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Abstract 

This dissertation includes five Chapters. A brief description of each chapter is organized 

as follows. 

 In Chapter One, we propose a signed bipartite genotype and phenotype network 

(GPN) by linking phenotypes and genotypes based on the statistical associations. It 

provides a new insight to investigate the genetic architecture among multiple correlated 

phenotypes and explore where phenotypes might be related at a higher level of cellular and 

organismal organization. We show that multiple phenotypes association studies by 

considering the proposed network are improved by incorporating the genetic information 

into the phenotype clustering. 

 In Chapter Two, we first illustrate the proposed GPN to GWAS summary statistics. 

Then, we assess contributions to constructing a well-defined GPN with a clear 

representation of genetic associations by comparing the network properties with a random 

network, including connectivity, centrality, and community structure. The network 

topology annotations based on the sparse representations of GPN can be used to understand 

the disease heritability for the highly correlated phenotypes. In applications of phenome-

wide association studies, the proposed GPN can identify more significant pairs of genetic 

variant and phenotype categories. 

 In Chapter Three, a powerful and computationally efficient gene-based association 

test is proposed, aggregating information from different gene-based association tests and 

also incorporating expression quantitative trait locus information. We show that the 

proposed method controls the type I error rates very well and has higher power in the 

simulation studies and can identify more significant genes in the real data analyses. 

In Chapter Four, we develop six statistical selection methods based on the penalized 

regression for inferring target genes of a transcription factor (TF). In this study, the 

proposed selection methods combine statistics, machine learning , and convex optimization 

approach, which have great efficacy in identifying the true target genes. The methods will 

fill the gap of lacking the appropriate methods for predicting target genes of a TF, and are 

instrumental for validating experimental results yielding from ChIP-seq and DAP-seq, and 

conversely, selection and annotation of TFs based on their target genes. 

 In Chapter Five, we propose a gene selection approach by capturing gene-level 

signals in network-based regression into case-control association studies with DNA 

sequence data or DNA methylation data, inspired by the popular gene-based association 

tests using a weighted combination of genetic variants to capture the combined effect of 

individual genetic variants within a gene. We show that the proposed gene selection 

approach have higher true positive rates than using traditional dimension reduction 

techniques in the simulation studies and select potentially rheumatoid arthritis related genes 

that are missed by existing methods. 
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1 Chapter 1 

 

A novel method for multiple phenotype association studies 

based on genotype and phenotype network 

 

Abstract 

Joint analysis of multiple correlated phenotypes for genome-wide association studies 

(GWAS) can identify and interpret pleiotropic loci which are essential to understand 

pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on 

associations between phenotypes and genotypes provides a new insight to analyze multiple 

phenotypes, which can explore whether phenotypes and genotypes might be related to each 

other at a higher level of cellular and organismal organization. In this paper, we first 

develop a bipartite signed network by linking phenotypes and genotypes into a Genotype 

and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative 

and qualitative phenotypes and is applicable to binary phenotypes with extremely 

unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful 

community detection method to partition phenotypes into disjoint network modules based 

on GPN. Finally, we jointly test the association between multiple phenotypes in a network 

module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72 

complex traits in the UK Biobank show that multiple phenotype association tests based on 

network modules detected by GPN are much more powerful than those without considering 

network modules. The newly proposed GPN provides a new insight to investigate the 

genetic architecture among different types of phenotypes. Multiple phenotypes association 

studies based on GPN are improved by incorporating the genetic information into the 

phenotype clustering. Notably, it might broaden the understanding of genetic architecture 

that exists between diagnoses, genes, and pleiotropy. 

Keywords: multiple phenotype association studies; genotype and phenotype network; 

community detection 

 

1.1 Introduction  

Genome-wide association studies (GWAS) have successfully identified thousands of 

single nucleotide polymorphisms (SNPs) genetically associated with a wide range of 

complex human diseases and traits1,2. Over the past decade, more than 10,000 associations 

between SNPs and diseases/traits have been discovered3. Although GWAS have emerged 

as a common and powerful tool to detect the complexity of the genotype-phenotype 

associations, a common limitation of GWAS is that they focus on only a single phenotype 

at a time4-7. Joint analysis of multiple correlated phenotypes for GWAS may provide more 

power to identify and interpret pleiotropic loci, which are essential to understand pleiotropy 

in diseases and complex traits4,8,9. In brief, biological pleiotropy refers to a SNP or gene 

that has a direct biological influence on more than one phenotypic trait10. Biological 
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pleiotropy can offer significant insights in understanding the complex genotype-phenotype 

relationships2. Therefore, multiple phenotypes are usually collected in many GWAS 

cohorts and jointly analyzing multiple phenotypes may increase statistical power to 

discover the cross-phenotype associations and pleiotropy10-13.  

Many statistical methods have been developed to jointly test the association 

between a SNP and multiple correlated phenotypes14. The most widely used methods for 

multiple phenotype association studies can be roughly classified into three categories: 1) 

statistical tests based on combining either the univariate test statistics or p-values, such as 

O’Brien’s method15, adaptive Fisher’s combination (AFC)16, aSPU17, and others18; 2) 

multivariate analyses based on regression methods, such as multivariate analysis of 

variance (MANOVA)19, reverse regression methods (MultiPhen)20, linear mixed effect 

models (LMM)21, and generalized estimating equations (GEE)22; and 3) dimension 

reduction methods, such as clustering linear combination (CLC)12, canonical correlation 

analysis (CCA)23, and principal components analysis (PCA)24,25. However, most 

phenotypes are influenced by many SNPs that act in concert to alter cellular function26, the 

above mentioned methods are only based on phenotypic correlation without considering 

the genetic correlation among phenotypes. Therefore, these methods may loss statistical 

power to detect the true pleiotropic effects comparing the methods based on genetic 

architecture among complex diseases. To address this issue, numerous types of algorithms 

to investigate the genetic correlation among complex traits and diseases have been 

developed27-29. Many of these algorithms are often in conjunction with linkage 

disequilibrium (LD) information by using GWAS summary association data28. For 

example, cross-trait LD score regression has been developed to estimate genetic and 

phenotypic correlation that requires only GWAS summary statistics and is not biased by 

overlapping samples27.  

In 2007, a conceptually different approach based on the human disease network had 

been developed, exploring whether human complex traits and the corresponding genotypes 

might be related to each other at a higher level of cellular and organismal organization30. 

Network analyses provide an integrative approach to characterize complex genomic 

associations31. Therefore, constructing a network based on the associations between 

phenotypes and genotypes provides a new insight to simultaneously analyze multiple 

phenotypes and SNPs. Notably, it might broaden the understanding of genetic architecture 

that exists between diagnoses, genes, and pleiotropy8. Modules detected from human 

disease networks are useful in providing insights pertaining to biological functionality32. 

Therefore, community detection methods play a key role in understanding the global and 

local structures of disease interaction, in shedding light on association connections that 

may not be easily visible in the network topology33. Many community detection methods 

have been applied from social networks to human disease networks, such as Louvain's 

method8 with modularity as a measure and core module identification to identify small and 

structurally well-defined communities32. However, most community detection methods 

have been developed for unsigned networks34-40.  

To date, many biobanks, such as the UK Biobank41, aggregate data across tens of 

thousands of phenotypes and provide a great opportunity to construct the human disease 

network and perform joint analyses of multiple correlated phenotypes. The electronic 
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health record (EHR)-driven genomic research (EDGR) workflow is the most popular way 

to analyze multiple diagnosis codes in Biobank data, at its core, which is the use of EHR 

data for genomic research in the investigation of population-wide genomic 

characterization42. In most EHR systems, the whole phenome can be divided into numerous 

phenotypic categories according to the first few characters of the International 

Classification of Disease (ICD) billing codes43. However, the ICD-based categories are 

based on the underlying cause of death rather than on the shared genetic architecture among 

all complex diseases and traits. Meanwhile, the phenotypes in large biobanks usually have 

extremely unbalanced case-control ratios. Therefore, linking phenotypes, especially EHR-

derived phenotypes, with genotypes in a network is also very important to examine the 

genetic architecture of complex diseases and traits. 

1.2 Material and Methods 

1.2.1 Overview of Methods 

In this paper, we develop a bipartite signed network by linking phenotypes and genotypes 

into a Genotype and Phenotype Network (GPN; Figure 1.1a). The GPN can be constructed 

by a mixture of quantitative and qualitative phenotypes and is applicable to phenotypes 

with extremely unbalanced case-control ratios for large-scale biobank datasets since the 

saddlepoint approximation44 is used to test the association between genotype and 

phenotype with extremely unbalanced case-control ratio. After projecting genotypes into 

phenotypes, the genetic correlation of phenotypes can be calculated based on the shared 

associations among all genotypes (Figure 1.1b). We then apply a powerful community 

detection method to partition phenotypes into disjoint network modules using the 

hierarchical clustering method and the number of modules is determined by perturbation 

(Figure 1.1c)45. The phenotypes in each network module share the same genetic 

information. After partitioning phenotypes into disjoint network modules, a statistical 

method for multiple phenotype association studies can be applied to test the association 

between phenotypes in each module and a SNP, then a Bonferroni correction can be used 

to test if all phenotypes are associated with a SNP (Figure 1.1d). To jointly analyze the 

association between multiple phenotypes in each module with a SNP, we use six multiple 

phenotype association tests, including ceCLC46, CLC12, HCLC47, MultiPhen20, O’Brien15, 

and Omnibus12. The advantage of the association test based on network modules detected 

by GPN is that phenotypes in a network module are highly correlated based on the genetic 

architecture, therefore, the association test is more powerful to identify pleiotropic SNPs. 

After we obtain the GWAS signals from the previous steps, post-GWAS analyses can be 

applied to understand the high level of biological mechanism, such as pathway/tissue 

enrichment analysis and colocalization of GWAS signals and eQTL analysis in the specific 

disease-associated tissue (Figure 1.1e-g). The construction of GPN, community detection 

method, and six multiple phenotype association tests with and without considering the 

network modules detected by GPN have been implemented in R, which is an open-source 

software and publicly available on GitHub: https://github.com/xueweic/GPN. 

 

https://github.com/xueweic/GPN
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Figure 1.1. Overview of the method. a. Construction of a signed bipartite network, GPN. 

Each phenotype (yellow square) and each SNP form a directed edge which represents the 

strength of the association, where the red dashed line indicates that the minor allele of the 

SNP is a protective allele to the phenotype, and the blue dashed line indicates that the minor 

allele of the SNP is a risk allele to the phenotype. b. Construction of a signed network, 

PPN, which is the one-mode projection of GPN on phenotypes. c. The powerful community 

detection method is used to partition phenotypes into disjoint network modules with 

different colors. d. Multiple phenotype association tests are applied to test the association 

between phenotypes in each of the network modules and a SNP, then the Bonferroni 

correction is used to obtain the overall p-value. e. GWAS signals are identified by a 

multiple phenotype association test with or without considering network modules. f. 

Functional enrichment analysis based on the detected GWAS signals and the publicly 

available functional database. g. Colocalization of GWAS signals and eQTL analysis. 
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1.2.2 Construction of the Genotype and Phenotype Network 

Consider a sample with n  unrelated individuals, indexed by 1, ,i n= . Suppose each 

individual has a total of K  phenotypes and M  SNPs. Let ( )iky=Y  be an n K  matrix of 

K  phenotypes, where 
iky  denotes the phenotype value of the thi  individual for the thk  

phenotype. The phenotypes can be both quantitative and qualitative, especially for 

phenotypes with extremely unbalanced case-control ratios. Let ( )img=G  be an n M  

matrix of genotypes, where 
img  represents the genotypic score of the thi  individual at the 

thm  SNP which is the number of minor alleles that the thi  individual carries at the SNP. 

We first introduce a signed bipartite genotype and phenotype network (GPN) 

(Figure 1.1a). The weight of an edge represents the strength of the association between the 

two nodes (one is the phenotype and the other one is the genotype). The strength of the 

association has two directions, positive and negative. The adjacency matrix of GPN is a 

K M  matrix ( )kmT=T , where 
kmT  represents the strength of the association between the 

thk  phenotype and the thm  SNP. To calculate the adjacency matrix Τ , we consider both 

the strengths and the directions of the associations. We first consider that there are no 

covariates. The strength of the association 
kmT  can be estimated by the score test statistic 

( )
1

n

km ik k imi
S y y g

=
= −  and its p-value 

kmp  under the generalized linear models 

( )( ) 0 1ik im km km img E y g g = +  ( 1, ,k K=  and 1, ,m M= ) 48. Here, 
1

n

k iki
y y n

=
=  

and ( )g  is a monotonic link function. Two commonly used link functions are the identity 

link for quantitative traits and the logit link for binary traits. If there are p  covariates for 

the thi  individual, 
1, ,i ipx x , we adjust genotype and phenotype for the covariates using 

the following linear models proposed by Price et al.49 and Sha et al.50,  

0 1 1

0 1 1

,
ik k k i pk ip ik

im i p ip im

y x x

g x x

   

   

= + + + +

= + + + +
 

where ( )1 , ,
T

k k nk =ε  and ( )1 , ,
T

m m nm =τ  denote the error terms of the thk  

phenotype and the thm  SNP, respectively. We use the residuals of the respective linear 

model to replace the original genotypes and phenotypes.  

For quantitative traits or binary traits with fairly balanced case-control ratios, we 

can use the normal approximation of ( )20,km kmS N   to calculate p-value 
kmp  under the 

null hypothesis that the thk  phenotype and the thm  SNP have no association, where 

( ) ( )
2 22

1 1

n n

km ik k im mi i
y y g g n

= =
= − −   and 

1

n

m imi
g g n

=
= . Dey et al. 44 pointed out 

that a normal approximation of 
kmS  has inflated type I error rates for binary traits with 

unbalanced case-control ratios. Therefore, we use saddlepoint approximation to calculate 

the p-value 
kmp  for the phenotypes with unbalanced, especially extremely unbalanced 
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case-control ratios44. We define the ( ),
th

k m  element of the adjacency matrix of GPN, 
kmT

, as ( ) ( )1sign 1km km Chi kmT S F p−= − , where ( )ChiF  denotes the CDF of 2

1 . That is, we use 

sign( )kmS  to define the direction of the association and use ( )1 1Chi kmF p− −  to define the 

strength of the association. 0kmT   and 0kmT   represent two directions of the association 

between the thk  phenotype and the thm  SNP. If 0kmT  , the minor allele of the thm  SNP is 

a protective allele to the thk  phenotype; if 0kmT  , the minor allele of the thm  SNP is a risk 

allele to the thk  phenotype.  

Although a bipartite network may give the most complete representation of a 

particular network, it is often convenient to work with just one type of nodes, that is, 

phenotypes or genotypes. The Phenotype and Phenotype Network (PPN) is the one-mode 

projection of GPN on phenotypes. In PPN, nodes only represent phenotypes (Figure 1.1b). 

Let ( )klW=W  denote the adjacency matrix of the PPN in which each edge has a positive 

or negative weight. We define 
klW  as the weight of the edge connecting the thk  and thl  

phenotypes, which is given by  

( )( )

( ) ( )
1

2 2

1 1

, , 1, , .

M

km k lm lm
kl

M M

km k lm lm m

T T T T
W k l K

T T T T

=

= =

− −
= =

− −



 
 

Here, 
klW  is the genetic correlation between the thk  and thl  phenotypes based on 

the association strengths 
kmT  for 1, ,k K=  and 1, ,m M= . Thus, the PPN is also a 

signed network. 

1.2.3 Community Detection Method 

We apply a powerful community detection method to partition K  phenotypes into disjoint 

network modules using the Ward hierarchical clustering method with a similarity matrix 

defined by the genetic correlation matrix W 45. The number of network modules is 

determined by the following perturbation procedure51. In details, we first use the Ward 

hierarchical clustering method to group the K  phenotypes into 
0k  (

0 1, , 1k K= − ) 

clusters and build the K K  connectivity matrix 
0kC  with the ( ),

th
k l  element of matrix 

0kC  given by  

( )
0

1, if phenotype and phenotype are in the same cluster
, .

0, otherwise
k

k l
k l


= 


C  

Then, we generate B  perturbed data sets. The thb  perturbed data set is generated 

by ( )b

km km kmT T = + , where ( )20,km N  , ( ) ( )( )2

1median var , ,var M = T T , and 

( )1 , ,m m KmT T=T . We denote the connectivity matrix of 
0k  cluster based on the thb  

perturbed data set by 
( )

0

b

kC . Let 
( )

0 01

B b

k kb
B

=
=A C  and 

0 0 0k k k= −D A C , 
0kF  denotes the 
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empirical CDF of the elements of 
0kD , and 

0kAF  denotes the area under the curve of 
0kF , 

where ( ) ( ) 
0 0

2# , : , 1, ,k kF x l k x l k K K=  =D . Then, the optimal number of network 

modules is given by 

 1
1, , 1

arg max .k k
k K

C AF AF+
= −

= −  

We can use the identified C  network modules to further investigate the 

associations between phenotypes in each network module and SNPs. 

1.2.4 Multiple Phenotype Association Tests 

After we obtain C  network modules for the phenotypes, we apply a multiple phenotype 

association test to identify the association between phenotypes in each of the C  network 

modules and a SNP. Any multiple phenotype association test can be applied here. In this 

article, we apply six commonly used multiple phenotype association tests to each network 

module, including ceCLC46, CLC12, HCLC47, MultiPhen20, O’Brien15, and Omnibus12 (see 

details in Text A.1), then a Bonferroni correction is used to adjust for multiple testing for 

the C  network modules to test if all phenotypes in the C  network modules associated with 

a SNP.  

1.2.5 Data Simulation 

We conduct comprehensive simulation studies to evaluate the type I error rates and powers 

of multiple phenotype association tests based on network modules detected by GPN and 

compare them to the powers of the corresponding tests without considering network 

modules. To evaluate the performance of our proposed method, we consider different types 

of phenotypes: (i) mixture phenotypes: half quantitative and half qualitative with balanced 

case-control ratios, and (ii) binary phenotypes: all qualitative but with extremely 

unbalanced case-control ratios. We generate N  individuals with M  SNPs and K  

phenotypes. The genotypes at M  SNPs are generated according to the minor allele 

frequency (MAF) under Hardy-Weinberg Equilibrium (HWE). Below, we first describe 

how to generate quantitative phenotypes. Suppose that there are C  phenotypic categories 

and k K C=  phenotypes in each phenotypic category. Let ( )1, ,c c ck=Y y y  denote the 

phenotypes in the thc  category. Similar to Sha et al. 12, we generate k  quantitative 

phenotypes in each category using the following factor model, 

2

0 01 ,T

c c c k cc c=  +   + − Y G B Ef 1  

where ( )1, , M=G G G  is the matrix of M  SNPs with dimension N M  which are 

generated from a ( )binomial 2,MAF  distribution for each SNP; 
cB  is an M k  matrix of 

effect sizes of M  SNPs on k  phenotypes in the thc  phenotypic category; 

( ),c kMVNE Σ0  is an N k  matrix of error term with ( )ij=Σ , where 
i j

ij 
−

=  and 

  is a constant between 0 to 1; 
cf  is a factor vector in ( )1, , C=f f f  which follows 
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( ),C fMVN Σ0 , where ( )1f f C f C = − +Σ I J , ( )corr ,f i j = f f  if i j , 
CJ  is a C C  

matrix with all elements of 1, and 
CI  is the identity matrix; 

0c  is a constant number which 

represents a proportion. Therefore, the correlation between the thi  phenotype and the thj  

phenotype within each category is ( )2 2

0 01
i j

c c 
−

+ −  and the between-category correlation 

is 2

0 fc  .  

To generate a qualitative disease affection status, we use a liability threshold model 

based on a quantitative phenotype and its case-control ratio. Let 
an  and 

cn  denote the 

number of affected individuals and the number of non-affected individuals. For a given 

case-control ratio r  and sample size N , ( )1cn N r= +  and ( )1an rN r= + . An 

individual is defined to be affected if the individual’s phenotype is in the top 
an  of all 

phenotypes. For each phenotype, the case-control ratio is randomly chosen from a set S . 

The set S  contains all case-control ratios with the number of cases greater than 200 from 

UK Biobank ICD-10 code level 3 phenotypes (see Real Dataset).  

Based on the factor model, we consider different numbe 2C = rs of phenotypes, 60, 

80, and 100, and different sample sizes. For mixture phenotypes, the sample sizes are 2,000 

and 4,000; for binary phenotypes, the sample sizes are 10,000 and 20,000. We consider the 

following six models (Table A.1) with 2,000M = , ( )0.05,0.5MAF U , 0.3 = , 

2

0 0.5c = , and 2

00.3f c =  (between-category correlation is 0.3). ( )1
ˆ 1, ,1

T
=λ  and 

( )2

2ˆ 1, ,
1

T
k

k


=

+
λ  are two types of effect sizes. 

Model 1: 
causal 100M = , 2C = , and all phenotypes are associated with at least one SNP 

with the same effect sizes but different directions. That is, the first 50 SNPs affect the 

phenotypes in the first category with 1λ̂  and the second 50 SNPs affect the phenotypes in 

the second category with 1
ˆ-λ . 

Model 2: 
causal 100M = , , and all phenotypes are associated with at least one SNP with 

different effect sizes and different directions. That is, the first 50 SNPs affect the 

phenotypes in the first category with 1λ̂  and the second 50 SNPs impact the phenotypes in 

the second category with 2
ˆ-λ . 

Model 3: 
causal 100M = , 5C = , and only phenotypes in the first two categories are 

associated with the first 100 SNPs with the same settings as in Model 1. The phenotypes 

in the remaining three categories do not associate with any SNPs. 

Model 4: 
causal 100M = , 5C = , and only phenotypes in the first two categories are 

associated with the first 100 SNPs with the same settings as in Model 2. The phenotypes 

in the remaining three categories do not associate with any SNPs. 
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Model 5: 
causal 200M = , 4C = , and all phenotypes are associated with at least one SNP. 

That is, the first 50 SNPs affect the phenotypes in the first category with 1λ̂ , the second 50 

SNPs affect the phenotypes in the second category with 1
ˆ-λ , the third 50 SNPs affect the 

phenotypes in the third category with 2λ̂ , and the fourth 50 SNPs affect the phenotypes in 

the fourth category with 2
ˆ-λ . 

Model 6: 
causal 200M = , 10C = , and only phenotypes in the first four categories are 

associated with the first 200 SNPs with the same settings as in Model 5. The phenotypes 

in the remaining six categories do not associate with any SNPs. 

1.2.6 Comparison of Methods 

We use six multiple phenotype association tests to evaluate the performance of our 

proposed method based on network modules. Therefore, we consider the following two 

types of comparisons.  

Comparison 1: Apply six multiple phenotype tests without considering network modules.  

We test the association between K  phenotypes and a SNP. For each simulation model, we 

run B  Monte-Carlo (MC) runs. The steps for the thb  MC run are as follow. i). Generate 

N  individuals with M  SNPs and K  phenotypes in C  categories; ii). Test the association 

between K  phenotypes and M  SNPs using each of the multiple phenotype association 

tests. The p-value for the thm  SNP in the thb  MC run is given by 
( )b

mp . To evaluate the type 

I error rates of the tests, we generate phenotypes from the null model, that is, for each 

model, we set 0 = . The type I error rate, 
. .T1EN O

, can be calculated by 

( )( )1 1

. .T1E .

B M b

mb m

N O

I p

B M


= =


=



 
 

To evaluate power, we generate phenotypes from each of the six models with 

different effect sizes  . The power, 
. .powerN O

, can be calculated by 

( )( )causal

1 1

. .

causal

power .

B M b

mb m

N O

I p

B M


= =


=



 
 

Comparison 2: Apply six multiple phenotype tests by considering network modules. 

For each simulation model, we run B  MC runs. We use the following steps for thb  MC 

run. i). Generate N  individuals with M  SNPs and K  phenotypes in C  categories; ii). 

Construct the GPN based on the shared genetic architecture; iii). Detect ( )b
C  network 

modules for the K  phenotypes using the community detection method; iv). Test the 

association between phenotypes in each of the ( )b
C  network modules and each of M  SNPs 

using one of the six tests. We use 
( )b

cmp  to denote the p-value of the assocition test between 

phenotypes in the thc  network module and the thm  SNP for ( )1,2, , bc C= . To evaluate 
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the type I error rate of a test based on the network modules, we generate phenotypes under 

the null model. That is, for each model, we set 0 = . The type I error rate, T1ENET
, can 

be calculated by 

( )

( )  ( )

1 1
1, ,

min

T1E .
b

B M b b

cmb m
c C

NET

I p C

B M


= =

=

 
 

 =


 
 

To evaluate power, we generate phenotypes for each model with different effect 

sizes  . The power, powerNET
, can be calculated by 

( )

( )  ( )causal

1 1
1, ,

causal

min

power .
b

B M b b

cmb m
c C

NET

I p C

B M


= =

=

 
 

 =


 
 

1.2.7 Real Dataset 

The UK Biobank is a population-based cohort study with a wide variety of genetic and 

phenotypic information52. It includes ~ 500K people from all around the United Kingdom 

who were aged between 40 and 69 when recruited in 2006-201041,53. Genotypes from the 

UK Biobank have extracted 488,377 participants with 784,256 variants in autosomal 

chromosomes. The preprocess of genotype is achieved by quality controls (QCs) which are 

performed on both SNPs and individuals using PLINK 1.954. Same QCs as Liang et al.47 

(Figure A.1), we filter out SNPs with missing rates > 5%, Hardy-Weinberg equilibrium 

exact test p-values < 610− , and MAF < 5%. We also filter out individuals with missing rates 

> 5% and individuals without sex. After quality controls, 288,647 SNPs and 466,580 

individuals remain for our next step analysis.   

In this study, we define EHR-derived phenotypes using the ICD-10 codes, which 

is a standardized coding system for defining disease status as well as for billing purposes6. 

After truncating each full ICD-10 code to UK Biobank ICD-10 level 3 code, we consider 

72 unique truncated ICD codes with the number of cases greater than 200 in Chapter XIII 

(Diseases of the musculoskeletal system and connective tissue), such as rheumatoid 

arthritis (M06.9), psoriatic arthropathies (M07.3), etc. Note that there are two phenotypes 

(M45: Ankylosing spondylitis and M45.X9: Ankylosing spondylitis (Site unspecified)) 

which are not truncated by the ICD-10 code digits, however, these two phenotypes are 

defined by UK Biobank level 3 code. For each individual, if a corresponding truncated ICD 

code ever appears, we denote the EHR-derived phenotype for that individual as “1”, 

otherwise, we denote the EHR-derived phenotype for that individual as “0”. After 

truncating ICD-10 codes, we generate a total of 502,591 individuals who have 72 EHR-

derived phenotypes in Chapter XIII. Following the phenotype preprocess introduced in 

Liang et al.47, 337,285 individuals are kept (Figure A.1).  

After data preprocessing procedures, individuals with both genotype and phenotype 

information are used in our study. There is a complete set of 322,607 individuals across 

288,647 SNPs with 72 EHR-derived phenotypes. Among the 72 phenotypes, lumbar and 

other intervertebral disk disorders with myelopathy (M51.0) has the smallest case-control 

ratio 0.000658 with 212 cases and 322,395 controls; Gonarthrosis (M17.9) has the largest 
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case-control ratio 0.03937 with 12,218 cases and 310,389 controls. Therefore, all of the 

phenotypes we considered in our analysis have extremely unbalanced case-control ratios. 

Furthermore, each phenotype is adjusted by 13 covariates, including age, sex, genotyping 

array, and the first 10 genetic principal components (PCs)50.  The analysis is performed 

based on the adjusted phenotypes. 

1.2.8 Correlation Analysis 

To compare the genetic and phenotypic correlations among the 72 EHR-derived 

phenotypes, we apply cross-triat LDSC regression27 to obtain the genetic correlation and 

phenotypic correlation which can provide useful etiological insights27. GWAS summary 

statistics are generated from the association between phenotype and genotype which are 

calculated by the saddlepoint approximation. We use the precomputed LD scores of 

European individuals in the 1000 Genomes project for high-quality HapMap3 SNPs 

(‘eur_w_ld_chr’). For the phenotypic correlation, we consider 70 phenotypes excluding 

M79.6 (Enthesopathy of lower limb) and M67.8 (Other specified disorders of synovium 

and tendon), since the heritabilities of these two phenotypes estimated by LDSC are out of 

bounds. For the genetic correlation, we only consider 52 phenotypes exlcuding 20 

phenotypes, where the heritabilities of these phenotypes are not significantly different from 

zero. We apply the K-means hierarchical clustering method to compare the correlations of 

phenotypes obtained by our proposed GPN and LDSC. 

1.2.9 Post-GWAS Analyses 

Pathway enrichment analysis. To better understand the biological functions behind the 

SNPs identified by one multiple phenotype association test, we identify the pathways in 

which the identified SNPs are involved. We use the functional annotation tool named 

Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource 

(DAVID: https://david.ncifcrf.gov/)55,56 for the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analysis. A mapped gene used in the pathway 

enrichment analysis denotes the gene that includes at least one identified SNPs with a 20kb 

window region. The biological pathways with FDR < 0.05 and enriched gene count > 2 are 

considered statistically significant57. 

Tissue enrichment analysis. To prioritize and interpret the GWAS signals and identify 

lead SNPs, tissue enrichment analyses are performed using the Functional Mapping and 

Annotation (FUMA: https://fuma.ctglab.nl/)58 platform and the GWAS signals from one 

multiple phenotype association test in N.O. and in NET, respectively. FUMA first performs 

a genic aggregation analysis of GWAS association signals to calculate gene-wise 

association signals using MAGMA, which is a commonly used generalized gene-set 

analysis of GWAS summary statistics59. Then, it subsequently tests whether tissues and 

cell types are enriched for expression of the genes with gene-wise association signals. For 

tissue enrichment analysis, we use 30 general tissue types in GTEx v8 reference set 

(https://gtexportal.org/home/). 

Colocalization analysis. As most associated variants are noncoding, it is expected that they 

influence disease risk through altering gene expression or splicing60. The colocalization 

analysis is a way to identify the association of a GWAS SNP and a gene expression QTL 

that are colocalized. We perform colocalization analysis using the ‘coloc’ package in R61, 

https://david.ncifcrf.gov/
https://fuma.ctglab.nl/
https://gtexportal.org/home/
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a Bayesian statistical methodology that tests pairwise colocalization of eQTLs with unique 

identified SNPs by ceCLC in NET and N.O. from the UK Biobank dataset. The SNP-gene 

associations in the Muscle Skeletal tissue are downloaded from GTEx v7. We use the 

default of prior probabilities, 4

1 2 10p p −= =  and 5

12 10p −= , for a causal variant in an eQTL 

or a GWAS SNP and a shared causal variant between eQTL and GWAS SNP, respectively. 

1.3 Results 

1.3.1 Simulation studies 

We first use extensive simulation studies to validate multiple phenotype association studies 

based on the newly proposed GPN. In the simulation studies, we assess the type I error rate 

and power with different numbers of phenotypes (60, 80, and 100), different types of 

phenotypes along with different sample sizes: (i) mixture phenotypes are half quantitative 

and half qualitative with balanced case-control ratios for sample sizes of 2,000 and 4,000, 

and (ii) binary phenotypes are all qualitative but with extremely unbalanced case-control 

ratios for sample sizes of 10,000 and 20,000. Similar to the simulation models introduced 

in Sha et al.12, we generate six different models (see Data Simulation for a full description 

of the simulation models). 

Type I Error Rates. 

Table A.2-A.7 summarize the estimated type I error rates of six multiple phenotype 

association tests for mixture phenotypes under models 1-6, respectively. “N.O.” represents 

the type I error rates of multiple phenotype association tests being calculated without 

considering network modules; “NET” presents the type I error rates of the tests being 

evaluated by considering network modules detected by GPN. Based on 500 Monte-Carlo 

(MC) runs which is the same as 610  replicates, the 95% confidence intervals (CIs) for type 

I error rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) 

and (0.804,1.196), respectively. The bold-faced values indicate that the values are beyond 

the upper bounds of the 95% CIs. Almost all of the estimated type I error rates of ceCLC, 

CLC, HCLC, and Omnibus tests are within 95% CIs. However, O’Brien in NET has 

inflated type I error rates under model 6. MultiPhen has inflated type I error rates for the 

sample size of 2,000. If the sample size is 4000, MultiPhen in N.O. also inflates type I error 

rates, but MultiPhen in NET can control type I error rates for the significance level is 

0.0001. Table A.8-A.13 summarize the estimated type I error rates of six tests for binary 

phenotypes with extremely unbalanced case-control ratios under models 1-6. Similar to 

Tables A.2-A.7, ceCLC, CLC, HCLC, and Omnibus have corrected type I error rates at 

almost all simulation settings. However, O’Brien in NET has inflated type I error rates and 

MultiPhen has inflated type I error rates at all scenarios. 

Power comparisons. 

For power comparisons, we consider 100 causal SNPs for models 1-4 and 200 causal SNPs 

for models 5-6 (see Data Simulation). In each of the simulation models, the power is 

evaluated using 10 MC runs which is the same as 1,000 replicates for models 1-4 and 2,000 

replicates for models 5-6. Meanwhile, the power is evaluated at the Bonferroni corrected 

significance level of 0.05 based on the number of causal SNPs in each MC run. 
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Figure 1.2. Power comparisons of the six tests as a function of effect size   under the six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 80 and the sample size is 4,000. The power 

of all of the six tests is evaluated using 10 MC runs. 

Figure 1.2 (Figure A.2) shows the power of six multiple phenotype association 

tests under six simulation models for different effect sizes with a total of 80 mixture 

phenotypes and a sample size of 4,000 (2,000). From Figure 1.2 and Figure A.2, we can 

see that: (i) All tests in NET (filled by the dashed line) are much more powerful than those 

in N.O., indicating that tests based on network modules detected by GPN are more 

powerful than the tests without considering network modules. Since the community 

detection method can partition phenotypes into different network modules based on shared 
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genetic architecture, the phenotypes can be clustered in the same module if they have 

higher genetic correlations. In particular, the power of O’Brien15 increases a lot in the case 

of a SNP affecting phenotypes in different directions. (ii) ceCLC is more powerful than 

other tests in both N.O. and NET under the six simulation models. (iii) As sample size 

increases, the power of all multiple phenotype association tests increases. We also perform 

power comparisons for a total of 60 and 100 mixture phenotypes with 2,000 and 4,000 

sample sizes for different effect sizes under the six simulation models (Figures A.3- A.6), 

respectively. We observe that the patterns of the power are similar to those observed in 

Figure 1.2 and Figure A.2. 

To mimic phenotypes in the UK Biobank, we also consider the case with all 

phenotypes being binary with extremely unbalanced case-control ratios. The phenotypes 

are generated based on extremely unbalanced case-control ratios which are randomly 

selected from the set of case-control ratios with cases greater than 200 from UK Biobank 

ICD-10 code level 3 phenotypes (case-control ratios belong to  0.000658,0.03937 ). In 

this simulation, we consider a total of 60, 80, and 100 phenotypes along with two sample 

sizes, 10,000 and 20,000. Figures A.7-A.12 show the power comparisons of the six tests 

under six simulation models. The patterns of power comparisons for binary phenotypes are 

similar to those observed in Figure 1.2 and Figure A.2-A.6. 

1.3.2 Real Data Analysis based on UK Biobank 

Furthermore, we apply the newly proposed multiple phenotype association test based on 

network modules detected by GPN to a set of diseases of the musculoskeletal system and 

connective tissue across more than 300,000 individuals from the UK Biobank.  

Network Module Detection. 

We construct GPN based on 72 EHR-derived phenotypes in the diseases of the 

musculoskeletal system and connective tissue with 288,647 SNPs in autosomal 

chromosomes in the UK Biobank. Due to all phenotypes in our analysis being extremely 

unbalanced, the strength of the association between phenotype and genotype is calculated 

by the saddlepoint approximation44. After the construction of GPN, we apply a powerful 

community detection method and these 72 phenotypes are partitioned into 8 disjoint 

network modules (Figure 1.3). There are 2-37 phenotypes in each module.  

We can see that the network modules are not consistent with the ICD-based 

categories which are based on the underlying cause of death rather than the shared genetic 

architecture among all complex diseases. For example, Figure 1.3 shows three phenotypes, 

M32.9 Systemic lupus erythematosus, M35.0 Sicca syndrome, and M65.3 Trigger finger, 

are detected in network module III (in red). However, these three phenotypes do not belong 

to the same ICD-category (Data-Field 41202 in UK Biobank), where M35.0 is one of the 

diseases in the other systemic involvement of connective tissue (M35) and M65.3 belongs 

to the synovitis and tenosynovitis (M65). To investigate the genetic correlation among 

these three phenotypes, we use the saddlepoint approximation to test the association 

between each phenotype and each SNP. As shown in Figure A.13, the Manhattan plots for 

the three phenotypes in network module III (M32.9, M35.0, and M65.3) have a similar 

pattern. Although the synovitis and tenosynovitis (M65.9) and M65.3 belong to the same 
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ICD code category (M65), the Manhattan plot of M65.9 shows that there are no SNPs 

significantly associated with this phenotype and the genetic correlation between M65.9 and 

M65.3 is not strong. Therefore, we can conclude that the community detection method 

based on our proposed GPN can partition phenotypes into different categories based on the 

shared genetic architecture.  

 

Figure 1.3. The network modules detected by the powerful community detection method 

based on GPN. The blocks with different color indicate different modules, where the values 

in the legend represent the number of phenotypes in each network module. The labels of 

phenotypes are listed in the form of ICD-10 code and the corresponding diseases can be 

found in the UK Biobank. The connection between two phenotypes represents the 

absolutely value of the weight greater than 40. The graph was prepared by Cytoscape. 

Furthermore, we apply the hierarchical clustering method to compare the genetic 

correlation of phenotypes obtained by our proposed GPN and that estimated by LDSC 27. 

Figures A.14-A.15 show that dendrograms of hierarchical clustering method based on the 

genetic correlation of phenotypes obtained by GPN, and the phenotypic or genetic 

correlation estimated by LDSC, respectively. In Figure A.14, the cluster results of the 

phenotypic correlation estimated by LDSC are similar to that of the genetic correlation 

based on GPN, but GPN can separately identify two highly genetic correlated phenotypes, 

ankylosing spondylitis (M45) and ankylosing spondylitis with site unspecified (M45.X9). 

However, the cluster results of the genetic correlation estimated by LDSC are different 

from those obtained by GPN. Some phenotypes in the same UK Biobank level 1 category 

can be clustered in the same group by GPN but not by LDSC (Figure A.15).  

Interpretation of the Association Test. 

We apply five multiple phenotype tests (ceCLC, CLC, HCLC, O’Brien, and Omnibus) to 

test the association between 72 EHR-derived phenotypes and each of 288,647 SNPs in the 

UK Biobank. MultiPhen is not considered here since it has inflated type I error rates, 

especially for the phenotypes with extremely unbalanced case-control ratios.  
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First, we apply the five tests in N.O. to test the association between 72 phenotypes 

and each SNP. We use the commonly used genome-wide significance level 85 10− . 

Figure 1.4(a) shows the Venn diagram of the number of SNPs identified by the five tests. 

There are 11 SNPs identified by all five tests.  ceCLC identifies 647 SNPs with 32 unique 

SNPs not being identified by other four tests. Among the 32 novel SNPs, two SNPs, 

rs13107325 (p-value = 104.6 10− ) and rs443198 (p-value = 111.73 10− ), are significantly 

associated with at least one of the 72 phenotypes reported in the GWAS catalog (Table 

A.14). rs13107325 is reported to be associated with osteoarthritis (M19.9) 62 and rotator 

cuff syndrome (M75.1) 63. Meanwhile, rs13107325 is mapped to gene SLC39A8 that is also 

reported to be significantly associated with multisite chronic pain (M25.5) 64. rs443198 is 

mapped to gene NOTCH4 which is associated with systemic sclerosis (M34) 65. Moreover, 

the mapped gene NOTCH4 is one of the most important genes reported to be associated 

with multiple diseases in the disease category of the musculoskeletal system and 

connective tissue, such as rheumatoid arthritis (M06.9) 66, psoriatic arthritis (M07.3) 67, 

Takayasu arteritis (M31.4) 68, systemic lupus erythematosus (M32.9) 69, and appendicular 

lean mass (M62.9) 70. We map these 32 unique SNPs into genes with 20 kb upstream and 

20 kb downstream regions. There are 27 out of 32 SNPs with corresponding mapped genes 

associated with 14 phenotypes reported in the GWAS catalog (Table A.14). These 14 

phenotypes and corresponding ICD-10 codes are summarized in Table A.15.  

Next, we test the associations between phenotypes in each of the eight network 

modules detected by the GPN and each SNP. Then, we adjust the p-value of each method 

for testing the association between a SNP and all of the 72 phenotypes by Bonferroni 

correction. We adopt the commonly used genome-wide significance level 85 10− . Figure 

1.4(b) shows that all tests can identify more SNPs comparing with the number of SNPs 

identified in N.O. ceCLC in NET identifies 980 SNPs, where 647 SNPs are identified in 

N.O. Meanwhile, there are 950 SNPs identified by HCLC, 949 SNPs by CLC, and 891 

SNPs by Omnibus, where the corresponding results in N.O. are 354 SNPs, 808 SNPs, and 

634 SNPs, respectively. In particular, the number of SNPs identified by O’Brien in NET is 

increased a lot, where there are 948 SNPs identified in NET and only 57 SNPs identified 

in N.O. As the results shown in Figure 1.4(b), there are 807 overlapped SNPs identified 

by all five tests in NET which is much larger than 11 overlapped SNPs identified in N.O. 

To compare the difference between the tests in N.O. and in NET, we summarize 

the number of overlapping SNPs identified by each method in N.O. and NET in Figure 

A.17. We observe that most SNPs identified in N.O. can be identified in NET. Meanwhile, 

tests in NET can identify much more SNPs than those in N.O. As mentioned previously, 

the advantage of the tests based on the network modules detected by GPN is that we can 

identify potential pleiotropic SNPs and also interpret SNP effects on which network 

modules based on the shared genetic architecture. Notably, we also investigate the smallest 

p-value obtained by each of the eight phenotypic modules for each of the 980 SNPs 

identified by ceCLC. For example, 396 SNPs have the smallest p-values for testing the 

association with network module III. Based on the results of the univariate score test 

corrected for saddlepoint approximation (SPAtest) (Figure A.13), 104 SNPs are 

significantly associated with at least one phenotype in module III. All of these 104 SNPs 

can be identified by ceCLC, HCLC, and Omnibus and 103 SNPs can be identified by CLC 
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and O’Brien in NET. The results show that the tests based on network modules can detect 

potential pleiotropic loci which can not be detected by the univariate test. 

 

Figure 1.4. The Venn diagram of the number of SNPs identified by ceCLC, CLC,HCLC, 

O’Brien, and Omnibus in N.O. (a) and in NET (b). The number below each method 

indicates the total number of SNPs identified by the corresponding method.  

Pathway Enrichment Analysis. 

ceCLC is more powerful than the other four tests in simulations and also can identify more 

SNPs in real data analysis, therefore, we only perform the post-GWAS analyses of the 

SNPs identified by ceCLC. There are 191 mapped genes containing at least one of the 647 

SNPs identified by ceCLC in N.O. and 252 mapped genes containing at least one of the 

980 SNPs identified by ceCLC in NET. In this study, significantly enriched pathways are 

identified by those genes with false discovery rate (FDR) < 0.05.  

From the pathway enrichment analyses, we observe that ceCLC based on the 

network modules identifies more significantly enriched pathways than that without 

considering network modules. Figure 1.5 shows that 16 pathways are significantly 

enriched by 191 mapped genes in N.O. and 29 pathways are significantly enriched by 252 

mapped genes in NET, where all of the 16 pathways identified in N.O. are also identified 

in NET. Two pathways identified in N.O. and NET, rheumatoid arthritis (hsa05323; FDR 

= 38.72 10−  in N.O. and FDR = 86.48 10−  in NET) and systemic lupus erythematosus 

(hsa05322; FDR = 194.25 10−  in N.O. and FDR = 401.02 10−  in NET) showed in Figure 

1.5, are related to the diseases of the musculoskeletal system and connective tissue. For 

example, osteopetrosis (M19.9) and rheumatoid arthritis (M06.9) are related to the 

rheumatoid arthritis pathway. Meanwhile, the pathway related to at least one of the 72 

phenotypes, hematopoietic cell lineage (hsa04640; FDR = 51.08 10− ), is only identified 

in NET. Notably, DBGET (https://www.genome.jp/dbget-bin/www_bget?hsa05322) 

reports that there are two pathways related to systemic lupus erythematosus: antigen 

processing and presentation (hsa04612; FDR = 34.83 10−  in N.O. and FDR = 162.82 10−  

in NET) identified in both N.O. and NET and cell adhesion molecule (hsa04514; FDR = 
51.04 10− ) only identified in NET. 

https://www.genome.jp/dbget-bin/www_bget?hsa05322
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Meanwhile, the above five pathways related to the diseases of the musculoskeletal 

system and connective tissue contain more enriched genes identified by ceCLC in NET 

than the enriched genes identified in N.O. For example, 43 SNPs within six mapped genes 

identified by ceCLC in N.O. are enriched in rheumatoid arthritis pathway, including 

ATP6V1G2, HLA-DRA, LTB, TNF, HLA-DRB1, and HLA-DQA1; and 111 SNPs within 12 

mapped genes in NET are enriched in this pathway, including HLA-DMA, HLA-DMB, 

ATP6V1G2, HLA-DRA, LTB, HLA-DOA, TNF, HLA-DOB, HLA-DQA2, HLA-DRB1, 

HLA-DQA1, and HLA-DQB1. Compared with the results of ceCLC in N.O., the test based 

on network modules identifies six more enriched genes, especially, gene HLA-DMB 

(including rs241458; p-value = 97.09 10− ) and gene HLA-DOA (including rs3097646; p-

value = 95.50 10− ) that have not been reported in the GWAS catalog. 

 
Figure 1.5. The results for the pathway enrichment analysis based on the genes identified 

by ceCLC and the KEGG database in N.O. (a) and NET (b). The red marked pathways 

denote the pathways related to the diseases of the musculoskeletal system and connective 

tissue. There are 191 genes in N.O. and 252 genes in NET that are applied to the pathway 

enrichment analysis. 

Tissue Enrichment Analysis. 

To further investigate the biological mechanism, we use FUMA58 to annotate 191 mapped 

genes in N.O. and 252 mapped genes in NET in terms of biological context. Due to these 

mapped genes associated with at least one phenotype in the diseases of the musculoskeletal 

system and connective tissue, we can test if these mapped genes are enriched in the 

relevant-tissue based on FUMA. Figure A.17 shows the ordered enriched tissues based on 
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the mapped genes identified by ceCLC in N.O. and NET. We observe that the mapped 

genes identified by ceCLC in N.O. are most enriched in brain-related tissue (Figure 

A.17(a)). Nevertheless, Figure A.17(b) shows that the mapped genes identified by ceCLC 

in NET are significantly enriched in the Muscle-Skeletal tissue with p-value < 0.05. The 

construction of GPN is benefit to multiple phenotype association studies by clustering the 

related phenotypes based on the genetic information. Notably, the identified SNPs are more 

likely to be within the same relevant biological context. 

Colocalization of GWAS and eQTL analysis. 

We perform the colocalization analysis on the 33 unique SNPs identified by ceCLC (Table 

A.14; one SNP in NET and 32 SNPs in N.O.) and all SNP-gene association pairs in the 

Muscle Skeletal tissue reported in GTEx. Figure A.18 shows the colocalization signals 

with the uniquely identified SNPs by ceCLC that are selected to be the lead SNPs in the 

colocalization analysis. NET identifies one unique SNP, rs4148866, which is mapped to 

gene ABCB9. Even if gene ABCB9 has no reported associations with any diseases of the 

musculoskeletal system and connective tissue in the GWAS Catalog, the Bayesian 

posterior probability of colocalization analysis for shared variant of significant SNPs 

identified by ceCLC and gene expression in the Muscle Skeletal tissue (PPH4) is 98.4%. 

The higher value of PPH4 indicates that gene ABCB9 and Muscle Skeletal tissue play an 

important role in the disease mechanism due to the same variant responsible for a GWAS 

locus and also affecting gene expression61. Among 32 unique SNPs identified by ceCLC 

in N.O., there are two SNPs, rs34333163 and rs6916921, selected to be the lead SNPs 

(Figure A.18). Both of them are reported in the GWAS Catalog that have associations with 

at least one of the diseases in the musculoskeletal system. However, the PPH4 values for 

the corresponding genes SLC38A8 and ATP6V1G2 are lower than 50%. 

1.4 Discussion 

In this paper, we propose a novel method for multiple phenotype association studies based 

on genotype and phenotype network. The construction of a bipartite signed network, GPN, 

is to link genotypes with phenotypes using the evidence of associations. To understand 

pleiotropy in diseases and complex traits and explore the genetic correlation among 

phenotypes, we project genotypes into phenotypes based on the GPN. We also apply a 

powerful community detection method to detect the network modules based on the shared 

genetic architecture. In contrast to previous community detection methods for disease 

networks, the applied method benefits from exploring the biological functionality 

interactions of diseases based on the signed network. Furthermore, we apply several 

multiple phenotype association tests to test the association between phenotypes in each 

network module and a SNP. Extensive simulation studies show that all multiple phenotype 

association tests based on network modules have corrected type I error rates if the 

corresponding test is a valid test for testing the association between a SNP and phenotypes 

without considering network modules. Most tests in NET are much more powerful than 

those in N.O. Meanwhile, we evaluate the performance of the association tests based on 

network modules detected by GPN through a set of 72 EHR-derived phenotypes in the 

diseases of the musculoskeletal system and connective tissue across more than 300,000 

samples from the UK Biobank. Compared with the tests in N.O., all tests based on network 
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modules detected by GPN can identify more potentially pleiotropic SNPs and ceCLC can 

identify more SNPs than other methods. 

In addition, the construction of GPN does not require access to individual-level 

genotypes and phenotypes data, which only requires association evidence between each 

genotype and each phenotype. Therefore, when individual-level data are not available, this 

evidence can be obtained from GWAS summary statistics, such as the effect sizes (odds 

ratios for binary phenotypes) and corresponding p-values. Meanwhile, the simulation 

studies show that the powerful network community detection method can correctly 

partition phenotypes into several disjoint network modules based on the shared genetic 

architecture. Since the determination of the number of network modules by applying 

community detection method is independent of the association tests45, we only need to 

perform the perturbation procedure once in real data analyses. In our real data analysis with 

72 phenotypes and 288,647 SNPs, it only takes 1.5 hour with 1,000 perturbations to obtain 

the optimal number of network modules on a macOS (2.7 GHz Quad-Core Intel Core i7, 

16 GB memory).  

In summary, the proposed GPN provides a new insight to investigate the genetic 

correlation among phenotypes. Especially when the phenotypes have extremely 

unbalanced case-control ratios, the weight of an edge in the signed bipartite network can 

be calculated based on the saddlepoint approximation. The power of multiple phenotype 

association tests based on network modules detected by GPN are improved by 

incorporating the genetic information into the phenotypic clustering. Therefore, the 

proposed method can be applied to large-scale data across multiple related traits and 

diseases (i.e., biobanks data set, etc.). 

1.5 Availability of data and materials 

Data 

The UK Biobank data are accessed via https://www.ukbiobank.ac.uk/41. 

The GWAS catalog summary data are accessed via https://www.ebi.ac.uk/gwas/.  

The SNP-gene associations in the Muscle Skeletal tissue are downloaded via 

https://gtexportal.org/home/. 

Software 

The software for the proposed method is publicly available 

at https://github.com/xueweic/GPN. 

PLINK version 1.9 can be downloaded from https://www.cog-genomics.org/plink/1.9/ 54. 

LDSC: the command line tool for estimateing heritability and genetic correlation from 

GWAS summary statistiscs can be downloaded from https://github.com/bulik/ldsc27. 

FUMA: the platform that can be used to annotate, prioritize, visualize and interpret GWAS 

results can be found from https://fuma.ctglab.nl/58. 

DAVID: the functional tool can be found from https://david.ncifcrf.gov/55,56. 

Cytoscape: an open source software platform for visualizing complex networks which can 

be accessed via https://cytoscape.org/71. 

https://www.ukbiobank.ac.uk/
https://www.ebi.ac.uk/gwas/
https://gtexportal.org/home/
https://github.com/xueweic/GPN
https://www.cog-genomics.org/plink/1.9/
https://github.com/bulik/ldsc
https://fuma.ctglab.nl/
https://david.ncifcrf.gov/
https://cytoscape.org/
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2 Chapter 2 

 

Constructing genotype and phenotype network helps reveal 

disease heritability and phenome-wide association studies 

 

Abstract 

Analyses of a bipartite Genotype and Phenotype Network (GPN), linking the genetic 

variants and phenotypes based on statistical associations, provide an integrative approach 

to elucidate the complexities of genetic relationships across diseases and identify 

pleiotropic loci. We first assess contributions to constructing a well-defined GPN with a 

clear representation of genetic associations by comparing the network properties with a 

random network, including connectivity, centrality, and community structure. Next, we 

construct network topology annotations of genetic variants that quantify the possibility of 

pleiotropy and apply stratified linkage disequilibrium (LD) score regression to 12 highly 

genetically correlated phenotypes to identify enriched annotations. The constructed 

network topology annotations are informative for disease heritability after conditioning on 

a broad set of functional annotations from the baseline-LD model. Finally, we extend our 

discussion to include an application of bipartite GPN in phenome-wide association studies 

(PheWAS). The community detection method can be used to obtain a priori grouping of 

phenotypes detected from GPN based on the shared genetic architecture, then jointly test 

multiple phenotypes in each network module and one genetic variant to discover the cross-

phenotype associations and pleiotropy. Significance thresholds for PheWAS are adjusted 

for multiple testing by applying the false discovery rate (FDR) control approach. Extensive 

simulation studies and analyses of 633 EHR-derived phenotypes in the UK Biobank 

GWAS summary dataset reveal that most multiple phenotype tests based on GPN can well-

control FDR and identify more significant genetic variants comparing with the tests based 

on UK Biobank categories. 

Keywords: genotype and phenotype network, network topology annotation, disease 

heritability, phenome-wide association studies, GWAS summary statistics 

 

2.1 Introduction 

The studies based on the biological networks have proven to be successful in providing a 

comprehensive understanding of the complex relationships that exist within the biological 

systems, such as gene regulatory networks72,73, protein-protein interaction networks74, 

human disease networks30, et al. In particular, the human disease network is usually 

describing the system as a bipartite network, explicitly including two different types of 

nodes, in which diseases are connected to their associated genes. Rather than simply 

identifying the association between a genetic variant and a specific disease, constructing a 

bipartite network is presented the opportunity to explore the integrated molecular 

underpinnings of diseases75. Therefore, it can be used to explore whether human diseases 
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or complex traits and the corresponding genetic variants are related to each other at a higher 

level of cellular and organization76,77. In addition, due to many complex diseases being 

affected by a shared set of pleiotropic variants, the construction of a bipartite network can 

also be used to determine the pathobiological relationship of one disease to other diseases75 

and elucidate the complexities of genetic relationships across diseases76. 

Over the past decade, genome-wide association studies (GWAS) have generated an 

impressive list of genetic variant and phenotype association pairs3,78, which offer a great 

opportunity to establish a bipartite network connecting genetic variants and phenotypes, 

referred to as a genotype and phenotype network (GPN)77. GPN provides integrative 

analyses to characterize complex relationships between genetic variants and phenotypes 

that are reproducible and accurately represent biological relationships and is thus of 

increasingly significant importance31,79. Notably, the construction of a well-defined GPN 

is crucial as it comes up with a clear representation of the genetic association between 

genetic variants and phenotypes, including connectivity, centrality, community structure, 

et al. Meanwhile, the real-world biological network, including GPN, often exhibits a scale-

free degree distribution80,81, which means that a small number of nodes (genetic variants 

and phenotypes) have a much larger number of connections than the majority of nodes. In 

a random network, the nodes are connected randomly without any preferential attachment, 

resulting in a network with a relatively uniform degree distribution82. Therefore, comparing 

the degree distribution of a bipartite GPN to that of a random network can reveal important 

insights into the underlying mechanisms driving the construction of the network. 

Additionally, random networks can serve as a useful null model for testing the significance 

of network properties observed in the bipartite GPN. 

The centralities of the bipartite GPN are one of the most important properties that 

measure the importance of genetic variants (phenotypes) across phenotypes (genetic 

variants) based on the connectivity in the network33. The nodes with high centrality often 

act as hubs for information flow within the network83. For example,  a genetic variant with 

high centrality accounting for all phenotypes is more likely to be a pleiotropic variant, as 

it is highly connected to multiple phenotypes in a bipartite GPN. Therefore, these 

centralities can be used to define the network topology annotations of genetic variants that 

quantify the possibility of a genetic variant being a pleiotropic variant. To study whether 

these network topology annotations are enriched for disease heritability, we apply stratified 

linkage disequilibrium (LD) score regression (S-LDSC)84,85 along with the leave-one-

phenotype-out strategy to quantify the contribution of these annotations to disease 

heritability. We condition our analyses of the network topology annotations on the 

baseline-LD model, which includes a broad set of coding, conserved, regulatory, and LD-

related functional annotations86. Meanwhile, in a bipartite GPN, a phenotype with a higher 

centrality accounting for all genetic variants is more likely to have a higher heritability, as 

it is connected to multiple genetic variants or with higher association evidence.  

With the widespread availability of electronic health records (EHR) data, phenome-

wide association studies (PheWAS) have been used to systematically examine the impact 

of one genetic variant across a broad range of phenotypes. Phenotypes in the whole 

phenome can be grouped by digitized codes (e.g., ICD-10 code) to represent the common 

clinical factors underlying the diseases. However, the taxonomy of digitized codes depends 
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on their etiology rather than their genetic architecture. As a consequence, applying the 

community detection method for GPN allows us to identify network modules that provide 

an integrative approach to understanding the complex genetic relationships across 

phenotypes77. A network module is loosely defined as a subnetwork with high local link 

density so that the phenotypes within a network module share more genetic architecture 

across all genetic variants than phenotypes outside the network module87,88. Therefore, the 

network modules can serve as an a priori grouping of phenotypes in PheWAS, then we can 

jointly test multiple phenotypes in each network module and a genetic variant to discover 

the cross-phenotype associations and pleiotropy. For multiple testing corrections, we apply 

a refined false discovery rate (FDR) control approach to obtain the significance thresholds 

for PheWAS. 

2.2 Methods and Materials 

In this section, we first describe our approach to construct Genotype and Phenotype 

Networks (GPN; section 2.2.1) and define the network topology annotations for genetic 

variants and phenotypes (section 2.2.2). The construction of GPN does not require access 

to the individual-level genotypes and phenotypes data and only requires the marginal 

association evidence between each genetic variant and each phenotype (e.g., z-scores or 

estimated effect sizes from GWAS summary datasets). We identify differences in both 

denser representation and sparse representations of GPN with various sparsity approaches. 

We then provide details of the implementation of these approaches, such as heritability 

enrichment of network topology annotations (section 2.2.3), estimation of the genetic 

correlation of multiple phenotypes and community detection of phenotypes (section 2.2.4), 

and phenome-wide association studies (section 2.2.5). Figure 2.1 shows the overview of 

this study. 

2.2.1 Bipartite genotype and phenotype networks construction 

We consider GWAS summary statistical results from the same or different study cohorts 

with K  phenotypic traits. Assume that the GWAS summary results for the thk  (

1, ,k K= ) phenotype are calculated by testing the marginal association between a 

genetic variant and the thk  phenotype based on a sample with 
kN  unrelated individuals. 

Note that 
k lN N=  ( k l ) if the GWAS summary data of the thk  phenotype and thl  

phenotype are calculated from the same study cohort, otherwise, 
k lN N . For simplicity, 

we assume the generalized linear regression, ( )( ) 0| ,T

ik im mk mk ik mk img E y g g = + +α X  

where 
iky  is the thk  phenotype value and 

ikX  is the vector of covariates, for example, used 

to account for population stratification in the study, for the thi  (1 ki N  ) individual and 

the thk  phenotype. Assuming that there are 
kM  genetic variants in the GWAS summary 

statistics for the thk  phenotype and 
img  is the genotype of the thm  (1 km M  ) genetic 

variant taking values from 0, 1, and 2 that counts the number of copies of the minor allele. 

Here, ( )g  is either the identity link function for quantitative phenotypes or the logit link 

for binary phenotypes.  
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Figure 2.1. Graphical Abstract. Construction of bipartite genotype and phenotype network 

(GPN) includes: (a) – (c) Construction of the denser and well-defined representations of 

GPN by comparing the network properties with the random networks, including 

connectivity, centrality, and system entropy; (d) The weighted degree distributions with 

different thresholds and the examples of two network topology annotations, approximate 

betweenness centrality and degree centrality, used in the heritability enrichment analysis; 

(e) The one-mode projection of GPN onto phenotypes that are linked through shared 

genetic architecture. Heritability enrichment analysis and phenome-wide association 

studies are introduced as two important applications of the constructed GPN. 

 

The GWAS summary results are calculated for testing the genetic association 

between the thk  phenotype and the thm  genetic variant under the null hypothesis 

0, : 0mk mkH  = . The commonly used Wald-type statistic is defined as ( )ˆ ˆ
mk mk mkZ se =  

under the generalized linear regression model, where ˆ
mk  is the maximum likelihood 

estimation (MLE) of 
mk  and ( )ˆ

mkse   is its estimated standard error89. The p-value 
mkp  

may also be calculated by assuming ( )0,1mkZ N  in the GWAS summary results.  
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Let M  be the total number of unique SNPs included in the GWAS summary 

statistics for K  phenotypes with the property of  
11, ,

max
K

k kkk K
M M M

==
  . In 

particular,   
1, ,

max k
k K

M M
=

=   if and only if there is at least one GWAS summary data 

containing all unique genetic variants and 
1

K

kk
M M

=
= if and only if there are no variants 

included in different GWAS summary data. We can exclude the case 
1

K

kk
M M

=
=  from 

our analyses since it occurs wirelessly in most GWAS summary datasets. 

Denser representation of GPN. 

We first define a signed bipartite GPN, ( ), ,GPN Y G E=G , where  1, , KY Y Y=  and 

 1, , MG G G=  denote two disjoint and independent sets of phenotypes and genetic 

variants, and E  denotes the set of edges in GPN. Similar to Chapter 1, denote ( )mkT=T  

as an M K  adjacency matrix of GPN, where ( ) ( )1ˆsign 1mk mk Chi mkT F p −= −  is the weight 

of the edge between the thm  genetic variant and the thk  phenotype. ( )ChiF  denotes the 

cumulative distribution function (CDF) of 2

1 ; ( )ˆsign 1mk =  if ˆ 0mk  , ( )ˆsign 0mk = if 

ˆ 0mk = , otherwise, ( )ˆsign 1mk = − . Note that 
mkT  represents the strength of the 

association and ( )ˆsign mk  represent the direction of the association. 

The construction of T  can be considered to be a denser representation of GPN, 

where 0mkT   for 1, , km M=  and 1, ,k K= . The denser representation includes all 

associations and does not involve thresholding. Same as the expression quantitative trait 

locus (eQTL) network construction introduced by Gaynor et al.31, the denser representation 

of GPN allows us to capture the fact that we have no prior knowledge of precisely which 

genetic variants and phenotypes might have an association.  

Sparse representations of GPN. 

Sparsity makes biological sense as even disease-associated genetic variants are known to 

generally have a small effect size, meaning they are unlikely to exert their influence across 

the genome31. Therefore, we introduce the false discovery rate (FDR) based sparse 

representations of GPN, where the networks only include edges where associations meet a 

measure of significance below a threshold from the denser representation of GPN.  Let 

( ), ,GPN Y G E =G  be a sparse representation of a bipartite GPN for a specific threshold 

, where E  denotes the set of edges in the sparse representation of GPN. ( )mkT =T  is an 

M K  adjacency matrix of GPN, where ( )*Imk mk mkT T p =    with 
mkT  from the denser 

representation of GPN. ( )I  is an indicator function that takes value 1 when *

mkp  , 

otherwise, it takes value 0. *

mkp  is a measure of the significance of genetic association 
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between the thm  genetic variant and the thk  phenotype by correcting for the multiple 

comparisons in each GWAS summary data. We use q-value90,91 to define *

mkp  in our main 

analyses, but other definitions can also be used, same as Gaynor et al.31, such as local FDR 

(LFDR)92,93 and an adaptation of Benjamini-Hochberg (BH) FDR94. We use different 

thresholds  0,1   , where 1 =   represents the denser representation of GPN since all 

edges are included; 0 =  represents the empty network with no edges between genetic 

variants and phenotypes.  

Well-defined sparse representation of GPN. 

The choice of the threshold,  , is very important for the GPN construction. The threshold 

is a sort of information filter, as decreasing  , the resulting network will change from a 

denser network to a very sparse one. An overly denser network can sometimes present 

challenges in understanding the most biologically informative interactions between genetic 

variants and phenotypes due to the abundance of information. Conversely, an excessively 

sparse network may result in the loss of important information. The construction of a well-

defined sparse representation of GPN can be presented to determine the optimal threshold 

(̂ ) of 
GPN


G , which can retain the key information about the interactions between genetic 

variants and phenotypes95. Therefore, we propose an approach to determine the optimal 

threshold by comparing the network properties with a corresponding random network, 

including connectivity, centrality, and community structure. 

More specifically, we first calculate the network “connectance” for each 
GPN


G , 

which is defined as the ratio of the number of edges in GPN to the total number of possible 

edges96,97. Mathematically, it can be expressed as:   ( )#connectance E M K =  , where 

 #  is the counting measure, that is,  # E
 represents the number of edges included in 

GPN


G . The “connectance” of GPN can provide insight into the structure and functioning 

between genetic variants and phenotypes. As decreasing  , the resulting network will 

change from a denser network ( 1 1connectance=  ) to a very sparse one (
0 0connectance= = ). For a specific  , we then construct a corresponding random network 

by shuffling the edges of the original network 
GPN


G . Let ( ), ,random random

GPN Y G E=G  be the 

corresponding random network, where conectance  equals to randomconectance . We also 

build an adjacency matrix randomT  by keeping the same weights of the edges in E . Then, 

we compute the following network properties of 
GPN


G  and random

GPNG , respectively.  

Clustering coefficient. The clustering coefficient measures the extent to which two 

genetic variants share the same set of phenotypes. A genetic variant with a high cluster 

coefficient indicates that it tends to be associated with similar phenotypes; a genetic variant 

with a low cluster coefficient indicates that it tends to be associated with distinct sets of 

phenotypes. Let ( )N m  and ( )N m  be a set of phenotypes that are linked to the thm  genetic 

variant and the thm  genetic variant, respectively. Similar to Latapy et al.98, we first define 

the clustering coefficient for any pair of genetic variants ( ),m m  as 
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( ) ( ) ( )  ( ) ( ) , # #cc m m N m N m N m N m=   . Let ( )2N m  be the sets of genetic 

variants that are linked to ( )N m . The genetic variants in ( )2N m  are defined as the 

distance 2 neighbors of the thm  genetic variant, that is, two genetic variants are linked 

together if they have at least one associated phenotype in common. We then define the 

clustering coefficient for the thm  genetic variant as 

( ) ( )
( )

( ) 2

2, #
m N m

cc m cc m m N m


= . Finally, the clustering coefficient of all genetic 

variants is the average of cluster coefficients of each genetic variant, ( )
1

M

m
cc cc m M

=
=

. The clustering coefficient of all phenotypes can also be defined in the same way as that 

of all genetic variants. We also calculate the clustering coefficient of all genetic variants 

and phenotypes for the random network random

GPNG .  

Weighted and unweighted degree. The unweighted degree of a genetic variant 

(phenotype) in a bipartite GPN is defined as the number of edges across all phenotypes 

(genetic variants)76. The unweighted degree of the thm  genetic variant and the thk  

phenotype are defined as ( ),

1
I 0

KG unweight

m mkk
d T 

=
=   and ( ),

1
I 0

MP unweight

k mkm
d T 

=
=  . 

The weighted degree is reflecting the strength of the associations of edges, which are 

defined as 
,

1

KG weight

m mkk
d T

=
=  and 

,

1

MP weight

k mkm
d T

=
= . 

 Kullback–Leibler (KL) divergence. We define KL divergences99,100 of degree of 

genetic variant and phenotypes between 
GPN


G  and random

GPNG  to determine the diversities 

between a bipartite GPN and a random bipartite network, which are given by  

( ) ( )

( ) ( )

, ,

1

, ,

1

|| log ,

|| log ,

M
G G random G G G random

m m m

m

K
P P random P P P random

k k k

k

KL D D d d d

KL D D d d d

 

 

=

=

=

=




 

where G

md  and P

kd  are the min-max standardized degree (either weighted and unweighted) 

which is defined as  ( )    ( )min max minG G G G G

m m m m m m m md d d d d= − −  for the thm  genetic 

variant and  ( )    ( )min max minP P P P P

k k k k k k m kd d d d d= − −  for the thk  phenotype. 

( ),||G G randomKL D D   and ( ),||P P randomKL D D   are used to measure the difference between 

degree distributions of genetic variants and phenotypes in 
GPN


G  and random

GPNG    

( ),||G G randomKL D D   will equal 0 if the degree of genetic variants are the same in 
GPN


G  and 

random

GPNG ; it will be negative if most degrees in random

GPNG  are greater than those in 
GPN


G ; 

and it will be positive if most degrees in  
GPN


G   are greater than those in random

GPNG  . 

( ),||P P randomKL D D  has the similar properties. We also define a global KL divergency of a 

bipartite network as ( ) ( ) ( ), ,|| || ||random G G random P P randomKL D D KL D D KL D D     = + . 
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Without loss of the generality,  the optimal threshold    should be selected by 

maximizing ( ),||G G randomKL D D   and ( ),||P P randomKL D D  . Meanwhile, in the case of 

equivalent numbers and weights of edges in the original network and the corresponding 

random network, the greater the difference of network topologies between 
GPN


G  and 

random

GPNG , the more information 
GPN


G  includes. Therefore, we also assess the difference for 

cluster coefficients between 
GPN


G  and random

GPNG  for  0,1  , which is defined as 

randomcc cc cc = − . To investigate the stability of the diversities, ( ),||G G randomKL D D   and 

( ),||P P randomKL D D  , we construct 1,000 random networks corresponding to 
GPN


G . We thus 

can estimate the standard error of KL divergence and then obtain the stability by computing 

their 95% confidence intervals (CIs). For a clustering coefficient, we only evaluate it by 

generating one random network since it is time consuming in a large-scale network. We 

also evaluate two other network properties, degree entropy and cross entropy of degree 

(details in Text B.1). 

2.2.2 Network topology annotations 

For both denser and sparse representations of GPN, we constructed two probabilistic 

annotations based on the following network centralities. The centralities of a bipartite 

network are measuring the importance of genetic variants (phenotypes) across phenotypes 

(genetic variants) in the network. To simplify the notation, we use T  to denote the 

adjacency matrix of GPN, which can be constructed by either denser or the sparse 

representation introduced in section 2.2.1. 

Degree centrality. 

For the bipartite GPN, a genetic variant with a high degree across phenotypes is more likely 

to be pleiotropic, as it is highly connected to multiple phenotypes; a phenotype with a high 

degree across genetic variants is more likely to have higher heritability, as it is connected 

to multiple genetic variants or with higher association evidence. Same as section 2.2.1, the 

weighted degree of the thm  genetic variant and the thk  phenotype are defined as follows: 

1

KG

m mkk
d T

=
=  and 

1

MP

k mkm
d T

=
= . 

Approximate betweenness centrality.  

In a bipartite GPN, we define an approximate betweenness centrality of a genetic variant 

which can be used to measure its importance in connecting different phenotypes. A genetic 

variant with high approximate betweenness can be considered an important connector 

between phenotypes. The approximate betweenness centrality of the thm  genetic variant is 

defined as 

( )  
( )

, ,

,

max ,1 ,m k l k l

k l Y

b m 


=   
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where 
,k l  is the number of shortest paths between the thk  phenotype and the thl  

phenotype and ( ),k l m  is the number of the shortest path between the thk  phenotype and 

the thl  phenotype that pass through the thm  genetic variant. Note that there are no direct 

edges between phenotypes in the bipartite GPN. Therefore, the shortest path 
,k l  is the 

number of genetic variants that are associated with both the thk  phenotype and the thl  

phenotype; the shortest path ( ),k l m  only takes the value 0 or 1, where ( ), 1k l m =  if the 

thm  genetic variant is associated with both the thk  phenotype and the thl  phenotype, 

otherwise, ( ), 0k l m = . 

2.2.3 Heritability enrichment of network annotations 

Note that the network topology annotations of genetic variants quantify the possibility of a 

genetic variant being a pleiotropic variant. To study whether these annotations are enriched 

for disease heritability of the highly correlated phenotype, we first perform a leave-one-

phenotype-out (LOPO) approach to construct the network topology annotations. Then, we 

use stratified LD score regression (S-LDSC) to estimate the enrichment and the 

standardized effect size of an annotation84,85. 

Leave-one-phenotype-out (LOPO). 

In this section, we consider K  highly genetically correlated phenotypes. To simplify the 

notation, we use 
kT  to denote the adjacency matrix of GPN by removing the thk  phenotype 

in the construction. 
kT  can be constructed by either denser or one of the sparse 

representations introduced in section 2.2.1. Then, we use one of the network topology 

annotations in section 2.2.2 to assign the numeric value to each genetic variant for the 

evaluation of the thk  phenotype. Assigning a network topology annotation to each genetic 

variant is a way to quantify its potential for pleiotropy. The LOPO approach can assist in 

determining whether genetic variants have highly evidenced impacts on other 1K −  

phenotypes through pleiotropy and can also contribute to the heritability of the thk  

phenotype.  

Stratified LD score regression (S-LDSC). 

S-LDSC is a method to assess the contribution of the annotation to disease heritability84,85 

conditional on other functional annotations. We use 86 functional annotations in the 

baseline-LD model (v2.1)101, including regulatory annotations (e.g., promoter, enhancer, 

histone marks, TF binding sites), LD-related annotations, et al. In this section, we ignore 

the index of k  to simplify the notations. Let 
mca  be the annotation value of the thm  genetic 

variant for the thc annotation, where 1, , km M=  and 0, ,c C= . In particular, 
0ma  

represent the network topology annotation of the thm  genetic variant constructed by the 

LOPO approach.  
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 S-LDSC assumes that the per-SNP heritability or variance of the effect size of each 

genetic variant is given by ( )
0

,
C

m mc cc
Var a 

=
=  where 

c  is the per-SNP contribution 

of the thc annotation to disease heritability. We can estimate 
c  using S-LDSC, 

( ) ( )2

0

, 1,
C

m c

c

E N l m c 
=

= +  

where 2

m  is the chi-square test statistic for testing the association between the thm  genetic 

variant and a phenotype in GWAS summary data, ( ) 2

,, mc m mm
l m c a r=  is the LD score of 

the thm  genetic variant to the thc  annotation, and 
,m mr  is the genotypic correlation between 

the thm  and the thm  genetic variants.  

We only focus on the network topology annotation 
0 . As demonstrated by 

Finucane et al.102, 
0  will be positive if the network annotation increases per-SNP 

heritability, accounting for all other factors. Let ( )0sd a  be the standard deviation of the 

network topology annotation. The standardized effect size *

0  is defined by 

( )
( )

0 0*

0 .
m km

sd

Var M





=


a
 

Note that *

0  is defined as the proportionate change in per-SNP heritability associated with 

a one-standard-deviation increase in the network topology annotation conditioning on all 

the other annotations85. The standard error on the estimate of *

0 , ( )*

0sd  , is computed 

using a block jackknife84. Then, we can compute the p-value to test if *

0 0   by assuming 

( ) ( )* *

0 0 0,1sd N  .  

We also calculate the enrichment of the network topology annotation, which is 

defined as the proportion of the heritability explained by genetic variants in the annotation 

divided by the proportion of genetic variants in the annotation. 

( )2 2

0

0

,
g g

m km

h h
Enrichment

a M


=


 

where ( )2

g mm
h Var =  is the estimated heritability and ( )2

0gh   is the heritability 

captured by the network annotation. 1Enrichment   represents the network annotation is 

not enriched for the disease heritability. Same as *

0 , the significance for Enrichment  is 

computed using a block jackknife84. The inclusion of the 86 functional annotations in the 

baseline-LD model can minimize the risk of bias in enrichment estimates and can also 

estimate the effect size 
0  conditional on known functional annotations84. 
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2.2.4 Community detection methods 

Community detection methods are essential in comprehending the global and local 

structures of associations between genetic variants and phenotypes, and in shedding light 

on association connections that may not be easily visible in the network topology33. 

Calculating the projection of GPN onto phenotypes that are linked through shared genetic 

variants is a very important step in the community detection. Let ( ), P

PPN Y E=G  be the 

one-mode projection of GPN, called Phenotype and Phenotype Network (PPN), where PE  

denotes the set of edges between phenotypes in PPN. Denote ( )klW=W  as an K K  

adjacency matrix of PPN, where 
klW  is the weight of the edge between the thk  phenotype 

and the thl  phenotype. In this study, we perform the community detection methods to 

partition K  phenotypes into L  disjoint network modules based on the adjacency matrix of 

PPN.  

Community detection method for the denser representation of GPN. 

For the denser representation of GPN, one straightforward way to define the adjacency 

matrix W is to compute the direct correlation of T , ( )cor=W T 77. The elements of W  

can be both positive and negative, indicating that the PPN given by the adjacency matrix 

of W  is a signed network. Inspired by our previously proposed modularity-based 

community detection method103, we introduce a community detection method for the 

signed network in this study. Let ( )klW+ +=W  and ( )klW− −=W  be adjacency matrices of 

the positive and negative weights, respectively, where  max ,0kl klW W+ =  and 

 min ,0kl klW W− =−  such that + −= −W W W . First, we assume K  phenotypes can be 

divided into 
0k  network modules using a hierarchical clustering method with similarity 

matrix W  for 
0 1, ,k K= . Let 

( ) ( )( )0 0

,

k k

k lC=C  be a K K   connectivity matrix, where 

( )0

, 1
k

k lC =  if the thk  phenotype and the thl  phenotype are in the same network module, 

otherwise, 
( )0

, 0
k

k lC = . Then, we calculate the modularity of network with only positive 

weights, +W , for each 
0k  as 

( )0

0 ,

, 1

1

2 2

K
kk l

k kl k l

k l

d d
Q W C

D D

+ +
+ +

+ +
=

 
= − 

 
 , where 

1

K

k kll
d W+ +

=
=  and 

1
2

K

kk
D d+ +

=
=  represent the degree of the thk  phenotype and overall degree of +W . 

Similarly, we calculate the modularity of −W  as 
0kQ− . Therefore, we define the modularity 

for the signed network as 
0 0 0

2 2

2 2 2 2
k k k

D D
Q Q Q

D D D D

+ −
+ −

+ − + −
= −

+ +
. Note that a network with 

a high modularity value has dense connections between phenotypes within network 

modules but sparse connections between phenotypes in different modules33. Then, we 

determine the optimal number of network modules as  1 2argmax , , , KL Q Q Q= . 
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Community detection method for the sparse representation of GPN. 

To eliminate the biases in projections caused by a large number of genetic variants that are 

unlikely to exert their influence across the whole genome31, we also provide a weighted 

projection approach by only focusing on the shared genetic variants between two 

phenotypes in the (well-defined) sparse representations of GPN, sparseT . Let *

klS  be the set 

of the genetic variants that are connected with the thk  phenotype and the thl  phenotype. 

We define *
kl

sparse sparse

kl mk km S
W T d


=   and *

kl

sparse sparse

lk ml lm S
W T d


= , where sparse

kd  and 

sparse

ld   are the weighted degree of the thk  and the thl  phenotypes, respectively. More 

specifically, 
klW  is a proportion of degree of the thk  phenotype explained by the shared 

associations between the thk  and the thl  phenotypes; similarly, 
lkW  is a proportion of 

degree of the thl  phenotype explained by the shared associations between the thk  and the 
thl  phenotypes. Therefore, 

kl lkW W  indicates that the projected PPN is a directed network. 

If 
kl lkW W , the shared associations between the thk  and the thl  phenotypes are more 

important to the thk  phenotype than the thl  phenotype. In particular, 1klW =  if and only if 

the thk  phenotype only links with the genetic variants in *

klS  . The modularity is easily 

generalized to both weighted and directed network, where the modularity based on 

LinkRank is given by104,105: ( ) ( )0

0 , ,, 1

K k

k k k l k l k lk l
Q G C  

=
= − . Let 

1

Kout

k kll
W W

=
=  be the 

out-degree of the thk   phenotype for a directed PPN. Then, 
1, , K    is the PageRank 

vector indicating the probability of a phenotype being visited by a random surfer. 

( ), 1 1out

k l kl k kG W W K g  =  +  + −   is the Google Matrix, where    is the damping 

parameter for PageRank104 (with probability 1 −   random surfer jumps to a random 

phenotype) and ( )I 0out

k kg W= =   is an indicator of dangling phenotype. Same as the 

community detection method for the denser representation of GPN, we also determine the 

optimal number of network modules as  1 2argmax , , , KL Q Q Q= . 

2.2.5 Phenome-wide association studies (PheWAS) 

The community detection method for PPN based on W  has potential applications in 

PheWAS and multiple phenotype association studies. In Chapter 1, we introduced the 

application of multiple phenotype association tests for analyzing K  correlated phenotypes. 

In this section, we extend our discussion to include the application of GPN and PPN in 

PheWAS. We can obtain an a priori grouping of phenotypes from the community detection 

method of GPN and PPN, then jointly test multiple phenotypes in each network module 

and one genetic variant to discover the cross-phenotype associations and pleiotropy. 

 Assume that K  is the total number of phenotypes in the whole phenome, which 

can be partitioned into L  disjoint network modules from section 2.2.4. Let 

1 LK K K= + + , where 
lK  is the number of phenotypes in the thl  network module. In this 

section, we apply four powerful GWAS summary-based multiple phenotype association 



33 

tests to identify the association between phenotypes in the thl  network module and a 

genetic variant, including minP17, ACAT106, MTAG107, SHom108 (details in Text B.2). 

Then, we refine our previous approach to evaluate FDR by thresholding the p-values 

obtained from the multiple phenotype association tests47. Let 
( ) ( ) 1

, ,
L

m mp p  be a sequence 

of p-values for testing the association between phenotypes in each of the network modules 

and the thm  genetic variant. For a given nominal FDR level ( )0,1 , the optimal 

threshold for the thm  genetic variant is given by  

 

( )( ) 1

0

max 1, I
ˆ sup 0,1 : ,

L l

ml

m

p p
p p t

m


=

  
=   

 
 


 

where 
0m  is the number of network modules under the null hypothesis that phenotypes in 

the network module and the thm  genetic variant have no association. We refine the 

estimation 
0 1m L m= −  , where 

( )( )1 1
I 0.05

L l

ml
m p L

=
=   is the number of identified 

network modules that are associated with the thm  genetic variant based on the Bonferroni 

Correction. 

2.2.6 Empirical GWAS summary datasets 

In our analyses, we consider two publicly available GWAS summary datasets to evaluate 

the performance of constructions of bipartite GPN, heritability enrichment of network 

annotations, community detection methods, and applications of PheWAS. 

GWAS summary statistics for correlated phenotypes. 

To perform the heritability enrichment of network annotations, we obtain publicly 

available GWAS summary data for 12 highly genetically correlated phenotypes in 

individuals of European ancestry, including attention deficit/hyperactivity disorder 

(ADHD), smoking initiation (SmkInit), autism spectrum disorder (ASD), neuroticism 

(NSM), anxiety disorder (AXD), major depressive disorder (MDD), obsessive-compulsive 

disorder (OCD), anorexia nervosa (AN), bipolar disorder (BD), schizophrenia (SCZ), 

educational attainment (EA), and cognitive performance (CP). The details of GWAS 

summary data for the 12 phenotypes are summarized in Table B.1. As demonstrated by 

Zhang et al.109,  the global genetic correlations among the 12 phenotypes estimated by their 

proposed SUPERGNOVA are ranging from -0.41 to 0.69. 51 out of 66 pairs of phenotypes 

have significant non-zero global genetic correlations (right upper triangle of Table B.2). 

Meanwhile, they also reported the proportions of correlated regions between two 

phenotypes that are ranging from 0.11% to 93%. 46 pairs of phenotypes contain at least 

one significantly correlated region after Bonferroni correction (left lower triangle of Table 

B.2). We only include the genetic variants in 22 autosomes. 

GWAS summary in the UK Biobank. 

The UK Biobank is a population-based cohort study with a wide variety of genetic and 

phenotypic information52. It recently released genome-wide association data on ~ 500K 
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individuals from all around the United Kingdom41,53. We obtain the publicly available 

GWAS summary data for 633 EHR-derived phenotypes with main ICD10 diagnoses from 

Neale lab (Data availability). These GWAS summary data are calculated based on a basic 

association test on ~337,000 unrelated individuals of British ancestry. We run the LD score 

regression (LDSC)110 to each of these 633 phenotypes, therefore, we exclude 45 

phenotypes in our analyses since the estimators of their heritability are out of bounds. There 

are 588 phenotypes across 1,096,648 genetic variants in autosomes in our analyses.  

2.3 Results 

2.3.1 Construction of GPNs for 12 genetically correlated phenotypes  

We construct three bipartite GPNs for 12 genetically correlated phenotypes listed in Table 

B.1, including a denser representation, an arbitrary sparse representation, and a well-

defined representation. There are a total of 17,585,432 unique genetic variants from 12 

GWAS summary datasets. The global genetic correlations and proportions of correlated 

regions among the 12 phenotypes estimated by SUPERGNOVA109 are shown in Table 

B.2. We also perform LDSC110 to estimate phenotypic correlation (right upper triangle of 

Table B.3) and genetic correlation (left lower triangle of Table B.3) among the 12 

phenotypes. Among a total of 66 pairs of phenotypes, 45 pairs of phenotypes have 

significant non-zero genetic correlations ( 4p-values 0.05 66 7.58 10− =  ). In particular, 

MDD has significant non-zero genetic correlations with other 11 phenotypes; NSM has 

significant non-zero genetic correlations with 10 phenotypes except for BD; SCZ and EA 

have significant non-zero genetic correlations with other 10 phenotypes, but SCZ and EA 

do not have significant non-zero genetic correlation. 

The denser representation of GPN is constructed without using any thresholds. 

Since the 12 GWAS summary datasets contain differet numbers of the 17,585,432 unique 

genetic variants, the connectance of the denser representation of GPN is 0.5123 (Figure 

B.1(a)). The well-defined sparse representation of GPN is constructed by comparing the 

network properties with the corresponding random networks. Since we only have 12 

phenotypes in this analysis, we only consider the network properties for genetic variants of 

the constructed GPN and the corresponding random networks. For each ( )0,1  , we 

generate 1,000 corresponding random networks. Figure 2.2(a) shows the comparisons of 

the KL divergence for genetic variants across 1,000 random networks. The KL divergence 

increases from 0 to a specific value of the threshold and then decreases from that value to 

1, indicating that the difference between the original and random network reaches the 

maximum at the specific value. We also calculate the cross entropy of the weighted degree 

of genetic variants compared to the corresponding random network (Figure 2.2(b)). 

Note that the weighted degree of genetic variants in a corresponding random 

network becomes more different than the original one if the original network retains the 

key information about the interactions between genetic variants95. The network properties, 

KL divergence and cross entropy, will reach the maximum value at the most informative 

network. In our analysis, we prioritize choosing the optimal threshold with respect to KL 

divergence and then check the cross entropy and weighted degree entropy at that optimal 

threshold. The maximum mean of KL divergence equals 89.02 10  at 0.45 = , where the 
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mean of cross entropy equals a larger value ( 59.83 10 ) even though it does not reach the 

maximum value. Therefore, we constructed the well-defined sparse representation of GPN 

with 0.45 = . This optimal threshold is much larger than the significant level for the 

association testing (e.g., 0.05 =  for controlling FDR at the nominal level of 0.05). The 

optimal threshold in the construction of GPN does not represent the significant associations 

between genetic variants and phenotypes. It is only used to ensure that the constructed GPN 

is more informative than a random network.  

As a comparison, we also construct an arbitrary sparse representation of GPN by 

using the threshold 0.1 = . Figure 2.2(c) shows the weighted degree distribution of 

genetic variants for three GPNs, denser representation ( 1 = ), well-defined sparse 

representation ( 0.45 = ), and an arbitrary threshold sparse representation ( 0.1 = ). We 

observe that the degree distributions of all three networks follow the power law with 

different scale parameters  , indicating that a small number of genetic variants have a 

much larger number of connections than the majority of genetic variants. In particular, the 

degree of genetic variants in the denser representation of GPN is greater than those in a 

sparser GPN, resulting in the scale parameter increases with increasing the threshold  .  

We also calculate the network properties of the unweighted GPNs by comparing 

them with the corresponding random networks (Figure B.2). Furthermore, the adjacency 

matrix of the projected PPN, W  introduced in section 2.2.4, can be considered as the 

phenotypic correlation among 12 phenotypes based on the shared genetic architecture. 

Figure B.3 shows the comparisons of the adjacency matrix of PPN constructed by the 

denser and well-defined sparse representations of GPN with the genetic correlation matrix 

estimated by SUPERGNOVA109 (Table B.2) and LDSC110 (Table B.3). 

 

Figure 2.2. Network properties of the weighted bipartite GPNs for 12 genetically 

correlated phenotypes. (a) KL divergency for genetic variants. The blue line is the mean of 

KL divergencies across 1,000 random network comparisons. The boxplots show the scaled 

distributions of the KL divergency for each threshold. (b) Cross entropy for genetic 

variants. Blue lines are the means of cross entropy across 1,000 random network 

comparisons. The boxplot shows the scaled distribution of the cross entropy for each 

threshold. (c) Plot of the weighted degree distribution of genetic variants for three GPNs 

on the log-log scale, denser representation ( 1 = ), well-defined sparse representation (

0.45 = ), and an arbitrary threshold sparse representation ( 0.1 = ).  
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2.3.2 Heritability enrichment analysis of network annotations 

For each of the above three bipartite GPNs for 12 phenotypes, we perform S-LDSC along 

with LOPO to evaluate whether the network topology annotations are enriched for disease 

heritability. We consider both degree centrality and betweenness centrality of genetic 

variants, conditioning on 86 functional annotations in the baseline-LD model (v2.1)101. 

These 86 existing functional annotations have been demonstrated to be highly informative 

by capturing functionality and LD-related features, thus, we evaluate the added value of 

our network topology annotations in capturing disease heritability, contributed by the 

pleiotropic variants with other genetically correlated phenotypes.  

Table 2.1 shows the heritability enrichment analysis results for degree centrality 

calculated from denser, arbitrary sparse, and well-defined sparse representations of GPN, 

respectively. From the LDSC results (Table B.3), MDD has significant non-zero genetic 

correlations with all other 11 phenotypes. Table 2.1 shows that the degree centrality 

annotation is significantly enriched for the heritability of phenotype MDD based on all of 

the three constructed GPNs ( p-values<0.05 12 0.0042 ). As we demonstrated in section 

2.2.2, the network topology annotation of each genetic variant quantifies its possibility for 

pleiotropy among other correlated phenotypes. After we use the LOPO approach to 

construct the network annotations of MDD, the significance enrichment indicates that the 

network annotation can contribute more information to disease heritability if it is computed 

based on other highly genetically correlated phenotypes. In particular, even though the 

arbitrary sparse representation of GPN ( 0.1 = ) contains less information than the denser 

and well-defined GPN, the degree centrality annotation is still significantly enriched in 

heritability of MDD ( 52p .v 7l 9- a ue 10−=  ) conditioned on the 86 functional annotations. 

Meanwhile, the degree annotation is also significantly enriched in heritability of CP (
62p .v 7l 6- a ue 10−=  ) and SCZ ( 1p 0-v .alue 002= ) for the arbitrary sparse representation 

of GPN: SCZ has significant non-zero genetic correlations with 10 phenotypes except for 

EA (Table B.3); CP has the significant proportions of correlated regions with 9 phenotypes 

in which there are over 15% of correlated regions with 8 phenotypes (Table B.2). 

The network annotation based on degree centrality obtained by the denser 

representation of a bipartite GPN includes the complete information for explaining the 

associations between phenotypes and genetic variants. It is significantly enriched to disease 

heritability of 11 out of 12 phenotypes as expected, except for AXD, with enrichment 

estimates ranging from 1.4457 (OCD with p-value 0.0016= ) to 2.2894 (ASD with 
24p-value 8.69 10=  ). We identify the most significant enrichment of network annotations 

based on degree centrality for CP ( Enrichment 2.2026=  with 54p-value 6.33 10−=  ) and 

EA ( Enrichment 2.0406=  with 52p-value 1.14 10−=  ).  These two phenotypes have a 

significant proportion of correlated regions, 93%, estimated by SUPERGNOVA109. 

Figures B.4(a) and B.4(b) show the qq-plot of EA versus CP based on the weight of the 

denser and the well-defined sparse representations of GPN. Most of the genetic variants 

have similar weights for both EA and CP, lying in the diagonal line, but there exist some 

genetic variants that have the largest weights for only one phenotype. The same 
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relationship between EA and CP is shown in the marginal associations from GWAS 

summary datasets (Figures B.4(c) and Figure B.4(d)). 

The network topology annotations obtained by the well-defined sparse 

representation of GPN ( 0.45 = ) perform similarly on the heritability enrichment 

compared to the denser representation of GPN. Even though some information is excluded 

from the well-defined GPN, the annotations obtained by the well-defined GPN contribute 

similar effects to disease heritability. Table 2.1 and Table B.4 show the annotations from 

both denser and well-defined sparse representations of GPN can significantly enrich to 

disease heritability of the same phenotypes. However, the network topology annotations 

obtained by the arbitrary sparse representation of GPN ( 0.1 = ) are not enriched to most 

disease heritability. We can conclude that a more informative network can be used to 

understand heritability rather than an arbitrary one with a smaller threshold. For example, 

if we use the significance level of the associations (e.g., 0.1 =  or 0.05 = ) to construct 

a GPN, it may loss more information and key connections even though its edges represent 

the significant associations between genetic variants and phenotypes. 

However, the network annotation based on approximate betweenness centrality 

performs differently on the heritability enrichment analysis with the annotation based on 

degree centrality. Table B.4 shows the heritability enrichment analysis results for 

betweenness centrality calculated from denser, arbitrary sparse, and well-defined sparse 

representations of GPN, respectively. We observe that the betweenness centrality 

calculated by the denser representation of GPN significantly enriches the disease 

heritability of only seven phenotypes, whereas the annotation calculated by the well-

defined GPN can significantly enrich the heritability of 10 phenotypes. The strength of the 

associations between genetic variants and phenotypes is not considered in the betweenness 

centrality and the denser representation of GPN includes all edges. Therefore, the 

betweenness centrality of GPN is not an important feature that can be considered in the 

heritability enrichment analysis. Alternatively, it is an important network property for the 

sparse representation of GPN since only the edges with strength evidence of associations 

are included in the GPN. A genetic variant with high approximate betweenness can be 

considered an important connector between phenotypes. Therefore, the network 

annotations based on the approximate betweenness centrality calculated from the well-

defined ( 0.45 = ) and the arbitrary ( 0.1 = ) sparse representation of GPN are 

significantly enriched to 10 phenotypes’ heritability. Meanwhile, the network annotation 

calculated by a well-defined GPN has stronger evidence than that calculated by the 

arbitrary one. 

According to heritability enrichment results, we observe that network annotations 

are not enriched to the disease heritability of AXD and OCD. Figure B.5 shows the 

heatmap of edge weights in the well-defined sparse representation of GPN for the top 100 

and the top 1000 genetic variants with the highest degree centrality, respectively. We 

observe that these top genetic variants have smaller weights on AXD and OCD, which 

means that the genetic variants with the highest degree centrality are not associated with 

AXD and OCD. Therefore, the network annotation is not enriched to their heritability. In 

particular, there are no edges between OCD and genetic variants if the threshold is smaller 

than 0.4. 
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Table 2.1. Heritability enrichment analyses of network topology annotation (degree 

centrality) based on denser and sparse representations of bipartite GPN for each of the 12 

phenotypes.  

Trait 

Denser Sparse (𝝉 = 𝟎. 𝟒𝟓) Sparse (𝝉 = 𝟎. 𝟏) 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

ADHD 

2.2175 

(0.1697) 

8.26e-24 

3.5434 

(0.3247) 

10.8870 

3.3012 

(0.3209) 

8.49e-22 

3.5192 

(0.3423) 

10.2797 

3.4734 

(0.9173) 

0.0072 

2.6504 

(0.9882) 

2.6820 

AN 

1.7796 

(0.1097) 

4.31e-21 

1.5274 

(0.1694) 

9.0145 

2.5216 

(0.2174) 

3.73e-19 

1.5866 

(0.1823) 

8.7030 

2.5594 

(0.9810) 

0.1119 

1.1405 

(0.7423) 

1.5364 

ASD 

2.2894 

(0.2640) 

8.69e-24 

2.2771 

(0.2373) 

9.5973 

3.4316 

(0.4836) 

6.52e-21 

2.3124 

(0.2580) 

8.9614 

6.1025 

(1.9961) 

0.0118 

3.5573 

(1.4359) 

2.4773 

AXD 

1.5678 

(0.5801) 

0.0754 

0.2486 

(0.1613) 

1.5382 

2.1892 

(1.1815) 

0.0653 

0.2913 

(0.1703) 

1.7102 

5.6798 

(5.0946) 

0.2467 

0.7908 

(0.6693) 

1.1816 

BD 

2.0745 

(0.1184) 

7.61e-31 

3.8595 

(0.3194) 

12.0837 

3.2647 

(0.2417) 

1.25e-30 

4.3352 

(0.3547) 

12.2213 

2.9583 

(0.7146) 

0.0043 

2.5911 

(0.9309) 

2.7835 

CP 

2.2026 

(0.0562) 

6.33e-54 

3.4031 

(0.1680) 

20.2517 

3.9373 

(0.1260) 

2.63e-55 

4.1757 

(0.1972) 

21.0983 

4.6075 

(0.7325) 

2.76e-06 

3.3237 

(0.6999) 

4.7485 

EA 

2.0406 

(0.0459) 

1.14e-52 

1.9705 

(0.1001) 

19.5241 

3.7963 

(0.1204) 

1.24e-50 

2.4471 

(0.1267) 

19.3187 

3.5526 

(0.8799) 

0.0045 

1.2735 

(0.4486) 

2.8389 

MDD 

1.9550 

(0.0715) 

4.40e-32 

0.7342 

(0.0580) 

12.6561 

3.0106 

(0.1537) 

1.19e-29 

0.7761 

(0.0615) 

12.1223 

3.6246 

(0.6172) 

2.79e-05 

0.6783 

(0.1609) 

4.2153 

NSM 

1.8706 

(0.1088) 

1.06e-19 

1.0423 

(0.1147) 

9.0888 

2.8629 

(0.2225) 

9.01e-20 

1.1485 

(0.1243) 

9.2426 

4.1886 

(1.0518) 

0.0097 

1.3055 

(0.5086) 

2.5669 

OCD 

1.4457 

(0.2218) 

0.0016 

1.3711 

(0.5976) 

2.2942 

1.8569 

(0.4276) 

0.0022 

1.4454 

(0.6231) 

2.3197 

0.6951 

(2.1090) 

0.8867 

-0.5192 

(3.1212) 

-0.1663 

SCZ 

1.9353 

(0.0668) 

2.65e-36 

5.4211 

(0.3765) 

14.3994 

3.0742 

(0.1512) 

1.38e-33 

5.6948 

(0.4217) 

13.5116 

3.2212 

(0.7209) 

0.0021 

4.0283 

(1.3343) 

3.0190 

SmkInit 

1.6750 

(0.0918) 

9.76e-21 

0.5857 

(0.0675) 

8.6809 

2.3947 

(0.1866) 

8.62e-20 

0.6398 

(0.0731) 

8.5610 

2.1556 

(0.8704) 

0.1839 

0.3691 

(0.2839) 

1.2888 

Notes: The estimated effect size and its estimated standard error, 𝜏∗ and 𝑠𝑒(𝜏∗), are scaled by dividing 10−9. 

Z-score of the effect size is reported to test the null hypothesis that either 𝜏 ≤ 0 (one-sided) or 𝜏 = 0 (two-

sided). P-value of enrichment is reported to test the null hypothesis that 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 > 1. The bold-faced 

p-values indicate the annotation significantly enriched in the disease heritability after accounting for multiple 

testing (p-value< 0.05 12⁄ ≈ 0.0041). 
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2.3.3 Construction of GPNs for 588 EHR-derived phenotypes in the UK 

Biobank 

For a total of 1,096,648 genetic variants and 588 EHR-derived phenotypes with main 

ICD10 diagnoses after preprocessing, we construct two bipartite GPNs including a denser 

representation and the well-defined sparse representation. Different from the previous 12 

GWAS summary datasets obtained from different studies, GWAS summary datesets of 

these 588 phenotypes are calculated based on a basic association test on the same ~337,000 

unrelated individuals of British ancestry. Therefore, connectance of the denser 

representation of GPN equals 1, that is, all genetic variants link with all phenotypes with 

strength of the associations (Figure B.1(b)).  

We consider the network properties for both genetic variants and phenotypes of 

constructed GPN and the corresponding random networks. For each ( )0,1  , we generate 

1,000 corresponding random networks. Figure 2.3(a) and 2.3(b) show the KL divergence 

for genetic variants and phenotypes across 1,000 random network comparisons, 

respectively. The KL divergence increases from 0 to a specific value of the threshold and 

then decreases from that value to 1, indicating that the difference between the original and 

random network reaches the maximum at the specific value. We also calculate the cross 

entropy and degree entropy of the weighted degree of genetic variants compared to the 

corresponding random network (Figure B.6). The maximum mean of KL divergence 

equals 81.14 10  at 0.6 = , where the mean of cross entropy equals 43.90 10  with the 

largest standard error (17.08) compared with other thresholds. Therefore, we constructed 

the well-defined sparse representation of GPN with 0.6 = . We also compare degree 

distributions of the well-defined network with a more denser representation ( 0.8 = ) and 

two arbitrary threshold sparse representations ( 0.2 =  and 0.4 = ) of GPN. Similar to the 

constructed GPN of 12 genetically correlated phenotypes, the degree distributions of all 

four networks follow the power law with different scale parameters  , indicating that a 

small number of genetic variants have a much larger number of connections than the 

majority of genetic variants. In particular, the degree of genetic variants in the denser 

representation of GPN is greater than those in a sparser GPN, resulting in the scale 

parameter increases with increasing the threshold  . Meanwhile, we calculate the network 

properties of the unweighted GPNs by comparing them with the corresponding random 

networks (Figure B.7).  

We calculate three network topology annotations of genetic variants in the 

constructed GPNs with 0.2,0.4,0.6,0.8 = , including weighted degree centrality, 

unweighted degree centrality, and approximate betweenness centrality (Figures B.7 and 

B.8). Figure B.7 illustrates the relationship between the approximate betweenness 

centrality of genetic variants and the weighted degree centrality of genetic variants. We 

mark the genetic variants with the highest centralities.  
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Figure 2.3. Network properties of the bipartite GPNs for 588 EHR-derived phenotypes in 

the UK Biobanks. (a) and (b) KL divergency for genetic variants and phenotypes. The blue 

line is the mean of KL divergencies across 1,000 random network comparisons. The 

boxplots show the scaled distribution of KL divergency for each threshold. (c) and (d) 

Weighted degree distribution of genetic variants and phenotypes for four GPNs on log-log 

scale, more denser representation ( 0.8 = ), well-defined sparse representation ( 0.6 = ), 

and two arbitrary threshold sparse representations ( 0.2 =  and 0.4 = ).  

 

2.3.4 Community detection for phenotypes 

For the denser representation of GPN, we construct the one-mode projected PPN by taking 

the correlation of the adjacency matrix of GPN. After applying the modularity-based 

community detection method to the signed PPN, we partition 588 EHR-derived phenotypes 

into 132 disjoint network modules. The number of phenotypes in each network module 

ranges from 1 to 87. For the well-defined sparse representation of GPN with, we also 

construct a directed PPN by only focusing on the shared genetic variants between two 

phenotypes. In the sparse representation of GPN, phenotypes link with multiple genetic 

variants, but different phenotypes may not share a link with the same genetic variants. That 

is, we define the adjacency matrix for the thk  phenotype as 0klW =  for all 1, ,l K=  if 

the thk  phenotype does not share the same genetic variants with other phenotypes. 

Therefore, we first isolate 125 phenotypes without sharing any genetic variants with other 

phenotypes as 125 network modules for a single phenotype. Then, we partition the 

remaining 463 phenotypes into 71 network modules using the community detection 

method introduced in section 2.2.4. The number of phenotypes in the 71 network modules 
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ranges from 2 to 37, and there are a total of 196 network modules. For a comparison, we 

also apply our proposed community detection method based on denser representation of 

GPN to LDSC phenotypic correlation. 588 phenotypes are divided into 114 categories with 

the number of phenotypes ranging from 2 to 82.  

2.3.5 Phenome-wide association studies (PheWAS) 

In PheWAS, a priori grouping (network module) of phenotypes in whole phenome can be 

obtained by the community detection of PPN. For each network module, we jointly test the 

phenotypes within this module and a genetic variant to discover the cross-phenotype 

associations and potential pleiotropy. In this study, we perform five powerful GWAS 

summary-based multiple phenotype association tests to identify the association between 

phenotype in each network module and each of genetic variants, including minP17, ChiSq17, 

ACAT106, MTAG107, SHom108 (details in Text B.2). Then, we use the refined FDR 

controlling approach to evaluate FDR by thresholding the p-values obtained from the 

multiple phenotype association tests.  

Simulation studies. 

We first conduct extensive simulation studies to evaluate whether multiple phenotype 

association tests used in our study can well-control FDR. We consider two simulation 

settings of the number of phenotypes: 500 phenotypes with 50 phenotypic categories and 

1,000 phenotypes with 100 phenotypic categories (details in Text B.3). We assume that 

only the phenotypes within the same phenotypic category are correlated with each other. 

Similar to Lee et al.9, we consider two scenarios of correlations among phenotypes within 

the same category: 1) same correlation between each pair of phenotypes (SAME); 2) 

different correlation between each pair of phenotypes that is generated by using an 

autoregressive (AR(1)) model. Table B.4 and Table B.5 show the average FDR in the 

simulation studies for 500 phenotypes and 1,000 phenotypes, respectively. FDR is 

evaluated using 10 Monte-Carlo (MC) runs, equivalent to 1,000 replications at a nominal 

FDR level of 5% (Text B.3). The 95% confidence interval (CI) is (0.0365, 0.0635). Note 

that we directly generate z-scores instead of effect sizes of genetic variants on phenotypes 

without considering LD, therefore, we do not consider MTAG in our simulation studies. 

The correlations among phenotypes are estimated by the method introduced in Kim et al.17. 

We observe that minP cannot control FDR in all scenarios but ACAT, and SHom well-

control FDR as expected. 

PheWAS based on 165 UK Biobank level 1 categories:  

As benchmarked categories in our analysis, we use 165 UK Biobank level 1 categories 

defined in data-field 41202 (https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202). 

The number of phenotypes in each category ranges from 1 to 20: there are 43 categories 

containing only one phenotype; 35 and 31 categories contain 2 and 3 phenotypes, 

respectively; only 7 categories contain more than 10 phenotypes. In our real data analyses, 

we only apply three multiple phenotype association tests (ACAT, SHom, and MTAG) to 

test the association between phenotypes in each network module and each genetic variant. 

minP is not considered here since it cannot control FDR evaluated in our simulation studies. 

We use the commonly used genome-wide nominal FDR level 85 10− . After applying our 

refined FDR controlling approach for the tests of each genetic variant, ACAT can identify 

https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=41202
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6,105 genetic variants associated with at least one category. We observe that most genetic 

variants are associated with only one category. SHom can identify 2,701 genetic variants 

and MTAG can identify 2,980 genetic variants (Figure 2.4). 

 

 

Figure 2.4. Venn plots for genetic variants identified by three multiple phenotype 

association tests based on different phenotypic categories and network modules.  

 

PheWAS based on 114 phenotypic categories from LDSC. 

As a comparison, we also apply three multiple phenotype association tests to 114 categories 

detected from the phenotypic correlation estimated by LDSC. ACAT identifies 6,205 

genetic variants, SHom identifies 2,237 genetic variants, and MTAG identifies 1,603 

genetic variants. Compared with the association tests based on the phenotypic categories 

in the UK Biobank, ACAT based on the LDSC can identify all of the 6,105 genetic variants 

identified by ACAT based on the UK Biobank (Figure 2.4). Meanwhile, there are 100 

genetic variants that are uniquely identified by ACAT based on the LDSC. Figure B.10 

shows the heatmap of -log10(p-value) from GWAS summary datasets of these 100 genetic 

variants. We observe that all of these 100 genetic variants significantly associated with at 

least one phenotype at the GWAS significance level 85 10− . According to results from 

SHom and MTAG, tests based on the UK Biobank identify more genetic variants than the 

tests based on the LDSC. 

PheWAS based on 132 network modules from denser representation of GPN  

According to the 132 network modules from denser representation of GPN (section 2.3.4), 

ACAT can identify 6,142 genetic variants associated with at least one network modules 

and SHom can identify 6,139 genetic variants. In the application of MTAG, it is time 

consuming and out of memory for one network module with 87 phenotypes. Therefore, we 

perform MTAG on the other 131 network modules and MTAG identifies 6,220 genetic 

variants. Figure 2.4 shows the Venn plot for genetic variants identified by three multiple 

phenotype association tests based on different phenotypic categories and network modules. 

Based on the network modules detected from the denser representation of GPN, all three 

methods (ACAT, SHom, and MTAG) can identify ~6,000 genetic variants associated with 

at least one network module.  
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PheWAS based on 196 network modules from well-defined representation of GPN.  

According to the 196 network modules from well-defined representation of GPN (section 

2.3.4), ACAT can identify 6,060 genetic variants associated with at least one network 

modules; SHom can identify 2,385 genetic variants; and MTAG can identify 1,934 genetic 

variants. From ACAT results, 6,060 genetic variants are identified by ACAT based on at 

least two other grouping of phenotypes, even if it identifies a smaller number of genetic 

variants. According to results from SHom and MTAG, tests based on the network modules 

detected from well-defined GPN identify more genetic variants than the tests based on the 

LDSC and the UK Biobank, but it identify less genetic variants than the tests based on the 

network modules detected from denser GPN. 

2.4 Discussion 

In this paper, we perform a comprehensive analysis to construct the bipartite genotype and 

phenotype networks (GPN), which can be a routine procedure in post-GWAS analyses. 

Owing to increasingly accessible GWAS summary statistics, the construction of GPN only 

requires the marginal association evidence between each genetic variant and each 

phenotype in GWAS summary data instead of accessing individual-level genotypes and 

phenotypes data. The denser representation of the bipartite GPN can be directly constructed 

by linking all genetic variants and phenotypes in GWAS summary datasets. Although a 

denser representation of bipartite GPN contains information on all pairwise associations 

between genetic variants and phenotypes, pruning the network makes biological sense and 

is computationally efficient31. The thresholding approach for pruning networks leads to 

stable network properties, but the threshold is significantly impacted by the size of a 

network (connectance). To address this, we propose to construct a well-defined GPN with 

a clear representation of genetic associations by comparing the network properties with a 

random network, including connectivity, centrality, and community structure. Our findings 

indicate that a well-defined network with an optimal threshold can preserve critical 

information on the associations between genetic variants and phenotypes.  

Based on the construction of the denser and well-defined representation of bipartite 

GPN, we further propose two network topology annotations based on the degree centrality 

and the approximate betweenness centrality. Both of the annotations can be used to 

quantify the possibility of pleiotropy for genetic variants. We highlight one of our 

significant discoveries that link pleiotropy and disease heritability through the utilization 

of heritability enrichment analysis using the stratified LD score regression. We analyze 12 

genetically correlated phenotypes to show that the genetic variants with high degree 

centrality and approximate betweenness centrality are enriched for disease heritability 

conditioning on known functional annotations from the baseline LD model. First, in 

analyses of the degree centrality based on the denser and the well-defined GPNs, we 

identify 10 phenotypes with significant heritability enrichment after using the LOPO 

approach. The significant enrichment indicates that the degree annotation can contribute 

more information to disease heritability if it is computed based on other highly genetically 

correlated phenotypes. We also observe that the denser GPN provides more information in 

the degree centrality as the degree centrality contains the strength of marginal association 

evidence. Second, we determine that network annotation based on the approximate 
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betweenness centrality calculated from the well-defined GPN is strongly enriched for 

disease heritability. However, the disease heritability of some phenotypes is fully explained 

by annotations from the baseline-LD model in the analysis of the approximate betweenness 

centrality calculated from the denser GPN. 

Construction of the bipartite GPN also has important implications for the phenome-

wide association studies (PheWAS). In particular, detecting the network modules of 

phenotypes from the constructed GPN is essential in understanding the global and local 

structures of associations between genetic variants and phenotypes, and in shedding light 

on association connections that may not be easily visible in the network topology. The 

detected network modules can be used as a priori grouping of phenotypes in PheWAS, then 

jointly testing of multiple phenotypes in each network module and one genetic variant can 

be performed to discover the cross-phenotype associations and pleiotropy. Significance 

thresholds for PheWAS are adjusted for multiple testing by applying the false discovery 

rate (FDR) control approach. First, we discover that the three multiple phenotype 

association tests (ACAT, SHom, and MTAG) applied in this study can well-control FDR 

as demonstrated by extensive simulation studies. Second, we analyze 633 EHR-derived 

phenotypes in the UK Biobank GWAS summary datasets. Based on the network modules 

detected from the denser representation of GPN, all three tests can identify more genetic 

variants associated with at least one network module (~6,000 genetic variants) compared 

with the tests based on the UK Biobank, LDSC, and well-defined GPN.  

There still are some limitations to the work presented here. First, genetic effects can 

be heterogenous across phenotypes and studies based on different GWAS summary 

statistics111,112 due to different sample sizes, genetic architectures, and quality of the 

genotyping and phenotyping data, et al. In our current analyses, we ignore the influence of 

different sample sizes for different GWAS summary statistics in the construction of GPN. 

However, larger sample sizes are typically associated with smaller standard errors and 

more precise effect size estimates, which can help to reduce bias and increase the stability 

of effect size estimates. To construct a GPN with stable evidence of the associations in the 

edges, we suggest that the sample sizes used to calculate the GWAS summary results in 

each study are sufficiently large (e.g., 10,000kN  ). Second, we use the marginal 

association between each genetic variant and each phenotype to define the edge of GPN. 

The challenge in validating our proposed construction of GPNs is that there is no source of 

genome-wide “ground truth”. There may exist spurious associations between multiple 

genetic variants and a phenotype due to LD3. For example, a genetic variant in high LD 

with a true causal variant may be detected instead of the causal variant itself. However, 

several powerful fine-mapping and colocalization approaches have been developed to 

leverage information on LD to identify the putative causal variants in a specific genomic 

region113-115, which provides a great opportunity to construct a more informative GPN for 

future studies. Third, we do not consider the functional relationships between genetic 

variants and phenotypes. Filtering candidate (functional) regions based on strength of 

powerful gene-based associations may reduce multiple testing burdens and consequently 

improve statistical power in the construction of GPN. For example, transcriptome-wide 

association studies can combine genetic and transcriptomic data in a specific tissue to 
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identify functional variants and genomic regions, which provide insights into biological 

pathways116. 

2.5 Data availability 

GWAS summary statistics for 633 EHR-derived phenotypes with main ICD10 diagnoses 

can be found from Neale lab: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-

thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank. 

GWAS summary statistics for 12 highly correlated phenotypes can be downloaded from 

the corresponding consortium websites reported in Zhang et al.109. 

LDSC: the command line tool for estimateing heritability and genetic correlation from 

GWAS summary statistiscs can be downloaded from https://github.com/bulik/ldsc27. 

Cytoscape: an open source software platform for visualizing complex networks which can 

be accessed via https://cytoscape.org/71. 
 

 

http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
https://github.com/bulik/ldsc
https://cytoscape.org/


46 

3 Chapter 3 

 

Gene-based association tests using GWAS summary 

statistics and incorporating eQTL 

 

Abstract 

Although genome-wide association studies (GWAS) have been successfully applied to a 

variety of complex diseases and identified many genetic variants underlying complex 

diseases via single marker tests, there is still a considerable heritability of complex diseases 

that could not be explained by GWAS. One alternative approach to overcome the missing 

heritability caused by genetic heterogeneity is gene-based analysis, which considers the 

aggregate effects of multiple genetic variants in a single test. Another alternative approach 

is transcriptome-wide association study (TWAS). TWAS aggregates genomic information 

into functionally relevant units that map to genes and their expression. TWAS is not only 

powerful, but can also increase the interpretability in biological mechanisms of identified 

trait associated genes. In this study, we propose a powerful and computationally efficient 

gene-based association test, called Overall. Using extended Simes procedure, Overall 

aggregates information from three types of traditional gene-based association tests and also 

incorporates expression quantitative trait locus (eQTL) information into a gene-based 

association test using GWAS summary statistics. We show that after a small number of 

replications to estimate the correlation among the integrated gene-based tests, the P values 

of Overall can be calculated analytically. Simulation studies show that Overall can control 

type I error rates very well and has higher power than the tests that we compared with. We 

also apply Overall to two schizophrenia GWAS summary datasets and two lipids GWAS 

summary datasets. The results show that this newly developed method can identify more 

significant genes than other methods we compared with.  

Keywords: extended Simes procedure; eQTL - derived weights; GWAS summary 

statistics; gene-based association study 

 

3.1 Introduction 

Although genome-wide association studies (GWAS) have successfully identified 

thousands of single nucleotide polymorphisms (SNPs) associated with a wide range of 

complex human traits1,2, there is a common limitation in which GWAS focus on only a 

single genetic variant with a trait at a time. This limitation may limit the power to identify 

clinically or biologically significant genetic associations117. Furthermore, many genome-

wide significant genetic variants are in linkage disequilibrium (LD). Different LD patterns 

can cause non-replicated results of the same variant in different populations118,119. 

Therefore, several powerful gene-based statistical association tests, in which the genetic 

information of all genetic variants in a gene is combined to obtain more informative results, 



47 

have been developed, such as the Burden Test (BT)120, the Sequence Kernel Association 

Test (SKAT)121, and the Optimized SKAT (SKATO)122.  

When individual-level genotype and phenotype data are not available, the 

traditional gene-based association tests, BT, SKAT, and SKATO, can be extended by using 

GWAS summary statistics123. Currently, there are many GWAS summary statistics 

available in public resources124. In GWAS summary statistics, the Z-scores of genetic 

variants in a gene are assumed to asymptotically follow a multivariate normal distribution 

with a correlation matrix among all genetic variants in a gene under the null hypothesis125, 

where the correlation matrix can be estimated by LD among the genetic variants in the 

gene116,126. When individual-level data are not available, LD is usually estimated using 

external reference panels127,128 (i.e., 1000 Genomes Project129). Due to the small sample 

size of reference panels used to estimate LD, statistical noise (i.e., inflated type I error rates 

or large numbers of false positives) often exists which needs to be accounted for130,131. One 

way to reduce the statistical noise is to correct the estimated LD by a regularization 

procedure132. In the regularization procedure, a statistical white Gaussian noise is added to 

the LD matrix which is estimated by a reference panel. After correcting the estimated LD 

by the regularization procedure, we can assume that, under the null hypothesis, the Z-scores 

from GWAS summary statistics asymptotically follow a multivariate normal distribution 

with the correlation matrix being the corrected LD matrix among the genetic variants in a 

gene. 

To increase statistical power in identifying genes that are associated with complex 

diseases, PrediXcan133 and transcriptome-wide association study116,134 (TWAS) were 

developed by incorporating expression quantitative trait locus (eQTL) data into GWAS. 

As pointed out by Zhang et al.128, PrediXcan and TWAS can be viewed as a simple 

weighted linear combination of genetic variants with an eQTL - derived weight. In fact, 

the genetic architecture of complex traits is rarely known in advance and is likely to vary 

from one region to another across the genome and from one trait to another128. Therefore, 

only considering one single eQTL - derived weight, such as in PrediXcan and TWAS, may 

lose statistical power in identifying significant genes. Zhang et al.128 developed an omnibus 

test (OT) using Cauchy combination method to integrate association evidence obtained by 

BT, SKAT, and SKATO based on GWAS summary data with multiple eQTL‐derived 

weights. They showed that OT using multiple eQTL - derived weights had some potential 

advantages. 

Inspired by the advantage of OT, in this paper, we propose a more powerful and 

computationally efficient method, called Overall, to aggregate the information from three 

types of traditional gene-based association tests (BT, SKAT, SKATO) with multiple eQTL 

- derived weights using GWAS summary statistics. To combine information from the three 

gene-based association tests, the Overall method utilizes the extended Simes 

procedure119,135. To apply the Overall method, we first need to estimate the correlation 

matrix among the three gene-based association tests with eQTL - derived weights under 

the null hypothesis. We provide an estimation method using a replication procedure136,137. 

The replication procedure only needs to be performed once to obtain the correlation matrix 

for each gene. Then, the p-values of Overall can be analytically computed without using 

permutations. To calculate the p-values of the three types of gene-based association tests 
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(BT, SKAT, SKATO) using GWAS summary statistics with eQTL - derived weights, we 

use the “sumFREGAT” package in R123. Once we obtain the p-values of these three tests, 

the p-values of our proposed method can be easily calculated using its theoretical 

distribution. Extensive simulation studies show that Overall can control type I error rates 

well and has higher power than the comparison methods across most of the simulation 

settings. Similar to Zhang et al.128, we apply our method to two schizophrenia (SCZ) and 

two lipids trait (HDL) GWAS summary data sets. Compared with OT and other tests, the 

proposed method can identify more significant genes. More interestingly, some significant 

genes reported by GWAS catalog are only identified by our proposed method. 

3.2 Statistical Models and Methods 

3.2.1 Statistical Models 

Consider a set of M  genetic variants in a gene. Let ( )1, ,
T

MZ Z=Z  be an 1M  vector 

of Z-scores of the M  genetic variants. Note that the Z-scores is either directly provided by 

publicly available GWAS summary statistics or calculated from a GWAS individual-level 

genotype and phenotype data set. We are interested in testing the null hypothesis 
0H  that 

none of the genetic variants in the gene is associated with a trait, whereas the alternative 

hypothesis is that at least one genetic variant in the gene is associated with a trait. Following 

Gusev et al.116 and Yang et al.138, we assume ( ) ( )1, , MVN ,
T

MZ Z RZ = 0  under the 

null hypothesis, where R  is the correlation matrix among Z , which can be estimated by 

LD among the genetic variants in the gene116,126. If individual-level data are not available, 

LD can be estimated using external reference panels (i.e., 1000 Genomes Project129). 

However, if the sample size of a reference panel is small, LD may not be estimated 

correctly so that it will induce statistical noise (i.e., inflated type I error rates or large 

numbers of false positives)130,131. One way to correct the estimated LD is to use a 

regularization procedure by adding a statistical white Gaussian noise123,132. Let 
MI  be an 

M M  identity matrix, and the corrected correlation matrix U  can be defined as 

( )1 , 0 1,Ma a a= + −  U R I  

where a  is a scalar tuning parameter which represents the coefficient of proportionality 

between the corrected correlation matrix U  and the original R  estimated using an external 

reference panel. The optimal tuning parameter a  can be estimated by maximizing the log-

likelihood function of the distribution of ( )MVN ,UZ 0 , that is, 

 
( )( ) 

0,1

ˆ arg max log : , .
a

a L


= UZ 0  

Then the corrected correlation matrix ( )ˆ ˆ ˆ1 Ma a= + −U R I . Therefore, under the 

null hypothesis, we consider ( ) ( )1
ˆ, , MVN ,

T

MZ Z= UZ 0 . 

Suppose that there are a total of K  different eQTL - derived weights from gene 

expression data (i.e., Genotype-Tissue Expression (GTEx; https://gtexportal.org/home/)), 

https://gtexportal.org/home/
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denoted as ( )1
ˆ ˆ ˆdiag , ,k k

k MW W=W  for 0,1, ,k K= , where ( )0
ˆ diag 1, ,1=W  

represents a status without using any weight. In order to avoid the influence of the scale 

among genetic variants within each weight, we first standardize the eQTL - derived weights 

kW  as 
1

ˆ ˆMk k k

m m mm
W W W

=
=   for 1, ,m M= . Based on the thk standardized weight 

kW , 

the weighted Z-score 
kW Z  follows a multivariate normal distribution. That is, 

( )ˆMVN ,k kW 0 ΣZ  and ˆ ˆ .k k k=Σ W UW  

We extend the three types of gene-based association tests, BT120, SKAT121, and 

SKATO122, to incorporate the eQTL - derived weights based on GWAS summary 

statistics123,139. For the thk  eQTL - derived weight, the three gene-based test statistics can 

be written as 

( )

( )

 
( ) 

2

0,1

,

,

min 1 ,

k T

BT k M

Tk

SKAT k k

k k k

SKATO SKAT BT

Q

Q

Q Q Q


 


=

=

= − +

W

W W

Z 1

Z Z  

where 
M1  is an 1M  vector with elements of all 1s. Under the null hypothesis, k

BTQ  

follows a 2  distribution with 1 degree of freedom; k

SKATQ  follows a weighted sum of 2  

distributions with 1 degree of freedom; and k

SKATOQ  follows a mixture of 2  distribution122. 

The p-values of these three test statistics can be easily calculated using the “sumFREGAT” 

package in R123.  

3.2.2 Overall Method 

To aggregate information from these three gene-based association tests with multiple eQTL 

- derived weights, we develop a novel method, called Overall, which utilizes the extended 

Simes procedure119,135. Let , ,k k k

BT SKAT SKATOp p p  be the p-values of BT, SKAT, SKATO with 

thk  eQTL - derived weight, 0,1, ,k K= , respectively, where 0k =  denotes a status 

without using any weight. Thus, there are a total of ( )3 1L K= +  p-values from three gene-

based tests with different weights. Let ( ) ( )( )1
, ,

L
p p  be a sequence of the ascending p-

values with ( )  1
0, ,

min , ,k k k

BT SKAT SKATO
k K

p p p p
=

=  and ( )  
0, ,

max , ,k k k

BT SKAT SKATOL
k K

p p p p
=

= . Overall 

combines these L  p-values using the extended Simes procedure119,135, and the p-value of 

Overall is defined as 

( )

( )
1, ,

,
e l

overall
l L

e l

m p
p Min

m=

  
=  

  

 

where 
em  is the effective number of p-values among the L  gene-based association tests 

with multiple weights, 
( )lp  is the thl  element of the ascending p-values, and 

( )e l
m  is the 
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effective number of p-values among the top l  association tests. We use a more robust 

measure to obtain the effective numbers 
em  and 

( )e l
m , which was proposed by Li et al.119. 

The values of 
( )e l

m  and 
em  can be estimated as  

( ) ( ) ( )
1

1 1
l

i ie l
i

m l I 
=

= − −     and 
( ),e e L

m m=  

where 
i  denotes the thi  eigenvalue of the correlation matrix Ω  of p-values from L  

association tests with multiple weights (the estimation of Ω  will be discussed in the next 

section), ( )I  is an indicator function. If the L  association tests are independent, all 

eigenvalues 
i  equal 1, and 

( )e l
m l=  for 1, ,l L= ; if the L  association tests are perfectly 

dependent, then 
1 l =  which is the number of tests used to calculate 

( )e l
m  and the other 

eigenvalues equal 0.  In this case, ( ) ( )1 1
e l

m l l= − − =  for 1, ,l L= .  

The R codes and a sample data set for the implementation of Overall are available 

at GitHub https://github.com/xueweic/Overall.  

3.2.3 Estimation of Ω  under the null hypothesis 

To apply our proposed method, we need to estimate the correlation matrix of p-values Ω  

under the null hypothesis. Since the exact correlations among all L  gene-based association 

tests are unknown, we perform the estimation procedure with B  replications. For each 

replicate b , 1, ,b B= , we implement the following two steps: 

Step 1: We first generate a new Z-score vector nullZ  under the null hypothesis. That is, 
nullZ  follows a multivariate normal distribution with mean 0  and variance-

covariance matrix R , where R  can be estimated by LD among the genetic variants 

in a gene using external reference panels (i.e., 1000 Genomes Project).  

Step 2: We use the regularization procedure to obtain the corrected correlation matrix of 

Z-scores Û . Then, we calculate ( ) ( ) ( )
, ,

k b k b k b

BT SKAT SKATOQ Q Q  and the corresponding p-

values ( ) ( ) ( )
, ,

k b k b k b

BT SKAT SKATOp p p  using the simulated nullZ  for 0,1, ,k K= . The 

distributions of ( ) ( ) ( )
, ,

k b k b k b

BT SKAT SKATOQ Q Q  depend on the corrected correlation matrix Û , 

and the standardized eQTL - derived weights 
kW  for 0,1, ,k K= . 

To estimate the correlation matrix of p-values Ω  used in the Overall method, we 

use the sample correlation matrix of the p-values obtained from the replications. We denote 

the sample correlation matrix of p-values as Ω̂ . For example, 12̂  is the (1,2)-element of 

Ω̂  which is the estimated correlation between BT and SKAT without using any weight. If 

we let 
( ) ( )( )0 1 00 , ,

T
B

BT BT BTp p=p  be a 1B  vector of the p-values of BT without using any 

weight and 
( ) ( )( )0 1 00 , ,

T
B

SKAT SKAT SKATp p=p be a 1B  vector of the p-values of SKAT without 

using any weight obtained from the replications, then the sample correlation of p-values 

https://github.com/xueweic/Overall
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between these two tests is defined as ( )0 0

12
ˆ cor ,BT SKAT = p p , where ( )cor  is the sample 

correlation. 

The estimation procedure to estimate Ω  is independent of our proposed method, 

therefore we only need to perform this procedure once for each gene. After we estimate Ω
, the p-value of Overall can be computed analytically without using permutations. 

3.3 Simulation Studies 

3.3.1 Materials and Comparison Methods 

In our studies, we use four data sets to obtain the eQTL - derived weights downloaded from 

the website (http://gusevlab.org/projects/fusion/#reference-functionaldata). The resources 

to obtain the four eQTL - derived weights are listed in Table 3.1. For each eQTL data set, 

we use the weights estimated by the Best Linear Unbiased Prediction (BLUP)140. 

Table 3.1. Resources of the four eQTL - derived weights used in the simulation studies. 

Study Tissue # of Samples Reference 

NTR Peripheral blood 1247 Wright et al.141 

YFS Whole blood 1264 Gusev et al.116 

METSIM Adipose 563 Gusev et al.116 

CMC Brain 452 Gusev et al.116 

We compare our proposed method with three existing methods, OT128 , S-

PrediXcan142, and S-TWAS116. These three methods are all based on GWAS summary 

statistics and incorporate eQTL‐derived weights. Here, we briefly introduce these methods. 

OT: For a total of K  different eQTL - derived weights and the three gene-based 

association tests (BT, SKAT, SKATO), OT aggregates information from different weights 

and tests by using the Cauchy combination method143. The test statistic of OT is defined as 

( )
( )  ( )  ( ) 

0

1
tan 0.5 tan 0.5 tan 0.5

3 1

K
k k k

OT BT SKAT SKATO

k

Q p p p
K

  
=

 = − + − + −
 +

  and 

the corresponding p-value can be approximated by ( )1 2 arctanOT OTp Q = − . 

S-PrediXcan: For a given eQTL‐derived weight, provided by a matrix 

( )1diag , ,k k

k MW W=W , the test statistic of S-PrediXcan is ˆ ˆk k

S -PrediXcan m m mm
Z W Z = , 

where ˆ
m  is the estimated standard deviation of the thm  SNP in a gene and ̂  is the 

estimated standard deviation of the predicted expression of a gene. The p-value of S-

PrediXcan can be computed as ( )2k k

S-PrediXcan S-PrediXcanp Z=  − , where ( )  is the standard 

normal CDF function. 

S-TWAS: For a given eQTL‐derived weight, provided by a vector ( )1 , ,
T

k k

k MW W=w , 

the test statistic of S-TWAS is defined as 
T

k k
S-TWAS

T

k k

Z


=
 R

w Z

w w
, where R  is the estimated 

http://gusevlab.org/projects/fusion/%23reference-functionaldata


52 

LD structure among the genetic variants in a gene and the corresponding p-value can be 

calculated by ( )2k k

S -TWAS S-TWASp Z=  − . 

3.3.2 The Number of Replications Needed in Estimation of  Ω  

To apply our proposed method, we first need to estimate the correlation matrix of p-values, 

Ω , under the null hypothesis for each gene. Following the estimation procedure introduced 

in the method section, we generate Z-scores instead of generating individual-level 

genotype and phenotype data. To determine the number of replications needed in the 

estimation of Ω , we consider 18 genes that contain different numbers of SNPs and have 

different LD structures. Table C.1 gives a summary of these 18 genes. We can see from 

Table C.1, the number of SNPs in a gene is ranging from 23 to 359 and the average per-

SNP LD score in a gene is ranging from 12.72 to 170.85. We simulate a Z-score vector 

from a multivariate normal distribution with mean 0  and variance-covariance matrix R , 

( )MVN ,RZ 0 , where R  is the LD matrix of each gene which can be estimated using 

the 1000 Genomes Project (unrelated Europeans in 1000 Genomes in Phase 3; 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). First, we use 410B =  replications to estimate 

Ω  under the null hypothesis, where the estimated matrix is denoted by Ω̂ . Then, we denote 
0Ω̂  as the correlation matrix of p-values by using 

0B  replications. We vary the value of 

0B  from 16 to 5,000, and test the null hypothesis that the two correlation matrices, 0Ω̂  and 

Ω̂ , are the same by using “lavaan” package (https://CRAN.R-

project.org/package=lavaan)144. Figure C.1 shows that the p-values for the hypothesis 

testing in each gene are greater than 0.05 after 
0 1,000B =  replications for all of the 18 

genes. Therefore, we recommend using 1,000 replications to obtain Ω̂  for each gene under 

the null hypothesis. Consequently, 1,000 replications are used in the following sessions to 

evaluate the type I error rates and powers of Overall.  

3.3.3 Type I error rates 

To evaluate if our proposed method can control type I error rates, we perform simulations 

based on the aforementioned 18 genes. For each of the 18 genes, we generate Z-score 

vectors under the null hypothesis, ( )MVN ,RZ 0 , where R  is the LD matrix of the gene 

estimated using the 1000 Genomes project. Then, we use the regularization procedure to 

obtain the corrected correlation matrix of Z-scores Û , and calculate the three types of 

gene-based association tests, BT, SKAT, and SKAT-O, with or without the four eQTL - 

derived weights (NTR, YFS, METSIM, CMC) based on the corrected correlation matrix 

Û . Finally, we apply our proposed method to combine the p-values using the estimated 

correlation matrix of p-values, Ω̂ , with 1,000 replications.  

                We generate simulated data to mimic real lipids data which we will use in real data 

analysis section. Gene AGTRAP is associated with lipids trait HDL15,  There are a total of 

23 genetic variants in gene AGTRAP. The LD block structure of these 23 genetic variants 

is shown in Figure C.2. Figure C.3 shows the estimated correlation matrix Ω̂  for this 

https://cran.r-project.org/package=lavaan
https://cran.r-project.org/package=lavaan
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gene. We use 710  replications to evaluate type I error rates of Overall for gene AGTRAP 

at 25 10− , 21 10− , 31 10− , 41 10− , 51 10− , and 61.75 10−  significance levels. With 710  

replications, a Bonferroni corrected significance level of 61.75 10−  can be reached to 

obtain the empirical type I error rates (i.e., for 28,625 genes in the real data analysis section, 

the Bonferroni corrected significance level is 60.05/ 28625 1.75 10−=   at 5% significance 

level). We further evaluate type I rates based on the other 17 genes. To save computational 

time, we use 52 10  replications to evaluate type I error rates of Overall for the 17 genes 

at significance levels of 21 10− , 31 10− , and 41 10− . Table 3.2 and Tables C.2 show the 

estimated type I error rates of Overall under various nominal significance levels for gene 

AGTRAP and the other 17 genes, respectively. From these tables, we can see that our 

proposed method can control type I error rates very well at different significant levels.  

Table 3.2. Estimated type I error rates at different significance levels with 710  replications. 

The subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC, 

METSIM, NTR, and YFS indicate the resources to obtain the eQTL - derived weights. 0 

indicates the methods without using eQTL – derived weights. 

α − Level 5 × 10−2 1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5 1.75 × 10−6 

BT0 5.03 × 10−2 1.06 × 10−2 1.00 × 10−3 1.01 × 10−4 9.76 × 10−6 1.84 × 10−6 

SKAT0 5.24 × 10−2 1.07 × 10−2 1.01 × 10−3 1.00 × 10−4 1.04 × 10−5 1.80 × 10−6 

SKATO0 4.58 × 10−2 9.57 × 10−3 1.02 × 10−3 1.04 × 10−4 9.72 × 10−6 1.46 × 10−6 

BTCMC 5.17 × 10−2 1.04 × 10−2 1.01 × 10−3 9.82 × 10−5 9.58 × 10−6 1.72 × 10−6 

SKATCMC 5.08 × 10−2 9.89 × 10−3 9.71 × 10−4 9.75 × 10−5 9.48 × 10−6 1.66 × 10−6 

SKATOCMC 5.16 × 10−2 1.09 × 10−2 1.17 × 10−3 1.21 × 10−4 1.22 × 10−5 2.14 × 10−6 

BTMETSIM 5.02 × 10−2 1.03 × 10−2 1.02 × 10−3 1.01 × 10−4 9.86 × 10−6 1.66 × 10−6 

SKATMETSIM 5.30 × 10−2 1.08 × 10−2 1.02 × 10−3 9.91 × 10−5 1.00 × 10−5 2.12 × 10−6 

SKATOMETSIM 4.84 × 10−2 1.05 × 10−2 1.11 × 10−3 1.09 × 10−4 1.06 × 10−5 1.84 × 10−6 

BTNTR 5.02 × 10−2 1.06 × 10−2 1.00 × 10−3 9.93 × 10−5 1.01 × 10−5 1.76 × 10−6 

SKATNTR 5.09 × 10−2 1.03 × 10−2 9.98 × 10−4 1.00 × 10−4 1.01 × 10−5 2.00 × 10−6 

SKATONTR 5.08 × 10−2 1.18 × 10−2 1.34 × 10−3 1.45 × 10−4 1.52 × 10−5 2.92 × 10−6 

BTYFS 5.10 × 10−2 1.02 × 10−2 9.95 × 10−4 9.95 × 10−5 1.05 × 10−5 2.10 × 10−6 

SKATYFS 4.98 × 10−2 1.03 × 10−2 9.97 × 10−4 1.01 × 10−4 1.02 × 10−5 2.06 × 10−6 

SKATOYFS 5.58 × 10−2 1.32 × 10−2 1.43 × 10−3 1.55 × 10−4 1.69 × 10−5 3.50 × 10−6 

Overall 4.67 × 10−2 1.01 × 10−2 1.12 × 10−3 1.14 × 10−4 1.24 × 10−5 2.44 × 10−6 

 

3.3.4 Power Comparison 

To evaluate the performance of the Overall method, we use several simulations to compare 

the power of Overall with the power of OT, S-PrediXcan, S-TWAS, and three types of 

gene-based association tests with and without eQTL - derived weights. We use BEST to 

represent the test with the maximum power among the three traditional gene-based 

association tests with and without an eQTL - derived weight, S-TWAS.B and S-

PrediXcan.B to represent the maximum power of S-TWAS and S-PrediXcan with each of 

the eQTL – derived weights, respectively. Following the simulation settings in Nagpal et 

al.145 and Zhang et al.128, we generate individual-level genotypes, phenotypes, and different 

gene expression levels using the following steps:  
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(1) The genotype data are generated using the haplotypes of a gene obtained from the 

1000 Genomes Project reference panel. To generate the genotype of an individual, 

gX , we select two haplotypes according to the haplotype frequencies from the 

haplotype pool and then remove genetic variants with MAF<0.05.  

(2) We consider K  different weights derived from gene expression data which can be 

estimated using BLUP. To generate a vector of weights, 
kw , for the thk  gene 

expression level, we randomly select causal variants according to the proportion of 

causal variants, 
causalp . Then, the effect sizes for the thk  gene expression levels and 

causalM  causal variants can be generated from a standard normal distribution, 

( )0,1mkw N  for 1, , causalm M= , where 
causal causalM M p=  ; otherwise, 0mkw = . 

After we rescaled the weights to ensure the targeted expression heritability 2

eh , we 

generate the thk  gene expression level by 
k g k e= +XE w ε  with each element of 

random error 
eε  follows ( )20,1 eN h− .  

(3) Let ( )1, , KE= E E  be the matrix of gene expression levels. Phenotypes are 

generated by using a formula 
p= +EY β ε  with each element of random error 

pε  

follows ( )20,1 pN h− , where ( )1, ,
T

K =β  is a vector of genetic effect sizes 

which can be assigned based on the phenotypic heritability 
2

ph .  

(4) The Z-score vector is estimated from individual-level genotype and phenotype data 

using beta coefficient and its standard division estimated based on the ordinary least 

squares method in linear regression. 

In our simulation studies for power comparison, we consider two genes, AGTRAP 

and C3orf22, from the 18 genes used in the type I error evaluation and 4K =  and 20K =  

eQTL - derived weights. AGTRAP contains 458 haplotypes for 23 genetic variants (11 

common variants and 12 rare variants; MAF ranging from 0 to 0.39775); C3orf22 contains 

295 haplotypes for 42 variants (18 common variants and 24 rare variants; MAF ranging 

from 0 to 0.43558). Figure C.2 shows the LD block structure of the 23 genetic variants at 

AGTRAP and the 42 genetic variants at C3orf22. We vary the proportion of causal variants 

with (0.2,0.3,0.4,0.5)causalp =  for AGTRAP and (0.1,0.2,0.3,0.4)causalp =  for C3orf22. 

We also consider two different directions of genetic effects: 
1 K = =  (Scenario 1: Uni-

directional effects) and 
1 /2 /2 1K K K   += = =− = =−  (Scenario 2: Bi-directional 

effects). For each simulation scenario, we vary the proportion of gene expression 

heritability and the phenotypic heritability with different values of 2

eh  and 
2

ph . We consider 

the sample size to be 2,000 (unless it is specified) and the power is calculated as the 

proportion of 1,000 replications with p-value 61.75 10−  . 

Figure 3.1 (Figure C.4) shows the power comparisons based on gene AGTRAP 

(and C3orf22) with 4K =  under the Uni-directional effects (
1 2 3 4   = = = ) with 
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different 
causalp . We consider two settings here. First, we vary phenotypic heritability 

2

ph  

with a fixed expression heritability 2 0.2eh =  (Figure 3.1(a) and Figure C.4(a)). Second, 

we vary the expression heritability 2

eh  with a fixed phenotypic heritability 2 0.2ph =  

(Figure 3.1(b) and Figure C.4(b)). Figure 3.2 (Figure C.5) shows power comparisons 

based on gene AGTRAP (and C3orf22) under the Bi-directional effects 

(
1 2 3 4   = =− =− ) with different 

causalp  for 4K = . We also consider two simulation 

settings, power against the phenotypic heritability 
2

ph  with a fixed expression heritability 

2 0.2eh =  and power against the expression heritability 2

eh  with a fixed phenotypic 

heritability 2 0.2ph = . The pattern of the power in Figure 3.2 (Figure C.5) is similar to 

what we observe in Figure 3.1 (Figure C.4). These figures show that (1) Overall and OT 

perform uniformly better than BEST, S-TWAS.B, and S-PrediXcan.B. We can see that 

Overall and OT boost power significantly due to integrating association evidence by 

different traditional tests and multiple eQTL – derived weights. Overall is slightly more 

powerful than OT in all of the scenarios. (2) Among BEST, S-TWAS.B, and S-

PrediXcan.B, BEST are more powerful than S-TWAS.B and S-PrediXcan.B in all of the 

scenarios for gene C3orf22; For gene AGTRAP, S-TWAS.B and S-PrediXcan.B perform 

better than BEST when the proportion of causal variants in a gene is small 

( (0.2,0.3)causalp = ); otherwise, BEST performs better than S-TWAS.B and S-PrediXcan.B. 

To evaluate if Overall and OT that integrate different types of association tests and 

multiple eQTL – derived weights are robust for more eQTL studies, we also consider 20 

( 20K = ) eQTL - derived weights under Uni-directional effect and Bi-directional effect 

models on gene C3orf22 with settings similar to the settings in Figures C.4 and C.5. After 

integrating ( )3 1 63L K= + =  traditional gene-based association tests, we observe that the 

patterns of the power for 20K =  are similar to that in Figures C.4 and C.5 with 4K = , 

and the power gain of Overall and OT is higher than that of the tests only consider one 

eQTL – derived weight, such as BEST, S-PrediXcan.B, and S-TWAS.B (Figure C.6). 

Furthermore, we consider simulation settings with noise to the eQTL. We consider 

simulation settings by adding less noise to the eQTL from the most relevant tissues and 

more noise to those from the less relevant tissues. For the Uni-direction scenario, we 

consider the first study being the most relevant tissue, where ( )2

1 0 0,0.1 pN h = +  and 

( )2

2 3 4 0 0,0.5 pN h   = = = + ; 
2

0 ph K =  depends on the phenotypic heritability 
2

ph . 

For the Bi-direction scenario, we consider 1st and 3rd studies being the most relevant tissues 

that have opposite effect directions, where ( ) ( )2 2

1 0 3 00,0.1 ,  0,0.1p pN h N h   = − + = +  

and ( ) ( )2 2

2 0 4 00,0.5 ,  0,0.5p pN h N h   = − + = + . Other parameter settings are the same 

as these in Figures C.4 and C.5. The power comparison results are shown in Figures C.7 

and C.8. From these figures, we find that the patterns of the power in Figures C.7 and 

C.8 are very similar to those in Figures C.4 and C.5.  
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(a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  

 
Figure 3.1. Power comparisons of gene-based association tests at 61.75 10−  significance 

level under Uni-directional effects (
1 2 3 4   = = = ) with (0.2,0.3,0.4,0.5)causalp =  

based on gene AGTRAP. (a) Estimated power against phenotypic heritability 
2

ph  with fixed 

expression heritability 2 0.2eh = ; (b) Estimated power against expression heritability 2

eh  

with fixed phenotypic heritability 2 0.2ph = . 

(a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  

 
Figure 3.2. Power comparisons of gene-based association tests at 61.75 10−  significance 

level under Bi-directional effects (
1 2 3 4   = =− =− ) with (0.2,0.3,0.4,0.5)causalp =  

based on gene AGTRAP. (a) Estimated power against phenotypic heritability 
2

ph  with 

expression heritability 2 0.2eh = ; (b) Estimated power against expression heritability 2

eh  

with phenotypic heritability 2 0.2ph = . 
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In all of the previous power comparisons, we use a sample size of 2,000. We also 

consider simulation settings as those in Figures C.7 and C.8, but with a large sample size 

of 100,000. Figure C.9 shows the results of power comparisons. We can see from this 

figure, all powers are increased with this larger sample size, but the patterns of the power 

are very similar to those in Figures C.7 and C.8.  

To remove noise in LD matrix computed from a reference sample, we shrink the 

observed LD matrix toward an identity matrix with the shrinkage parameter estimated by 

maximum likelihood. To evaluate how well this regulation process performs, we compare 

the powers of three traditional gene-based association tests with and without eQTL – 

derived weights, OT, and Overall based on corrected and uncorrected LD structure. We 

use the same simulation settings as those in Figures C.7 and C.8. Figure C.10 shows the 

power comparison results based on gene C3orf22 under Uni-directional effects and Bi-

directional effects with noise to eQTL. We can see that the powers of these tests based on 

corrected LD structure perform better than those based on uncorrected LD structure in most 

of the settings. 

3.4 Real Data Analysis 

To evaluate the performance of our proposed method, we apply Overall, OT, the three 

traditional tests with and without eQTL - derived weights, S-PrediXcan, and S-TWAS to 

the GWAS summary statistics data sets used in Zhang et al.128: two SCZ GWAS summary 

data sets and two lipid GWAS summary data sets. We estimate the LD between genetic 

variants using the 1000 Genomes Project reference panel129, and obtain the corrected 

matrix of Z-score after the regularization procedure. We consider four eQTL - derived 

weights estimated by the BLUP method using the resources listed in Table 3.1 (NTR, YFS, 

METSIM, CMC).  

3.4.1 Application to the SCZ GWAS summary data 

We consider two SCZ GWAS summary data sets, SCZ1 and SCZ2, which can be 

downloaded from the Psychiatric Genomics Consortium website 

(https://www.med.unc.edu/pgc/results‐and‐downloads/)146. SCZ1 is a meta-analysis of 

SCZ GWAS data set with 13,833 cases and 18,310 controls. SCZ2 is a more recent and 

larger SCZ GWAS summary data set with 36,989 cases and 113,075 controls for partial 

validation147. In our real data analysis, we define a gene to include all of the SNPs from 20 

kb upstream to 20 kb downstream of the gene and test the association between each gene 

and the trait. We consider all genes according to the GENCODE version 35 (GRCh37) 

human comprehensive gene annotation list which can be downloaded from the GENCODE 

website (https://www.gencodegenes.org/human/release_35lift37.html).  

To make fair comparisons among all these weighted tests, the genetic variants are 

removed if there is at least one weight missing in the four eQTL - derived weights. After 

pruning, there are 26,575 genes in SCZ1 and 17,823 genes in SCZ2 left in our final analyses. 

Therefore, the Bonferroni corrected significance level for gene-based association analysis 

is defined as 0.05 divided by the number of genes. First, we apply BT, SKAT, and SKATO 

with and without an eQTL - derived weight, OT, Overall, S-PrediXcan, and S-TWAS to 

the SCZ1 and SCZ2 data sets. Table 3.3 (SCZ1 and SCZ2) shows the number of genes 

https://www.med.unc.edu/pgc/results‐and‐downloads/
https://www.gencodegenes.org/human/release_35lift37.html
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identified by each method for the SCZ data sets, respectively. As we can see in Table 3.3, 

Overall identifies more genes than all of the other methods for two SCZ GWAS summary 

data sets. Among the three types of gene-based association tests, BT, SKAT, and SKATO, 

with or without different eQTL – derived weights, SKATO0 identifies the greatest number 

of genes. S-TWASYFS and S-PrediXcanYFS identify the greatest number of genes compared 

with S-TWAS and PrediXcan based on the other three eQTL – derived weights, 

respectively. Therefore, in Figure 3.3, we only show the number of genes identified by 

Overall, OT, SKATO0, S-PrediXcanYFS, and S-TWASYFS. The number below each method 

indicates the total number of genes identified by the corresponding method. From Figure 

3.3, we can see that Overall identifies all of the genes identified by OT for SCZ1; for SCZ2, 

there are two genes identified by OT but failed to be identified by Overall; there are 66 and 

24 genes identified only by Overall for SCZ1 data and SCZ2, respectively.  

We further investigate the 90 genes identified only by Overall for the SCZ data sets 

by searching the GWAS catalog (https://www.ebi.ac.uk/gwas/). Among the 66 genes for 

the SCZ1 data set, there are six genes reported in the GWAS catalog; among the 24 genes 

for the SCZ2 data set, there are six genes reported in the GWAS catalog (Table 3.4). We 

also use these two SCZ GWAS data sets for partial validation. Table 3.3 shows that there 

are 45 overlapping genes identified by Overall using SCZ1 and SCZ2 data sets and only 

17 overlapping genes identified by OT using both SCZ1 and SCZ2 data sets. Furthermore, 

we search for genome-wide significant SNPs ( 85 10p −  ) from the two SCZ GWAS 

summary data sets and consider the genes covering at least one genome-wide significant 

SNP from 20 kb upstream to 20 kb downstream of the gene. There are 63 genome-wide 

significant genes for SCZ1, and 2422 genome-wide significant genes in SCZ2. Table 3.3 

(GWASSCZ1 and GWASSCZ2) summarizes the numbers of genome-wide significant genes 

that are identified by each method for the two SCZ data sets. Among the 63 genome-wide 

significant genes for the SCZ1 data set, Overall identifies the greatest number of genes, 

followed by SKAT0 and SKATO0; OT, S-PrediXcanNTR and S-TWASNTR only identify 6 

genes. Meanwhile, among 2422 genome-wide significant genes for SCZ2, Overall 

identifies 167 genes; OT identifies 166 genes; SKATO and SKATO0 identify 153 genes; 

S-TWASYFS and S-PrediXcanYFS only identify 58 and 72 genes respectively. 

 
Figure 3.3. Venn diagram of the number of genes identified by Overall, OT, SKATO0, S-

PrediXcanYFS, and S-TWASYFS for SCZ1 data (left) and SCZ2 data (right). The number 

below each of the methods indicates the total number of significant genes identified by the 

corresponding method. 

https://www.ebi.ac.uk/gwas/
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Table 3.3. The numbers of genes identified by each method for the two SCZ data sets. The 

subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC, METSIM, 

NTR, and YFS indicate the resources to obtain the eQTL - derived weights. 0 indicates the 

methods without using any weights. 

 SCZ1 SCZ2 SCZoverlap GWASSCZ1 GWASSCZ2 
BT0 97 166 7 1 38 

SKAT0 47 305 20 15 153 

SKATO0 136 394 27 15 153 

BTCMC 44 137 2 1 56 

SKATCMC 12 225 6 1 134 

SKATOCMC 30 263 2 1 130 

BTMETSIM 44 136 5 1 48 

SKATMETSIM 23 223 9 4 132 

SKATOMETSIM 31 205 3 0 100 

BTNTR 48 119 7 6 48 

SKATNTR 27 230 9 8 141 

SKATONTR 40 280 8 6 143 

BTYFS 89 166 14 1 53 

SKATYFS 20 223 6 7 137 

SKATOYFS 47 321 7 0 140 

S-PrediXcanCMC 42 43 7 0 38 

S-PrediXcanMETSIM 41 44 8 1 30 

S-PrediXcanNTR 48 70 14 6 59 

S-PrediXcanYFS 83 128 29 2 72 

S-TWASCMC 33 45 6 0 43 

S-TWASMETSIM 36 29 5 1 20 

S-TWASNTR 37 54 13 6 46 

S-TWASYFS 64 105 29 2 58 

OT 133 522 17 6 166 

Overall 271 559 45 16 167 

Notes: SCZ1 indicates the number of genes identified by each method for SCZ1 data; SCZ2 indicates the 

number of genes identified by each method for SCZ2 data; SCZoverall indicates the number of overlapping 

genes identified by both SCZ1 and SCZ2 data sets; GWASSCZ1 and GWASSCZ2 indicate the numbers of 

genome-wide significant genes that are reported in the GWAS catalog and are also identified by each method 

for SCZ1 and SCZ2, respectively. 

Table 3.4. Genes identified only by Overall based on the two SCZ data sets that are 

reported in the GWAS catalog. 

Gene Data  Overall Reference 

RAI1 SCZ1 2.63E-31 148 

SLC7A6 SCZ1 2.17E-15 149,150 

AP001931.2 SCZ1 1.27E-13 147-155 

MARK2 SCZ1 2.64E-07 151 

GULOP SCZ1 1.24E-07 148-151,156 

ZBED4 SCZ1 9.02E-07 151 

RAB11FIP5 SCZ2 1.05E-06 151,156 

AL669918.1 SCZ2 2.03E-06 151 

YPEL1 SCZ2 2.80E-06 151 

LINC00606 SCZ2 2.57E-06 151 

ERLIN1 SCZ2 2.34E-06 151 

AC024597.1 SCZ2 2.56E-06 152 
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3.4.2 Application to the lipids GWAS summary data 

We consider two lipids GWAS summary data sets, HDL1 and HDL2, which can be 

downloaded at the Center for Statistical Genetics (CSG) at the University of Michigan. 

HDL1 is a meta-analysis of HDL GWAS data set with about 100,000 samples downloaded 

at the website (http://csg.sph.umich.edu/willer/public/lipids2010/)157. HDL2 is the follow-

up data with about 189,000 samples for partial validation downloaded at the Global Lipids 

Genetics Consortium (http://csg.sph.umich.edu/willer/public/lipids2013/)158. We perform 

the same analysis as we did in the previous section for the two SCZ GWAS summary data 

sets. There are 17,389 genes in HDL1 and 16,917 genes in HDL2. Table 3.5 (HDL1 and 

HDL2) shows the number of genes identified by each method for the two lipids data sets, 

respectively. As we can see from Table 3.5, among the three traditional gene-based 

association tests with and without eQTL - derived weights, SKATO0 and BT0 identify the 

most number of genes in HDL1 and HDL2, respectively; Among the four S-PrediXcan 

tests, S-PrediXcanYFS and S-PrediXcanCMC identify the most number of genes in HDL1 

and HDL2, respectively; for the four S-TWAS tests, S-TWASYFS and S-TWASCMC identify 

the most number of genes in HDL1 and HDL2, respectively. For the HDL1 data set, Overall 

identifies the greatest number of genes (249), followed by OT that identifies 233 genes; for 

the HDL2 data set, BT0 identifies the greatest number of genes (836), followed by Overall 

and OT, where Overall identifies 765 genes and OT identifies 688 genes. In Figure 3.4, 

we compare genes identified by SKATO0, S-PrediXcanYFS, and S-TWASYFS, along with 

Overall and OT for the HDL1 data set and genes identified by BT0, S-PrediXcanCMC, S-

TWASCMC, Overall, and OT for the HDL2 data set. Again, we observe that Overall 

identifies the greatest number of genes for the HDL1 data set and the second most for the 

HDL2 data set; all genes identified by OT are also identified by Overall; 82 and 24 genes 

are identified only by Overall and OT for the HDL1 and HDL2 data sets, respectively; 

there are 13 and 6 genes only identified by Overall for the HDL1 and HDL2 data sets, 

respectively. We search the GWAS catalog (https://www.ebi.ac.uk/gwas/). Table 3.6 

shows that five out of 13 genes identified only by Overall based on HDL1 data have been 

reported, and one out of 6 genes has been reported on HDL2 data in the GWAS catalog. 

We also use these two HDL GWAS data sets for partial validation by looking for the 

number of overlapping genes identified by both of the data sets (Table 3.5, HDLoverlap). 

There are 177 overlapping genes identified by Overall for both SCZ1 and SCZ2 data sets 

and 167 overlapping genes identified by OT for both SCZ1 and SCZ2 data sets. 

Same as the analyses for the SCZ GWAS summary data sets, we search for genome-

wide significant SNPs ( 85 10p −  ) from the two lipids GWAS summary statistics. There 

are 1,911 genome-wide significant genes for HDL1 and 2,682 genome-wide significant 

genes for HDL2. Table 3.5 (GWASHDL1 and GWASHDL2) summarizes the numbers of 

genome-wide significant genes that are identified by each method for the two lipids data 

sets. Among the 1,911 genome-wide significant genes for the HDL1 data set, Overall 

identifies the greatest number of genes (122), followed by OT (120), then SKAT0 (104); 

S-TWASYFS only identifies 29 genes and S-PrediXcanYFS identifies 31 genes. Meanwhile, 

among 2,682 genome-wide significant genes for HDL2, Overall identifies the greatest 

number of genes (192); OT and SKATO0  identify 190 genes; S-TWASMETSIM and S-

PrediXcanMETSIM identify 112 and 118 genes. respectively.  

http://csg.sph.umich.edu/willer/public/lipids2010/
http://csg.sph.umich.edu/willer/public/lipids2013/
https://www.ebi.ac.uk/gwas/
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Figure 3.4. Venn diagram of the number of genes identified by Overall, OT, SKATO0, S-

PrediXcanYFS, and S-TWASYFS for HDL1 data (left) and HDL2 data (right). The number 

below each of the methods indicates the total number of significant genes identified by the 

corresponding method. 

Table 3.5. The number of genes identified by each method for the two lipids data sets. The 

subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC, METSIM, 

NTR, and YFS indicate the resources to obtain the eQTL - derived weights. 0 indicates the 

methods without using any weights. 

 HDL1 HDL2 HDLoverlap GWASHDL1 GWASHDL2 

BT0 95 836 78 50 185 

SKAT0 116 174 114 99 157 

SKATO0 157 762 138 104 190 

BTCMC 79 130 41 46 107 

SKATCMC 105 159 99 95 146 

SKATOCMC 130 177 103 96 150 

BTMETSIM 83 160 59 58 111 

SKATMETSIM 120 259 118 102 149 

SKATOMETSIM 131 199 118 98 152 

BTNTR 78 136 50 49 111 

SKATNTR 105 156 100 90 148 

SKATONTR 131 183 111 95 154 

BTYFS 88 154 50 53 113 

SKATYFS 106 148 102 94 137 

SKATOYFS 142 185 112 99 144 

S-PrediXcanCMC 43 213 18 29 114 

S-PrediXcanMETSIM 45 201 23 30 118 

S-PrediXcanNTR 33 187 14 19 108 

S-PrediXcanYFS 69 195 25 31 117 

S-TWASCMC 40 207 17 23 109 

S-TWASMETSIM 37 202 16 15 112 

S-TWASNTR 25 176 10 11 97 

S-TWASYFS 59 183 24 29 115 

OT 233 688 167 120 190 

Overall 249 765 177 122 192 

Notes: HDL1 indicates the number of genes identified by each method for HDL1 data; HDL2 indicates the 

number of genes identified by each method for HDL2 data; SCZoverall indicates the number of overlapping 

genes identified by both SCZ1 and SCZ2 data sets; GWASHDL1 and GWASHDL2 indicate the numbers of 

genome-wide significant genes that are reported in the GWAS catalog and are also identified by each method 

for HDL1 and HDL2, respectively. 
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Table 3.6. Genes identified only by Overall based on the two lipids data sets that are 

reported in the GWAS catalog. 

Gene Data  Overall Reference 

AP002954.1 HDL1 2.27E-11 159 

EDC4 HDL1 1.65E-11 160-162 

PACSIN1 HDL1 2.24E-06 163 

AFF1 HDL1 2.10E-06 164-168 

AC106779.1 HDL1 2.85E-06 169 

NHLRC2 HDL2 1.98E-06 166,168,170-173 

 

3.5 Discussions 

In this paper, we develop a powerful and computationally efficient method, Overall, for 

gene-based association studies using GWAS summary data. Overall aggregates 

information from three traditional types of gene-based association tests (BT, SKAT, 

SKATO) and also incorporates eQTL data. Both our simulation studies and real data 

analysis confirm that our proposed method can control type I error rates correctly and has 

very good performance compared with other comparison methods. In real data analysis, 

Overall identify more significant genes than other methods, and there are some genes 

reported by GWAS catalog which are only identified by Overall. 

There are some advantages of our proposed method. First, Overall adaptively 

aggregates information from multiple gene-based association tests. Most combination tests 

(i.e., Fisher’s combination test174) assume that the p-values should be calculated from 

independent tests. To combine information from highly correlated gene-based association 

tests, Overall utilizes the extended Simes procedure119,135. It is shown that this procedure 

to combine multiple tests is stable and effective regardless of whether the tests are highly 

correlated137,175. Second, Overall is more powerful than the traditional gene-based 

association tests, some popular transcriptome association tests (i.e., S-PrediXcan142 and S-

TWAS116), and other eQTL weighted combination tests (i.e., ominous test128). By 

aggregating information from different tests and incorporating multiple eQTL - derived 

weights, Overall can achieve a higher statistical power under a variety of situation settings. 

Meanwhile, our simulation studies and real data analyses show that the extended Simes 

procedure is more powerful than the Cauchy combination method, especially if the 

proportion of causal variants in a gene is small. Third, the p-values of Overall can be 

analytically computed without using permutations, therefore, Overall is computationally 

efficient. Finally, using the regularization procedure to correct the estimated LD can reduce 

the potential statistical noise in the LD estimation if LD is estimated using a reference panel 

with small sample size. In addition, Overall can be easily applied to genetic association 

studies with either individual-level data or GWAS summary statistics.  

In this paper, we combine three types of traditional gene-based association tests 

(BT, SKAT, SKATO). However, the combination procedure used in the paper is very 

general. Other more powerful gene-based association tests can also be combined using the 

same approach, such as some state-of-the-art methods (i.e., S-TWAS116, E-MAGMA176, 

and SMR177).  
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In this current study, we utilize the weights derived from four single tissue gene 

expression studies (CMC, METSIM, NTR, YFS). Although the extended Simes procedure 

in Overall allows us to employ more eQTL – derived weights from a number of studies 

(i.e., GTEx gene expression version 8178 et al.), there is a possibility that the noise can be 

increased with the increment in the number of unrelated studies. Therefore, the power of 

the combination tests (i.e, Overall and OT) might be attenuated. Thus, to obtain the most 

robust identification of phenotypic associated genes in a real data analysis with the Overall 

method, we suggest incorporating eQTL datasets from the most relevant tissues to the 

phenotype. The last but the most important thing is that population stratification can be 

confounded association results50,179. Systematic minor allele frequency difference between 

transcriptomic studies of different cohorts and no matching between the estimated LD 

structure of Genomes Project with that in the study may increase the chances of false 

positive findings. Therefore, we need to eliminate false positive findings possibly caused 

by population stratification180,181. When applying the Overall method, the population of 

GWAS summary dataset, external reference panel (i.e., 1000 Genomes Project) used to 

estimate LD structure, and eQTL – derived weights should be consistent. 

In this study, the computational time of the proposed method is acceptable even if 

the estimated correlation matrix of multiple tests is obtained by the replication procedure. 

Meanwhile, the estimation procrdure is independent of gene-based association tests, 

therefore we only need to perform this procedure once for each GWAS summary dataset. 

For example, there are a total of 29,008 gene in the 1000 Genomes Project and we use 

1,000 replicates to estimate the correlation matrix of multiple tests for each gene. We 

perform this using the high-performance computing (HPC) cluster (Intel Xeon E5 – 2670 

2.6 GHz, 16 GB RAM). The computational time for all genes is about 36 hr CPU time with 

500 nodes. Then, the p-value of the proposed method can be computed analytically which 

is independently performed in each GWAS summary dataset. The computational time for 

each GWAS dataset is about 1 hr CPU time with 10 nodes. 
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4 Chapter 4 

 

TGPred: Efficient methods for predicting target genes of a 

transcription factor by integrating statistics, machine 

learning, and optimization 

 

Abstract 

Six statistical selection methods were developed based on the penalized regression models 

with two loss functions (mean squared error (MSE) and Huber function (Huber)), and three 

penalty functions (Lasso, elastic net (ENET) and network-based penalty (Net)), for 

inferring target genes of a transcription factor (TF) of interest. We also ameliorated an 

accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection 

processes of the six methods, resulting in a much more efficient APGD algorithm than the 

commonly used convex optimization solver (CVX). As the synthetic data generated from 

the general setting was used to test four non-Net methods, MSE-ENET penalty performed 

better while Huber-Lasso performed worse than other methods. As the synthetic data 

generated from the network setting was used to test all six methods, MSE-Net and Huber-

Net outperformed the non-Net methods. The non-Net methods were also tested with SND1 

and GL3 overexpression real transcriptomic data sets. Huber-ENET and MSE-ENET 

outperformed Huber-Lasso and MSE-Lasso in overall. The methods we developed will fill 

the gap of lacking the appropriate methods for predicting target genes of a TF, and are 

instrumental for validating experimental results yielding from ChIP-seq and DAP-seq, and 

conversely, selection and annotation of TFs based on their target genes. 

Keywords: transcription factors, target gene prediction, selection probability, statistical 

selection, and convex optimization 

 

4.1 Introduction 

Construction and delineation of transcriptional regulatory networks are essential for 

systematically understanding how various biological processes and complex traits are 

regulated at system level and how plants grow and develop in response to environmental 

cues.  Although biological experiments can be performed to obtain gene regulatory 

relationships, they are labor-intensive and time-consuming, and are only applicable to 

acquire a small number of true regulatory relationships due to a tremendous amount of 

work. In the last two decades, the advent of high throughput technologies including 

microarray, RNA-Seq, and ChIP-seq as well as DAP-seq, made it easier to generate a 

terabyte transcriptome data for network inference. As the high-throughput data in public 

repositories increase exponentially, various computational algorithms and tools utilizing 

high-throughput transcriptome data and ChIP/DAP-seq provide an alternate approach to 

infer gene regulatory relationships and acquire gene regulatory networks. However, the 

acquisition of transcriptional gene regulatory network with high accuracy is pivotal for 
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such an approach. To develop highly accurate methods, exploration of machine learning, 

statistics and optimization combined approaches is promising and opens a new avenue for 

doing this more efficiently.  

In the earlier stage, for example, one to two decades ago, high-throughput 

transcriptome data were primarily generated from single cell organisms like bacteria and 

yeast, or the cell lines of eukaryotic organisms, which allowed to generate time-course 

microarray data with small time intervals. These types of data encouraged the development 

of many dynamic methods that incorporated the temporal variable into the models to 

accurately predict gene regulatory relationships, such as differential equations182, finite 

state183, dynamic Bayesian184, Boolean network185, and stochastic networks186 and ordinary 

differential equations (ODE)187. For these methods, the time-course data with very small 

time intervals are critically important to the accuracy of inferred networks and the 

regulatory relationships therein contained. Since it is very time-consuming to harvest 

specific cell types or tissues from the multi-cellular organisms, more and more high-

throughput transcriptome data were generated from various tissues of multicellular 

organisms like plants and mammals in a loosely timed series or entirely no points. Static 

data are thus characterized by very large time intervals (e.g. days or weeks) or non-time-

points at all. To analyze this kind of data, the static methods, which do not involve temporal 

variable, were developed, such as ParCorA188, maximum relevance/minimum redundancy 

Network (MRNET)189, mutual information based relevance networks190, Algorithm for the 

Reconstruction of Accurate Cellular Networks (ARACNE)191, Context Likelihood of 

Relatedness (CLR)192, C3NET193, Mutual Information 3 (MI3)194, and probabilistic-based 

Bayesian network195, random forests196. 

Recently, more methods have been developed for constructing local gene 

regulatory networks especially the multilayered gene regulatory network, such as top-down 

GGM197,198, bottom-up GGM algorithm199, and BWERF200, and gene regulatory network 

controlling a pathway or a biological process, for instance, TGMI201 and HB-PLS202. In 

addition, the methods for constructing multiple joint gene regulatory networks using data 

from multiple sources, for example, JGL203 and JRmGRN204, have been developed.  

However, the above-mentioned methods are not specifically tailored to the needs of 

inferring the target genes of a transcription factor (TF). In reality, we desperately need the 

methods for inferring the targets genes of each TF for facilitating construction of a 

complete network and validating regulatory relationships or the networks inferred based 

on in-silico analyses and biological experiments.  For example, we need the methods of 

inferring the targets genes of a TF of interest, which can be employed to validate 

experimental results of ChIP-seq and DAP-seq. Conversely, such methods allow us to infer 

a TF’s functions based on the functions of its target genes. After multiple TFs’ targets genes 

are inferred, we can screen TFs for specific purposes based on their target gene functions.  

In this study, we developed six statistical selection methods to infer the potential 

TGs for a given TF, which combined two loss functions and three penalty functions. The 

loss functions, mean squared error (MSE) and Huber function (Huber), were used to 

measure the errors between the predicted values and the observed values. Huber can avoid 

the sensitivity of heavy-tailed errors or outliers than MSE. The penalty functions, Lasso, 

elastic net (ENET) and network-based penalty (Net), contain the 𝑙1 norm of the estimated 
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effect sizes which can control the sparsity of the selected TGs. Meanwhile, Net penalty can 

incorporate prior biological genetic network information into the prediction 205. We also 

modified and implemented an accelerated proximal gradient descent (APGD) algorithm 

for the parameter optimization in all six methods. Our simulations showed that the APGD 

was much more efficient than a commonly used method called convex optimization solver 

(CVX).  To obtain a stable selection result, we applied the stability selection method, 

namely, half-sample approach, which does not need to choose the optimal tuning 

parameters in selection methods. We tested all the methods with simulated data, and four 

non-Net methods with the real transcriptomic data of all genomic genes, and two Net 

methods with the real transcriptome data of all metabolic pathways, especially lignin 

pathway genes. Our study showed that the four non-Net methods were useful for 

identifying the target genes of a TF of interest in genome-wide analysis, which implies that 

the methods could be used to validate target genes of a TF resulting from TF ChIP-seq or 

DAP-seq experiments, while the two Net-based methods can identify TGs involved or 

associated with a pathway or a biological process, and TFs that regulate them. When 

multiple TFs are analyzed, the results can be used for TF selection and screening based on 

the distinct functions of their target genes. 

4.2 Materials and Methods 

4.2.1 Materials 

Simulated gene expression data 

The simulated data were generated in two settings: (1) general setting; (2) network setting. 

In the general setting, 𝑝 TGs were independent with each other and the first 50 TGs were 

regulated by a given TF (Details in Text D.1). In the network setting, we simulated 𝑝 TGs 

with two biological network structures, the hierarchical network and Barabasi-Albert 

network. For the hierarchical network, there were 5 disjointed subnetworks and each of 

them consisted of 100 TGs. The subnetwork was constructed as the same as Kim et al.205 

(Figure D.1). For the Barabasi-Albert (BA) network, there were 50 subnetworks and each 

of them was a BA-based network comprising of 10 TGs206. There were 45 TGs and 40 TGs 

that were regulated by a given TF for the hierarchical network and Barabasi-Albert 

network, respectively (Details in Text D.2). 

Populus trichocarpa SND1 transcriptomic data and analysis 

The poplar data used for simulation were from our previous studies197. The data can be 

retrieved from Gene Expression Omnibus (GEO) with accession number GSE49911. 

Briefly, the data were generated and then analyzed as following: Poplar protoplasts isolated 

from stem developing xylem were transfected with plasmid vector harboring poplar SND1 

gene under the control of 35S promoter, and then harvested for RNA-seq at 7, 12 and 25 

hours. Three samples of SND1-driven by 35S at each time point were harvested while three 

control samples (control vector without SND1) at each time point were harvested. The raw 

count data were used for identification of differentially expressed genes (DEGs) for each 

time point using the edgeR package207, and for normalization with trimmed mean of M-

values (TMM) contained in the edgeR package. Normalized data were used for real data 

simulation to validate the methods we developed in this study.  
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Maize gl3 transcriptomic data and analysis 

Two transcriptional-activator like effectors (dTALes) that target two non-overlapping 16-

bp regions of the gl3 promoter for overexpression were constructed. The two regions are 

located 5 bp and 48 bp upstream of the transcription start site. 14 day-old seedlings were 

used to test for gl3 dTALes-mediated induction of gl3, and bacterial strains carrying either 

dT1 or dT2 activated gl3 expression by 24 hours after the bacterial inoculation. Three 

samples and three controls, upon being infected with Xv1601 bacteria carrying dTALes, 

were harvested in a time-series with four time points: 6, 12, 24, and 48 hours. Sequencing 

data were trimmed by Trimmomatic (version 0.38)208. Trimmed reads were aligned to the 

maize B73 reference genome (B73Ref4) using STAR (2.7.3a)209. The data were aligned to 

maize genome B73 from which FPKM values were generated with Cufflink package210, 

and DEGs were identified with Cuffdiff package211. FPKM data were used for simulation 

with gl3 as TF and DEGs and all genomics genes as candidate TGs. The dTALe RNA-Seq 

data are available at NCBI SRA under the project of PRJNA692729. 

Maize B73 transcriptomic data for validation of Net-based methods 

In total, the expression levels of 739 RNA-seq data of B73 were downloaded from NCBI 

Sequence Read Archive (SRA) repository. The accession numbers are shown in Table S1. 

Raw read counts generated per gene were calculated by STAR and then normalized with 

Cufflink212. 2,539 unique pathway genes were extracted from the Plant Metabolic Network 

(PMN)213 and 23 lignin pathway genes as well as 23 transcription factors (TFs) that are 

known to regulate lignin pathway214-218 were used for validating the Net-based methods, 

Huber-Net and MSE-Net. 

4.2.2 Statistical selection methods 

Consider that the expression levels of a TF 𝒚 and the expression levels of the TGs 𝒙 in the 

whole-genome form a linear relationship: 

𝑦𝑖 = 𝛽0 + 𝒙𝑖
𝑇𝜷 + 𝜀𝑖,   𝑖 = 1,⋯ , 𝑛, 

where 𝑛 is the number of samples, 𝒙𝑖 = (𝑥𝑖1, ⋯ , 𝑥𝑖𝑝)
𝑇
 is the expression levels of 𝑝 TGs in 

sample 𝑖, and 𝑦𝑖 is the expression level of the TF gene in sample 𝑖. 𝛽0 is the intercept and 

𝜷 = (𝛽1,⋯ , 𝛽𝑝)
𝑇
 are the regulated regression coefficients. The TF gene regulates TG 𝑗 if 

𝛽𝑗 ≠ 0 (𝑗 = 1,⋯ , 𝑝); the TG 𝑗 and TG 𝑘 are co-regulated by TF gene if both 𝛽𝑗 ≠ 0 and 

𝛽𝑘 ≠ 0 . 𝜀𝑖  is independent and identically distributed random errors with mean 0 and 

variance 𝜎2. 

Based on the above statistical model, we developed six statistical selection methods 

to infer the potential TGs for a given TF based on the penalized regression model. The 

general objective function of the penalized regression model was defined as 

𝑓(𝜷; 𝜆, 𝛼) = 𝐿(𝜷; 𝑦, 𝒙) + 𝑃(𝜷; 𝜆, 𝛼), 

where 𝐿(𝜷; 𝑦𝑖 , 𝒙𝑖) is the loss function according to the observed expression levels of TGs 

and TF and 𝑃(𝜷; 𝜆, 𝛼) is the penalty function which can control the sparsity of the selected 

TGs. 
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Loss functions 

In the above general objective function of the penalized regression model, we considered 

the following two loss functions, MSE and Huber. The MSE loss function is defined as 

𝐿𝑀𝑆𝐸(𝜷; 𝑦, 𝒙) =
1

2𝑛
∑ (𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2𝑛
𝑖=1 , which is very sensitive to outliers. Therefore, 

the use of Huber loss function has been proposed and is more robust to the heavy-tailed 

errors or outliers than MSE219. The Huber loss function is defined as 𝐿𝐻𝑢𝑏𝑒𝑟(𝜷; 𝑦, 𝒙) =
∑ 𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)𝑛
𝑖=1 , where 𝐻𝑀(𝑧) is the Huber function for an input value 𝑧, which 

is quadratic function for small 𝑧 values but grows linearly for large values of 𝑧. In this 

study, the parameter 𝑀 is defaulted to be one-tenth of the interquartile range (IRQ), as 

suggested by Deng et al.202. For any given positive real 𝑀 (called shape parameter), the 

Huber function is defined as 

𝐻𝑀(𝑧) = {
𝑧2 |𝑧| ≤ 𝑀

2𝑀|𝑧| − 𝑀2 |𝑧| > 𝑀
 

Penalty functions 

All of the three penalty functions we considered, Lasso, ENET, and Net, contained the 𝑙1 

norm of the estimated effect sizes (‖𝜷‖1). The ENET penalty is the combination of the 

𝑙1 norm and squared 𝑙2  norm, 𝑃𝐸𝑁𝐸𝑇(𝜷; 𝜆, 𝛼) = 𝜆𝛼‖𝜷‖1 +
1

2
𝜆(1 − 𝛼)‖𝜷‖2

2  . 𝜆 > 0 and 

𝛼 ∈ [0,1] are the tuning parameters, where 𝜆 controls the sparsity and 𝛼  is the mixing 

proportion between 𝑙1 norm and 𝑙2 norm. The Lasso penalty is the special case of ENET 

(𝛼 = 1) and 𝑃𝐿𝑎𝑠𝑠𝑜(𝜷; 𝜆, 𝛼) = 𝜆‖𝜷‖1, which only contains one tuning parameter 𝜆 > 0. 

For the Net penalty, we assume that the genes involved in the same pathway are often co-

regulated by a TF or the same regulatory mechanism, which is supported by previous 

studies220-222. The Net penalty function can utilize prior biological network knowledge such 

as genetic pathways205, which is a combination of the 𝑙1 norm and squared 𝑙2 penalty using 

the genetic network structure. As introduced in Kim and Sun205, the 𝑃𝑁𝑒𝑡(𝜷; 𝜆, 𝛼)  is 

defined as 

𝑃𝑁𝑒𝑡(𝜷; 𝜆, 𝛼) = 𝜆𝛼‖𝜷‖1 +
1

2
𝜆(1 − 𝛼)𝜷𝑇𝐒𝑇𝐋𝐒𝜷                                                   

     = 𝜆𝛼∑|𝛽𝑗|

𝑝

𝑗=1

+
1

2
𝜆(1 − 𝛼)∑∑(

𝑠𝑗𝛽𝑗

√𝑑𝑗
−
𝑠𝑘𝛽𝑘

√𝑑𝑘
)

2

𝑗~𝑘

𝑝

𝑗=1

 

In the above formula, 𝐒 = 𝑑𝑖𝑎𝑔(𝑠1, ⋯ , 𝑠𝑝) is a diagonal matrix whose diagonal 

entries are the signs of estimated regression coefficients, which can be obtained from either 

the ordinary regression when 𝑝 < 𝑛, or the ridge regression when 𝑝 ≥ 𝑛. It has been shown 

that the matrix 𝐒 can accommodate the problem of failure of local smoothness between 

linked genes223. For example, if two nearby TGs are negatively regulated by TF, the signs 

in their regression coefficients are expected to be different. 𝐋 is a symmetric normalized 

Laplacian matrix, where the elements of 𝐋, 𝐿𝑗𝑘, are given by 

𝐿𝑗𝑘 = {

1 𝑖𝑓 𝑗 = 𝑘 𝑎𝑛𝑑 𝑑𝑗 ≠ 0

−(𝑑𝑗𝑑𝑘)
−
1
2 𝑖𝑓 𝑗 ≠ 𝑘 𝑎𝑛𝑑 𝑗~𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 
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where 𝑗~𝑘 means that the TGs 𝑗 and 𝑘 are linked in the genetic network and 𝑑𝑗 is the total 

number of genes linked with the TG 𝑗. Note that the genetic network information 𝐋 are 

considered as the functional relationships among the TGs, which can be obtained from the 

existing annotation. For example, we can construct an association network using the 

pathways or biological processes information, where the TGs are associated with each 

other if they are within a metabolic pathway or a biological process. 

Based on the above two loss functions along with three penalty functions, we 

developed six statistical selection methods, named MSE-Lasso, MSE-ENET, MSE-Net, 

Huber-Lasso, Huber-ENET, and Huber-Net. For a given pair of 𝜆 and 𝛼, we can estimate 

the regression coefficients of 𝑝 TGs, 𝜷, by minimizing the objective function 𝑓(𝜷; 𝜆, 𝛼) 
introduced in formula (2). In other words, 𝜷 = argmin𝜷𝑓(𝜷; 𝜆, 𝛼). The penalty function 

𝑃(𝜷; 𝜆, 𝛼) is convex205,224, so the solution to 𝜷 can be obtained via one of the convex 

optimization algorithms. 

4.2.3 Algorithm to solve the penalized regression models 

Since |𝛽𝑗| is convex but not differentiable at 𝛽𝑗 = 0 for 𝑗 = 1,⋯ , 𝑝, it is difficult to use 

the gradient descent method to find 𝜷 = argmin𝜷𝑓(𝜷). Although here we can use the 

general convex optimization solver CVX225, it is too slow for real biological applications 

especially when there are a large number of genes involved in the analysis. Therefore, we 

adapted an accelerated proximal gradient descent (APGD) algorithm which is an effective 

algorithm when the objective function can be decomposed as a sum of a convex 

differentiable function and a convex non-differentiable function. In the six methods we 

developed, the objective function 𝑓(𝜷)  can be decomposed as 𝑓(𝜷) = 𝑔(𝜷) + ℎ(𝜷) , 

where 𝑔(𝜷) is a convex differentiable function and ℎ(𝜷) is a convex non-differentiable 

function. The idea behind APGD method is to make a quadratic approximation to 𝑔(𝜷) 
and leave ℎ(𝜷) unchanged 226, then use the iterations to solve 𝜷 = argmin𝜷𝑓(𝜷) (Details 

in the Texts D.3-D.8). 

4.2.4 Selection probability 

To obtain a stable selection result, we applied the stability selection method, namely, half-

sample approach, to each TG, which does not need to choose the optimal tuning parameters 

in selection methods. For a pair of fixed values of 𝜆 and 𝛼 (𝛼 = 1 for Lasso penalty), 𝑛/2 

samples are selected at random without replacement and then the regression coefficients 

are estimated based on this subset of samples. This process is repeated 𝐵 times for each 

pair of 𝛼 and 𝜆 over a grid set of 𝛼 and 𝜆. Let 𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) denote the estimated regression 

efficient for the 𝑏th sample (𝑆𝑏 , 𝑏 = 1,⋯ , 𝐵), the selection probability of TG 𝑗, 𝑆𝑃𝑗, is the 

maximum portion of non-zero 𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) over all pairs of 𝛼 and 𝜆. In other words, 

𝑆𝑃𝑗 = max
𝛼,𝜆

1

𝐵
∑𝐼(𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) ≠ 0)

𝐵

𝑏=1

 

where 𝐼(𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) ≠ 0)  is an indicator function and 𝐼(𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) ≠ 0) = 1  if 

𝛽̂𝑗(𝑆𝑏; 𝛼, 𝜆) ≠ 0 for 𝑏 = 1,⋯ , 𝐵. 
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There are two major advantages for the use of selection probability. First, we avoid 

selecting the optimal tuning parameters 𝜆  and 𝛼 , which is challenging in penalized 

regression analysis. Second, it has been shown that the results obtained from the half-

sample approach and the selection probability are more stable than those obtained from the 

cross-validation205,227. The main challenge of the stability selection method is how to 

appropriately choose the grid sets of the two parameters 𝜆  and 𝛼 . For a given 𝛼 , the 

smallest 𝜆 such that all estimated coefficients are zeros from two loss functions, MSE and 

Huber, can be defined as 

𝜆𝑚𝑎𝑥
𝑀𝑆𝐸 = max

𝑗=1,⋯,𝑝
|∑ (𝑦𝑖 − 𝛽0 − 𝑥𝑖𝑗𝛽𝑗)𝑥𝑖𝑗

𝑛

𝑖=1
| 𝛼⁄ , 

𝜆𝑚𝑎𝑥
𝐻𝑢𝑏𝑒𝑟 = max

𝑗=1,⋯,𝑝
|∑ 𝛻𝐻𝑀(𝑦𝑖)𝑥𝑖𝑗

𝑛

𝑖=1
| 𝛼⁄  

where 𝛻𝐻𝑀(𝑦𝑖) = 2𝑦𝑖𝐼(|𝑦𝑖| ≤ 𝑀) + 2𝑀𝑠𝑖𝑔𝑛(𝑦𝑖)𝐼(|𝑦𝑖| > 𝑀)  is the gradient of Huber 

function. Therefore, the grid set of 𝜆 can be set as a log10-scale from 𝑟𝑎𝑡𝑖𝑜 ∗ 𝜆𝑚𝑎𝑥  to 𝜆𝑚𝑎𝑥, 

where the 𝑟𝑎𝑡𝑖𝑜 = 0.01 as suggested by R package glmnet.  

Six statistical selection methods based on the penalized regression models and the 

APGD algorithm for solving these six statistical methods had been implemented in both 

Python3 and R and then packed into TGPred, which have been made publicly available on 

GitHub as open-source software for downloading (https://github.com/xueweic/TGPred); 

more detailed information on how to install and run the tool was enclosed in the packages; 

also see Text D.9. 

4.3 Simulation studies  

Simulation studies were used to evaluate the performance of the six statistical selection 

methods we developed based on the penalized regression models. We considered two 

simulation settings, the general setting and the network setting, and we used 𝑛 = 300 

samples and 𝑝 = 500  TGs in all simulation settings. For each simulation setting, the 

regulation effects for all genes based on each method were estimated by APGD, and the 

selection probabilities were calculated by 𝐵 = 500 half-sample approach. Then, the true 

positive rates (TPRs) were used to evaluate the selection performance, which is defined as 

the number of the truly regulated genes among the selected top-ranked genes divided by 

the total number of truly regulated genes. 

In the general setting, TGs were independent with each other. Therefore, we only 

compared the performances of Huber-Lasso, MSE- Lasso, Huber-ENET, and MSE-ENET 

in the general setting. Figure 4.1 showed the TPRs of these for methods in the general 

setting based on the number of selected top-ranked genes. As it is known, the bigger pre-

set regulation effects may result in the higher TPRs of all methods, since all methods can 

select the genes with larger true regulation effects. On the contrary, the lower pre-set 

regulation effects may result in the lower TPRs of all methods. In both cases, we cannot 

differentiate the performances of different methods. Therefore, we pre-set the regulation 

effects 𝛽 = 0.2 or 0.3, and 50 TGs were regulated by a given TF in this simulation setting. 

For 𝛽 = 0.3, all four methods achieved over 80% TPRs when we selected 50 top-ranked 

genes, while all of them performed equivalently well when we selected 40 top-ranked 

https://github.com/xueweic/TGPred
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genes or less. After selected 85 top-ranked genes, all methods achieved over 95% TPRs 

and MSE-ENET performed better than the other three methods. Compared with Huber loss 

function, MSE loss function had higher TPRs no matter what penalty functions were used. 

The Area under the Receiver Operating Characteristic curve (AuROC) measured the 

performance across all possible thresholds of selection probabilities. Note that the larger 

the AuROC, the better the performance of the method. All of four methods obtained an 

AuROC that exceeded 0.9. As shown in Figure D.2, AuROC (MSE-ENET) = 0.97, 

AuROC (MSE-Lasso) = 0.95, AuROC (Huber-ENET) = 0.95, and AuROC (Huber-Lasso) 

= 0.91. Similar to 𝛽 = 0.3, MSE-ENET performed best and all methods achieved over 

70% TPRs when we selected 50 top-ranked genes along with over 0.8 AuROC. 

 

Figure 4.1. The TPRs of different methods in general setting. The selection probabilities 

were calculated using half-sample approach method with 𝐵 = 500 times of resampling. 

For the network setting, we considered two network structures, the hierarchical 

network (Figure D.1) and the Barabasi-Albert network (not shown). Figure 4.2 showed 

how TPRs varied with the different numbers of the top-ranked genes for different methods 

in the hierarchical network and the Barabasi-Albert network. For the hierarchical network 

where 45 TGs (out of 500 genes) were truly regulated by a given TF, we pre-set the 

regulation effects 𝛽 = 0.3 or 0.4. Since the Net penalty function incorporated the network 

structure, TPRs of Huber-Net and MSE-Net were higher than the other four methods. For 

the Barabasi-Albert network where 40 true TGs (out of 500 genes) were regulated by a 

given TF, we pre-set the regulation effects 𝛽 = 0.1 or 0.2. Huber-Net and MSE-Net had 

the highest TPRs in all settings as expected, indicating that Huber-Net and MSE-Net have 

the same performances and outperform the other four non-Net methods in both network 

structures. We then plotted the ROC curves for all methods in two network settings. For 

the hierarchical network setting, the AuROCs of both Huber-Net and MSE-NET were 0.73 

for 𝛽 = 0.3, and were 0.78 for 𝛽 = 0.4, which were higher than the AuROCs of the other 

four methods (Figure D.3), indicating that Huber-Net and MSE-Net can incorporate the 

functionally associated genes and increase the probability of these genes to be selected as 

the TGs for a given TF. Meanwhile, for the Barabasi-Albert network, the AuROCs of both 

Huber-Net and MSE-Net were 0.9 for 𝛽 = 0.1, and were 0.95 for 𝛽 = 0.2, which were 
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also higher than the AuROCs of the other four methods (Figure D.3). Based on both TPR 

and AuROC, we conclude that Huber-Net and MSE-Net performed equivalently well and 

out-performed all other four non-Net methods. Compared to the general setting, it is 

obvious that the four non-Net methods performed less differentially in the two network 

settings, as shown in Figures 4.2 and Figure D.3. 

We also compared the computation time and the regression coefficients estimated 

by APGD and CVX, a commonly used package for convex optimization, for several pairs 

of tuning parameters 𝜆 and 𝛼. The comparison results were shown in Figures D.4-D.9, 

which were also summarized into Text D.10 for the detailed analyses. For brief, our 

simulation results showed that APGD was not only capable of obtaining the similar 

estimated regulation effects of all TGs for a given TF, but also shortened the computation 

time to 1/10 of that by using CVX, which enables us to predict true TGs of a TF out of a 

large number of candidate TGs (e.g. more than 30,000 as demonstrated in Figure D.4).   

 

Figure 4.2. The TPRs of different methods in network setting. The selection probabilities 

were calculated using half-sample approach method with 𝐵 = 500 times of resampling. 
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4.4 Real data analysis 

4.4.1 Validating Non-Net methods with SND1 transcriptomic data 

DEG analysis yielded 178 genes that had significant p-values (< 0.05) as shown in our 

early publication197. The Top-down GGM algorithm identified 94 genes that were tightly 

responsive to SND1, from which we identified 84 genes that were interfered by SND1 

directly and hereafter, referred to as putative direct TGs of SND1. Of these 84 direct TGs, 

we randomly drew 16 genes for experimental validation with ChIP-PCR, all 16 genes 

tested are proven to be the direct TGs of SND1, which 15 of 16 genes chosen from 

indirectly genes (178 − 84 = 94) are proven to be true indirect TGs, indicating the high 

accuracy (93%) of the Top-down GGM algorithm. Using the same data set we then 

simulated SND1 and all 33,691 genomic genes, and attempted to identify the direct TGs 

based on the selection probabilities yielded from each method. When the all genes being 

ranked by selection probabilities, Huber-ENET, MSE-ENET, HuberLasso and MSE-Lasso 

identified 58, 53, 42 and 43 responsive genes, and 53, 49, 38 and 39 TGs, among the top 

178 genes, respectively. We plotted AuROC and obtained ROC and AuROC of the four 

methods (Figure 4.3). The ROC curves showed that the Huber-ENET and MSE-ENET 

ranked more positive TGs to the very top of lists as compared to Huber-Lasso and MSE-

Lasso, indicating that ENET penalty outperformed Lasso. Interestingly, the Huber-ENET 

and MSE-ENET performed very well when they were used to identify TGs of SND1 from 

all genomic genes all genomic genes (33, 691 genes) (Figure 4.3 left), as evidenced by the 

AuROCs ≥ 0.75.   

4.4.2 Validating Non-Net methods with gl3 transcriptomic data 

We employed the Transcriptional-Activator Like effectors (TALes) to activate glossy3 

(gl3), a glossy master regulator. Two dTALes, referred to as dT1 and dT2, were constructed 

to target two non-overlapping 16-bp regions in the gl3’s promoter. The two regions 

targeted by dT1 and dT2 are 4 and 48 bps upstream of the transcription start site of gl3. 

Analysis of RNA-seq data yielded at 24 h revealed 144 genes (93 upregulated and 51 

downregulated genes), that were activated by both dT1 and dT2228. From these 144 genes, 

we identified 93 tightly responsive genes to gl3 and 78 TGs of gl3using Top-Down GGM 

Algorithm with a cut-off corrected p-values < 0.05. The 78 genes contain 6 of 9 known 

glossy genes in the literature, supporting that the 78 genes are true positive TGs. When we 

implemented the four non-Net methods we developed to gl3 and all 30,263 genomic genes, 

and attempted to identify the responsive genes and TGs of gl3 based on the selective 

probabilities. When the top 144 genes were ranked by selective probabilities, Huber-

ENET, MSE-ENET, HuberLasso and MSE-Lasso identified 78, 81, 91, and 93 responsive 

genes and 57, 49, 68 and 70 TGs, respectively, among the top 144 genes. We plotted 

AuROC and obtained ROC and AuROC of the four methods (Figure 4.3). The ROC curves 

showed that the Huber-ENET and MSE-ENET ranked slightly more positive TGs to the 

top of list as compared to Huber-Lasso and MSE-Lasso, indicating ENET penalty 

outperformed Lasso. Intriguingly, all four non-Net methods performed very well when they 

were used to identify TGs of gl3 from all genomic genes (30, 263 genes) (Figure 4.3, 

right), as evidenced by the AuROCs ≥ 0.91.  
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Figure 4.3. The performance of four non-Net methods in TGPred package. A. ROC 

generated with the data set of 178 differentially expressed genes (DEGs) of SND1 from 

Populus trichocarpa. B. ROC generated with the data set of all genes (33,691) in the RNA-

seq data from Populus trichocarpa. C. ROC generated with the data set of 144 DEGs of 

gl3 from Zea mays.  B. ROC generated with the data set of all genes (30,263) in the RNA-

seq data from Zea mays. DEG, differentially expressed genes. AuROC, area under the 

receiver-operating characteristic curve. 

4.4.3 Validating Net-based methods with lignin pathway in Maize 

Maize expression data has been used for predicting the regulatory relationships between 

transcription factor (TFs) and pathway genes (PWGs). A total of 2,539 PWGs belonging 

to at least one pathway were obtained after the genes that have 90% expression values are 

0 in the 739 samples were removed. These 2,539 PWGs belong to 446 pathways. To 

evaluate the performance of our proposed six methods and APGD algorithm in real data 

analysis, we applied each method to each of 23 TFs versus 2,539 PWGs. The Laplacian 

matrix 𝐋 of 2,539 PWGs was constructed based on 446 pathways, that is, two PWGs were 

associated together if they belong to at least one of 446 pathways. Since these 23 TFs are 

the known TFs that regulate lignin pathway in multiple plant species229. We specifically 

examined 21 genes in maize which were curated by Plant Metabolic Pathway213 as lignin 

pathway genes.  
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We applied our proposed six methods to the 739-sample data sets of 2,539 PWGs, 

and 23 TFs to calculate the selection probability of 2,539 PWGs for each TF. For three 

penalized regression methods, HuberNet, HuberENET, and ENET, nine 𝛼 values (𝛼 =
0.1,0.2,⋯ ,0.9) and 10 different 𝜆  values in a calculated range from the loss function 

(“Lambda_gird” function from our developed package “TGPred”) were used, respectively. 

For Huber-Lasso, 100 𝜆 values in a calculated range from the loss function with 𝛼 = 1 

were used. Furthermore, the parameter 𝐵 representing the number of subsets of samples 

drawn with the half-sample resampling method were used to calculate the selection 

probabilities of 2,539 PWGs for each TF. Then, we specifically checked 21 lignin pathway 

genes to verify the reliability of our methods. There are two criterions that are regarded as 

existing regulator relations. We chose the PWGs with the selection probabilities greater 

than 0.90. The PWGs were captured by the six methods were shown in Figure 4.4A and 

Figure 4.4B. The results yielded from three methods with Huber loss function (Figure 

4.4A) and the results yielded from three methods with MSE loss function (Figure 4.4B) 

were placed side-by-side for comparisons. It is obvious that the values of selection 

probabilities calculated by three methods with Huber loss functions were larger than those 

of three methods with MSE loss function, as indicated by the color depths (Figure 4.4). 

Currently, there are no methods that have been developed and tailored specifically 

towards identifying the TGs of a given TF, especially for a genome-wide analysis. As a 

result, we could not find a similar or closely related method that can be used as a 

comparison to illustrate the efficacy of the six methods. We finally used a widely used 

network construction method, ARANCE191, as a comparison. The results yielded by 

ARANCE are shown in Figure 4.4C when the same inputs (2,539 PWGs) as six methods 

were fed. Nevertheless, only a few regulatory relationships were captured by the 

ARANCE.  When we used only the 21 lignin pathway genes as the input for ARANCE, 

more regulatory relationships were captured (Figure 4.4D), which were still much less 

than those identified by the six methods.  Compared to ARANCE, the six methods 

identified many additional and unique relationships.  

Huber-Net identified the unique pathway genes that were not identified by Huber-

ENET and Huber-Lasso. For example, CAD1 regulated by MYB20, 4CL2-1 by VND1, 

HCT1.1 by MYB59.  However, based on the lignin pathway genes alone, the differences in 

target identification by the six methods were not largely different. To examine this with all 

pathways, we show the common and unique TGs of the same TFs of the three methods that 

use the same loss function (Huber or MSE) for 23 TFs versus all 2,539 pathway genes. As 

shown in the Venn diagram (Figure D.10), Huber-Net and MSE-Net identified up to 10 

and 27 unique genes for TF of Zm00001d047716, respectively, indicating the value of the 

Net-based methods in identifying unique targets. The results of 46 Venn diagrams 

representing common and unique TGs out of 2,539 pathway genes regulated by the 23 TFs 

are shown in Figure D.10.  

To compare the difference in the networks generated by different methods, we 

showed the networks constructed by the six methods, with the networks constructed by 

ARANCE method being used as a comparison. All the gene regulatory networks of lignin 

pathway genes built are shown in the Figure D.11. Although each TF’s targets were 

analyzed separately, the results could be merged to obtain a network, in which the TFs 
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were ranked clockwise based on the number of their connectivities to pathway genes; the 

TFs with higher connectivities are assumed to regulate more pathway genes and/or have 

larger impact on pathway genes and thus were ranked earlier. These results indicate that 

the six methods could be used to rank and select TFs given the TGs are functionally 

associated structural genes, for example, genes from a pathway or a biological process. In 

addition, Figure D.10 manifests that Huber loss function and MSE loss function contribute 

more to the ranking of TFs than the penalty functions because TFs ranked by Huber-ENET, 

Huber-Lasso and Huber-Net were more consistent as compared to those by MSE-ENET, 

MSE-Lasso and MSE-Net. 

 
Figure 4.4. Comparison of six methods (Huber-ENET, Huber-Lasso, Huber-Net, MSE-

ENET, MSE-Lasso, MSE-Net) in identifying TGs (lignin pathway genes). A. the three 

methods with Huber loss functions. The inputs are the expression data sets of 2,539 

pathway genes and 23 known lignin pathway regulators in the in maize. B.  the three 

methods with MSE loss functions. The inputs are the expression data sets of 2,539 pathway 

genes and 23 known lignin pathway regulators in the in maize. C. the ARACNE method 

that was used as a comparison with the same inputs as the six methods. D. the ARACNE 

method that was used as a comparison with the expression data sets of 21 lignin pathway 

genes and 23 known lignin pathway regulators being used as the inputs. 

A.  Comparison of Huber-ENET (HE), Huber-Lasso (HL) and Huber-NET (HN) for identifying lignin pathway genes as targets

B   Comparison of MSE-ENET (ME), MSE-Lasso (ML) and MSE-NET (MN) for identifying lignin pathway genes as targets

Identifying lignin pathway genes as targets using ARANCE (PWG)Identifying lignin pathway genes as targets using ARANCE(All PWGs)C D
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4.5 Discussion 

4.5.1 Solving Convex optimization problem by implementing APGD 

It has been shown that both the loss functions and the penalty functions we used in this 

study are convex functions202,220. Currently, CVX is the commonly used software for 

solving convex optimization problems225, but one overt problem of CVX is its slowness 

when being used for large datasets. In this paper, we implemented an accelerated proximal 

gradient descent (APGD) algorithm226 instead of using CVX in our methods. APGD is an 

effective algorithm to solve an optimization problem with a decomposable objective 

function, which enabled us to predict true TGs of a TF out of a large number of candidate 

TGs (e.g. more than 30,000) in the analysis.  In principle, CVX cannot be used to calculate 

the stable selection probability. The stable selection probability is calculated based on the 

proportion of non-zero estimated regulation effect of a TG over the number of times we 

resampled in the half-sample approach, and all candidate tuning parameters. When using 

APGD, we can obtain a subset of TGs with non-zero regulation effects, and the rest subsets 

of TGs with zero regulation affections. Therefore, we do not need to choose with zero 

regulation affections. Therefore, we do not need to choose threshold by applying APGD to 

the half-sample approach. 

4.5.2 Development and elucidation of six novel methods for identifying 

TGs of a TF 

With the improved new APGD algorithm, we set out to develop novel methods to predict 

the TGs of a TF of interest using omics data, an important issue that has not been well 

solved in current bioinformatics. With two loss functions, Huber and MSE, and three 

penalty functions, Lasso, ENET and Net, we developed six statistical selection methods, 

namely, MSE-ENET, Huber-ENET, MSE-Lasso, Huber-Lasso, MSE-Net and Huber-Net. 

The Huber loss function is a hybrid of squared errors for relatively small errors, and 

absolute errors for relatively large errors, which has been shown to be more robust than 

MSE loss function when there are outliers219. As the synthetic data generated from the 

general setting was used to test the first four non-Net methods, we found that MSE-ENET 

performed better while Huber-Lasso performed worse than other methods if all TGs are 

independent. When the network setting was used to test the six methods, especially MSE-

Net and Huber-Net, as anticipated, the MSE-Net and Huber-Net outperformed the other 

four non-Net methods since the Net penalty could incorporate the network structure of 

TGs. Notably, one tuning parameter 𝜆 from Lasso penalty and two tuning parameters 𝛼 

and 𝜆 from ENET and Net penalties are usually obtained from the cross-validation by 

minimizing the predicted accuracy202,230. However, the results are not stable due to the 

samples being randomly split in the cross-validation205. Therefore, a stability selection 

method, which uses a subsampling approach to obtain a stable selection result has been 

developed by Meinshausen and Bühlmann227; the subsampling approach has been 

manifested to determine the amount of regularization. In this study, we used the selection 

probabilities to evaluate candidate TGs of a given TF. 

In our extensive simulation studies, we showed that the proposed methods, Huber-

ENET and MSE-ENET, outperformed Huber-Lasso and MSE-Lasso in terms of the true 
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positive rates. Meanwhile, all of these four methods are useful for predicting or in-silicon 

validating the TGs of a TF of interest in many circumstances. For example, numerous 

biologists develop transgenic lines or employ a transient system in which a TF is perturbed 

(Figure 4.5), followed by RNA-seq experiments to obtain the transcriptomic data; efficient 

methods are thus needed to predict or validate the TGs of the TF. Usually, the biologists 

first identify DEGs after the perturbation of a TF before they use one of the following 

methods to identify candidate TGs for experimental validation: (1) selecting some DEGs 

based on significant levels of the corrected p-values or q-values and assume these gene are 

candidate TGs; (2) using a correlation method as shown231 or a dependence-based 

method232 or a modeling method to identify causal relationships between the TF and 

DEGs233. (3) using Top-down GGM algorithm198,234,235 to predict TGs of the TF from the 

DEGs; However, these approaches usually have a low accuracy (e.g. correlation or mutual 

information) or a scalability limitation (e.g. Top-down GGM) due to the high cost of 

searching the space of a complete combination of a subset of candidate genes. Thus, there 

is a pressing need to develop methods for efficient modeling of candidate genes efficiently 

and predicting the network dynamics accurately. In addition, there are some other 

circumstances where we need new methods to identify or validate the TGs of a TF in-

silicon. For example, when genome-wide experiments like ChIP-seq and DAP-seq are 

conducted, analysis of ChIP-seq or DAP-seq data usually yields a few to even twenty 

thousand putative TGs whose promoters can be bound by a TF. However, the presence of 

a binding site of the TF in the TGs’ promoters does not necessarily mean there is an 

activation. We need highly efficient methods to validate the existence of an effect-and-

response in expression. In this sense, our methods, Huber-ENET, Huber-Lasso, MSE-

ENET and MSE-Lasso, fill in a gap of lacking efficient methods for predicting or validating 

TGs of a TF of interest using large-scale omics data. Such methods are sought by a 

multitude of biologists. Our results showed that some TGs identified by our methods 

couldn’t be identified by p-values/FDR-based ranking, Top-down GGM algorithm and 

correlation/dependence-based methods. Compared to correlation /dependence-based 

methods that are often applied to pairwise genes, our methods resampled a large number 

of subsets of data (e.g. 500) to compute the selection probabilities of all genes to one TF 

simultaneously, and then select top-ranked TGs based on the stabilities of selection 

probabilities across all subsets. Therefore, our methods augmented the selection process 

and increased the reliability of TGs. Even if each time we computed linear relationships of 

one TF with all genomic genes or DEGs with one re-sampled subset, the aggregation to the 

selection probabilities from all subsets could increase the chance of the nonlinear true 

relationships to be captured. 

Instead of identifying TGs of a TF independently, we sometimes need to investigate 

if a TF regulates a pathway or a biological process. In this case, we can examine if a TF’s 

TGs contain multiple genes belonging to a pathway or a gene ontology that represents a 

biology process. Toward this goal, we developed Huber-Net and MSE-Net methods based 

on network-based penalty. In our extensive simulation studies based on the network setting, 

we showed that Huber-Net and MSE-Net performed better than the other four methods in 

terms of the true positive discovery rates. We then applied these two methods to all 2,539 

PWGs of maize as candidate TGs and 23 TFs which were identified as the true regulatory 

TFs of some PWGs in the lignin and phenylpropanoid pathways. By comparing the existing 
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experimental regulatory relationships from published articles214-218, the results contained 

most of the proven positive regulatory relationships. Moreover, we also applied the other 

four proposed methods, Huber-ENET, MSE-ENET, Huber-Lasso, and MSE-Lasso to 

examine the differences in the predicted results by two Net methods. We found that most 

of the regulated relationships are similar while Huber-Net has more rigorous results than 

others. Thus, the proposed six methods can be used as the reliable methods to predict and/or 

validate the regulatory relationships between PWGs and TFs. 

 

Figure 4.5. An integrative framework for identifying target genes of a TF of interest using 

transcriptomic data by integration of statistics, machine leaning and convex optimization. 

Huber and MSE represent Huber loss function and mean squared error MSE, respectively, 

while ENET, Lasso and Net represent three penalty functions, elastic net, least absolute 

shrinkage and selection operator, and network-based penalty (Net). 

4.5.3 The power of statistics, machine learning and optimization 

combined approaches 

In this study, we combined statistics (half-sample approach-derived selection probability), 

machine learning (regularization in unsupervised learning) and convex optimization 

(solving regularization with APGD) to identify TGs of a TF of interest, which is illustrated 

in Figure 5. Our results showed that this kind of combined approach has great efficacy in 

identifying the true TGs, as we shown early202. 

In our methods, we utilized two loss functions. The Huber loss function is a 

combination of linear and quadratic loss functions. The MSE loss function, which measures 

the average of the squared errors, ensures that our trained model has no outlier predictions 

with huge errors. MSE puts larger weight on these errors due to the squared part of the 

function. The mathematical benefits of MSE are particularly evident in its use at analyzing 

the performance of linear regression, as it allows one to partition the variation in a dataset 

into variation explained by the model and variation explained by randomness. Huber loss 

is more robust to outliers as compared to MSE loss and least absolute deviation (LAD) 

loss, and has higher statistical efficiency than the LAD loss function in the absence of 

outliers219. In addition, we utilized three different penalty functions.  Lasso penalty adds a 
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penalty for non-zero coefficients to penalize the sum of their absolute values (𝑙1 penalty). 

As a result, for high values of 𝜆, many coefficients are exactly zero under Lasso.  ENET 

penalty was proposed in response to the critique on Lasso because the variable selection of 

Lasso only considers the absolutely value of estimated effects resulting in instability. It 

combines the penalties of ridge regression and Lasso to gain “super-penalty”. Net penalty 

is capable of incorporating a set of genes like a pathway or a biological process as 

represented by a gene ontology and enables us to investigate if a TF regulates multiple 

genes involved in a pathway or a biology process. When TGs of multiple TFs are predicted, 

we can then use the results to screen the TFs for regulating a specific metabolic pathway, 

biological process, and complex trait.  

We manifested that APGD has the most computational efficiency for solving the 

convex optimization problem with both differentiable and undifferentiable functions. 

Traditional regularization methods need to choose optimal tuning parameters. One 

limitation of traditional regularization methods with cross-validation is that it depends on 

the saturation of the data, different data sets may obtain different tuning parameter sets, 

leading to different or instable results. APGD is a highly efficient approach to solve our 

proposed methods as well as the other penalized regression, which is a combination of 

convex optimization and machine learning. The incorporation of half-sample-based 

selection probability allow to obtain more stable results, and avoid to choose the optimal 

tuning parameters. Therefore, integration of statistics, machine learning and optimization 

enables us to take the advantage of all methods and combines them to generate a powerful 

approach to identify true TGs of a TF with high efficacy. Due to the disadvantage of the 

feature selection procedure, we cannot check if the selected genes have strong evidence 

related to the outcome. For future studies, we plan to integrate statistical inference in the 

selection procedure and further investigate the selection performance by integrating both 

selection and statistical inference. 

4.6 Conclusions 

Six new statistical selection methods termed Huber-ENET, MSE-ENET, Huber-Lasso, 

MSE-Lasso, Huber-Net and MSE-Net were developed for identifying TGs of a TF of 

interest for the first time by integration of statistics, machine leaning and convex 

optimization approaches. An accelerated proximal gradient descent algorithm was 

specifically developed to solve convex optimization. Comprehensive simulations and 

analyses of the six methods using synthetic data under general setting indicated Huber-

ENET, MSE-ENET, Huber-Lasso, and MSE-Lasso could be used to identify true TGs of 

a TF with high efficacy. When simulating with the data from network setting, Huber-Net 

and MSE-Net outperformed any other non-Net methods for identifying true TGs involved 

in a subnetwork. For real data, ENET penalty function appears to contribute greatly to the 

method efficiency as compared to Lasso, and the Huber optimization has a noticeable 

contribution to the identification of true TGs of a given TF by increasing the selection 

probabilities as compared to MSE. AuROC plots showed that all six methods could rank 

more positive known regulators to the top of output regulatory gene lists. Our results 

suggest that the overall performances of six methods are instrumental for identifying real 

TGs of a TF. Our study filled a gap of scarcity of efficient tools for predicting true targets 

of a TF in gene-wide simulation. 
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5 Chapter 5 

 

Gene selection by incorporating genetic networks into case-

control association studies 

 

Abstract 

Large-scale genome-wide association studies (GWAS) have been successfully applied to 

a wide range of genetic variants underlying complex diseases. The network-based 

regression approach has been developed to incorporate a biological genetic network and to 

overcome the challenges caused by the computational efficiency for analyzing high-

dimensional genomic data. In this paper, we propose a gene selection approach by 

incorporating genetic networks into case-control association studies for DNA sequence 

data or DNA methylation data. Instead of using traditional dimension reduction techniques 

such as principal component analyses and supervised principal component analyses, we 

use a linear combination of genotypes at SNPs or methylation values at CpG sites in a gene 

to capture gene-level signals. We employ three linear combination approaches: optimally 

weighted sum (OWS), beta-based weighted sum (BWS), and LD-adjusted polygenic risk 

score (LD-PRS). OWS and LD-PRS are supervised approaches that depend on the effect 

of each SNP or CpG site on the case-control status, while BWS can be extracted without 

using the case-control status. After using one of the linear combinations of genotypes or 

methylation values in each gene to capture gene-level signals, we regularize them to 

perform gene selection based on the biological network. Simulation studies show that the 

proposed approaches have higher true positive rates than using traditional dimension 

reduction techniques. We also apply our approaches to DNA methylation data and UK 

Biobank DNA sequence data for analyzing rheumatoid arthritis. The results show that the 

proposed methods can select potentially rheumatoid arthritis related genes that are missed 

by existing methods. 

Keywords: gene selection, genetic network, case-control association study 

 

5.1 Introduction 

With the maturation of modern molecular technologies, genomic data is increasingly 

available in large, diverse data sets236. Those data sets provide us an opportunity to use a 

large volume of human genetic data to explore meaningful insights about diseases. Over 

the last decade, large-scale genome-wide association studies (GWAS) have been 

successfully applied to a wide range of genetic variants underlying complex diseases2. 

Different types of genetic variants have different biological functions in the human 

genome. Genotyping can identify small variations in DNA sequence within populations, 

such as single-nucleotide polymorphisms (SNPs)237. Meanwhile, DNA methylation is an 

epigenetic marker that has suspected regulatory roles in a broad range of biological 

processes and diseases238. Most penalized regression approaches have been developed to 
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overcome the challenges caused by the computational efficiency for analyzing high-

dimensional genomic data, such as elastic net239, precision lasso240, group lasso241,242, etc. 

However, Kim et al.205 showed that these approaches ignore genetic network structures that 

have the worst selection performance in terms of the true positive rate.  

There is strong evidence showing that genes are functionally related to each other 

in a genetic network and network-based regularization methods by utilizing prior biological 

network knowledge to select phenotype related genes can outperform other statistical 

methods that do not utilize genetic network information205. Utilizing genetic network 

information indeed improves selection performance when genomic data are highly 

correlated among linked genes in the same biological process (i.e., genetic pathway). 

Therefore, the network-based regularization method has been developed in gene expression 

data243 and DNA methylation data244. To avoid the computational burden in analyzing 

high-dimensional genomic data, Kim et al.205 proposed the approach that combines data 

dimension reduction techniques with network-based regression to identify phenotype 

related genes. The dimension reduction techniques can capture the gene-level signals from 

multiple CpG sites or SNPs in a gene, such as the principal component (PC) based methods 

(PC, nPC, sPC, et al.)205. PC method uses the first PC of DNA methylation data and nPC 

normalizes the first PC by the largest eigenvalue of the covariance matrix of methylation 

data. In addition, sPC uses the first PC of the data that only contains the CpG sites 

associated with the phenotype. It has been demonstrated that network-based regression 

using PC-based dimension reduction techniques can outperform other methods that ignore 

genetic network structures205 and the selection performance can be improved if the gene-

level signals can capture more information. 

To date, several popular and powerful gene-based association tests for GWAS have 

been developed to capture the combined effect of individual genetic variants on a 

phenotype within a gene, including Sequence Kernel Association test (SKAT)121 and 

Testing an Optimally Weighted combination of variants (TOW)50. The combined effect of 

individual genetic variants on a phenotype offers an attractive alternative to single genetic 

variant analysis in GWAS. Let 
ijx  denote the genotype (number of minor alleles) of the thi  

individual at the thj  variant in a gene. To combine information from individual genetic 

variants into a single measure of risk allele burden, BT, SKAT, and TOW employ a 

weighted combination of genetic variants, j ijj
w x , to test the association between a gene 

and a phenotype with different ways to model the weights 
jw . SKAT uses the weights 

related to the minor allele frequencies of the genetic variants. An important feature of 

SKAT is that it can handle the genetic effects on a phenotype with different directions and 

magnitudes by incorporating flexible weight functions to boost power. TOW uses the 

optimal weights obtained by maximizing the score test statistic to test the association 

between a weighted combination of genetic variants and a phenotype. TOW is more 

powerful than SKAT when the percentage of neutral variants larger than 50%. However, 

these three weighted combinations of individual genetic variants do not account for the LD 

structure among genetic components in a gene. To adjust for LD between genetic variants, 

the polygenic LD-adjusted risk score (POLARIS) and quadratic polygenic risk score 
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(PRSQ) were developed to improve upon the standard PRS by correcting the inflated Type 

I error rates observed in the standard PRS in the presence of LD245,246.  

Inspired by these popular gene-based association tests using a weighted 

combination of genetic variants to capture the combined effect of individual genetic 

variants within a gene, in this paper we propose to use weighted combinations of genetic 

variants in a gene to capture gene-level signals in network-based regression into case-

control association studies with DNA sequence data or DNA methylation data. Instead of 

using traditional dimension reduction techniques such as PC-based methods, we use a 

linear combination of genotypes at SNPs or a linear combination of methylation values at 

CpG sites in each gene to capture gene-level signals. We employ three weighted 

combinations of variants used in TOW50, SKAT121, and PRSQ
245 to capture gene-level 

signals. We call these three weighted combinations as optimally weighted sum (OWS), 

beta-based weighted sum (BWS), and LD-adjusted polygenic risk score (LD-PRS). After 

we use one of the weighted combinations of genotypes or methylation values in each gene 

to capture gene-level signals, we regularize them to perform gene selection based on the 

biological network. Simulation studies show that our proposed methods have higher true 

positive rates than using traditional dimension reduction techniques. We also apply our 

methods to DNA methylation data and UK Biobank DNA sequence data for rheumatoid 

arthritis patients and normal controls. The results show that the methods with the three 

weighted combinations, OWS, BWS, and LD-PRS, can select potentially rheumatoid 

arthritis related genes that are missed by the PC-based dimension reduction techniques. 

Meanwhile, the genes identified by our proposed methods can be significantly enriched 

into the rheumatoid arthritis pathway, such as genes HLA-DMA, HLA-DPB1, and HLA-

DQA2 in the HLA region. The overall graphical abstract is summarized in Figure E.1. 

5.2 Statistical Models and Methods 

Consider a sample with n  unrelated individuals, indexed by 1,2, ,i n= . Support that 

there are a set of M  genes in the analysis and a total of 
1

M

mm
k

=  genetic components, such 

as SNPs in DNA sequence data or CpG sites in DNA methylation data, where 
mk  is the 

number of genetic components in the thm  gene. Let ( )1 , ,
m

m m

m k=X x x  be an 
mn k  matrix 

of genetic components in the thm  gene, where ( )1 , ,
T

m m m

j j njx x=x  is the n-dimensional 

vector which represents the genetic data for the thj  genetic component, genotypes of SNPs 

and M values of CpG sites. Let ( )1, ,
T

ny y=y  be an 1n  vector of phenotype, where 

1iy =  denotes a case and 0iy =  denotes a control in a case-control study. We define a 

linear combination of genetic components in the thm  gene as 
1

mk m

mj jj
w

= x .   

5.2.1 Weighted linear combination methods 

To capture gene-level signals from multiple genetic components in a gene, we employ three 

weighted combinations of variants, OWS, BWS, and LD-PRS. In the following, we give a 

summary for each of the weighted combinations. Without loss of generosity, we ignore the 
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index of the gene and use j ijj
w x  to indicate a linear combination of genetic components 

in a gene in this section.  

OWS uses the weights in TOW to combine the genetic components in a gene. In 

TOW50, the weight are determined by maximizing the score test statistic to test the 

association between j ijj
w x  and a phenotype. The weight are given by

( )( ) ( )
2

1 1

n n

j i ij j ij ji i
w y y x x x x

= =
= − − −  , where y  and 

jx  represent the sample mean 

of the phenotype and sample mean of genetic data for the thj  genetic component, 

respectively. Large weight 
o

jw  represents strong association between the genetic 

component and the phenotype. 

BWS uses the weights given in SKAT121, where the genetic component is 

weighted by the beta function, ( )( )
2

1 2; ,j jw Beta a a= , and is extracted without using the 

phenotype. For DNA sequence data, MAFj j =  and the suggested settings of two 

parameters in SKAT are 
1 1a =  and 

2 25a = 121, where MAFj
 denotes the minor allele 

frequency of the thj  genetic component in a gene. For DNA methylation data, 

*

1

1 n

j ij

i

x
n


=

=   and 
*

ijx  is the methylation   value for  the thj  CpG site of the thi  

individual and 
1 2 0.5a a= =  corresponds to ( )1 1j j jw  = − . 

Both BWS and OWS are combining the effects of all genetic components in a 

gene by giving different weights, however, they do not account for LD structure among 

genetic components in a gene. Motivated by POLARIS246, we employ the LD-adjusted 

genetic data to adjust for the influence of LD. The LD-adjusted genetic data is defined as 
1/2−= X X R , where R  is the correlation matrix of X . However, 1/2−R  may not be stable 

if there are very small eigenvalues of R . To make the LD-adjusted genetic data more 

robust, we use the method developed by Yan et al.245 to calculate 1/2−R . Let 
1 k    

and 
1, , ke e  be the eigenvalues and corresponding eigenvectors of R . Then we only use 

the first J  components to calculate 1/2−R , where J  is the smallest number such that 

1 1
0.999

J k

j jj j
 

= =
  . Therefore, 1/2−R  can be written as 

1/2

1

J T

j j jj
−

=
R e e . 

Then LD-PRS uses the weights ( ) 2signj j jw T T=  proposed by Yan et al.245, where 

( ) ( ) ( )
2 2

1 1 1

n n n

j ij i ij j ji i i
T x y y x x y y n

= = =
= − − −    is the score test statistic to test 

the association between the thj  genetic component and the phenotype. The ( )sign jT  

represents the direction of the effect and 2

jT  represents the strength of the association. 

Therefore, LD-PRS to capture the gene-level signal is given by ,j jj
w x  where 

jx  is 

the thj  column of X . 
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Notably, OWS and LD-PRS are supervised methods since their weights are based on 

the association between each genetic component and the phenotype; BWS is an 

unsupervised method and the weights depend on the genetic component and not on the 

phenotype.  

5.2.2 Network-based regularization 

Consider ( )mka=A  is an M M  adjacency matrix which represents the undirected 

network connections among genes, where 1mka =  represents the thm  and thk  genes are 

within the same biological set (i.e., pathway, etc.) and 0mka =  otherwise. Let 

( )1diag , , Md d=D  be an M  dimensional degree matrix, where the thm  diagonal 

element is 
1

M

m mkk
d a

=
=  which represents the total number of genetic links of the thm  

gene. Therefore, the symmetric normalized Laplacian matrix -1 2 -1 2= −L I D AD  

represents a genetic network structure, where the elements of L  are given by  

( )
1/2

1, if and 0;

, if , 0, and are linked to each other;

0, otherwise.

m

mk m k m

m k d

l d d m k d m k
−

= 


= −  



 

Let ( )1, ,
T

i i iMz z=z  be a gene-level signal of the thi  individual across all genes, 

which can be obtained by each of the three weighted combinations, OWS, BWS, LD-

PRS. Let 
0  and ( )1, ,

T

M =β  be the intercept and the effect vector of M  genes, 

respectively. The likelihood function of the phenotype is given by 

( ) ( ) ( ) ( )( )
1

0 0

1 1

, ; ; , 1 ,
ii

n n
yy

i i i

i i

L f y p p 
−

= =

= = − β y β z z  

where ( ) ( )Pr 1|i i ip y= =z z  represents the probability that the thi  individual is a case, 

which can be calculated by  

( )
( )
( )

0

0

exp
.

1 exp

T

i

i T

i

p




+
=

+ +

z β
z

z β
 

Based on the genetic network structure, the penalized logistic likelihood using 

network-based regularization205 is given by 

( ) ( ) ( ), 0 0

1
, , ; ,Q l P

n
   = − +β β y β  

where ( ) ( )0 0, ; log , ;l L =β y β y  is the log-likelihood function and ( )P β  is a penalty 

term which is a combination of the 
1l  penalty and squared 

2l  penalty incorporating the 

genetic network structure. ( )P β  is defined as 
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( ) ( )

2

1
1 1

1
1 ,

2

M M
T T m m k k

m

m m m k m k

s s
P

d d

 
    

= =

 
= + − = + − 

 
 

 S LSβ β β β  

where 
1
 is a 

1l  norm, and ( )1diag , , Ms s=S  is a diagonal matrix of the estimated 

signs of the regression coefficients on the diagonal entries  1,1ms  −  for 1, ,m M= , 

which can be obtained from ordinary regression for M n , and ridge regression for 

M n .   is a tuning parameter that controls sparsity of the network-based 

regularization,  0,1  is a mixing proportion between lasso penalty and network-based 

penalty, and m k  denotes that the thm  and thk  genes are linked to each other in the 

genetic network. 

For a given pair of   and  , we can estimate the interpret, 
0 , and the effect vector 

of M  genes, β , by minimizing the penalized logistic likelihood ( ), 0,Q   β . It is not 

difficult to show the penalty function ( )P β  is convex 205,224, so the solution 
0  and β  

can be obtained via one of the convex optimization algorithms. We use the R package 

“pclogit” to estimate 
0  and β  which implements the cyclic coordinate descent 

algorithm244,247. Same as Chapter 4.2.5, we use half-sample method to calculate the 

selection probability of each gene, 
mSP , for 1, ,m M= . 

5.3 Simulation Studies 

To evaluate if the methods with the three weighted combinations, OWS, LD-PRS, and 

BWS, outperform the methods with PC-based dimension reduction techniques, we follow 

the simulation settings in Kim et al.205 (Details are in Text E.1, Figure E.2). After 

generating the individual-level DNA methylation data and DNA sequence data based on a 

biological network structure, we use the three weighted combinations, OWS, LD-PRS, and 

BWS, and the three competing PC-based methods, PC, nPC, and sPC, to capture the gene-

level signals ( )1, ,
T

i i iMz z=z  for the thi  individual across all genes. Then, the selection 

probability for each gene can be obtained by using a half-sample method 100 times and the 

network-based regression across 600 pairs of tuning parameters   and  . We use the true 

positive rate (TPR) and the area under the receiver operating characteristic (ROC) curve 

(AUC) to evaluate the selection performance. TPR is defined as the number of true genes 

that are selected divided by the number of true genes.  

For each scenario, we consider a total of 1000n =  individuals which contain 500 

cases and 500 controls for the balance case-control studies. Figures 5.1-5.2 show the TPR 

comparisons for the balance case-control studies in scenario 1. We compare the methods 

with the three weighted combinations and the methods with the three PC-based dimension 

reduction techniques, PC, nPC, and sPC, which have been shown higher TPR than other 

methods that do not utilize biological network information. We first compute selection 

probabilities of all genes and then rank top genes based on the selection probabilities for 

each method.  
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In DNA sequence data analysis (Figure 5.1 and Table E.1), we pre-set the strength 

of association signals ( 2,3 = ), the number of components correlated with the gene-level 

signal ( 4,6 = ), and the error variance which controls the noise level of association 

signals ( 2 2,3 = ). The proposed OWS, LD-PRS, and BWS have better selection 

performance in all eight simulation settings according to TPR and AUC. When the number 

of causal SNPs in a gene is small ( 4 = ), BWS has the uniformly highest TPR and AUC 

regardless of the size of the error variance. However, selection performance of the 

supervised approaches, OWS and LD-PRS, are better than or similar as that of the 

unsupervised approach, BWS, when the number of SNPs in a gene is large ( 6 = ). Overall, 

BWS shows the best selection performance in all simulation settings for DNA sequence 

data analysis. LD-PRS is better than OWS due to LD-PRS adjusted for the LD structure of 

the SNPs. In DNA methylation data analysis (Figure 5.2 and Table E.2), we pre-set 

2,2.5 = , 4,6 = , and 2 6,7 = . All methods have similar performance according to 

TPR when the strength of the association signal is small ( 2 = ); while the methods with 

three weighted combinations have higher AUC compared with the three PC-based methods 

(Table E.2). The methods with the three weighted combinations have higher TPRs and 

AUCs than PC-based methods when the strength of the association signal is large ( 2.5 = ). 

Particularly, when the number of components correlated with the gene-level signal is large 

( 6 = ), BWS has the uniformly highest TPR regardless of the size of the error variance 

and the strength of association signals. BWS also shows the best selection performance in 

all simulation settings for DNA methylation data analysis. LD-PRS and OWS have similar 

performance but have higher TPRs than the other three PC-based methods. 

Figures E.3-E.4 show the TPR comparisons for the balance case-control studies 

under scenario 2. The patterns of TPR comparisons under scenario 2 for DNA methylation 

data and DNA sequence data are similar to those under scenario 1 (Figures 5.1-5.2). 

Meanwhile, we also perform TPR comparisons for the unbalance case-control studies, 

where there are a total of  individuals with 100 cases and 900 controls. Figures E.5-E.8 

show the TPR comparisons for the unbalance case-control studies. The patterns of TPR 

comparisons under these two scenarios for DNA methylation and DNA sequence data are 

similar to those observed in Figures 5.1-5.2 and Figures E.3-E.4. 

We also compare the network-based regression (Net) with two penalized 

regressions without considering the network structure, elastic net (ENET) and least 

absolute shrinkage and selection operator (Lasso). The comparison results of the selection 

performance and the computational time are shown in Figures E.9-E.13, which are also 

explicated in Text E.2 in more details. In summary, the results show that OWS, LD-PRS, 

and BWS with Net, always perform better than those with Lasso and ENET. However, 

three competing PC-based methods (PC, nPC, sPC 1000n = ) with Net may not increase 

TPR compared with Lasso and ENET. With respect to model fitting, we use the accuracy 

rate (ACC) as the measurement for the model fitting quality248 (Text E.3) and we observe 

that the supervised methods (LD-PRS, OWS, sPC) have higher ACC compared with the 

three unsupervised methods (BWS, PC, nPC). Notably, LD-PRS and OWS always 

outperform sPC (Figure E.14). Meanwhile, the network-based regression with partially 

corrected network structure still outperform ENET and Lasso (Text E.4 and Figure E.15). 
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Figure 5.1. The true positive rates of the methods based on different gene-level signals for 

balance case-control studies with DNA sequence data in scenario 1, where there are five 

rare variants and five common variants in each gene. According to the different number of 

selected top genes, three parameters are used to vary the genetic effect: the strength of 

association signals  , the number of SNPs in each gene related to gene-level signals  , 

and the noise level of association signals 2 . The selection probabilities are calculated 

using half-sample method 100 times. 

 
Figure 5.2. The true positive rates of the methods based on different gene-level signals for 

balance case-control studies with DNA methylation data in scenario 1. According to the 

different number of selected top-genes, three parameters are used to vary the genetic effect: 

the strength of association signals  , the number of CpG sites in each gene related to gene-

level signals  , and the noise level of association signals 2 . The selection probabilities 

are calculated using half-sample method 100 times. 
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5.4 Applications 

To evaluate the performance of our proposed methods with three weighted combinations 

in real data analyses, we apply our methods to DNA methylation data249,250 and UK 

Biobank data for DNA sequence of rheumatoid arthritis (RA) patients and normal controls 

(see details in Text E.5). Due to the outperformance of the nPC205 compared with the 

other PC-based methods, we only apply nPC to compare the performance with our 

proposed methods in real data analyses.  

5.4.1 Application to DNA methylation data 

In the application to DNA methylation data, we select the top 100 genes according to the 

selection probabilities of each method. We search the GWAS catalog for genes that are 

associated with RA. Table 5.1 shows the genes in the GWAS catalog that are also 

identified by OWS, LD-PRS, BWS, and nPC. OWS identifies 11 genes, LD-PRS identifies 

12 genes, BWS identifies 8 genes, and nPC identifies 10 genes. Meanwhile, the number of 

overlapped genes by each method in the DNA methylation data analysis is summarized in 

Figure E.16. There are four genes identified by all of these four methods, HLA-DQA2, 

HLA-DRB1, HLA-DQB1, and CD1C. Gene HLA-DRB1251 and gene HLA-DQB167,252-258 

play a central role in the immune system and have been reported in the GWAS catalog. No 

literature reported gene HLA-DQA2 that was significantly associated with RA in GWAS 

catalog. However, the SPs of gene HLA-DQA2 calculated by the methods with the three 

weighted combinations, OWS, LD-PRS, and BWS, are all 1.000. Also, the SP of gene 

HLA-DQA2 is 0.852, which is also on the top 100 genes identified by nPC method. 

Notably, gene HLA-DQA2 is in the rheumatoid arthritis pathway (KEGG: hsa05323) and 

the literature259 has shown that genes in the human leukocyte antigen (HLA) region remain 

the most powerful disease risk genes in RA.  

Table 5.1. GWAS catalog reported genes identified by OWS, LD-PRS, and BWS in DNA 

methylation data. 

OWS LD-PRS BWS nPC 
Gene SP Gene SP Gene SP Gene SP 

HLA-DRB1 1.000 HLA-DRB1 1.000 HLA-DRB1 1.000 CCR6 1.000 
HLA-DRB5 1.000 KIF26B 1.000 PRKCH 0.998 ZFP36L1 1.000 

CCR6 0.992 HLA-DRB5 0.974 HLA-DQA1 0.992 TCF7 0.992 

ZFP36L1 0.988 TNXB 0.974 HLA-DOB 0.894 TNFSF1A 0.988 
NFATC1 0.986 PRDM16 0.970 HLA-DQB1 0.858 TLR4 0.986 

TNFRSF1A 0.950 HLA-DQA1 0.950 FNBP1 0.844 IL2RB 0.980 

SPSB1 0.928 HLA-DQB1 0.950 TCF7 0.842 HLA-DRB1 0.966 
ETS1 0.898 HLA-DMA 0.912 CD247 0.804 CD247 0.962 

HLA-DQA1 0.888 NOTCH4 0.854   HLA-DQB1 0.936 

HLA-DQB1 0.880 HLA-DRA 0.806   HLA-DRB5 0.894 
TCF7 0.794 RIM26 0.784   ZNF175 0.866 

  CCR6 0.776     

To better understand the biological meaning behind the top 100 selected genes by 

each method, we perform the pathway enrichment analysis. In this study, significantly 

enriched pathways are identified by the top 100 selected genes if FDR < 0.05. In Figure 

E.17, there are 21 significantly enriched pathways identified by OWS, BWS, and LD-PRS, 

in which the RA pathway is significantly enriched with FDROWS=1.48E-04, FDRBWS = 

7.80E-03, and FDRLD-PRS = 8.03E-07, respectively; RA pathway is also significantly 
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enriched in a total of 18 pathways identified by nPC with FDRnPC = 2.91E-03. The 

overlapping genes between the top 100 genes identified by each method and genes in RA 

pathway are shown in Figure 5.3(A). The number below each method indicates the total 

number of overlapping genes identified by the corresponding method and genes in RA 

pathway. LD-PRS has the smallest pathway enriched FDR and identifies the most 

overlapping genes (n = 10); genes HLA-DMA (SP = 0.912) and LTB (SP = 0.998) are 

uniquely identified. OWS identifies eight overlapping genes which contain one unique 

gene HLA-DPB1 (SP = 0.85); meanwhile, BWS identifies six overlapping genes that 

contain two unique genes TNF (SP = 0.980) and HLA-DOB (SP = 0.894). Comparing the 

results of the methods with the three weighted combinations, OWS, LD-PRS, and BWS, 

and nPC, five HLA-family genes (HLA-DMA, HLA-DOB, HLA-DPB1, HLA-DPA1, and 

HLA-DQA1) and two RA pathway genes (LTB and TNF) are uniquely identified. The 

results show that the proposed methods can select potentially RA related genes that are 

missed by nPC. 

 

Figure 5.3. Venn diagrams of (A) the number of RA pathway genes identified by BWS, 

LD-PRS, OWS, and nPC for DNA methylation data; (B) the number of overlapping genes 

among the top 200 genes identified by each method and reported in the GWAS catalog for 

DNA sequence data. 

5.4.2 Application to DNA sequence data in UK Biobank 

In the applications to DNA sequence data, we use 4,541 individuals with RA disease and 

randomly select 5,459 individuals without RA disease in the UK Biobank. The number of 

genes with selection probabilities of 1 for DNA sequence data is larger than that of DNA 

methylation data. For example, there are 80 genes with SP=1 using OWS and 135 genes 

with SP=1 using LD-PRS. Therefore, we select the top 200 genes according to SPs for 

DNA sequence data analysis. We also search the GWAS catalog for genes that are 

associated with RA. Figure 5.3(B) and Table 5.2 show the genes in the GWAS catalog 

that are also identified by OWS, LD-PRS, BWS, and nPC. Similar to DNA methylation 

data analyses, LD-PRS identifies the most genes (n=23) reported in the GWAS catalog, 

including four uniquely identified genes (HLA-DQB1, GFRA1, GABBR2, EDIL3); OWS 

identifies 22 genes in which genes STAT4 (SP=0.994) and IKZF1 (SP=0.986) are uniquely 

selected. There are 13 genes identified by both LD-PRS and OWS, where 12 genes have 
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selection probabilities of 1 in both methods. Two unsupervised methods, BWS and nPC, 

can identify 17 and 18 genes in the GWAS catalog. They can uniquely identify 11 and 12 

genes, respectively. Moreover, there are two genes identified by all four methods, genes 

HLA-DQA1 and HLA-DRA (boldfaced in Table 5.2), and two genes identified by three 

proposed methods, genes RATB and CTNNA3. 

Table 5.2. GWAS catalog reported genes identified by OWS, LD-PRS, BWS, and nPC in 

DNA sequence data. 

OWS LD-PRS BWS nPC 

Gene SP Gene SP Gene SP Gene SP 
HLA-DRB1 1.000 HLA-DRB1 1.000 HLA-DRA 1.000 HLA-DRB5 1.000 

HLA-DQA1 1.000 HLA-DQA1 1.000 HLA-DQA1 1.000 HLA-DQA1 0.998 
PRDM16 1.000 HLA-DQB1 1.000 TNXB 0.996 IRF5 0.966 

PRKCB 1.000 HLA-DRA 1.000 HLA-DMA 0.946 SOCS2 0.944 

PCSK5 1.000 PRDM16 1.000 SUOX 0.932 HLA-DRB1 0.942 
NOTCH4 1.000 PRKCB 1.000 WNT16 0.930 TYK2 0.928 

GPC5 1.000 PCSK5 1.000 TYK2 0.928 PRDM1 0.890 

RBFOX1 1.000 NOTCH4 1.000 RPS6KB1 0.902 NOTCH4 0.884 
DOCK1 1.000 GPC5 1.000 CTNNA3 0.898 IL7R 0.872 

KIF26B 1.000 RBFOX1 1.000 HLA-DRB5 0.892 ATXN2 0.872 

CTNNA3 1.000 DOCK1 1.000 HIPK1 0.890 B3GNT2 0.870 
GALNT18 1.000 ZMIZ1 1.000 SLC9A8 0.882 UBE2L3 0.870 

PCDH15 1.000 SLC9A9 1.000 SKIV2L 0.860 ELMO1 0.864 

PTPRM 1.000 RARB 1.000 TNIP1 0.860 GATA3 0.846 
HLA-DRB5 0.998 KIF26B 1.000 PDF2A 0.836 RMI2 0.844 

RARB 0.998 CTNNA3 1.000 TNFAIP3 0.834 RORC 0.836 

HLA-DRA 0.996 GALNT18 1.000 RARB 0.824 HLA-DRA 0.836 

ZMIZ1 0.996 PCDH15 1.000   RBXW8 0.828 

SLC9A9 0.994 PTPRM 1.000     

STAT4 0.994 PDE3A 0.998     
PDE3A  0.990 GFRA1 0.996     

IKZF1 0.986 GABBR2 0.994     

  EDIL3 0.992     

Notes: boldface means that the genes are identified by four methods. 

5.5 Discussions 

In this paper, we employ three weighted combinations to capture the gene-level signals 

from multiple CpG sites or SNPs: optimally weighted sum (OWS), LD-adjusted 

polygenic risk score (LD-PRS), and beta-based weighted sum (BWS) in DNA 

methylation or DNA sequence data. To identify phenotype related genes, we apply the 

three gene-level signals to a stability gene selection approach by incorporating genetic 

networks. Compared with the traditional dimension reduction techniques such as PC 

based gene-level signal, the methods with the three weighted combinations, OWS, LD-

PRS, and BWS, have very good performance according to the true positive rates. By 

applying the methods to real DNA methylation and DNA sequence data, we show that the 

methods with the three weighted combinations can select more potentially RA related 

genes that are missed by nPC. Meanwhile, OWS, LD-PRS, and BWS can select more 

significantly enriched genes in the RA pathway comparing with nPC, such as genes HLA-

DMA, HLA-DPB1, and HLA-DOB in the HLA region. 

There are some advantages of the three weighted combinations to capture gene-

level signals. First, the three weighted combinations can capture more information from 

genetic components (SNPs or CpG sites) in a gene than the traditional dimension 
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reduction techniques, such as PC-based methods. OWS and LD-PRS are two supervised 

approaches based on the association between each genetic component and phenotype, 

where OWS utilizes the optimally weighted combination50 of components and LD-PRS 

can adjust for the highly correlated structure246 of components. OWS puts large weights 

on components with large effects on the phenotype50. Since the genetic components in a 

gene are commonly correlated, LD-PRS transforms the original data into an orthogonal 

space to adjust for LD structure. Moreover, OWS and LD-PRS perform better according 

to TPR when the genetic components are highly correlated. Even though BWS is an 

unsupervised method that can be extracted without using phenotype, our simulation 

studies show that BWS has the highest TPR and AUC in most of the settings. Second, the 

methods with the three weighted combinations, OWS, LD-PRS, BWS, can select more 

potential phenotype related genes. In our application to DNA methylation of RA patients 

and normal controls, the top 100 genes selected by our proposed methods can be 

significantly enriched into RA pathway and contain more RA pathway genes, especially 

by LD-PRS. Furthermore, all of our proposed methods have strong evidence to select 

gene HLA-QDA2 (SP=1) which is not reported in the GWAS catalog. 

Recently, large-scale biobanks linked to electronic health records provide us the 

possibility of analyzing DNA sequence data using a large sample size. Although three 

weighted combinations combined with the network-based regression have several 

advantages, there are three limitations we need to resolve in our future works. First, the 

method with the three weighted combinations are not suitable for extremely unbalanced 

case-control studies. To avoid the extremely unbalanced case-control ratio in the data 

from UK Biobank, we match the number of individuals with and without RA disease in 

the application of DNA sequence data. This may be the reason for a large number of genes 

with SP=1 using OWS and LD-PRS, and the SP of the 200th gene using OWS and LD-

PRS over 0.97. In the future, we will investigate new methods to handle extremely 

unbalanced case-control studies. We can use the saddlepoint approximation method44 to 

adjust the network-based regression, or use random under-sampling or over-sampling260 

methods instead of using the half-sample approach in the calculation of selection 

probabilities. The second limitation is that we do not know if the genes selected by the 

methods with the three weighted combinations are significantly associated with the 

phenotype. For future studies, we plan to integrate statistical inference in the selection 

procedure, and further investigate the selection performance by integrating both selection 

and statistical inference. The third limitation is that the network-based regression is only 

used for case-control study205. For the continuous phenotypes,  we need to switch the 

logistic model with logistic likelihood to the linear regression model with mean squared 

error or more robust loss function, such as Huber function261. 
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A Supplementary Materials for Chapter 1 

A.1 Supplementary Text 

Text A.1. Details of the six multiple phenotype association tests. 

To test the association between phenotypes in each network module and a SNP, we perform 

the following six multiple phenotypes association tests. To simplify the notation, we 

assume that the tests are applied to test the association between K  phenotypes and a SNP. 

CLC1: CLC classifies K  phenotypes into L  clusters for 1, ,L K= . The test 

statistic with L  clusters is ( ) ( ) ( )
1TL T

CLCT
−

= D DΣD DT T , where ( )1, ,
T

KT T=T  with 
kT  

being the score test statistic to test the association between the thk  phenotype and a SNP; 
1T −=D B Σ  with Σ  being a correlation matrix of K  phenotypes and ( )klb=B  being a 

K L  matrix with 1klb =  if the thk  phenotype belongs to the thl  cluster and 0klb =  

otherwise. Under the null hypothesis that none of the K  phenotypes are associated with a 

SNP, L

CLCT  follows a chi-square distribution with degrees of freedom L . The overall test 

statistic of CLC is given by 
1
max L

CLC CLC
L K

T T
 

=  and the corresponding p-value can be 

evaluated by a simulation procedure. 

ceCLC2: ceCLC is a computational efficient version of CLC, where the p-value of 

overall test statistic is derived by the Cauchy combination method3,4. Let 
Lp  be the p-value 

of L

CLCT , then the test statistic of ceCLC is given by ( ) 
1
tan 0.5

K

ceCLC LL
T p K

=
= − . 

The null distribution of 
ceCLCT  can be well approximated by a standard Cauchy distribution. 

Therefore, p-value of ceCLC can be approximated by ( ) 0.5 arctanceCLC ceCLCp T = − . 

HCLC5: Instead of considering all possible number of clusters in CLC and ceCLC, 

HCLC determine the optimal number of clusters, *L , by using a stopping criterion that 

maximizes the cluster separation6. Therefore, the test statistic of HCLC is defined as 
*L

HCLC CLCT T=  and the p-value is calculated by assuming 
HCLCT  follows a chi-square 

distribution with degrees of freedom *L . 

MultiPhen7: MultiPhen uses the ordinal regression (also known as proportional 

odds logistic regression) to regress genotype of a SNP on K  phenotypes. MultiPhen uses 

a likelihood ratio test to test whether effect sizes of K  phenotypes are significantly 

different from zero. The resulting test statistic asymptotically follows a chi-square 

distribution with degrees of freedom . K .. 

O’Brien8: O’Brien uses a linear combination method of the score test statistic, 
kT  , 

to test the association between the thk  phenotype and a SNP. That is, the test statistic of 

O’Brien is given by ( )
2

1

'

T

O Brien KT −= Σ1 T , where 
K1  is a 1K  vector with elements of all 

1s. Under the null hypothesis, 
'O BrienT  follows a chi-square distribution with 1 degree of 

freedom.  
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Omnibus1: Omnibus is developed to overcome the limitation of O’Brien. The test 

statistic of Omnibus is 1T

omnibusT −= ΣT T . Under the null hypothesis, 
omnibusT  follows a chi-

square distribution with degrees of freedom K . 

Note that a normal approximation of the score test statistic 
kT  for 1, ,k K=  used 

in CLC, ceCLC, HCLC, O’Brien, and Omnibus has inflated type I error rates from binary 

phenotypes with extremely unbalanced case-control ratios 9. In this case, we modify these 

five methods by calculating ( )ˆ ˆ
k k kT se = , where ˆ

k  and ( )ˆ
kse   can be estimated by 

saddlepoint approximation9. 

A.2 Supplementary Tables 

Table A.1. Simulation settings with ( )1
ˆ 1, ,1

T
=λ  and ( )2

2ˆ 1, ,
1

T
k

k


=

+
λ . 

 Category SNP 1-50 SNP 51-100 SNP 101-150 SNP 151-200 

Model 1 
1 1λ̂  0 0 0 

2 0 1
ˆ-λ  0 0 

Model 2 
1 1λ̂  0 0 0 

2 0 2
ˆ-λ  0 0 

Model 3 

1 1λ̂  0 0 0 

2 0 1
ˆ-λ  0 0 

3-5 0 0 0 0 

Model 4 

1 1λ̂  0 0 0 

2 0 2
ˆ-λ  0 0 

3-5 0 0 0 0 

Model 5 

1 1λ̂  0 0 0 

2 0 1
ˆ-λ  0 0 

3 0 0 2λ̂  0 

4 0 0 0 2
ˆ-λ  

Model 6 

1 1λ̂  0 0 0 

2 0 1
ˆ-λ  0 0 

3 0 0 2λ̂  0 

4 0 0 0 2
ˆ-λ  

5-10 0 0 0 0 
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Table A.2. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 1. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates).  

Mixture Phenotypes 

Model 1 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.959 0.992 0.889 0.978 0.798 0.964 1.408 1.120 0.995 0.991 0.796 0.863 

0.0001 0.830 0.920 0.760 0.940 0.730 0.910 1.500 1.240 1.040 1.050 0.650 0.880 

4000 0.001 1.087 1.094 1.014 1.005 0.944 1.001 1.282 1.142 1.061 1.001 0.958 1.051 

0.0001 1.080 1.040 0.950 1.080 1.020 1.140 1.450 1.130 1.050 0.990 1.020 1.070 

80 2000 0.001 0.926 0.970 0.839 0.931 0.801 0.957 1.790 1.279 0.995 0.972 0.775 0.842 

0.0001 0.760 0.850 0.900 1.020 0.680 0.990 1.960 1.260 0.930 0.930 0.640 0.750 

4000 0.001 1.061 1.031 0.960 0.952 0.884 0.975 1.388 1.166 0.985 0.936 0.894 0.980 

0.0001 1.090 1.040 0.930 1.120 0.790 1.090 1.350 1.160 1.040 0.910 0.810 1.020 

100 2000 0.001 0.902 0.943 0.800 0.889 0.703 0.930 2.147 1.291 0.935 0.927 0.706 0.815 

0.0001 0.870 0.790 0.840 0.850 0.610 0.830 2.440 1.500 0.790 0.860 0.620 0.870 

4000 0.001 0.985 1.032 0.940 0.970 0.887 0.977 1.523 1.155 0.941 1.003 0.890 0.946 

0.0001 0.890 0.980 1.010 1.100 0.630 1.030 1.390 1.110 1.110 1.010 0.710 0.880 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O.” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

Table A.3. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 2. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates). 

Mixture Phenotypes 

Model 2 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.968 0.988 0.899 0.936 0.851 0.956 1.501 1.206 1.006 0.974 0.848 0.909 

0.0001 0.910 0.840 0.870 0.870 0.780 1.060 1.540 1.300 1.080 0.940 0.790 0.810 

4000 0.001 1.047 1.057 0.976 0.969 0.930 0.993 1.230 1.122 0.984 0.972 0.915 0.977 

0.0001 0.960 1.010 1.030 1.000 1.000 1.000 1.380 1.180 1.110 1.000 0.970 1.080 

80 2000 0.001 0.894 0.997 0.841 0.967 0.757 0.944 1.738 1.253 1.051 1.018 0.751 0.847 

0.0001 0.810 1.010 0.730 0.880 0.760 0.890 1.990 1.580 1.160 1.150 0.770 0.950 

4000 0.001 0.967 0.992 0.965 0.912 0.879 0.955 1.300 1.095 1.030 1.011 0.861 0.908 

0.0001 0.980 0.970 0.840 0.920 0.700 0.980 1.270 1.120 0.990 0.970 0.780 0.740 

100 2000 0.001 0.858 0.939 0.821 0.885 0.707 0.908 2.128 1.344 1.015 0.930 0.704 0.782 

0.0001 0.810 0.960 0.730 0.880 0.570 1.090 2.390 1.430 0.980 0.850 0.610 0.790 

4000 0.001 0.995 0.984 0.886 0.962 0.881 0.980 1.461 1.193 1.046 0.957 0.870 0.922 

0.0001 1.080 0.990 0.970 0.890 0.930 0.990 1.900 1.070 1.030 1.040 0.910 0.760 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.4. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 3. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates). 

Mixture Phenotypes 

Model 3 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.958 1.004 0.893 0.997 0.826 0.919 1.481 1.155 1.014 1.073 0.803 0.941 

0.0001 0.880 1.000 0.800 1.170 0.620 0.990 1.530 1.230 0.930 1.170 0.610 0.790 

4000 0.001 1.030 1.052 0.941 0.940 0.909 0.976 1.210 1.114 0.984 1.064 0.903 0.981 

0.0001 0.700 1.050 0.840 1.010 0.840 1.080 1.420 1.180 1.010 1.210 0.960 0.840 

80 2000 0.001 0.949 0.952 0.843 0.909 0.769 0.882 1.741 1.194 1.009 1.099 0.739 0.903 

0.0001 0.710 0.850 0.790 0.760 0.580 0.740 2.060 1.250 0.990 1.070 0.580 0.740 

4000 0.001 1.006 0.965 0.903 0.912 0.881 0.907 1.358 1.131 0.915 1.000 0.887 0.951 

0.0001 0.890 0.920 0.900 1.070 0.810 0.910 1.470 1.070 0.840 1.090 0.850 1.020 

100 2000 0.001 0.907 0.946 0.835 0.911 0.767 0.884 2.171 1.383 0.979 1.071 0.751 0.892 

0.0001 0.830 0.890 0.670 0.810 0.740 0.780 2.760 1.430 0.840 1.070 0.680 0.770 

4000 0.001 1.005 0.961 0.902 0.967 0.833 0.925 1.393 1.170 0.977 1.038 0.797 0.927 

0.0001 0.900 0.730 0.950 0.950 0.630 0.770 1.410 0.940 0.960 1.060 0.650 0.710 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

 

Table A.5. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 4. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates). 

Mixture Phenotypes 

Model 4 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.935 0.983 0.872 0.982 0.783 0.923 1.417 1.098 0.988 1.071 0.789 0.907 

0.0001 0.890 0.980 0.930 0.800 0.650 0.950 1.460 1.260 0.980 1.370 0.690 0.850 

4000 0.001 1.019 0.979 0.915 0.959 0.923 0.943 1.183 1.084 0.975 1.060 0.870 0.935 

0.0001 1.120 1.090 0.870 0.890 0.940 1.020 1.320 1.190 0.940 0.990 0.860 1.000 

80 2000 0.001 0.905 0.974 0.910 0.923 0.785 0.891 1.778 1.250 1.028 0.994 0.789 0.900 

0.0001 0.860 0.860 0.760 0.880 0.550 0.910 1.870 1.290 1.020 1.170 0.510 0.820 

4000 0.001 1.018 1.024 0.936 0.983 0.887 1.005 1.338 1.116 1.012 1.024 0.887 0.957 

0.0001 0.870 0.940 0.790 0.980 1.000 0.990 1.700 1.060 0.970 1.090 1.050 0.860 

100 2000 0.001 0.902 0.996 0.851 0.909 0.739 0.918 2.186 1.311 0.981 1.022 0.750 0.858 

0.0001 1.000 0.890 0.830 1.010 0.680 0.810 2.750 1.450 0.840 1.020 0.770 0.680 

4000 0.001 1.000 1.043 0.902 0.957 0.855 0.969 1.537 1.148 0.989 1.027 0.876 0.933 

0.0001 0.980 1.040 1.000 1.030 0.970 1.070 1.760 1.180 0.980 1.020 1.000 1.030 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.6. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 5. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates). 

Mixture Phenotypes 

Model 5 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 1.017 1.011 0.888 0.948 0.872 0.908 1.451 1.154 1.015 1.017 0.816 0.926 

0.0001 0.780 1.060 0.780 1.000 0.770 1.040 1.580 1.240 1.060 0.890 0.750 0.890 

4000 0.001 1.047 1.061 0.919 0.968 0.926 0.997 1.225 1.069 1.024 1.057 0.918 0.959 

0.0001 0.980 1.060 0.900 0.950 0.930 1.070 1.350 1.150 1.180 1.180 0.840 0.880 

80 2000 0.001 0.973 1.006 0.852 0.929 0.854 0.959 1.846 1.283 1.028 1.056 0.837 0.891 

0.0001 0.970 0.840 0.930 1.050 0.750 0.940 2.080 1.220 1.110 1.370 0.640 0.720 

4000 0.001 1.032 0.998 0.893 0.956 0.873 0.911 1.347 1.087 0.977 1.033 0.872 0.928 

0.0001 1.100 0.950 0.930 0.970 0.860 0.850 1.250 1.070 1.090 1.120 0.850 0.930 

100 2000 0.001 0.843 0.964 0.834 0.891 0.706 0.837 2.103 1.266 0.978 1.007 0.700 0.824 

0.0001 0.790 0.980 0.740 0.760 0.560 0.890 2.350 1.360 1.050 1.100 0.540 0.760 

4000 0.001 0.937 1.003 0.931 0.943 0.884 0.935 1.483 1.100 1.028 1.026 0.861 0.888 

0.0001 0.880 0.990 0.860 1.020 0.660 0.900 1.590 1.110 0.970 1.020 0.690 0.850 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

 

Table A.7. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half 

continuous phenotypes and half binary phenotypes with balanced case-control ratios) under 

model 6. The type I error rates are evaluated using 500 MC runs (equivalent to 610  

replicates). 

Mixture Phenotypes 

Model 6 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.949 0.980 0.840 0.958 0.868 0.891 1.460 1.143 1.002 1.124 0.804 0.898 

0.0001 0.960 1.020 0.830 1.000 0.830 0.940 1.660 1.250 0.900 1.030 0.770 0.850 

4000 0.001 1.041 1.036 0.953 0.996 0.913 0.911 1.212 1.025 0.985 1.130 0.882 0.952 

0.0001 0.990 0.980 0.950 1.120 0.780 0.870 1.220 1.100 1.030 1.320 0.820 0.940 

80 2000 0.001 0.921 0.952 0.848 0.965 0.787 0.867 1.761 1.193 0.994 1.103 0.754 0.887 

0.0001 0.800 0.890 0.780 0.800 0.630 0.870 1.840 1.310 0.940 1.050 0.540 0.730 

4000 0.001 0.989 1.040 0.974 1.021 0.923 0.926 1.363 1.061 1.026 1.126 0.917 0.898 

0.0001 0.820 0.950 0.880 0.950 0.770 0.930 1.420 1.130 1.040 1.360 0.900 0.920 

100 2000 0.001 0.885 0.954 0.815 0.961 0.714 0.895 2.097 1.317 0.947 1.048 0.656 0.898 

0.0001 0.780 1.060 0.710 0.940 0.700 1.020 2.460 1.400 0.960 1.260 0.640 0.880 

4000 0.001 0.974 0.976 0.915 0.924 0.881 0.897 1.445 1.069 0.994 1.137 0.844 0.861 

0.0001 0.980 1.160 0.810 0.960 0.920 0.900 1.800 1.040 0.910 1.480 0.940 0.970 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.8. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 1. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 1 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.965 0.973 0.657 0.715 0.792 0.811 3.865 2.433 0.960 1.014 0.550 0.531 

0.0001 1.020 1.130 0.510 0.680 0.830 0.820 5.310 2.760 1.190 1.330 0.400 0.440 

4000 0.001 1.027 1.011 0.748 0.846 0.871 0.852 2.251 1.695 0.988 1.013 0.766 0.747 

0.0001 1.030 1.120 0.690 0.740 0.860 0.810 2.510 1.870 1.010 1.070 0.600 0.610 

80 2000 0.001 0.969 1.011 0.659 0.682 0.747 0.775 5.638 2.972 0.924 1.051 0.550 0.530 

0.0001 0.870 0.910 0.570 0.620 0.780 0.630 8.280 3.430 0.960 1.190 0.500 0.320 

4000 0.001 1.000 1.035 0.790 0.778 0.900 0.846 2.820 1.964 0.969 0.975 0.785 0.761 

0.0001 1.240 1.190 0.740 0.760 0.990 0.900 3.620 2.290 0.940 1.180 0.670 0.680 

100 2000 0.001 0.965 1.053 0.663 0.702 0.819 0.826 8.393 3.867 0.926 1.016 0.553 0.580 

0.0001 1.000 1.110 0.600 0.710 0.740 0.910 13.66 5.150 1.020 1.190 0.470 0.500 

4000 0.001 1.034 1.061 0.730 0.790 0.847 0.866 3.454 2.212 0.971 1.014 0.681 0.728 

0.0001 1.070 1.120 0.640 0.840 0.810 0.880 4.500 2.670 1.030 1.220 0.600 0.490 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

 

Table A.9. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 2. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 2 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.951 1.034 0.729 0.712 0.784 0.776 4.020 2.401 0.910 1.070 0.585 0.549 

0.0001 0.900 1.100 0.590 0.730 0.670 0.830 5.190 2.630 0.800 1.420 0.420 0.440 

4000 0.001 0.994 1.062 0.835 0.852 0.887 0.878 2.181 1.703 0.983 1.006 0.730 0.742 

0.0001 1.170 1.100 0.720 0.950 0.910 0.910 2.640 1.890 0.920 1.130 0.520 0.630 

80 2000 0.001 0.977 1.061 0.671 0.715 0.807 0.793 5.751 2.996 0.897 1.125 0.543 0.542 

0.0001 1.130 1.170 0.570 0.690 0.870 0.880 8.540 3.650 1.050 1.440 0.430 0.370 

4000 0.001 1.027 1.054 0.811 0.829 0.904 0.823 2.722 1.945 0.927 1.037 0.717 0.761 

0.0001 1.170 1.090 0.610 0.940 0.920 0.850 3.440 2.330 1.090 1.300 0.750 0.520 

100 2000 0.001 0.992 1.029 0.675 0.695 0.791 0.789 8.261 3.754 0.906 1.036 0.506 0.543 

0.0001 1.000 1.180 0.600 0.630 0.810 0.930 12.77 4.530 0.930 1.370 0.490 0.490 

4000 0.001 1.061 1.090 0.814 0.817 0.915 0.874 3.458 2.279 0.975 1.036 0.743 0.764 

0.0001 1.120 1.100 0.860 0.750 0.980 0.970 4.380 2.730 1.040 1.170 0.610 0.750 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.10. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 3. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 3 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.949 1.003 0.704 0.730 0.789 0.761 3.525 2.089 0.870 1.054 0.571 0.578 

0.0001 1.040 1.160 0.720 0.820 0.850 0.910 4.610 2.390 0.870 1.120 0.500 0.680 

4000 0.001 0.970 1.040 0.786 0.905 0.935 0.903 2.076 1.494 0.969 1.014 0.786 0.727 

0.0001 1.050 1.100 0.760 0.800 0.950 0.790 2.670 1.580 0.890 1.210 0.770 0.710 

80 2000 0.001 0.940 1.044 0.632 0.689 0.773 0.855 4.629 2.299 0.855 1.056 0.519 0.544 

0.0001 1.070 1.120 0.660 0.840 0.700 1.050 6.390 2.770 0.840 1.190 0.430 0.460 

4000 0.001 1.009 1.061 0.770 0.850 0.925 0.899 2.358 1.617 0.954 1.093 0.728 0.715 

0.0001 0.980 1.120 0.780 0.900 0.930 0.820 2.900 1.690 1.000 1.160 0.740 0.580 

100 2000 0.001 0.968 1.050 0.680 0.701 0.731 0.811 6.697 3.000 0.876 1.058 0.533 0.570 

0.0001 0.930 1.110 0.720 0.710 0.680 0.920 10.29 3.760 0.790 1.150 0.400 0.430 

4000 0.001 0.998 1.060 0.764 0.794 0.898 0.873 2.978 1.831 0.987 1.093 0.690 0.715 

0.0001 1.140 1.190 0.650 0.820 0.750 0.970 3.330 2.040 0.930 1.190 0.600 0.760 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

 

Table A.11. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 4. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 4 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.978 1.036 0.656 0.750 0.801 0.892 3.362 1.986 0.924 1.055 0.537 0.574 

0.0001 1.110 1.120 0.700 0.710 0.720 0.830 4.040 2.430 1.050 1.440 0.340 0.470 

4000 0.001 1.031 1.049 0.827 0.824 0.929 0.853 2.068 1.527 0.968 1.061 0.724 0.759 

0.0001 1.080 1.100 0.800 0.790 1.050 0.800 2.390 1.670 1.180 1.170 0.650 0.600 

80 2000 0.001 0.946 1.059 0.666 0.736 0.792 0.853 4.719 2.412 0.896 1.119 0.543 0.585 

0.0001 1.050 1.110 0.620 0.810 0.860 0.850 6.410 2.780 0.830 1.420 0.420 0.500 

4000 0.001 0.944 1.061 0.786 0.842 0.895 0.913 2.417 1.707 0.919 1.053 0.750 0.769 

0.0001 1.070 1.250 0.630 0.860 0.830 0.880 3.170 1.930 0.960 1.120 0.740 0.800 

100 2000 0.001 1.023 1.037 0.731 0.748 0.823 0.847 6.615 2.861 0.944 1.074 0.526 0.542 

0.0001 1.090 1.170 0.740 0.780 0.730 1.040 10.04 3.580 0.950 1.230 0.430 0.470 

4000 0.001 1.010 1.057 0.761 0.802 0.905 0.914 2.986 1.760 0.909 1.053 0.720 0.729 

0.0001 0.960 1.120 0.660 0.590 0.790 0.930 3.770 1.930 0.900 1.290 0.680 0.650 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.12. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 5. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 5 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.974 1.044 0.727 0.715 0.866 0.869 3.530 2.140 0.973 1.058 0.560 0.541 

0.0001 1.020 0.960 0.630 0.620 0.830 0.780 4.460 2.350 0.930 1.180 0.330 0.380 

4000 0.001 1.025 1.056 0.804 0.837 0.883 0.899 2.053 1.540 0.944 1.062 0.734 0.746 

0.0001 1.160 1.140 0.670 0.760 0.980 0.860 2.570 1.510 1.030 1.180 0.730 0.470 

80 2000 0.001 0.965 1.057 0.687 0.740 0.807 0.875 4.909 2.588 0.909 1.130 0.522 0.577 

0.0001 1.040 1.110 0.570 0.680 0.870 0.950 6.400 3.210 0.820 1.250 0.410 0.450 

4000 0.001 0.993 1.036 0.838 0.819 0.879 0.882 2.450 1.732 0.924 1.056 0.713 0.722 

0.0001 1.120 1.150 0.610 0.930 1.070 0.990 3.130 2.070 1.000 1.350 0.600 0.680 

100 2000 0.001 0.871 1.060 0.714 0.736 0.746 0.807 6.884 3.209 0.874 1.058 0.550 0.537 

0.0001 1.040 1.180 0.670 0.690 0.600 0.990 10.67 3.870 0.880 1.130 0.360 0.460 

4000 0.001 0.969 1.099 0.819 0.804 0.915 0.897 3.179 1.904 0.914 1.050 0.786 0.733 

0.0001 1.040 1.160 0.710 0.970 0.770 1.030 4.410 2.220 1.070 1.160 0.550 0.600 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 

 

Table A.13. The estimated type I error rates of the six multiple phenotype association tests 

divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with 

extremely unbalanced case-control ratios) under model 6. The type I error rates are 

evaluated using 500 MC runs (equivalent to 610  replicates). 

Binary Phenotypes 

Model 6 
ceCLC CLC HCLC MultiPhen O’Brien Omnibus 

𝐾 Sample 𝛼-level N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET N.O. NET 

60 2000 0.001 0.995 1.061 0.719 0.852 0.838 0.900 3.288 1.771 0.907 1.024 0.566 0.537 

0.0001 1.130 1.180 0.710 0.780 0.800 1.010 4.290 2.030 1.000 1.140 0.410 0.470 

4000 0.001 1.004 1.006 0.849 0.943 0.890 0.964 1.949 1.452 0.967 1.082 0.726 0.739 

0.0001 1.120 1.130 0.770 1.020 1.070 1.120 2.200 1.580 1.070 1.280 0.710 0.850 

80 2000 0.001 0.940 1.072 0.708 0.785 0.776 0.876 4.481 2.167 0.953 1.061 0.570 0.549 

0.0001 0.980 1.070 0.690 0.810 0.740 0.880 6.110 2.520 0.840 1.130 0.420 0.400 

4000 0.001 1.011 1.129 0.774 0.838 0.913 0.923 2.303 1.549 0.988 1.150 0.718 0.743 

0.0001 0.910 1.240 0.670 1.120 0.810 0.990 3.130 1.910 0.900 1.360 0.770 0.770 

100 2000 0.001 0.938 1.081 0.684 0.744 0.776 0.892 6.011 2.547 0.927 1.012 0.499 0.534 

0.0001 0.890 1.160 0.600 0.810 0.590 1.040 8.730 3.130 0.940 1.120 0.390 0.410 

4000 0.001 0.974 1.026 0.783 0.862 0.889 0.951 2.780 1.584 0.997 1.033 0.721 0.723 

0.0001 0.890 1.180 0.680 1.010 0.900 1.080 3.560 1.990 0.910 1.110 0.680 0.660 

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% CIs. 95% CIs for type I error 

rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O” 

represents the type I error rates calculated by the formula in Comparison 1 (Apply methods without considering network 

modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by 

considering network modules). 
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Table A.14. 33 unique SNPs identified by ceCLC for testing the association in NET (one 

SNP) or in N.O. (32 SNPs). 

SNP Position Mapped gene P value Reported diseases Reference 

rs4148866* chr12: 123425575 ABCB9 2.97E-08 - - 

rs13107325 chr4:102267552 SLC39A8 4.60E-10 M19.9 / M25.5 / M75.1 10-12  

rs34333163 chr4:102361960 SLC39A8 2.84E-08 M19.9 / M25.5 / M75.1 10-12  

rs9468413 chr6:28721895 - 2.91E-08 - - 

rs880638 chr6:28739135 - 4.02E-08 - - 

rs9257802 chr6:29375578 OR5V1 1.50E-08 - - 

rs1264362 chr6:30808813 HCG20 1.54E-09 M07.3 13 

rs915664 chr6:30826840 LINC00243 1.02E-08 - - 

rs1264344 chr6:30832800 LINC00243 9.31E-09 - - 

rs1632854 chr6:31007872 
MUC21 / 

MUC22 
2.77E-08 M07.3 / M32.9 / M85.8 13-15 

rs4713422 chr6:31032125 MUC22 8.63E-14 M07.3 / M85.8 13,15 

rs10947121 chr6:31032220 MUC22 1.08E-13 M07.3 / M85.8 13,15 

rs2233967 chr6:31113051 
C6orf15 / 

PSORS1C1 
4.61E-09 M31.4 / M34 / M35.2 16-18 

rs1265086 chr6:31142105 
PSORS1C1 / 
PSORS1C2 

5.07E-12 M31.4 / M34 / M35.2 16-18 

rs130071 chr6:31148433 
PSORS1C1 / 

POU5F1 
2.46E-10 M07.3 / M31.4 / M34 / M35.2 13,16-18 

rs4516988 chr6:31208825 HCG27 7.30E-10 M32.9 19 

rs4351302 chr6:31209144 HCG27 4.08E-10 M32.9 19 

rs9295967 chr6:31216243 HCG27 6.65E-10 M32.9 19 

rs9264733 chr6:31276437 
HLA-C / 

LINC02571 
1.10E-08 M07.3 / M31.4 13,17 

rs3094682 chr6:31296684 LINC02571 2.58E-09 M07.3 13 

rs2596472 chr6:31461190 HCP5 / MICB 1.33E-10 M33.2 / M60 / M62.9 20-22 

rs3130615 chr6:31507636 MICB 1.79E-11 M60 21 

rs3132468 chr6:31507709 MICB 1.57E-11 M60 21 

rs3131635 chr6:31508357 MICB 1.13E-11 M60 21 

rs1065076 chr6:31509904 MICB 1.26E-11 M60 21 

rs2395045 chr6:31516740 MICB 1.07E-09 M60 21 

rs3093999 chr6:31516773 MICB 8.32E-10 M60 21 

rs3131631 chr6:31516906 MICB 9.63E-10 M60 21 

rs2734574 chr6:31526111 MICB 5.30E-09 M60 21 

rs6916921 chr6:31552649 
ATP6V1G2 / 

DDX39B /  LTA 
2.28E-11 M30.3 / M60 21,23 

rs915895 chr6:32222440 NOTCH4 1.94E-09 
M06.9 / M07.3 / M31.4 / 

M32.9 / M34 / M62.9 
13,17,19,22,24 

rs915894 chr6:32222613 NOTCH4 2.14E-08 
M06.9 / M07.3 / M31.4 / 

M32.9 / M34 / M62.9 
13,17,19,22,24 

rs443198 chr6:32222629 NOTCH4 1.73E-11 
M06.9 / M07.3 / M31.4 / 

M32.9 / M34 / M62.9 
13,17,19,22,24 

Notes: “*” indicates the unique SNP identified by ceCLC in NET. Bold-faced SNPs are the lead SNPs in the colocalization 

analysis. Mapped gene denotes the gene that includes the corresponding SNP with a 20kb window region. P-value is 

calculated by ceCLC. The corresponding diseases with ICD-10 codes in reported diseases are listed in Table A.15. 

 

Table A.15. ICD-10 codes and names of the14 reported diseases shown in Table A.14. 

ICD-10 Disease ICD-10 Disease 
M06.9 rheumatoid arthritis M33.2 Polymyositis 

M07.3 psoriatic arthritis M34 systemic sclerosis 

M19.9 osteoarthritis M35.2 Behcet's disease 

M25.5 multisite chronic pain M60 myositis 

M30.3 Kawasaki disease M62.9 appendicular lean mass 

M31.4 Takayasu arteritis M75.1 rotator cuff syndrome 

M32.9 systemic lupus erythematosus M85.8 disorders of bone density and structure 
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A.3 Supplementary Figures 

Figure A.1. Flow chart of UK Biobank data preprocessing. Pre-process on phenotype: i. 

Select White British subjects (White British); ii. Remove individuals who are marked as 

outliers for heterozygosity or missing rates (Low Heterozygosity); iii. Exclude individuals 

who have been identified to have ten or more third-degree relatives or closer (Not Three-

degree Relatives); iv. Remove individuals having very similar ancestry based on a principal 

component analysis of the genotypes (Similar Ancestry); v. Remove individuals based on 

removal by the UK Biobank (Removal by the UK Biobank). Quality controls (QCs) on 

genotype: Filter out genetic variants, with i. Missing rate larger than 5% (“--mind 0.05”), 

ii. Hardy-Weinberg equilibrium exact test p-values less than 610−  (“--hwe 1e-6”), iii. 

Minor allele frequency (MAF) less than 5% (“--maf 0.05”). We also filter out individuals, 

with iv. Missing rate larger than 5% (“--mind 0.05”) v. Individuals without sex (“--no-

sex”). 
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Figure A.2. Power comparisons of the six tests as a function of effect size   under six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 80 and the sample size is 2,000. The power 

of all of the six tests is evaluated using 10 MC runs. 
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Figure A.3. Power comparisons of the six tests as a function of effect size   under six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 60 and the sample size is 2,000. The power 

of all of the six tests is evaluated using 10 MC runs. 
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Figure A.4. Power comparisons of the six tests as a function of effect size   under six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 60 and the sample size is 4,000. The power 

of all of the six tests is evaluated using 10 MC runs. 
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Figure A.5. Power comparisons of the six tests as a function of effect size   under six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 100 and the sample size is 2,000. The 

power of all of the six tests is evaluated using 10 MC runs. 
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Figure A.6. Power comparisons of the six tests as a function of effect size   under six 

models. The number of mixture phenotypes (half continuous phenotypes and half binary 

phenotypes with balanced case-control ratios) is 100 and the sample size is 4,000. The 

power of all of the six tests is evaluated using 10 MC runs. 
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Figure A.7. Power comparisons of the six tests as a function of effect size   under the six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

is 80 and the sample size is 20,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.8. Power comparisons of the six tests as a function of effect size   under six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

is 80 and the sample size is 10,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.9. Power comparisons of the six tests as a function of effect size   under six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

is 60 and the sample size is 10,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.10. Power comparisons of the six tests as a function of effect size   under six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

is 60 and the sample size is 20,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.11. Power comparisons of the six tests as a function of effect size   under six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

is 100 and the sample size is 10,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.12. Power comparisons of the six tests as a function of effect size   under six 

models. The number of binary phenotypes (with extremely unbalanced case-control ratios) 

100 and the sample size is 20,000. The power of all of the six tests is evaluated using 10 

MC runs. 
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Figure A.13. The Manhattan plots of four different diseases based on the saddlepoint 

approximation. Systemic lupus erythematosus (M32.9), Sicca syndrome (M35.0), and 

Trigger finger (M65.3) are detected in Module III by our proposed GPN. Both Trigger 

finger (M65.3) and Synovitis and tenosynovitis (M65.9) are classified into the same ICD-

codes category (M65). The horizontal red dashed line represents the threshold for 

commonly used genome-wide significance level 85 10− . 
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Figure A.14. Dendrogram of hierarchical clustering method based on the genetic 

correlation of phenotypes obtained by GPN and the phenotypic correlation estimated by 

LDSC, respectively. 

 

 
  



131 

Figure A.15. Dendrogram of hierarchical clustering method based on the genetic 

correlation of phenotypes obtained by GPN and the genetic correlation estimated by LDSC, 

respectively. 
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Figure A.16. The Venn diagrams of the number of significant SNPs identified by ceCLC, 

CLC, HCLC, O’Brien, and Omnibus in N.O. and NET. 

 
 

Figure A.17. Tissue expression analysis for mapped genes identified by ceCLC in N.O. (a) 

and NET (b), respectively.  
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Figure A.18. Colocalization signals. Lead SNPs are selected for colocalization analysis 

when the top associated SNP identified by ceCLC was also associated with gene expression 

in the Muscle Skeletal tissue. 
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B Supplementary Materials for Chapter 2 

B.1 Supplementary Texts 

Text B.1. Details of other network properties by comparing with random network. 

In this study, we also consider two network properties, degree entropy and cross entropy, 

in comparison between the constructed sparse representation of GPN, 
GPN


G , and the  

corresponding random network, random

GPNG , for a specific ( )0,1  . 

Degree entropy. The Shannon entropy of the degree can be used to measure the 

diversity of associations between genetic variants and phenotypes through their degrees25. 

For a specific threshold  , we define the Shannon entropy for degree of genetic variants 

and phenotypes as ( )
1

log
M

G G G

m m

m

H d d
=

= −  and ( )
1

log
K

P P P

k k

k

H d d
=

= − , where the min-max 

standardized degree are given by  ( )    ( )min max minG G G G G

m m m m m m m md d d d d= − −  for 

the thm  genetic variant and  ( )    ( )min max minP P P P P

k k k k k k m kd d d d d= − −  for the thk  

phenotype. The global degree entropy of a bipartite network is given by G PH H H  = + . 

For the corresponding random network, we use the same way to calculate the degree 

entropies, , ,, ,  and G random P random randomH H H   .  

 Cross Entropy. We define the cross-entropy of weighted or unweighted degree of 

genetic variants and phenotypes between 
GPN


G  and random

GPNG  to determine the diversity 

between a bipartite GPN and a random bipartite network.  

( ) ( ) ( )

( ) ( ) ( )

, ,

1

, ,

1

log 1 log 1 ,

log 1 log 1 ,

M
G G G random G G random

cross m m m m

m

K
P P P random P P random

cross k k k k

k

H d d d d

H d d d d

=

=

 = − + − −
 

 = − + − −
 




 

where, G

crossH  and P

crossH  are used to measure the difference between degree distributions 

of genetic variants and phenotypes in 
GPN


G  and random

GPNG , respectively. G

crossH  and P

crossH  

are always positively valued and it will increase if the degree distributions tend to be more 

different. Same as degree entropy, we also define the global cross entropy of a bipartite 

network as G P

cross cross crossH H H= + . With the loss of the generality,  the optimal threshold   

should be selected by maximizing G

crossH  and P

crossH . Meanwhile, in the case of equivalent 

numbers and weights of edges, the greater the difference of network topologies between 

GPN


G  and random

GPNG , the more information the 
GPN


G  includes. Therefore, we also assess the 

difference of degree entropy between 
GPN


G  and random

GPNG  for  0,1  , which are defined 

as ,G G G randomH H H  = −   and ,P P P randomH H H  = − . To investigate the significance of 

differences and the stability of the cross entropies, we construct 1,000 random networks 
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corresponding to 
GPN


G . For network degree entropy, we evaluate their distributions of the 

random network, then compare ( )G PH H   and the upper bound of the 95% confidence 

interval (CI) of ( ), ,G random P randomH H  . For cross-entropy, we can estimate the standard errors 

of them and then obtain the stability by computing their 95% CIs. 

 

Text B.2. Details of the five multiple phenotype association tests. 

In this study, we apply four powerful GWAS summary-based multiple phenotype 

association tests to identify the association between phenotypes in each network module 

and a genetic variant, including minP26, ACAT4, MTAG27, SHom28. To simplify the 

notation, we assume that the tests are applied to test the association between K  phenotypes 

and a genetic variant. 

minP. Consider the z-score vector is ( )1, ,
T

KZ Z=Z , where 
kZ  is the z-score for testing 

the association between the thk  phenotype and a genetic variant. Assume that Z  is 

asymptotically multivariate normal ( ),MVN R0  under the null hypothesis that K  

phenotypes and a genetic variant have no association, where R  is the correlation matrix of 

phenotypes. The minP test statistic is given by  
1, ,

maxminP k
k K

T Z
=

=  and the corresponding 

p-value can be calculated by ( )1 1
ˆ1 , , ; ,

minP minP

minP minP

T T

minP K K
T T

p f x x dx dx
− −

= −   R0 , where 

( )1
ˆ, , ; ,Kf x x R0  is the density function for ( )ˆ,MVN R0  and R̂  can be estimated by 

using ‘estcov’ function in aSPU package.  

ACAT. Let 
1, , Kp p  be the p-values of 

1, , KZ Z , respectively. The ACAT test statistic 

is ( ) 
1
tan .5

K

ACAT kk
T p K

=
= −  and the p-value of 

ACATT  is approximated by 

 0.5 arctanACAT ACATp T  − . 

MTAG. Let ( ),1 ,
ˆ ˆ ˆ, ,

T

MTAG MTAG MTAG K =β  be the vector of MTAG estimator correcting 

for both genetic correlation Ω  and phenotypic correlation Σ  among K  phenotypes. Ω̂  

can be estimated by the method of moments using the moment condition, and Σ̂  can be 

estimated by LD score regression (LDSC)29. Let 
,1 ,, ,MTAG MTAG Kp p  be the corresponding 

p-value of MTAG estimator. Then, a Bonferroni correction is used to adjust for multiple 

testing for K  phenotypes. 

SHom. The SHom test statistic is given by ( )( ) ( )1 1 1ˆ ˆ ˆ
T

T T T

SHomT − − −= Σ Σ Σ1 Z 1 Z 1 1 , where 

( )1, ,1
T

=1  is a 1K  vector that contains all 1s and Σ̂  can be estimated by LDSC. The 

p-value of 
SHomT  is calculated by assuming 

SHomT  follows a chi-square distribution with 1 

degree of freedom. 
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Text B.3. Simulation studies for PheWAS. 

In this study, we expand the application of constructing the bipartite GPN and unipartite 

PPN to phenome-wide association studies (PheWAS). In PheWAS, correcting for multiple 

testing is crucial to reduce the risk of false positives and ensure the reliability of the results. 

Therefore, applying the community detection method for GPN and PPN can obtain a prior 

grouping of phenotypes based on the shared genetic architecture. Then, jointly testing 

multiple phenotypes in each network module and one genetic variant can discover the 

cross-phenotype associations and pleiotropy. Finally, significance thresholds for PheWAS 

are adjusted for multiple testing by applying the refined false discovery rate (FDR) control 

approach. We conduct comprehensive simulations to evaluate the FDR of PheWAS based 

on network modules detected by GPN.  

 We directly generate a z-score matrix, Z , for M  genetic variants and K  

phenotypes in the whole phenome ( 500 and1,000K =  in our simulation studies). Suppose 

there are L  phenotypic categories and k K L=  in each category. Let Σ  be the phenotypic 

correlation matrix, where ( )1, , LBdiag=Σ Σ Σ  is a block diagonal matrix, that is, the 

phenotypes within a category are correlated and between categories are uncorrelated. We 

consider two scenarios of Σ 30, SAME and DIFF. In the SAME scenario, there is the same 

correlation coefficient of each pair of phenotypes within the category, that is, the off-

diagonal elements of 
lΣ  equal  . In the DIFF scenario, the correlation coefficients are 

different and 
lΣ  is generated by using an autoregressive (AR(1)) model, that is, 

k l

l 
−

=Σ

. We use 0.3 =  in the simulation studies. 

 Assume 
causalS  is the set of 

causalM  true causal variants. Then, we generate a z-score 

vector for the thm  ( 1, ,m M= ) genetic variant from  

( )
( )

( )
1

, ,
, , ,

, ,

T causal

m m mK

m causal

MVN for m S
Z Z

MVN for m S


= 



Σ

Σ

0
Z

μ
 

where ( )1, ,
T

m m mK =μ  is the K  dimensional vector of the true effects for causal 

variants. In the simulation studies, we consider a total of 610M =  genetic variants and 

define the first 100causalM =  as the true causal variants. Based on the different numbers of 

phenotypic categories 50 and100L = , we consider the following two models to define 
mμ

. Let ( )1 1, ,1
T

=δ  and 2

2
1, , , , ,1

2 2 2

T
k k

k

  
=  

 
δ  be two k  dimensional vectors of 

true effect sizes. 

Model 1. Only the phenotypes in the first two categories are associated with at least 

one causal variant with the same effect sizes but in different directions. The is, first 50 

causal variants impact the phenotypes in the first category with 
1δ ; the second 50 causal 

variants impact the phenotypes in the second category with 
1-δ . 
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Model 2. Only the phenotypes in the first four categories are associated with at least 

one causal variant with different effect sizes and different directions. That is, the first 25 

causal variants impact the phenotypes in the first category with 
1δ ; the second 25 causal 

variants impact the phenotypes in the second category with 
1-δ ; the third 25 causal variants 

impact the phenotypes in the third category with 
2δ ; the fourth 25 causal variants impact 

the phenotypes in the fourth category with 
2-δ . 

 For each simulation model, we run B  Monte-Carlo (MC) runs and use the 

following steps for the thb  MC run: i) generate a z-score matrix using the above simulation 

models; ii) construct the bipartite GPN using the method introduced in section 2.2.1; iii) 

detect ( )b
L  network modules of K  phenotypes using the method introduced in section 

2.2.4; iv) test the association between phenotypes in each of ( )b
L  network modules and 

each and each of M  genetic variants using one of the multiple phenotype association tests 

(Text B.2), obtaining 
( )b

mlp ; v) calculate the optimal threshold, 
( )ˆ b

mp , by applying the refined 

FDR controlling approach.  

 Let 
( ) ( ) ( )( )

( )

1
ˆI

b
Lb b b

m ml ml
D p p

=
=   be the total number of discoveries. Then, we define 

the true discoveries and false discoveries as 
( ) ( ) ( )( )ˆI

a

b b b

m ml ml L
TD p p


=   and 

( ) ( ) ( )b b b

m m mFD D TD= − , respectively. 
aL  is the set of network modules containing at least one 

phenotype that is associated with the thm  genetic variant. Therefore, the average FDR can 

be computed by  

( )

( ) 1 1

1
.

max ,1

causal
bMB

m

b
b mcausal m

FD
FDR

B M D= =

=


   

Note that we do not generate linkage disequilibrium (LD) of genetic variants in our 

simulation studies, therefore, we can not use LDSC29 to estimate the phenotypic correlation 

matrix Σ  in applications of SHom. We use the same estimation method introduced in minP 

and Chisq26 to approximately estimate Σ  in the simulation studies. Meanwhile, we directly 

generate Z-scores instead of effect sizes of genetic variants on phenotypes, therefore, we 

do not consider MTAG in our simulation studies. 
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B.2 Supplementary Tables 

Table B.1. Phenotypes, abbreviations, samples sizes, disease heritability, and GWAS 

resources used in heritability enrichment analyses. 

Phenotype Abbreviation Sample size Heritability Reference 
Attention deficit/hyperactivity 

disorder 
ADHD 53,293 0.2354 (0.0153) Demontis et al.31 

Smoking initiation SmkInit 632,802 0.0724 (0.0068) Liu et al.32 

Autism spectrum disorder ASD 46,351 0.1941 (0.0168) Grove et al.33 

Neuroticism NSM 170,911 0.0877 (0.0067) Okbay et al.34 

Anxiety disorder AXD 31,890 0.0417 (0.0156) Meier et al.35 

Major depressive disorder MDD 500,199 0.0599 (0.0023) Howard et al.36  

Obsessive-compulsive disorder OCD 9,725 0.3217 (0.0496) Arnold et al.37 

Anorexia nervosa AN 72,517 0.1773 (0.0116) Watson et al.38 

Bipolar disorder BD 51,710 0.3469 (0.0174) Stahl et al.39 

Schizophrenia SCZ 105,318 0.4101 (0.0113) Pardinas et al.40 

Educational attainment EA 766,345 0.1066 (0.0026) Lee et al.41 

Cognitive performance CP 257,828 0.192 (0.0062) Lee et al.41 

Notes: Heritability is calculated by LD score regression
29

: heritability (standard error of heritability).  

 

Table B.2. Global genetic correlations (right upper triangle) and proportions of correlated 

regions (left lower triangle) estimated by SUPERGNOVA42.  

 ADHD SmkInit ASD NSM AXD MDD OCD AN BD SCZ EA CP 

ADHD  0.47* 0.28* 0.21* 0.45* 0.35* -0.16 0.008 0.12* 0.07 -0.41* -0.29* 

SmkInit 81%*  0.04 0.15* 0.42* 0.32* -0.19* 0.01 0.10* 0.13* -0.35* -0.15* 

ASD 32%* 1.33%  0.25* 0.30* 0.30* 0.10 0.13 0.12 0.19* 0.18* 0.15* 

NSM 41% 46%* 15%*  0.41* 0.69* 0.26* 0.26* 0.10 0.18* -0.24* -0.17* 

AXD 52% 63%* 41% 69%  0.65* 0.15 0.30* 0.20* 0.27* -0.28* -0.19* 

MDD 69% 65%* 51%* 89%* 77%*  0.20* 0.26* 0.28* 0.29* -0.17* -0.10 

OCD 0.25% 15%* 0.32% 2.3%* 0.11%* 6.4%*  0.42* 0.23* 0.29* 0.21* 0.01 

AN 0.26% 1.52%* 0.19% 54%* 30%* 53%* 37%  0.12* 0.26* 0.20* 0.07 

BD 1.37% 2.72%* 4.53%* 1.11% 35% 55%* 2% 21%  0.57* 0.14* -0.06 

SCZ 12%* 39%* 35%* 35%* 42%* 60%* 33%* 58%* 83%*  0.02 -0.22* 

EA 76%* 79%* 33%* 61% 51%* 38%* 31% 47%* 32%* 7.5%*  0.63* 

CP 67%* 39%* 15%* 38% 20%* 27%* 0.5% 1.9%* 3.4%* 57%* 93%*  

Notes: * indicates the significance genetic correlations and proportions of correlated regions between two 

phenotypes.  

 

Table B.3. Phenotypic correlations (right upper triangle) and genetic correlations (left 

lower triangle) estimated by LDSC29.  

 ADHD SmkInit ASD NSM AXD MDD OCD AN BD SCZ EA CP 

ADHD  0.0034 0.3626 0.0092 0.0040 0.0860 0.0082 -0.1235 0.0398 0.0289 -0.0165 -0.0040 

SmkInit -0.4628*  0.0033 -0.0125 -0.0039 -0.0167 -0.0080 -0.0081 0.0058 0.0055 0.0332 0.0115 

ASD 0.3459* -0.1819*  -0.0125 -0.0024 0.0598 -0.0003 -0.1226 0.0134 0.0170 -0.0003 -0.0013 

NSM 0.2642* -0.1342* 0.2723*  0.0514 0.1211 0.0049 -0.0026 0.0069 0.0036 -0.0403 -0.0212 

AXD 0.3008 -0.1579 0.2607 0.9339*  0.0342 0.0027 -0.0108 0.0078 0.0144 -0.0067 -0.0030 

MDD 0.4537* -0.2187* 0.3526* 0.7313* 0.8790*  0.0062 -0.0627 0.0594 0.0375 -0.0146 -0.0111 

OCD -0.1695 0.1185 0.1185 0.2821* 0.2989 0.2591*  -0.0127 0.0376 0.0331 -0.0080 -0.0070 

AN -0.0082 -0.0668 -0.1057 -0.2671* -0.1976 -0.2870* -0.4490*  -0.0536 -0.0321 0.0147 0.0116 

BD 0.1205 -0.0873 0.1373 0.1213 0.2000 0.3320* 0.3106* -0.1592*  0.1898 0.0021 0.0119 

SCZ 0.1679* -0.1335* 0.2379* 0.2164* 0.3044* 0.3301* 0.3318* -0.2527* 0.6667*  -0.0054 -0.0066 

EA -0.5159* 0.2825* 0.2081* -0.2512* -0.3416* -0.1734* 0.2390* -0.2380* 0.1820* 0.0106  0.1681 

CP -0.3677* 0.0992* 0.2002* -0.1677* -0.2459 -0.0866* 0.0456 -0.0819 -0.0701 -0.2438* 0.6840*  

Notes: * indicates the significance genetic correlations between two phenotypes.  
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Table B.4. Heritability enrichment analyses of network topology annotation (betweenness 

centrality) calculated from denser and sparse representations of bipartite GPN for each of 

12 phenotypes.  

Trait 

Denser Sparse (𝝉 = 𝟎. 𝟒𝟓) Sparse (𝝉 = 𝟎. 𝟏) 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

Enrichment 

(Standard error) 

p-value 

Effect 𝜏∗ 
(𝑠𝑒(𝜏∗)) 
z-score 

ADHD 

1.1065 

(0.0397) 

0.0088 

19.9545 

(14.6723) 

1.3600 

1197.52 

(134.831) 

3.18e-23 

10.0116 

(0.8860) 

11.3003 

498.39 

(76.248) 

1.10e-10 

6.9712 

(1.0241) 

6.8073 

AN 

1.1342 

(0.0450) 

0.0019 

13.4534 

(10.1444) 

1.3262 

670.61 

(106.029) 

5.40e-11 

4.1649 

(0.6006) 

6.9350 

292.19 

(57.763) 

4.27e-07 

3.1944 

(0.6120) 

5.2198 

ASD 

1.0499 

(0.1275) 

0.7047 

-10.6735 

(34.4418) 

-0.3101 

1284.50 

(216.018) 

1.47e-16 

7.4179 

(0.8219) 

9.0256 

129.45 

(28.518) 

5.34e-07 

3.9185 

(0.7609) 

5.1501 

AXD 

1.3694 

(0.3546) 

0.0827 

12.5210 

(10.8825) 

1.1506 

85.3863 

(83.1066) 

0.1246 

0.3191 

(0.2555) 

1.5317 

187.30 

(158.517) 

0.0387 

0.4038 

(0.1944) 

2.0767 

BD 

1.1634 

(0.0258) 

5.94e-14 

40.1394 

(6.5713) 

6.1082 

1005.12 

(109.477) 

3.47e-20 

10.8984 

(1.0510) 

10.2816 

500.87 

(65.368) 

3.70e-14 

10.0078 

(1.2369) 

8.1479 

CP 

1.0888 

(0.0143) 

1.94e-09 

9.6528 

(4.1834) 

2.3074 

863.223 

(55.5744) 

7.68e-27 

8.3341 

(0.6674) 

12.4864 

744.55 

(101.854) 

3.04e-08 

7.1091 

(1.2339) 

5.7613 

EA 

1.0876 

(0.0096) 

2.20e-17 

6.4808 

(1.5985) 

4.0543 

991.484 

(58.1901) 

5.39e-29 

5.6591 

(0.4291) 

13.1869 

738.32 

(102.370) 

1.31e-07 

4.1130 

(0.7518) 

5.4712 

MDD 

1.1198 

(0.0144) 

7.81e-16 

5.2452 

(1.0707) 

4.8990 

1345.72 

(93.838) 

6.24e-25 

2.6991 

(0.2275) 

11.8632 

624.41 

(73.576) 

2.85e-12 

1.9156 

(0.2575) 

7.4392 

NSM 

1.0392 

(0.0692) 

0.5804 

-2.0694 

(11.3005) 

-0.1832 

1030.86 

(110.868) 

4.37e-16 

3.0760 

(0.3472) 

8.8586 

730.19 

(88.155) 

1.65e-11 

3.4041 

(0.4767) 

7.1413 

OCD 

1.1530 

(0.1135) 

0.0942 

40.7436 

(37.4199) 

1.0888 

236.746 

(118.689) 

0.0141 

3.6566 

(1.4789) 

2.4725 

52.57 

(46.183) 

0.2173 

1.0209 

(0.8355) 

1.2218 

SCZ 

1.1640 

(0.0198) 

7.51e-16 

60.5467 

(10.4817) 

5.7764 

1275.95 

(86.122) 

3.33e-27 

18.4038 

(1.4660) 

12.6051 

624.72 

(85.240) 

1.95e-09 

13.0659 

(2.0790) 

6.2848 

SmkInit 

1.0719 

(0.0221) 

9.78e-05 

3.7899 

(1.6834) 

2.2514 

568.13 

(88.322) 

5.35e-12 

1.8560 

(0.2193) 

8.4633 

205.23 

(45.469) 

1.61e-07 

1.5744 

(0.2906) 

5.4185 

Notes: The betweenness are scaled by multiplying the number of phenotypes and the number of genetic 

variants due to it much smaller than the baseline LD annotations. The estimated effect size and its estimated 

standard error, 𝜏∗ and 𝑠𝑒(𝜏∗), are scaled by dividing 10−12. Z-score of the effect size is reported to test the 

null hypothesis that either 𝜏 ≤ 0 (one-sided) or 𝜏 = 0 (two-sided). P-value of enrichment is reported to test 

the null hypothesis that 𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 > 1. The bold-faced p-values indicate the annotation is significantly 

enriched in the disease heritability after accounting for multiple testing (p-value< 0.05 12⁄ ≈ 0.0041). 
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Table B.5. The average FDR in the simulation studies for 500 phenotypes and 50 

phenotypic categories. 

Ce=SAME, Model 1 Ce=SAME, Model 2 

𝜇 minP ACAT SHom 𝜇 minP ACAT SHom 

2.0 0.0846 0.0522 0.0415 1.5 0.0860 0.0462 0.0493 

2.2 0.1203 0.0632 0.0407 2.0 0.1111 0.0583 0.0528 

2.5 0.1040 0.0630 0.0527 2.5 0.1001 0.0512 0.0451 

2.8 0.0959 0.0532 0.0493 3.0 0.1017 0.0521 0.0518 

Ce=DIFF, Model 1 Ce=DIFF, Model 2 

𝜇 minP ACAT SHom 𝜇 minP ACAT SHom 

1.3 0.1030 0.0527 0.0462 1.3 0.0947 0.0427 0.0505 

1.5 0.0993 0.0483 0.0517 1.5 0.0844 0.0423 0.0522 

1.7 0.1109 0.0622 0.0491 1.7 0.1080 0.0645 0.0453 

1.9 0.0928 0.0477 0.0482 1.9 0.1011 0.0491 0.0427 

Notes: FDR is evaluated using 10 MC runs, equivalent to 1,000 replications at a nominal FDR level of 5%. The 95% 

confidence interval (CI) is [0.0365, 0.0635]  and bold-faced values indicate that the values are beyond the upper bounds 

of the 95% CI. 

 

 

Table B.6 The average FDR in the simulation studies for 1,000 phenotypes and 100 

phenotypic categories. 

Ce=SAME, Model 1 Ce=SAME, Model 2 

𝜇 minP ACAT SHom 𝜇 minP ACAT SHom 

2.0 0.0982 0.0535 0.0496 1.5 0.0809 0.0452 0.0473 

2.2 0.1143 0.0556 0.0482 2.0 0.1036 0.0475 0.0500 

2.5 0.1102 0.0578 0.0501 2.5 0.1110 0.0576 0.0556 

2.8 0.1024 0.0535 0.0481 3.0 0.1097 0.0535 0.0526 

Ce=DIFF, Model 1 Ce=DIFF, Model 2 

𝜇 minP ACAT SHom 𝜇 minP ACAT SHom 

1.3 0.1068 0.0535 0.0556 1.3 0.0997 0.0425 0.0396 

1.5 0.0925 0.0503 0.0491 1.5 0.1002 0.0560 0.0431 

1.7 0.0942 0.0460 0.0483 1.7 0.0914 0.0412 0.0483 

1.9 0.0977 0.0470 0.0483 1.9 0.0998 0.0555 0.0515 

Notes: FDR is evaluated using 10 MC runs, equivalent to 1,000 replications at a nominal FDR level of 5%. The 95% 

confidence interval (CI) is [0.0365, 0.0635]  and bold-faced values indicate that the values are beyond the upper bounds 

of the 95% CI. 

B.3 Supplementary Figures 

Figure B.1. Network connectance of GPN with different thresholds for (a) 12 genetically 

correlated phenotypes and (b) 588 EHR-derived phenotypes in the UK Biobank. 
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Figure B.2. Network properties of the unweighted bipartite GPNs for 12 genetically 

correlated phenotypes. (a) KL divergency for genetic variants. The blue line is the mean of 

KL divergencies across 1,000 random network comparisons. The boxplots show the scaled 

distribution of KL divergency for each threshold. (b) Cross entropy for genetic variants. 

Blue lines are the means of the cross entropy across 1,000 random network comparisons. 

The boxplots show the scaled distribution of cross entropy for each threshold. Red lines 

represent the degree entropy for the original network. The boxplots show the distribution 

of degree entropy for each threshold across 1,000 random networks. The blue line 

represents the difference between the original and random networks. (c) Unweighted 

degree entropy for genetic variants. (d) plot of the unweighted degree distribution of 

genetic variants for three GPNs on the log-log scale, denser representation ( 1 = ), well-

defined sparse representation ( 0.45 = ), and an arbitrary threshold sparse representation (

0.1 = ). 
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Figure B.3. The correlation of 12 highly correlated phenotypes calculated by different 

methods: (a) Adjacency matrix of Phenotype and Phenotype Network (PPN) projected 

from the denser representation of the bipartite GPN; (b) Adjacency matrix of PPN from the 

well-defined sparse representation of GPN; (c) Genetic correlation matrix estimated by 

LDSC; (d) Global genetic correlation estimated by SUPERGNOVA. 
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Figure B.4. The qq-plot of EA versus CP based on weight of (a) the denser representation 

of GPN and (b) the well-defined sparse representation of GPN. The qq-plot of EA versus 

CP based on (c) -log10(p-values) and (d) z-scores from GWAS summaries. 

 

 

 

Figure B.5. Heatmap of edge weights in the well-defined sparse representation of GPN for 

(a) the top 100 and (b) the top 1000 genetic variants with the highest degree centrality. 
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Figure B.6. Cross entropy and degree entropy the unweighted bipartite GPNs for 588 

EHR-derived phenotypes in the UK Biobank. Cross entropy for (a) genetic variants and (b) 

phenotypes. The blue line is the mean of cross entropy across 1,000 random network 

comparisons. The boxplots show the scaled distribution of cross entropy for each threshold. 

Degree entropy for (a) genetic variants and (b) phenotypes. Red lines represent the degree 

entropy for the original network. The boxplots show the distribution of degree entropy for 

each threshold across 1,000 random networks. The blue line represents the difference 

between the original and random networks. 
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Figure B.7. Network properties of the unweighted bipartite GPNs for 588 EHR-derived 

phenotypes in the UK Biobank. (a) and (b) KL divergency for genetic variants and 

phenotypes. The blue line is the mean of KL divergencies across 1,000 random network 

comparisons. The boxplots show the scaled distribution of KL divergency for each 

threshold. (c) and (d) Cross entropy for genetic variants and phenotypes. The blue line is 

the mean of cross entropy across 1,000 random network comparisons. The boxplots show 

the scaled distribution of cross entropy for each threshold. (e) and (f) Unweighted degree 

entropy for genetic variants and phenotypes. The red line represents the degree entropy for 

the original network. The boxplots show the distribution of degree entropy for each 

threshold across 1,000 random networks. The blue line represents the difference between 

the original and random networks. (g) and (h) Unweighted degree distribution of genetic 

variants and phenotypes for four GPNs, more denser representation ( 0.8 = ), well-defined 

sparse representation ( 0.6 = ), and two arbitrary threshold sparse representations ( 0.2 =  

and 0.4 = ). 
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Figure B.8. Degree centrality and betweenness centrality of genetic variants of the 

weighted bipartite GPNs for 588 EHR-derived phenotypes in the UK Biobank.  
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Figure B.9. Degree centrality and betweenness centrality of genetic variants of the 

unweighted bipartite GPNs for 588 EHR-derived phenotypes in the UK Biobank.  
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Figure B.10. Heatmap of -log10(p-value) of 100 genetic variants from GWAS summary 

datasets, which are uniquely identified by ACAT based on LDSC compared with ACAT 

based on the UK Biobank. Only the p-values smaller than GWAS significance level (
85 10− ) shown in the heatmap. 
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C Supplementary Materials for Chapter 3 

C.1 Supplementary Tables 

Table C.1. Information of the 18 genes used to obtain the number of replications in the 

estimation of Ω  and to evaluate type I error rates of Overall. 

gene position # SNPs Average LD 

AGTRAP chr1: 11736084 - 11754802 23 12.72 

TP53 chr17: 7661779 - 7687538 25 13.78 

OR8D2 chr11:124319262-124320197 27 65.44 

FNBP4 chr11:47716494-47767443 29 108.34 

HLA-DOA chr6: 33004182 - 33009591 38 13.21 

C3orf22 chr3: 126526999 - 126558965 40 24.29 

GOSR1 chr17: 17:30477362-30527592 40 78.42 

LRRFIP2 chr3:37052626-37183689 56 92.67 

MCU chr10:72692131-72887694 56 144.73 

C11orf49 chr11:46936689-47164385 79 126.56 

HLA-DOB chr6: 32812763 - 32820466 85 19.34 

AKR1E2 chr10: 4786629 - 4848062 89 16.05 

DOCK3 chr3:50674927-51384198 102 170.85 

CCDC7 chr10:32446140-32882874 117 56.56 

SYNE2 chr14: 63761899 - 64226433 174 36.13 

UGT1A10 chr2: 233636454 - 233773305 189 38.69 

MCPH1 chr8: 6406596 - 6648508 262 20.86 

CDH13 chr16: 82626965 - 83800640 359 17.25 
Notes: “# SNPs” indicates the number of SNPs in the corresponding gene. “Average LD” indicates the average of LD 

scores of SNPs in the gene. 

 

Table C.2. Estimated type I error rates of Overall divided by the significance level for each 

of the 17 genes at different significance levels with 52 10  replications.  

Gene 21 10−  
31 10−  

41 10−  

TP53 1.03 1.23 1.12 

OR8D2 0.73 0.78 0.80 

FNBP4 0.94 1.08 1.15 

HLA-DOA 0.97 1.12 1.10 

C3orf22 0.98 1.08 0.95 

GOSR1 0.95 1.01 0.95 

LRRFIP2 0.98 1.04 1.00 

MCU 0.81 0.85 0.80 

C11orf49 0.96 0.93 1.05 

HLA-DOB 0.91 1.07 1.19 

AKR1E2 1.10 1.07 1.21 

DOCK3 0.98 0.94 0.65 

CCDC7 1.01 1.20 1.10 

SYNE2 0.94 1.03 1.00 

UGT1A10 0.97 1.03 0.86 

MCPH1 0.99 1.17 1.14 

CDH13 1.10 1.13 1.12 
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C.2 Supplementary Figures 

Figure C.1. The p-values to test if the estimated correlation matrix of p-values based on 
410B =  and the estimated correlation matrix of p-values based on 

0B  are the same for the 

18 genes. The red dotted line indicates the significant level 0.05. 

 

Figure C.2. The LD block structures of gene AGTRAP (left) and gene C3orf22 (right). 
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Figure C.3. Estimated correlation matrix of p-values Ω̂  for gene AGTRAP. 

 

 

Figure C.4. Power comparisons of gene-based association tests at 61.75 10−  significance 

level under Uni-directional effects (
1 2 3 4   = = = ) with ( )0.1,0.2,0.3,0.4causalp =  

based on gene C3orf22. (a) Estimated power against phenotypic heritability 
2

ph  with fixed 

expression heritability 2 0.2eh = ; (b) Estimated power against expression heritability 2

eh  

with fixed phenotypic heritability 2 0.2ph = . 

(a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  
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Figure C.5. Power comparisons of gene-based association tests at 61.75 10−  

significance level under Bi-directional effects (
1 2 3 4   = =− =− ) with 

( )0.1,0.2,0.3,0.4causalp =  based on gene C3orf22. (a) Estimated power against 

phenotypic heritability 
2

ph  with expression heritability 2 0.2eh = ; (b) Estimated power 

against expression heritability 2

eh  with phenotypic heritability 2 0.2ph = .  

(a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  

 

Figure C.6. Power comparisons of gene-based association tests at 61.75 10−  significance 

level with ( )0.2,0.3causalp =  based on gene C3orf22 with eQTL - derived weights from 

20K =  studies. Estimated power against phenotypic heritability 
2

ph  with expression 

heritability 2 0.2eh = . (a) Uni-directional effects (
1 K = = ); (b) Bi-directional effects (

1 /2 /2 1K K K   += = =− = =− ). 

                     (a) Uni-directional effects        (b) Bi-directional effects 

              



154 

Figure C.7. Power comparisons of gene-based association tests at 61.75 10−  significance 

level under Uni-directional effects (
1 2 3 4   = = = ) with noise to the eQTL for 

( )0.1,0.2,0.3,0.4causalp =  based on gene C3orf22. (a) Estimated power against phenotypic 

heritability 
2

ph  with expression heritability 2 0.2eh = ; (b) Estimated power against 

expression heritability 2

eh  with phenotypic heritability 2 0.2ph = . 

       (a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  

 

 

Figure C.8. Power comparisons of gene-based association tests at 61.75 10−  significance 

level under Bi-directional effects (
1 2 3 4   = =− =− ) with noise to the eQTL for 

( )0.1,0.2,0.3,0.4causalp =  based on gene C3orf22. (a) Estimated power against phenotypic 

heritability 
2

ph  with expression heritability 2 0.2eh = ; (b) Estimated power against 

expression heritability 2

eh  with phenotypic heritability 2 0.2ph = . 

       (a) 2 0.2eh =  and 2 0.2,0.4,0.6,0.8ph =           (b) 2 0.2ph =  and 2 0.2,0.4,0.6,0.8eh =  
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Figure C.9. Estimated power against phenotypic heritability 
2

ph  with expression 

heritability 2 0.05eh =  at 61.75 10−  significance level on gene C3orf22 with 

( )0.1,0.2causalp =  and sample size of 100,000. (a) Uni-directional effects with noise to 

eQTL; (b) Bi-directional effects with noise to eQTL. 

                     (a) Uni-directional effects        (b) Bi-directional effects 

              

Figure C.10. Power comparisons of Overall, OT, and BEST based on corrected and 

uncorrected LD structure on gene C3orf22 with ( )0.2,0.3causalp =  at 61.75 10−  

significance level. (a) and (b): Uni-directional effects with noise to eQTL; (b) and (d): Bi-

directional effects with noise to eQTL. 

           (a) 2 0.2eh =                 (b) 2 0.2ph =               (c) 2 0.2eh =               (d) 2 0.2ph =                
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D Supplementary Materials for Chapter 4 

D.1 Supplementary Texts 

Text D.1. The general simulation setting. 

We considered the general simulation setting for comparison. To simulate expression 

levels of  𝑝 target genes (TGs), we used the following linear model, 

𝒙𝑖 = 𝑦𝑖𝜷 + 𝜺𝑖, 

Here 𝒙𝑖 = (𝑥𝑖1, ⋯ , 𝑥𝑖𝑝)
𝑇
 represents the expression level of 𝑝 TGs in sample 𝑖. 𝑦𝑖 

is the expression level of a transcription factor (TF) in sample 𝑖 and was generated from a 

standard normal distribution. 𝜷 = (𝛽1,⋯ , 𝛽𝑝)
𝑇
 represents the fixed regulation effects of 

the TF on 𝑝  TGs. 𝜺𝑖  represents the error terms for 𝑝  TGs in sample 𝑖 , where 𝜺𝑖 was 

generated from a multivariate normal distribution with mean 𝟎 and covariance matrix 𝑰𝑝 

(identity matrix), 𝜺𝑖~𝑀𝑉𝑁𝑝(𝟎, 𝑰𝑝) . We used 𝑛 = 300  samples, 𝑝 = 500  TGs in this 

simulation studies.  

The regulation effects 𝜷 were determined based on the relationship between TGs 

and the TF. In the general simulation settings, only the first 50 TGs were regulated by the 

TF. Therefore, the regulation effects 𝜷 were defined as 

𝛽𝑗 = {
𝛽, 𝑖𝑓 𝑗 ∈ (1,⋯ ,25),

−𝛽, 𝑖𝑓 𝑗 ∈ (25,⋯ ,50),
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Text D.2. Simulation settings if the target genes have the biological network structure. 

To simulate correlated expression levels of  𝑝 TGs within a biological network, we added 

the network factor into the general linear model, 

𝒙𝑖 = 𝑦𝑖𝜷 + 𝒁𝑖 + 𝜺𝑖, 

Here 𝒁𝑖~𝑀𝑉𝑁𝑝(𝟎, 𝚺)  is the network factor values in sample 𝑖  with a network 

structure, where 𝚺 is the covariance matrix of 𝒙𝑖, and 𝒁𝑖 was generated from a multivariate 

normal distribution with mean 𝟎 and covariance matrix 𝚺. For a given network, 𝚺 was 

simulated by the following ways, as described by Peng et al.43 and Cao et al.44. First, an 

initial concentration matrix is generated. For a pair of TGs 𝑚 and 𝑘 (𝑚 = 1,⋯ , 𝑝, 𝑘 =
1,⋯ , 𝑝), the corresponding element in the initial concentration matrix was set as 0 if they 

were not linked or was generated from a uniform distribution on [−0.7, −0.1] ∪ [0.1, 0.7] 
if they were linked. Then the non-zero elements in the initial concentration matrix were 

rescaled to assure its positive definiteness and the rescaled matrix was averaged with its 

transpose to ensure the symmetry. Denote 𝑊 = (𝜔𝑚𝑘) as the inverse of the matrix after 

rescaling and averaging based on the initial concentration matrix, the element Σ𝑗𝑘 in the 

covariance matrix 𝚺 was determined by Σ𝑗𝑘 = 𝜔𝑚𝑘√𝜔𝑚𝑚𝜔𝑘𝑘.  
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In this simulation, we used 𝑛 = 300 samples and 𝑝 = 500 TGs and considered 

two types of networks: hierarchical network and Barabasi-Albert network. For the 

hierarchical network, there were 5 disjointed subnetworks and each of them consisted of 

100 TGs. The subnetwork was constructed as the same as Kim et al.45 (Figure D.1). For 

Barabasi-Albert network, there were 50 subnetworks and each of them consisted of 10 TGs. 

For each subnetwork, a BA-based network was generated46. For both types of networks, 

the network structure 𝐀 = (𝑎𝑚𝑘) of 500 TGs was constructed. 𝑎𝑚𝑘 = 1 if 𝑚𝑡ℎ  TG and 

𝑘𝑡ℎ TG were within the same subnetwork and 𝑎𝑚𝑘 = 0 otherwise. 

The regulation effects 𝜷 were determined based on the relationship between TGs 

and the TF. In the hierarchical network, only 45 TGs in the first subnetwork, which 

contained one centered TG and four groups of TGs denoted as 𝑔1, 𝑔2, 𝑔3, and 𝑔4, were 

regulated by the TF. Therefore, the regulation effects 𝜷 were defined as 

𝛽𝑗 =

{
  
 

  
 

𝛽, 𝑖𝑓 𝑇𝐺 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑇𝐺,

𝛽 3⁄ × √𝑑𝑗 , 𝑖𝑓 𝑗 ∈ 𝑔1 𝑜𝑟 𝑗 ∈ 𝑔3,

− 𝛽 3⁄ × √𝑑𝑗 , 𝑖𝑓 𝑗 ∈ 𝑔2 𝑜𝑟 𝑗 ∈ 𝑔4,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠.

 

where 𝑑𝑗  is the degree of TG 𝑗, which represents the number of TGs that were 

linked with TG 𝑗. In the Barabasi-Albert (BA)-based network, only 40 TGs in the first four 

subnetworks denoted as 𝑔1 , 𝑔2 , 𝑔3 , and 𝑔4 , were regulated by the TF. Therefore, the 

regulation effects 𝜷 were defined as 

𝛽𝑗 =

{
 
 

 
 𝛽 × √𝑑𝑗 , 𝑖𝑓 𝑗 ∈ 𝑔1 𝑜𝑟 𝑗 ∈ 𝑔3,

−𝛽 × √𝑑𝑗 , 𝑖𝑓 𝑗 ∈ 𝑔2 𝑜𝑟 𝑗 ∈ 𝑔4,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

Text D.3. APGD algorithm to solve Huber-Lasso. 

In Huber-Lasso, we considered the Huber loss function and the Lasso penalty. Therefore, 

the penalized loss function can be decomposed as 

 𝑓(𝜷) = 𝑔(𝜷) + ℎ(𝜷) = (∑𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝜷)

𝑛

𝑖=1

) + (𝜆‖𝜷‖1). (S1.1) 

where 𝑔(𝜷) and ℎ(𝜷) are given by 

 𝑔(𝜷) =∑𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝜷)

𝑛

𝑖=1

, (S1.2) 
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 ℎ(𝜷) = 𝜆‖𝜷‖1. (S1.3) 

The APGD in 𝑘𝑡ℎ iteration can be defined as 

 𝝃𝑘+1 ∶= 𝜷𝑘 + 𝜔𝑘(𝜷𝑘 − 𝜷𝑘−1)  

 𝜽𝑘+1 ∶= 𝝃𝑘+1 − 𝛾𝑘∇𝑔(𝝃𝑘+1)  

 𝜷𝑘+1 ∶= 𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) (S1.4) 

where 𝜔𝑘 ∈ [0,1)  is an extrapolation parameter and 𝛾𝑘  is the usual step size. These 

parameters must be chosen in specific ways to achieve convergence acceleration. One 

simple choice 47 for 𝜔𝑘  is 𝑘 (𝑘 + 3)⁄ . Here ∇𝑔(𝝃𝑘+1)  is the gradient of the convex 

differentiable function 𝑔(∙) at 𝝃𝑘+1, which can be calculated by 

 ∇𝑔(𝝃𝑘+1) =∑−𝛻𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

. (S1.5) 

where let ∆𝑖∶= 𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝝃𝑘+1, then the gradient of Huber function can be calculated as 

∇𝐻𝑀(∆𝑖) = 2∆𝑖𝐼(|∆𝑖| ≤ 𝑀) + 2𝑀𝑠𝑖𝑔𝑛(∆𝑖)𝐼(|∆𝑖| > 𝑀). The operator 𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) is 

called proximal mapping for ℎ(𝜷). To solve the Huber-Lasso, the key is to compute the 

proximal mapping for the convex non-differentiable function ℎ(𝜷). It is not difficult to 

verify48: 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = argmin𝜷 {𝜆‖𝜷‖1 +

1

2𝛾𝑘
‖𝜷 − 𝜽𝑘+1‖2

2}

= sign(𝜽𝑘+1)max{‖𝜽𝑘+1‖1 − 𝛾
𝑘𝜆, 0}. 

(S1.6) 

To obtain a valid estimation in each iteration, we also defined an upper bound of 

𝑔(∙) as 𝑔̂𝛾𝑘(𝜷, 𝝃
𝑘+1) which is given by 

 𝑔̂𝛾𝑘(𝜷, 𝝃
𝑘+1)  = 𝑔(𝝃𝑘+1) + ∇𝑔(𝝃𝑘+1)𝑇(𝜷 − 𝝃𝑘+1) +

1

2𝛾𝑘
‖𝜷 − 𝝃𝑘+1‖2

2. (S1.7) 
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Text D.4. APGD algorithm to solve Huber-ENET. 

In Huber-ENET, we considered the Huber loss function and the Elastic Net penalty. 

Therefore, the convex differentiable function 𝑔(𝜷)  and the convex non-differentiable 

function ℎ(𝜷) are given by 

𝑔(𝜷) =∑𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝜷)

𝑛

𝑖=1

+ 
1

2
𝜆(1 − 𝛼)𝜷𝑇𝜷, ℎ(𝜷) = 𝜆𝛼‖𝜷‖1. (S2.1) 

Therefore, the proximal operator in APGD for Huber-ENET and the gradient of 

convex differentiable function 𝑔(∙) at 𝝃𝑘+1 , which can be calculated by the following 

formulas. 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = sign(𝜽𝑘+1)max{‖𝜽𝑘+1‖1 − 𝛾

𝑘𝜆𝛼, 0} (S2.2) 

𝛻𝑔(𝝃𝑘+1) =∑−𝛻𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

+ 𝜆(1 − 𝛼)𝝃𝑘+1 (S2.3) 

 

 

Text D.5. APGD algorithm to solve Huber-Net. 

In Huber-Net, we considered the Huber loss function and the network-based penalty. 

Therefore, the convex differentiable function 𝑔(𝜷)  and the convex non-differentiable 

function ℎ(𝜷) are given by 

𝑔(𝜷) =∑𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝜷)

𝑛

𝑖=1

+
1

2
𝜆(1 − 𝛼)𝜷𝑇𝐒𝑇𝐋𝐒𝜷,

ℎ(𝜷) = 𝜆𝛼‖𝜷‖1. 

(S3.1) 

Therefore, the proximal operator in APGD for Huber-Net and the gradient of 

convex differentiable function 𝑔(∙) at 𝝃𝑘+1 , which can be calculated by the following 

formulas. 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = sign(𝜽𝑘+1)max{‖𝜽+1‖1 − 𝛾

𝑘𝜆𝛼, 0} (S3.2) 
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𝛻𝑔(𝝃𝑘+1) =∑−𝛻𝐻𝑀(𝑦𝑖 − 𝛽0 − 𝒙𝑖
𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

+ 𝜆(1 − 𝛼)𝐒𝑇𝐋𝐒𝝃𝒌+𝟏. (S3.3) 

 

Text D.6. APGD algorithm to solve MSE-Lasso. 

In MSE-Lasso, we considered the MSE loss function and the Lasso penalty. Therefore, the 

convex differentiable function 𝑔(𝜷) and the convex non-differentiable function ℎ(𝜷) are 

given by 

𝑔(𝜷) =
1

2𝑛
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2
𝑛

𝑖=1

, ℎ(𝜷) = 𝜆‖𝜷‖1. (S4.1) 

Therefore, the proximal operator in APGD for MSE-Lasso and the gradient of 

convex differentiable function 𝑔(∙) at 𝝃𝑘+1 , which can be calculated by the following 

formulas. 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = sign(𝜽𝑘+1)max{‖𝜽𝑘+1‖1 − 𝛾

𝑘𝜆, 0} (S4.2) 

𝛻𝑔(𝝃𝑘+1) =
1

𝑛
∑−(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

. (S4.3) 
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Text D.7. APGD algorithm to solve MSE-ENET. 

In MSE-ENET, we considered the MSE loss function and the Elastic Net penalty. 

Therefore, the convex differentiable function 𝑔(𝜷)  and the convex non-differentiable 

function ℎ(𝜷) are given by 

𝑔(𝜷) =
1

2𝑛
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2
𝑛

𝑖=1

+ 
1

2
𝜆(1 − 𝛼)𝜷𝑇𝜷, ℎ(𝜷) = 𝜆𝛼‖𝜷‖1. (S5.1) 

Therefore, the proximal operator in APGD for MSE-ENET and the gradient of 

convex differentiable function 𝑔(∙) at 𝝃𝑘+1 , which can be calculated by the following 

formulas. 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = sign(𝜽𝑘+1)max{‖𝜽𝑘+1‖1 − 𝛾

𝑘𝜆𝛼, 0} (S5.2) 

𝛻𝑔(𝝃𝑘+1) =
1

𝑛
∑−(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

+ 𝜆(1 − 𝛼)𝝃𝑘+1 (S5.3) 

 

Text D.8. APGD algorithm to solve MSE-Net. 

In MSE-Net, we considered the MSE loss function and the network-based pnalty. 

Therefore, the convex differentiable function 𝑔(𝜷)  and the convex non-differentiable 

function ℎ(𝜷) are given by 

𝑔(𝜷) =
1

2𝑛
∑(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝜷)2
𝑛

𝑖=1

+
1

2
𝜆(1 − 𝛼)𝜷𝑇𝐒𝑇𝐋𝐒𝜷,

ℎ(𝜷) = 𝜆𝛼‖𝜷‖1. 

(S6.1) 

Therefore, the proximal operator in APGD for Huber-Net and the gradient of 

convex differentiable function 𝑔(∙) at 𝝃𝑘+1 , which can be calculated by the following 

formulas. 

𝐏𝐫𝐨𝐱𝛾𝑘ℎ(𝜽
𝑘+1) = sign(𝜽𝑘+1)max{‖𝜽𝑘+1‖1 − 𝛾

𝑘𝜆𝛼, 0} (S6.2) 
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𝛻𝑔(𝝃𝑘+1) =
1

𝑛
∑−(𝑦𝑖 − 𝛽0 − 𝒙𝑖

𝑇𝝃𝑘+1)𝒙𝑖

𝑛

𝑖=1

+ 𝜆(1 − 𝛼)𝐒𝑇𝐋𝐒𝝃𝒌+𝟏. (S6.3) 

 

 

Text D.9. Implementation of APGD and TGPred. 

Six statistical selection methods based on the penalized regression models and the APGD 

algorithm for solving these six statistical methods had been implemented in both Python3 

and R and then packed into TGPred.  Both of them used commonly used libraries for 

scientific computing. For Python3 version of TGPred, we used numpy, scipy, and sklearn 

to support efficient mathematical and dataframe computing, cvxpy to compare the runtime 

and estimated results of APGD with commonly used CVX, and networkx to generate 

synthetic data based on the BA network setting. For R version of TGPred, we used Matrix 

and MASS to support the efficient mathematical computing, and mvtnorm and igraph to 

generate synthetic data. TGPred can be directly used within Python and R. Both regulation 

effect 𝛽𝑗 and selection probability 𝑆𝑃𝑗 of target gene 𝑗 can be calculated by TGPred for 𝑗 =

1,⋯ , 𝑝 . Note that the large-scale genetic data set is acceptable to APGD and the 

computation time was evaluated on the high-performance computing (HPC) cluster (Intel 

Xeon E5-2670 2.6 GHz, 16 GB RAM). For example, when the number of TGs are greater 

than 30,000 (𝑝 > 30,000) and 𝐵 = 500 times of half-sample approach, the computation 

times of ENET penalty along with MSE and Huber loss functions for all genes were about 

12h CPU time with 90 pairs of tuning parameters 𝛼 and 𝜆; the computation times of Lasso 

penalty was about 8h CPU time with 50 tuning parameters 𝜆; and the computation times 

of Net penalty was about 26h CPU time with 90 pairs of tuning parameters 𝛼  and 𝜆. 

TGPred packages have been made publicly available on GitHub as open-source software 

for downloading (https://github.com/xueweic/TGPred); more detailed information on how 

to install and run the tool was enclosed in the packages. 

 

 

 

 

https://github.com/xueweic/TGPred
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Text D.10. Comparison of computational time and regression coefficients estimated by 

APGD and CVX. 

We also compared the computational efficiency and the regression coefficients estimated 

by APGD and CVX, a commonly used package for convex optimization, for several pairs 

of tuning parameters 𝜆 and 𝛼. Figures D.4-D.6 showed that the computation times of CVX 

and APGD among all grid sets of 𝛼 and 𝜆 based on 𝐵 = 500 subsamples drawn with the 

half-sample approach. Figure D.4 showed the computation times of Huber-Lasso, Huber-

ENET, MSE-Lasso, and MSE-ENET under the general setting with 𝛽 = 0.2. For ENET 

penalty function, 𝑛𝜆 = 1,⋯ ,10 indicated the order of selected 𝜆 in a log10-scale from 

𝑟𝑎𝑡𝑖𝑜 ∗ 𝜆𝑚𝑎𝑥 to 𝜆𝑚𝑎𝑥, where 𝜆𝑚𝑎𝑥 is related to 𝛼 = 0.1,⋯ ,0.9. For Lasso penalty, 𝑛𝜆 =
1,⋯ ,100 indicated the order of selected 𝜆 in a log10-scale from 𝑟𝑎𝑡𝑖𝑜 ∗ 𝜆𝑚𝑎𝑥  to 𝜆𝑚𝑎𝑥 , 

where 𝜆𝑚𝑎𝑥 is related to 𝛼 = 1. The datasets were simulated under the same setting (Text 

D.1). All analyses were performed on a macOS (2.7 GHz Quad-Core Intel Core i7, 16 GB 

memory). It can be seen that APGD is much more computationally efficient than CVX 

since the running time of APGD was less than one fifth time of CVX for all six methods 

(Figure D.4). A disadvantage of CVX is that all of the estimated regression coefficients 

are not equal to 0 (around 10−22  for non-zero regression coefficients). Therefore, the 

stability selection method may not be applicable to the CVX method since it is difficult to 

find a cut-off threshold for the regression coefficients. The APGD algorithm was also 

evaluated under the hierarchical network and Barabasi-Albert network settings. As shown 

in Figures D.5-D.6, the computation times of APGD were much shorter than those of CVX 

no matter which methods (Huber-Lasso, Huber-ENET, Huber-Net, MSE-Lasso, MSE-

ENET, and MSE-Net) it was applied to. The results manifested that APGD was 

consistently more computational efficient than CVX, as we had observed for the general 

setting. 

We compared the regression coefficients estimated by APGD and CVX for several 

pairs of tuning parameters 𝜆 and 𝛼. Figures D.7-D.9 showed that the QQ plots of the 

regression coefficients estimated by both CVX and APGD. Figure D.7 showed the 

estimation of regulation effects of Huber-Lasso, Huber-ENET, MSE-Lasso, and MSE-

ENET under the general setting with 𝛽 = 0.2. The values lied along the diagonal line as 

the Huber loss function was used, indicating the regression coefficients estimated by CVX 

and APGD were identical. When the MSE loss function was used, the non-zero estimations 

of regulation effects of CVX were greater than that of APGD (Fig D.7). However, there 

were only 50 true TGs (out of 500 genes) that were regulated by a given TF in this 

simulation setting. That is, CVX obtained more false positives than APGD. Except for 

those false positives estimated by CVX, the regression coefficients estimated by these two 

methods were nearly identical. Figures D.8-D.9 showed that the estimation of regulation 

effects of our proposed six statistical selection methods under the network setting, where 

we used 𝛽 = 0.4  in the hierarchical network setting (Figure D.8) and 𝛽 = 0.1  in the 

Barabasi-Albert network setting (Figure D.9). We observed that the patterns of the 

estimation performance were similar to that shown in Figure D.7. 
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D.2 Supplementary Figures 

Figure D.1. The hierarchical network module is used in the hierarchical network setting. 

There is a total of 100 genes that contain a centered gene. 

 

Figure D.2. The AuROC of the selection probabilities of the different methods in the 

general setting, which corresponding to Figure 4.1. 
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Figure D.3. The AuROC of the selection probabilities of the different methods in the 

network setting, which corresponding to Figure 4.2. 
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Figure D.4. The computation times of CVX versus APGD in the general setting (𝛽 = 0.2) 

among all grid sets of 𝛼  and 𝜆 based on half-sample approach with 𝐵 = 500 times of 

resampling.  
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Figure D.5. The computation times of CVX versus APGD in the hierarchical network 

setting (𝛽 = 0.4) among all grid sets of 𝛼 and 𝜆 based on half-sample approach with 𝐵 =
500 times of resampling. 
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Figure D.6. The computation times of CVX versus APGD in the Barabasi-Albert network 

setting (𝛽 = 0.1) among all grid sets of 𝛼 and 𝜆 based on half-sample approach with 𝐵 =
500 times of resampling.  
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Figure D.7. The estimation of regulation effects (beta) comparison of CVX versus APGD 

in the general setting (𝛽 = 0.2) by different algorithms. 
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Figure D.8. The estimation of regulation effects (beta) comparison of CVX versus APGD 

in the hierarchical network setting (𝛽 = 0.4) by different algorithms. 

 

Figure D.9. The estimation of regulation effects (beta) comparison of CVX versus APGD 

in the Barabasi-Albert network setting (𝛽 = 0.1) by different algorithms. 
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Figure D.10.  Venn diagram representing the numbers of common and unique target genes 

of each of the 23 TFs identified by the three methods with Huber loss function (Huber-

ENET, Huber-Lasso and Huber-Net)  and three methods with MSE loss function (MSE-

ENET, MSE-Lasso, and MSE-Net).  
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Figure D.11.  The gene regulatory networks of lignin pathway genes produced by the six 

methods, Huber-ENET, Huber-Lasso, Huber-Net, MSE-ENET, MSE-Lasso, MSE-Net, 

where regulatory genes were ranked based on their connectivities to pathway genes in 

clockwise.  The inputs were the expression data sets of 2539 pathway genes (PWGs) and 

23 known lignin pathway regulators in the in maize. The network of 

ARACNE_ALL_PWGs was produced by ARANCE method with the same inputs as the 

six methods we developed, while the network of ARACNE_PWG21was produced by 

ARANCE method with the expression data sets of 21 lignin pathway genes and 23 known 

lignin pathway regulators being used as the inputs. 
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E Supplementary Materials for Chapter 5 

E.1 Supplementary Texts 

Text E.1. Simulation Setups. 

The individual-level genetic data where linked genes within a biological network are 

correlated with each other are generated using the following three steps: 

Step 1: Construct an M  dimensional covariance matrix from an arbitrary graph based on 

a Gaussian graphical model. 

Consider a total number of 1000M =  genes that contain 10 disjointed network 

modules, each of which consists of 100 genes. Similar to Kim et al.45, we construct each 

network module from Figure E.1, which contains a centered gene correlated with other 

genes with a few links in one network module. Therefore, the adjacency matrix ( )mka=A  

of those 1000 genes is constructed based on the connections among genes in each network 

module, where 1mka =  represents the thm  and thk  genes are within the same network 

module and 0mka =  otherwise. Next, we apply a Gaussian graphical model to generate a 

covariance matrix of 1000 genes43. Following the settings in Peng et al.43, the initial 

concentration matrix ( )mk M M



=Ω  is generated by 

( )

1, if ;

~ , if and are linked to each other;

0, otherwise,

mk

m k

U D m k

=


= 



 

where    0.7, 0.1 0.1,0.7D= − −   and ( )U D  represents a random variable from a 

uniform distribution on the domain D . We then rescale the non-zero elements in the 

concentration matrix to assure positive definiteness, that is, we divide each off-diagonal 

element by 1.5-fold of the sum. Finally, we average the rescaled matrix with its transpose 

to ensure symmetry and set the diagonal entries to be one. We denote the final matrix as 

Ω  and the covariance matrix Σ  can be determined by 
1 1 1

mk mk mm kk

− − − =    , where 1

mk

−  

represents the ( ),
th

m k  element of the inversed concentration matrix 1−Ω . Note that the 

correlations between linked genes are much higher than that of unlinked genes.  

Step 2: Generate M  gene-level signals from different multivariate normal distributions 

for cases and controls, respectively. 

In this step, we consider two scenarios to set up the phenotype-related genes. In 

scenario 1, we assume that only 45 genes in the first network module are phenotype related, 

where these 45 genes contain the centered gene and four subgroups of genes denoted as 

1g , 
2g , 

3g , and 
4g , respectively. In scenario 2, we assume that 48 genes in the first four 

network modules are phenotype related, where each of network modules contains one 

centered gene and a subgroup of genes which are denoted as 
1g , 

2g , 
3g , and 

4g , 
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respectively. For each scenario, let ( )1, ,
T

M =μ  be the mean vector, where 

( )0, ,0
T

=μ  for the control group. In the case group, we set 0m =  for neutral genes 

(i.e., 955 genes in scenario 1 and 952 genes in scenario 2). In contrast, the mean of 

phenotype related genes 
m  is defined as 

1 3

2 4

, if centered gene;

, if or ;
3

, if or ,
3

m m

m

d m g g

d m g g











=  

−  


 

where   is the strength of association signals and 
md  is the total number of genetic links 

for the thm  gene. Therefore, the gene-level signals for each individual can be generated 

from a multivariate normal distribution, ( ),i MVN Σz μ  for 1, ,i n= . 

Step 3: Generate DNA methylation and DNA sequence data based on each gene-level 

signal. 

Consider 10mk =  genetic components for 1, ,m M=  and a total of 10,000 

genetic components in simulation studies. In this step, we consider two types of genetic 

data, DNA methylation data and DNA sequence data. Let   be the number of components 

correlated with the gene-level signal value 
imz  for the thi  individual and the thm  gene, 

which controls the number of causal or neutral components. The methylation value of the 
thi   individual and thj  CpG site in the thm  gene is denoted by 

m

ijx  which can be generated 

by 

, 1, , ;

, 1, , ,

im ijm

ij

ij m

z j
x

j k

 

 

+ =
= 

= +

 

where ( )20,ij N   indicates the difference between the thj  CpG site and gene-level 

signal 
imz  and 2  is the error variance that controls the noise level of association signals. 

ij  follows a normal distribution with mean 
1

n

imi
z n

=  and variance 2 .   

The value of genotype data usually indicates the genotypic score of an individual 

at a SNP which is the number of minor alleles that the individual carries at a SNP. We first 

generate two different continuous data ,

m

ij kg  for 1k =  or 2  to indicate the genotypic value 

for two alleles which are defined as 

,

, 1, , ;

, 1, , .

im ijm

ij k

ij

z j
g

j J

 

 

+ =
= 

= +
 



175 

Next, we convert continuous data ,

m

ij kg  to binary data ,

m

ij kx  based on a fixed MAFm

j  

for the thj  SNP in the thm  gene. Finally, the genotype data 
m

ijx  for the thj  SNP in the thm  

gene is generated by 
,1 ,2

m m m

ij ij ijx x x= + . Therefore, the genotype data is coded as 0, 1, or 2. In 

our simulation studies, we consider five rare variants and five common variants in each 

gene, where the MAFs for rare variants are randomly generated from a uniform distribution 

( )0.001,0.01U  and MAFs for common variants are from ( )0.01,0.5U .  

Text E.2. Comparison of the Methods without Considering Network Structure. 

After using the three weighted combinations (OWS, LD-PRS, BWS) and three PC-based 

competing methods (PC, nPC, sPC) to capture gene-level signals, several penalized 

regression approaches can be used to select genes that are related to a phenotype, including 

elastic net (ENET) and least absolute shrinkage and selection operator (Lasso). However, 

ENET and Lasso ignore genetic network structures that are expected to perform poorer 

according to the feature selection. To compare the network-based regression (Net) with 

ENET and Lasso, we use the following procedure: 1) Calculate gene-level signals using 

six methods. 2) Apply three different regressions, Net, Lasso, and ENET, to each of six 

gene-level signals. 3) Calculate selection probability based on the half-sample approach 

for each of the 18 combinations, which contains six gene-level signals from 1) and three 

regressions from 2), such as OWS+Net, OWS+Lasso, OWS+ENET, etc. 4) After we obtain 

the selection probabilities of each combination, we select top 100 genes and then calculate 

the true positive rates (TPRs).  

The penalty of ENET is defined as ( ) ( )
1

1
1

2

T

ENETP   = + −β β β β  and the 

penalty of Net is defined as ( ) ( )
1

1
1

2

T T

NetP   = + − S LSβ β β β . The only difference 

between these two penalties is the second term, where TS LS  represents the network 

structure among all genes. If there is no network structure among genes, all elements of the 

adjacency matrix A  equal 0 since there is no pair of genes that are connected. The 

symmetric normalized Laplacian matrix -1 2 -1 2= − =L I D AD I , so the penalty of Net is 

equal to the penalty of ENET, that is, 

( ) ( ) ( ) ( )
1 1

1 1
1 1

2 2

T T T

Net ENETP P     = + − = + − =S LS Iβ β β β β β β β . 

Therefore, ENET is a special case of Net without considering the network structure.  

Figures E.9 – E.12 show the TPR comparison results for DNA methylation and 

DNA sequence data with balanced (Figures E.9 and E.10) and unbalanced (Figures E.11 

and E.12) disease status under different simulation settings. We can observe that Net is 

better than Lasso and ENET in all simulation scenarios, and ENET is better than Lasso in 

most scenarios. That means, if there is a network structure of the genes, the network-based 

regression performs better regarding the selection. Meanwhile, we observe that the three 

weighted combinations (OWS, LD-PRS, BWS) along with Net always perform better than 

those along with Lasso and ENET in all simulation settings. However, the three PC-based 

competing methods along with Net may not increase TPR compared with Lasso and ENET. 
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Therefore, the methods used to capture gene-level signals are very important for feature 

selection. We can conclude that the performance of feature selection will be boosted if we 

can capture more information on the gene-level signals. 

Computational efficiency is very important for analyzing high-dimensional 

genomic data. We compare the computational time between our proposed methods and the 

competing methods. To include the stability selection in the total time, we choose 600 pairs 

of tuning parameters to evaluate ENET and Net; 500 tuning parameters to evaluate Lasso. 

For each of the three regressions (Net, ENET, Lasso), there are six methods to capture the 

gene-level signals, eight combinations of parameters ( 2, ,   ) in the simulation, and two 

scenarios of the network structure. Based on 6 8 2 96  =  replicates in the simulation, we 

estimate the computational time (s) of the three regressions based on 1,000 genes and 1,000 

sample size. All analyses are performed on a macOS (2.7 GHz Quad-Core Intel Core i7, 

16 GB memory). The computing times are shown in Figure E.13. Based on the figure, 

although network-based regressions need more computational time than ENET and Lasso, 

the average time of Net is only 236.75s by using the half-sample approach 100 times. In 

the application of the DNA methylation data, we consider 10,737 genes and 689 individuals. 

The average computational time for network-based regression based on 600 pairs of tuning 

parameters is 6 hours by using the half-sample approach 500 times. In the application to 

the DNA sequence data, we consider 10,907 genes and 10,000 individuals. The average 

computational time for the network-based regression based on 600 pairs of tuning 

parameters is 11 hours by using the half-sample approach 500 times. 

Text E.3.  Evaluation of Model Fitting. 

Model validation is a most important step in the model building process, which is carried 

out after model training where the trained model is evaluated with a separate testing data 

set. To evaluate the model fitting regarding our proposed methods along with the selection 

probability, we use the following steps. First, we calculate the selection probabilities of all 

genes by using the methods with three weighted combinations (OWS, LD-PRS, BWS) as 

well as using the three competing methods (PC, nPC, sPC). Then, we choose the top K  

genes with the largest selection probabilities from each of the six methods. We use the 

accuracy rate (ACC) as a measurement to evaluate models, where ACC is defined as the 

sum of true positives and true negatives divided by the total number of genes49. Based on 

different numbers of top selected genes, we perform a 10-fold cross-validation to calculate 

the average ACC and the standard deviation of ACC.  

There are 45 genes in scenario 1 and 48 genes in scenario 2 that are related to the 

phenotype. To evaluate the model fitting, we select top 40 and 60 genes ( 40K =  and 60 ) 

by each of the six methods according to the selection probabilities. Figure E.15 shows 

ACCs with the standard deviations for both DNA sequence and DNA methylation data 

under different simulation settings for the phenotype with a balanced case-control ratio. As 

expected, the two proposed supervised methods, LD-PRS and OWS, have higher ACC 

compared with the unsupervised method, BWS. Also, sPC is the supervised competing 

method, which also has higher ACC compared with the other two unsupervised PC-based 

methods, PC and nPC. Notably, LD-PRS and OWS always outperform sPC even though 

all of the three methods are supervised. Among the unsupervised models, BWS has higher 
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ACC than the two PC-based methods in the DNA sequence data analysis, while these three 

methods perform equivalently in the DNA methylation data analysis. 

Text E.4. Comparison of the Methods with Partially Corrected Network Structure. 

One of the most important issues for applying the network-based regression is how to select 

a biological network. In the study, we consider the functional relationships among genes 

in the genetic network, which can be obtained from the existing annotations. For example, 

in the real data application, we construct an association network using the pathways from 

seven genetic network databases, where the genes are associated with each other if they are 

within a metabolic pathway or a biological process. However, the constructed network may 

contain some incorrect or missing connections between genes. Therefore, we perform the 

simulation studies to evaluate if the network-based regression with partially corrected 

network structure still outperform the regressions without considering the network 

structure. In the simulation studies, we consider a total of 1,000 genes with 10 subnetwork 

modules shown in Figure E.2, where the existing genetic network contains 990 undirected 

edges. To mimic a partially correct network structure, we randomly remove 250 out of 990 

edges and then randomly add 250 new edges to the genetic network. That means the genetic 

network has around 25% incorrect relationships. Figure E.14 shows the TPR results. We 

can see that the TPRs of the methods with the partially correct genetic network are lower 

than those with the correct network as expected. Even though the genetic network is 

partially incorrect, the performance of the network-based regressions still performs better 

than the methods without considering the genetic network structure (ENET and Lasso) in 

most simulation settings.    

Text E.5. Real Data Applications for DNA Methylation and DNA Sequence 

Biological network: In order to utilize biological network information, we employ the same 

pathway information as in Kim et al.45 , where there are seven genetic network databases 

from Biocarta, HumnaCyc, KEGG, NCI, Panther, Reactome, and SPIKE in R package 

‘graphite’. There are 11,381 linked genes in the package, of which 672,571 edges among 

those genes are in the biological network. To matach SNPs and CpG sites to the linked 

genes, we consider all genes according to the USCS (GRCh37/hg19) genome sequence 

annotation list which can be downloaded from the UCSC website 

(https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/).  

DNA methylation data: The DNA methylation data was measured using the Illumina 

HumanMethylation450 BeadChip from 354 RA patients (cases) and 335 normal 

controls50,51. The dataset can be found in the NCBI Gene Expression Omnibus (GEO) with 

identifier GSE42861, where the methylation   values of CpG sites are provided. Then, 

we convert   values to M values using logit (base 2) function for further analysis. We find 

that only 10,737 linked genes matched with genes in the above biological network that 

contain at least one CpG site. After pruning CpG sites in each gene, we capture gene-level 

signals using OWS, LD-PRS, BWS, and nPC.  

DNA sequence data: The UK Biobank is a population-based cohort study with a wide 

variety of genetic and phenotypic information52. It includes ~500K individuals from the 

United Kingdom who are currently aged between 40 and 69 when recruited in 2006-201053. 

We follow the same preprocess procedure in Liang et al.54 to exclude individuals who self-

https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
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report themselves not from a white British ancestry, who are marked as outliers for 

heterozygosity or missing rates, who have been identified to have ten or more third-degree 

relatives, and who are recommended for removal by the UK Biobank. Meanwhile, the 

quality control (QC) for DNA sequence data is also performed on both SNPs and samples 

using PLINK 1.955 (https://www.cog-genomics.org/plink/1.9/). We filter out SNPs with 

missing rates larger than 5% and Hardy-Weinberg equilibrium exact test p-values less than 
610− . We also exclude individuals with missing rates larger than 5% and without sex. After 

QC of DNA sequence data and preprocess of phenotype data, there are 583,386 SNPs and 

322,607 individuals remaining. In our analysis, we use 4,541 individuals with RA disease 

and randomly select 5,459 individuals without RA disease. We define a gene to include all 

of the SNPs from 20 kb upstream to 20 kb downstream of the gene. We find that only 

10,907 linked genes matched with genes in the above biological network that contain at 

least one SNP. Then, we capture gene-level signals using OWS, LD-PRS, BWS, and nPC, 

respectively.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: In this study, we map those 

genes to the KEGG pathways using a functional annotation tool named Database for 

Annotation, Visualization, and Integrated Discovery Bioinformatics Resource56,57 

(DAVID: https://david.ncifcrf.gov/) for pathway enrichment analysis. 
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179 

E.2 Supplementary Tables 

Table E.1. AUCs of the six methods for DNA sequence data analyses in all simulation 

settings. 

Method 

𝛿 = 2 

𝜔 = 4 

𝜎2 = 2 

𝛿 = 2 

𝜔 = 4 

𝜎2 = 3 

𝛿 = 2 

𝜔 = 6 

𝜎2 = 2 

𝛿 = 2 

𝜔 = 6 

𝜎2 = 3 

𝛿 = 3 

𝜔 = 4 

𝜎2 = 2 

𝛿 = 3 

𝜔 = 4 

𝜎2 = 3 

𝛿 = 3 

𝜔 = 6 

𝜎2 = 2 

𝛿 = 3 

𝜔 = 6 

𝜎2 = 3 

Scenario 1: DNA sequence (Balance) 

OWS 0.77 0.56 0.98 0.94 0.86 0.76 0.99 0.99 

LD-PRS 0.84 0.60 0.99 0.93 0.89 0.84 0.99 0.99 

BWS 0.88 0.74 0.96 0.89 0.97 0.92 0.99 0.99 

PC 0.50 0.56 0.67 0.62 0.54 0.50 0.84 0.66 

nPC 0.53 0.57 0.69 0.64 0.57 0.54 0.84 0.69 

sPC 0.48 0.58 0.67 0.64 0.51 0.52 0.81 0.65 

Scenario 2: DNA sequence (Balance) 

OWS 0.79 0.67 0.96 0.97 0.86 0.86 0.99 0.99 

LD-PRS 0.84 0.68 0.96 0.96 0.89 0.89 0.99 0.99 

BWS 0.86 0.82 0.92 0.90 0.97 0.91 0.98 0.99 

PC 0.52 0.49 0.71 0.65 0.55 0.56 0.81 0.78 

nPC 0.53 0.52 0.73 0.61 0.54 0.54 0.78 0.77 

sPC 0.53 0.59 0.66 0.54 0.54 0.55 0.80 0.74 

Scenario 1: DNA sequence (Unbalance) 

OWS 0.66 0.62 0.93 0.85 0.76 0.71 0.95 0.89 

LD-PRS 0.67 0.64 0.93 0.82 0.76 0.71 0.94 0.89 

BWS 0.83 0.75 0.89 0.74 0.86 0.79 0.95 0.87 

PC 0.55 0.53 0.73 0.69 0.55 0.54 0.79 0.60 

nPC 0.54 0.51 0.74 0.66 0.57 0.55 0.79 0.61 

sPC 0.53 0.54 0.76 0.69 0.54 0.53 0.81 0.63 

Scenario 2: DNA sequence (Unbalance) 

OWS 0.68 0.60 0.89 0.83 0.80 0.65 0.92 0.97 

LD-PRS 0.70 0.60 0.88 0.81 0.75 0.66 0.91 0.96 

BWS 0.78 0.74 0.85 0.73 0.88 0.78 0.87 0.85 

PC 0.50 0.53 0.68 0.62 0.53 0.58 0.76 0.67 

nPC 0.51 0.56 0.67 0.58 0.54 0.54 0.76 0.66 

sPC 0.49 0.54 0.68 0.60 0.49 0.58 0.73 0.69 

Note: the bold-faced values denote the maximum AUC across all six methods in the same simulation 

settings. 
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Table E.2. AUCs of the six methods in DNA methylation data analyses in all simulation 

settings. 

Method 

𝛿 = 2 

𝜔 = 4 

𝜎2 = 6 

𝛿 = 2 

𝜔 = 4 

𝜎2 = 7 

𝛿 = 2 

𝜔 = 6 

𝜎2 = 6 

𝛿 = 2 

𝜔 = 6 

𝜎2 = 7 

𝛿 = 2.5 

𝜔 = 4 

𝜎2 = 6 

𝛿 = 2.5 

𝜔 = 4 

𝜎2 = 7 

𝛿 = 2.5 

𝜔 = 6 

𝜎2 = 6 

𝛿 = 2.5 

𝜔 = 6 

𝜎2 = 7 

Scenario 1: DNA methylation (Balance) 

OWS 0.91 0.86 0.96 0.93 0.97 0.95 0.97 0.96 

LD-PRS 0.90 0.86 0.96 0.94 0.97 0.93 0.97 0.96 

BWS 0.93 0.89 0.97 0.95 0.99 0.94 0.99 0.99 

PC 0.76 0.75 0.95 0.85 0.88 0.74 0.94 0.90 

nPC 0.78 0.76 0.95 0.84 0.86 0.75 0.94 0.91 

sPC 0.80 0.76 0.90 0.80 0.89 0.70 0.93 0.92 

Scenario 2: DNA methylation (Balance) 

OWS 0.91 0.90 0.95 0.94 0.97 0.92 0.98 0.96 

LD-PRS 0.90 0.91 0.96 0.93 0.96 0.90 0.98 0.97 

BWS 0.94 0.92 0.98 0.96 0.97 0.92 1.00 0.98 

PC 0.85 0.79 0.95 0.87 0.85 0.77 0.93 0.89 

nPC 0.85 0.79 0.96 0.87 0.84 0.79 0.92 0.91 

sPC 0.79 0.74 0.95 0.85 0.80 0.75 0.93 0.90 

Scenario 1: DNA methylation (Unbalance) 

OWS 0.81 0.81 0.90 0.90 0.90 0.86 0.94 0.88 

LD-PRS 0.80 0.80 0.89 0.91 0.89 0.85 0.95 0.87 

BWS 0.81 0.81 0.94 0.88 0.80 0.80 0.93 0.95 

PC 0.66 0.60 0.82 0.77 0.69 0.70 0.81 0.74 

nPC 0.64 0.59 0.81 0.78 0.69 0.72 0.81 0.75 

sPC 0.66 0.62 0.80 0.63 0.67 0.59 0.71 0.68 

Scenario 2: DNA methylation (Unbalance) 

OWS 0.87 0.77 0.89 0.84 0.89 0.87 0.96 0.87 

LD-PRS 0.87 0.76 0.91 0.83 0.89 0.88 0.96 0.88 

BWS 0.80 0.69 0.93 0.91 0.88 0.86 0.96 0.94 

PC 0.79 0.58 0.84 0.68 0.70 0.69 0.83 0.80 

nPC 0.75 0.57 0.82 0.70 0.70 0.70 0.85 0.79 

sPC 0.61 0.62 0.73 0.64 0.69 0.56 0.74 0.71 

Note: the bold-faced values denote the maximum AUC across all six methods in the same simulation 

settings. 
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E.3 Supplementary Figures 

Figure E.1. The graphical abstract of the methods in this study. To capture gene-level 

signals from multiple CpG sites or SNPs in the thm  gene ( 1, ,m M= ), we first employ 

three weighted combinations, OWS, BWS, and LD-PRS (left). Then we use half-sample 

approach B  times on the phenotype ( y ) and gene-level signals (
1, , Mz z ) (center). For 

each time of the half-sample approach, we apply the network-based reression for a grid set 

of tuning parameters. Finally, we calculate the selection probability of each gene and select 

genes with the highest selection probabilities (right). 

 

 

 

Figure E.2. The network module used in simulation studies. There are a total of 100 genes 

which contain a centered gene. 
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Figure E.3. The true positive rates of the methods based on different gene-level signals for 

balance case-control studies with DNA sequence data in scenario 2, where there are five 

rare variants and five common variants in each gene. According to the different number of 

selected top-genes, three parameters are used to vary the genetic effect: the strength of 

association signals  , the number of SNPs in each gene related to gene-level signals  , 

and the noise level of association signals 2 . The selection probabilities are calculated 

using half-sample method 100 times. 

 

Figure E.4. The true positive rates of the methods based on different gene-level signals for 

balance case-control studies with DNA methylation data in scenario 2. According to the 

different number of selected top-genes, three parameters are used to vary the genetic effect: 

the strength of association signals  , the number of CpG sites in each gene related to gene-

level signals  , and the noise level of association signals 2 . The selection probabilities 

are calculated using half-sample method 100 times. 
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Figure E.5. The true positive rates of the methods based on different gene-level signals for 

unbalance case-control studies (case:control=100:900) with DNA sequence data in 

scenario 1, where there are five rare variants and five common variants in each gene. 
According to the different number of selected top-genes, three parameters are used to vary 

the genetic effect: the strength of association signals  , the number of SNPs in each gene 

related to gene-level signals  , and the noise level of association signals 2 . The selection 

probabilities are calculated using half-sample method 100 times. 

 

Figure E.6. The true positive rates of the methods based on different gene-level signals for 

unbalance case-control studies (case:control=100:900) with DNA methylation data in 

scenario 1. According to the different number of selected top-genes, three parameters are 

used to vary the genetic effect: the strength of association signals  , the number of CpG 

sites in each gene related to gene-level signals  , and the noise level of association signals 
2 . Selection probabilities are calculated using half-sample method 100 times. 
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Figure E.7. The true positive rates of the methods based on different gene-level signals for 

unbalance case-control studies (case:control=100:900) with DNA sequence data in 

scenario 2, where there are five rare variants and five common variants in each gene. 
According to the different number of selected top-genes, three parameters are used to vary 

the genetic effect: the strength of association signals  , the number of SNPs in each gene 

related to gene-level signals  , and the noise level of association signals 2 . The selection 

probabilities are calculated using half-sample method 100 times. 

 

Figure E.8. The true positive rates of the methods based on different gene-level signals for 

unbalance case-control studies (case:control=100:900) with DNA methylation data in 

scenario 2. According to the different number of selected top-genes, three parameters are 

used to vary the genetic effect: the strength of association signals  , the number of CpG 

sites in each gene related to gene-level signals  , and the noise level of association signals 
2 . Selection probabilities are calculated using half-sample method 100 times. 
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Figure E.9. The true positive rates of the methods by selected top 100 genes according to 

the selection probabilities based on different gene-level signals for balance case-control 

studies with DNA sequence data in scenarios 1 and 2. The selection probabilities are 

calculated using half-sample method 100 times. 
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Figure E.10. The true positive rates of the methods by selected top 100 genes according to 

the selection probabilities based on different gene-level signals for balance case-control 

studies with DNA methylation data in scenarios 1 and 2. The selection probabilities are 

calculated using half-sample method 100 times. 
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Figure E.11. The true positive rates of the methods by selected top 100 genes according to 

the selection probabilities based on different gene-level signals for unbalance case-control 

studies (case:control=100:900) with DNA sequence data in scenarios 1 and 2. The selection 

probabilities are calculated using half-sample method 100 times. 
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Figure E.12. The true positive rates of the methods by selected top 100 genes according to 

the selection probabilities based on different gene-level signals for unbalance case-control 

studies (case:control=100:900) with DNA methylation data in scenarios 1 and 2. The 

selection probabilities are calculated using half-sample method 100 times. 
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Figure E.13. The comparison of computational time required by the methods with Net 

regression and the methods with two methods without considering the network structure 

(ENET and Lasso). We choose 600 pairs of tuning parameters to evaluate ENET and Net; 

500 tuning parameters to evaluate Lasso; 100 times of the half-sample approach. 

 

 

Figure E.14. The accuracy (ACC) with standard deviation for both DNA sequence and 

DNA methylation data under different simulation settings for the phenotype with a 

balanced case-control ratio. 
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Figure E.15. The true positive rates of the methods by selected top 100 genes according to 

the selection probabilities based on different gene-level signals for balance case-control 

studies with DNA sequence data in scenario 2. The selection probabilities are calculated 

using half-sample method 100 times. 
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Figure E.16. Venn diagram of the number of top 100 genes identified by BWS, LD-PRS, 

OWS, and nPC for DNA methylation data. 

 

 

Figure E.17. The KEGG pathway enrichment analysis results of BWS, LD-PRS, OWS, 

and nPC for DNA methylation data. 
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