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 ABSTRACT 

      Clustering a set of data into homogeneous groups is a fundamental operation in 
data mining. Recently, consideration has been put on categorical data 
clustering, where the data set consists of non-numerical attributes. However, 
implementing several existing categorical clustering algorithms is challenging 
as some cannot handle uncertainty while others have stability issues. The 
Rough Set theory (RST) is a mathematical tool for dealing with categorical data 
and handling uncertainty. It is also used to identify cause-effect relationships in 
databases as a form of learning and data mining. Therefore, this study aims to 
address the issues of uncertainty and stability for categorical clustering, and it 
proposes an improved algorithm centred on RST. The proposed method employed 
the partitioning measure to calculate the information system's positive and 
boundary regions of attributes. Firstly, an attributes partitioning method called 
Positive Region-based Indiscernibility (PRI) was developed to address the 
uncertainty issue in attribute partitioning for categorical data. The PRI method 
requires the positive and boundary regions-based partitioning calculation method. 
Next, to address the computational complexity issue in the clustering process, 
a clustering attribute selection method called Maximum Mean Partitioning 
(MMP) is introduced by computing the mean. The MMP method selects the 
maximum degree of the mean attribute, and the attribute with the maximum mean 
partitioning value is chosen as the best clustering attribute. The integration of 
proposed PRI and MMP methods generated a new rough set hybrid clustering 
algorithm for categorical data clustering algorithm named Maximum Partitioning 
Attribute (MPA) algorithm. This hybrid algorithm is an all-inclusive solution for 
uncertainty, computational complexity, cluster purity, and higher accuracy in 
attribute partitioning and selecting a clustering attribute. The proposed MPA 
algorithm is compared against the baseline algorithms, namely Maximum 
Significance Attribute (MSA), Information-Theoretic Dependency Roughness 
(ITDR), Maximum Indiscernibility Attribute (MIA), and simple classical K-Mean. In 
addition, seven small data sets from previously utilized research cases and 21 UCI 
repository and benchmark datasets are used for validation. Finally, the results were 
presented in tabular and graphical form, showing the proposed MPA algorithm 
outperforms the baseline algorithms for all data sets. Furthermore, the results showed 
that the proposed MPA algorithm improves the rough accuracy against MSA, ITDR, 
and MIA by 54.42%. Hence, the MPA algorithm has reduced the computational 
complexity compared to MSA, ITDR, and MIA with 77.11% less time and 58.66% 
minimum iterations. Similarly, a significant percentage improvement, up to 97.35%, 
was observed for overall purity by the MPA algorithm against MSA, ITDR, and 
MIA. In addition, the increment up to 34.41% of the overall accuracy of simple K-
means by MPA has been obtained. Hence, it is proven that the proposed MPA has 
given promising solutions to address the categorical data clustering problem.
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ABSTRAK 

   Mengelompokkan set data ke dalam kumpulan homogen adalah operasi 
asas dalam perlombongan data. Baru-baru ini, fokus penyelidikan 
telah diberikan pada pengelompokan data kategori, di mana set data terdiri 
daripada atribut bukan angka. Walau bagaimanapun, melaksanakan beberapa 
algoritma pengelompokan kategori sedia ada adalah mencabar kerana 
sesetengahnya tidak dapat menangani ketidakpastian manakala yang lain 
mempunyai masalah kestabilan. Teori Set Kasar (RST) ialah alat matematik 
untuk menangani data kategori dan mengendalikan ketidakpastian. Ia juga 
digunakan untuk mengenal pasti hubungan sebabakibat dalam pangkalan data 
sebagai satu bentuk pembelajaran dan perlombongan data. Oleh itu, kajian ini 
bertujuan untuk menangani isu ketidakpastian dan kestabilan dalam 
pengelompokan kategori, dan ia mencadangkan algoritma yang lebih baik 
berkait dengan RST. Kaedah yang dicadangkan menggunakan ukuran 
pembahagian untuk mengira Kawasan positif dan sempadan atribut untuk 
sistem maklumat. Pertama, kaedah pembahagian atribut yang dipanggil 
Indiscernibility berasaskan Wilayah Positif (PRI) telah dibangunkan untuk 
menangani isu ketidakpastian dalam pembahagian atribut untuk data 
kategori. Kaedah PRI memerlukan kaedah pengiraan pembahagian berasaskan 
wilayah positif dan sempadan. Seterusnya, untuk menangani isu kerumitan 
pengiraan dalam proses pengelompokan, kaedah pemilihan atribut 
pengelompokan yang dipanggil Pemisahan Min Maksimum (MMP) 
diperkenalkan dengan mengira nilai min. Kaedah MMP memilih darjah maksimum 
atribut min dan atribut dengan nilai pembahagian min maksimum dipilih sebagai 
atribut pengelompokan terbaik. Penyepaduan kaedah PRI dan MMP yang 
dicadangkan menghasilkan algoritma pengelompokan hibrid set kasar baharu untuk 
algoritma pengelompokan data kategori yang dinamakan algoritma Atribut 
Pembahagian Maksimum (MPA). Algoritma hibrid ini ialah penyelesaian 
menyeluruh untuk ketidakpastian, kerumitan pengiraan, ketulenan kelompok dan 
ketepatan yang lebih tinggi dalam pembahagian atribut dan pemilihan atribut 
pengelompokan. Algoritma MPA yang dicadangkan dibandingkan dengan algoritma 
garis dasar, iaitu Atribut Kepentingan Maksimum (MSA), Kekasaran 
Ketergantungan Teoritik Maklumat (ITDR), Atribut Kebolehlihatan Maksimum 
(MIA) dan K-Mean klasik yang ringkas. Selain itu, tujuh set data kecil daripada kes 
penyelidikan yang digunakan sebelum ini dan 21 repositori UCI dan set penanda aras 
digunakan untuk pengesahan. Seterusnya, keputusan dibentangkan dalam bentuk 
jadual dan grafik, telah menunjukkan bahawa algoritma MPA yang dicadangkan 
mengatasi algoritma garis dasar untuk semua set data. Tambahan pula, keputusan 
menunjukkan bahawa algoritma MPA yang dicadangkan meningkatkan ketepatan 
kasar terhadap MSA, ITDR dan MIA sebanyak 54.42%. Oleh itu, algoritma MPA 
berjaya mengurangkan kerumitan pengiraan berbanding dengan MSA, ITDR dan 
MIA dengan 77.11% masa dan 58.66% lelaran minimum. Begitu juga, peratusan 
peningkatan yang ketara sehingga 97.35% diperhatikan untuk ketulenan keseluruhan 
oleh Algoritma MPA terhadap MSA, ITDR dan MIA. Di samping itu, peningkatan 
ketepatan sehingga 34.41% diperoleh daripada ketepatan keseluruhan K-means 
mudah oleh MPA. Oleh itu, terbukti bahawa MPA yang dicadangkan berpotensi 
memberikan penyelesaian yang lebih baik dalam menangani masalah 
pengelompokan data kategorikal.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Since classification is the philosophy of classical rough set theory, i.e. rough set theory 

was used mainly to classify objects or to assign them to classes known as a posteriori 

(Komorowski et al., 1999; Pramanik et al., 2021). Therefore, this thesis focuses on 

application of rough set theory for data clustering (a priori), particularly, for 

categorical data clustering.  

     Data clustering is one of the basic tools available, to understand the structure 

of the data set (Mesakar and Chaudhari, 2012). The process of grouping a set of 

physical or abstract objects into classes of similar objects is known as clustering. 

Clustering algorithms play an important role in machine learning, data mining, 

information retrieval, web analytics, marketing, medical diagnostics, and pattern 

recognition. Clustering is often called unsupervised learning task because there is no 

class that shows the value of a prior clustering given from the data sample, which is 

the case in supervised learning. General definition of clustering could be "the process 

of organizing objects into groups whose members are similar in some ways". 

Therefore, the cluster is a collection of data objects that are similar to each other in a 

same and distinct cluster with objects in other clusters. 

1.2 Background of Study 

The amount of knowledge in the world cumulatively doubles approximately every 20 

months. This information is required for decision-making process, resulting in a 

1



cumbersome process due to enormous data. To combat the increase in the volume of 

information, many tools have been developed in different fields, including retrieval, 

acquisition, storage and maintenance (Jensen, 2005). Besides, considering the data 

explosion, various organizations have developed a large volume of databases that can 

accommodate a large amount of valuable information. However, in recent years, these 

massive amounts of data in disparate structures have been rapidly overwhelming. 

Therefore, Database Management System (DBMS) and systematized databases are 

established (Öztürk, 1999).  

An effective DBMS aids in the retrieval of information from a large 

data corpus. When dealing with large datasets, automated data summarization, pattern 

identification in raw data, and information extraction aid in enhancing managerial 

decisions. Scientific data, games data, software engineering data, personal data, digital 

media data, satellite sensing data, written reports data, medical data, commercial 

transactions data, virtual worlds data, world wide web repositories data, as well 

as surveillance video and photographs are just some of the types of data gathered on a 

regular basis (Figueiredo Filho et al., 2014). Humans cannot effectively examine a 

large data size, and require a knowledge discovery process, especially Knowledge 

Discovery in the Databases (KDD) (Düntsch et al., 2000). KDD is a multi-step process 

that can convert raw data into useful information. Upon conversion, the data are now 

nontrivial and implicit from the data in databases (Bagga and Singh, 2011). 

The KDD process consists of stages that include collecting raw data that will 

lead to the creation of new knowledge, data selection, data transformation, data 

cleaning, evaluating patterns, data integration, knowledge representations, and data 

mining (Keerthi et al., 2002). A data mining task is done to determine the nature of 

information discovered (Hu et al., 2017). As a result, the best approach to learn about 

data mining is to get familiar with the types of roles or issues it can solve. Majority of 

data mining jobs may be classified as descriptive or predictive (Burgos et al., 2018). 

Descriptive data mining tasks describe the general properties of the existing data, while 

predictive data mining tasks attempt to make predictions based on available data's 

inference. 
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There are pending issues that must be addressed, including data source, 

interface, mining methodologies, social, security and performance, before data mining 

can be developed into a conventional and trusted discipline (Rajalakshmi et al., 2010). 

Data mining functionalities include association analysis, classification, clustering, 

characterization, discrimination, and prediction, etc. Clustering is the function that 

focuses on grouping data (objects) into clusters where identical objects are collected 

within the same cluster, while disparate ones belong to different clusters. There are 

several cogent reasons to cluster data, with the most important being the building of 

simpler and more understandable methods that are easily acted upon (Weiss and 

Davison, 2010). Cluster analysis is among the most extensively employed exploratory 

data analysis tasks in data mining, with applications in the fields of information 

retrieval, image processing, web applications and speech processing (Benabdellah et 

al., 2019). The external validation indices measure the similarity between the output 

of the clustering algorithm and the unique partitioning of the dataset (Rodriguez et al., 

2019). 

The different algorithms can be broadly classified into partitioning, 

hierarchical, density, grid and model-based algorithms (Fahad et al., 2014; Wang et 

al., 2018). Partitioning-based algorithms specify the initial groups by reallocating them 

towards a union and all clusters are determined promptly. In hierarchy-based 

clustering, depending on the medium of proximity the data is organized in a 

hierarchical manner. Similarly, density-based based algorithms separate the data 

objects based on their regions of density, boundary and connectivity. Grid based 

technique divides the space of the data objects into grids. Whereas, in model-based 

clustering techniques the fit between the given data and some (predefined) 

mathematical model is optimized (Ali et al., 2017). Many domains like academic result 

analysis of institutions, machine learning, image mining, medical dataset, software 

engineering, bioinformatics, information retrieval and pattern recognition uses the core 

methodology of clustering (Aggarwal, 2014; Figueiredo Filho et al., 2014). 

The particular choice of a clustering algorithm also relies tremendously on 

specific data type. The different data types are textual, discrete sequences, time series, 

uncertain data, categorical and multimedia data (Kumar and Tripathy, 2009). There 
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are several clustering techniques developed to combine objects of same characteristics, 

however the implementation of them is challenging due to certain issues like 

categorical data clustering, handling uncertainty, stability and efficiency issues. 

Different techniques for clustering data having only numerical values were proposed 

by (Zhou and Wu, 2008). Unlike numerical data, the multi-valued attributes known as 

categorical data have common values or common objects and association between 

both. To deal with categorical data, several clustering algorithms have been developed 

(Jiang and Liu, 2020). Though, they contributed well to clustering process, but they 

are not able to handle uncertainty (Pramanik et al., 2021). In many cases where there 

is no sharp boundary between clusters, the uncertainty becomes an important real-

world issue. 

Huang, Gupta and Kang (Kim et al., 2004) explored fuzzy sets to handle 

uncertainty in categorical data clustering. However, to attain the stability and to control 

the membership fuzziness these algorithms require multiple runs (Naouali et al., 

2020b). Pawlak had introduced rough set theory (RST) (Pawlak, 2012), a mathematical 

tool to deal with vagueness and uncertainty. Many researchers and practitioners are 

attracted towards RST by contributing essentially to the applications and development 

in the fields of artificial intelligence, decision support systems, machine learning, 

knowledge acquisition, decision analysis, pattern recognition, expert systems, 

cognitive sciences, inductive reasoning, and knowledge discovery from data bases 

(Pawlak and Skowron, 2007). Many interesting applications, the basic ideas of RST 

and its extensions can be found in several books, issues of the transactions on rough 

sets, special issues of other journals, international conferences, proceedings and 

tutorials (Li et al., 2017). In general, and comparing to other clustering algorithms, the 

RST is selected in this research due to its simplicity, its capability to deal with 

uncertain and fuzzy information; it is completely data-driven that does not require any 

additional information such as fitness for the probability distribution, or function of 

membership, it does not need special measures such as consistency and distance 

measures, which resulted in high computational cost. 

The RST is a viable system to deal with uncertainty in clustering process of 

categorical data. RST was originally a symbolic data analysis tool now being 
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developed for cluster analysis (Zhou et al., 2016). In rough categorical clustering, 

mainly the data set is expressed as the decision table by introducing a decision 

attribute. Most of these methods assume one or more given partitions of the data set 

aiming to find a cluster which best represents the data according to some predefined 

measure. Set approximation and reduct based methods are the two main ideas of the 

rough set model which are promising for applications. Tolerance rough set clustering 

(Mingoti and Matos, 2012) and rough-K-Means clustering (Peters and Skowron, 2007) 

are the examples of set approximation methods. Despite of having satisfactory results, 

these methods have issues as they depend on several parameters and thresholds (Koç 

and Koç, 2016). The reduct based methods either work as pre-processing tool or as a 

tool for cluster generation but the problem of time complexity has not been solved yet 

(Eskandari and Javidi, 2016).   

In RST, a subset of universe can be represented in terms of equivalence classes 

as clustering of universe. Therefore, RST has been successfully applied for selecting 

best suitable clustering attribute. The pioneer algorithms to select clustering attribute 

are developed by (Mazlack et al., 2000) which includes Total Roughness (TR) and Bi-

Clustering (BC). These algorithms work on the accuracy of roughness (approximation 

accuracy average) in the RST. Later on, another rough categorical clustering algorithm 

named Min-Min Roughness (MMR) was proposed by Parmar et al. to improve 

previous algorithms (Parmar et al., 2010). Despite of MMR’s better performance, 

issues like accuracy, computational complexity and purity are yet to be addressed. In 

2010, an algorithm based on the dependency of attributes was introduced by (Herawan 

and Mat Deris, 2009) named maximum dependency of attributes (MDA) which uses 

rough set information system for categorical data clustering. Hassanein and Elmelegy 

in 2013, proposed maximum significance of attributes (MSA) that utilized the RST 

concept of significance of attributes for selecting clustering attribute (Hassanein and 

Elmelegy, 2013). Moreover, Park and Choi introduced information-theoretic 

dependency roughness (ITDR) algorithm (Park and Choi, 2015) which finds the 

entropy roughness to select the suitable clustering attribute. It is another rough 

clustering algorithm that uses the information-theoretic dependencies of categorical 

attributes in information systems. Recently, Uddin et al in 2017 introduced an 

alternative algorithm named maximum indiscernible attribute (MIA) algorithm (Uddin 

et al., 2017). for clustering categorical data using rough set indiscernible relations is 
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proposed. The novelty of the proposed approach is based on the concept of 

indiscernibility relation combined with a number of clusters.  

Today the world is full of data and everyday people encounter a large amount 

of information and they store or represent it as data for further analysis and 

management. One of the vital means in dealing with these data is to classify or group 

them into a set of categories or clusters. Rough Set Theory (RST) is a powerful 

mathematical tool proposed by Pawlak (Pawlak and Skowron, 2007) successfully 

applied to deal with vagueness and uncertainty in data analysis. The concept of rough 

set theory in this research work is utilized in terms of data in an information system.  

Rough set theory has the ability of decision making in the presence of 

uncertainty and vagueness. Moreover, it can represent a subset of universe in terms of 

equivalence classes of partition of the universe. Obviously, every subset of attributes 

induces unique indiscernibility relation which is an equivalence relation and hence, 

induces unique clustering. This notion of indiscernibility is very attractive, since each 

indiscernible relation is also a sort of cluster. In this study, the indiscernibility is used 

as a measure of similarity without any distance function for clustering the objects.  

Recently, the problem of clustering categorical data has received much 

attention in many fields from statistics to psychology. The categorical data unlike 

numerical data cannot be naturally ordered. Therefore, those clustering algorithms 

dealing with numerical data cannot be used to cluster categorical data. In addition, very 

less work has been done for clustering the categorical data. A well-known algorithm 

for clustering categorical data is using rough set theory (Park and Choi, 2015). 

Originally the motivation and inspiration for this study came from exploring useful 

limitations and issues of existing rough categorical clustering algorithms (Mazlack et 

al., 2000; Parmar et al., 2007; Herawan et al., 2010; Hassanein and Elmelegy, 2013; 

Park and Choi, 2015; Uddin et al., 2017). This research is conducted in order to come 

with more general, efficient and better rough categorical clustering algorithms. The 

MSA, ITDR and MIA algorithms outperformed their previous algorithms such as BC, 

TR, MMR etc.   
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Most rough set-based clustering algorithms consider two methods: (i) 

introducing a condition attribute based on which the dataset is divided to partition the 

objects, and (ii) evaluating the dataset lower and quality of approximations. All of the 

previous methods have issues with accuracy, purity, and computational complexity. 

The limitations and issues of MSA, ITDR, and MIA algorithms on several data sets 

where those algorithms fail to select or randomly select attributes or struggle to select 

their best clustering attribute (Naouali et al., 2020a; Naouali et al., 2020b; Salem et 

al., 2021; Ye and Liu, 2021). Some of the limitations are listed. 

1. Accuracy is an issue for MSA, ITDR, and MIA algorithms because they are all

primarily determined by the cardinality of lower approximation of an attribute,

and partitioning attribute based on approximation of sets on one attribute is

highly similar to that induced by other attribute values.

2. The MSA algorithm cannot perform well on data sets with attributes of equal

significance value.

3. The MIA algorithm fails to select the clustering attribute for data sets with

attributes having an indiscernibility value of zero or equal to zero.

4. Due to the presence of purity measures, ITDR and MIA algorithms face issues

like random attribute selection and integrity of clusters.

5. For MSA, ITDR, and MIA algorithms, computation complexity is still an

outstanding issue due to the fact that all attributes are considered to be selected

and the ever-increasing computing capabilities.

6. Due to the presence of objects of different classes within a cluster, ITDR and

MIA cluster purity remain an issue for cluster validity.
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1.3 Problem Statement 

However, one of the main research problems of rough sets is set 

approximation; existing algorithms struggle to select or fail to select or randomly select 

their best clustering attribute during the clustering process; and the other is data 

analysis algorithms. The initial data partitioning influences the quality of the final 

rough set categorical clustering (Salem et al., 2021; Sun et al., 2011; Zhang et al., 

2016; Zhang et al., 2018). To address these issues and problems, it is necessary to 

propose more appropriate methods-based algorithms to partition the attributes and 

select the best clustering attribute. 

     Solving or mitigating these problems of the RST can lead to enhance its 

performance. Therefore, this study proposed a variety of solutions-based RST 

algorithms as well as RST itself. For RST- based algorithms, the research has 

expanded to include the RST in combination with two methods such as attribute 

partitioning and attribute selection. For the RST itself, this research proposed several 

extensions, definitions, and proofs to RST to overcome the problem of the 

approximation of sets and ignoring the attributes in the boundary region.    

This thesis arose from the discovery of useful limitations and existing issues in 

categorical clustering algorithms while searching for an efficient algorithm for 

categorical data clustering. However, because the main algorithms for categorical data 

clustering based on rough set theory are relatively new, a robust clustering algorithm 

that can also handle uncertainty in categorical data clustering is required. 

Accordingly in this work, two rough set based categorical clustering methods 

are proposed. Positive Region Indiscernibility (PRI) for attribute partitioning, and 

Maximum Mean Partitioning (MMP) for attribute selection, to improve RST 

categorical clustering algorithms. Furthermore, a proposed RST categorical clustering 

algorithm, Maximum Partitioning Attribute (MPA), which takes maximal mean 

partitioning measures into account, necessitates calculating the positive and boundary 

regions of attributes in an information system. Several propositions and experiments 

8



on benchmark data sets show the significance, novelty and contribution of these 

proposed methods and algorithms to practical systems. 

1.4 Research Aim and Objectives 

The main aim of the research is to propose an enhanced rough set based categorical 

clustering algorithm using the integration of the attribute partition and attribute 

selection method. The categorical attributes in RST boundary region are evaluated and 

the candidate attribute is chosen to reconstruct the positive region that could enhance 

the performance of RST clustering. For this purpose, the following research objectives 

are developed: 

i. To propose rough set-based attributes partitioning method, Positive Region,

based Indiscernibility (PRI), that includes the positive and boundary regions in

attributes to reduce the similarity attributes value for selecting partitioning

attribute and increasing accuracy of approximation sets.

ii. To propose rough set-based attribute selecting method, Maximum Mean

Partitioning (MMP), that speed up selection of the best clustering attributes in

order to reduce computational complexity (Iteration and Time).

iii. To propose rough set based categorical clustering algorithm, Maximum

Partitioning Attributes (MPA), by integrating PRI and MMP methods, that

combines the partitioning attributes with best clustering attribute selected to

evaluate their performance and increase cluster purity.

iv. To validate the performance of proposed methods and algorithm on real and

benchmarked datasets by comparing them with recent baseline rough

categorical clustering algorithms including Maximum Significant Attribute

(MSA), Information Theoretic Dependency Roughness (ITDR), Maximum

Indiscernibility Attribute (MIA), and classical K-mean clustering algorithms in

terms of computational complexity (time and iteration), and purity.
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1.5 Research Questions 

The following research questions have been constructed based on the objectives above: 

i. How to address inappropriate attribute partitioning in order to reduce the value

set of similarity attributes and increase accuracy?

ii. How can the difficulty to select or failure to select a clustering attribute be

addressed in order to reduce computational complexity (requiring fewer

iterations and delivering a better response)?

iii. How can cluster validity estimation algorithms for categorical data clustering

be improved to maximize cluster purity?

1.6 Research Scope and Assumptions 

The research falls into the domains of data mining and clustering and aims to develop 

RST-based categorical clustering methods, namely Positive Region Indiscernibility 

(PRI) and Maximum Mean Partitioning (MMP) for partitioning and attribute selection, 

to enhance the RST categorical clustering algorithms. Moreover, a proposed RST 

categorical clustering algorithm, Maximum Partitioning Attributes (MPA) is also 

introduced to find a better cluster validity estimation algorithm for the categorical 

clustering process. The relevant propositions are illustrated to prove the correctness 

and effectiveness of the proposed algorithms. Twenty-one (21) from the UCI-

repository and seven (7) small categorical datasets are considered for experimentation 

and validation of proposed methods and algorithm.  

A real-world supply base management (SBM) dataset is also considered in the 

experiments. Three existing RST-based categorical clustering algorithms, Maximum 

Significance Attribute (MSA), Information Theoretic Dependency Roughness (ITDR) 

and Maximum Indiscernible Attribute (MIA), are used for comparison with proposed 

PRI, MMP methods, and MPA algorithms in terms of rough accuracy, purity, number 

of iterations, and response time. Finally, the proposed MPA algorithm is compared to 

10



the classical simple K-Mean algorithm on 10 datasets to test and evaluate its 

performance. 

1.7 Research Hypothesis Development 

The following research hypothesis have been constructed based on the objectives and 

questions above:  

Ho - Null Hypothesis  

Ha - Alternate Hypothesis 

Hypothesis 1: 

Ho - There is no significant relationship between attributes partitioning and accuracy 

performance. 

Ha - There is significant relationship between attributes partitioning and accuracy 

performance. 

Hypothesis 2: 

Ho: There is no significant relationship between faster attributes selection and 

computational complexity (Iteration and Time) performance.  

Ha: There is significant relationship between faster attributes selection and 

computational complexity (Iteration and Time) performance. 

Hypothesis 3: 

Ho - There is no significant relationship between number of cluster and purity 

performance.  

Ha - There is significant relationship between number of cluster and purity 

performance. 

11



1.8 Research Significance 

There are three phases’ implications for this thesis. Firstly, a union positive and 

boundary regions-based dependency measure induces an alternative definition for 

assessing uncertainty using a rough set for categorical data clustering. Second, an 

alternative method for selecting a clustering attribute-based rough set is proposed. To 

settle the increasing computing capabilities, a better selection targeting process was 

used to select the maximal value of a mean dependency degree as a clustering attribute. 

Third, domain knowledge on data like rough value set is utilized to develop a RST 

categorical clustering algorithm integrating the previous methods, and nm cluster 

purity measurement and validation are presented. All the proposed algorithms show 

significant improvement for clustering categorical data, not only in terms of accuracy 

and cluster purity, but also in terms of time taken and number of iterations. 

Furthermore, an application of the proposed methods and algorithm for clustering 

supplier chain management is presented. Discussion and analysis of the results of the 

proposed method and algorithms will be provided in detail later. 

1.9 Thesis Organization 

The remaining chapters of the research are organised as follows: 

Chapter 2 or literature review discusses some fundamental concepts and 

overview of existing works on clustering categorical data using RST. It comprises of 

an information system notion in rough relational database, an indiscernibility relation, 

set approximations and rough set based categorical clustering algorithm. Moreover, it 

also presents analysis, limitations, and examples of some existing rough for clustering 

categorical data algorithms. 

Chapter 3 presents the research methodology. The suggested clustering-based 

methods for categorical data, namely Positive Region-based Indiscernibility (PRI), 

Maximum Mean Partitioning (MMP) and Maximum Partitioning Attributes (MPA) 

methods, are discussed. Aside from that, basic info on partitioning, attribute selection 
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and categorical clustering algorithm using RST and set cardinality value are also 

discussed. The evaluation metrics applied in this study are also described. Multiple 

suggestions and instances are provided to indicate the significance of suggested 

algorithms and approaches.  

Chapter 4 portrays the outcomes of studies on recommended PRI method. 

Empirical research on three small UCI-repository benchmark datasets demonstrates 

the performance of the recommended method. Furthermore, outcomes from this study 

are compared with results from the latest and prominent rough set algorithms for 

clustering categorical data. All the experimental outcomes are deliberated and 

examined in detail by illustrating them in graph and tabulation forms.  

Chapter 5 provides the outcomes of the research on recommended MMP 

method. Empirical research on three small UCI-repository benchmark datasets 

demonstrates the performance of the suggested method. Moreover, outcomes of this 

study are compared with results from latest and prominent rough set algorithms for 

clustering categorical data. All the experimental outcomes are deliberated and 

examined in detail by depicting them in the forms of graph and tabulation.   

Chapter 6 analyses the outcomes of experiments on the suggested MPA 

algorithm. Empirical research on UCI-repository benchmark datasets and a real SBM 

dataset portrays the performance of the suggested algorithm. Comparison with the 

latest and prominent rough set algorithms for clustering categorical data will also be 

implemented. All the experimental outcomes are deliberated and examined in detail 

by depicting them in graph and tabulation forms. 

Finally, Chapter 7 provides closing remarks, recommendations, and suggestions for 

future works.  
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