize the three publications present, discuss the overall significance of this
thesis, and discuss future work.
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Chapter 1

Introduction

Publications incorporated into this chapter:

Baharlou, H.*, Canete, N.P.*, Cunningham, A.L., Harman, A.N, Patrick, E. (2019)
Mass Cytometry Imaging for the Study of Human Diseases - Applications and Data
Analysis Strategies. Front. Immunol. 10:2657

*Co-first authors

Preface

This introductory chapter is divided into three main parts. Firstly, we provide a brief
summary of what is currently understood about early HIV transmission. This will con-
textualize Chapter 4, in which we apply various image analysis techniques developed
throughout the thesis to understanding early HIV transmission in human colorectal tis-
sue. This will serve as the primary biological question addressed within this thesis. Sec-
ondly, we provide a summary of high parameter microscopy imaging methods, including
mass cytometry and inmunofluorescence techniques, as well as the computational analysis
methods that have been implemented so far for the analysis of the image data obtained.
This is largely adapted from a review published in Frontiers in Immunology (Baharlou,
Canete et al. 2019), in which I was co-first author. While the review is mostly focused
on mass cytometry-based imaging methods, the analysis techniques described here can be
utilized in any high parameter imaging modalities. Here, we summarize the key points
provided in the review. Finally, we provide a summary of the aims of this thesis.

1



1.1 Early HIV Transmission

1.1.1 Introduction

Human Immunodeficiency Virus (HIV) was first discovered 40 years ago and is the
causative agent of acquired immunodeficiency syndrome (AIDS). There remains no cure
or vaccine for HIV, with an estimated 27.5 million people living with HIV globally and
1.5 million new HIV infections in 2020 [1]. Therefore, a vaccine is still critically needed
and, in the meantime, better prophylactic strategies. HIV transmission almost exclu-
sively occurs via sexual intercourse, and in Australia over 75% of HIV infections occur
as a result of anal intercourse [2, 3]. However, our understanding of the immunological
mechanisms which facilitate the sexual transmission of HIV is still limited, especially the
initial interactions between the virus and its target innate immune cells and how these
cells go on to initiate and adaptive immune response. A better understanding of these
events will be critical for the development of better prophylactic strategies and vaccines.

The key biological enquiry motivating this thesis is to define the initial events governing
HIV transmission in human colorectal tissue (Chapter 4) and in developing better image
analysis tools to visualize these processes.

1.1.2 HIV and HIV Transmission in Human Colorectal Tissue

HIV is a lentivirus that consists of two single-strands of RNA which encode the virus
genome, enclosed by a conical capsid composed of the viral protein p24. This structure is
surrounded by a lipid bilayer viral envelope. The viral genome consists of 9 genes encoding
structural proteins, accessory proteins and enzymes necessary for viral replication.

HIV can infect cells that express its entry receptor CD4 and chemokine co-receptor,
usually CCR5 or CXCR4 [4–6]. It is mainly R5 strains which utilize the CCR5 co-receptor
that are involved in transmission. During persistent infection, the virus mutates to X4
stains which utilize the CXCR4 co-receptor to infect cells [7]. HIV entry into its target cells
is mediated by the viral envelope (Env) protein, comprised of the glycoprotein subunit
gp120 and transmembrane subunit gp41. (i) by binding to CD4 and CCR5, resulting in
fusion of the virus envelope with the plasma membrane and delivery of the viral capsid
into the cytosol, or (ii) by binding to surface lectin receptors such as DC-SIGN/CD209
[8–10], mannose receptor/CD206 [11], Langerin/CD207 [12], Siglec-1/CD169 [13], as well
as surface integrins such as α4β7 [14] and resulting in endocytic uptake that does not
lead to infection. Following infection, reverse transcription occurs followed by integration
the HIV genome into the host cell genome. This subsequently leads to HIV replication a
new virion formation which go onto infect new cells either via cell-free spreading cell-cell
viral transfer.

Within colorectal tissue, the primary HIV target cells are CD4+ T lymphocytes (CD4
T cells). The virus is also taken up by mononuclear phagocytes (MNPs) which deliver
the virus to CD4 T cells in association with their antigen presenting cell (APC) function.
MNPs can be divided into multiple subsets with distinct phenotypes and function and
distinct roles in HIV transmission. Once CD4 T cells are infected, HIV undergoes rapid
lytic replication and the onset of AIDS occurs once these cells have been depleted below
critical levels. This section will briefly outline the specific roles of HIV target cells and
the human colorectum in the sexual transmission of HIV.
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HIV Transmission in Human Colorectum

The human colorectum comprises of the distal portion of the sigmoid colon and the
rectum [15]. The inner mucosal surface of the colorectum is thin and fragile and hence a
less effective barrier against HIV infection compared to other surfaces such as the anus,
vagina and foreskin, which contain a robust stratified squamous epithelial layer [16].

The colorectal mucosa consists of a single columnar epithelium overlaying the lamina
propria, a layer of connective tissue richly populated by HIV target cells. HIV has been
observed to cross the epithelium into the lamina propria via several mechanisms: (i) via
breaches in the epithelium due to mechanical abrasions or trauma, or chemical irritation
[17, 18]; (ii) via transient openings of the tight-junctions between epithelial cells [19, 20];
(iii) via productive infection of epithelial cells [21, 22]; (iv) via viral uptake by specialised
epithelial cells such as microfold cells which transcytose the virus into vesicles and trans-
ferring it across the epithelium [23]; or (v) via direct sampling by DCs in the lamina
propria [19, 24]. These mechanisms provide an opportunity for HIV to encounter key
HIV target cells within the lamina propria.

T Lymphocytes

CD4 T cells are responsible for cell-mediated immunity which regulates the immune re-
sponse. These cells are positive for the T cell co-receptor CD3 as well as CD4. Naive T
cells express antigen-specific receptors and reside in lymphoid tissue and in blood. These
cells are activated via APCs, especially dendritic cells (DCs), resulting in clonal expan-
sion and differentiation into effector and memory helper subsets [25]. Effector T cells
subsequently produce cytokines that activate B cells, macrophages, and other immune
cell types and mediate the immune response. Memory T cells are inactive, long-lived
immune cells that can be activated to rapidly initiate a secondary immune response [26].
In activated CD4 T cells, HIV undergoes rapid lytic replication resulting in cell death but
the virus can remain in a latent state in memory CD4 T cells.

While CD4 T cells are the key target cells of HIV, it is unclear whether they represent
the initial target cells within colorectal mucosa. The high frequency of CD4+CCR5+ T
cells in the gut mucosa may facilitate direct HIV infection of T cells [27]. T cells that
highly express the gut homing receptor α4β7 have been shown to be more susceptible
to productive infection [14, 28]. In human colonic mucosa explants, Kolodkin et al. [29]
observed that cell-associated virus is transmitted more efficiently than cell-free virus,
with CD4 T cells on the mucosal surface able to uptake and produce virus for initiating
infection. 48 hours post-exposure to HIV, the authors found that 90% of infected cells were
CD4 T cells. Furthermore, in a macaque study of the analogous simian immunodeficiency
virus (SIV), dos Santos et al. [30] observed the early accumulation of SIV in rectal
lymphoid aggregates, densely packed structures of CD4 T cells surrounding an inner B
cell zone. Specifically, SIV associated with CD4 T cells and a follicular DC subset. In
another macaque model, Stieh et al. [31] showed the preferential infection of Th17 cells
by SIV in vaginal tissue. Furthermore, McKinnon et al. [32] observed the depletion of
Th17 cells in the cervix of HIV+ female sex workers within 48 hours, while Gosselin et al.
[33] observed that memory Th17 contributed to the pool of cells harbouring HIV DNA in
colon, despite being lower in number compared to other T cell subsets. Thus, Th17 cells
are implicated in early HIV uptake.

3



Mononuclear Phagocytes

There exist four distinct cell types of mononuclear phagocytes (MNPs): dendritic cells
(DCs), Langerhans cells (LCs), monocytes, and macrophages. These cells detect and
uptake pathogens through an array of pattern recognition receptors, including C-type
lectin receptors (CLRs), sialic acid-binding immunoglobulin-type of lectins (Siglec) and
Toll-like receptors (TLRs). Langerhans cells are not found in colorectal tissue and will
not be discussed further. DCs and macrophages are located in close proximity to the
epithelial surfaces of colorectal tissue and are among the first cell types that encounter
HIV.
Monocytes circulate in the bloodstream and migrate into tissue to replenish tissue

resident macrophages in response to inflammatory signals. In an inflammatory response,
these cells differentiate into monocyte-derived macrophages (MDMs) or DCs (MDDCs)
when recruited into tissue.
Macrophages are found in tissue throughout the body, derived from circulating mono-

cytes or established prenatally. These cells have an enhanced ability to phagocytose
apoptotic and necrotic cells as well as pathogens, but do not tend to migrate out of tissue
and are weak APCs. In tissue they can be defined by their expression of surface CD68 or
the transcription factor FXIIIA.
Although macrophages can be infected by HIV, there has been little investigation of

the role in early HIV transmission due to their weak APC capacity. However, they may
serve as a HIV reservoir, phagocytosing HIV-infected CD4 T cells [34], but this function
remains understudied. Recently, 4 distinct macrophage subsets were identified (Mf1, Mf2,
Mf3, Mf4) in human small intestine mucosa, with distinct function and phenotype [35].
While not discussed further, their roles in early HIV transmission may be of interest.
DCs are located in blood and in tissue, and are found in high concentrations in areas

susceptible to antigen exposure, including the gastrointestinal tract [16]. In response to
antigens, DCs produce inflammatory cytokines and migrate to lymphoid tissue, acting
as strong APCs. Such cells can be identified in tissue through their expression of the
marker CD11c. Here, they stimulate CD4 T cells to elicit an immune activation or im-
mune tolerance. There exists 2 ontogenetically distinct subsets of DCs: plasmacytoid
DCs (pDC) and conventional DCs, existing as 2 subsets cDC1 and cDC2 [36]. In partic-
ular, the cDC2 subtype has been implicated in inducing Th17 formation and may have
a role in transferring HIV to T cells residing in lymph nodes [36]. Of interest are three
recently identified DC subsets in human intestine, each with distinct lineages and func-
tions: SIRPα-CD103+ DC (cDC1 lineage), SIRPα+CD103+ DC (cDC2 lineage) and
SIRPα+CD103+ DC (monocyte lineage) [37]. While these subsets will not be discussed
further, their role in HIV transmission in the colorectum is of interest.
DCs are postulated to be the major APC which interact with CD4 T cells [16] and

have been shown to transfer HIV to CD4 T cells via two mechanisms [12, 38]. First-phase
transfer occurs within 24 hours, involving the transient endocytic uptake of virus through
pattern recognition receptors. Following uptake, the virus remains protected for up to 24
hours in neutral pH ‘endocytic caves’ from where it can be transmitted to CD4 T cells [39].
After 24 hours the virus becomes degraded via acid proteolysis. Second-phase transfer
occurs after 72 hours as newly formed virions bud from the plasma membrane as a result
of cells becoming infected via the CD4/CCR5 mediated entry pathway [40]. Furthermore,
Shen et al. [41] identified a subpopulation of CD11c+HLA-DR+ cells expressing the HIV
receptor CD4 and co-receptors CCR5 and CXCR4 in jejunal lamina propria. These cells
were observed to rapidly uptake cell-free HIV. A follow up study [42] showed similar
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results in vaginal explants, where identified CD13+CD11c+ DCs were found to rapidly
bind to HIV and transport the virus into the lamina propria. In an intestinal explant
model, Cavarelli et al. [19] showed that within 30 minutes of infection, CD14+ DCs
migrate between epithelial cells to sample luminal HIV.

1.1.3 Concluding Remarks and Future Opportunities

Overall, many mechanisms have been implicated in the early transmission of HIV, par-
ticularly in human colorectal tissue. However, the specific mechanisms that facilitate
transmission is still unknown, with the relative roles of each cell types being unclear.
This is in part due to the difficulty in access to clinically relevant human tissue and vi-
ral strains, preventing real-world HIV transmission from being modelled.. Furthermore,
the lack of sensitivity and specificity that target HIV means that the virus could only
be visualized once within 72 hours once enough virus was present. Finally, traditional
microscopy methods have not been able visualize the full repertoire of HIV target cells
within tissue. As such, there is a unique investigative opportunity to investigate early
HIV transmission within a clinically relevant tissue type.

1.2 High Parameter Imaging and Analysis

1.2.1 Introduction

Multiplexed imaging methods are becoming an increasingly important tool for both basic
science and clinical research [43–52]. Recently, serial staining immunofluorescence ap-
proaches [45, 46, 48–51] and mass cytometry imaging (MCI) approaches [53, 54], have
been developed. Such methods provide a unique opportunity for imaging human disease
at subcellular resolution, extending the number of parameters visualized within an image
beyond the 2-3 markers used in conventional fluorescence microscopy. Simple high param-
eter fluorescence imaging methods can extend the number of parameters visualized to 6-8
markers, while more complex fluorescence techniques and mass cytometry techniques can
enable the visualization of 40-60 markers. These techniques are being rapidly adopted for
various applications, including studies in cancer, autoimmune disease and the definition
of complex immune subsets during development and homeostasis [55–63].

1.2.2 Serial Staining Immunofluorescence

Serial staining immunofluorescence approaches involve iterative rounds of staining, imag-
ing, and removal of fluorescent signals. Established serial staining techniques include
Cyclic Immunofluorescence (CyCIF) [45, 46], co-detection by imaging (CODEX) [49], it-
erative indirect immunofluorescence imaging (4i) [48], and GEMultiOmyx[50]. In these
serial staining approaches, typically 2–3 parameters are acquired per round, thus requiring
13–20 rounds to acquire 40 parameters which is the current limit for MCI. Advantages of
this approach relate to broad compatibility with many fluorescence-based imaging systems
and the capacity to acquire large areas across multiple tissue sections in a short period
of time, which allows parallel processing of many slides. However, there are several dis-
advantages including lengthy acquisition times which can span weeks, extensive tissue
manipulation and perturbance of antigens between staining cycles, autofluorescence, and
the lower dynamic range of fluorescence compared to MCI [45, 50, 64, 65]. Further,
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considerable expertise and computing power is required to process the resultant large im-
ages, which if acquired at a high resolution in multiple Z planes, can form gigabytes and
even terabytes of raw data, which must be deconvolved, projected and registered prior to
analysis.

1.2.3 Mass Cytometry Imaging Technologies

There are two approaches for MCI—Imaging Mass Cytometry (IMC) [53] and Multiplexed
Ion Beam Imaging (MIBI) [54]. In both methods, the first step is the labeling of tissue
sections with up to 40 different antibodies conjugated to stable isotopes, mostly from the
lanthanide series). In IMC, the tissue is then ablated using a laser with a 1 µm spot
size, which rasterizes over a selected region of interest. Plumes of tissue matter are then
aerosolized, atomized, and ionized, and then fed into a time-of-flight mass spectrometer
for analysis of isotope abundance. In MIBI, an oxygen duoplasmatron primary ion beam
rasterizes over the tissue, ablating a thin layer of the tissue surface, which then liberates
antibody-bound metal isotopes as ions. Similar to IMC, these secondary ions are then
fed into a time-of-flight mass spectrometer for the estimation of isotope abundance [55].
In both methods, the isotope abundance of each “spot” can then be mapped back to
the original co-ordinates, producing a high dimensional image qualitatively similar to a
fluorescence microscopy image.

The differences between IMC and MIBI have previously been reviewed [44]. However,
MIBI has undergone extensive improvements since its initial description, overcoming many
of the limitations relating to speed of acquisition and multiplexing capacity [55]. Two
important differences we will mention relate to sample ablation and image resolution. IMC
uses a laser for sample acquisition and is designed to ablate the entire sample with a fixed
lateral resolution of 1,000 nm. However, MIBI utilizes a tuneable ion beam which can be
adjusted for varying depth of sample acquisition and also ion spot size (image resolution).
This means that the same area can be scanned at a lower resolution to gain an overview
and then potential areas of interest rescanned at a higher resolution, reportedly as low
as 260 nm, though with a trade-off of longer acquisition times. A comparative summary
of features between IMC, MIBI, and serial staining immunofluorescence technologies is
presented in Table 1.1.

1.2.4 Significance of High Parameter Imaging

Serial staining immunofluorescence and MCI are landmark developments because it al-
lows for upward of 40-60 markers to be simultaneously stained, acquired and visualized,
enabling a variety of distinct cell types to be analyzed concurrently in their native mi-
croenvironment. The microenvironment consists of a complex matrix of fluids, proteins
and cells which provide signals that shape a given cells phenotype and function within
an organ in both health and disease [66–70]. Indeed, there is increasing evidence that
cellular functions are programmed not just by cell ontogeny but also by signals from the
surrounding microenvironment. Examples include Monocytes and Dendritic Cells and T
cells which exist in several functionally diverse subsets, which vary across tissues so as to
meet the requirements of their local environment [71–75]. Specific subsets of Dendritic
Cells, Innate Lymphoid Cells and T cells can carry out distinct functions at a given point
in time, inducing either tolerance or inflammation depending on a host of signals derived
from both cytokines and direct cell contact [76–79]. In the context of disease pathogenesis,
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Table 1.1: Highly multiplexed imaging technologies.
* A smaller spot size (resolution) results in longer acquisition times. A lower limit of 260
nm is referenced in a recent publication, but the actual data acquired in the study was
at a resolution of 500 nm [55].
** There is no hard upper limit for serial staining protocols, but published data has shown
approximately 60 markers per section [46, 49, 50]. A limit of 40 markers for IMC and
MIBI is derived from interpretation, based on both the indicated references and current
reagent availability.
*** The rate-limiting step for serial staining protocols is the antibody incubation period
which can take hours and is often performed overnight.

Serial Staining immunofluorescence Metal tagged antibodies

Examples
CyCIF, GEMultiOmyx,

4i, CODEX
IMC MIBI

Resolution ∼200 nm ∼1,000 nm ∼260 nm*
Simultaneous
detection limit

1-5 40 40

Max number of epitopes
imaged per section**

∼60 40 40

Throughput***
Hours or 1 day per cycle

per tissue section
1mm2/2h

1mm2/5h
(500 nm resolution)

References [45, 46, 48, 50] [53] [54, 55]

the tumor microenvironment is now appreciated as a complex signaling network between
transformed and non-transformed cells, with the latter being corrupted to promote tu-
mor function [80, 81]. The importance of the microenvironment for cell function is clear.
The major contribution of high parameter imaging is that it provides spatial data for a
large number of parameters at subcellular resolution. As such, we are now positioned
to discover interdependencies between complex cell subsets in health and disease. These
interactions can be further investigated ex vivo to determine their functional outcome and
contribution to disease progression.
These techniques are also an important development for practical reasons as it enables

complete studies to be performed on archival samples. This is particularly useful as
research questions evolve with time and it is invaluable to be able to repeatedly interrogate
the same sample for different parameters. This feature will be particularly helpful for
investigations of inflammatory disorders where significant heterogeneity can exist, making
it difficult to accurately characterize the cell types involved and thus the immune motifs
underlying the disease; such is the case for dendritic cell subsets which are partly defined
by surface markers that are labile during inflammation [82]. Furthermore, many studies
can only be performed using small biopsies or precious post-mortem samples, as in brain
and pancreatic tissues, with samples typically curated through biobank networks [83, 84]).
As such large gaps remain in our understanding of disease pathogenesis in these tissues;
a gap which high parameter imaging is poised to fill.

1.2.5 Image Processing and Analysis

Due to its ease of use, high parameter imaging is poised to be a useful tool in clinical
research. However, a key bottleneck is related to both image processing and the inherent
difficulty of analyzing up to 40-60 parameters with added spatial dimensions. In this
section, we first cover all techniques that have been used for processing high parameter
image data data. Broadly, this includes image denoising, single-cell segmentation and
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finally tissue and cell-type annotation. Next, we discuss approaches for the analysis of
images that have been implemented for studying disease models. The analysis section
is formatted as a series of general biological questions which can be answered using im-
age analysis. For each question we discuss both its clinical significance and the specific
techniques used in imaging studies to answer each question.

Processing

In this section, we outline the steps taken to process images, allowing downstream analysis
with a single-cell approach.

Autofluorescence Autofluorescence is a phenomenon specific to immunofluorescence
imaging which arises from tissue structures which have excitation and emission profiles
that overlap with the excitation/emission filter setups in fluorescence microscopes. This
arises from structural and connective tissue, cellular contents as well as fixatives used
to preserve tissue [64, 85–87]. These structures can lead to false positive signals in data
analysis.
While several experimental methods exist to remove autofluorescence [85, 88–90], these

methods can quench real signal or shift autofluorescent signals. Hence, computational
methods for autofluorescence have been proposed. These methods include spectral un-
mixing approaches [91, 92], as well as algorithmic subtraction of a background reference
image acquired prior to staining [50, 93]. While robust, spectral unmixing methods cur-
rently require specialized instrumentation and proprietary software, limiting its use [91].
Furthermore, background subtraction methods requires the acquisition of additional im-
ages and will require precise image intensity scaling and image registration [50].
With serial staining immunofluorescence methods becoming more widely available, the

removal of autofluorescence signals has become increasingly important to facilitate accu-
rate downstream analysis.

Denoising in MCI An important issue common to all image analysis is the presence
of noise and artifacts which must be removed prior to analysis (Figure 1.1A, left). Robust
and stable methods for denoising will become increasingly important if high parameter is
to be applied within the clinical setting, allowing for accurate patient sample characteri-
zation. While autofluorescence is avoided in MCI, there are noise profiles that are specific
to MCI, in contrast to other imaging technologies, and may be specific to tissue types
[55, 59, 60, 94]. To comprehensively analyse the images obtained, various computational
methods for denoising to preserve real signal and remove technical artifacts have been
proposed [55, 59, 60, 94]. At present there is no consensus on the most appropriate way
to denoise images with research to date employing homebrew approaches based on the
level and composition of noise observed by the investigators. Such approaches include
correcting for channel cross-talk [94, 95], removing objects that differ from real signals
in terms of size and pixel distributions [55, 60], and by using image filters to identify
artifacts [55, 60]. Here, we describe methods proposed to eliminate noise and artifacts in
high parameter images.
Crosstalk is the phenomenon in which signals from one channel are introduced into

adjacent channels. This has been observed when comparing channels within ± 3 atomic
masses from each other, occurring due to the presence of contaminating isotopes of similar
masses [96–98]. Crosstalk can even occur within 16 atomic masses due to oxidation [98].
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This confounding phenomenon needs to be corrected as it can lead to the misidentification
of real signal within a single channel, particularly if adjacent channels correspond to
markers that may be co-expressed. To correct for crosstalk, two methods have been
proposed. Wang et al. observed a linearly correlated increase in pixel intensities at high
pixel values for adjacent channels when plotting the intensities for two channels [60]. They
classified these pixels as crosstalk, and compensation was performed by resampling their
intensity values in the given channel, providing a post-acquisition method for correcting
for crosstalk. Chevrier et al. presents a bead-based compensation workflow to account
for crosstalk, made available as the CATALYST R/Bioconductor package [94]. Damond
et al. implements this solution, measuring channel crosstalk using a slide with the metal
isotopes used [59]. There are trade-offs between using a fully post-acquisition approach,
as opposed to a bead-guided approach. The post-acquisition method by Wang et al. is
advantageous as it minimizes IMC acquisition time and resources required. However, it is
unclear if their approach is valid for other images, and it is difficult to assess if real signals
are removed. Additionally, correction may not be necessary if the marker panel employed
is well-designed and titrated. If certain markers are expressed at vastly different levels
across samples, panel design alone may not eliminate crosstalk. Hence, users should make
a judgement as to whether crosstalk correction is necessary for their study.

Background noise and the corrections required can be specific to certain tissue types
and experimental setups. As such, several “homebrew” computational methods have been
developed to identify and remove noise in images. Wang et al. observed horizontal streak
artifacts within their image [60]. The authors accounted for this by using a 5 × 5 µm2

median filter which excludes the middle row. For each pixel, the median pixel value within
this filter is measured, and the central pixel is removed if it is brighter than this median
and is in the top 2% of pixel intensity values, characteristic of these streaks. Keren et
al. observed a background artifact in areas of the slide outside of tissue in all channels
[55]. To correct for this, a background channel, not containing antibody derived signals,
was obtained. The area corresponding to background was identified with a threshold, and
the pixel intensities were reduced in all other channels within this area. The authors also
observed that low density pixel signals (those with few neighboring pixel signals) were
associated with noise, while real signals tended to aggregate together, corresponding to
cellular staining. To remove the interfering low density pixels, each pixel in the image was
assigned a score by calculating the average distance to the 25 nearest positive counts. A
bimodal distribution was obtained, and pixels above the crossing point of the distributions
were removed, corresponding to the low-density noise. This background removal method
complements wet-lab based optimizations of blocking methods and antibody concentra-
tions. Indeed, it can be very challenging to address all signal-to-noise issues for large
antibody panels. As such, computational methods, as described here, are an important
preprocessing step to ensure reliable downstream analysis.

While various custom algorithms have been successful for denoising in previous studies,
the application of MCI within a clinical setting will require an improved understanding
of the sources of noise for specific samples. The standardization of “best practice” proce-
dures for sample processing, staining, and acquisition in addition to image post-processing
methods will be necessary going forward.

Cell Segmentation Fundamental to the study of tissues in health and disease is the
identification and characterization of individual cells. In microscopy this is achieved
through single-cell segmentation, which involves identifying the boundary of individual
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Figure 1.1: Summary of Image Processing and Analysis Techniques. (A) Fol-
lowing image acquisition, image processing is performed to denoise the images, perform
single-cell segmentation to identify cell outlines, and to classify these cells based on marker
expression. (B) One way of exploring cell composition between groups is to compare the
change in the cell fractions. (C) Another way to explore cell composition is to classify pa-
tients as being positive and negative for a particular cell population. The co-occurrence of
cells can be presented similar to what is presented here, and significance of co-occurrence
can be identified using a chi-square test. (D) Differences in marker expression between
patients can be visualized using a heatmap.
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Figure 1.1: Summary of Image Processing and Analysis Techniques. (E) Cell
morphology measurements can be used to explore cell phenotypes. (F) Cell-cell inter-
actions can be measured using neighborhood analysis or point-process analysis. With a
neighborhood analysis, percentage of significant images (i) or Z-scores (ii) of the cell-cell
interactions can be represented as a heatmap, with significant associations associated with
a more positive Z-score and significant avoidance is associated with a more negative Z-
score. With a point-process analysis, an L function can be used to assess the significance
of cell-cell interactions. The L function being above or below the gray envelope generated
by bootstrapping corresponds to association and avoidance, respectively (iii). (G) One
way of measuring cell or marker association with a marker is to classify cells as being
near or far away from the border. A cell composition analysis can be used to explore
differences, or differences in marker expression can be explored, as shown here. Parts of
this figure were made Biorender.
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cells (Figure 1.1A, middle). This section discusses several approaches which have been
applied for segmenting high parameter image data (summarized in Table 1.2).

Many pipelines for single-cell segmentation have been established and adapted for high
parameter imaging. These pipelines typically apply a threshold to a nuclear image and
implement watershed segmentation to identify nuclear boundaries. Dilation of the cells,
or the use of a cell-membrane marker, identifies the remaining cell body. The popular
CellProfiler software [99] is often used for single-cell segmentation, with the user being
able to provide inputs on the size filters, smoothing, and thresholding applied among
other parameters to achieve segmentation. This is implemented by Wang et al., taking
advantage of the many parameters used in IMC by using a range of non-immune and im-
mune cell membrane markers for cell segmentation [60]. This approach has the advantage
of not requiring user training, requiring few user inputs for implementation. However,
CellProfiler may not be able to segment cells that are packed tightly, as in tumors and
lymphoid tissues, especially when the resolution is low as in the case of MCI. Schüffler et
al. proposes a method in which multiple membrane proteins are weighted together to de-
fine the cell membrane [100]. The proposed method performs an exhaustive search for an
appropriate weighting and smoothing of all cell membrane channels, and provides a score
based on how successful segmentation is performed. This self-reflective scoring may be
useful for assessing the success of segmentation, but it is unknown whether it is successful
for difficult, high-density images. Finally, Durand et al. employs an in-house-developed
segmentation pipeline to achieve single-cell segmentation of tonsil tissue [101]. First, a
Laplacian-of-Gaussian filter is applied, which resolves nuclei as spots with a local mini-
mum. A h-minima transform is then applied to identify these local minima [102]. Finally,
a single-cell segmentation mask is obtained by applying a watershed transformation to the
linear combination distance map obtained from the h-minima transform and the average
image of all membrane-bound marker proteins. The cellular regions are restricted by a
defined radius of 8 pixels around each local minimum to avoid oversized cells. Ultimately,
these pipelines allow cell boundaries to be identified without user training.

For more precise single-cell segmentation, supervised classifiers have been successful,
particularly for MCI. These approaches require humans outlining single-cells to produce
a set of well-annotated cells that can be used to train machine learning algorithms, with
the advantage that humans may be better at identifying the subtle details that separate
cells. Schulz et al. [58] and Damond et al. [59] implement the popular Ilastik toolkit
[103, 104], employing a random forest classifier for cell segmentation, while Keren et al.
[55] implements DeepCell [105], which employs deep-learning for cell segmentation. With
both tools, training sets are developed using nuclear, cytoplasmic, and membrane markers,
and a probability map is produced describing whether a pixel is nuclear, cytoplasmic, or
background. CellProfiler, or conventional thresholding and watershed segmentation is
then used to identify cells and their bodies based on the probability maps. This workflow
of performing segmentation on probability maps was first demonstrated by Schapiro et al.
[99]. These supervised methods have been successful at separating cells that are clustered
together, and can be advantageous to using CellProfiler in a standalone manner. However,
these techniques require users to generate substantial training data with a new classifier
needing to be generated for each experimental panel and tissue type which can be time
consuming.

In general, if the outline of cells is obvious, using CellProfiler may be sufficient for
performing single-cell segmentation. However, if cell shapes are more complex, as in
the case of neural tissue, or if dense cell structures are present within tissue structures,
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Table 1.2: Software for cell segmentation and cell classification.
Technique Description References

Cell Segmentation CellProfiler
Identify primary object with nuclear marker,
secondary object with membrane marker

[107]

Weighted sum of membrane markers
Segments using a weighted sum of membrane

markers
[100]

Ilastik

Uses a random forest classifier, defining pixels as
nuclear, cytoplasm, and background based on user
training data. Probability maps can be used as an

input for segmentation in CellProfiler

[103, 104]

DeepCell
Identifies cell nuclei based on training data, using

deep-learning
[105]

Cell Classification Manual gating
Users manually identify their cells based on

marker expression

Hierarchical clustering
Identifies clusters in a hierarchical cluster by
grouping together cells or clusters that are

most similar to each other

Phenograph
Models cells as a nearest-neighbour graph in

high-dimensional space
[102]

FlowSOM
Self-organizing maps used to identify cell

populations. Meta-clustering is then performed
to find a given number of populations

[108]

Ilastik
Uses a trained random forest classifier to classify

identified single cells
[103, 104]

then the use of classifiers will be more suitable. In fluorescence images, these classifiers
have been shown to outperform classical methods for segmentation [106], but an extensive
comparison using MCI has not yet been performed. As the use of high parameter imaging
becomes more universal and applied within a clinical setting, there will be an increased
need for more precise segmentation. It is likely that the most appropriate method will
be to use a well-trained classifier. For generally applicable classifiers, users may have to
contribute to an existing online classifier, creating a diverse training set to perform cell
segmentation. Much investigation will hence be necessary in the future for improved and
more generalized segmentation.

Tissue and Cell Annotation Immune cells exist in great diversity within both healthy
and diseased contexts. Along with canonical cell types such as Dendritic Cells, Macrophages,
T cells, and B cells, each cell type is comprised of diverse subsets which differ throughout
the body. Importantly, specific subsets can play a crucial role in disease manifestation,
even when their prevalence is extremely low. As such, accurate and high throughput
methods for the annotation of cell types (Figure 1.1A, right) and the tissue compart-
ments in which they reside, are essential. Here we discuss several approaches that have
been employed for the annotation of high parameter image data (summarized in Table
1.2).
The simplest approach for identifying cells is by selecting manual gates based on scatter

plots of marker expression, similar to other single-cell technologies such as flow cytometry.
Marker expression is typically quantified by summing the ion counts within a single cell
as outlined by segmentation and dividing by the area of the cell. The histoCAT package
[99] provides a tool which allows users to gate on cells and visualize the presence of these
cells within their image. Furthermore, the single cell data can be exported from histoCAT
for downstream analysis using commercial platforms such as FlowJo or Cytobank, and
also open source platforms such as Flowing Software. However, a key advantage of histo-
CAT is that cell selections can be visualized on the image in real-time, which facilitates
greater accuracy when selecting gates. However, while manual gating provides a user with
full control over the cells being classified, this can be time consuming, especially when
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many markers are considered. Nevertheless, manual gating may be useful for exploratory
analysis of image data.

One approach for semi-automated gating is by using a mixture model, such as the
implementation by the mclust R package [109]. This package is used to classify cells as
being positive or negative for a marker, based on the mean pixel intensity in that specific
marker channel. Another approach is by Boolean rules based on whether cells are positive
or negative for these markers to classify cell types. Wang et al. implement this method,
but set additional manual cutoffs as informed by the mixture models to identify positive
and negative populations [60]. This approach will only be applicable for markers with
which cells can be discretely positive and negative for, but not when cell-type definition
relies on a continuum of marker expression (e.g., low, mid, and high).

Automated gating strategies employing clustering techniques to group cells by simi-
larities in marker intensity have become popular in all high-parameter imaging assays.
This provides a quick and unbiased approach for classifying cells in tissue. Schulz et al.
[58] employs PhenoGraph [102] to cluster cells, employing a nearest-neighbor graph to
identify phenotypically coherent subpopulations. Here, they use both marker expression
as well as RNA expression to cluster cells. Durand et al. use a hierarchical clustering
approach on all markers, obtaining 60 clusters which was arbitrarily chosen to overclas-
sify cells [101]. This allowed the authors to identify smaller yet distinct clusters with
some similar clusters manually merged when the clusters were annotated based on known
cellular phenotypes. Keren et al. [55] clusters cells into immune and non-immune cells
using FlowSOM [108], which employs a self-organizing map to identify cell populations.
Lineage marker expression was used to cluster cells. This was applied iteratively, first
to distinguish between immune and non-immune cells, then to classify non-immune cells
into epithelial, mesenchymal, endothelial, and unidentified cells, and finally to classify
immune cells into specific subsets. The approach taken by Keren et al. employs only
canonical cell markers, leading to the identification of canonical cell subsets. Expression
of functionally significant markers was then assessed on the defined cell subsets in differ-
ent tissue compartments. In contrast, Schulz et al. clusters using all markers, leading to
canonical cells being divided by marker expression. For example, two CD3 high T cell
clusters were obtained, one of which expressed CD3 only, and the other being a poten-
tial memory T cell subset. Importantly, this clustering revealed the identification of rare
cells that express CXCL10 RNA. Durand et al., however, merges clusters with a similar
phenotype. Hence, a choice needs to be made as to whether to include all markers or
only lineage markers when investigating cell phenotypes. With most automated gating
strategies being implemented in the R statistical environment, the R package cytomapper
[110] allows single cell and image data to be stored in conventional data structures for
clustering while also providing a framework for visualizing the distribution of the cell
types identified by clustering.

Finally, users can employ supervised classifiers, providing training data to predict cell
types based on both marker expression and the visual texture of the signals. For example,
membrane markers will be localized only to the membrane of the cell. This can be achieved
using an interactive classifier such as Ilastik, where users can annotate cells as the cell
subsets they are interested in Ilastik uses both marker expression level and morphology
to classify cells based on the provided training data. Damond et al. implements this
classification iteratively, first to classify cells as islet, immune, exocrine, and “other” cells
[59]. A second round of training and classification was then performed to classify the
different immune, islet, and exocrine cells, and “other” cells were classified as endothelial,
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stromal or unknown cells. The classifier is advantageous as classification is informed by
both marker expression and texture as defined based on more reliable human judgement.
However, the training of a classifier can be time consuming, and this approach will only
be able to identify user-defined cells. Hence, supervised classifiers will not identify other
cell marker phenotypes that automated gating may identify.

Following cell classification, tissue compartment identification can be performed. This
is useful for exploring the role of tissue structures in the context of disease. Keren et al.
[55] and Wang et al. [60] use classified tumor cells and islet cells to identify the tumor
and islet areas, respectively. Damond et al. uses Ilastik to identify islets and blood vessels
by constructing training data using a range of structural markers, while Durand et al.
uses E-Cadherin, CD19, and CD3 to identify the crypt, B cell zone, and T cell zone of
tonsil tissue. The identification of these tissue structures is important because of their
role in disease pathology. For example, the tumor-immune boundary has been used as
a prognostic indicator for tumor progression, and islet cell composition and morphology
have been observed to change with disease progression [111–113]. Identifying these key
compartments and their borders hence allow their role to be observed.

Similar to the segmentation of individual cells, cell-type annotation in the clinical set-
ting would require automated and standardized methods for cell-type classification. At
present, classifiers used for annotation are trained on a study-by-study basis. Although
accurate, it has not been established that these approaches are generalizable or time effi-
cient for use in the clinical setting. Ultimately, classifiers will need to be constructed and
trained to account for patient and experimental variation.

Analysis

In this section, the key biological questions that are answered through image analysis are
discussed (summarized in Table 1.3).

How to Stratify Data for Analysis? To understand the biological processes under-
lying disease, the appropriate stratification of patient data for analysis is important. The
simplest method is to group data based on clinically defined categories such as “time since
diagnosis” or “patient survival.” This approach is implemented by both Wang et al. [60]
and Damond et al. [59] in their study of T1DM. Here, they stratified their patient groups
based on time since diagnosis, with an additional control group. Although this method is
often appropriate, stratification based on a biologically meaningful model of disease can
offer a powerful and complementary approach for revealing disease specific relationships
that simple clinical groupings could miss. For example, as diabetes is a progressive dis-
ease, Damond et al. performed pseudotime analysis (discussed below) to group islets into
three “pseudostages” of disease. This followed from their observation that islet profiles
followed a spectrum during the early-stages of disease, resembling both healthy islets and
late-stage islets as well-intermediate stages in between. Additionally, as tumor-immune
organization is known to predict survival for certain cancers, Keren et al. performed a
spatial enrichment analysis (discussed below), generating a metric for tumor-immune cell
mixing and allowing the investigators to stratify patients based on tumor organization
[55]. The decision on how to best group data for analysis is crucial for the discovery of
disease specific immunological motifs. In reality, this part of the analysis stretches back
to experimental design. To effectively use high parameter imaging as a primary research
tool, it is important to carefully consider beforehand, choice of patient samples, availabil-
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ity of clinical data and also panel design. These three aspects will inform the types of
data stratification that are possible and therefore the scope of questions that can be asked
and answered using high parameter imaging.

How Does Cell Composition Change With Disease Context? The prevalence of
specific cell subsets is associated with disease outcomes, both in the clinical setting and
in models of disease. As such, the basic analysis of cell composition is an important first
step which can also inform downstream analyses. In present studies, this has taken two
approaches. The first is to quantify cell compositions and then compare these between
different patient groups. This is done as either absolute counts of a specific cell subset,
a measure of its proportion among a larger group of cells, or as a cell density per mm2

of tissue. The second is to examine the co-occurrence or anti-occurrence of cell types,
providing an insight on any causal pathways that may underlie disease. In this section
we summarize how imaging studies have explored cell composition within tissue.

The cell subset composition can be presented as the proportion of the total cells (or
all immune, tumor, islet cells, etc.) (Figure 1.1B), the total number of cells, or the cell
density. There are many advantages and disadvantages to these different approaches for
quantification. Total counts can allow for patient-patient comparisons, allowing interpa-
tient variations to be observed. When comparing between groups of patients, the cell
proportion may be more appropriate for comparison, normalizing the data to account for
interpatient variation. Cell density per mm2 of tissue may be appropriate when com-
paring cells within compartments, with the data being normalized by the area of the
compartment. The density measurement is also useful for comparing small changes that
are overwhelmed by the abundance of another cell type. Ultimately, the choice of mea-
surements used is dependent on the question being asked.

This cell composition analysis is implemented by both Damond et al. [59] and Wang et
al. [60] in studying how the islet cell composition changes with T1DM progression. Both
studies observed a decrease in beta cell fraction, and an increase in gamma cell fraction
with disease progression, relative to all other islet cells. Damond et al. further observed
a small decrease between pseudostage 1 and 2 islets, followed by a significant decrease
between pseudostage 2 and 3 islets. Additionally, Damond et al. and Keren et al. present
the proportion of immune cell subsets within their images, assessing the composition of
immune infiltration within tissue. Data obtained from cell composition analysis can also
reveal meaningful biological relationships. For example, Keren et al. ordered patients
by number of infiltrating immune cells and found that patients with more immune cells
were more likely to have a “compartmentalized” phenotype. Additionally, Damond et
al. found that when ordering patients by the number of islet cells, stratified by patient
diabetes status, mid-sized islets had a higher proportion of beta cells. Presentation of
data in this manner can aid in the interpretation of single-cell MCI data.

To assess cell subset co-occurrence or anti-occurrences, two approaches have been used
in present MCI studies. The first approach is to observe whether the count or proportion
of one cell subset is correlated with that of another cell subset, assessed using Pearson’s
Correlation. This measurement is useful when investigators want to show that an in-
creased presence of one cell type is accompanied by an increase or decrease of another
cell type, and is appropriate when both cell types are often or always present within that
tissue type. The second approach is to convert cell counts into categorical data by clas-
sifying images as being positive or negative for a given cell subset if the count exceeds
a user-defined cutoff (Figure 1.1C). A chi-square test is then used to quantify the signif-
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icance of co-occurrence. This measurement is not very useful when both cell types are
often or always present within that tissue type. Hence, this measurement is suitable only
when the cell types being investigated are not consistently present within that tissue type.

The co-occurrence approaches mentioned above have been applied by Keren et al. and
Damond et al. In studying immune infiltration into tumors, Keren et al. observed that
there was a correlated increase in CD4+ T cell proportion and a correlated decrease in
macrophage proportion. Similarly, when studying immune cell infiltration into the islets,
Damond et al. observed a correlated increase in CD4+ helper, and CD8+ cytotoxic T cells
in pseudostage 2 islets. This revealed that both CD4+ and CD8+ T cells are recruited
simultaneously into the islets during the onset of diabetes, potentially co-operating to
mediate beta cell destruction. Furthermore, to assess co-occurrence of cells in tumor
infiltration, Keren et al. classified each patient as being positive for a given immune cell
if the cell count is 10, and negative otherwise. A chi-square test subsequently revealed
relationships such as patients with B cell infiltration into their tumors also had CD4+ and
CD8+ T cell infiltration. The relationships observed by these analyses reveal a potential
coordination in the immune response in both tumors and islets, with the recruitment of
several cell types occurring.

Does the Expression or Co-expression of Cell Markers Change With Disease
Context? In addition to changes in cell composition, understanding variations in func-
tionally relevant markers is essential for understanding disease pathology. Indeed, many
interventions targeting cancer, infectious diseases and autoimmune diseases use antibod-
ies and small molecule inhibitors targeting cytokines or cell-associated ligands/receptors
[114–116]. Through the many markers afforded by high parameter imaging, these diverse
markers can be studied within the disease pathology setting. This section will explore
how marker expression is examined in images.

In studies so far, the exploration of cell marker expression has taken many pathways.
One approach is to compare marker expression among canonical cell subsets, with fold-
changes being expressed as a heatmap (Figure 1.1D). Marker expression can also be
measured at the tissue compartment or patient level, with expression level visualized as a
heatmap for each sample (Figure 1.1D). By stratifying samples into groups, direct com-
parisons can be made. To assist with the analysis of the many markers used by MCI
imaging, dimensionality reduction techniques have been used. These include principal
components analysis, t-Distributed Stochastic Neighbor Embedding (t-SNE), and pseu-
dotime analysis. Finally, the investigation of preferential co-expression of markers can be
assessed by classifying images as being positive or negative for a given marker and using
a chi-square test to quantify the significance of co-occurrence. Each of these approaches
can be used to investigate differences in marker expression within different samples, with
each analysis telling different aspects of the overall pathophysiological story. Investigators
should use the appropriate investigation required depending on the question being asked,
and the cellular pathway being explored.

In their investigation of T1DM progression, Damond et al. studied the change of
islet marker expression within islets [59]. While the investigators observed a decrease
in beta cell fraction as described previously [113], they wanted to further investigate
whether this was a result of beta cell loss, a downregulation of beta cell marker expression,
or both. To investigate this, the authors performed a pseudotime analysis using the
trajectory inference algorithm SCORPIUS [117, 118]. This was performed by measuring
the islet marker expression profiles of each individual islet. The algorithm finally assigns
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a value between 0 and 1 to each islet, relating the marker expression profile of islets
to the T1DM development timeline, and allowing the investigators to stratify the islets
into three pseudostages. Specifically, they observed a strong downregulation of beta cell
markers between pseudostages 1 and 2, and stability between pseudostages 2 and 3. The
authors concluded that progression from pseudostages 1 and 2 may be driven by the
down regulation of beta cell markers, while the transition between pseudostages 2 and 3
is reflective of cell death. The assessment of changes in marker expression, combined with
cell composition analysis, can reveal the mechanisms behind a disease timeline.

Keren et al. investigated the expression of the immunoregulatory proteins PD-1, PD-L1,
IDO, and LAG3 in their study of breast cancer [55]. Through a chi-square test, they found
that patients expressing one of these proteins expressed another, implying that multiple
immunosuppressive pathways are present within the tumor environment. Additionally, it
was found that the presence of regulatory T cells accompanied the presence of at least one
of these markers, reflecting the potential for these proteins to induce the differentiation
of näıve T cells toward a regulatory T cell phenotype. Such results provide insight as to
the signaling pathways that are present within the disease setting, and relate molecular
expression profiles to the histological structure of the tissue.

Ultimately, it is important to understand the distribution and expression level of func-
tional markers relevant to disease. These may be chosen based on the literature as in
the MCI studies discussed here, or alternatively using other omics technologies, such as
genomics and proteomics platforms [119, 120], to pre-screen samples for suitable candi-
dates. Importantly, the inclusion of such markers allows one to infer biological processes
from static 2D images.

Does Cell or Structural Morphology Vary With Disease Context? Another
important aspect of cellular phenotype is its morphology (Figure 1.1E). Just as with
marker expression, cell morphology can also be associated with disease context or with
drug treatment. Morphology measurements such as area, perimeter, solidity, eccentricity,
and circularity can be made with analysis software such as histoCAT [99], as well as
most image analysis packages [107, 121]. These measurements allow structural changes
to cell or tissue to be identified with changing disease context, or with drug treatment.
However, the reliability of the measurements is dependent on how accurately segmentation
of objects are obtained. This can be difficult with the lower resolution of MCI images,
but may be reliable when classifiers are used, as mentioned previously.

Morphological measurements can be used to assess the integrity of histological struc-
tures. Damond et al. applies these measurements to their islets to assess changes with
diabetes progression [59]. The authors measured the islet extent (islet area divided by
islet bounding box) and solidity (portion of pixels in the islet convex hull that are also in
the islet), indicative of shape regularity. These two measurements were found to decrease
between pseudostages 2 and 3, indicative of a more irregular islet shape, associated with
beta cell loss and diabetes progression. Thus, morphology measurements can provide an
unbiased quantification of tissue structure, identifying degradation as described here, but
may also be used to highlight swelling or growth.

Cell morphology can be affected by drugs and has utility in drug-discovery [122].
Bouzekri et al. uses morphology measurements to assess drug effects on breast cancer
cell lines as visualized by IMC. The authors found that certain drugs led to an increase in
size, with morphological measurements such as area, perimeter, and major- and minor-
axes increasing following drug application. In combination with protein measurements,
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these observations may allow researchers to propose transduction pathways affected in
response to drug treatment [123, 124].

Are There Any Interactions Between Specific Cell Types Within Tissue, and
Does This Change With Disease Context? Within previous studies, two methods
have been used to investigate cell-cell interactions. The first is through the neighborhood
analysis algorithm described by Schapiro et al.[99]. This method identifies whether a cell
of type X is within a user-defined neighborhood of cell type Y, and vice-versa. This is
performed by dilating each cell in a single-cell mask by a user-defined number of pixels
(usually 4–6) and counting the cell types that it overlaps with. To assess significance, a
bootstrapping approach was implemented, in which the annotated cell labels are randomly
reassigned. The mean number of cells of type X within the neighborhood of cells of
type Y are calculated for each simulation and for the real distribution. The statistic
obtained for the real distribution is then ranked against the simulated statistics with
two one-tailed permutation tests to obtain a p-value. The upper-tailed test corresponds
to interaction, while the lower-tailed test corresponds to avoidance. When applied to
a large number of donors, this can be represented on a heatmap as the percentage of
significant avoidance or interactions for each cell pair (Figure 1.1Fi). The second method
was to count the number of cells of type X within a user-set distance away from cells of
type Y. A similar bootstrapping approach was implemented, and the number of cells was
remeasured to generate a distribution from which Z-scores are obtained. This relabeling
can be performed with all cells, providing context of global organizational patterns of the
cells, or by constraining within a specific group of cells (e.g., immune cells, tumor cells, T
cells, etc.), providing a more context dependent answer. A negative Z-score corresponds
to avoidance, while a positive Z-score corresponds to association, and these values can be
visualized on a heatmap (Figure 1.1Fii). These two approaches are effective for identifying
cell-cell interactions. However, they do not provide any context of the cell-cell interactions
over a wider distance, and does not reveal whether cells traffick toward a particular target.
Additionally, an arbitrary distance needs to be chosen, and the sign of the Z-score and
hence the interpretation of cell-cell interactions, can vary with scale.

This neighborhood analysis technique has been applied by Damond et al., who ob-
served reduced beta cell associations in the third pseudostage, representative of beta cell
destruction, while immune cell associations with other immune cells was increased in the
second and third pseudostages, indicative of an immune response [59]. They also found
that the number of interactions of beta cells with CD4+ helper and CD8+ cytotoxic T
cells was much higher during pseudostage 2, in line with their previous results.

Additionally, Keren et al. counted the number of cells positive for marker X located
within 39 µm from marker Y. This resulted in the identification of three distinct levels of
tumor and immune cell mixing: “cold,” with low immune infiltration, “mixed,” with high
immune infiltration, and “compartmentalized,” with tumor and immune cells forming
distinct clusters separated from each other. The authors developed a mixing score to
quantify this, defined as the number of immune-tumor interactions divided by the number
of immune-immune interactions. Furthermore, when plotting Kaplan-Meier curves, which
showed survival as a function of time for patients, they observed higher survivability in
patients with “compartmentalized” tumors compared to patients with “mixed” tumors.
Here, the spatial organization of tumor was related to patient survivability.

To explore avoidance or association at a range of distances, cells can be modeled as a
marked point process model [125], in which cells are represented as labeled points on a
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plane. One approach is to use Ripley’s K and L functions to model cell-cell interactions,
with the variance stabilized L function being a useful transformation to the K function
(plotted in Figure 1.1Fiii). Simply, Ripley’s K function is a function which models the
number of cells of type X a certain distance away from cells of type Y, as a function of
distance. Bootstrapping is once again used to generate significance. This was used by
Setiadi et al. in fluorescence imaging to show that B cells cluster in tumor-draining lymph
nodes compared to healthy lymph nodes [126]. While applied to the same cell type in this
example, this can be applied to pairs of cells of different types, or with cells of a specific
type to a pathogen. This can provide context of the significance of these interactions along
a wider range, and to observe how interactions can change with scale, and may give insight
to any cellular trafficking from a steady-state image. These functions, along with other
functions and methods for comparison between samples, are readily available in the R
package spatstat [127]. However, a disadvantage of these models is that no single Z-score
is given, making visualization and interpretation difficult. Baddeley et al. [128] proposes
envelope-based tests to measure the statistical power of the interaction or avoidance, while
another strategy may be to determine the percentage of images with which interaction
or avoidance was significant, similar to Schapiro et al. [99]. An investigation on the
appropriate spatial statistic will be necessary to make robust conclusions about any cell-
cell interactions, especially in the context of high parameter images where many cell
subsets are being investigated simultaneously.

Spatial analysis can be applied to a wider range of cell subsets compared to conventional
microscopy over a range of distances. This allows a diverse range of cell-cell interactions
to be performed, with the possibility of cell-pathogen interactions to be investigated in
the future. Although these images only provide a snapshot of the tissue environment, the
identification of significant interactions may bypass the need for more complicated tech-
niques using live imaging. As well, interactions observed in the native microenvironment
provide a sound rationale for ex vivo co-culture experiments, to investigate the functional
outcome of certain cell-cell interactions. Given that specific cell-cell interactions have
already been associated with patient outcomes [55, 59], such interactions metrics could
prove a useful prognostic indicator in a variety of disease settings.

Do Cells Localize to Histological Structures and Does This Vary With Disease
Context? In addition to cell-cell or cell-pathogen interactions, it is useful to understand
whether cells or pathogens localize to a specific histological structure, such as epithelium,
tumors, and islets, which have been implicated to have an involvement in disease pathol-
ogy.

In previous studies so far, the number of cells or the amount of cell expression was
measured within user-selected binned distances from the structure to investigate cell lo-
calization. This can be visualized as a heatmap, if 2 bins are used to represent “near” or
“far” from a border. Dividing distance from a structure into user-selected bins essentially
turns the problem into a comparison of cell composition or marker expression between
bins. While simple, this approach discretizes continuous data, and results can vary de-
pending on the bins used. In particular, it is hard to ascertain whether there truly is a
continuous trend in the change in cell composition or marker expression toward a border.
The use of a point process model as described in the previous section may prove to be
suitable for analyzing the spatial dependence of cells or markers from a structure, but
further investigation is required to assess the robustness of such measurements.

Keren et al. hypothesized that there are differences in the cell phenotype near or
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far from the tumor-immune border in “compartmentalized” patients [55]. To investigate
this, the authors applied a cut-off of 39 µm to stratify cells as being close to or far
from the border. In addition to counting cells, they observed whether marker expression
was higher or lower away from the border (Figure 1.1G). The authors observed that
the ratio of H3K27me3 (methylated DNA) to H3K9ac (acetylated DNA) increased for
tumor cells that are far from the border in two patients, indicating that cells closer to
the border may be more transcriptionally active. However, this strategy fails to provide
any insight as to how this marker ratio varied continuously as a function of distance from
the border. It would be interesting to see whether or not the marker ratio increased
with distance, coinciding with the binned approach, or whether it alternates between
increasing and decreasing. Furthermore, to simplify the spatial relationships observed,
a principal component analysis was performed, revealing a subset of patients that had
increased immunoregulatory protein expression in CD11c+CD11b+ immune cells. This
is suggestive of myeloid derived suppressor cells, which may inhibit the immune response
[129]. Hence, the examination of a spatial binning to analyse the spatial dependence
of marker expression from a structure was able to reveal subgroups of patients with
unique phenotypes. An interesting progression may be to compare how the survival
varies between these subgroups.

What Is the Role of the Cell Microenvironment in a Diseased Setting? Multi-
parameter imaging provides the opportunity for cellular microenvironments to be exam-
ined within a diseased setting.

Spatial variance component analysis (SVCA) [130] is a technique that has been applied
to MCI data which allows the sources of variation of gene or protein markers in an image
to be identified, without the need for cell classification. The sources of variation of cell
markers are decomposed into intrinsic effects, environmental effects, and cell-cell interac-
tions. SVCA was applied by Park et al. to investigate how multiple sclerosis (MS) brain
lesion environments influence variations in cell marker expression [131]. They found that
toward the center of a lesion, the relative influence of intrinsic and environmental effects
increased, while the relative influence of cell-cell interactions had decreased. The authors
suggest that cells in the lesion rim are more responsive to cues from the microenviron-
ment, such as cytokines or receptor-ligand interactions, while cells respond to cell-intrinsic
programs in the lesion center. There are also additional methods proposed for measuring
associations between cell microenvironment and marker expression [49, 132].

Another approach for identifying patterns of multicellular architecture is presented
by Jackson et al. [133], where the authors define multicellular units as communities.
These communities consist of multiple interactions between one or more different cell
phenotypes. The authors identified these communities in breast cancer tissue using a
graph-based approach implementing the Louvain algorithm. From this analysis, tumour
communities and microenvironment communities were identified. These communities were
then grouped phenotypically using PhenoGraph. Importantly, this analysis had led to the
identification of different subgroups with distinct clinical outcomes.

Another approach is presented with the Local Indicators of Spatial Association Clus-
tering (lisaClust) R package [134]. Here, the authors defined tissue microenvironments as
regions of tissue enriched for a combination of certain cell types. The approach of lisaClust
involves modelling cells as a multi-type Poisson point process model. This model is then
used to estimate ‘local indicators of spatial association’, defined as the contribution of
each cell to the model. Clustering is then used to group cells by their ‘local indicators
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of spatial association’, leading to the identification of unique microenvironments. This
was applied to the Damond et al. IMC diabetes dataset [59], as well as a CODEX spleen
dataset [135], revealing unique tissue microenvironments.
Ultimately such analysis approaches can provide insight on the role of the microenvi-

ronment within a diseased state.

Opportunities in Image Analysis

Through image processing and analysis, researchers are in a position to interrogate high
parameter image data in a single-cell manner. This approach allows key clinical and bio-
logical questions to be explored and answered, providing insight on the cellular dynamics
that are present in the diseased context. In addition, these results can inform further
experimentation within or outside the cytometry setting.
There is potential for the development of statistical tests to identify associations be-

tween disease outcomes and the spatial relationships between cells, implementing spatial
information with multiple markers. Current methods are able to classify cells, but still
perform simple spatial analysis that is implemented in other imaging cytometry assays
[125]. Complex machine learning algorithms will eventually benefit from including both
spatial and marker information provided by high parameter imaging, constructing pre-
dictive models in a higher dimensional space.
Deep learning has become a well-established tool for image analysis. Its consistent

use in a variety of applications has been driven by its ability to deconstruct and model
highly complex images [102–104, 108]. However, deep learning methods require many
observations to train effective models. Deep learning is ideal for cell type prediction, where
thousands of cells can be trained from a single image. Though, it is unclear whether it
will be effective for classifying heterogeneous global spatial interactions in datasets with
relatively small sample sizes, as observed in many exploratory clinical studies. Such
approaches may become useful in large cohorts generated after high parameter imaging
has been implemented in routine clinical use, allowing for improved accuracy.
There is still an exciting opportunity to develop analytic algorithms for summarizing

spatial cell-cell interaction relationships into simple, easy to interpret summary statistics.
Such algorithms are characterized by the discussed methods for tumor-immune mixing
quantification and pseudotime analysis, which stratify patients into risk groups or assigns
groups to a disease progression gradient. It is important to simplify such complex re-
lationships as it will allow scores or statistics to be developed for interpretable decision
making. This may also facilitate the ability for image data to be included in disease risk
scores, incorporating the data with other clinical and pathological and genetic information
[55, 106, 111, 112].

1.2.6 Concluding Remarks

Despite its recency, high parameter imaging has already been adopted in diverse contexts
ranging from oncology to autoimmunity where it has shown promise for predicting clinical
outcome and understanding the role of the immune system in disease progression. Un-
derlying these studies are common questions relating to the composition, phenotype and
location of cell subsets and how they interact. Given the fundamental similarities, these
studies also share similar computational strategies which we have linked to the general
biological questions they answer. Nevertheless, such computational strategies continue to
remain limited, with researchers often requiring custom solutions to analysis problems.
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This thesis will aim to introduce new techniques which can be generalized to various high
parameter imaging modalities, applying this to a HIV CyCIF dataset. Furthermore, novel
analysis techniques are also presented in the analysis of the dataset.

1.3 Summary and Thesis Aims

To date, the events of early HIV transmission in colorectal tissue has been understudied
due to lack of clinically relevant tissue and viral strian access. Furthermore, traditional
microscopy methods have not been able to visualize the diversity of HIV target cells. To
address this, the host lab has developed an innovative experimental approach, with access
to fresh human colorectal tissue. This is then topically infected with transmitted founder
strains of HIV, simulating a real-world HIV transmission event. Cyclic immunofluores-
cence and RNA scope in situ hybridization are then utilized to visualize HIV and its
interactions with key HIV target cells. While this approach provides a unique opportu-
nity to visualize HIV and its early interaction with the mucosal immune system, there
is an additional challenge with regards to the analysis of the imaging data obtained. To
this end, the aims of this thesis are two-fold:

1. To develop a computational pipeline for analyzing high parameter CyCIF images of
early HIV transmission in human colorectal tissue.

2. To develop new computational tools to facilitate the analysis of high parameter
microscopy images.

The first aim serves as the biological focus and motivation of this thesis. With the
complexity of the data being produced by the host lab, as well as the increasing de-
velopment high parameter imaging techniques, the development of novel computational
tools for image analysis is necessitated. Chapter 2 will present a publication which intro-
duces a novel algorithm for identifying and removing autofluorescence from fluorescent
microscopy images. Such analysis is necessary in order to robustly identify both HIV
virions as well as target cells within a fluorescence image. Secondly, Chapter 3 presents
a publication which introduces a novel spatial analysis technique for identifying changes
in co-localization between cell types. Finally, Chapter 4 will introduce an image analysis
pipeline used in the analysis of the HIV CyCIF image dataset.
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Table 1.3: Summary of analytical questions with clinical examples and the techniques used to answer these questions.

Analytical question Clinical example Analytical technique

How does cell composition
change with disease context?

How does cell composition change
with type-1 diabetes progression? [59, 60]

Measurements such as cell counts, cell
proportions, or cell densities can be used to
compare between different disease contexts

Pearson’s correlation of the above measurements
can be used to identify the co-occurrence or

anti-occurrence of cell types

Cell types can be considered present or not
present within an image if the cell count is greater

than a given cut-off (e.g., 10 cells).
A chi-square test can then be used to

identify cell type co-occurrence

Does marker expression or
co-expression change
with diseased context?

How does islet marker expression
change with type 1 disease

progression? [59]

Heatmaps can be utilized for visualizing
marker changes across images

Markers can be considered present or not
present within an image. A chi-square test

can then be used to identify marker co-occurrence

Pseudotime analysis such as SCORPIUS [117, 118]
allow marker changes associated with

cell dynamic processes to be investigated

Does cell or structural morphology
change with diseased context?

Does islet morphology change
with disease progression? [59]

Morphology measurements can be identified
using image analysis software such as
histoCAT [99], CellProfiler [107],

and ImageJ [121]

24



Are there any interactions between
specific cell types, and does this
change with disease context?

Are tumor-immune interactions
present and significant within

tissue compared to immune-immune
interactions? [55, 99]

Neighborhood analysis using histoCAT [99],
or by setting a distance cut-off to define
neighbors [55], can be used to identify cell
interaction or avoidance, visualized with

a heatmap

Marked point process models using the R
package “spatstat” can be used to determine cell
co-localization or anti-co-localization [127, 128]

Do cells localize to histological
structures and does this vary with

disease context?

In breast cancer sections that
exhibit compartmentalized structures,

are there differences in marker
expression with distance from the
tumor-immune boundary? [55]

Within binned distances away from a
histological boundary, differences in cell

composition [59, 60] or marker
expression [55] can be identified

Marked point process models using the
R package “spatstat” can be used to explore

the distribution of cells as a function of distance
from a histological boundary [127, 128]

What is the role of the cell
microenvironment in a

diseased setting?

In multiple sclerosis brain lesions,
how does the environment influence

variations in cell marker
expression? [131]

Spatial variance component analysis [130] can
be used to decompose the sources of variation of

a marker into intrinsic effects, environmental effects,
and cell-cell interactions
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Chapter 2

AFid: a tool for automated
identification and exclusion of
autofluorescent objects from
microscopy images

Publications incorporated into this chapter:

Baharlou, H.*, Canete, N.P.*, Bertram K.M., Sandgren, K.J., Cunningham, A.L., Har-
man, A.N, Patrick, E. (2020) AFid: a tool for automated identification and exclusion of
autofluorescent objects from microscopy images Bioinformatics, Volume 37, Issue 4, 15
February 2021, Pages 559–567

*Co-first authors

Preface

The first challenge that was present in the analysis of the HIV CycIF data was the pres-
ence of autofluorescence in the images, with these signals being difficult to distinguish
from real immunofluorescent staining. This prevented the accurate quantification of HIV
and its target cells. This chapter consists of a publication in Bioinformatics, which de-
scribes ‘Autofluorescence Identifier‘ (AFid), a post-acquisition algorithm for identifying
and removing autofluorescence from images. This publication had arisen from work first
conceived by my co-first author H. Baharlou, with a prototype implementation being
featured in my Honours thesis (Canete Honours Thesis 2018). The work featured here
builds significantly on the initial implementation, containing novel improvements to the
algorithm, including the improved k-means clustering and custom dilation function. As
co-first author, I had several intellectual contributions to the project, specifically with the
development of the algorithm. Additionally, I wrote the codebase in ImageJ, MATLAB
and R, as well as the code used for assessing algorithm performance.
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Abstract

Motivation Autofluorescence is a long-standing problem that has hindered the analysis
of images of tissues acquired by fluorescence microscopy. Current approaches to mitigate
autofluorescence in tissue are lab-based and involve either chemical treatment of sections
or specialized instrumentation and software to ‘unmix’ autofluorescent signals. Impor-
tantly, these approaches are pre-emptive and there are currently no methods to deal with
autofluorescence in acquired fluorescence microscopy images.

Results To address this, we developed Autofluorescence Identifier (AFid). AFid iden-
tifies autofluorescent pixels as discrete objects in multi-channel images post-acquisition.
These objects can then be tagged for exclusion from downstream analysis. We validated
AFid using images of FFPE human colorectal tissue stained for common immune markers.
Further, we demonstrate its utility for image analysis where its implementation allows the
accurate measurement of HIV–Dendritic cell interactions in a colorectal explant model
of HIV transmission. Therefore, AFid represents a major leap forward in the extraction
of useful data from images plagued by autofluorescence by offering an approach that is
easily incorporated into existing workflows and that can be used with various samples,
staining panels and image acquisition methods. We have implemented AFid in ImageJ,
Matlab and R to accommodate the diverse image analysis community.

Availability and implementation AFid software is available at
https://ellispatrick.github.io/AFid
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2.1 Introduction

Immunofluorescence microscopy (IF) is a powerful tool for simultaneously visualising the
localization of multiple proteins in situ. Additionally, several methods have been devel-
oped that push the number of parameters visualized in a single section to well beyond
traditional 3–4 colour IF [1–7]. This allows for the definition of multiple cell types, com-
plex subsets and also cellular states in situ. Despite these advances the utility of IF,
particularly for quantitative measurements, has been hampered by the longstanding issue
of autofluorescence.

Autofluorescence is present in all tissues and has many sources including components
of structural and connective tissues, cellular cytoplasmic contents and also fixatives used
to preserve tissue [8–11]. Autofluorescent substances have their own excitation and emis-
sion profiles that can span the entire visible and even infra-red spectrum and therefore
significantly overlap with standard microscope excitation/emission filter setups [10] (Sup-
plementary Figure 2.1). This presents a major obstacle to image analysis, particularly any
kind of automated analyses, as ‘real’ versus ‘autofluorescent’ regions of interest (ROIs)
cannot be readily distinguished. An example of this is shown (Supplementary Figure
2.2) where the accurate quantification of CD3 labelling in human colon tissue is severely
hampered by autofluorescent signals.

Several methods have been developed to address the issue of autofluorescence. The
oldest and most widely used are chemical methods to quench autofluorescence. These
include exposing samples to either UV radiation or a chemical solution prior to or during
staining [8, 12–14]. Although these methods can be effective, there are several disad-
vantages including quenching of desired signal from endogenous reporters or fluorescent
probes, and also that there is no general recipe with specific protocols required to quench
specific types of autofluorescence [8, 13]. However, the primary limitation is that the
quenching must take place prior to imaging, so if autofluorescence is detected after image
acquisition it is too late to remove it. This can be frustrating as autofluorescence is highly
variable between tissue sections.

Digital methods of autofluorescence mitigation have also been developed such as spec-
tral unmixing and algorithmic subtraction of a background reference image acquired either
prior to staining or during image acquisition [1, 15–17]. These methods are robust and
have the capacity to resolve signal versus autofluorescence. As such they represent an
important pre-processing step to ensure accurate image analysis. However, there are sev-
eral limitations to these approaches. Spectral unmixing requires the use of specialized
instrumentation and proprietary software which is a limiting factor in its widespread use
[15]. Additionally, users must acquire an entire emission spectrum for each laser line and
for every single field of the image which significantly increases image acquisition time
and the size of the acquired data. Similarly, background subtraction using a customized
filter setup requires a microscope with tuneable filters and expertise beyond that of most
researchers [16]. The alternative background subtraction method requires that entire tis-
sue sections are imaged at a pre-defined resolution prior to staining, whereby the user
must perform intensity scaling and pixel-perfect registration, again representing a major
hurdle for most researchers [1]. Overall, the advantage of the aforementioned methods is
that theoretically they can be applied to any type of sample. However, the trade-off is
that they are impractical for many users due to either equipment/software availability,
required expertise or due to the not insignificant amount of extra work involved.

Taken together, there is an unmet need for the development of alternative methods for
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excluding autofluorescence from microscopy images, that are user-friendly, open source
and practical. Based on the long excitation/emission wavelengths of autofluorescence
[10] (Supplementary Figure 2.1) and the observation that in many cases the majority of
interfering autofluorescence is spatially distinct from signal of interest (examples shown
in figures throughout this paper), we reasoned that we could develop a post-acquisition
approach to identify and exclude autofluorescence thereby improving image analysis accu-
racy. To this end, we developed ‘Autofluorescence Identifier’ (AFid), an algorithm which
is able to detect autofluorescent pixels as discrete objects within multi-channel IF im-
ages of tissue. AFid requires only the information from two fluorescent channels, where
bright fluorescent ROIs are located and classified as ‘real’ or ‘autofluorescent’ based on
measures of pixel correlation and moments of the distribution of pixel values. Identified
autofluorescent objects can then be tagged for exclusion from downstream analysis. A
key advantage of this method is that it is applied to images post-acquisition, which makes
it highly practical approach as users do not need to alter their experimental procedures.
However, an important caveat is that AFid is only suitable for use when its assumptions
are met, i.e. that autofluorescence is mostly non-overlapping with real signal and appears
across at least two fluorescent channels. In this paper we describe the steps of the AFid
algorithm, validate its usage on FFPE human colorectal tissue and also demonstrate its
utility for image analysis where its implementation allows the accurate measurement of
HIV-Dendritic Cell (DC) interactions in a colorectal explant model of HIV transmission.

2.2 Materials and methods

2.2.1 Ethics for use of human tissue samples

This study was approved by the Western Sydney Local Area Health District (WSLHD)
Human Research Ethics Committee (HREC); reference number (4192) AU REDHREC/15
WMEAD/11. Human colorectal and skin tissues used for this study were approved by
this committee and all patients were consented prior to sample collection. Brain and
Heart tissue images were donated data.

2.2.2 Immunofluorescence staining

Tissues were fixed in 4% paraformaldehyde (Electron Microscopy Sciences) for 18–24h
at room temperature then immersed in 70% ethanol prior to paraffin embedding. 4 µm
paraffin sections were adhered to glass slides (SuperFrost Plus, Menzel Glazer), baked at
60°C for 40min, dewaxed in xylene followed by 100% ethanol then air dried. All wash
steps described herein were carried out by immersing slides in three successive Coplan
Jars of Tris-buffered saline (Amresco, Cat: 0788) on a rotator for a total of 10min.
Antigen retrieval was then performed using a pH9 antigen retrieval buffer (DAKO) in
a decloaking chamber (Biocare) for 20min at 95°C. Slides were then washed in TBS.
To acquire unlabelled background images (hyperref[fig:s2.2]Supplementary Figures 2.2
and 2.9), sections were stained with 1ug/ml DAPI (Roche) for 3min, mounted under
coverslips with SlowFade-Diamond Antifade (Molecular Probes) and the whole section
imaged on an Olympus VS120 microscope (see Image acquisition below). Coverslips were
then floated away in TBS and sections on slides were blocked for 30min (0.1% saponin,
1% BSA, 10% donkey serum, diluted in TBS) at room temperature. Sections were then
washed in TBS and incubated with primary antibodies overnight at 4°C. Antibodies for
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primary detection include: Abcam—rabbit CD11c (EP1347Y), mouse CD3 (F7.2.38),
rabbit CD8 (polyclonal, ab4055); DAKO—rabbit CD3 (polyclonal, A045229-2); Affinity
Biologicals—sheep FXIIIA (polyclonal). Sections were then washed in TBS and incubated
with secondary antibodies for 30min at room temperature. Donkey secondary antibodies
(Molecular Probes) against rabbit, mouse or sheep were used and were conjugated to either
Alexa Fluor 488 or 546. Sections were stained with DAPI (if not already performed in a
previous step) and mounted with SlowFade-Diamond Antifade.

2.2.3 HIV explant infection

Healthy Inner foreskin explants were infected with either HIVBal or Transmitted/Founder
HIV-1 Z3678M using an explant setup as previously described [18]. A TCID50 of 3500
(titrated on TZMBLs as previously described [19]) was used to infect all explants. Tissues
were then fixed and paraffin embedded as described above.

2.2.4 RNAScope

Detection of HIV RNA was performed using the ‘RNAscope 2.5HD Reagent Kit-RED’
and following the manufacturer’s protocol (Cat: 322360, ACD Bio) with custom probes
(consisting of 85 zz pairs) against HIV-BaL (REF: 486631, ACD Bio) spanning base pairs
1144-8431 of HIV-1BaL sequence. Following the RNAscope protocol, sections were stained
from the blocking step as detailed above.

2.2.5 Microscopy

Imaging was performed using an Olympus VS120 Slide Scanner with ORCA-FLASH 4.0
VS: Scientific CMOS camera. VS-ASW 2.9 Olympus software was used for acquisition
of images and conversion of raw vsi files to tiff format for downstream processing. Ob-
jectives used are indicated in figure legends and include: 10× (UPLSAPO 10X/NA 0.4,
WD 3.1/CG Thickness 0.17), 20× (UPLSAPO 20X/NA 0.75, WD 0.6/CG Thickness
0.17) and 40× (UPLSAPO 40X/NA 0.95, WD 0.18/CG Thickness 0.11–0.23). Channels
used include: DAPI (Ex 387/11–25nm; Em: 440/40–25nm), FITC (Ex: 485/20–25nm;
Em: 525/30–25nm), TRITC (Ex: 560/25–25nm; Em: 607/36–25nm) and Cy5 (Ex:
650/13–25nm; Em: 700/75–75nm). For 40× images, Z-stacks were acquired 3.5 µm above
and below the plane of focus with 0.5 µm step sizes. Huygens Professional 18.10 (Scientific
Volume Imaging, The Netherlands, http://svi.nl) CMLE algorithm, with SNR: 20 and
40 iterations, was used for deconvolution of Z-stacks. For images where the unstained
background was acquired prior to staining, images were aligned using the ImageJ plugin
multiStackReg vs1.45 with the DAPI channel serving as a reference for alignment.

2.2.6 Acquisition of autofluorescence spectra

Autofluorescence spectra of unstained tissue samples (Supplementary Figure 2.1) were
acquired using an Olympus FV1000 laser scanning confocal microscope with a 20× ob-
jective. The excitation lasers lines 405, 473 and 559nm were used and emission spectra
were acquired using a 20nm wide bandpass filter, shifted in 20nm intervals from 415–795,
490–790 and 575–795 nm respectively.
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2.2.7 Generation of intersection mask

A mask of the intersection of the two channels was used for autofluorescence exclusion.
This is termed the ‘intersection mask’. The intersection mask contains only signals present
in both channels and therefore contains the autofluorescent ROIs among other objects such
as co-stained markers and dim background stromal fluorescence. The intersection mask
was generated by the following procedure. Each channel was Gaussian blurred with a
sigma of two. A Niblack threshold was then applied to each channel (threshold radius 30
pixels) to generate binary masks. The intersection (‘AND’ operation) of these masks was
then taken and used for autofluorescence classification by clustering as detailed below.

2.2.8 Clustering for autofluorescence identification

Within the objects defined by the intersection mask we measured multiple features in each
of the two channels on non-Gaussian blurred images. These features included standard
deviation, kurtosis, as well as the inter-channel Pearson’s correlation coefficient of cor-
responding pixels. These features were transformed by taking the natural log (standard
deviation, skewness and kurtosis) or the inverse tanh transformation (correlation). All
features were standardized by dividing by the standard deviation of the transformed fea-
ture values. k-means clustering was then performed on these features to identify a cluster
of ROIs which are likely to be autofluorescent. The cluster with the highest average cor-
relation value was defined as the cluster containing autofluorescent ROIs. A well-chosen
number of clusters (k) is important for detecting a homogeneous cluster of autofluorescent
ROIs. As such we developed an automated approach for optimal choice of k (high sensi-
tivity and specificity). The procedure is as follows. (i) k-means is performed iteratively
with 3–20 clusters. (ii) A two-tailed t-test is performed on the arctanh transformed cor-
relation values of the two clusters with highest average correlation values. (iii) The test
statistic values are then plotted against k, which produces an asymptotically decreasing
function (Supplementary Figure 2.14). (iv) We developed an ‘elbow method’ approach
to finding the optimal cluster number. A straight line is drawn connecting the statistic
value for the lowest k, to that of the highest k. The perpendicular distance of each plotted
point to the line is measured and the optimal k is estimated to correspond to the point
with the greatest distance below the line. This method is illustrated in (Supplementary
Figure 2.14). The intersection mask is then modified, keeping only the objects identified
as autofluorescence.

2.2.9 Custom dilatation function to outline autofluorescent ROIs

After clustering and creating a mask of autofluorescent objects we then employed a custom
dilation function to outline the full body of autofluorescent objects for exclusion. The
essence of the algorithm is to evenly distribute points within an amorphous object and
then to expand out from these points in all directions until a halting condition is met.
To distribute points the following approach was developed: (i) ROIs in the autofluo-

rescence mask were skeletonized, reducing objects to a line of 1 pixel-width that follows
the morphological gradient of the original object. (ii) End-node pixels for each object in
the image were first identified, defined as having only one neighbour. If there were no
end-nodes for an object, as in the case of an annulus, the top-left-most pixel was defined
as the end-node. (iii) A skeleton tracing algorithm was employed that starts from the
end nodes and moves throughout the skeleton, distributing centres for expansion every
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20 pixels (illustrated in Supplementary Figure 2.4d). Tracing of pixels to neighbours oc-
curred as long as the neighbouring pixel was in the skeleton and had not yet been traced
by another point. Once these conditions were no longer met, tracing for a given object
was halted. Expansion from distributed centres is illustrated using a schematic in Sup-
plementary Figure 2.5. In brief: (i) Lines of length 60 pixels emanating from centres were
drawn in all directions separated by an angle of theta where theta was defined by the law

of cosines. For a 60 pixel line the equation for theta becomes cos
(
1−

(
1
60

)2
/2
)
. (ii) Pixel

values of the Gaussian blurred image for each channel were measured beginning from the
point of intersection of the line and perimeter of the object in the intersection mask, to
the end of the line. (iii) The co-ordinates of the first point where pixel values increased
were recorded for each line. (iv) A new outline of the object was created by combining
these co-ordinates (Supplementary Figure 2.4e). (v) Pixel values of the new outline of the
object were set to 0.

2.2.10 Assessment of custom dilation function robustness with
varying parameters

This section specifically details the methods for generating data for Supplementary Figure
2.4g, which assesses both the utility of the custom dilation function for capturing autoflu-
orescent pixels and its robustness against varying parameters. For this figure whole-slide
scanned images of colorectal tissue before antibody labelling and after CD11c/CD3 anti-
body labelling were used (data from Figure 2.2a-c). AFid was run with or without use of
the custom dilation function and using the CD11c and CD3 channels as inputs. This was
performed for varying threshold radii and for varying cluster number k as shown in the
graph. To assess coverage of autofluorescent pixels (true positive) and real signal pixels
(false positive) upon parameter variation as shown in the graph, we generated ground-
truth masks. To do this, we specifically used the CD3 channel due to the consistently high
density of T cells across images, thus providing enough data to assess the false positive
rate. We generated a mask of the unlabelled background image (autofluorescence only)
and the CD3 channel after staining (CD3+ T cells and autofluorescence). Our aim was
to use the background image to parse out the autofluorescent pixels contained within the
CD3 channel image.
First, we performed a morphological watershed on the CD3 channel mask to separate

touching T cells and autofluorescence. We then performed a binary reconstruct of the
watershed CD3 mask with the background image mask. This generated an estimate mask
of the autofluorescent pixels within the CD3 image which we used as a ground-truth for
autofluorescence. We then generated the real-signal ground-truth mask by subtracting
the autofluorescence ground-truth mask from the CD3 channel mask. The ground-truth
masks were then manually inspected and objects were removed which did not clearly
correspond to T cells in the real-signal mask or autofluorescence in the autofluorescence
mask.

2.2.11 Algorithm performance assessment

The performance of our algorithm was tested using three different staining panels on
human colonic tissue as shown in Figure 2.2. To benchmark performance assessment, we
manually annotated regions of the intersection mask (see Generation of intersection mask)
as belonging to ‘real’ or ‘autofluorescent’ signals. Delineation of the two types of signal was
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achieved using the ‘unstained background image’ as a reference (see Immunofluorescence
staining). In total 400 ROIs, 200 for each category, were annotated. The actual annotation
was performed using the Cell Counter Plugin in ImageJ. Results were exported as a csv
file, where each row indicated an individual ROI, its category and x, y co-ordinates.
The two fluorescent channels, intersection mask and spreadsheet of annotated ROI co-

ordinates were fed in to R. k-means clustering with estimated k was then performed as
described above. The true positive rate and false positive rate were thus determined as
the proportion of ROIs in each category that resided in the ‘autofluorescence cluster’,
which was the cluster with highest average correlation values (Supplementary Figures 2.5
and 2.14).

2.2.12 HIV spot segmentation

Spot counting was performed using a custom MATLAB script implementing the spot
counting technique presented by Battich et al. (2013) [20]. First, a manual threshold was
performed on the HIV RNA channel to identify areas that have HIV stain present. The
IdentifySpots2D function by Battich et al. was then used to identify the number of spots,
with the detection threshold set to a generous value of 0.01 and the number of deblending
steps equal to 2. Finally, any spots identified were excluded if they were not present in
the threshold mask obtained previously.

2.2.13 Singe cell segmentation

To perform single cell segmentation, a custom MATLAB script was used. Briefly, a
Gaussian filter with a full-width at half maximum of 10 pixels was applied to the DAPI
image to ensure that each nucleus has only one locally maximum pixel intensity. Further,
the imordfilt2 function is used to ensure that maxima are not less than 7 pixels apart.
Watershed segmentation is performed using the watershed function to identify nuclear
boundaries. Objects with diameters less than 10 pixels or greater than 50 pixels were
discarded, and the nuclear objects are dilated by 6 pixels to estimate the cell body. The
regionprops function was finally used to measure the mean pixel intensities of other image
channels within each identified cell boundary, as well as the number of HIV RNA spots
identified within each cell. The data was exported as a .csv and was analysed using
FlowJo.

2.3 Results

2.3.1 Algorithm overview

The steps for the AFid algorithm are summarized in (Figure 2.1). Also the pseudocode
for all steps of the algorithm is provided in Supplementary Material under Supplemen-
tary Algorithms 1-8. First, thresholds are applied to the two fluorescent channels and
an ‘intersection mask’ is created to detect the ROIs that are fluorescing in both channels
(Figure 2.1a, left). Second, we then measure ROIs in the ‘intersection mask’ for mul-
tiple textural features (Figure 2.1b, middle). To select these features, we make a key
assumption that the fundamental topology of pixel intensities for an autofluorescent ROI
is conserved across channels. This makes sense as sources of autofluorescence tend to
have long excitation and emission profiles (Supplementary Figure 2.1). Furthermore, this
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Figure 2.1: Steps of the AFid algorithm. (a) k-means clustering on a set of textual
features of objects in an intersection mask of two channels. Autofluorescent ROIs can then
be tagged for exclusion in downstream analysis (b), or a custom dilation function can
be employed to estimate the perimeter of autofluorescent ROIs, which are then excluded
from the image (pixel values set to 0) (c)

assumption can be readily verified by examining the frequency distribution of pixel values
of autofluorescent ROIs, which shows conservation between channels compared to that of
cells labelled with fluorescently tagged antibodies (Supplementary Figure 2.3a). As such,
any measure of pixel behaviour within an ROI will be linearly correlated across chan-
nels (Supplementary Figure 2.3b-d). Therefore, to identify autofluorescence we measure
multiple features including pixel correlation (Fisher transformed Pearson’s correlation co-
efficient) and moments of the distribution of pixel values, including Standard Deviation
and Kurtosis. Third, ROIs can be clustered using the textural features as inputs to iden-
tify a distinct cluster with high correlation values that consists mainly of autofluorescent
ROIs (Figure 2.1a, right). Here we have used a k-means clustering algorithm with auto-
mated choice of k. Finally, these autofluorescent ROIs can be excluded from downstream
analysis or can be subtracted from the raw images for visualization (Figure 2.1b-c).

2.3.2 Custom dilation function to outline autofluorescent ob-
jects

For optimal visualization, and to aid in downstream analysis, we have also developed a
novel algorithm which expands from autofluorescent objects to capture their full perime-
ter. Due to variations in intensity scale within an image and across different images,
conventional thresholding algorithms rarely capture the entire perimeter of autofluores-
cent ROIs (Supplementary Figure 2.4a-c). This can represent a limitation for automated
autofluorescence exclusion, as several threshold parameters need to be tested beforehand
for each image, and then assessed by eye to determine appropriateness. To overcome this
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limitation we developed a custom dilation function that works in tandem with threshold-
ing to automatically outline the full body of autofluorescent ROIs, regardless of shape and
intensity (Figure 2.1c). In brief this works by skeletonising ROIs and evenly distributing
points throughout the skeleton (Supplementary Figure 2.4d). We then expand from these
points until the gradient of pixel intensities from the ROI boundary outwards begins to
increase, indicating the end of the object or the beginning of a neighbouring object (Sup-
plementary Figure 2.4e). The specific details of how expansion occurs is described in the
methods and also using the schematic in Supplementary Figure 2.5. Visually we can see
that this method accurately captures the full perimeter of autofluorescent ROIs with min-
imal effect to neighbouring signals (Supplementary Figure 2.4f). Further, we quantified
the percentage of autofluorescence captured by AFid with and without custom dilation for
varying threshold radii and cluster numbers k (Supplementary Figure 2.4g). The results
show that the custom dilation function identifies a higher percentage of autofluorescent
pixels which is stable against variation of threshold radii and cluster number k, with min-
imal impact on neighbouring real signals (with the exception of small k values which are
typically not selected by AFid). Accordingly, employment of the dilation function allows
for efficient autofluorescence detection despite variation in choice of threshold radii. The
final result is an image retaining only non-autofluorescent ROIs, which can then be used
for visualization and downstream analysis (Figure 2.1c).

2.3.3 Validation of AFid

In order to establish both the efficacy and scope of utility for AFid we tested the algorithm
with multiple types of input images. First, we tested whether the markers for detection in
each channel could influence autofluorescence identification. To this end we defined three
use-cases where input channels contained (i) non-co-expressed markers (CD11c and CD3),
(ii) a marker expressed on autofluorescent cells (FXIIIA+ Macrophages) and (iii) co-
expressed markers (CD3 and CD4). These three use-cases are shown for human colorectal
tissue where sections were imaged before (Figure 2.2a, d, g) and after staining (Figure
2.2b, e, h). The unstained image was used for manual annotation of autofluorescent ROIs
providing a ground truth for our classifier, and not used by AFid. We found that in all
three use-cases the autofluorescence cluster was highly enriched for autofluorescent ROIs
(mean=98.4%, SD=1.6%, n=9) (Supplementary Figure 2.6a). We also achieved good
coverage identifying on average 96.0% (SD=4.0%, n=9) of all annotated autofluorescence,
with a low false positive rate of 1.7% (SD=1.7%, n=9) (Supplementary Figure 2.6b).
Pairwise plots for each use-case are shown (Supplementary Figures 7-9), demonstrating
good separation of autofluorescence (yellow) from non-autofluorescence (grey) by k-means.
The final result of AFid, after applying the custom dilation function is shown (Figure 2.2c,
f, i), demonstrating near complete exclusion of autofluorescence in all three use-cases.

We next sought to test AFid on different tissue types and image acquisition conditions.
We found that AFid successfully identified autofluorescence across various tissue-types,
including heart, skin and brain tissues where autofluorescence is a well-known problem
(Supplementary Figure 2.10). Additionally, AFid could specifically identify autofluores-
cent objects despite varying image quality, including variations in resolution, (Supplemen-
tary Figure 2.11) and on images both pre- and post-deconvolution (Supplementary Figure
2.12). Further, our algorithm is compatible with very large images that are inundated
with autofluorescence, which allows large datasets with significant noise to be rescued for
analysis (Supplementary Figure 2.13).
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Figure 2.2: Application of AFid to various staining panels. Sections of fixed
human colorectal tissue prior to (a, d, g) and after labelling (b, e, h) with antibodies
targeting the indicated markers. (c, f, i) Labelled images after identification and exclusion
of autofluorescencent objects using AFid. White arrows indicate some autofluorescent
objects that have been excluded by the algorithm. The red arrow in the middle row
indicates an autofluorescent macrophage which was not identified by AFid. In the middle
row, ‘FITC’ is the FITC channel, which was imaged but not used to detect any markers.
Images are representative of 3 donors for each staining panel
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It is useful to outline instances where AFid is unable to identify and exclude autoflu-
orescence. These instances typically correspond to when the two major assumptions of
the AFid algorithm are not met. These assumptions are (i) that autofluorescence must
appear, even if only faintly, across at least two acquired channels and (ii) that autofluo-
rescence must be spatially separated from real signal. The white arrows in Supplementary
Figure 2.14b, b indicate autofluorescence that was not identified by AFid as their spectra
was restricted to the green channel and did not appear in the red channel. In particular
these objects corresponded to a subset of autofluorescent cells that appear in the colonic
epithelium of some donors and also a small percentage of muscle fibres in muscularis
propria of the colon. Examples of when assumption 2 are not met are shown by the
yellow arrows in Supplementary Figure 2.14b. Here the FXIIIA signal used to identify
a macrophage is overlapping with autofluorescent muscle fibres in the muscularis propria
and so AFid was unable to identify and remove these autofluorescent objects. For our
samples, the frequency of such failed identifications was low and so had a negligible im-
pact on our desired measurements. However, this may not be the case depending on the
users samples and markers used for labelling. As such, these examples serve to illustrate
the importance of users checking that their samples meet the assumptions of the AFid
algorithm so as to ensure sufficient autofluorescence exclusion for accurate measurements.

2.3.4 AFid allows accurate assessment of HIV-dendritic cell in-
teractions in an explant infection model

Finally, we show that the presence of autofluorescence and its exclusion can have a major
impact on down-stream analysis. In our own studies, we are interested in the early HIV-
target cell interactions that occur in human colorectal explants that we topically infect
with HIV for up to 2h. However, these explants are prone to significant amounts of
autofluorescence which impedes accurate analysis.

To assess the frequency and number of HIV+ DCs in an image we first ran AFid
to generate a mask of autofluorescence within the image. We then used a spot counting
algorithm [20] to segment individual HIV particles, and subsequently segmented individual
cells using their nuclei to generate single cell data. The fluorescent channels and masks of
both the autofluorescence and HIV particles were then converted to FCS format for single
cell analysis in FlowJo. Gating on putative CD11c+ DCs (Figure 2.3a, top left) we then
excluded autofluorescent cells, measured as the percentage of the cell body overlapping
with the autofluorescence mask (Figure 2.3a, top right). After excluding cells containing
autofluorescence we found that just 2% of DCs were HIV+ (contained at least 1 HIV
particle) (Figure 2.3a, bottom right) versus 16% without excluding autofluorescent cells
(Figure 2.3a, bottom left). This corresponded to a large difference in the total number
of HIV+ DCs identified, 10 versus 168 cells (Figure 2.3c). We visually inspected the
co-ordinates of putative HIV+ DCs after autofluorescence exclusion and were able to
confirm that these cells corresponded to legitimate HIV-DC interactions as shown in the
zoomed in images in Figure 2.3f. In contrast, false positive signals were almost all due
to autofluorescent signals spanning multiple channels. Importantly, we found that it was
not possible to simply circumvent autofluorescence by gating specifically on true HIV+
DCs. This was because they did not occupy a unique position on biaxial plots and
therefore could not be gated on without also including autofluorescent cells (Figure 2.3b).
Therefore, highlighting the necessity of a computational approach to tag false positive
signals within a mixed population.
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Finally, we show that the presence of autofluorescence can mask spatial relationships
which are then revealed by its exclusion. DCs are highly migratory and thought to be
an important early target cell for HIV transmission [21]. To assess whether DCs may be
specifically localising to HIV early post-exposure we divided an image into 100×100 µm2

quadrats and classified each as HIV- or HIV+ and then measured the density of CD11c
labelling in each area to quantify expression. Prior to autofluorescence exclusion (setting
pixel values to 0), the apparent CD11c expression did not significantly differ between HIV-
and HIV+ areas (Figure 2.3d), whereas after exclusion CD11c expression was revealed as
significantly higher in HIV+ areas compared to HIV- areas (Figure 2.3e). This was due to
a large amount of measured CD11c expression being derived from autofluorescence (Figure
2.3f). Further, we found that CD11c, HIV and autofluorescent cells were differentially
located. CD11c and HIV clustered toward the tip of the lamina propria where the majority
of interactions took place (Figure 2.3f, zoomed images), whilst autofluorescent cells were
particularly clustered toward the base of the lamina propria, thus skewing the results.
Together these data demonstrate how the presence of autofluorescence can drastically
skew measurements, and that its post-acquisition exclusion, here using AFid, can enable
accurate image analysis.

2.4 Discussion

Here, we have presented AFid, a first of its kind method for identifying autofluorescence
in multi-channel fluorescence microscopy images post-acquisition. We have shown that
AFid is able to identify autofluorescence across tissue types, staining panels and image
acquisition conditions. Importantly, we showed that the presence of autofluorescence can
have a major impact on downstream analyses which can be mitigated through the use of
AFid.
Our rationale for creating AFid lay in its necessity for accurately measuring HIV-cell

interactions in our images of HIV-infected FFPE human colorectal tissues. In particular,
our staining protocols were incompatible with chemical bleaching methods discussed in
the introduction of this paper [8, 12–14], and we did not have the necessary resources
to perform spectral unmixing [15] or background subtraction [1, 16, 17]. Noting that
the majority of interfering autofluorescence in our samples were bright, spatially distinct
objects appearing across multiple channels we reasoned that they could be identified and
excluded from downstream analyses by way of a computational approach. Indeed, as
demonstrated here the application of AFid was sufficient to enable accurate quantitative
measurements of HIV-cell localization.
AFid has several distinct advantages. First, it is a post-acquisition algorithm. This is

important because the user does not need to pre-emptively deal with autofluorescence.
Additionally, it can be applied to existing microscopy datasets potentially mitigating the
need for optimization and repeat experimentation. Indeed, this is exemplified in our own
case, where bulk image datasets from HIV-infected explants were probed using RNAscope
and multiple immune markers (partially presented in Figure 2.3, unpublished data) but
quantification hindered by autofluorescence. In this case, even if further lab-based opti-
mizations proved successful at mitigating the impact of autofluorescence for our specific
tissues, repeating the experiments would require the use of precious samples and a signifi-
cant investment of time and resources. The second key advantage of our algorithm is that
its design allows for the detection of autofluorescence across varying tissues and image
acquisition conditions, as demonstrated here. In particular, we assume that due to the
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Figure 2.3: AFid facilitates analysis of early HIV-target cell interaction. (con-
tinued on next page)
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Figure 2.3: Human colorectal explants were topically infected with HIVBal for 30 min,
fixed, sectioned and then stained for CD11c, HIV RNA and DAPI. (a) Single cell seg-
mentation and HIV spot segmentation were performed followed by FCS file generation
for analysis using FlowJo. The figure shows a gating strategy for identifying CD11c+
cells that contain at least one HIV particle, either with, or without first gating-out cells
containing autofluorescence. The autofluorescence parameter shows the percentage of
the cell body overlapping with the autofluorescence mask generated by AFid. (b) Over-
lay of CD11c+HIV+ cells after gating out autofluorescence, showing that they cannot
be specifically gated-on without first excluding autofluorescent cells. (c) Total number of
CD11c+HIV+ cells before and after autofluorescence exclusion, as gated on in part a. (d,
e) A whole tissue image from one donor was divided into 100×100 µm2 quadrats, each
classified as HIV- or HIV+, and CD11c labelling was measured before (d) and after (e)
autofluorescence exclusion. CD11c expression was measured per µm2 of DAPI. Quadrats
with DAPI staining less than 1/10th their area (non-tissue areas) were excluded. Box-
plots show the min, first quartile, median, third quartile and max values. (f) A cropped
area of a whole-tissue image of HIV-infected colorectum before (left) and after (right)
autofluorescence exclusion from the CD11c channel. Zoomed images of the boxes show
interactions of HIV with CD11c+ cells (white arrows) in the image after autofluorescence
exclusion. The broken white line indicates the base of the lamina propria. A two-tailed
Mann Whitney test was performed in part a and b. ns, not significant; ***P 0.0002

long excitation/emission wavelengths of autofluorescence [10] (Supplementary Figure 2.1),
textural features of autofluorescent objects will exhibit a conserved topology across chan-
nels (Supplementary Figure 2.3a), and therefore occupy a unique position in the feature
space, relative to other objects (as shown in Supplementary Figures 7-9). Accordingly,
the employment of clustering, here using k means with automated choice of k, is able to
consistently isolate a cluster containing mainly autofluorescent objects, despite variations
across tissues and image acquisition conditions.

Despite the advantages that have been discussed there are several limitations to our
approach. The major limitation is that AFid cannot identify autofluorescence that is
largely overlapping with real signal. This situation may occur if the object of interest is
inherently autofluorescent or localized to a highly autofluorescent area of the tissue. This
maybe an advantage or a disadvantage depending on the nature of the measurements
to be performed. For example, AFid would aid in object counting measurements by re-
taining objects with mixed real-signal and autofluorescence, whilst excluding objects that
purely contain autofluorescence (e.g. autofluorescent macrophages, Figure 2.2). However,
it would not be suitable if precise fluorescence intensity measurements were required of a
stained object that contained some autofluorescence. Another potential limitation is that
the algorithm requires that autofluorescent signals are present, even if only faintly, across
at least two acquired channels. In our experience this was true of the vast majority of
bright interfering autofluorescence in the various tissues used for this study and fits in
with the well-known broad spectra of autofluorescence [10] (Supplementary Figure 2.1).
However, we did observe instances where this assumption did not hold. In particular
a subset of autofluorescent cells within colonic epithelium as well as some muscle fibres
within the muscularis propria of the colon, did not fluorescence across multiple channels
and were therefore not identified by AFid (Supplementary Figure 2.14). It is difficult
to evaluate the prevalence autofluorescence with narrow spectral profiles, as this will de-
pend on many factors including variations in tissue type, preservation procedure and also
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donor-to-donor variation [8–11]. As such, it is important for users to be acquainted with
the distribution of autofluorescence in their samples so that they can assess the efficacy
of AFid for autofluorescence exclusion. For the limiting cases discussed here, if they
represent a genuine hindrance to image analysis, the optimization of chemical quenching
[8, 12–14] or algorithmic background subtraction methods [1, 15–17] may be necessary.
One final limitation that is worth mentioning is that as AFid is an object-based method of
autofluorescence identification, it cannot be meaningfully compared to previous methods
which deconvolute and subtract the contribution of autofluorescence in a pixel-by-pixel
manner [1, 15–17]. For the latter methods, their success is dictated by the degree of aut-
ofluorescence exclusion from each pixel of the image. However, as AFid is an object-based
method, its success is determined by the percentage of distinct autofluorescent objects
that are identified and excluded from the image. As such, instead of comparing AFid to
previous methods we benchmarked the algorithm against its stated purpose of autofluo-
rescent object identification (Supplementary Figure 2.6). By this measure AFid achieves
a very high sensitivity and specificity for images of colorectal tissue where the majority
of autofluorescent objects meet the assumptions of the algorithm. Technically, autoflu-
orescence appears to some degree in every pixel of an image of tissue. AFid represents
a practical image processing algorithm which excludes objects that are likely to interfere
with image analysis, rather than deconvoluting autofluorescence from every pixel of an
image.
At present, AFid is limited to autofluorescence detection using two channels. Users

can still identify autofluorescence across multiple channels by iteratively running AFid
with multiple pairwise channel comparisons, saving a mask of the autofluorescence for
each channel after each run. In future, it may be possible to improve the algorithm by
simultaneously taking in information from more than two channels, potentially making
autofluorescence detection more robust. However, this would require significant alter-
ations to the current approach and would need to be justified by user demand. As AFid
is a new approach to excluding autofluorescence from images we have included in this
manuscript a table of frequently asked questions which outlines the kinds of things users
should watch out for when applying AFid to their images (Supplementary Table 2.1).
In summary, here we have demonstrated that AFid has major utility for quantitative

measurements in human gut tissue stained for common immune markers and have shown
that it is able to identify autofluorescence in various other tissue types. With the rise
of quantitative image analysis, particularly single cell cytometry pipelines as shown here,
there is an increasing need for image processing algorithms to filter out artefacts and
enable accurate measurements. Although the use of AFid in this paper was restricted
to traditional 2–3 colour IF, it can also be integrated into more recent high-throughput
assays such as CycIF and CODEX [2, 4, 6]. These methods employ iterative rounds
of antibody staining and fluorescence removal using a bleaching solution. The bleaching
solution also mitigates autofluorescence but can have an impact antigenicity meaning that
markers sensitive to bleaching are used in the first round of staining with the trade-off
that autofluorescence may still be bright enough to interfere with analysis. Our group has
used AFid for this very situation when employing CycIF to examine multiple cell types
interacting with HIV in human colorectal tissue (unpublished data). Accordingly, AFid
provides a major leap forward in the extraction of useful data from images plagued by
autofluorescence by offering an approach that is easily incorporated into existing workflows
in ImageJ, Matlab and R, and that can be used with various samples, staining panels and
image acquisition methods.
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2.5 Supplementary Material

Supplementary Figure 2.1: Excitation and emission spectra of autofluorescence
in various tissues. The intensity of pixels corresponding to autofluorescent structures
measured at 20nm intervals upon excitation with laser lines 405nm, 473nm or 559nm in
human colon, skin and brain tissues, as well as rat heart tissue. Results shown as the
intensity of the autofluorescent object minus the intensity of the stromal background for
each wavelength. Results are shown for a single image for each tissue type.
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Supplementary Figure 2.2: Autofluorescence inhibits assessment of CD3 labelling
in the human colorectum. Fixed human colorectal tissue sections imaged prior to
(left) and after labelling with mouse anti human CD3 and donkey anti-mouse AF488
(right). Red arrows indicate some autofluorescent cells and white arrows indicate CD3+
cells. Images are representative of 6 unique donors where CD3 staining was performed.
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Supplementary Figure 2.3: Features of autofluorescence are highly correlated be-
tween fluorescent channels. Fixed human colorectal tissue sections were stained for
mouse anti CD3 and rabbit anti CD4, detected using donkey anti-mouse AF488 and
donkey anti-rabbit AF546 respectively. An intersection mask was created using the two
fluorescent markers (Figure 2.1) and measurements performed on objects in the intersec-
tion mask. An unstained background image was used as a reference to manually annotate
autofluorescent objects in the stained image. a, Density plots of pixel intensities in the
CD3 channel (Red) and CD4 channel (Blue), for 5 randomly selected autofluorescent
objects (top row) or 5 randomly selected labelled cells (bottom row). Pixel intensities
for each object in each channel were normalized by subtracting the min pixel value and
dividing by the max pixel value minus the min pixel value. b, The arctanh transformed
Pearson’s correlation coefficient values of autofluorescent objects vs non-autofluorescent
objects within the intersection mask. The boxplots contain data from thousands of in-
dividual objects for each category. Boxplots show the min, first quartile, median, third
quartile and max values. c,d, standard deviation (SD) and kurtosis (Kurt) measurements
of autofluorescent objects in each channel (CH1 and CH2) used to create the intersection
mask. A subsample of 200 autofluorescent objects, among thousands, is shown. A line of
best fit is shown for both graphs. All graphs are representative of 13 total images used
for this work.

62



This page has been left blank intentionally.

63



Supplementary Figure 2.4: Custom dilation function to estimate the correct
perimeter of autofluorescent ROIs. (continued on next page)
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Supplementary Figure 2.4: a, Fixed colorectal tissue sections were stained for rabbit
CD11c and mouse CD3, followed by donkey anti rabbit AF488 and donkey anti mouse
AF546. b, Fluorescent channels used to detect CD11c and CD3 were thresholded, binary
masks created and the composite image displayed. Yellow indicates the overlapping area
corresponding to the intersection mask. c, Image from part a with the pixels in the
intersection mask from part b set to 0. d, Identified autofluorescent objects within the
intersection mask in part b are skeletonised and points for outward expansion (blue) are
distributed along the skeleton every 20 pixels. e, Thousands of equiangular lines are
drawn outwards from the expansion centres identified in part d, each line propagating
until it encounters a pixel brighter than the previous pixel, as measured in either the
CD11c or CD3 channel. A mask of the identified autofluorescence body is thus generated
for each fluorescent channel. f, Pixels corresponding to the identified AF body in each
channel in part e, are set to 0. Yellow arrows indicate some autofluorescent objects.
g, Measurement of overlap of autofluorescent pixels defined by AFid, with ground-truth
masks of autofluorescence and real signal (CD3 antibody labelled) pixels. Measurements
were performed with (red and green lines) and without (blue and purple) employing the
custom dilation function and for varying cluster number k and varying threshold radii.
Representative data of 3 images is shown. See methods for additional details.
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Supplementary Figure 2.5: Schematic illustrating programmatic steps of custom
dilation function. This figure illustrates how expansion occurs from each of the points in
Supplementary Figure 2.4d, resulting in the expanded ROI in Supplementary Figure 2.4e.
Each square represents an individual pixel. a, Light grey boxes denote pixels belonging
to an autofluorescent object. The blue box is a single point from which expansion of
the ROI can occur. Dark grey boxes denote the pixels which are not an autofluorescent
object. b, A straight line is drawn outward from the point of expansion. Once the line
reaches the edge of the autofluorescent object (light grey pixels) it will begin to measure
the value of pixels that it intersects. The line will continue expanding outward so long as
the next pixel value is lower or equal to the previous pixel value. All pixels which meet
this condition are recorded (shown here by the orange boxes). c, The process in (b) is
repeated with a line emanating from the expansion point (blue box) at a slightly different

angle. This shift in angle is defined by the equation cos
(
1−

(
1
60

)2
/2
)
. This gives the

angle that separates the endpoints of two 60 pixel lines by 1 pixel. Recorded pixels for
the new line are shown by the green boxes. d, The process in (a) and (b) is repeated
for multiple equiangular lines emanating from the expansion point. Additional recorded
pixels are shown in purple. All of the coloured pixels now form the new expanded object,
which originally consistent of just the 4 pixels in part (a). This figure shows an example of
expansion from just one expansion point within an object. Objects usually have multiple
expansion points so when this process is carried out for all expansion points, the collection
of recorded pixels forms the new outline of the object as demonstrated in Supplementary
Figure 2.4e.
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Supplementary Figure 2.6: Specificity and sensitivity of autofluorescence exclu-
sion for various use-cases in Figure 2.2. Fixed human colorectal sections were imaged
prior to, and after labelling with antibodies against markers for three separate panels,
CD11c/CD3, FITC/FXIIIA and CD3/CD4. FITC indicates an unstained open channel
that was imaged. An intersection mask was created using the two fluorescent channels for
each panel (as in Figure 2.1). Textural features of objects within the intersection mask
were then measured for each channel, including standard deviation, kurtosis, as well as
the inter-channel Pearson’s correlation coefficient of corresponding pixels. k-means clus-
tering was then performed using these features and the cluster with the highest average
correlation values was defined as the cluster containing autofluorescent ROIs. A ground
truth for the classification of objects as autofluorescence or real signals (stemming from
antibodies) was established by manually annotating a subset of up to 200 ROIs each, using
the unlabelled background image as a reference. a, percentage of the ‘autofluorescence
cluster’ comprised of autofluorescent ROIs (specificity), where the total number of ROIs
in the cluster is defined as the sum of autofluorescent ROIs and ROIs stemming from real
signal. Each data point represents counts performed on a unique donor for each panel.
Mean values across the three donors are indicated above each column. b, table summaris-
ing the proportion of manually annotated autofluorescence or real signal assigned to the
‘autofluorescence cluster’ (sensitivity). The last two columns indicate the total number of
ROIs and the total number of ROIs classified as autofluorescence respectively. Each row
corresponds to results for unique donors for each use-case.
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Supplementary Figure 2.7: Pairwise plots of textural features used for k-means
clustering of the non-co-expressed markers use-case. ROIs from k-means cluster-
ing on the CD11c/CD3 use-case in Supplementary Figure 2.5 are shown. In the bottom
half, ROIs in the autofluorescence cluster are coloured yellow, whilst non-autofluorescent
ROIs (real signal + dim stromal background fluorescence) are coloured grey. The top
half shows paired plots as a heatmap of correlation values. FCorr = Arctanh transformed
Pearson’s correlation coefficient values. SD1, SD2, Kurt1, Kurt2 = Standard deviation
or Kurtosis values of ROIs in channels 1 or 2. The plot is representative of clustering
performed on 3 independent donors.
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Supplementary Figure 2.8: Pairwise plots of textural features used for k-means
clustering of the autofluorescent cells use-case. ROIs from k-means clustering on
the FITC/FXIIIA usecase in Supplementary Figure 2.5 are shown. In the bottom half,
ROIs in the autofluorescence cluster are coloured yellow, whilst non-autofluorescent ROIs
(real signal + dim stromal background fluorescence) are coloured grey. The top half shows
paired plots as a heatmap of correlation values. FCorr = Arctanh transformed Pearson’s
correlation coefficient values. SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis
values of ROIs in channels 1 or 2. The plot is representative of clustering performed on 3
independent donors.
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Supplementary Figure 2.9: Pairwise plots of textural features used for k-means
clustering of the co-expressed markers use-case. ROIs from k-means clustering on
the CD3/CD4 use-case in Supplementary Figure 2.5 are shown. In the bottom half, ROIs
in the autofluorescence cluster are coloured yellow, whilst non-autofluorescent ROIs (real
signal + dim stromal background fluorescence) are coloured grey. The top half shows
paired plots as a heatmap of correlation values. FCorr = Arctanh transformed Pearson’s
correlation coefficient values. SD1, SD2, Kurt1, Kurt2 = Standard deviation or Kurtosis
values of ROIs in channels 1 or 2. The plot is representative of clustering performed on 3
independent donors.
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Supplementary Figure 2.10: AFid performance across various tissue types. Un-
labelled sections of fixed rat heart, human abdominal skin and human brain tissue are
shown, prior to autofluorescence exclusion (left panel), with the boundary of autofluores-
cent structures identified by the algorithm (middle panel), and after exclusion by setting
pixel values to 0 (right panel). Note that the images the skin and brain samples were
counterstained with DAPI for visualisation. The images are representative areas from one
whole-tissue image for each tissue type that was used for autofluorescence identification
and exclusion.
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Supplementary Figure 2.11: AFid performance at varying image resolutions. Fixed
colorectal tissue sections were imaged prior to labelling (left, unlabelled image) and after
labelling for rabbit anti CD11c and mouse anti CD3, followed by donkey anti rabbit
AF488 and donkey anti mouse AF546. Images of the same area were taken with x10,
x20 and x40 objectives with an image resolution of 1.54, 3.08 and 6.17 pixels per µm
respectively. Images before autofluorescence exclusion (left panel), with a mask of the
identified autofluorescence overlaid (middle panel) and after exclusion by setting pixel
values to 0 (right panel) are shown. Images are representative of 3 unique donors where
CD11c/CD3 staining was carried out and imaged at various magnifications.
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Supplementary Figure 2.12: AFid performance before and after deconvolution.
Fixed colorectal tissue sections were labelled with a sheep anti FXIIIA antibody followed
by donkey anti sheep AF546. ‘FITC’ is the FITC channel, which was imaged but not
used to detect any markers. Images are shown of the same area before (bottom row) and
after (top row) deconvolution using Huygens deconvolution software, CMLE algorithm.
Images before (left panel) and after (right panel) autofluorescence exclusion are shown.
White arrows indicate some autofluorescence identified by the algorithm. Images are
representative of 3 unique donors stained for FXIIIA and processed using AFid before
and after deconvolution.
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Supplementary Figure 2.13: AFid performance on large images. Fixed colorectal
tissue sections were imaged prior to and after labelling for rabbit anti CD11c and mouse
anti CD3 antibodies, followed by donkey anti rabbit AF488 and donkey anti mouse AF546.
A large area of tissue was imaged and the results before (top panel) and after (middle
panel) autofluorescence exclusion are shown. Zoomed in images of the area outlined are
shown with an additional image of the unlabelled section outlining the distribution of
autofluorescence. Image is representative of 3 unique donors where CD11c/CD3 staining
was carried out.
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Supplementary Figure 2.14: Instances of failed autofluorescence identification.
Sections of fixed human colorectal tissue prior to (a, left column) and after labelling
(a, middle column and b, left column) with antibodies targeting the indicated markers.
Labelled images after autofluorescence exclusion (setting pixel values to 0) are shown by
the right most panel in (a) and (b). White arrows indicate autofluorescent objects that
were not identified by AFid due to the fluorescence only appearing the green channel
(CD3 for part a, FITC for part b) and were therefore not excluded by the algorithm.
Yellow arrows show autofluorescent muscle fibers that were not identified by AFid due
to overlap with a FXIIIA+ macrophage. In the middle row of (b) ‘FITC’ is the FITC
channel, which was imaged but not used to detect any markers. Note, the images in the
leftmost column in (a) were not deconvolved as only a single z-plane was acquired to
show the distribution of autofluorescence. As such the image appears less clear than the
other images of the same area in (a).
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Supplementary Figure 2.15: Estimation of optimal cluster number for k-means.
k-means clustering as described in Supplementary Figure 2.5 was performed iteratively
for 3-20 clusters and the distribution of paired true positive rate (TPR) and false positive
rate (FPR) values for each cluster number is indicated by the red line for each use-case
(top row). A high TPR or FPR corresponds to a high proportion of the ‘autofluores-
cence cluster’ comprising manually annotated autofluorescence or real signals respectively.
The bottom row shows plots of the cluster number (k) versus, test statistic of a t-test
(two-tailed) comparing Pearson’s correlation coefficient values of clusters with the high-
est (‘autofluorescence cluster’) and second highest average correlation values. An elbow
method approach for estimation of optimal k is illustrated in the bottom left plot. A line
(L) is drawn between the first and last plotted values. The line M indicates the plotted
value that is below the line L, and has the greatest perpendicular distance to that line.
The cluster number corresponding to this plotted point is estimated as the optimal cluster
number. The points with optimal cluster number for each plot are indicated as a red *.
The TPR/FPR of the optimal cluster number for each use-case is indicated by the black
dot in the top row of plots. Data are representative of analysis performed on 3 unique
donors for each use-case.
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Supplementary Table 2.1: Table of frequently asked questions and their answers relating 0 to the use of AFid.
*Details on how to implement parameter changes are in the user manual accompanying the plugin.
FREQUENTLY ASKED QUESTIONS ANSWERS

Can I remove autofluorescence if it
appears in only one channel?

No. However, if the autofluorescent signal appears in a second channel, even just faintly, AFid

may still be able to identify the autofluorescent object.
I have acquired one channel to

detect a marker of interest, as well
as DAPI. Can these two channels

be used with AFid?

DAPI usually cannot be used as a second comparison channel as it stains all cells and is usually
very bright. As such it will either overlap with most autofluorescence in the tissue or will be far
brighter than autofluorescence making it difficult to threshold on autofluorescent objects which is

the required first step in autofluorescence classification.

Can I use AFid to remove stromal
autofluorescence that is present
throughout the whole image?

Some tissues exhibit strong stromal autofluorescence that is present throughout the entire tissue.
As this signal is present throughout the whole tissue and is not in the form of discrete objects, it is
unlikely that AFid will be able to successfully identify and exclude such autofluorescence. If this
signal significantly hinders analysis then alternative methods should be explored such as chemical

quenching, background subtraction or spectral unmixing.

Will AFid remove autofluorescent
objects that are overlapping with
my antibody/RNA Fish derived

signal?

It depends. Since AFid is a clustering method, it is possible that some objects with overlapping
autofluorescence and probe signal will be identified and excluded. Users can adjust the default

parameters of AFid to avoid this scenario. Two possible adjustments:
(1) Manually specify the number of clusters for k-means, choosing a greater number of clusters.

This will result in a greater specificity at the expense of sensitivity.*
(2) Specify a minimum Pearson’s Correlation Coefficient value for an object to be classified as
autofluorescence. If this is done with clustering then only objects within the cluster which are

above the specified value will be identified as autofluorescence.*

Which channels should I use for
Autofluorescence exclusion?

Neighbouring channels are usually best, but the algorithm does work for disparate channels (e.g
FITC vs Cy5 channel). The major factor is whether autofluorescent signals span multiple channels.

It is best to acquire all channels during acquisition, even channels for which no signal is being
measured. These spare channels can be used for autofluorescence detection with AFid.

Is AFid compatible with high
parameter cyclic microscopy

protocols?

Yes. The bleaching of tissues between rounds of staining will usually reduce autofluorescence,
enabling better measurement of desired of signal of interest. However bleach-sensitive epitopes
maybe acquired in the first round of staining prior to bleaching. An example is CD4 which is

sensitive to H2O2, a chemical used for bleaching.
As such, AFid can be used to mitigate autofluorescence in early rounds of staining, prior to the use

of bleaching solutions.
Also, it is best to use AFid to compare channels acquired in one specific round of staining. This is

because registration software rarely achieves pixel-perfect registration and this can affect the
cross-channel comparisons needed for autofluorescence classification.
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Supplementary Table 2.1: continued from previous page
FREQUENTLY ASKED QUESTIONS ANSWERS

Why is AFid not capturing all
autofluorescent objects that I wish

to exclude?

There are multiple possible reasons for this. A few possibilities are listed here:
(1) The objects are not present in the intersection mask used to classify objects. Users can
adjust thresholding parameters in the AFid plugin or simply provide their own intersection

mask for the program to then classify autofluorescent objects within this mask.*
(2) The algorithm has split the autofluorescence cluster up into multiple clusters. There are

two options to remedy this. One, manually set a lower cluster number k. Two, use a
Pearson Correlation Coefficient cut-off value instead of clustering, specifying a low enough
value to capture all autofluorescence (this will need to be done through a bit of trial and

error).*
(3) Image alignment issue. Microscopes sometimes have calibration issues which result in
misalignment across channels of a given images. The best solution is to calibrate the

microscope. It may be possible to rescue the images by using a post-acquisition alignment
software. This is possible if there are enough similar landmarks between channels.

Why is AFid detecting and
excluding too much of my desired

signal of interest?

If using clustering then manually set a higher cluster number k. If using a Pearson’s Correlation
Coefficient cut-off value instead of clustering, specifying a higher value which will result in higher

specificity for autofluorescence over probe signal.
How do I detect and exclude

autofluorescence from more than
2 channels?

Run AFid on multiple channel pairs. For example (FITC vs Cy3, Cy3 vs Cy5). The user can then save
the masks of identified autofluorescence in each the FITC, Cy3 and Cy5 channels.

I’m experiencing signal bleedthrough across channels. Will AFid
remove these signals?

This could happen. Generally signal bleed through will cause a variety of issues in image
processing and analysis. There are two possible methods to mitigate this issue:

(1) Run AFid using two other channels where signal bleed-through is not present.
(2) Recognize that bleed-through usually occurs when the signal in one channel is very bright. As
such, when users create the intersection mask in AFid, they could measure the mean fluorescence
intensity of all objects in the bright channel and remove objects which are above a user specified
cut-off. In this way bright-bleed through signals will not be present in the mask which is used for
autofluorescence classification and so will not be identified and excluded by AFid. We have used
this method with good success when we occasionally see saturated bright signals by RNAscope

due to a high concentration of an RNA target in one area of the image.

What image types are compatible
with AFid?

The program was designed to be used with 2D 16 bit tiff images. If you have a stack of images you
will need to split them into individual images prior to running AFid. 8 bit tiffs can be used but

results may be suboptimal. If a 3D Z-stack has been captured then images should be maxprojected prior to running AFid.
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Algorithm 1: AFid Main
Inputs : Image1 - first image

Image2 - second image
σ - width of Gaussian blur
minSize - minimum ROI area
maxSize - maximum ROI area
correlationCutoff - cutoff correlation for AF classification
cluster - boolean determining whether or not to perform clustering
kInput - number of clusters to use if cluster==TRUE
estimate - boolean determining whether or not to estimate the number of clusters
minK - minimum k if estimate==TRUE
maxK - maximum k if estimate==TRUE

Output: im1 - read in Image1

/* Read in images */

1 im1 = readImage(Image1)
2 im2 = readImage(Image2)

/* Gaussian blur images */

3 im1Blurred = GaussianBlur(im1, σ)
4 im2Blurred = GaussianBlur(im2, σ)

/* Create binary masks with local threshold */

5 im1Mask = LocalThreshold(im1Blurred, method, radius)
6 im2Mask = LocalThreshold(im2Blurred, method, radius)

/* Create AND intersection mask */

7 intersectionMask = (im1 AND im2)

/* Identify intersection ROIs */

8 roiFiltered = GetIntersectionROIs(intersectionMask, minSize, maxSize) // See Algorithm 2

/* Get measurements for classification */

9 correlation, sd1, sd2, kurt1, kurt2 = GetMeasurements(im1, im2, roiFiltered) // See Algorithm 3

/* Classify ROIs as AF or Non-AF */

10 roiAF = ClassifyROIs(correlationCutoff, cluster, kInput, estimate, minK, maxK, correlation, sd1, sd2, kurt1,
kurt2) // See Algorithm 4

/* Remove AF ROIs */

11 im1AFRemoved = im1
12 im2AFRemoved = im2
13 for i in 1:length(roiAF) do
14 if roiAF[i] == TRUE then
15 im1AFRemoved[roiFiltered[i]] = 0 // Set pixel intensities to zero if contained in an AF ROI

16 im2AFRemoved[roiFiltered[i]] = 0

17 end

18 end

/* Perform expansion algorithm */

19 expansionMask1, expansionMask 2 = AFExpansion(roiFiltered, roiAF) // See Algorithm 6

/* Remove areas identified from expansion */

20 im1AFRemoved(expansionMask1 == TRUE) = 0
21 im2AFRemoved(expansionMask2 == TRUE) = 0
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Algorithm 2: Identify intersection ROIs
Inputs : intersectionMask - intersection of the two local threshold binary masks

minSize - minimum ROI area
maxSize - maximum ROI area

Output: roiFiltered - array of ROIs to consider for AF removal

1 Function GetInteresectionROIs(intersectionMask, minSize, maxSize)

/* Get all ROI objects */

2 roiArray = GetRois(intersectionMask) // Each ROI in roiArray is an 2× n matrix of each pixel

co-ordinate of each ROI

3 roiFiltered = [] // Empty array of ROI

4 for i in 1:length(roiArray) do
5 if (ncol(roiArray[i]) ≤ maxSize) AND (ncol(roiArray[i]) ≥ minSize) then
6 roiFiltered.add(roiArray[i]) // Create new array which contains all the ROIs filtered by

size

7 end

8 end

9 return roiFiltered
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Algorithm 3: Get measurements for classification
Inputs : cluster - boolean determining whether or not to perform clustering

roiFiltered - array of ROIs to consider for AF removal
im1 - read in Image1
im2 - read in Image2

Outputs: correlation - array of pixel correlations across the two images for each ROI
sd1 - array of pixel standard deviation for each ROI in im1
sd2 - array of pixel standard deviation for each ROI in im2
kurt1 - array of pixel kurtosis for each ROI in im1
kurt2 - array of pixel kurtosis for each ROI in im2

1 Function GetMeasurements(im1, im2, roiFiltered)

/* Initialise arrays */

2 correlation = []
3 sd1 = []
4 sd2 = []
5 kurt1 = []
6 kurt2 = []

/* Obtain measurements */

7 for i in 1:length(roiFiltered) do
8 roi = roiFiltered[i]
9 im1Pixels = im1[roi] // im1[ROI] gets the intensity value at each pixel coordinate given by

ROI

10 im2Pixels = im2[roi]
11 correlation.add(measureCorrelation(im1Pixels, im2Pixels)) // Measure correlation of the pixel

intensities between the two image channels

12 sd1.add(measureSD(im1Pixels)
13 sd2.add(measureSD(im2Pixels) // Measure standard deviation for each channel

14 kurt1.add(measureKurt(im1Pixels))
15 kurt2.add(measureKurt(im2Pixels)) // Measure kurtosis for each channel

16 end

17 return correlation, sd1, sd2, kurt1, kurt2
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Algorithm 4: Classify ROIs as AF or non-AF
Inputs : correlationCutoff - cutoff correlation for AF classification

cluster - boolean determining whether or not to perform clustering
kInput - number of clusters to use if cluster==TRUE
estimate - boolean determining whether or not to estimate the number of clusters
minK - minimum k if estimate==TRUE
maxK - maximum k if estimate==TRUE
correlation - array of pixel correlations across the two images for each ROI
sd1 - array of pixel standard deviation for each ROI in im1
sd2 - array of pixel standard deviation for each ROI in im2
kurt1 - array of pixel kurtosis for each ROI in im1
kurt2 - array of pixel kurtosis for each ROI in im2
roiFiltered - array of ROIs to consider for AF removal
im1 - read in Image1
im2 - read in Image2

Outputs: roiAF - array of booleans specifying whether an ROI is classified as AF
im1AFRemoved - Image1 with AF ROI pixels set to 0
im2AFRemoved - Image2 with AF ROI pixels set to 0

1 Function ClassifyROIs(correlationCutoff, cluster, kInput, estimate, minK, maxK, correlation, sd1,

sd2, kurt1, kurt2)

/* Identify objects greater than correlation cutoff */

2 correlationAF = (correlation ≥ correlationCutoff) // Logical array specifying whether an ROI is above

the correlation cutoff

/* Perform k-means clustering to identify AF objects */

3 if doKMeans == TRUE then
4 if estimate == TRUE then
5 k = EstimateK(minK, maxK, atanh(correlation), sd1, sd2, kurt1, kurt2) // See Algorithm 5

6 else
7 k = kInput
8 end
9 clusters = kMeans(k, atanh(correlation), sd1, sd2, kurt1, kurt2)

10 afCluster = whichGreatestMean(correlation, clusters) // Calculates mean correlation for each

cluster, then returns the cluster corresponding to the greatest correlation

11 kMeansAF = (clusters == afCluster) // Logical array specifying whether an ROI is in afCluster

12 end

/* Identify AF ROIs */

13 if doKMeans == TRUE then
14 roiAF = (correlationAF AND kMeansAF)
15 else
16 roiAF = correlationAF
17 end

18 return roiAF
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Algorithm 5: Estimate k
Inputs : minK - minimum k

maxK - maximum k
Output: kBest - estimated k for clustering

1 Function EstimateK(minK, maxK)

/* Measure t statistics */

2 tStats = [] // Empty array of t statistics

3 for i = minK:maxK do
4 clusters = kMeans(i, atanh(correlation), sd1, sd2, kurt1, kurt2)
5 afCluster = whichGreatestMean(correlation, clusters) // Identify cluster with highest mean

correlation

6 afCluster2 = whichGreatestMean(correlation[clusters != afCluster], clusters[clusters != afCluster])
// Identify cluster with second-highest mean correlation

7 tStats.add(measureTStatistic(atanh(correlation[clusters == afCluster]), atanh(correlation[clusters ==
afCluster2]))) // Measure t statistic of the correlations between the top two clusters

8 end

/* Perform elbow test */

9 x1 = 1
10 x2 = length(tStats)
11 y1 = tStats[1]
12 y2 = tStats[-1]
13 kBest = whichMax((y2-y1)*(x1:x2) - (x2-x1)*tStats + x2*y1 - y2*x1)]
14 kBest = kBest - minK + 1

15 return kBest
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Algorithm 6: Expansion algorithm
Inputs : roiFiltered - array of ROIs to consider for AF removal

roiAF - array of booleans specifying whether an ROI is classified as AF
Output: -

1 Function AFExpansion(roiFiltered, roiAF)

/* Perform skeletonisation */

2 afMask = createMask(roiFiltered[roiAF]) // Create a binary mask of the identified AF ROIs

3 afSkel = skeleton(afMask) // Perform skeletonisation on binary mask

/* Identify expansion points */

4 expansionPoints = IdentifyExpansionPoints(roiSkeleton) // See Algorithm 7

/* Perform expansion */

5 expansionMask1, expansionMask2 = Expansion(expansionPoints, im1Blurred, im2Blurred) // See

Algorithm 8
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Algorithm 7: Identify expansion points
Inputs : roiSkeleton - skeleton of AF ROIs
Output: expansionPoints - points of expansion

1 Function IdentifyExpansion(roiSkeletonPoints)

/* Identify end nodes */

2 [r,c] = size(afMask) // Obtain dimensions of the original image

3 endNodes = newMask(r,c) // Create empty binary mask of the same size as afMask

4 for i in 1:r do
5 for j in 1:c do

6 if afSkel(r,c) > 0 then
7 rNeighbour = [i-1, i, i+1, i-1, i+1, i-1, i, i+1]
8 cNeighbour = [j-1, j-1, j-1, c, c, c+1, c+1, c+1]
9 neighbourSum = 0

10 for k in 1:8 do
11 if afSkel(rNeighbour[k], cNeighbour[k]) then
12 neighbourSum += 1
13 end

14 end

15 if neighbourSum < 2 then
16 endNodes(i,j) = TRUE // If the number of neighbours is less than two, then that

point represents the end of a skeleton

17 end

18 end

19 end

20 end

/* Identify points of expansion by tracing */

21 currentTrace = endNodes; // Points being currently traced over

22 totalTrace = newMask(r,c) // All points that have been traced over

23 expansionPoints = endNodes
24 traceCount = 0 // Number of tracing steps performed

25 traceSensitivity = 20 // Number of tracing steps before an expansion point is added

26 while TRUE do

27 traceCount += 1
28 newTrace = newMask(r,c)
29 for i in 1:r do
30 for j in 1:c do

31 if currentTrace(i,j) == TRUE then
32 totalTrace(i,j) = TRUE
33 rNeighbour = [i-1, i, i+1, i-1, i+1, i-1, i, i+1]
34 cNeighbour = [j-1, j-1, j-1, c, c, c+1, c+1, c+1]

35 for k in 1:8 do
36 if (afSkel(rNeighbour[k],cNeighbour[k]) == TRUE) AND

(totalTrace(rNeighbour[k],cNeighbour[k]) == FALSE) AND
(currentTrace(rNeighbour[k],cNeighbour[k]) == FALSE) AND
(newTrace(rNeighbour[k],cNeighbour[k]) == FALSE) then

37 newTrace(rNeighbour[k], cNeighbour[k]) = TRUE

38 if mod(traceCount, traceSensitivity == 0 then
39 expansionPoints(rNeighbour[k], cNeighbour[k]) = TRUE
40 end

41 end

42 end

43 end

44 end

45 end

46 currentTrace = newTrace

47 if sum(currentTrace) == 0 then
48 break // Break if no new points can be traced

49 end

50 end

51 return expansionPoints
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Algorithm 8: Perform Expansion
Inputs : expansionPoints - points of expansion

im1Blurred - Image1 Blurred
im2Blurred - Image2 Blurred

Output: expansionMask1 - expansion mask for Image1
expansionMask2 - expansion mask for Image2

1 Function Expansion(expansionPoints, im1Blurred, im2Blurred)

2 expandDistance = 60
3 expandWidth = 1
4 theta = acos(1-(expandWidth/expandDist)2/2)
5 minSteps = 3
6 maxSteps = 30
7 expansionMask1 = newMask(r,c)
8 expansionMask2 = newMask(r,c)

9 for i in 1:r do
10 for j in 1:c do

11 if expansionPoints(i,j) == TRUE then
12 thetaMultiple = 1
13 thetaCurrent = theta

14 while thetaCurrent < 2*pi do
15 thetaMeasure = theta*thetaMultiple
16 xStepSize = cos(thetaMeasure)
17 yStepSize = sin(thetaMeasure)
18 expandLength = 1
19 expandSteps = 0
20 done1 = FALSE
21 done2 = FALSE

22 while TRUE do
23 xMeasure = floor(i + expandLength*xStepSize)
24 yMeasure = floor(j + expandLength*yStepSize)
25 xCompare = floor(i + (expandLength-1)*xStepSize)
26 yCompare = floor(j + (expandLength-1)*yStepSize)

27 if afMask(xMeasure,yMeasure) == TRUE then
28 expandSteps += 1
29 pixelDifference1 = im1Blurred(xMeasure,yMeasure) -

im1Blurred(xCompare,yCompare)
30 pixelDifference2 = im2Blurred(xMeasure,yMeasure) -

im2Blurred(xCompare,yCompare)

31 if (pixelDifference1 ≤ 0) OR ((expandSteps < minSteps) AND (done1 ==
FALSE)) then

32 expansionMask1(xMeasure,yMeasure) = TRUE
33 else
34 done1 = TRUE

35 if (pixelDifference2 ≤ 0) OR ((expandSteps < minSteps) AND (done2 ==
FALSE)) then

36 expansionMask2(xMeasure,yMeasure) = TRUE
37 else
38 done2 = TRUE

39 if (done1 == TRUE) AND (done2 == TRUE)) OR (expandSteps > maxSteps)
then

40 break

41 expandLength = extendLength+1

42 thetaMultiple += 1
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Chapter 3

spicyR: spatial analysis of in situ
cytometry data in R

Publications incorporated into this chapter:

Canete, N.P., Iyengar, S.S., Ormerod, J.T., Baharlou, H., Harman, A.N., Patrick, E.
(2022) spicyR: spatial analysis of in situ cytometry data in R. Bioinformatics, Volume
38, Issue 11, 1 June 2022, Pages 3099–3105

Preface

One of the key steps in microscopy image analysis is spatial analysis, providing insight
into the cell-cell interactions and cell migration events that underly the pathophysiology
of disease. This chapter consists of a second publication in Bioinformatics, which de-
scribes the R package ‘SPatial analysis of In Situ Cytometry data in R’ (spicyR), a tool
which facilitates inference on changes in spatial co-localization between cell types. spicyR
was conceived to address the question “How does cell-type co-localization change with
different experimental or clinical conditions?”. This publication presents an easy-to-use
tool which adds to the repertoire of spatial analysis techniques utilized in the analysis
of high parameter images. To validate the algorithm, spicyR was applied to a range of
simulations, as well as the type 1 diabetes dataset presented by Damond et al. (2019).
As first author, I contributed to all aspects of the manuscript. I conceived the original
approach for spicyR, wrote the package codebase, and performed the validation of the
algorithm.
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Abstract

Motivation High parameter histological techniques have allowed for the identification
of a variety of distinct cell types within an image, providing a comprehensive overview of
the tissue environment. This allows the complex cellular architecture and environment
of diseased tissue to be explored. While spatial analysis techniques have revealed how
cell–cell interactions are important within the disease pathology, there remains a gap in
exploring changes in these interactions within the disease process. Specifically, there are
currently few established methods for performing inference on cell-type co-localization
changes across images, hindering an understanding of how cellular environments change
with a disease pathology.

Results We have developed the spicyR R package to perform inference on changes in
the spatial co-localization of types across groups of images. Application to simulated
data demonstrates a high sensitivity and specificity. We demonstrate the utility of spicyR
by applying it to a type 1 diabetes imaging mass cytometry dataset, revealing changes
in cellular associations that were relevant to the disease progression. Ultimately, spicyR
allows changes in cellular environments to be explored under different pathologies or
disease states.

Availability and implementation R package is freely available at
http://bioconductor.org/packages/release/bioc/html/spicyR.html

and shiny app implementation at
http://shiny.maths.usyd.edu.au/spicyR/.
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3.1 Introduction

Identifying changes in the spatial distribution of cells is vital for understanding the cel-
lular processes that are present in diseased tissue. Multiplexed histological techniques
have allowed the complex cellular architecture and environment of diseased tissue to be
explored by enabling the simultaneous profiling of multiple cell types. Fluorescence-based
methods, including co-detection by imaging (CODEX) [1], cyclic immunofluorescence [2]
and iterative indirect immunofluorescence imaging (4i) [3], as well as mass cytometry
imaging techniques, including imaging mass cytometry (IMC) [4] and multiplexed ion
beam imaging by time of flight [5] allow up to 40 protein markers to be visualized with
single-cell resolution. Additionally, the development of spatial-based transcriptomic tech-
niques, such as High-Definition Spatial Transcriptomics [6] and sequential fluorescence
in situ hybridization [7], allow tens of thousands of transcripts to be spatially resolved
within an image at single-cell resolution. This large increase in the scale and dimensional-
ity of the images being acquired has necessitated the development of analysis techniques
capable of interrogating such complex data.

Established image analysis techniques have enabled the investigation of cell–cell interac-
tions and cell migration within an image, facilitating the interrogation of high parameter
imaging data in a single-cell manner. Standard pipelines start by identifying cells through
single-cell segmentation followed by cell-type classification by clustering or manually gat-
ing marker expression [8–11]. From here, a differential analysis of cell composition or
marker expression within the image dataset can be performed to identify high-level as-
sociations with a phenotype of interest. The spatial dimension afforded by imaging can
furthermore allow the spatial context of these cells to be quantified in multiple ways. One
way to interrogate the spatial organization of cells is to quantify the spatial attraction or
avoidance between pairs of cell types. This often involves counting an association mea-
sure between cell types. Counting the number of touching cells of a pair of cell types
provides a measure of spatial association [12]. Randomizing the labels of cells can then
be used to identify how significant a pairwise interaction is within an image, as seen in an
application to type 1 diabetes images [12]. This approach can be extended by calculating
distances between cells and tabulating their nearest neighbours as used by Keren et al.
to assess the spatial interactions involved in triple-negative breast cancer pathology [13].
Ripley’s K-function [14, 15] can be used to assess how co-localization between cell types
vary with distance by modelling cells within an image as a point process. Further to
this, identification of spatial communities [16] has been performed through graph-based
techniques, associating the spatial distribution of groups of cell types to disease outcomes.
Finally, techniques, such as spatial variance component analysis [17], have been developed
to identify the sources of variation of gene or protein markers attributed to cell–cell in-
teractions. Overall, such techniques can identify spatial structure within high parameter
images. This could then be attributed to the pathology of the disease states being studied.

A key gap that remains in the analysis of high parameter images is the identification of
differential cell-type co-localization across groups — i.e. changes in the extent of pairwise
cell-type co-localization across these groups. These groups could be a clinical outcome,
such as disease stage or response to treatment or come from a perturbed experiment.
Present strategies involve comparing association measures across groups. Damond et al.
(2019) [18] compares the number of each pairwise interaction using a Mann–Whitney’s U -
test to show changes in cell-type co-localizations across different disease stages. Färkkilä
et al. (2020) [19] compares the Z-scores of the pairwise cell interaction obtained from
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bootstrapping across ovarian cancer clinical outcomes to identify changes in cell distri-
bution. While such approaches are appropriate, they do not allow for the modelling of
multiple images from multiple subjects. Additionally, these strategies ignore the variation
observed in the quantification of cell-type co-localization.
In this manuscript, we present an R package ‘SPatial analysis of In situ CYtometry data

in R’ (spicyR) and a corresponding web application to facilitate inference on changes in
spatial co-localizations between cell types. spicyR aims to provide an easy-to-use approach
to identify differential cell-type co-localization with respect to a disease or treatment and
has the capacity to model information from multiple images per subject or account for
images having a substantial difference in cell number. We demonstrate the performance of
spicyR through simulation and apply the package to the diabetes imaging data presented
in Damond et al. (2019) [18], revealing changes in cellular co-localization with type 1
diabetes progression.

3.2 Methods

Our R package, spicyR, provides the framework for performing inference on the changes
in spatial co-localizations between pairs of cell types, which can be associated with a
discrete or continuous outcome (Figure 3.1A). As described below, spicyR consists of
three primary steps: (i) summarizing the degree of spatial co-localization between pairs
of cell types for each image; (ii) modelling the variability in the co-localization summary
statistics as a function of cell counts and (iii) testing for changes in co-localization as-
sociated with a response variable. The significance of this change is assessed using a
linear model, or a mixed-effects model if there are multiple images belonging to a subject
(Figure 3.1B). The R package is available on Bioconductor (http://bioconductor.org/
packages/release/bioc/html/spicyR.html), and is also implemented as an interactive
shiny application (http://shiny.maths.usyd.edu.au/spicyR/).

3.2.1 Construction of the L curve and co-localization score

Following single-cell segmentation and classification, images are modelled as a ‘marked
point process model’, in which each cell is represented as a point in a 2D plane. Spatial co-
localization between two cell types within an image can be quantified with a K-function
(Ripley, 1976),

K̂ij(r) =
|W |
ninj

∑
ni

∑
nj

1{dij ≤ r}eij(r) (3.1)

where K̂ij(r) summarized the degree of co-localization of cell type j with cell type i, ni and
nj are the number of cells of type i and j, |W | is the image area, dij is the distance between
two cells and eij(r) is an edge correcting factor. The K-function can be interpreted as
the average number of cells of type j within a distance r away from each cell of type i. 1

The L-function or L curve is a variance stabilized K-function given by the equation

L̂ij(r) =

√
K̂ij(r)

r
(3.2)

1It should be noted that the K-function is not symmetric - that is K̂ij(r) ̸= K̂ji(r).
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Figure 3.1: Schematic of the experimental motivation of spicyR. (A) Analytical
question. From the images obtained, spicyR aims to identify differences in cell-type co-
localizations between the two groups. (B) Example experimental setup. Here, we have
four subjects from Group 1, and three donors from Group 2, each with a different number
of high parameter images. When applying spicyR, the number of subjects per group does
not have to be equal, the number of images per subject does not have to be equal, there
can be one image for subject. Further to this, the number of groups can be larger than
two or alternatively continuous outcome
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[15]. Figure 3.2B shows an example observed L curve compared to the expected L curve
obtained from points distributed randomly in a Poisson distribution. Curves above the
Poisson line can be interpreted as showing greater attraction when compared to a random
distribution, and curves below the Poisson line can be interpreted as avoidance of the two
cell types.
To reduce these summary functions into a single co-localization score u, we take an

area between curve measurement (Figure 3.2B), given by the equation

u =
rmax∑

r=rmin

L̂ij .Experimental(r)− L̂ij .Poission(r) (3.3)

where the sum is taken over a discrete range of r between rmin and rmax (e.g. r′ =
10, 20, . . . , rmax). A special case of Equation 3.3 that is explored below is when there
is only one value to sum over (i.e. rmin = rmax). Values of u > 0 represent greater
attraction between cells when compared to random, while values < 0 represent avoidance
when compared to random.

3.2.2 Weighting scheme used to account for varying cell counts

The relationship between cell count and variability of u is modelled with a shape con-
strained generalized additive model (GAM) fitted with SCAM [21]. We fit a GAM with a
monotone decreasing constraint to the square of u with the counts of both cell types i and
j as explanatory variables. The inverse of this fitted curve is used as a weighting scheme
for each measurement in the model described in the following section — i.e. lower weights
are applied to images with lower cell counts. These weights can be constructed per cell-
type pair or using the scores from all cell types. In all the analyses in this manuscript the
weights are constructed using all cell types concurrently.

3.2.3 Hypothesis testing with a linear model

To assess changes in cell-type co-localization between groups, we implement either a linear
model, or a linear mixed-effects model with random intercepts using the lme4 package [22].
Here, uij is the co-localization score for subject i and image j, the treatment group or
condition (xi) is modelled as a fixed effect with coefficient β and if a subject has multiple
images the intercept (αi) is modelled as a random effect. Other covariates are included
as W with coefficients Γ.
Linear model :

ui = α + βxi + ΓW (3.4)

Linear mixed-effects model :
uij = αi + βxi + ΓW (3.5)

For the mixed-effects model, P -values are calculated with Satterthwaite’s approximations
using the lmertest package [23].

3.2.4 Simulations to assess the performance of spicyR

To examine the performance of spicyR, simulations were generated using the spatstat
package [24], as summarized below and in Supplementary Figure 3.2. There are a few key
parameters in the simulation with their default values listed as follows.
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Figure 3.2: Summary of the spicyR framework. (A) Representation of two cell
types in a 2D plane, which can be represented as points. Co-localization of cell type
j around cell type i can be modelled by using Ripley’s K-function, which summarizes
a scaled average of the number of cell type j around cell type i for a range of radii, r
(dashed lines). (B) Example of an L curve generated from an experiment (solid line)
compared against a L curve (dashed line) expected if cell type i and j were distributed
independent of each other. The shaded area represents the u statistic used to assess
whether co-localization (positive value) or avoidance (negative value) is occurring. (C) A
boxplot representation of the u statistics used to compare pairwise co-localization across
different groups. (D) Plot of the u statistic versus the number of cells of type i. As cell
count is decreased, the variance of the AUC statistic increases. A GAM is used to model
the square of the statistic as a 2D function of the counts of cell types ‘i’ and ‘j’, and these
are used as weights in the linear models used. (E) Plot representing the weighting regime
when applied to the dataset from Schürch et al. (2020) [20]. The value of the weights
increases as the pairwise cell counts increases
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• The size of each image: 1000×1000 units.

• The number of subjects: 40, split into 2 groups of 20 each.

• The number of images per subject: three, each containing two cell types.

• The number of simulations: 500 without change (null simulation) and 500 with
change in co-localization between groups (difference simulations).

• A range for the number of cells of each type per image:
cell count = 20, 40, . . . , 380, 400.

• Average representative distance of co-localization between cell type A and B:
sigma = 40.

• Change in co-localization between cell types between groups: delta = sigma/3.

For each simulation, cells in each image were simulated by first generating cells from cell
type A using a Poisson point process model with expected count equal to a random value
from cellCount. The density of cell type A is then calculated using a disc kernel, where
the size of the disc for each subject is drawn from a Poisson with expected value sigma
or sigma + delta depending on which group that subject belongs to. In the difference
simulations the average co-localization is equal to sigma in the first group and sigma +
delta in the second group. In the null simulations the average co-localization in the first
group of subjects is the same as that in the second group of subjects. The cells from
cell type B are then generated using a Poisson point process model with expected count
equal to another random value from cellCount multiplied by the density of cell type A.
When applying spicyR to the simulations, we apply Equation 3.3 across a range of radii
(r′ = 10, 20, . . . , 100) to obtain the co-localization statistic.
To evaluate the performance of spicyR, the P -value distributions from the tests on the

null simulations were compared to the difference simulations. The percentage of P -values
from the null simulations less than a significant threshold will provide a false positive rate
and the percentage of P -values from the difference simulations less than a significance
threshold will provide a true positive rate.
The simulations were first applied to identify if the use of the weighting regime as

described above improved the sensitivity of spicyR. Next, simulations were performed
to explore the sensitivity of spicyR to different average co-localization distances. This
was achieved by repeating the above simulations, while also varying sigma from 10 up
to 100. spicyR is then applied by applying Equation 3.3 across a range of radii (r′ =
10, 20, . . . , 100), or by taking the difference between discrete L curve values for each r
from 10 up to 100. Finally, the simulations were used to evaluate how spicyR performs
for different cell counts with cellCount multiplied by a factor of 1, 5, 10 and 20.

3.2.5 Application to diabetes IMC data in Damond et al. 2019

As an implemented example of the framework, we apply spicyR to the data presented
by Damond et al [18]. This study aimed to identify the spatial distribution of markers
and cells in pancreatic islets, comparing three different stages of type 1 diabetes melli-
tus (T1DM) progression: non-diabetic, onset diabetes and long-duration diabetes, with
four subjects per group. The single-cell image data were downloaded from Mendeley
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(Version 2: https://data.mendeley.com/datasets/cydmwsfztj/2). This dataset con-
sists of images of pancreatic islet cells across the three disease stages, obtained via IMC
with 37 markers. The number of images per subject ranged from 64 to 81 (Total=845;
Non-diabetic=274; Onset=290; Long-duration=281). Additionally, the dataset contained
spreadsheets providing relevant patient information, as well as the cell coordinates, marker
expression and cell classification.
Here, we aimed to apply spicyR to identify significant differential co-localizations across

the different disease stages. The X and Y coordinates of each cell, which image the cell
belonged to, and the cell type were obtained, alongside the patient ID and diabetes disease
stage for each image. spicyR was then applied to the data, with patient ID being treated as
the random effect and the disease stage (non-diabetic, onset and long-duration diabetes)
being treated as the fixed effect. The co-localization statistic was obtained by applying
Equation 3.3 across a range of radii (r′ = 10, 20, . . . , 100). The cell types studied here are
the endocrine cell subsets (alpha, beta, gamma and delta) and the immune cell subsets
[T helper (Th), T cytotoxic (Tc), neutrophils and macrophages].

3.2.6 Application to other datasets

The IMC dataset from Damond et al. has many images per patient and a categorical
outcome with three categories. To demonstrate that spicyR can be applied to datasets
with one image per patient, fit models which include covariates and binary outcomes
and demonstrate variation in computational performance we applied spicyR to a subset
of a dataset consisting of breast cancer patients assayed with IMC [16] available in the
imcdatasets R package, and colorectal cancer patients assayed with CODEX [20].

3.3 Results

Here, we present spicyR, a framework for identifying changes in spatial association be-
tween pairs of cell types that could be associated with images from different clinical or
experimental groups (Figure 3.1). As input, spicyR requires images that have undergone
single-cell segmentation and cell-type classification. In addition to calculating measures
of co-localization between pairs of cell types (Figure 3.2A-C), we provide functionality for
empirically estimating the variability of the spatial associations between cell types within
an image and for including multiple images per subject in the models.
We observed across multiple datasets (Figure 3.2D and Supplementary Figure 3.1) that

the variability of the measure of spatial association between a pair of cell types, u, decrease
as the number of the cells in an image increase. Quantifying the relationship between the
variability of u and the number of cells in an image, provides an opportunity to propagate
this information in the model fitting process. We model the relationship between u and
cell count (Figure 3.2D) by fitting a shape constrained GAM to the square of u as a
function of the counts in both cell types. The inverse of the values obtained from this
fitted curve are then used as weights (Figure 3.2E) when testing for association between
the co-localization of a pair of cell types and an outcome, with lower weights being applied
to images with lower cell counts for a given cell type.
Simulated images were generated using the spatstat package to assess the performance

of spicyR. First, we examined the benefits of including image weights in spicyR where
we observed a distinct difference in the area under the receiver operating characteristic
curves (AUC) with tests that included weights performing better than the non-weighted
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Figure 3.3: Simulations demonstrating the performance of the spicyR frame-
work. (A) ROC curves obtained from simulations (AUC: no weights = 0.901; weights =
0.940). (B) Bar plots of the percentage of null simulations (false positives) and simula-
tions with changes in co-localization (true positives) that were significant at a P = 0.05
level when spicyR was applied

tests (AUC values: no weights=0.901; weights=0.940) (Figure 3.3A-B). Next, we explore
the role of cell counts on the performance of spicyR where the performance benefit from
using weights was retained as the average number of cells in an image increased (Supple-
mentary Figure 3.3A-B). We further assessed how cell count influences computation time
(Supplementary Figure 3.3C) with a simulated image with 1000 cells taking 1s to calculate
pairwise co-localizations. To complement this, we have included the computational times
of three publicly available datasets in Supplementary Table 3.1. Finally, we examined the
sensitivity of spicyR to the choice of radii for calculating the co-localization score. In all
simulations, the performance of spicyR was superior when the choice of radius used to
quantify co-localization was close to the distance, which was used to generate the cell-
type relationships (Supplementary Figure 3.4A). However, running spicyR with a range
of radii had the highest performance on average across all simulations (Supplementary
Figure 3.4B). This indicates that when there is uncertainty around the distance which
changes in co-localization are occurring, as in most cases, choosing a range of radii might
be an effective strategy for detecting those changes. When the expected co-localization
distance is known, the use of a single radius may be sufficient. Nevertheless, in most cir-
cumstances, it is recommended to use multiple radii to define the co-localization statistic.

Damond et al. aimed to identify spatial changes in marker and cell distribution in
pancreatic islets of three T1DM disease groups: non-diabetic, onset diabetes and long-
duration diabetes. A key finding of the study was that there was a temporal correlation
between beta cell destruction, marked by marker loss and cell decreases, and an increased
infiltration of Th and Tc cells in beta cell-rich pancreatic islets. Hence, Th and Tc cells
were implicated in the destruction of beta cells characteristic of T1DM. We aimed to
explore these results further, using spicyR to identify differential cell-type co-localizations
between the non-diabetic group compared to the onset diabetes group. The cell types
included were the endocrine cell subsets (alpha, beta, gamma and delta) and the immune
cell subsets (Th, Tc, neutrophils and macrophages).
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First, we applied spicyR by modelling cell-type co-localization with a simple linear
model, which ignores patient information. Concordant with the findings in Damond et
al., we observed that Th and Tc cells showed increased spatial co-localization with islet
cells in the diseased groups, specifically towards beta cells (Figure 3.4A-B). The T cell
co-localizations were more significant with beta cells (from beta to Tc: P = 9.49× 10−7;
from beta to Th: P = 1.06×10−6) compared to alpha cells (alpha to Tc: P = 1.91×10−3;
alpha to Th: P = 1.55 × 10−4). This suggests a migration of Th and Tc cells towards
beta cells (Figure 3.4B), specifically during the early disease stages, reiterating the results
presented by Damond et al. It was also found that there was increased co-localization of
Th cells in onset diabetics (from Th to Th: P = 2.15× 10−13).
Next, we repeated this analysis, implementing a linear mixed-effects model, which ex-

plicitly modelled islets as coming from different individuals. In contrast to the previous
model, immune interactions with beta cells did not appear to be significant (from beta
to Tc: P = 0.121 from beta to Th: P = 0.142). This difference in result is attributed to
the strong increase in co-localization only being present in two of the four onset diabetes
patients (Supplementary Figure 3.5A-B). However, using the mixed-effects model there
was a decrease in co-localization between delta cells and beta cells (from beta to delta:
P = 0.008, Supplementary Table 2) suggesting a pattern to the way that beta cells de-
grade in the islet. The differences between the linear model and the linear mixed-effects
model are highlighted in Figure 3.4D.

3.4 Discussion

Here, we have presented spicyR, a tool for identifying differential cell-type co-localizations
across different groups. We have demonstrated its performance to identify cell co-localization
changes through both simulated images, and with application to a type 1 diabetes IMC
dataset. Simulations revealed that including weights that quantified the relationship be-
tween the number of cells in an image and the variability of a co-localization statistic
increased the sensitivity and specificity of spicyR. Furthermore, when spicyR was applied
to the diabetes dataset, the original results were reaffirmed and other key cell interactions
present in diabetes progression were highlighted.
The spicyR package has many advantages compared to other differential co-localization

strategies used in high parameter image analysis. The key advantage of the package is
its ability to summarize changes in cell-type co-localizations across groups of images. If
multiple images are obtained from multiple subjects, the mixed-effects model implemented
allows variations within each subject to be modelled. By taking values of the L curve
at multiple radii, we obtain a co-localization statistic that is easily interpretable and
comparable across images. Furthermore, we implement a weighting scheme to account
for variation in the co-localization statistic given the pairwise cell-type counts, which
improves the predictive capabilities of spicyR. Finally, the package allows differential cell-
type co-localizations to be identified across all pairwise cell types within the dataset,
summarized in an interpretable heatmap. In this way, spicyR provides the framework for
highlighting key cell–cell interactions that change across groups within a high parameter
imaging dataset.
Despite the advantages discussed, there are several limitations to the implementation

and evaluation of spicyR. Firstly, to benefit from the weighting regime, a moderate num-
ber of images are required to better model the relationship between cell count and co-
localization score. Depending on the experimental approach, and the availability of bi-
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Figure 3.4: Application of spicyR to the Damond et al. (2019) [18] type 1
diabetes IMC dataset. (continued on next page)
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Figure 3.4: The spicyR framework was used to compare changes in cell-type co-
localizations between the non-diabetic group and the onset diabetes group. (A) Heatmap
showing the log10 P -value from applying spicyR using a linear model. The y-axis repre-
sents cell type i (the ‘from’ cell type), and the x-axis represents cell type j (the ‘to’ cell
type). Positive values represent increased co-localization in the onset diabetes group; neg-
ative values represent decreased co-localization in the onset diabetic group. (B) Masks
showing representative images from the non-diabetes group and the onset diabetes group.
Four cell types are highlighted: Alpha cells, Beta cells, Tc cells and Th cells. (C) Heatmap
showing the log10 P -value from applying spicyR using a mixed-effects model. The y-axis
represents cell type i (the ‘from’ cell type), and the x-axis represents cell type j (the ‘to’
cell type). Positive values (red) represent increased co-localization in the onset diabetes
group; negative values (blue) represent decreased co-localization in the onset diabetic
group. (D) Scatterplot showing log10 P -values from the application of spicyR with a
linear model ignoring patient information and a linear mixed model including patient
information

ological samples, this may not be feasible. To address this, we recommend calculating
weights using information from all pairwise comparisons. Secondly, if there is confounding
between cell number and the degree of change in co-localization between cell types, the
weighting strategy might obscure these differences. Thirdly, there are trade-offs to using
small versus large radii when applying spicyR. Large radii may provide a better overall
summary of cell-type co-localization within an image, but can have decreased sensitiv-
ity, particularly if the co-localization occurs strongly only over short distances. Hence,
users should choose an appropriate distance or range of distances based on the biological
questions being studied. Finally, while computational simulations were performed, it is
difficult to validate spicyR within biological scenarios. There may be further scope for
producing biologically relevant ground truths with which spicyR can be tested against,
as well as more complicated simulation studies to elicit the effectiveness of the package.
It is important to acknowledge that spicyR should not be used in isolation to other

analysis techniques, with the package being a key step in a broader analysis pipeline for
high parameter imaging data. Firstly, spicyR is contingent on single-cell segmentation
and cell-type classification (unsupervised or manually gated) being sufficiently accurate to
elicit biologically relevant results. It is also complementary to other tests, such as testing
for changes in cell-type composition and cell marker expression [8], which are necessary for
providing an overview of the biological process being studied. Furthermore, it is advised
to explore images visually both before and after any spatial analysis to identify whether
visual observations appear to be consistent with the results of spicyR. Tools, such as
histoCAT [12] and the Bioconductor package cytomapper [25], provide useful exploratory
tools for facilitating such exploratory data analysis. Ultimately, the package serves the
role of highlighting changes in cell-type co-localization. This information can be crucial
for synthesizing key biological insight from multiplexed imaging experiments. Overall,
results from spicyR will complement observations obtained from other elements of an
image analysis pipeline.
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3.5 Supplementary Material

Supplementary Figure 3.1: Relationship between the number of cells and vari-
ability of the quantification of localisation. u as a function of the number of cells of
type ‘i’ for each image. As the number of cell types is decreased, the number variation in
the u statistic is increased. This is seen across three different datasets: (A) Imaging mass
cytometry images of type 1 diabetes samples from Damond et al. 2019 (B) Multiplexed
ion beam imaging by time-of-flight (MIBI-TOF) images of triple negative breast cancer
samples from Keren et al. 2018.
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Supplementary Figure 3.2: Summary of how simulations are performed. (A)
Schematic of how co-localisation is simulated. Cells in cell type A is randomly generated
with Poisson point process model. The density of cell type A is then calculated using a
disc kernel, where the size of the disc is of a specified value. Cells from cell type B are
then generated with a Poisson point process model within the kernel.
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Supplementary Figure 3.2: (B) Different levels of co-localisation are generated using
different sized kernels.
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Supplementary Figure 3.3: Simulations demonstrating the performance of the
spicyR framework with varying cell counts. Simulations were performed to demon-
strate the performance of spicyR as the average number of cells of the two cell types being
compared are increased. The simulation described in the Methods section is modified so
that the number of cells in each image are multiplied by either 1, 5, 10 or 20 in respective
simulations. (A) The receiver operating characteristic curve for each simulation with the
average for each simulation, with the average number of cells in each image list labelled
above. (B) Summary of the area under the curve of the receiver operating characteristic
curve (AUC) for each simulation, as a function of average cell counts. (C) Simulations
were performed to calculate the time taken to calculate L-functions for images with in-
creasing cell numbers.
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Supplementary Figure 3.4: Simulations demonstrating the performance of the
spicyR framework with varying degrees of co-localisation. (continued on next
page)
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Supplementary Figure 3.4: Simulations were performed to demonstrate the performance
of spicyR as the colocalisation distance between cell types varies.The parameter lambda,
which controls the degree of co-localisation of cell type A and cell type B, was varied from
10 to 100. (A) AUC values for simulations with varying co-localisation distances, given
by the heading. The x-axis represents the distance at which a co-localisation score was
calculated, or if it was calculated through integrating (‘Integrate’). The red line signifies
the AUC obtained when integrating to measure the co-localisation score. (B) Values
in (A) were averaged across all simulations give the average AUC relative to the best
performing radius in each simulation (x-axis) and the average AUC relative to the worst
performing radius in each simulation (y-axis).
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Supplementary Figure 3.5: Cytotoxic T cells avoid beta cells in non-diabetic islets.
(A) Boxplots quantifying the level of co-localisation, u, of Tc and beta cells in islets from
nondiabetic and onset diabetes patients. (B) The islets are stratified by patient. The
difference in co-localisation in (A) is primarily driven by two patients in (B).
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Supplementary Table 3.1: Calculating the L curves for each image is the most
time-consuming component of spicyR. This relationship is observed when applying
spicyR to three different datasets; a) diabetes patients assayed with IMC by Damond et
al. (2019) [18], b) breast cancer patients assayed with IMC by Jackson et al. (2020) [16]
and c) colorectal cancer patients assayed with CODEX by Schürch et al. (2020) [20].

Dataset Technology
Number

of
Images

Average
number of
cells per
image

Number
of

subjects

Number
of cell
types

Time with
one core
(minutes)

Time with
eight cores
(minutes)

Damond et
al. (2019)

IMC 845 2100 12 16 63 13.5

Jackson et
al. (2020)

IMC 100 2851 100 27 6.4 3.1

Schurch et
al. (2020)

CODEX 140 1680 35 13 2.7 1.4

Supplementary Table 3.2: Results from applying spicyR to compare Onset dia-
betes with Non-diabetes data. Fitting a mixed effects model with spicyR identifies
four pairwise relationships with a nominal P -value less than 0.05. Reported from the
model are the Intercept (the colocalisation score for the Non-diabetics), the Coefficient
(the change in co-localisation in Onset diabetes relative to Non-diabetics), the P -value
for the coefficient of change, the Adjusted P -value accounting for multiple testing (FDR
correction), the first cell type (From) compared to the second cell type (To).
Intercept Coefficient P-value Adjusted P-value From To
-117.34 273.45 0.0014 0.061 Th Th
590.63 -184.00 0.0083 0.14 Beta Delta
590.42 -182.44 0.0084 0.14 Delta Beta
-67.16 74.88 0.042 0.31 Neutrophil Tc
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Chapter 4

An in situ analysis pipeline for
initial host-pathogen interactions
reveals signatures of human
colorectal HIV transmission

Publications incorporated into this chapter:

Baharlou, H, Canete, N.P, Vine, E.E.. et al. (2022) An in situ analysis pipeline for ini-
tial host-pathogen interactions reveals signatures of human colorectal HIV transmission.
Cell Rep. 2022 Sep 20;40(12):111385.

Preface

The primary motivation for the computational analysis techniques developed throughout
the thesis was the HIV CyCIF data being acquired by the host lab. This chapter consists
of a publication in Cell Reports, which describes the analysis of this data. The project
was conceived and guided by first author H. Baharlou. As second author, I designed a
significant portion of the image analysis pipeline used in analyzing the dataset. One of my
biggest contributions was the implementation of the MATLAB codebase used to perform
single-cell segmentation, cell classification, RNA spot counting and key data extraction
(as described in Figure 4.1C-G and Supplementary Figure 4.1A-C). I also contributed
to the development of the downstream analysis implemented in R, which facilitated the
remaining quantitative analysis of the dataset. Under the direction of the first author, I
helped guide the downstream analysis being performed, writing the codebase in R (Fig-
ure 4.2B-D,F, Figure 4.3A,C,E,F, Figure 4.2A-C,G-I, Figure 4.5, Figure 4.6A,C,E-G,
Supplementary Figure 4.2B,D, Supplementary Figure 4.2, Supplementary Figure 4.3A-L,
Supplementary Figure 4.4A,B,E). This analysis followed directly from the data that I had
extracted with the MATLAB pipeline. Additionally, the tools developed in Chapters 2
(Figure 4.1 and Supplementary Figure 4.1) and 3 (Figure 4.6 and Supplementary Figure
4.4A,B,E) were implemented in this publication.
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Summary

The initial immune response to HIV determines transmission. However, due to techni-
cal limitations we still do not have a comparative map of early mucosal transmission
events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools,
we quantify HIV transmission signatures in intact human colorectal explants within 2
h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and
submucosal macrophages, but not CD4+ T cells, the primary targets of downstream
infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as
early sanctuaries of high viral titers while facilitating HIV passage to the submucosa.
Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and
macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data
demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal
infection and provide a framework for in situ studies of host-pathogen interactions and
immune-mediated pathologies.

Graphical Abstract
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4.1 Introduction

Thirty-seven million people are infected with HIV and, despite the introduction of pre-
exposure prophylaxis, there were still 1.5 million new infections in 2020. Blocking trans-
mission of HIV therefore remains a high global priority that requires an effective vaccine
and, in the meantime, better prophylactic interventions. To achieve these goals, we need
a better understanding of the initial events that govern transmission of HIV, particularly
early viral interactions with antigen-presenting cells, such as dendritic cells (DCs) and
macrophages, and their subsequent delivery of the virus to CD4+ T cells [1].
Simian immunodeficiency virus challenge studies have shown that productive mucosal

infection at the site of transmission precedes the detection of plasma viremia, and that
the viral reservoir is rapidly seeded at this site within days of exposure [2, 3]. Concordant
data have also been described in human studies [4, 5]. Due to technological limitations,
early transmission studies have been limited to time points after initial viral integra-
tion/replication [1, 6, 7] or the use of model systems, with human tissue studies mostly
performed on isolated cells or by imaging of limited parameters [1, 8–12]. Thus, we still
do not know the initial events that lead to mucosal HIV infection in the human tissues
where transmission occurs.
The next stage in advancing our understanding of these events requires an in situ

quantitative multi-parameter study to understand the relative involvement of multiple
target cells within anatomically distinct tissue compartments. This “top down” approach
is critical for establishing physiological relevance and guiding the rational selection of
specific biological mechanisms for in-depth characterization studies. To our knowledge,
no study has examined all these processes at once in the context of pathogen invasion of
human tissue. Such studies have been hampered to date by a plethora of issues including
parameter limitations of conventional microscopy, a lack of suitable image processing and
analysis algorithms and, in the context of HIV, difficulties with in situ pathogen detection
at early time points [13]. We have recently pioneered the use of RNAscope to visualize
clinically relevant HIV virions interacting with anogenital target cells in situ within 2
h of topical exposure [8, 11]. We have also designed post image acquisition algorithms
to remove autofluorescence [14] and quantify cell interaction changes between disease
states [15]. In this study we have utilized these approaches as well as designed tools to
segment full cell bodies more accurately, allowing us to quantify the signatures of HIV
transmission across human colorectal tissue within 2 h of exposure. We have defined the
spatial distribution of the three key colorectal HIV target cells (DCs, macrophages, and
CD4+ T cells) across all colorectal tissue compartments (epithelium [EP], lamina propria
[LP], lymphoid aggregates [LAs], and submucosa [SM]) and shown how they respond to
HIV. We show conclusively that HIV is initially enriched within mucosal (EP, LP, LA) DCs
and submucosal macrophages, but not CD4+ T cells and that the virus is preferentially
enriched in LAs. We also provide strong circumstantial evidence that LP DCs traffic virus
to LAs and that these structures themselves may provide a conduit for rapid HIV entry
into the deeper submucosal layer, where it preferentially associates with macrophages.
Finally, we show that HIV mucosal entry induces its target cells to form multi-cellular
clusters within which HIV+ DCs and macrophages preferentially cluster with CD4+ T
cells, leading to viral transfer and enhanced infection of CD4+ T cells, supported by ex
vivo data.
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4.2 Results

4.2.1 Analysis pipeline for mapping HIV-target cell interactions
in situ

This study explores the interactions of HIV with its three key target cells — DCs,
macrophages, and CD4+ T cells—in human colorectal tissue at the very earliest time
points following HIV challenge using a combination of RNAscope, multiplexed fluores-
cence microscopy, and a custom image-processing and analysis pipeline (Figure 4.1A).
Lab-adapted and transmitted/founder strains of HIV were applied to the apical surface
of intact fresh human colorectal tissue for 2 h. RNAscope was performed to detect HIV
RNA (virions), followed by cyclic immunofluorescence (CyCIF) microscopy, which was
used to identify nuclei (DAPI), EP (E-Cadherin), CD4+ T cells (CD3+CD4+), CD4- T
cells (CD3+CD4-), DCs (CD11c+), and macrophages (FXIIIa+) (Figure 4.1A-B). While
having little to no capacity for HIV uptake themselves, CD4- T cells (primarily CD8+ T
cells) served as a useful control for non-specific HIV-cell interactions in situ. We removed
autofluorescence signal, a known feature of colorectal tissue imaging [16] post-acquisition
using our autofluorescence identifier (AFid) algorithm [14] (Figure 4.1A) and Supple-
mentary Figure 4.1A). We next performed segmentation of HIV virions, cells, and tissue
compartments (EP, LP, LA, SM) (Figure 4.1C). Cells were classified and segmented using
a custom approach that estimates full cell bodies and allows two cells to physically overlap.
This enabled virions to be accurately assigned to amorphous cells such as macrophages
and DCs (Supplementary Figure 4.1B-C). This pipeline allowed us to make compartment-
specific measurements of target cell composition (Figure 4.1D), HIV status (HIV+ versus
HIV-), virion load per cell (Figure 4.1E), target cell migration to/from HIV (Figure 4.1F),
and the effect of HIV on interactions between target cells (Figure 4.1G).

To complement and validate these in situ data we used an orthogonal approach of
flow cytometry analysis of HIV target cells following their dissociation from tissue and
infection with HIV (Supplementary Figure 4.1D-F). Using our HIV p24 uptake assay, we
compared HIV uptake in situ with that of ex-vivo-dissociated cells. In addition, HIV-
induced cell:cell interactions observed in situ (Figure 4.1G) were further investigated by
sorting and infecting co-cultures of these cells to determine whether their interaction lead
to enhanced viral transfer and infection (Figure 4.1H). Together these approaches enabled
us to create an in situ quantitative map of how HIV is distributed across colorectal target
cells and tissue compartments, as well as the HIV-induced cell:cell interactions that occur
in the mucosa within 2 h post-exposure and prior to systemic viral spread.

4.2.2 HIV-target cell composition and distribution within hu-
man colorectal tissue

Using our analysis pipeline, we defined the relative proportion and density of HIV target
cells within EP, LP, LAs, and SM in fresh uninfected human colorectal tissue (Figure 4.2A-
B). Although only 1% of EP cells were HIV target cells, DCs were the most abundant
(58%), followed by CD4+ T cells (28%) then macrophages (14%). Of the LP cells, 11%
were HIV target cells, with CD4+ T cells being most abundant (50%) followed by DCs
(32%) and then macrophages (18%). In LAs, 35% of cells were HIV target cells consisting
of CD4+ T cells (57%) and DCs (43%) with negligible presence of macrophages. Five
percent of SM cells were HIV target cells, with macrophages being most abundant (56%)

124



followed by CD4+ T cells (25%) and DCs (19%). Cell density measurements closely
followed these trends for each tissue compartment. Thus, LAs and LP had the highest
density of HIV target cells, with DCs and CD4+ T cells dominating the mucosal layers
and macrophages dominating the submucosal layer.

We next examined the spatial distribution of HIV target cells within each compartment.
This was achieved by using the border between tissue compartments as an anchor and
measuring changes in cell density from this reference point. LP macrophages were enriched
<10 µm from the EP, while DCs, CD4+ T cells, and CD4- T cells preferentially localized
>10 µm away from the EP (Wilcoxon, p < 0.005 for all, Figure 4.2C). In LP, DCs, and
CD4+ T cells were enriched <200 µm from LAs (Wilcoxon, p = 0.005). This was also
true for EP DCs (Wilcoxon, p = 0.001) but was not measurable for EP CD4+ T cells due
to their low frequency in EP (Figure 4.2D).

We next focused our attention on characterizing LAs as they contained the highest
density of HIV target cells, particularly DCs and CD4+ T cells (Figure 4.2A-B). LAs
were present at a median density of 0.6 structures per mm2 of tissue and varied in their
area (median 0.09 mm2; range 0.05-0.17 mm2), diameter (median 283 µm; range 195-401
µm), and cell number (median 1,800 cells; range 860-3,015) (Figure 4.2E-F).

4.2.3 HIV viral particles are enriched in colorectal DCs and
macrophages within 2 hours

We next assessed the interactions between HIV and its target cells using lab-adapted
(BaL) or transmitted/founder (Z3678M) HIV strains. To ensure RNAscope probes were
specific to HIV RNA we stained uninfected tissue and confirmed that no signal was de-
tectable (Supplementary Figure 4.2A). As our pipeline incorporates automated virion
detection, we compared mock and HIV-treated explants to calculate the false detection
rate. One particle per 1,000 cells was detected in mock versus 30 particles per 1,000 cells
in HIV-treated explants, indicating that only 3% of HIV+ cells in our treated samples
were false positives (Supplementary Figure 4.2B). To determine whether HIV was en-
riched among its target cells we measured the percentage of total HIV particles in this
population (HIV percentage), as well as the percentage of all cells that were target cells
(target cell percentage). A chi-square test was then performed to test for whether enrich-
ment among target cells was significant. The formula “log2(HIV percentage/target cell
percentage)” measured the relative level of HIV enrichment between images. Although
the percentage of total HIV particles localizing to target cells varied across images, the
majority showed significant HIV enrichment in target cells compared with the remaining
undefined “other cells” (chi-square test, p < 0.05, Figure 4.3A), with up to 4-fold en-
richment observed in some images (Figure 4.3A, bottom). Visual inspection confirmed
the specificity of HIV association with target cells over other cells for HIVBaL (Figure
4.3B) and HIVZ3678M (Supplementary Figure 4.2C). Using a similar approach, we tested
for HIV enrichment in different target cell subsets and compared the degree of enrichment
between populations (Figure 4.3C). As both HIVBaL and HIVZ3678M had similar trends in
the degree of enrichment for each cell type (Supplementary Figure 4.2D), we combined
these data to increase statistical power. HIV was enriched among DCs and macrophages
(Wilcoxon, p < 0.01), with higher enrichment (though not significant) in DCs (Figure
4.3C). Although, HIV associated with CD4+ T cells, this occurred less than expected
relative to their abundance (Wilcoxon, p < 0.01). In addition, CD4- T cells associated
with HIV at the same frequency as their relative abundance, which is expected as they
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Figure 4.1: Analysis pipeline for mapping HIV-target cell interactions in situ
(continued on next page)
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Figure 4.1: Custom image analysis pipeline to measure HIV-cell interactions in fresh
human colorectal explant tissue exposed to HIVBal or HIVZ3678M for 2 h and probed
with RNAscope and CyCIF. (A) Explant infection (1), staining with RNAscope (2), and
CyCIF (3), and image processing protocol with autofluorescence removed digitally using
“AFid” software (4). (B) Representative images from staining in (A). (C) Segmentation
of virions, cell nuclei, and tissue compartments. (D) Segmented nuclei were annotated
(left) and expanded to estimate full cell bodies using a custom approach (center) (details
in Supplementary Figure 4.1C). Cell composition can then be determined across tissue
compartments (right). (E) Annotation of cells as HIV+ (≥1 virion) or HIV- (left) and
measurement of total HIV load per cell (center). This allowed for comparisons of HIV
association with different target cells (right). (F) Distance maps emanating from HIV
particles (left and center) to measure changes in nearby cell density to infer potential cell
migration to/from HIV. (G) SpicyR determines if the local presence of HIV alters cell
communities (left), while the “HIV-transfer phenotype score” measures the propensity of
an HIV+ cell to induce a nearby cell to become HIV+ (center). Frequency of interactions
can be visualized using a heatmap (right). (H) Colorectal cell extraction and ex vivo HIV
exposure to (1) compare 2 h HIV uptake with in situ results and (2) measure infection
(intracellular p24 at 72 h) of CD4+ T cells co-cultured with cells that exhibited HIV-
induced interactions with CD4+ T cells in situ in (G).

do not express HIV-binding receptors. We next analyzed HIV load in individual cells in
each population to determine the differential amount of virus associated with each type
of target cell. Combining RNAscope, spot segmentation (Figure 4.1C), and cell segmen-
tation with cell body estimation (Supplementary Figure 4.1B-C) enabled us to accurately
measure single-particle differences between cells (Figure 4.3D). We pooled cells across all
samples, stratified them by HIV particle count and measured the target cell composition
within each group (Figure 4.3E). Among the 12,822 target cells analyzed, the majority
(87%) contained only 1-3 HIV particles. Despite being the most prevalent cell type, CD4+
T cells were under-represented in all groups, particularly those with higher HIV particle
numbers. Indeed, the only HIV target cells we could detect with >8 virions were DCs and
macrophages, but never CD4+ T cells. This partly explains their relative HIV enrichment
compared with CD4+ T cells.

Finally, we sought to verify whether data derived by infection of intact explants with
in situ analysis would mirror results from infecting ex vivo cells extracted from tissue
and analyzed by flow cytometry (Figure 4.3F). This is important, as the study of HIV
transmission in human tissue has been largely confined to studies on ex vivo isolated
cells [17–20]. Both approaches confirmed that the “percentage of cells containing HIV”
and the “mean number of HIV particles per cell” were significantly greater for DCs and
macrophages compared with CD4+ T cells (Wilcoxon, p < 0.01). However, measurements
on ex vivo cells showed the CD4+ T cell “percentage” and “average” HIV measurements
were significantly higher than CD4- T cells. In contrast no differences were observed
in situ. This indicates that, at early time points in situ, HIV interactions with CD4+
T cells are not yet measurably different to that of a random interaction between HIV
and a cell type with no HIV-binding capacity. Furthermore, ex vivo infection erroneously
over-estimated macrophages as the dominant initial HIV-binding cell type, whereas in situ
measurements showed DCs have a significantly higher mean HIV count per cell and a trend
of higher HIV+ cell frequency. These results highlight the importance of physiologically
relevant quantitative in situ studies.
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Figure 4.2: Distribution of HIV target cells across human colorectal tissue com-
partments. (continued on next page)
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Figure 4.2: (A) Representative images of HIV target cells and their distribution. (1) DCs
in the EP (brown arrows) near the LA. (2) LA DCs and CD4+ T cells. (3) LP DCs (purple
arrows), macrophages (red arrows), and CD4+ T cells (white arrows). (4) Submucosal
macrophages (red arrows). Broken red line, compartment borders. (B) HIV target cell
percentage among all cells, composition, and density across tissue compartments. CD4-
T cells also shown. (C) Change in LP target cell density with distance from EP. Left:
fold change in target cell density (versus whole LP average) in 2 µm intervals from EP.
Right: density of subsets in LP < 10 µm (blue border) or 10-20 µm (red border) from
EP. (D) Change in EP or LP target cell density with distance from LAs. Left: fold
change in density (versus whole EP or LP average) in 20 µm intervals from LAs. Right:
density in EP or LP < 200 µm (blue border) or 200-400 µm (red border) from LAs. (E)
Representative image of LA distribution in colorectum. Image is segmentation mask of
LA (red) and non-LA (blue) cells. (F) Mucosal (EP + LP + LA) LA density (mm2),
average area (mm2), diameter (µm), and cell count. n = 18 donors. Density = cells per
mm2 of DAPI. Statistics: Wilcoxon signed-rank test. n = 12 donors for (A-E). LOESS
curve of best fit for (C and D).

Taken together, these results demonstrate that HIV can enter human colorectal ex-
plants as early as 2 h after inoculation resulting in preferential association with DCs and
macrophages, compared with CD4+ T cells. Moreover, DCs and macrophages are capable
of sampling larger quantities of virus at these early time points than other cells.

4.2.4 HIV localization patterns across colorectal tissue com-
partments and their associated target cells

We next turned our attention to tissue compartment-specific differences in the distribution
of HIV particles and HIV-containing target cells. LAs contained the highest density of
HIV particles reaching over 10,000 virions/mm2 in several donors (Wilcoxon, p < 3 ×
10-4, Figure 4.4A and Supplementary Figure 4.3A). HIV density was lowest in the EP
and SM with the density in LP higher than EP (Wilcoxon, p < 0.03). To determine
whether, upon EP penetration, HIV preferentially localizes to LP or LAs, we performed
HIV enrichment analysis on compartments rather than cell types. We selected only LP
and LA regions of images and compared the percentage of HIV in LAs with the expected
percentage, defined as the percentage of the LP+ LA area comprised of LAs (Figure 4.4B).
Accordingly, values above or below expected (dotted line) indicate preferential localization
to LAs or LP, respectively. Analyzing the residuals (distance of points from dotted line)
revealed preferential localization to LAs over LP (Wilcoxon, p = 0.0007, Figure 4.4C),
which was observable upon visual inspection of images (Figure 4.4D).
Having observed HIV enrichment in DCs and macrophages (Figure 4.3C), we next

determined the compartments in which this enrichment occurred. In EP, LP, and LAs
HIV preferentially localized to DCs, whereas in SM the virus preferentially localized to
macrophages (Figure 4.4E). Representative images are shown in Figure 4.3B (top panel)
for LP and Figure 4.4F for all other compartments. In LAs 25% of donors showed >50%
of HIV localized to DCs, which is far more than other compartments (Figure 4.4E).
Correspondingly, LA CD4+ T cells harbored significantly less HIV than expected based
on their frequency. Therefore, LA DCs may be more primed for antigen uptake, which
would partly explain the high levels of HIV observed in these cells in this compartment.
Comparing the degree of HIV enrichment in cells between compartments, we observed
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Figure 4.3: Assessment of interactions of HIV with colorectal target cells. (con-
tinued on next page)
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Figure 4.3: (A) Target cell (DC, macrophage, CD4+ T cells) association with HIV across
all images in this study. Middle: percentage of image HIV particles associated with
target cells. Bottom: HIV enrichment in target cells (log2(HIV percentage/target cell
percentage)). Top: whole image HIV particle density (per mm2 of DAPI), donor number
(color-coded) and chi-square test (χ2) of association indicating HIV enrichment in target
cells (red), other cells (blue), or neither (gray); p < 0.05. HIV strain: blue bars, HIVBal;
yellow bars, HIVZ3678M. (B) Representative images of colorectal target cells interacting
with HIVBal particles. (C) Left: cell type percentage (of all cells) versus percentage of
all virions in cell type. Right: HIV enrichment as in (A). Statistics: Wilcoxon signed-
rank test. n = 15 explants (images average). (D) Representative images of target cells
interacting with 1, 3, 6, or 12 HIV particles. (E) HIV+ target cells from all images were
pooled and grouped by HIV load (1-15 particles). Composition of each cell type in each
group is shown. Total cells in each group are annotated. (F) HIV uptake after 2 h HIVBal

treatment of explants with analysis by microscopy (in situ infection) or ex vivo isolated
cells analyzed by flow cytometry (ex vivo infection). Percentage of cells interacting with
HIV (≥1 virion or p24+) (left) or HIV load per cell (virion number or p24 gMFI) (right)
is shown. In situ infection: n = 11 donors, Wilcoxon rank-sign test; ex vivo infection:
n = 5 donors, Wilcoxon rank-sum test. n = 45 images from 15 explants (11 HIVBal, 4
HIVZ3678M) from 12 donors for (A-E).

that EP DCs had a 2-fold HIV enrichment compared with LP and LA DCs. In contrast,
SM macrophages had a median 4-fold enrichment compared with their LP counterparts
(Wilcoxon, p < 0.05, Supplementary Figure 4.3B). These compartment-specific differences
in enrichment are explained by differences in cellular HIV load and the percentage of the
population interacting with HIV. In particular, EP DCs had a higher HIV load per cell and
a higher frequency of interactions with HIV, whereas SM macrophages had an increased
frequency of HIV interactions, but a similar viral load to their LP counterparts (Wilcoxon,
p < 0.05, Supplementary Figure 4.3C-D).

Beyond mapping HIV-target cell interactions to compartments we also explored how
HIV+ cells were spatially distributed within compartments. Beginning with LP, we ob-
served that, like uninfected tissue (Figure 4.2D), HIV+ DCs and CD4+ T cells were
enriched near LAs (Supplementary Figure 4.3E). However, this enrichment was greater
for HIV+ DCs and CD4+ T cells than their HIV- counterparts (paired two-sample t test,
p < 0.05, Figure 4.4G), despite no difference in the frequency of viral particles between
LA-proximal or -distal regions of the LP (Supplementary Figure 4.3F). Interestingly, de-
spite our previous observation of enrichment of LP macrophages near EP and also EP
DCs near LAs (Figure 4.2C-D), we did not observe any enrichment of HIV+ populations
of these cells near these structures (data not shown).

In LAs themselves we measured HIV particle distribution using the formula for even-
area concentric rings to divide these structures into roughly equal-area intervals (Sup-
plementary Figure 4.3G). Using this approach, we observed a significant increase in HIV
density toward the center of LAs (Supplementary Figure 4.3H). Stratifying LAs by size
(Supplementary Figure 4.3I), HIV particles could even be detected toward the center
of larger LAs (>500 µm in diameter), suggesting there may be a mechanism to focus
virus centrally within these structures (Supplementary Figure 4.3J). Measuring HIV+
cells rather than individual particles, we observed that DCs were the only HIV-containing
cell type to increase significantly in frequency toward the center of LAs (Figure 4.4H
and Supplementary Figure 4.3K). This suggests that DC-mediated transport may in part
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Figure 4.4: Differential HIV uptake across colorectal tissue compartments. (con-
tinued on next page)
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Figure 4.4: (A) HIV density across tissue compartments. n = 10 images for each com-
partment (LA = 5, EP = 6, LP = 4, SM = 5 donors) (Methods). Statistics: Wilcoxon
rank-sum test. (B) Percentage of virions in LAs versus percentage of image area (LP and
LA only) comprised of LAs. Values above or below the line (y = x) indicate HIV enrich-
ment in LAs or LP, respectively (Methods). n = 44 images (16 donors). (C) Positive
and negative residuals (distance of points to line y = x) from (B), which represent the
magnitude of HIV association with LA and LP, respectively. Statistics: Wilcoxon rank-
sum test. (D) Representative images showing preferential localization of HIV to LAs
compared with the surrounding LP. Images are segmentation masks showing HIV+ cells
(red), HIV- cells (blue), and outline of LAs. (E) Cell type percentage (of all cells) versus
percentage of all virions across target cells in tissue compartments. n = 15 explants from
12 donors (images averaged). Statistics: Wilcoxon signed-rank test. (F) Representative
images of DCs interacting with HIV in EP and LAs, and macrophage-HIV interactions
in the SM. Broken line, EP-LP border. (G) Log2 fold change in HIV- or HIV+ cell den-
sity in LA-proximal (≤400 µm) versus -distal (400-800 µm) regions of LP. Paired regions
only used if each contained at least 5 HIV+ and 5 HIV- cells. DC: 19 LAs (5 donors);
Mac: 8 LAs (3 donors); CD4+ TC: 15 LAs (6 donors); CD4- TC: 12 LAs (5 donors)
Statistics: paired t test (normality assessed by Q-Q plot). (H) Percentage of mucosal LA
DCs, CD4+ T cells, or undefined cells (not a DC, macrophage, or T cell) that are HIV+
in intervals from the outer edge (x = 1) to center (x = 20) of HIV+ LAs (≥2 virions)
(Methods). n = 112 LAs (14 donors). Statistics: Supplementary Figure 4.4K. LOESS
curve of best fit. (I) Linear models of compartment HIV density to assess whether SM
HIV density (“SM”) is dependent on LP (“LP”) or LA HIV density (“LA”). β weights
and p values shown. Schematic of model results showing LA to SM HIV entry (red line)
as the most likely pathway. n = 14 donors. Density = cells or virions per mm2 of DAPI.
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contribute to the central focusing of HIV within LAs.

Finally, as we were surprised that HIV interacted with macrophages in the deep SM
layer as early as 2 h, we turned our attention to this compartment. We confirmed that
HIV entry into the SM correlated with entry into the overlying mucosal layer (Pearson’s r
= 0.62, p = 10-5, Supplementary Figure 4.3K). Fitting a linear model of HIV density in the
SM as a function of LA and LP HIV density, we found that only LAs significantly predicted
SM HIV entry (β = 0.90, p = 0.003), suggesting LAs as the dominant route of HIV entry
into the SM (Figure 4.3I; Methods). Furthermore, we observed HIV particles throughout
LAs, from the mucosal apical surface to the basal surface in the SM (Supplementary Figure
4.3M), suggesting that viral trafficking through the length of LAs is possible. Finally, we
present evidence to confirm that SM entry was not due to leakage of virus from the
cloning cylinder during the culture period. First, we observed a high correlation between
mucosal and SM HIV densities (Supplementary Figure 4.3L), suggesting ordered entry
of HIV into the SM from the mucosal layer. Second, HIV+ macrophages were in both
superficial (near crypt bases) and deeper regions of the SM (Supplementary Figure 4.3N),
whereas leakage would likely result in virus predominately in deeper regions, toward the
bottom of the tissue. Finally, we collected the explant culture medium at the end of the
culture period and confirmed that no HIV was present using a sensitive HIV detection
assay (Supplementary Figure 4.3O).

Together these results reveal substantial differences in HIV distribution across colorectal
tissue compartments, with LAs as key initial entry sites appearing to facilitate HIV access
to the SM. Furthermore, HIV enrichment in DCs and macrophages occurred only in the
mucosa and SM, respectively. This highlights that it is not only the cell type, but also its
compartmental residence, that determines the degree of interaction with HIV.

4.2.5 Colorectal DCs form gradients toward HIV within and
across tissue compartments

We next explored potential mechanisms of differential HIV-target cell interactions by
analyzing the spatial organization of target cells in relation to HIV. In particular, we
measured changes in target cell density from HIV particles, where steadily increasing or
decreasing density gradients were used to infer potential cell migration in response to HIV
(Figure 4.1F). In EP, LP, and LAs we observed that DCs formed an increasing density
gradient toward HIV, whereas T cells and macrophages did not (Figure 4.5A). The effect
was most pronounced in LP to the extent that DCs were depleted in regions >300 µm
from HIV. Similarly, SM macrophages formed an increasing density gradient toward HIV.

As DCs exhibited migratory patterns toward HIV in all three mucosal compartments, we
investigated whether they showed patterns consistent with crossing tissue compartments
in response to HIV. To this end, we measured whether LP DCs redistributed “toward”
and “into” EP or LAs when these compartments contained HIV. Starting with EP, we
classified EP cells into HIV+ or HIV- populations and measured the density of DCs in the
LP 10 µm from each EP population. Compared with HIV- EP, DCs were significantly
more concentrated beneath (Figure 4.5B) and within HIV+ EP (Figure 4.5C). Using
a similar approach for LAs, we found that, compared with HIV- LAs, LP DCs were
significantly more enriched near HIV+ LAs (Figure 4.5D) and DCs were present at a
higher density within HIV+ LAs (Figure 4.5E). In addition, DCs were more concentrated
toward the outer edge of HIV+ LAs, further supporting the idea that DCs may migrate
into these structures in response to HIV (Figure 4.5F). We did not observe any difference
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in CD4+ T cell density near or within HIV+ versus HIV- LAs.

Taken together, these results suggest that HIV enrichment in mucosal DCs and SM
macrophages may relate to their ability to migrate toward incoming HIV, with DCs going
as far as to cross tissue compartments in response to incoming virus.

4.2.6 HIV induces the formation of target cell clusters within
which DCs and macrophages traffic virus to CD4+ T cells

As cell:cell interactions are important for the spread of HIV [18, 21], we devised several
spatial analysis tools to investigate the influence of HIV on interactions between target
cells in situ.

We first used SpicyR [15], to compare cell:cell interactions between HIV+ and HIV-
regions of treated explants to understand how HIV influences interactions, regardless of
whether cells themselves are HIV+. This analysis showed that, in HIV+ regions, target
cells cluster among each other in both LP and LAs. Interestingly, LP non-target CD4- T
cells clustered among themselves in HIV+ regions but not with HIV target cells (Figure
4.6A). In addition, there was no difference between HIV- regions and the mock explants,
confirming that clustering occurs specifically in response to HIV (Figure 4.6A). To verify
that results are resistant to parameter variation, we ran SpicyR over a range of radius and
distance cut offs (Supplementary Figure 4.4A). Qualitative inspection of images confirmed
the presence of clusters of DCs, macrophages, and CD4+ T cells in HIV+ regions (Figure
4.6B). Interestingly, clusters tended to form away from the EP in the central area between
the crypts of Lieberkühn. We hypothesized that this was due to target cell migration
away from the EP interface in response to incoming HIV. To investigate this, we devised
a method of temporal inference to model the progression of HIV entry into the mucosa
(Methods). Here, images were divided into 100 µm2 windows, each classified as “naive”
(HIV density = 0), “early” (HIV density EP > LP), or “late” (HIV density EP < LP) in
terms of HIV entry, with changes in target cell density measured close and far from the
EP interface at each stage. Results showed that, like uninfected tissue, macrophages were
enriched near the EP in naive regions; however, early in response to HIV they migrate
deeper and persist there in the late phase (Supplementary Figure 4.4B). Interestingly we
found that CD4+ T cells also migrate away from the EP, but only in the late phase,
whereas CD4- T cells showed no change throughout the phases of entry. Curiously, DCs
also showed no difference, although we can presume that this is due to their dual role of
migration toward HIV+ EP (Figure 4.5B-C) as well as forming part of the central clusters
in the LP (Figure 4.6A-B). These results suggest that a secondary effect of colorectal HIV
entry is the rapid formation of a target cell-enriched community slightly distal to the site
of entry, thus creating an ideal environment for cell-to-cell viral transfer.

We next investigated potential cell to cell HIV transfer. As HIV is present at the in-
terface between cells during active viral transfer [22–26], cells engaged in transfer would
both appear HIV+ in our dataset. Accordingly, we devised a “HIV-transfer phenotype
score” to measure the change in association between cells when they both contain HIV. In
brief, the frequency of HIV+ cell interactions with either HIV+ or HIV- cells was calcu-
lated using neighborhood analysis [27] and the transfer score defined as the difference in
HIV+:HIV+ and HIV+:HIV- interaction frequencies. This was used as a proxy for viral
transfer (Methods). Results showed that HIV+ DCs in LP and LAs, and macrophages
in LP, had the highest transfer scores to CD4+ T cells (50% increase in images show-
ing significant interactions) (Figure 4.6C, dotted boxes). Interestingly, we also observed
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Figure 4.5: Cellular gradients in response to HIV. (continued on next page)

136



Figure 4.5: (A) Fold change in cell density (versus compartment average) in 10 µm (EP) or
20 µm (LP, LA, SM) intervals from HIV. n = 45 images (12 donors). Statistics: Wilcoxon
signed-rank test comparing interval cell-type density with the compartment average. (B)
LP DC and CD4- T cell density within 10 µm of HIV+ EP (≥1 virions) or HIV- EP
(Methods). n = 40 images (12 donors). Statistics: Wilcoxon signed-rank test. (C) EP
cells were classified as HIV+ or HIV- and the percentage of each population comprising
DCs or CD4- T cells was measured. n = 33 images (11 donors). Statistics: Wilcoxon
signed-rank test. (D) Fold change in cell density (versus LP average) in 50 µm intervals
from HIV+ (≥2 virions) or HIV- (<2 virions) LAs. n = 38 images (12 donors). Statistics:
Wilcoxon signed-rank test comparing cell density between intra-image HIV+ and HIV-
LAs for each interval. (E) Density of DCs or CD4+ T cells in mucosal HIV+ versus
HIV- LAs. Statistics: Wilcoxon rank-sum test comparing cell density between HIV- LAs
(n = 84) and HIV+ LAs (n = 82) in 11 donors. (F) DC and CD4+ T cell frequency
(percentage of all cells) in intervals of mucosal HIV+ versus HIV- LAs in (E), from their
outer edge (x = 1) toward their center (x = 20). Statistics: Wilcoxon rank-sum test
comparing cell frequencies in each interval between HIV+ and HIV- LAs. Density = cells
per mm2 of DAPI. LOESS curve of best fit for (A, D, and F). Heatmaps centered at p =
0.01 (A) or p = 0.05 (D and F).

considerable transfer scores between HIV+ DCs and macrophages. Importantly, transfer
scores were close to 0 for CD4- T cells in LP, which are known to not transfer virus,
as well as “unknown” cells in LAs. Potential transfer events were visually observable
between DCs/macrophages and CD4+ T cells (Figure 4.6D and Supplementary Figure
4.4C) or between DCs and macrophages themselves (Supplementary Figure 4.4D) in both
HIVBaL- and HIVZ3678M-treated explants. As transfer increases recipient cell HIV levels,
we investigated whether CD4+ T cell interactions with DCs/macrophages was associated
with increased T cell HIV load. Measuring cell body overlap as a proxy for an active
interaction (Methods), we found that CD4+ T cell viral load was significantly positively
associated with interactions with DCs, but not macrophages (Figure 4.6A). Importantly,
DCs did not interact with CD4- T cells regardless of their (incidental) association with
HIV (Supplementary Figure 4.4E), which confirms specificity and controls for the possi-
bility of DC migration toward HIV (Figure 4.5A) driving the association. These results
provide in situ quantitative evidence of cell-to-cell HIV transfer in intact tissue leading
to increased CD4+ T cell HIV levels within just 2 h of exposure.
Having observed HIV-induced clustering among target cells and potential viral transfer

in situ we determined whether this led to increased viral replication in CD4+ T cells ex
vivo. We sorted all colorectal HIV target cells and co-cultured DCs or macrophages with
autologous CD4+ T cells prior to infection with a transmitted founder HIV strain and
subsequent assessment of CD4+ T cell infection 72 h later. We found that the presence
of DCs or macrophages significantly enhanced infection of CD4+ T cells (Figure 4.6F).
To determine whether enhancement was mediated by viral transfer we next infected DCs
and macrophages prior to the addition of activated PBMC-derived CD4+ T cells. The
results showed that both DCs and macrophages mediated HIV transfer to CD4+ T cells
leading to increased viral replication but that this effect was significantly greater for DCs
(Figure 4.6G).
All together, these results suggest that mucosal HIV entry induces its target cells to

cluster together forming a community in which DCs and macrophages deliver virus to
CD4+ T cells, facilitating infection of these cells within the mucosa itself.
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Figure 4.6: Signatures of HIV-induced cell:cell interactions in situ. (continued
on next page)
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Figure 4.6: (A) SpicyR analysis of differential cell:cell localization in HIV+ regions or
HIV- regions versus mock-treated images in the EP, LP, LA, or SM (Methods). Purple
indicates significant (p < 0.01) interactions. n = 45 images (12 donors). (B) Representa-
tive image of HIV target cells clustering (brown arrows) in an HIV+ region located away
from the EP interface. (C) “HIV-transfer phenotype score” to estimate viral transfer
between cells (Methods). Frequency of HIV+ target cell (rows) interactions with HIV- or
HIV+ neighbors (columns) in LP or LAs. Colors: percentage of images with significant
(p < 0.005) interactions (yellow-purple) or the HIV-transfer phenotype score (blue-red
gradient), which is the difference in frequency between HIV+:HIV+ and HIV+:HIV-
interactions. Key interactions encased by boxes. n = 45 images (12 donors). (D) Repre-
sentative images of DCs and macrophages interacting with CD4+ T cells (brown arrow)
where HIVBal is present at the interface between cells. (E) Number of DC (CD11c)
or macrophage (FXIIIa) pixels overlapping with the body of CD4+ T cells that harbor
varying levels of HIV particles. n = 11 images (5 donors). Statistics: Wilcoxon rank-sum
test. (F) HIV co-culture assay. Primary colorectal CD4+ T cell p24 expression 72 h
after HIVZ3678M treatment (2 h, MOI = 1) of either CD4+ T cells alone (n = 7), or with
added DCs (n = 5) or macrophages (n = 7) (10:1 ratio). Statistics: Wilcoxon rank-sum
test comparing p24 fold change in co-cultures versus lone CD4+ T cell infections. (G)
HIV transfer assay. PBMC-derived CD4+ T cell p24 expression 72 h after HIVZ3678M or
mock (PBS) treatment (2 h, MOI = 1) of primary colorectal DCs or macrophages with
subsequent addition of CD4+ T cells. Statistics: Wilcoxon rank-sum test to compare.

4.3 Discussion

In this study we developed a pipeline for multiplexed in situ quantification of initial host-
pathogen transmission events and applied it to study human colorectal HIV transmission
within 2 h of exposure. This was made possible by a combination of RNAScope, CyCIF,
and image analysis algorithms to enable accurate quantification. In particular, RNAscope
overcame issues of low signal-to-noise inherent in antibody- and fluorophore-tagged HIV
detection approaches [13, 28–30] and, when combined with CyCIF, enabled quantitative
comparison of HIV localization to DCs, macrophages, CD4+ T cells, and CD4- T cells
(as a control) in four colorectal tissue compartments. Our AFid tool reduces false iden-
tification of HIV+ cells due to autofluorescence [14]. Our segmentation approach allows
cell overlap to outline full cell bodies. This enables accurate assignment of HIV particles
to amorphous cells, such as DCs and macrophages (Supplementary Figure 4.1), while
ensuring key cell:cell interactions are not missed as HIV can be transmitted between cells
via membranous extensions [31, 32]. Finally, we employed spatial techniques to investi-
gate cell:cell spread of HIV including our recently developed SpicyR algorithm [15], and
a HIV-transfer phenotype score derived from neighborhood analysis [27]. Together these
approaches enabled us to dissect early transmission events in situ and provides a frame-
work for in situ quantification of cellular microenvironment changes that could be applied
to a range of disease and physiological settings.

The relative involvement of different HIV target cells in initial viral uptake is funda-
mental to understanding the determinants of transmission. However, this has not been
previously described in intact primary human colorectal tissue. We reveal that HIV is
preferentially enriched in DCs and macrophages rather than CD4+ T cells, with DCs
exhibiting the highest per-cell viral sampling capacity (Figure 4.3). Importantly, this was
not replicable upon infection of ex vivo isolated rectal cells where macrophages were the
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dominant initial target cell, in agreement with previous work [33]. We postulate that this
difference is because the tissue microenvironment is a critical factor in HIV target cell
migration and viral interactions, as illustrated in this study and others [9, 34–36]. This
reinforces the importance of in situ studies to accurately define initial host-pathogen
interactions.

A key strength of this study is the analysis of tissue compartments (Figures 4.4 and
5), which revealed that HIV enrichment in DCs and macrophages was specific to the mu-
cosa and submucosa, respectively, and that HIV preferentially localizes to LAs. Mucosal
DCs and submucosal macrophages steadily increased in density toward HIV particles,
suggestive of migration to sites of HIV entry. LP DCs also appeared capable of crossing
compartments to sample HIV, which has been observed for epithelium [34], but which we
report here for LAs. As such, migration may be a key mechanism of early viral enrich-
ment in these populations. This may be the function of one or more subsets of either
DCs or macrophages, as subset-specific differences in both migratory capacity [37] and
HIV binding [8, 11] have been observed. HIV binding itself appeared to influence cell
location with LP HIV+ DCs and CD4+ T cells tending to locate near LAs. This could
represent specific cell subsets in LA-adjacent regions, which are known to vary in murine
studies of Peyer’s patches [38] but are unstudied in humans. Another possibility, at least
for DCs, is that HIV binding induces enhanced LA-directed migration and entry. This
is supported by the increased DC density in HIV+ versus HIV- LAs and the preponder-
ance of HIV+ DCs in these structures. Compartment-based analysis also revealed that
LAs are key HIV-containing compartments within 2 h of exposure to the virus. This
may be due to delivery by HIV+ DCs or other cells in the adjacent LP, or via follicle-
associated epithelium and resident M cells, which is a key site of entry for other enteric
pathogens [39]. As LAs are enriched in rectal tissue [40], contain abundant HIV target
cells and are known sites of HIV persistence [41], rapid access to these structures may
facilitate sustained infection and early reservoir formation within the mucosa. Indeed,
naive CD4+ T cells are enriched in LAs [42] and are amenable to both viral transfer
and activation by HIV+ DCs, which can promote latency [43] and HIV-susceptible Th17
programs [7, 44, 45]. Entry into LAs but not LP was also associated with increased SM
HIV levels, suggesting LAs as a possible conduit for HIV access to the underlying SM.
This could be through direct passage as LAs traverse the muscularis mucosa barrier [42]
and HIV easily penetrates deep into LAs (Supplementary Figure 4.3H-J). Alternatively,
as HIV disseminates via lymphatics [2], it may use the extensive LA lymphatic network
[42] to gain access to the SM, through which mucosal lymphatics drain [46].

CD4+ T cells are the major initial targets of HIV integration and productive infection
[6, 7, 47]. However, the early events leading to infection remain poorly understood. DCs
and macrophages facilitate HIV transfer and enhanced CD4+ T cell infection in vitro;
however, in situ characterization using human tissue is lacking and mostly qualitative [1].
Using our SpicyR algorithm and temporal inference we show that, after HIV penetrates
the EP, HIV target cells appear to move away from the EP and form clusters consisting
of DCs, macrophages, and CD4+ T cells (Figure 4.6). This may occur temporally as our
data suggest that macrophages migrate away from the EP initially, followed by CD4+ T
cells. Importantly, this was specific to HIV target cells and creates an ideal setting for
viral transfer between cell types. Indeed, using a scoring system for potential HIV transfer
events, we showed that, upon HIV binding, DCs and macrophages preferentially cluster
with CD4+ T cells, with virus present at the cellular interface. Interestingly, CD4+ T cell
HIV load was tightly correlated with their physical overlap with DCs, suggesting that the
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early presence of high viral loads in CD4+ T cells may be dependent on their interactions
with DCs. The lack of this association for macrophages may be due to lower levels of viral
transfer, or a lack of physical overlap during interactions with T cells, unlike DCs which
can entirely envelope CD4+ T cells during transfer [48]. Finally, we assessed infection
of rectal tissue-derived co-cultures and confirmed viral transfer and enhanced infection of
CD4+ T cells by both DCs and macrophages, in agreement with other studies [8, 11, 49].
This provides the strongest evidence to date that viral transfer to CD4+ T cells occurs
as early as 2 h within the mucosa.
In summary, this study contributes quantitative in situ data on the initial events of HIV

transmission in intact human mucosal explant tissue. Although some of the findings of
this study are circumstantial, we believe they give rise to important hypotheses regarding
HIV transmission. Particularly, the role of niche-specific cell subsets, the drivers of cell
recruitment and cell:cell interactions at sites of HIV entry, and the possibility of LAs as
key sites of early viral amplification, persistence, and extra-mucosal dissemination. We
anticipate that recent advancements in high-parameter imaging modalities [50, 51], animal
models and human organoid systems [52] will allow unprecedented insight regarding the
early determinants of HIV transmission. The approach and results presented here provide
a foundation for such future studies, which could inform prophylactic interventions or the
design of a mucosal vaccine.

4.3.1 Limitations of the study

Cells were defined as HIV+ if they spatially overlapped with HIV particles, meaning that
some will be false positive due to random encounter. We worked around this limitation
with comparative rather than absolute measurements such as HIV enrichment (HIV+ cell
frequency/cell frequency). Precise identification of virion-cell interactions would require a
sensitive reporter construct that produces a signal following the virion-membrane binding
event. However, this would be challenging as the virus rapidly contacts multiple cell types
in tissue and so downstream virion-cell interactions would produce false negatives.
Increasing/decreasing cell density gradients were used to infer cell migration to and

from areas of tissue. Formal proof would require real-time imaging of virions and cells in
fresh human explant tissue, which is technically challenging if not impossible with current
technologies.
The goal of our study was to map out the early host-cell interactions that characterize

colorectal HIV transmission. However, our system is unable to determine the relative
contribution of these early interactions to downstream mucosal infection. Future studies
may address this by combining pro-longed explant culture, rapid targeted inhibition of
cell subsets, and a reporter for downstream productive infection [7]. However, studying
the role of newly migrated blood-derived immune cells in mucosal infection would likely
require small animal models [53].
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4.4 Methods

4.4.1 Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to and
will be fulfilled by the lead contact, Andrew Harman (andrew.harman@sydney.edu.au).

Materials

This study did not generate new unique reagents.

4.4.2 Experimental model and subject details

Human subjects

Healthy human colorectal tissue was obtained within 15 min of resection from patients
undergoing surgical intervention for diverticulitis or colorectal cancer. Only healthy tissue
distal to the site of disease process were used for this study. Details on patient age and sex
are provided in Supplementary Table 1. This study was approved by the Western Syd-
ney Local Area Health District (WSLHD) Human Research Ethics Committee (HREC);
reference number HREC/2013/8/4.4(3777) AU RED HREC/13/WMEAD/232. Written
consent was obtained from all donors.

Cell lines

Both human embryonic kidney-derived 293T (HEK293T Cells) and HeLa-derived TZM-
bls were cultured in Dulbecco’s Modified Eagle Medium (Lonza) with 10% Fetal Calf
Serum (FCS) (Lonza) (DMEM10) at 37°C/5% CO2 and passaged using TrypLE express
(Gibco) dissociation at a 1:10 dilution three times a week and 1:12 dilution twice a week,
respectively. SUPT1.CCR5-CL.30 cells were maintained in RPMI (Lonza) with 10% FCS
(RF10) at 37°C/5% CO2 and passaged at a 1:10 dilution twice per week.
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Table 4.1: Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Sheep Polyclonal
anti-FXIIIA

Affinity Biologicals Cat: SAF13A-AP

Rabbit monoclonal
anti-CD11c (clone EP1347Y)

Abcam
Cat# ab52632;

RRID: AB 2129793
Mouse monoclonal

anti-CD3 (clone F7.2.38)
Abcam

Cat# ab181724;
RRID: AB 302587

Rabbit
anti-CD4 (clone EPR6855)

Abcam
Cat# ab181724;

RRID: AB 2864377
Rabbit anti

E-Cadherin-AF647 (clone 24E10)
Cell Signal

Cat# 9835;
RRID: AB 10828228

Donkey
anti-sheep-AF488

Invitrogen Cat: A-11015

Donkey
anti-rabbit-AF647

Invitrogen Cat: A-31573

Donkey
anti-mouse-DyLight755

Invitrogen Cat: SA5-10171

HLA-DR
BUV395 (L243)

Biolegend N/A

HLA-DR
PerCP (AC122)

Miltenyi Biotec
Cat# 130-108-056;
RRID: AB 2661330

CD19
BV750 (HI819)

Biolegend N/A

CD19
APC Vio770 (L719)

Miltenyi Biotec N/A

CD4
BV785 (OKT4)

Biolegend
Cat# 317442;

RRID: AB 2563242
CD4

BV650 (OKT4)
Biolegend

Cat# 317436;
RRID: AB 2563050
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Table 4.1 continued from previous page
CD3

BUV496 (UCHT1)
BD

Cat# 612940;
RRID: AB 2870222

CD3 APC
Vio770 (REA613)

Miltenyi Biotec
Cat# 130-113-698;
RRID: AB 2726239

CD14
BUV737 (M5E2)

BD
Cat# 612763;

RRID: AB 2870094
CD14

BV421 (M5E2)
Biolegend

BioLegend Cat# 301830;
RRID: AB 10959324

CD11c
BB515 (B-ly6)

BD
Cat# 564490;

RRID: AB 2744273
CD11c PE

CF594 (B-ly6)
BD

Cat# 562393;
RRID: AB 11153662

p24-PE (KC57) Beckman Coulter
Cat# 6604667;

RRID: AB 1575989
p24-APC (28b7) Medimabs Cat: MM-0289-APC

Bacterial and virus strains

HIV- BaL
HEK293T transfection
with pWT/HIVBaL

N/A

HIV- Z3678M
HEK293T transfection
with pHIVHIVZ3678MTF

N/A

Biological samples

Human colorectal tissue
Department of Colorectal Surgery

Westmead Hospital
N/A

Critical commercial assays
RNAscope 2.5HD Reagent Kit-RED ACD Bio Cat: 322360
sulfo-Cyanine7 antibody labelling kit Lumiprobe Cat: 5321-10rxn

Dead Cell Removal Kit Miltenyi Biotec Cat: 130-090-101
EasySep Human CD4+
T Cell Enrichment Kit

StemCell Technologies,
Vancouver, Canada

Cat: 19052
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Table 4.1 continued from previous page
Human CD45

Microbead Enrichment Kit
Miltenyi Biotec

Cat# 130-045-801;
RRID: AB 2783001

Human CD14
Microbead Enrichment Kit

Miltenyi Biotec
Cat# 130-050-201;
RRID: AB 2665482

Human CD19
Microbead Enrichment Kit

Miltenyi Biotec
Cat# 130-050-301;
RRID: AB 2848166

Deposited data

All data to reproduce figures in this paper This study
https://doi.org/10.5281/

zenodo.6992156
Experimental models: Cell lines

HEK293T Cells ATCC N/A
HeLa-derived TZM-bls NIH AIDS Reagent Program John Kappes and Xiaoyun Wu

SUPT1.CCR5-CL.30 cells
Human Non-Hodgkin’s

T lymphocyte Lymphoma
James Hoxie, University of PA

Oligonucleotides
custom probes targeting HIV-1Bal

(85zz pairs spanning base pairs 1144-8431)
ACD Bio REF: 486631

custom probes targeting HIVZ3678M

(85zz pairs spanning base pairs 1149 - 8505)
ACD Bio REF: 811791

Recombinant DNA

pWT/HIVBaL
NIH AIDS Research and

Reference Reagent Program
Dr. Bryan R. Cullen

pHIVHIVZ3678MTF Gift from Eric Hunter Genbank: KR820393
Software and algorithms

Image processing: Huygens Professional 18.10 Scientific Volume Imaging N/A
Image Processing: Fiji (Madison Version) ImageJ N/A

Image processing: Autofluorescence Identifier
‘AFid’ software

(Baharlou et al., 2020) https://ellispatrick.github.io/AFid

Data Extraction: MATLAB 2017b Mathworks N/A
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Table 4.1 continued from previous page

Analysis code to reproduce figures in this paper
This study:

https://doi.org/10.5281/
zenodo.6992156

https://github.com/heevaBaharlou/
HIVImageAnalysis

SpicyR package Bioconductor 10.18129/B9.bioc.spicyR
FlowJo (Treestar) FlowJo (Treestar). N/A

R programming language GNU N/A
Other

Schematics were created with Biorender Biorender
Agreement number:

HX23I22GBL
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4.4.3 Method details

HIV-1 virus production

Lab-adapted (HIVBaL) or transmitted founder (HIVZ3678M) strains were produced by
transfection using a previously described protocol [8]. 1.6 × 107 HEK293T cells were
seeded in a T150 flask (Becton Dickinson, Franklin Lakes, New Jersey, USA) and trans-
fected with 80ug of pWT/BaL or pHIVZZ3678MTF plasmid DNA. The following reaction
mixture (all from Sigma-Aldrich) was prepared separately and added in addition to the
plasmid DNA: 10µL 0.15M Na2HPO4 (pH 7.1), 128uL 2M CaCl2, 1mL Hepes-buffered
saline (280mM NaCl, 50mM HEPES, pH 7.1), 1mL (1mM Tris, 0.1mM EDTA, pH 8.0),
all diluted in 15mL DMEM10 (Lonza). Culture media was replaced the next day with
DMEM10 and cells cultured for a further 2 days, after which media was collected, cen-
trifuged (1600g, 20min) and the resultant supernatant concentrated (3000g, 20min) to
1mL using 300kDa filters (Vivaspin 20, Sartorius, Göttingen, Germany). High titer stocks
for HIVBaL were achieved by infection of the SUPT1 T cell line. Stocks were depleted
of macrovesicles by adding 18mL viral supernatant to 2mL CD45 magnetic beads (Mil-
tenyi Biotech) for 2h prior to filtering through an LS column (Miltenyi Biotech). The
resultant CD45- HIVBaL supernatant as well as HIVZ3678M were under-layed with 1mL of
20% sucrose and ultracentrifuged (100,000g, 4°C, 1.5h, Beckman Optima XL-100K, 70Ti
rotor) to further concentrate viral stocks. This method yielded viral titers between 108-
109, as measured by 50% tissue culture infective dose (TCID50)/mL on TZM-bl cells by
LTR β-galactosidase reporter gene expression following one round of infection. Briefly,
serial dilutions of viral stocks were performed on plated TZM-bls (37°C, 3 days), fol-
lowed by media removal, addition of 50ul X-gal solution and incubation for 1h at 37°C.
Wells were then diluted with 50ul of 4% PFA and incubated for a further 20min at room
temperature (RT), followed by solution removal and EliSPOT imaging. The Spearman
Kärber algorithm was used for TCID50 measurements. Virus aliquots were stored at
80°C. Endotoxins (Limulus amebocyte lysate assay; Sigma), TNF-α, IFN-α, and IFN-β
(Enzyme-linked immunosorbent assay (ELISA) were all below the limit of detection.

Tissue digestion

To perform HIV-uptake (Figure 4.3F) and co-culture/transfer assays (Figure 4.6F-G), we
extracted HIV target cells from human colorectal tissue. Underlying fat and mesentery
were removed using a scalpel and forceps and remaining tissue cut into 5mm2 pieces.
Surface epithelium and mucus was stripped by two incubations in RPMI with 10% FCS,
0.3% DTT (Sigma) and 2mM EDTA (Sigma) (15min, 37°C). Tissue was washed in DPBS
and underwent two incubations in 20mL RPMI with 0.3% Collagenase IV (Worthington)
and 0.5% DNase (Sigma) (30min, 37°C) to liberate cells which were then passed through
a 100µm cell strainer and washed twice in DPBS. Cells were resuspended in 35mL RPMI,
under-layed with 15mL Ficoll-Paque (GE Healthcare) and centrifuged (400g, 20min, no
brakes). Buffy coats were collected and washed twice in DPBS. Red Cell Lysis buffer
(All Sigma: 150 mM ammonium chloride (v/v), 10mM potassium bicarbonate (v/v), 0.1
mM EDTA (v/v) in ddH20) was used to remove remaining red blood cells as per the
manufacturer’s instructions.
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HIV uptake assay

Following our tissue digestion protocol (see above), liberated cells underwent positive se-
lection for CD45+ cells (Miltenyi Biotec). 5 × 105 cells in 150ul of DC Culture Media
were then treated with HIVBal (MOI = 5, 2h, 37°C) or PBS (mock). Cells were then
washed three times in DPBS, 200ul of DPBS, stained with 0.05ul FVS700 for 30min at
4°C, washed in FACS wash (1% FCS (v/v), 2 mM EDTA, 0.1% sodium azide (w/v) in
PBS) and 10ul Brilliant Stain Buffer (BD) added. Cells were then incubated with an
antibody panel for 30min at 4°C with the final volume made to 50ul. The antibody
panel included Biolegend: 1ul HLA-DR BUV395 (L243), 1ul CD19 BV750 (HI819), 2.5ul
CD4 BV786 (OKT4); BD: 5ul CD3 BUV496 (UCHT1), 2.5ul CD14 BUV737 (M5E2),
1.5ul CD11c BB515 (B-ly6). Cells were washed in FACS wash, permeabilised with 100ul
Cytofix/Cytoperm (BD) for 20min at RT and washed in Perm Wash (1% FCS (v/v),
1% BSA (w/v), 0.1% saponin (w/v), 0.1% sodium azide (w/v) in PBS). Cells were resus-
pended in 50ul Perm Wash and underwent intracellular staining with antibodies Beckman
Coulter: p24-PE (KC57) and Medimabs: p24-APC (28b7) for 30min at RT. Cells were
again washed in Perm Wash and HIV expression assessed by dual p24 expression using an
LSRFortessa (BD). P24 expression was measured by gMFI and dual p24+ positive cells
were defined as HIV+ cells as per [8, 11]. Mock treated cells were used to set the gates
to minimize background staining interference.

Target cell selection and sorting

Following tissue digestion (see above), liberated cells were positively selected for CD45+
cells as per the manufacturer’s instructions (EasySep Human CD45+ Cell Enrichment
Kit, StemCell Technologies) using a QuadroMACS separator with LS columns. 2.5 ×
106 cells were resuspended in 200ul of DPBS, stained with 0.05ul FVS700 for 30min
at 4°C, washed in FACS wash and 10ul Brilliant Stain Buffer added. Our antibody
sort panel was added for 30min at 4°C with the final volume made to 50ul. The sort
panel included Miltenyi: 2.5ul CD3 APC Vio770 (REA613), 2.5ul CD19 APC Vio770
(L719), 1ul HLA-DR PerCP (AC122); Biolegend: 2ul CD4 BV650 (OKT4); BD: 1.5ul
CD11c PE CF594 (B-ly6), 2.5ul CD14 BV421 (M5E2). Cells were then washed twice
in FACS wash and once in pre-sort buffer (BD). 1mL of pre-sort buffer was used to
resuspend cells which were then filtered using a 100µm cell strainer just prior to sorting
on either the BDInflux (BD) or BDAriaIII (BD) cell sorters. CD4+ T cells were defined
as live CD3+CD4+, Dendritic Cells as live HLA-DR+CD3-CD19-CD14-CD11c+ and
Macrophages as live HLA-DR+CD3-CD19-CD14+. Sorted cells were placed in FACS
tubes with 500ul of DC Culture Media and kept at 4°C until co-culture/transfer assay
setup as described in the sections below.

HIV co-culture assay

Sorted DCs, macrophages and CD4+ T cells were plated as follows: CD4+ T cells alone,
DCs with CD4+ T cells (1:10 ratio), macrophages with CD4+ T Cells (1:10 ratio). Cul-
tures were topped to 150ul with DC Culture Media and treated with HIVZ3678M (MOI
= 1, 2h, 37°C). An additional mock treated CD4+ T cell culture was maintained as a
control. Cells were then washed three times in DC Culture Media, resuspended in 200ul
of DC Culture Media with 0.02% Normocin (InvivoGen) and cultured for 3 days at 37°C.
HIV infection of CD4+ T cells was determined by p24 expression using flow cytometry
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as described in the section on ‘HIV assessment by Flow Cytometry’.

HIV transfer assay

Sorted DCs and macrophages as well as activated PBMC-derived CD4+ T cells (see
section below) were plated in individual wells in 150ul DC Culture media, then exposed
to HIVZ3678M (MOI = 1, 2h, 37°C). An additional mock treated activated CD4+ T cell
culture was maintained as a control. Cells were then washed three times in DC Culture
Media and resuspended in 200ul of DC Culture Media with 0.02% Normocin. Activated
CD4+ T cells were then added to DC and Macrophage cultures at a 2:1 ratio and cultured
for 3 days at 37°C. HIV infection of CD4+ T cells was determined by p24 expression using
flow cytometry as described in the section on ‘HIV assessment by Flow Cytometry’.

HIV assessment by Flow Cytometry

Cells cultured with HIV were washed in DPBS, resuspended in 200ul, stained with FVS700
for 20min at 4°C and washed with FACS wash. Cells were stained with Miltenyi: CD3
APC-Vio770 (REA613) for 30min at 4°C, washed twice in FACS wash, permeabilized
with 100ul Cytofix/Cytoperm for 20min at RT and washed in Perm Wash. Cells were
resuspended in 50ul Perm Wash and underwent intracellular staining with antibodies
Beckman Coulter: 1ul p24-PE (KC57) and Medimabs: 1ul p24-APC (28b7) for 30min
at RT. Cells were again washed in Perm Wash and HIV expression assessed by dual p24
expression using an LSRFortessa.

PBMC-derived CD4+ T cell isolation

Transfer assays (Figure 4.6G) were performed using allogenic activated CD4+ T cells
selected from peripheral blood mononuclear cells (PBMCs). PBMCs were derived from
leukoreduction system chambers (LRSC) (Australian Red Cross Blood Service), on the
same day as platelet donation. LRSCs were diluted 1:5, distributed across Falcon tubes
with 35mL in each tube, then under-layed with 15mL Ficoll-Paque and centrifuged (400g,
20min, no brakes). Buffy coats were collected and washed x2 in DPBS. Red Cell Lysis
buffer was used to remove remaining red blood cells as per the manufacturer’s instruc-
tions. CD4+ T cells were selected using a CD4 selection kit (StemCell Technologies) and
activated by culturing 1 × 106 cells/mL for 3 days at 37°C in RPMI supplemented with
10% FCS, 5 mg/mL PHA (Sigma) and 150 IU/mL IL-2 (Peprotech). Cells were trans-
ferred to cryovials containing FCS with 10% DMSO, placed in a CoolCell (Corning) and
stored at 80°C.

HIV explant infection

Human colorectal tissue was obtained within 15 min of surgical resection. Underlying
fat and mesentery were removed using a scalpel and forceps and tissue spread out in
a Petri dish with the mucosal surface face-up. Gel-foam sponges (Pfizer) were cut into
1cm2 pieces (one for each explant), placed in the well of a 24-well plate and soaked in
culture media consisting of 10µM HEPES (Gibco), non-essential amino acids (Gibco), 1
mM sodium pyruvate (Gibco), 50µM 2-Mercaptoethanol (Gibco), 10ug/mL Gentamycin
(Gibco), 10% FCS (Lonza), all diluted in RPMI-1640 (Lonza). Here after this is referred to
as ‘DC Culture Media’. Sponges were left to soak whilst tissue was further processed. As
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previously described [42, 54] a dissection light microscope was used to select appropriate
placement of cloning cylinders for the topical application of HIV. Appropriate areas were
defined as containing visible lymphoid aggregates and being free of any signs of trauma.
Once an appropriate area was located, an 8mm cloning cylinders (Sigma-Aldrich) was
lightly coated on one side with histoacryl surgical glue (B Braun) using a fine paint brush
and carefully placed over the region. 500ul of PBS was then added to the cloning cylinder
to prevent the tissue surface from drying out and to hasten setting of the surgical glue.
This step is critical as excess glue can slowly spread over time from the cylinder edge
and cover the tissue surface thus preventing viral entry. Once all cylinders were placed,
tissue within cylinders were checked again to ensure they were free of glue. 1 or 2 selected
regions did not have cylinders placed but were resected with a scalpel as a 1cm2 area
and fixed in 4% PFA (diluted in PBS) (electron microscopy sciences) for 18h. These
samples were used to analyze target cell distribution in fresh uninfected colorectal tissue
(Figure 4.2). The Petri dish was then filled with PBS so as to just cover its surface,
which reduced friction and the likelihood of displacement of the cylinders during cutting
and lifting of explants. Soaked gel-foam sponges were then distributed across the 24-well
plate. The perimeter surrounding each cloning cylinder was then cut, after which forceps
were used to lift explants and place them on the sponges. Wells were then filled with DC
Culture Media to the level of the tissue. A final quality check for cloning cylinder sealing
was performed by ensuring that the previously applied PBS was still present and at the
same level across explants. Solutions were removed from all cylinders and either 100ul
PBS (mock), or a TCID50 of 70,000 (diluted in 100ul PBS) of lab adapted (HIVBaL) or
transmitted founder (HIVZ3678M) strains applied to the inner chamber of cloning cylinders
for 2h at 37°C. The time point of 2h was chosen as it allowed sufficient viral penetration
into the tissue and was short enough that the explants did not start to degrade. Indeed,
initial optimizations with 30min and 6h timepoints showed insufficient viral penetration
past the epithelial surface and early signs of tissue degradation respectively (data not
shown). It should be noted that degradation as early as 6h was likely due to the large
size (1cm2) of our explants. A TCID50 of 70,000 was selected as it is comparable to peak
levels of infectious virus found in semen during the acute stage [55]. Supernatant from
inner chamber, as well as the DC Culture Media below were collected and stored at 80°C
for assessment of HIV leakage from cylinders during the culture period (Supplementary
Figure 4.3O). Explants were then washed x3 with 500ul PBS to remove excess HIV from
the mucosal surface prior to cylinder removal and tissue fixation in 4% PFA (diluted in
PBS) for 18h.

Tissue embedding and sectioning

After fixation, explants were removed and trimmed with a scalpel along the impression
left by the cloning cylinder during the culture period. This ensured that only areas
exposed to virus remained. Explants were kept in 70% ethanol prior to embedding in
paraffin. Tissues were then embedded flat so that the mucosal surface faced away from
the sectioning surface of the paraffin block. This ensured that the thin mucosal surface
would not accidentally be trimmed away whilst sectioning. 4µm transverse sections were
taken through the entire tissue, from the submucosal side to the end of mucosa, and
placed on Superfrost Ultra Plus Adhesion Slides (Thermo Scientific) Sections were stored
in the dark at RT until staining.
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RNAScope

Detection of HIV RNA was performed using RNAscope as previously described [8, 11, 13]
using the RNAscope 2.5HD Reagent Kit-RED with custom probes targeting HIV-1Bal

or HIVZ3678M. In the protocol that follows, reagents included in the ‘RNAscope 2.5HD
Reagent Kit-RED’ are indicated. Unless otherwise written, wash steps were for 2min
on a rotator set to low and incubations were carried out in a hybridization oven (HybEZ
Hybridization System (220VAC), ACD Bio). 4µm paraffin sections were baked at 60°C for
1h and dewaxed by sequentially submerging slides in xylene (2 × 2min) and 100% ethanol
(2 × 2min). Slides were air-dried and antigen retrieval performed for 20min at 95°C using
a pH9 buffer (RNAscope kit) and a decloaking chamber (Biocare). Sections were washed
in TBS (Amresco, Cat: 0788), then Milli-Q H2O, followed by dipping slides 3-5 times in
100% ethanol, leaving them to air dry and then encircling sections with a hydrophobic
pen (RNAscope kit). Sections were then incubated with protease pre-treatment 3 (diluted
1:5 in PBS and kept ice-cold) (RNAscope kit) for 30min at 40°C. Sections were washed
×2 in Milli-Q H2O and incubated with probes targeting HIV-1Bal or HIVZ3678M for 2h
at 40°C. Sections were washed ×2 in RNAscope wash buffer (RNAscope kit). Signal from
probes was then amplified using Amps 1-6 (RNAscope kit) which were added in sequence
with ×2 washes in RNAscope wash buffer between Amps. Amp incubation times were as
follows Amp 1 = 30min at 40°C; Amp 2 = 15min at 40°C; Amp 3 = 30min at 40°C; Amp
4 = 15min at 40°C; Amp 5 = 30min at RT; Amp 6 = 15min at RT. HIV RNA Signal was
developed using Fast Red substrate made by mixing Red-B and Red-A (RNAscope kit)
at a 1:75 ratio for 5min at RT, followed by washing in Milli-Q H2O then TBS.

Cyclic immunofluorescence staining and image acquisition

Unless otherwise indicated all washes were 2 × 2min in TBS on rotator set to low and
incubations were in a humidified chamber protected from light. Following RNAscope,
sections were blocked for 30min at RT with blocking buffer (10% donkey serum (Sigma),
1% BSA (Sigma), 0.1% Saponin (Sigma), all diluted in TBS) and washed. Sections were
incubated with sheep anti-FXIIIa and rabbit anti-CD11c antibodies (diluted in block
buffer) overnight at 4°C, washed and donkey anti-sheep-AF488 (Invitrogen, Cat: A-11015)
and donkey anti-rabbit-AF647 (Invitrogen, Cat: A-31573) antibodies added for 30min at
RT. Sections were washed and further blocked for 30min at RT with block buffer with 10%
rabbit serum (DAKO) to block excess binding sites from the donkey anti-rabbit antibodies.
0.5% PFA (diluted in PBS) was added for 15min at RT to fix blocking rabbit IgGs in place.
Rabbit anti-CD4-Cy7 (Abcam, Cat: ab181724, conjugation with sulfo-Cyanine7 antibody
labeling kit (lumiprobe, Cat: 5321-10rxn)) was then added overnight at RT and sections
washed 3 × 5min in TBS. Sections were stained with 1ug/mL DAPI (diluted in TBS)
(Thermo Scientific, Cat: 62248) for 3min at RT, washed then rinsed in Milli-Q water.
Sections were mounted with SlowFade Diamond Antifade Mountant (Invitrogen, Cat:
S36963) and cover-slipped (Menzel-Glaser 22 × 60 mm Coverslip, Thermo Scientific).
Images were acquired as per the section below on ‘Image Acquisition’. After imaging,
slides were submerged in TBS until coverslips dissociated. Sections were then washed and
treated with bleach solution (5% H2O2 (Sigma) and 20mM NaOH (Sigma) diluted diluted
in PBS) for 1h with light (15 watt, 2700k light bulb, 5cm above sample). Sections were
checked under the microscope to ensure signal removal from all channels, and subsequently
washed and incubated with blocking buffer with 10% rabbit serum for 15min at RT,
followed by washing in TBS. Rabbit E-Cadherin-AF647 (Cell Signal, Cat: 9835) and
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mouse anti-CD3 (Abcam, Cat: ab17143) were added overnight at RT. Sections were
washed 3 × 5min in TBS and donkey anti-mouse-DyLight755 antibody (Invitrogen, Cat:
SA5-10171) then added for 30min at RT. After washing 3 × 5min in TBS and rinsing
in Milli-Q water slides were again mounted with SlowFade Diamond Antifade Mountant
and imaged as described below.

Image acquisition

Images were acquired with a VS120 Slide Scanner equipped with an ORCA-FLASH 4.0
VS: Scientific CMOS camera (Olympus) and VS-ASW 2.9 software used for image acqui-
sition and file conversion from vsi to tiff format. The entire tissue area was imaged using
an ×20 objective (UPLSAPO 20X/NA 0.75, WD 0.6/CG Thickness 0.17) and select areas
for representative images were acquired using an ×40 objective (UPLSAPO 40X/NA 0.95,
WD 0.18/CG Thickness 0.11-0.23). For x40images, Z-stacks were acquired 3.5µm above
and below the plane of focus with 0.5µm step sizes. Channels used include: DAPI (Ex
387/11-25nm; Em: 440/40-25nm), FITC (Ex: 485/20-25nm; Em: 525/30-25nm), TRITC
(Ex: 560/25-25 nm; Em: 607/36-25nm), Cy5 (Ex: 650/13-25 nm; Em: 700/75-75nm)
and Cy7 (Ex: 710/75nm, Em: 810/90nm). All channels were checked, and antibodies
titrated beforehand, to ensure against signal-spill over between channels.

4.4.4 Quantification and statistical analysis

Image deconvolution and registration

Huygens Professional 18.10 (Scientific Volume Imaging, The Netherlands, http://svi.
nl) CMLE algorithm, with SNR: 20 and 40 iterations were used for deconvolution of both
single plane images acquired at x20, and also ×40 Z-stacks. Images were aligned using
the ImageJ plugin multiStackReg vs1.45 with the DAPI channel serving as a reference for
alignment.

Autofluorescence removal

Colorectal tissue is prone to autofluorescence from many sources such as red blood cells,
blood vessels, apoptotic cells, intrinsically autofluorescent cells etc. Our early analyzes
showed this substantially interfered with cell phenotyping and we could not remove aut-
ofluorescence using commercial quenching kits without significantly reducing our staining
intensity. As such we developed ‘Autofluorescence Identifier’ (AFid) which analyzes pix-
els from two input fluorescent channels and outlines autofluorescent objects [14]. The
code (https://ellispatrick.github.io/AFid) is implemented in MATLAB, R and
Fiji. The Fiji version was used for this analysis. Pairs of channels compared were FXIIIA
(on FITC) vs HIV RNA (on Texas Red) and HIV RNA vs CD11c. Autofluorescence
masks were ‘OR’ combined and the resultant mask was used to exclude autofluorescent
pixels (values set to 0) from images during data extraction as described below. The input
parameters for AFid were as follows:

• Threshold: Niblack

• Min Area = 20 pixels.

• Max Area = 100000 pixels.
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• Sigma = 2 pixels.

• Correlation cut off = 0.6.

• Number of clusters = 1.

• Max Value to automate k = 0.

• Glow Removal = Yes.

• Expansion Sensitivity = 20 pixels.

• Above values were for image resolutions of 3 pixels per µm.

HIV spot segmentation

HIV RNA particles were segmented using a custom MATLAB script based on a previously
described spot counting algorithm [56]. First, a manual threshold of the HIV RNA channel
was set to approximate areas of HIV stain. The IdentifySpots2D function by Battich et
al. was then used to identify the number of spots. The detection threshold was set to 0.01
and deblending steps was set to 2. Identified spots were excluded if they did not overlap
with the manually generated threshold mask in the first step.

Cell segmentation and Classification

Single cell segmentation was performed using a customized implementation of CellPro-
filer [57] in MATLAB (nucleiSegment.m, segRun.m function). Nuclei segmentation was
performed by applying a local otsu filter to threshold the DAPI image and applying
object-based watershed to identify boundaries. Objects with diameter between 3.3 and
16.7µm were kept. Masks of the CD3, CD11c and FXIIIa images were obtained by Gaus-
sian blurring each image (sigma = 1.5) and performing a manual threshold to capture the
full membrane. T he nuclei are then classified based on the percentage overlap of each
nuclei object with each membrane mask. A cell is classified as a T cell if the overlap with
CD3 is >20%, classified as a DC if the overlap with CD11c is >20%, and classified as
a macrophage if the overlap with FXIIIa is >40%. Finally, three separate labeled cell
masks are obtained for each cell type by expanding the nuclei to fill the membrane one
pixel at a time (expandNucleus.m). For example, a nucleus identified as a macrophage
is expanded into the FXIIIa mask space. A schematic with further details is provided in
(Supplementary Figure 4.1C).

Tissue compartment segmentation

A manual threshold of the E-Cadherin stain was determined and nuclei (as segmented in
the above section) belonging to this compartment were extracted using the BinaryRecon-
struct function in the ‘Morphology’ package in Fiji. The E-Cadherin and nuclei masks
were then combined. The submucosa and lymphoid aggregates were manually outlined in
Fiji and masks generated. The submucosa was defined as starting from the base of the
crypts of Lieberkühn, whilst the border of lymphoid aggregates was determined by the
increased density of CD11c and CD4 expressing DCs and T cells respectively. A mask of
the whole tissue was then generated with a manually determined threshold. Subtracting
the epithelium, lymphoid aggregates and submucosa from the whole tissue mask provided
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a mask of the lamina propria. All masks were combined into a single image stack and
assigned unique pixel values (eg, all epithelial pixels = 1, lamina propria pixels = 2 etc)
so that they could be thresholded to extract data from each compartment.

Data extraction in MATLAB

Data extraction was performed in MATLAB (toRunNoNeighbrs.m, to RunNeighbrs.m).
The mean marker expression and number of HIV particles was identified. From the
compartment masks, a cell was considered to be part of that compartment if the overlap
with the compartment mask was >25%. Distances from the compartments and HIV were
obtained by creating a distance map from these objects and measuring the minimum
value of the distance map within each cell. For cells within the LAs, the distance from
the LA border was also measured in a similar approach. Neighbors were generated using
the approach described in [27]. Finally, using the cell masks, the overlap between cells
were also identified. All data were exported into a single csv file with rows as individual
cells and columns as cell features such CD4 expression, HIV particle number, distance
from LAs etc.

Analysis in R

All image analysis for this study was performed in R using the csv spreadsheet of cells and
their features, generated as described in the previous section. Procedures for statistical
analysis generating the results in this paper are described in the methods below and links
to the source code are provided in Table 4.1. Donor and image numbers used for each
analysis are indicated in figure legends.

HIV enrichment and association testing in cells

As the virus-cell interactions were from incoming viral particles and not those synthesized
by the cell itself, some of the interactions observed were false positives due to random
cell encounter with virus. We reasoned that the degree of background interactions for a
given cell type would be proportional to the cell population’s frequency in tissue. As such,
measuring the percentage of total image HIV particles in each cell type, would largely
reflect the relative abundance of each cell type. To get around this, we performed tests
of association and enrichment, which are able to account for cell type abundance.
A Chi Square test of association was used to measure HIV enrichment in the grouped

target cell population (DCs, macrophages, CD4+ T cells) in each image used for this study
(Figure 4.3A). Here the expected number of HIV particles in target cells was determined
by the proportion of all cells that comprised target cells. This showed that in most cases,
HIV preferentially associates with the target cell population under study, rather than the
undefined remaining cells in each image.
HIV enrichment was also calculated for specific populations. HIV enrichment was

defined as the log2 transform of the percentage of virions associated with a cell type
divided by the cell type’s percentage of all cells (Figure 4.3C).

HIV enrichment testing in tissue compartments

The calculation of HIV enrichment was extended to measure preferential virus localization
between LP and LA compartments, rather than between cell populations (Figure 4.4B-
C). The ‘expected’ percentage of HIV particles in each compartment was based on the
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proportional area of these compartments. For example, a 5:1 ratio of LP to LA area
means that, by random chance, we expect 80% of virions in the LP and 20% in LAs. The
null hypothesis of there being no difference in HIV localization between compartments
(i.e. it just follows the area ratio) is represented visually as the line y = x in Figure
4.5B. Consequently, the residual variance (Euclidean distance of datapoints from the line
y = x) represents the magnitude of HIV enrichment in LAs (for points above the line)
or the LP (for points below the line) in each image. Comparing residuals as in Figure
4.5D is therefore akin to comparing the propensity of HIV to localize to LAs or the LP,
accounting for differences in area between these compartments. Important to note, only
virions in the LP and LA were used for this analysis (i.e. EP and SM virions excluded).
Accordingly, the reciprocal values on the x and y axes of Figure 4.5B are measurements
for the LP. For example, the rightmost red data point is an image with 40% of the area
comprised of LAs, and 60% of HIV in LAs. In this same image, 60% of the image area is
comprised of LP which contains 40% of HIV.

Measuring HIV density across tissue compartments

HIV density was calculated for each tissue compartment separately. For a given com-
partment, HIV density was calculated using the top 10 images with the highest HIV
density for that compartment. The HIV density of all compartments, calculated in this
way, was then compared (Figure 4.4A). This approach was chosen to mitigate variation
due to inter-image differences in HIV concentration, penetration depth and compartment
proportions. For example, for a given donor the density of HIV in LAs often varies sub-
stantially by section due to difference in depth of viral penetration at 2h. This can lead
to extremely high LA HIV densities in one section, and almost no virions in LAs in other
sections from the same donor. In this case, using all images would mask the high HIV
density observed in LAs in the earlier section. To get around this issue, we compared the
highest observable HIV densities in each compartment, rather than simply measuring all
compartments in all images.

Cellular spatial distribution within compartments

Measurement of cellular spatial distribution within compartments was performed using
distance maps emanating from compartment borders (see ‘Data extraction in MATLAB’).
Cell density was measured either in non-cumulative intervals (Figure 4.2D, left) or in just
two regions defined as “-proximal” and “-distal” to the compartment border (Figure 4.2D
right). The latter was mostly used for statistical comparisons as comparing only two
regions allowed for more observations (cells) per region and better statistical power. For
EP, LP and SM, the non-cumulative intervals were linear (e.g., 0–20µm, 20–40µm . . . etc)
(Figure 4.2D, left). To measure changes throughout LAs we used a different approach.
To achieve comparable areas for each interval we assumed LAs to be spherical and hence
circular in 2D. We then calculated the radial edges of each interval from the outer edge
using the formula: 1 – sqrt (1 – k/n) where k = 1,2 . . . n-1 and n = max interval
number. For a perfect circle this would derive intervals of equal area (Figure 4.4H and
Supplementary Figure 4.3G-K).
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Cellular gradients in response to HIV

Distance maps emanating from HIV particles (see ‘Data extraction in MATLAB’) were
used to analyze changes in cell density in the vicinity of HIV (Figure 4.5). The formation of
increasing/decreasing cell density gradients in non-cumulative intervals from HIV particles
was inferred as potential cell migration to/from HIV within a given compartment (Figure
4.5A).
Potential migration of LP target cells into the EP (Figure 4.5B-C) was assessed by

measuring the cell density both near (≤10µm from the EP-LP interface) and within
HIV+ EP vs HIV- EP. A single relatively small interval of 10µm, rather than multiple
intervals, was chosen due to the small space between epithelial crypts. If a comparative
increase in the density of a target cell was observed both leading up to HIV+ EP and
within the HIV+ EP itself, then we inferred this was likely the target cell migrating from
the LP into the EP to sample HIV particles. We performed several filtering steps to
remove potential interfering variables. In particular, HIV+ and HIV- EP cells could be
located next to one another, and so HIV- EP were specifically selected as >50µm away
from HIV+ EP. Additionally, many regions have more HIV in the LP than the EP, which
could draw target cells away from HIV+ EP and toward HIV+ LP instead. To mitigate
this effect images were binned into 100 × 100µm quadrats and only quadrats with more
HIV particles in EP than LP were used for analysis. Finally, only images with at least
one cell in each category were analyzed (e.g. at least one DC beneath each HIV+ and
HIV- EP).
Potential migration of LP target cells into LAs (Figure 4.5D-E) was assessed by mea-

suring the cell density in non-cumulative 50µm intervals from LAs and within LAs them-
selves. These measurements were split by whether LAs were HIV+ or HIV- and so only
donors with both HIV+ and HIV- LAs were used in this analysis. We also compared the
spatial distribution of target cells throughout intervals of HIV+ vs HIV- LAs (see ‘Data
extraction in MATLAB’ for methodology). This was to determine whether target cells
clustered more toward the outer intervals of HIV+ LAs, which is where cells entering LAs
from the LP would likely be located.

Analysis of pathways for submucosal HIV entry

HIV entry into the submucosa could only occur via either the LP or LAs, as these are
the mucosal compartments directly overlying the submucosa. To analyze which pathway
was most likely, we created linear models (lm() function in R) of submucosal HIV density
as a function of LP HIV density, LA HIV density, or both (Figure 4.3I). Datapoints were
individual explants, i.e., a compartment across all images from an explant was measured,
producing a single value for that explant. The combined model showed that LA HIV
density was the only significant predictor of SM HIV density. Although LP HIV density
alone showed some predictive capacity that was borderline significant (β = 0.54, p =
0.04), this effect was diminished in the combined model. This was likely due to collinearity
between LA and LP HIV density (β = 0.71, p = 0.004), causing the LP to transmit effects
from the LA HIV density when attempting to predict SM HIV density. This assumes the
direction of the association is that LP HIV density affects LA HIV density, and not the
other way around. To explain why this assumption is likely true, consider two possible
scenarios for HIV entry into the SM (1) LP → LA → SM and (2) LA → LP → SM. In
each case, the middle variable is called the ‘mediator’ as it transmits the effects of the
first variable to the last one. The criteria for a variable to be classed as a mediator are
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well established [58] and are explained in simple by MacKinnon et al., [59].

1. There must be a significant relationship between the independent variable and the
dependent variable,

2. There must be a significant relationship between the independent variable and the
mediating variable, and

3. The mediator must be a significant predictor of the outcome variable in an equation
including both the mediator and the independent variable.

Referencing the equations in Figure 4.3I, we can see that only the LA variable satisfies
these properties and can be classed as a mediator, indicating that the LP → LA → SM
pathway is more likely.

SpicyR analysis

The R package ‘SpicyR’ [15] was used to analyze differential cell-cell localization between
HIV and mock-treated samples in the EP, LP, LA and SM (Figure 4.6A). As HIV particles
were only present in specific regions of the images from HIV-treated explants, we selected
regions near HIV particles to compare to the mock sample. This is because the numerous
HIV- regions would dilute the HIV-induced effects on cell-cell interactions when comparing
to mock. The HIV-proximal region was defined as all cells within 30µm of HIV for the
EP, LP and LA compartments, and 100µm for the SM due to the lower cell density in
this compartment. As a control, HIV-distal regions (>30µm or 100µm) were compared
to the mock sample. p values were centered at p = 0.01 which was the assigned cut-off
for significant changes for this analysis. Importantly, the SpicyR test function measures
interactions of a cell type within a user specified radius around the cell. As the chosen
radius is a possible source of variation in results, we tested multiple radii. We did this
alongside testing multiple cut-offs to define the HIV-proximal region and found our results
were robust to variation in these parameters (Supplementary Figure 4.4A).

Temporal inference analysis

Having observed that LP target cells clustered away from the EP-interface we wanted to
know whether this could be due to target cell migration away from the EP-interface in
response to incoming HIV particles (Supplementary Figure 4.4B). As we only performed
a single 2h time point for our explants we devised a method of temporal inference to
investigate this phenomenon. We observed different proportions of HIV in the EP and
LP in different regions of our images. This was likely due to each region being at a
different stage of HIV entry, with regions where most HIV was in EP representing early
stages of HIV entry, and regions where most HIV was in LP representing later stages (as
HIV would have already passed the EP barrier to enter the LP). As such we reasoned that
we could use the relative proportion of HIV in EP vs LP as a proxy for ‘early’ vs ‘later’
stages of HIV entry. In particular, we divided images into 100 × 100µm windows with
each window classified as HIV- windows (no HIV particles), ‘early’ (EP > LP HIV particle
count) or ‘late’ (EP < LP HIV particle count) in terms of HIV entry. We then calculated
the log2 fold change in LP target cell density in EP proximal (≥10µm) vs distal regions
(10–50µm) from either HIV- EP or HIV+ EP. A negative fold change indicates target cell
enrichment in the distal region. If the magnitude of the negative fold change was higher
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in the distal region from HIV+ EP vs HIV- EP, then it means that HIV exposure to the
tissue caused further relocation of the target cell away from the EP.
It’s important to note that all windows contained a mixture of HIV+ and HIV- EP

which is why the distance of LP target cells from each type of EP could be calculated
for all windows. The HIV- EP was >50µm from HIV+ EP to minimize interference (as
also described in ‘Cellular gradients in response to HIV’). The reason for measuring LP
target cell distance from HIV- vs HIV+ EP is that it controlled for local fluctuations in
LP target cell density, allowing us to better observe how a local region changes in early
vs later stages of HIV entry. This is opposed to measuring cell distance from the EP in
general and directly comparing changes in target cell density in early vs late windows.
These windows would be in different regions and therefore could have vastly different
steady-state target cell densities (therefore affecting the fold change measurements close
and far from the EP).

HIV-transfer phenotype score

As HIV is present at the interface between cells during active viral transfer [22–26], neigh-
boring cells engaged in transfer would both appear as HIV+ in our data. We sought to
quantify the frequency of this phenotype between cell pairs, as a proxy for cellular engage-
ment in viral transfer. This was achieved by employing a modified version of Neighborhood
Analysis [27] and constructing a ‘HIV-transfer phenotype score’ from the results to esti-
mate the degree to which a HIV+ cell increases the likelihood of nearby cells being HIV+,
whilst controlling for possible confounders (Figure 4.6C). In particular, we first quantified
the number of HIV+ and HIV- cell neighbors for HIV+ cells. The cell labels (locations)
of HIV+ cells, rather than all cells, were randomized 999 times to generate a null distribu-
tion of HIV+ cell neighborhoods, against which the actual HIV+ cell neighborhood was
compared to determine significant interactions (p < 0.005). Randomization was restricted
to HIV+ cells to control for the background effect of HIV particles on the localization of
cells in tissue (i.e. cells are already at an increased density in HIV+ regions). This is a key
difference to standard neighborhood analysis which randomizes on all cells. T his results
in association scores for HIV+:HIV+ interactions (HIV+ cell with HIV+ neighbor) and
‘HIV+:HIV-‘ interactions (HIV+ cell with HIV- neighbor), which was expressed as the
percentage of all images showing significant interactions for the cell pair. Note that in
this analysis, cells of the same type often appear to significantly interact with each other,
which has been noted in previous spatial studies analyzing cell:cell interactions in tissue
[60–62].
Using these data we constructed a ‘HIV-transfer phenotype score’ which was defined as

the difference in the frequency of ‘HIV+:HIV+’ interactions and ‘HIV+:HIV-interactions.
HIV+:HIV- interactions represent the moment before potential transfer and it’s frequency
is determined by all conditions leading up to a transfer event, including the steady-
state likelihood of two cells interacting and any HIV-induced effects on the movement of
either cell just prior to a potential transfer. HIV+:HIV+ interactions include this, plus
the direct influence of cellular HIV-binding on the formation of interactions. As such,
the difference in these measurements reflects the propensity of a HIV+ cell to transfer
virus to another specific cell type in its immediate neighborhood. Important to note,
HIV+:HIV+ interactions could be in the form of two cells that each have HIV particles,
but are not engaged in the process of transfer. As HIV is not influencing the interaction,
the frequency of such events would be the same as the steady-state interaction frequency
of the cell pair. This frequency is included in the HIV+:HIV- interaction frequency and
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is therefore accounted for (subtracted) in the ‘HIV-transfer phenotype score’.

Association between T cell HIV-load and DC/macrophage interaction

This analysis was performed to determine whether the HIV-load (number of HIV particles)
in a CD4+ T cell is associated with increased interactions with either DCs or macrophages
(Figure 4.6E). In particular, CD4+ T cells were split into 4 groups based on the number
of HIV particles they contained (0, 1, 2–3 or ≥4 virions). For T cells in each group, their
degree of interaction with DCs or macrophages was measured as the number of pixels in
the T cell body that belonged to either of these cells (DC: CD4+ pixels; Macrophage:
FXIIIa+ pixels). To account for inter-image variation, we performed all measurements
intra-image which meant that a single image was required to have CD4+ T cells with a
spectrum of HIV levels to allow for a fair comparison. Accordingly, only images with at
least 3 CD4+ T cells in each category (0, 1, 2–3, ≥4 virions) were used for the analysis.
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4.5 Supplementary Material

Supplementary Table 4.1: Donor age and sex information for colorectal tissues
used in this study (related Methods Human subjects). *New batch images were used for
the majority of analyses in the paper as they were stained for all cell type defining markers.
The old batch images were stained with fewer markers and therefore only used for analysis
of HIV localisation across compartments (e.g. HIV virion density in compartments (Figure
4.4A).

Donor Batch* Age Sex
1 new 54 M
2 new 46 F
3 new 58 F
4 new 91 F
5 new 61 M
6 new 80 F
7 new 89 F
8 new 74 M
9 new 67 M
10 new 84 M
11 new 53 F
12 new 84 M
13 old 50 M
14 old 60 F
15 old 74 F
16 old 51 M
17 old 60 M
18 old 36 F
19 old 46 F
20 old 51 M
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Supplementary Figure 4.1: Cell Segmentation method (related to Figure 4.1).
(continued on next page)
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Supplementary Figure 4.1: (A) Images before (left) and after (right) autofluorescence
removal using AFid. The middle image shows the mask of the identified autofluorescence
with core autofluorescent bodies in blue and the expansion mask shown in white. The
expansion mask flows out from the autofluorescent bodies to capture all autofluorescence
and is designed with a halting condition whereby the detection of stromal background
fluorescence or antibody derived signal halts the expansion. Note that the algorithm also
detects low signal autofluorescence and so some of the outlined autofluorescent bodies
in the middle panel are not easily visible by eye. Importantly none of these signals
overlap with the CD11c or HIV signals in the image. (B) These images illustrate the
necessity of the custom segmentation approach outlined in part C for accurately assigning
HIV virions to the correct cell type. A macrophage sampling multiple HIV particles is
shown (i), as is the inadequacy of nuclei segmentation alone (ii) for accurately assigning
HIV particles to the macrophage (v). This is rectified via the cell boundary estimation
incorporated into our segmentation method (iii) which allows for the accurate assignment
of HIV particles to the macrophage. (C) Cell classification and segmentation approach.
First, a mask of the nuclei in each image was created by performing thresholding on
DAPI followed by a morphological watershed (i-ii). Masks of CD11c, FXIIIa and CD3
were then created via manual thresholding (iii-iv). DCs, macrophages and T cells were
classified by measuring the percentage overlap of marker masks from iv with the segmented
nuclei from ii (v). The threshold for classifying a cell type was determined visually and
was typically around 20% overlap for membrane markers CD11c and CD3 and 40% for
the intracellular marker FXIIIa (vi). Once classified we then split the nuclei mask into
three separate masks, each containing the nuclei belonging to one of the 3 cell types. In
each mask, we then outlined the cell body, using distance maps emanating from nuclei
centers, and restricted to the area of the masks of cell-type defining markers from part
iv. This was followed by a morphological watershed to separate touching cells. The
result was 3 masks which estimate the full cell body for each cell type (vii). Notably,
a pixel from a single coordinate across the masks can belong to multiple cell types as
the expansion in part vii was performed on separate masks. This is reflective of the
actual situation in situ whereby cells interact in 3D and so will exhibit overlap with one
another when taking 2D image slices. T cells were classified as CD4+ and CD4- by a
manually determined cut off for CD4 expression (bottom left box). The raw data and
the final segmentation outcome are shown side by side (viii-ix). (D) Gating strategy
for HIV target cell identification by Flow Cytometry [11]. (E) Representative histograms
of FXIIIa expression on DCs, macrophages and CD4+ T cells (n = 3), showing FXIIIa
expression is specific to macrophages as defined in part D. (F) Cell types defined in part
D were either treated with HIVBal , HIVZ3678M or untreated (mock) and stained with two
different clones of antibodies (clones 28B7 and KC57) targeting p24. Dual p24+ positive
cells were defined as HIV+ cells as per [8, 11].
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Supplementary Figure 4.2: Assessment of interactions of HIV with colorectal
target cells (related to Figure 4.3) (continued on next page)
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Supplementary Figure 4.2: (A) Images from mock (PBS treated) explants stained using
probes against either HIVBal or HIVZ3678M. (B) HIV virions detected per 1000 cells in
mock or HIV-treated samples stained using probes against either HIVBal or HIVZ3678M.
(C) Representative images of colorectal target cells interacting with HIVZ3678M particles.
(D) Comparison of HIV uptake (HIV Percentage) relative to opportunity (Cell Percent-
age) across target cells and for two strains of HIV which were HIVBal and HIVZ3678M.
Left: For each cell type their percentage among all cells (blue border) or the percentage
of all HIV particles in those cells (red border) is shown. Right: HIV particle percentage
normalized to the cell percentage, and log2 transformed. Data points represent individual
donors, where the results from multiple images were averaged for each donor. HIVBal: n
= 11, HIVZ3678M: n = 4.
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Supplementary Figure 4.3: Differential HIV uptake across colorectal tissue com-
partments (related to Figure 4.4) (continued on next page)
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Supplementary Figure 4.3: (A) Density of HIV virions per mm2 in 215 LA images (y-
axis) across 17 donors (x-axis). Each data point represents an individual LA from a
given donor with dot size correlating to LA HIV density. The annotation above indi-
cates the total number of LAs counted and is colored by whether they are HIV+ (red)
or HIV- (blue). Dotted box indicates a sample of LAs that were highly enriched with
HIV (>4000 virions per mm2). (B) HIV enrichment in different cell types across tissue
compartments. The HIV particle percentage was normalized to the cell percentage (data
from Figure 4.4E), and log2 transformed. A Wilcoxon signed-rank test was performed
to compare this HIV enrichment score across data points (specific cell types in specific
tissue compartments). Data represent 15 explants from 12 donors, where the results from
multiple images were averaged for each explant. (C-D) HIV-load (average virions per
cell) or HIV+ cell percentage (percentage of cell population that is HIV+) was com-
pared between ‘EP vs sub-EP’ compartments (LP + LA) for DCs and ‘LP vs SM’ for
macrophages. Data represent individual donors where a donor was only included if at
least 5 HIV+ cells were detected in both compartments for HIV-load measurements or
10 cells detected in both compartments for HIV+ cell percentage measurements. This
was to allow for a fair comparison between compartments. A Wilcoxon rank-sum test
was performed to compare measurements across compartments. LP vs SM: n=10 donors;
‘EP vs sub-EP’: 12 donors for ‘HIV-load’ measurements and 11 donors for HIV+ cell
percentage measurements. (E) Density of HIV+ (≥1 particle) target cells and CD4- T
cells in LA-proximal (≤400µm, blue border) vs - distal (400-800µm, red border) regions
of LP. 400µm was chosen (instead of 200µm as in Figure 4.2D) in order to capture a
larger pool of HIV+ cells, thus improving the reliability of comparisons. Data represents
the ‘proximal’ and ‘distal’ LP from individual LAs. HIV+ cells for each cell type were
compared between regions (Wilcoxon signed-rank test) only if each region contained at
least 5 HIV+ cells, so as to allow for a fair comparison. DC: n=19 LA (5 donors), Mac:
n=12 LA (3 donors), CD4+ TC: 15 LA (6 donors): CD4- TC:12 LA (5 donors). (F)
Density of HIV particles in LA-proximal (≤400µm) vs -distal (400-800µm) regions of LP.
A Wilcoxon signed rank test was between LA-proximal and -distal regions of LP. N=143
LAs from 11 donors. (G) Area (mm2) of LA intervals. In order to achieve comparable
areas for each interval we assumed LAs to be spherical and hence circular in 2D. We then
calculated the radial edges of each interval from the outer edge using the formula: 1 -
sqrt (1 - k/n) where k = {1,2 . . . n-1} and n = max interval number. In this example n
= 8. For a perfect circle this would derive intervals of equal area. N=115 LAs from 15
donors. (H) Left: Density of HIV+ cells in intervals from the outer edge of HIV+ LAs
(x = 1) toward their center (x = 20). Results are shown as a LOESS curve of best fit
to highlight cell density trends from outside LAs toward their center. Right: statistical
comparisons (Wilcoxon signed rank test) of discrete intervals where LAs were split into 8
intervals instead of 20 in order to increase the number of cells measured per interval, thus
reducing error and increasing the reliability of comparisons. N=115 LAs from 15 donors.
(I-J) HIV+ cell depth in LAs (continued on next page)
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Supplementary Figure 4.3: (J) was measured in LAs categorized as small, medium or
large (I). HIV+ cell depths were scaled such that ‘0 = LA outer edge’ and ‘1 = LA
center’. LAs were assigned to each group by performing a quantile split, creating 3 even
groups based on LA radius. Only LAs with at least 10 HIV+ cells were measured. Note
that since area increases exponentially with increasing radius, 75% of the LA area exists
half-way (y=0.5) toward the LA center. As such in this graph it appears as though HIV+
cell frequency is higher toward the LA edge, when in fact the opposite is true as shown
in Figure S3H. n=58 LAs from 11 donors. (K) Percentage of LA DCs, CD4+ T cells
or undefined cells (not a DC, Mac or T cell) that are HIV+ in intervals from the outer
edge of HIV+ LAs (x = 1) toward their center (x = 8). For each cell type, only LAs
with at least 1 HIV+ cell in each interval were selected for analysis. A Wilcoxon signed
rank test was performed between indicated intervals. DC: 87 LAs (13 donors); CD4+
TC: 72 LAs (12 donors); Undefined cells: 92 LAs (13 donors). (L) HIV virion density
(per mm2 of DAPI) in SM vs mucosa (EP + LP + LA) in individual images. Smoothed
linear regression is shown with Pearson’s r and its associated p value. Images were only
included if the SM and mucosa both contained HIV virions. N=43 images (16 donors).
(M) Representative images showing HIV virions throughout various depths of a single
LA from superficial sections in the mucosa (top row) to deeper sections where the LA
has penetrated the submucosa (bottom row). (N) Representative images showing HIV+
Macs exist throughout various depths of the SM, including regions close to the LP (box
1) and deeper regions (box 3). (O) Representative images of TZM-bl assay results using
either viral inoculum within cloning cylinders or the culture media in which the explants
sit. Solutions were collected at the end of the viral culture period and then cultured with
TZM-bls for 72h. Infected cells were visualized upon addition of X-gal substrate with
each blue dot corresponding to an infected cell. n=6 explants. All density measurements
were performed per mm2 of DAPI for indicated regions.
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Supplementary Figure 4.4: Signatures of HIV-induced cell-cell interactions in situ
(related to Figure 4.6) (continued on next page)
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Supplementary Figure 4.4: (A) SpicyR analysis as in Figure 4.6A with variation in radius
(in which to measure cell-cell interactions) and HIV region distance cut-off (distance from
HIV in which interactions were analysed). This analysis was run for LP and SM. The
dotted red box encases HIV target cells in the lamina propria which can be seen to form
significant clusters with most parameter settings. (B) LP target cell proximity to the
EP in response to inferred stages of HIV entry. Images were divided into 100x100µm
windows with each window classified as HIV- windows, ‘early’ (EP > LP HIV particle
count) or ‘late’ (EP < LP HIV particle count) in terms of HIV entry. The log2 fold-change
in LP target cell density in EP proximal (≤10µm from EP) vs distal regions (10-50µm
from EP) was calculated for HIV- windows (left). For ‘early’ and ‘late’ stage windows
the log2 fold-change was calculated from HIV- (blue border) and HIV+ EP (red border)
separately. Only HIV- EP greater than 50µm from HIV+ EP were used. A Wilcoxon
signed-rank test was used to compare ‘EP proximal vs EP distal fold-change in LP cells
between HIV+ vs HIV- EP. Data from 40 images across 12 donors were used for this
analysis. (C) Representative images of DCs and macrophages interacting with CD4+
T cells where HIVZ3678M is present at the interface between the cells. For clarity, CD3
staining is shown in a separate image with a brown arrow pointing to CD3+CD4+ T
cells. (D) Representative images of DCs and macrophages interacting with one another
where HIVZ3678M is present at the interface between these cells. (E) Number of DC
(CD11c) or macrophage (FXIIIa) positive pixels overlapping with the body of CD4- T
cells (y axis) that harbor varying levels of HIV particles (x axis). Only images with at
least 3 CD4- T cells in each category (0, 1, 2-3, ≥4 HIV particles) were selected for the
analysis which consisted of 9 images across 5 donors. This comprised X images from Y
donors. A Wilcoxon signed-rank test was performed to compare levels of DC or Mac pixel
overlap between CD4- T cells with varying levels of HIV. A Wilcoxon rank-sum test was
performed to compare differences in the magnitude of membrane overlap between CD4-
T cells of varying HIV load. All density measurements were performed per mm2 of DAPI
for indicated regions.
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Chapter 5

Discussion

Understanding the early events that facilitate the transmission of HIV is important for the
development of strategies for disease prevention. However, due to technical limitations,
these events are still poorly understood. Through access to human tissue and real-world
HIV strains, as well as experimental innovations such as cyclic immunofluorescence (Cy-
CIF) and RNA scope, the host lab is in a unique position to visualize early HIV-cell
interactions. In this thesis, HIV-cell interactions were able to be visualized as early as
30 minutes in human colorectal tissue, a key site for HIV transmission. However, the
complexity of the data necessitated the need for image analysis strategies in order quan-
titatively analyze the unique cellular interactions that underpin early HIV transmission.

Hence, this thesis had two important aims. The main biological aim of this thesis was
to develop a computational pipeline for analyzing high parameter CyCIF images of early
HIV transmission in human colorectal tissue. The secondary aim of this project was to
develop new computational tools to facilitate the analysis of high parameter microscopy
images.

The main biological aim of this thesis was addressed through the development of a com-
plete image analysis pipeline for the analysis of CyCIF images of early HIV transmission
in colorectal tissue (Chapter 4). This pipeline was able to identify the unique cellular
interactions that underpin early HIV transmission, and can serve as a framework for the
study of human disease in the context of imaging host-cell interactions. The secondary aim
was achieved through the development of ‘Autofluorescence Identifier’ (AFid, Chapter 2),
a simple tool for removing autofluorescence from fluorescent microscopy images, and the
development of ‘SPatial analysis of In situ Cytometry data in R’ (spicyR, Chapter 3), a
tool which facilitates inference on changes in spatial co-localizations. While motivated by
the analysis of the HIV CyCIF data, both tools were published and made readily available
given their applicability to other high parameter image datasets. With the development of
mass cytometry imaging (MCI) and serial staining immunofluorescence techniques being
more widely used in the study of human disease, it has become increasingly important to
develop analysis strategies given the complexity of the data. Thus, the AFid and spicyR
serve to fill gaps in the analysis currently present in high parameter imaging.

Overall, this thesis presents three publications addressing these aims. While extensive
discussions have already been provided, this section will discuss these publications within
the context of the overall thesis.

183



5.1 AFid

The first challenge that was present in the analysis of the HIV CyCIF data was the
presence of autofluorescence, with these signals being difficult to distinguish from real
immunofluorescent staining. While strategies for addressing autofluorescence have been
previously described, chemical bleaching methods were incompatible with our staining
protocols [1–4], and the tools required for spectral unmixing [5] or background subtraction
[6–8] were not readily available. To address this, we developed AFid, a post-acquisition
algorithm that identifies and removes autofluorescence from fluorescent images.
The AFid algorithm was constructed around the assumption that the textural fea-

tures of autofluorescent signals are conserved across different image channels, occupying a
unique position in feature space that is then identified through clustering (Supplementary
Figure 2.3A). Through experimental perturbations and in silico simulation we illustrated
that AFid can distinguish autofluorescence from real signal given two fluorescent image
channels.
In the analysis of the HIV CyCIF dataset, there were significant differences in results

before and after the application of AFid. Importantly, it was found that the number of
dendritic cells that were identified to be HIV positive was greatly overestimated due to
autofluorescent signal (Figure 2.3). Ultimately, AFid allowed for the accurate phenotyping
of cells to facilitate a more robust analysis of fluorescent image data. This is increasingly
important particularly as high parameter fluorescent microscopy techniques continue to
improve. Hence, AFid was extensively used in the further analysis of the HIV CyCIF
dataset.
Furthermore, AFid has also been applied to a range of datasets since it became pub-

licly available. The algorithm has been applied to fluorescent images of pancreatic tissue
exploring the immunology of type 1 diabetes [9] and fluorescent images of olfactory ep-
ithelial tissue exploring COVID-19-induced anosmia [10]. These publications illustrate
that AFid can be utilized in a diverse range of tissue types to assist in the visualization
of different diseases.
Overall, AFid addresses a key problem in fluorescent image analysis. A key advantage

over other methods is that AFid does not require additional experimental steps, being
applied post-acquisition. It can be applied to existing datasets and does not require the use
of specialist equipment or proprietary software for use. AFid has been implemented as an
easy-to-use tool in ImageJ, MATLAB and R (https://ellispatrick.github.io/AFid),
allowing for its use across different analysis environments.

5.2 spicyR

A key challenge in the analysis of high parameter images is understanding the important
cell-cell interactions within an image. Various neighbourhood approaches have been de-
veloped for identifying spatial association or avoidance of cells [11–13]. However, there did
not exist any robust methods for identifying differential cell-type co-localization across
clinical or experimental groups. To this end, we developed the R package spicyR, a tool
which facilitates inference on changes in spatial co-localization between cell types. Briefly,
spicyR was designed to answer the question “How does cell-type co-localization change
with different experimental or clinical conditions?”.
The first innovation of spicyR is the development of the co-localization score u (Equation

3.3), providing an interpretable and comparable measure of spatial co-localization between
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two cell types within a single image. Next, spicyR is able to model information across
multiple images per subject and account for large differences in cell numbers across images,
implementing a random effects model and a weighting scheme based on cell counts.
Overall, spicyR provides an interpretable and easy-to-use tool for spatial analysis,

adding to the repertoire of analysis techniques that can be applied to high parameter
imaging data. However, it should be acknowledged that while spicyR may be a key step
in image analysis, it should not be interpreted in isolation. The results of spicyR should
be understood within the context of other simple analysis techniques, such as cell-type
composition and cell marker analysis.
To highlight its utility, spicyR was able to be applied to an existing type 1 diabetes

IMC dataset [14], revealing both novel findings as well as findings in line with the original
publication (Figure 3.4). Since the release of the R package on Bioconductor, spicyR has
also been applied to cutaneous squamous cell carcinoma images [15], chronic rhinosinusitis
images [16], and was utilized as a key step in the spatial analysis of the HIV CyCIF
dataset, identifying key cell-cell interactions (Figure 4.6). Thus, spicyR is demonstratively
applicable for investigating images from diverse disease environments.

5.3 Analysis of HIV CyCIF Dataset

While this thesis is primarily focused on the development of computational methods, we
first briefly describe the novel aspects of the experimental design presented in the publi-
cation which motivated the analysis approaches developed. Through collaborations with
colorectal surgeons within the Westmead Hospital Precinct, the host lab was able to collect
healthy human colorectal tissue and apply HIV within less than an hour. Furthermore
through an international collaboration with Professor Eric Hunter (Emory University,
USA), the host lab gained access to transmitted founder strains of HIV, representing a
strain derived from a real-world HIV transmission event. This places the host lab in the
unique position of modelling HIV transmission directly in the tissue of interest. Next,
the optimization of RNAscope, an in situ hybridization technique, allowed for HIV to be
visualized at very early timepoints with single virion precision, allowing their interaction
with key HIV target cells to be identified. Finally, the use of CyCIF has allowed multi-
ple markers to be visualized within colorectal tissue. This allowed for the visualization
of key HIV target cells, namely dendritic cells, macrophages and CD4 T cells, HIV via
RNAscope, and structural markers for identifying key structural compartments within
colorectal tissue. While the experimental innovations pioneered by the host lab provide a
unique opportunity for investigating early HIV transmission, the complexity of the data
presents an important challenge regarding the robust quantitative analysis of the imaging
data. To address this, a novel image analysis pipeline was developed, utilizing ImageJ,
MATLAB and R. This section will hence discuss the computational innovations presented
in this publication.
One of the key computational innovations present was the development of a novel

MATLAB image processing pipeline, with key functions including performing single-cell
segmentation and cell-type classification, HIV spot counting, and important image data
quantification for further downstream analysis. Firstly, a custom cell segmentation and
classification strategy was developed (Supplementary Figure 4.1B). This unique approach
resulted in the segmentation of the full cell body of key HIV target cells and, unlike other
segmentation pipelines, allowed for two cells to physically overlap. This allowed for the
complex amorphous shape of cells such as macrophages and DCs to be identified and in
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turn allowing cell-cell and cell-HIV interactions to be identified precisely. The combined
segmentation and classification approach led to a quantification of the cellular composition
of colorectal tissue, and together with RNA spot counting allowed the number of HIV virus
particles to be measured. Furthermore, to facilitate spatial analysis, a modified version
of the neighbourhood analysis by Schapiro et al. [11] was implemented, allowing for its
use with the new cell segmentation masks being generated. From this neighbourhood
analysis, a HIV-transfer phenotype score was derived (Figure 4.6C), allowing the viral
transfer between cells to be estimated. Finally, the distance of cells and HIV with respect
to the tissue compartments segmented in ImageJ (Figure 4.4).
Another key computational innovation was the downstream analysis techniques that

were implemented in R, facilitating the quantitative analysis of the image data extracted
with ImageJ and MATLAB. Specifically, this step of analysis allowed for the quantification
and visualization of: 1) the distribution of HIV target cells (Figure 4.2) and HIV (Figure
4.4) in human colorectal tissue, HIV-cell interactions (Figures 4.3 and 4.5), and cell-cell
interactions (Figure 4.6). Such analysis resulted in the quantification of cell- and tissue
compartment-specific enrichment of HIV.
Through both experimental and computational innovations, cellular events leading to

early HIV transmission were able to be visualized and interrogated. In brief, these results
revealed early HIV sampling by dendritic cells and macrophages, as well as early presenta-
tion of HIV from these cells to CD4 T cells, forming clusters that may facilitate early viral
transfer and enhance T cell infection. Furthermore, analysis also revealed trafficking of
HIV by dendritic cells to lymphoid aggregates, facilitating rapid entry of HIV into deeper
structures of colorectal tissue. Thus, these results present the first quantitative evidence
of the early events of HIV transmission in human colorectal tissue in situ.
We expect that the tools developed in this paper can be applicable in the study of other

pathogens in different in situ models and clinical scenarios. As such we have made the
code used for analysis readily available (Chapter 4).

5.4 Concluding Remarks and Future Directions

Through collaborations with surgeons, as well as novel techniques in the experimental
design, the host lab is in a unique position to be able to visualize and describe the
events which facilitate early HIV transmission. This has resulted in the generation of
complex high parameter images, necessitating the need for the development of image
analysis techniques. Such an approach was important in order to quantitatively analyze
the complex relationship between HIV and the mucosal immune system during early HIV
transmission within colorectal tissue. These innovations have ultimately inspired the work
presented within this thesis.
Ultimately, through the development of this novel analysis pipeline, key cell-cell, HIV-

cell and HIV-tissue relationships important for early HIV transmission were able to be
identified for the first time in situ. Furthermore, there is an opportunity for the analysis
techniques presented here to be applied to other datasets, particularly those looking at
host-pathogen interactions. As such, the code has been made publicly available. Overall,
analysis of the CyCIF dataset generated by the host lab has led to the development of
novel image analysis approaches that has potential for use in other high parameter image
analysis.
While the analysis techniques here may be applied to a diverse range of high parameter

imaging datasets, a major limitation is that these tools do not exist within a single
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analysis environment. At present, there are multiple steps that currently take place in
either ImageJ, MATLAB and R. This may restrict the ease of use of the tools developed
within this thesis, and makes the analysis less streamlined. As such, an important future
direction currently being undertaken is to synthesize the various tools used for image
analysis within a single analysis environment; for our group that is R. This will include
steps such as single-cell segmentation, cell-type clustering, and spatial analysis, allowing
high parameter image datasets to be comprehensively analyzed within a single analysis
environment.
Finally, while CyCIF was utilized in generating the HIV CyCIF images, these images

did not employ the large number of cell markers that is generally available in multiplexed
imaging technologies. While the major HIV target cell types were identified, specific cell
subsets were excluded from the analysis. To expand on the results presented within this
thesis, the main future direction underway is the generation of a 40 marker IMC panel.
The images generated via IMC will employ the same experimental innovations presented
in this thesis. A key difference will be the significantly increased number of markers
used, allowing HIV interactions with specific cell subsets to be identified. This will pro-
vide a more comprehensive view of early HIV transmission to be captured. Furthermore,
the increased complexity of the images generated will necessitate the need for continued
optimization of image analysis strategies. IMC will produces images with lower resolu-
tion than fluorescent imaging that displays more markers, captures a smaller tissue area,
and with a unique noise profile. Thus, the analysis of the IMC datasets will present a
unique challenge, with many avenues for the exploration of development of computational
approaches to high parameter image analysis.
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