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Abstract

This dissertation includes five Chapters. A brief description of each chapter is organized
as follows.

In Chapter One, we propose a signed bipartite genotype and phenotype network
(GPN) by linking phenotypes and genotypes based on the statistical associations. It
provides a new insight to investigate the genetic architecture among multiple correlated
phenotypes and explore where phenotypes might be related at a higher level of cellular and
organismal organization. We show that multiple phenotypes association studies by
considering the proposed network are improved by incorporating the genetic information
into the phenotype clustering.

In Chapter Two, we first illustrate the proposed GPN to GWAS summary statistics.
Then, we assess contributions to constructing a well-defined GPN with a clear
representation of genetic associations by comparing the network properties with a random
network, including connectivity, centrality, and community structure. The network
topology annotations based on the sparse representations of GPN can be used to understand
the disease heritability for the highly correlated phenotypes. In applications of phenome-
wide association studies, the proposed GPN can identify more significant pairs of genetic
variant and phenotype categories.

In Chapter Three, a powerful and computationally efficient gene-based association
test is proposed, aggregating information from different gene-based association tests and
also incorporating expression quantitative trait locus information. We show that the
proposed method controls the type | error rates very well and has higher power in the
simulation studies and can identify more significant genes in the real data analyses.

In Chapter Four, we develop six statistical selection methods based on the penalized
regression for inferring target genes of a transcription factor (TF). In this study, the
proposed selection methods combine statistics, machine learning , and convex optimization
approach, which have great efficacy in identifying the true target genes. The methods will
fill the gap of lacking the appropriate methods for predicting target genes of a TF, and are
instrumental for validating experimental results yielding from ChlIP-seq and DAP-seq, and
conversely, selection and annotation of TFs based on their target genes.

In Chapter Five, we propose a gene selection approach by capturing gene-level
signals in network-based regression into case-control association studies with DNA
sequence data or DNA methylation data, inspired by the popular gene-based association
tests using a weighted combination of genetic variants to capture the combined effect of
individual genetic variants within a gene. We show that the proposed gene selection
approach have higher true positive rates than using traditional dimension reduction
techniques in the simulation studies and select potentially rheumatoid arthritis related genes
that are missed by existing methods.

viii



1 Chapter 1

A novel method for multiple phenotype association studies
based on genotype and phenotype network

Abstract

Joint analysis of multiple correlated phenotypes for genome-wide association studies
(GWAS) can identify and interpret pleiotropic loci which are essential to understand
pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on
associations between phenotypes and genotypes provides a new insight to analyze multiple
phenotypes, which can explore whether phenotypes and genotypes might be related to each
other at a higher level of cellular and organismal organization. In this paper, we first
develop a bipartite signed network by linking phenotypes and genotypes into a Genotype
and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative
and qualitative phenotypes and is applicable to binary phenotypes with extremely
unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful
community detection method to partition phenotypes into disjoint network modules based
on GPN. Finally, we jointly test the association between multiple phenotypes in a network
module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72
complex traits in the UK Biobank show that multiple phenotype association tests based on
network modules detected by GPN are much more powerful than those without considering
network modules. The newly proposed GPN provides a new insight to investigate the
genetic architecture among different types of phenotypes. Multiple phenotypes association
studies based on GPN are improved by incorporating the genetic information into the
phenotype clustering. Notably, it might broaden the understanding of genetic architecture
that exists between diagnoses, genes, and pleiotropy.

Keywords: multiple phenotype association studies; genotype and phenotype network;
community detection

1.1 Introduction

Genome-wide association studies (GWAS) have successfully identified thousands of
single nucleotide polymorphisms (SNPs) genetically associated with a wide range of
complex human diseases and traits>2. Over the past decade, more than 10,000 associations
between SNPs and diseases/traits have been discovered®. Although GWAS have emerged
as a common and powerful tool to detect the complexity of the genotype-phenotype
associations, a common limitation of GWAS is that they focus on only a single phenotype
at a time*”’. Joint analysis of multiple correlated phenotypes for GWAS may provide more
power to identify and interpret pleiotropic loci, which are essential to understand pleiotropy
in diseases and complex traits*3°. In brief, biological pleiotropy refers to a SNP or gene
that has a direct biological influence on more than one phenotypic trait'®. Biological
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pleiotropy can offer significant insights in understanding the complex genotype-phenotype
relationships?. Therefore, multiple phenotypes are usually collected in many GWAS
cohorts and jointly analyzing multiple phenotypes may increase statistical power to
discover the cross-phenotype associations and pleiotropy®*2,

Many statistical methods have been developed to jointly test the association
between a SNP and multiple correlated phenotypes!4. The most widely used methods for
multiple phenotype association studies can be roughly classified into three categories: 1)
statistical tests based on combining either the univariate test statistics or p-values, such as
O’Brien’s method®®, adaptive Fisher’s combination (AFC)®, aSPUY, and others3; 2)
multivariate analyses based on regression methods, such as multivariate analysis of
variance (MANOVA)®, reverse regression methods (MultiPhen)?, linear mixed effect
models (LMM)?!, and generalized estimating equations (GEE)?; and 3) dimension
reduction methods, such as clustering linear combination (CLC)*?, canonical correlation
analysis (CCA)?, and principal components analysis (PCA)?*?°, However, most
phenotypes are influenced by many SNPs that act in concert to alter cellular function?®, the
above mentioned methods are only based on phenotypic correlation without considering
the genetic correlation among phenotypes. Therefore, these methods may loss statistical
power to detect the true pleiotropic effects comparing the methods based on genetic
architecture among complex diseases. To address this issue, numerous types of algorithms
to investigate the genetic correlation among complex traits and diseases have been
developed®~?°. Many of these algorithms are often in conjunction with linkage
disequilibrium (LD) information by using GWAS summary association data?®. For
example, cross-trait LD score regression has been developed to estimate genetic and
phenotypic correlation that requires only GWAS summary statistics and is not biased by
overlapping samples?’.

In 2007, a conceptually different approach based on the human disease network had
been developed, exploring whether human complex traits and the corresponding genotypes
might be related to each other at a higher level of cellular and organismal organization®.
Network analyses provide an integrative approach to characterize complex genomic
associations®.. Therefore, constructing a network based on the associations between
phenotypes and genotypes provides a new insight to simultaneously analyze multiple
phenotypes and SNPs. Notably, it might broaden the understanding of genetic architecture
that exists between diagnoses, genes, and pleiotropy®. Modules detected from human
disease networks are useful in providing insights pertaining to biological functionality®2,
Therefore, community detection methods play a key role in understanding the global and
local structures of disease interaction, in shedding light on association connections that
may not be easily visible in the network topology®:. Many community detection methods
have been applied from social networks to human disease networks, such as Louvain's
method® with modularity as a measure and core module identification to identify small and
structurally well-defined communities®?. However, most community detection methods
have been developed for unsigned networks44°.

To date, many biobanks, such as the UK Biobank*!, aggregate data across tens of
thousands of phenotypes and provide a great opportunity to construct the human disease
network and perform joint analyses of multiple correlated phenotypes. The electronic
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health record (EHR)-driven genomic research (EDGR) workflow is the most popular way
to analyze multiple diagnosis codes in Biobank data, at its core, which is the use of EHR
data for genomic research in the investigation of population-wide genomic
characterization*2. In most EHR systems, the whole phenome can be divided into numerous
phenotypic categories according to the first few characters of the International
Classification of Disease (ICD) billing codes*:. However, the ICD-based categories are
based on the underlying cause of death rather than on the shared genetic architecture among
all complex diseases and traits. Meanwhile, the phenotypes in large biobanks usually have
extremely unbalanced case-control ratios. Therefore, linking phenotypes, especially EHR-
derived phenotypes, with genotypes in a network is also very important to examine the
genetic architecture of complex diseases and traits.

1.2 Material and Methods

1.2.1 Overview of Methods

In this paper, we develop a bipartite signed network by linking phenotypes and genotypes
into a Genotype and Phenotype Network (GPN; Figure 1.1a). The GPN can be constructed
by a mixture of quantitative and qualitative phenotypes and is applicable to phenotypes
with extremely unbalanced case-control ratios for large-scale biobank datasets since the
saddlepoint approximation** is used to test the association between genotype and
phenotype with extremely unbalanced case-control ratio. After projecting genotypes into
phenotypes, the genetic correlation of phenotypes can be calculated based on the shared
associations among all genotypes (Figure 1.1b). We then apply a powerful community
detection method to partition phenotypes into disjoint network modules using the
hierarchical clustering method and the number of modules is determined by perturbation
(Figure 1.1c)®. The phenotypes in each network module share the same genetic
information. After partitioning phenotypes into disjoint network modules, a statistical
method for multiple phenotype association studies can be applied to test the association
between phenotypes in each module and a SNP, then a Bonferroni correction can be used
to test if all phenotypes are associated with a SNP (Figure 1.1d). To jointly analyze the
association between multiple phenotypes in each module with a SNP, we use six multiple
phenotype association tests, including ceCLC*¢, CLC?, HCLC*, MultiPhen®, O’Brien®®,
and Omnibus!2. The advantage of the association test based on network modules detected
by GPN is that phenotypes in a network module are highly correlated based on the genetic
architecture, therefore, the association test is more powerful to identify pleiotropic SNPs.
After we obtain the GWAS signals from the previous steps, post-GWAS analyses can be
applied to understand the high level of biological mechanism, such as pathway/tissue
enrichment analysis and colocalization of GWAS signals and eQTL analysis in the specific
disease-associated tissue (Figure 1.1e-g). The construction of GPN, community detection
method, and six multiple phenotype association tests with and without considering the
network modules detected by GPN have been implemented in R, which is an open-source
software and publicly available on GitHub: https://github.com/xueweic/GPN.
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Figure 1.1. Overview of the method. a. Construction of a signed bipartite network, GPN.
Each phenotype (yellow square) and each SNP form a directed edge which represents the
strength of the association, where the red dashed line indicates that the minor allele of the
SNP is a protective allele to the phenotype, and the blue dashed line indicates that the minor
allele of the SNP is a risk allele to the phenotype. b. Construction of a signed network,
PPN, which is the one-mode projection of GPN on phenotypes. ¢. The powerful community
detection method is used to partition phenotypes into disjoint network modules with
different colors. d. Multiple phenotype association tests are applied to test the association
between phenotypes in each of the network modules and a SNP, then the Bonferroni
correction is used to obtain the overall p-value. e. GWAS signals are identified by a
multiple phenotype association test with or without considering network modules. f.
Functional enrichment analysis based on the detected GWAS signals and the publicly
available functional database. g. Colocalization of GWAS signals and eQTL analysis.



1.2.2 Construction of the Genotype and Phenotype Network

Consider a sample with n unrelated individuals, indexed by i=1,---,n. Suppose each
individual has a total of K phenotypesand M SNPs. Let Y=(yik) bean nx K matrix of
K phenotypes, where y, denotes the phenotype value of the i" individual for the k"
phenotype. The phenotypes can be both quantitative and qualitative, especially for
phenotypes with extremely unbalanced case-control ratios. Let Gz(gim) be an nxM
matrix of genotypes, where g, represents the genotypic score of the i" individual at the
m™ SNP which is the number of minor alleles that the i individual carries at the SNP.

We first introduce a signed bipartite genotype and phenotype network (GPN)
(Figure 1.1a). The weight of an edge represents the strength of the association between the
two nodes (one is the phenotype and the other one is the genotype). The strength of the
association has two directions, positive and negative. The adjacency matrix of GPN is a

KxM matrix T=(T,,),where T, represents the strength of the association between the

k™ phenotype and the m™ SNP. To calculate the adjacency matrix T, we consider both
the strengths and the directions of the associations. We first consider that there are no
covariates. The strength of the association T, can be estimated by the score test statistic

Skm=Zi”:1(yik—)7k)gim and its p-value p,, under the generalized linear models

g (E(yik |gim )) = ﬂ0km +:Blkm9im (k=1--,K and m=1---,M) . Here, y, = Zinzl yik/n
and g( ) is a monotonic link function. Two commonly used link functions are the identity
link for quantitative traits and the logit link for binary traits. If there are p covariates for
the i" individual, Xy, %, » We adjust genotype and phenotype for the covariates using
the following linear models proposed by Price et al.*° and Sha et al.>°,

Yik = Qg T oy Xy +- -+ X + &

Oim =70 t X+t 7 X, Ty
T T
where & =(&y,-,&y) and 7, =(7y,,---,7,,) denote the error terms of the k"

phenotype and the m™ SNP, respectively. We use the residuals of the respective linear
model to replace the original genotypes and phenotypes.

For quantitative traits or binary traits with fairly balanced case-control ratios, we
can use the normal approximation of S, ~ N (0,ak2m) to calculate p-value p,,, under the

null hypothesis that the k™ phenotype and the m™ SNP have no association, where
oo =2 (V=) 2 (G —gm)z/n and @, :Zi“:lgim/n. Dey et al. * pointed out
that a normal approximation of S, has inflated type I error rates for binary traits with

unbalanced case-control ratios. Therefore, we use saddlepoint approximation to calculate
the p-value p,, for the phenotypes with unbalanced, especially extremely unbalanced
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case-control ratios*. We define the (k, m)th element of the adjacency matrix of GPN, T,
,as T, =sign (S, ) Fsi (1— Py ) » Where F. () denotes the CDF of 4. That is, we use
sign(S,,) to define the direction of the association and use F;(1-p,,) to define the
strength of the association. T, >0 and T, <O represent two directions of the association
between the k™ phenotype and the m™ SNP. If T_ >0, the minor allele of the m" SNP is
a protective allele to the k" phenotype; if T, <0, the minor allele of the m” SNP is a risk
allele to the k™ phenotype.

Although a bipartite network may give the most complete representation of a
particular network, it is often convenient to work with just one type of nodes, that is,
phenotypes or genotypes. The Phenotype and Phenotype Network (PPN) is the one-mode
projection of GPN on phenotypes. In PPN, nodes only represent phenotypes (Figure 1.1b).

Let W:(Wk,) denote the adjacency matrix of the PPN in which each edge has a positive
or negative weight. We define W, as the weight of the edge connecting the k™ and I"
phenotypes, which is given by

Z::l:l(Tkm _-rk)(Tlm _-rl) k,1=1--- K.

Wi = M —\2 M —\2 '’
\/Zm:l(-rkm _Tk) Zm:l(Tlm _T')

Here, W, is the genetic correlation between the k™ and 1™ phenotypes based on
the association strengths T, for k=1,---,K and m=1---,M . Thus, the PPN is also a
signed network.

1.2.3 Community Detection Method

We apply a powerful community detection method to partition K phenotypes into disjoint
network modules using the Ward hierarchical clustering method with a similarity matrix
defined by the genetic correlation matrix W . The number of network modules is
determined by the following perturbation procedure®. In details, we first use the Ward
hierarchical clustering method to group the K phenotypes into k, (k,=1---,K-1)

clusters and build the KxK' connectivity matrix C,with the (k,l)th element of matrix
C,, given by
C, (k)= 1, if phenotype k and phenotype I are in the same cluster
“ o, otherwise '

Then, we generate B perturbed data sets. The b"™ perturbed data set is generated
by T& =Ty +&e » Where &, ~N(0,6%), o =median(var(T,), -~ var(T,)) , and
T, =(Tymre+ Tem) - We denote the connectivity matrix of k; cluster based on the b"

m

perturbed data set by C{”. Let A_=>"" C\" /B and D, =|A, -C,|. F, denotes the
6



empirical CDF of the elements of D, , and AF_ denotes the area under the curve of F_,
where F_(X) :#{Dko (Lk)<x:l,k=1,--, K}/K2 . Then, the optimal number of network
modules is given by

C= zir:%“era}{|AFk+l - AR }.

We can use the identified C network modules to further investigate the
associations between phenotypes in each network module and SNPs.

1.2.4 Multiple Phenotype Association Tests

After we obtain C network modules for the phenotypes, we apply a multiple phenotype
association test to identify the association between phenotypes in each of the C network
modules and a SNP. Any multiple phenotype association test can be applied here. In this
article, we apply six commonly used multiple phenotype association tests to each network
module, including ceCLC*, CLC?, HCLC*, MultiPhen?, O’Brien®®, and Omnibus®? (see
details in Text A.1), then a Bonferroni correction is used to adjust for multiple testing for
the C network modules to test if all phenotypes in the C network modules associated with
a SNP.

1.2.5 Data Simulation

We conduct comprehensive simulation studies to evaluate the type I error rates and powers
of multiple phenotype association tests based on network modules detected by GPN and
compare them to the powers of the corresponding tests without considering network
modules. To evaluate the performance of our proposed method, we consider different types
of phenotypes: (i) mixture phenotypes: half quantitative and half qualitative with balanced
case-control ratios, and (ii) binary phenotypes: all qualitative but with extremely
unbalanced case-control ratios. We generate N individuals with M SNPs and K
phenotypes. The genotypes at M SNPs are generated according to the minor allele
frequency (MAF) under Hardy-Weinberg Equilibrium (HWE). Below, we first describe
how to generate quantitative phenotypes. Suppose that there are C phenotypic categories

and k = K/C phenotypes in each phenotypic category. Let Y, =(ycl,---, yck) denote the

phenotypes in the c" category. Similar to Sha et al. 2, we generate k quantitative
phenotypes in each category using the following factor model,

Y,=G-B_+c,- f -1 +1-c -E,,

where G=(G,,---,G,,) is the matrix of M SNPs with dimension NxM which are
generated from a binomial (2, MAF) distribution for each SNP; B isan M xk matrix of

effect sizes of M SNPs on k phenotypes in the c" phenotypic category;
E. ~MVN, (0,X) is an Nxk matrix of error term with £=(o; ), where o; = o' and

p is a constant between 0 to 1; f_ is a factor vector in f =(f,,---, f.) which follows



MVN (0,Z ), where £, =(1-p, )l +p,dc, p, =corr(f,, f) if i, J. isa CxC

(R
matrix with all elements of 1, and 1. is the identity matrix; c, is a constant number which
represents a proportion. Therefore, the correlation between the i phenotype and the j"
phenotype within each category is c? +(1—c§) p“’” and the between-category correlation
is ¢Zp; .

To generate a qualitative disease affection status, we use a liability threshold model
based on a quantitative phenotype and its case-control ratio. Let n, and n_ denote the
number of affected individuals and the number of non-affected individuals. For a given
case-control ratio r and sample size N , n,=N/(r+1) and n,=rN/(r+1) . An
individual is defined to be affected if the individual’s phenotype is in the top n, of all

phenotypes. For each phenotype, the case-control ratio is randomly chosen from a set S .
The set S contains all case-control ratios with the number of cases greater than 200 from
UK Biobank ICD-10 code level 3 phenotypes (see Real Dataset).

Based on the factor model, we consider different numbe C = 2rs of phenotypes, 60,
80, and 100, and different sample sizes. For mixture phenotypes, the sample sizes are 2,000
and 4,000; for binary phenotypes, the sample sizes are 10,000 and 20,000. We consider the

following six models (Table A.1) with M =2,000, MAF ~U(0.05,05), p=0.3,
c2=0.5, and p, =0.3/c2 (between-category correlation is 0.3). ﬁizﬂ(l,---,l)T and

J, = kz_ﬂl(l k)T are two types of effect sizes.
+
Model 1: M, =100, C =2, and all phenotypes are associated with at least one SNP

with the same effect sizes but different directions. That is, the first 50 SNPs affect the
phenotypes in the first category with /11 and the second 50 SNPs affect the phenotypes in

the second category with -4, .

Model 2: M_,, =100, , and all phenotypes are associated with at least one SNP with
different effect sizes and different directions. That is, the first 50 SNPs affect the
phenotypes in the first category with il and the second 50 SNPs impact the phenotypes in

the second category with -iz .

Model 3: M_,, =100, C=5, and only phenotypes in the first two categories are
associated with the first 200 SNPs with the same settings as in Model 1. The phenotypes
in the remaining three categories do not associate with any SNPs.

Model 4: M, =100, C=5, and only phenotypes in the first two categories are

associated with the first 100 SNPs with the same settings as in Model 2. The phenotypes
in the remaining three categories do not associate with any SNPs.



Model 5: M,
That is, the first 50 SNPs affect the phenotypes in the first category with il , the second 50
SNPs affect the phenotypes in the second category with )ﬁ the third 50 SNPs affect the
phenotypes in the third category with iz , and the fourth 50 SNPs affect the phenotypes in

=200, C=4, and all phenotypes are associated with at least one SNP.

the fourth category with -4, .

Model 6: M, =200, C=10, and only phenotypes in the first four categories are
associated with the first 200 SNPs with the same settings as in Model 5. The phenotypes
in the remaining six categories do not associate with any SNPs.

1.2.6 Comparison of Methods

We use six multiple phenotype association tests to evaluate the performance of our
proposed method based on network modules. Therefore, we consider the following two
types of comparisons.

Comparison 1: Apply six multiple phenotype tests without considering network modules.

We test the association between K phenotypes and a SNP. For each simulation model, we

run B Monte-Carlo (MC) runs. The steps for the b™ MC run are as follow. i). Generate
N individuals with M SNPs and K phenotypes in C categories; ii). Test the association
between K phenotypes and M SNPs using each of the multiple phenotype association

tests. The p-value for the m™ SNP in the b" MC run is given by p” . To evaluate the type

| error rates of the tests, we generate phenotypes from the null model, that is, for each
model, we set f=0. The type | error rate, T1E, can be calculated by

LS <a)

T1E,, = Bx M

To evaluate power, we generate phenotypes from each of the six models with

different effect sizes 4. The power, power, , , can be calculated by
B Mcausal b
Zb:lZm:l I ( '(“) < CZ)
power, o = B2 M :

causal

Comparison 2: Apply six multiple phenotype tests by considering network modules.
For each simulation model, we run B MC runs. We use the following steps for b" MC
run. i). Generate N individuals with M SNPs and K phenotypes in C categories; ii).

Construct the GPN based on the shared genetic architecture; iii). Detect C® network
modules for the K phenotypes using the community detection method; iv). Test the

association between phenotypes in each of the C® network modules and each of M SNPs
using one of the six tests. We use péﬁ? to denote the p-value of the assocition test between

phenotypes in the ¢ network module and the m™ SNP for c=1,2,---,C®. To evaluate
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the type I error rate of a test based on the network modules, we generate phenotypes under
the null model. That is, for each model, we set f=0. The type | error rate, T1E,, can

be calculated by

Z::lZ::l I (C_Ti,g(b) { pg;)} < a/C(b)j
Bx M '

To evaluate power, we generate phenotypes for each model with different effect
sizes f. The power, power,. , can be calculated by

)Y el (C_minb (P} <a/ C“’))

TlENET =

c®

POWEI\er = BxM

causal

1.2.7 Real Dataset

The UK Biobank is a population-based cohort study with a wide variety of genetic and
phenotypic information®?. It includes ~ 500K people from all around the United Kingdom
who were aged between 40 and 69 when recruited in 2006-2010%°3, Genotypes from the
UK Biobank have extracted 488,377 participants with 784,256 variants in autosomal
chromosomes. The preprocess of genotype is achieved by quality controls (QCs) which are
performed on both SNPs and individuals using PLINK 1.9%*. Same QCs as Liang et al.*’
(Figure A.1), we filter out SNPs with missing rates > 5%, Hardy-Weinberg equilibrium
exact test p-values < 10°°, and MAF < 5%. We also filter out individuals with missing rates
> 5% and individuals without sex. After quality controls, 288,647 SNPs and 466,580
individuals remain for our next step analysis.

In this study, we define EHR-derived phenotypes using the ICD-10 codes, which
is a standardized coding system for defining disease status as well as for billing purposes®.
After truncating each full ICD-10 code to UK Biobank ICD-10 level 3 code, we consider
72 unique truncated 1CD codes with the number of cases greater than 200 in Chapter XIII
(Diseases of the musculoskeletal system and connective tissue), such as rheumatoid
arthritis (M06.9), psoriatic arthropathies (M07.3), etc. Note that there are two phenotypes
(M45: Ankylosing spondylitis and M45.X9: Ankylosing spondylitis (Site unspecified))
which are not truncated by the 1ICD-10 code digits, however, these two phenotypes are
defined by UK Biobank level 3 code. For each individual, if a corresponding truncated ICD
code ever appears, we denote the EHR-derived phenotype for that individual as “17,
otherwise, we denote the EHR-derived phenotype for that individual as “0”. After
truncating ICD-10 codes, we generate a total of 502,591 individuals who have 72 EHR-
derived phenotypes in Chapter XIIl. Following the phenotype preprocess introduced in
Liang et al.*’, 337,285 individuals are kept (Figure A.1).

After data preprocessing procedures, individuals with both genotype and phenotype
information are used in our study. There is a complete set of 322,607 individuals across
288,647 SNPs with 72 EHR-derived phenotypes. Among the 72 phenotypes, lumbar and
other intervertebral disk disorders with myelopathy (M51.0) has the smallest case-control
ratio 0.000658 with 212 cases and 322,395 controls; Gonarthrosis (M17.9) has the largest
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case-control ratio 0.03937 with 12,218 cases and 310,389 controls. Therefore, all of the
phenotypes we considered in our analysis have extremely unbalanced case-control ratios.
Furthermore, each phenotype is adjusted by 13 covariates, including age, sex, genotyping
array, and the first 10 genetic principal components (PCs)*®. The analysis is performed
based on the adjusted phenotypes.

1.2.8 Correlation Analysis

To compare the genetic and phenotypic correlations among the 72 EHR-derived
phenotypes, we apply cross-triat LDSC regression?’ to obtain the genetic correlation and
phenotypic correlation which can provide useful etiological insights?’. GWAS summary
statistics are generated from the association between phenotype and genotype which are
calculated by the saddlepoint approximation. We use the precomputed LD scores of
European individuals in the 1000 Genomes project for high-quality HapMap3 SNPs
(‘eur_w_1d _chr’). For the phenotypic correlation, we consider 70 phenotypes excluding
M79.6 (Enthesopathy of lower limb) and M67.8 (Other specified disorders of synovium
and tendon), since the heritabilities of these two phenotypes estimated by LDSC are out of
bounds. For the genetic correlation, we only consider 52 phenotypes exlcuding 20
phenotypes, where the heritabilities of these phenotypes are not significantly different from
zero. We apply the K-means hierarchical clustering method to compare the correlations of
phenotypes obtained by our proposed GPN and LDSC.

1.2.9 Post-GWAS Analyses

Pathway enrichment analysis. To better understand the biological functions behind the
SNPs identified by one multiple phenotype association test, we identify the pathways in
which the identified SNPs are involved. We use the functional annotation tool named
Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource
(DAVID: https://david.ncifcrf.gov/)*>* for the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. A mapped gene used in the pathway
enrichment analysis denotes the gene that includes at least one identified SNPs with a 20kb
window region. The biological pathways with FDR < 0.05 and enriched gene count > 2 are
considered statistically significant®’.

Tissue enrichment analysis. To prioritize and interpret the GWAS signals and identify
lead SNPs, tissue enrichment analyses are performed using the Functional Mapping and
Annotation (FUMA: https://fuma.ctglab.nl/)*® platform and the GWAS signals from one
multiple phenotype association test in N.O. and in NET, respectively. FUMA first performs
a genic aggregation analysis of GWAS association signals to calculate gene-wise
association signals using MAGMA, which is a commonly used generalized gene-set
analysis of GWAS summary statistics®. Then, it subsequently tests whether tissues and
cell types are enriched for expression of the genes with gene-wise association signals. For
tissue enrichment analysis, we use 30 general tissue types in GTEx v8 reference set
(https://gtexportal.org/homey/).

Colocalization analysis. As most associated variants are noncoding, it is expected that they

influence disease risk through altering gene expression or splicing®. The colocalization

analysis is a way to identify the association of a GWAS SNP and a gene expression QTL

that are colocalized. We perform colocalization analysis using the ‘coloc’ package in R®,
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a Bayesian statistical methodology that tests pairwise colocalization of eQTLs with unique
identified SNPs by ceCLC in NET and N.O. from the UK Biobank dataset. The SNP-gene
associations in the Muscle Skeletal tissue are downloaded from GTEx v7. We use the

default of prior probabilities, p, = p, =10 and p, =107, fora causal variantinan eQTL
or a GWAS SNP and a shared causal variant between eQTL and GWAS SNP, respectively.

1.3 Results

1.3.1 Simulation studies

We first use extensive simulation studies to validate multiple phenotype association studies
based on the newly proposed GPN. In the simulation studies, we assess the type | error rate
and power with different numbers of phenotypes (60, 80, and 100), different types of
phenotypes along with different sample sizes: (i) mixture phenotypes are half quantitative
and half qualitative with balanced case-control ratios for sample sizes of 2,000 and 4,000,
and (ii) binary phenotypes are all qualitative but with extremely unbalanced case-control
ratios for sample sizes of 10,000 and 20,000. Similar to the simulation models introduced
in Sha et al.*2, we generate six different models (see Data Simulation for a full description
of the simulation models).

Type | Error Rates.

Table A.2-A.7 summarize the estimated type | error rates of six multiple phenotype
association tests for mixture phenotypes under models 1-6, respectively. “N.O.” represents
the type | error rates of multiple phenotype association tests being calculated without
considering network modules; “NET” presents the type I error rates of the tests being
evaluated by considering network modules detected by GPN. Based on 500 Monte-Carlo

(MC) runs which is the same as 10° replicates, the 95% confidence intervals (Cls) for type
| error rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062)
and (0.804,1.196), respectively. The bold-faced values indicate that the values are beyond
the upper bounds of the 95% Cls. Almost all of the estimated type | error rates of ceCLC,
CLC, HCLC, and Omnibus tests are within 95% CIs. However, O’Brien in NET has
inflated type I error rates under model 6. MultiPhen has inflated type | error rates for the
sample size of 2,000. If the sample size is 4000, MultiPhen in N.O. also inflates type | error
rates, but MultiPhen in NET can control type | error rates for the significance level is
0.0001. Table A.8-A.13 summarize the estimated type | error rates of six tests for binary
phenotypes with extremely unbalanced case-control ratios under models 1-6. Similar to
Tables A.2-A.7, ceCLC, CLC, HCLC, and Omnibus have corrected type | error rates at
almost all simulation settings. However, O’Brien in NET has inflated type I error rates and
MultiPhen has inflated type | error rates at all scenarios.

Power comparisons.

For power comparisons, we consider 100 causal SNPs for models 1-4 and 200 causal SNPs
for models 5-6 (see Data Simulation). In each of the simulation models, the power is
evaluated using 10 MC runs which is the same as 1,000 replicates for models 1-4 and 2,000
replicates for models 5-6. Meanwhile, the power is evaluated at the Bonferroni corrected
significance level of 0.05 based on the number of causal SNPs in each MC run.
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Figure 1.2. Power comparisons of the six tests as a function of effect size £ under the six
models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 80 and the sample size is 4,000. The power
of all of the six tests is evaluated using 10 MC runs.

power
power

p

Figure 1.2 (Figure A.2) shows the power of six multiple phenotype association
tests under six simulation models for different effect sizes with a total of 80 mixture
phenotypes and a sample size of 4,000 (2,000). From Figure 1.2 and Figure A.2, we can
see that: (i) All tests in NET (filled by the dashed line) are much more powerful than those
in N.O., indicating that tests based on network modules detected by GPN are more
powerful than the tests without considering network modules. Since the community
detection method can partition phenotypes into different network modules based on shared
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genetic architecture, the phenotypes can be clustered in the same module if they have
higher genetic correlations. In particular, the power of O’Brien'® increases a lot in the case
of a SNP affecting phenotypes in different directions. (ii) ceCLC is more powerful than
other tests in both N.O. and NET under the six simulation models. (iii) As sample size
increases, the power of all multiple phenotype association tests increases. We also perform
power comparisons for a total of 60 and 100 mixture phenotypes with 2,000 and 4,000
sample sizes for different effect sizes under the six simulation models (Figures A.3- A.6),
respectively. We observe that the patterns of the power are similar to those observed in
Figure 1.2 and Figure A.2.

To mimic phenotypes in the UK Biobank, we also consider the case with all
phenotypes being binary with extremely unbalanced case-control ratios. The phenotypes
are generated based on extremely unbalanced case-control ratios which are randomly
selected from the set of case-control ratios with cases greater than 200 from UK Biobank

ICD-10 code level 3 phenotypes (case-control ratios belong to [0.000658, 0.03937]). In
this simulation, we consider a total of 60, 80, and 100 phenotypes along with two sample
sizes, 10,000 and 20,000. Figures A.7-A.12 show the power comparisons of the six tests
under six simulation models. The patterns of power comparisons for binary phenotypes are
similar to those observed in Figure 1.2 and Figure A.2-A.6.

1.3.2 Real Data Analysis based on UK Biobank

Furthermore, we apply the newly proposed multiple phenotype association test based on
network modules detected by GPN to a set of diseases of the musculoskeletal system and
connective tissue across more than 300,000 individuals from the UK Biobank.

Network Module Detection.

We construct GPN based on 72 EHR-derived phenotypes in the diseases of the
musculoskeletal system and connective tissue with 288,647 SNPs in autosomal
chromosomes in the UK Biobank. Due to all phenotypes in our analysis being extremely
unbalanced, the strength of the association between phenotype and genotype is calculated
by the saddlepoint approximation**. After the construction of GPN, we apply a powerful
community detection method and these 72 phenotypes are partitioned into 8 disjoint
network modules (Figure 1.3). There are 2-37 phenotypes in each module.

We can see that the network modules are not consistent with the 1CD-based
categories which are based on the underlying cause of death rather than the shared genetic
architecture among all complex diseases. For example, Figure 1.3 shows three phenotypes,
M32.9 Systemic lupus erythematosus, M35.0 Sicca syndrome, and M65.3 Trigger finger,
are detected in network module 111 (in red). However, these three phenotypes do not belong
to the same ICD-category (Data-Field 41202 in UK Biobank), where M35.0 is one of the
diseases in the other systemic involvement of connective tissue (M35) and M65.3 belongs
to the synovitis and tenosynovitis (M65). To investigate the genetic correlation among
these three phenotypes, we use the saddlepoint approximation to test the association
between each phenotype and each SNP. As shown in Figure A.13, the Manhattan plots for
the three phenotypes in network module Il (M32.9, M35.0, and M65.3) have a similar
pattern. Although the synovitis and tenosynovitis (M65.9) and M65.3 belong to the same
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ICD code category (M65), the Manhattan plot of M65.9 shows that there are no SNPs
significantly associated with this phenotype and the genetic correlation between M65.9 and
M65.3 is not strong. Therefore, we can conclude that the community detection method
based on our proposed GPN can partition phenotypes into different categories based on the
shared genetic architecture.

=0,

. . I < .‘ M18.1
. N . . M18.9

SSMIS.9 u70.6

Module | (37)

@ Module Il (4)

@ Module 111 (3)
B Module IV (10)
B Module V (10)

3§ Module VI (3)
B Module VII (3)
Module VIII (2)

Figure 1.3. The network modules detected by the powerful community detection method
based on GPN. The blocks with different color indicate different modules, where the values
in the legend represent the number of phenotypes in each network module. The labels of
phenotypes are listed in the form of ICD-10 code and the corresponding diseases can be
found in the UK Biobank. The connection between two phenotypes represents the
absolutely value of the weight greater than 40. The graph was prepared by Cytoscape.

Furthermore, we apply the hierarchical clustering method to compare the genetic
correlation of phenotypes obtained by our proposed GPN and that estimated by LDSC ?'.
Figures A.14-A.15 show that dendrograms of hierarchical clustering method based on the
genetic correlation of phenotypes obtained by GPN, and the phenotypic or genetic
correlation estimated by LDSC, respectively. In Figure A.14, the cluster results of the
phenotypic correlation estimated by LDSC are similar to that of the genetic correlation
based on GPN, but GPN can separately identify two highly genetic correlated phenotypes,
ankylosing spondylitis (M45) and ankylosing spondylitis with site unspecified (M45.X9).
However, the cluster results of the genetic correlation estimated by LDSC are different
from those obtained by GPN. Some phenotypes in the same UK Biobank level 1 category
can be clustered in the same group by GPN but not by LDSC (Figure A.15).

Interpretation of the Association Test.

We apply five multiple phenotype tests (ceCLC, CLC, HCLC, O’Brien, and Omnibus) to
test the association between 72 EHR-derived phenotypes and each of 288,647 SNPs in the
UK Biobank. MultiPhen is not considered here since it has inflated type | error rates,
especially for the phenotypes with extremely unbalanced case-control ratios.
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First, we apply the five tests in N.O. to test the association between 72 phenotypes
and each SNP. We use the commonly used genome-wide significance level 5x10°®.
Figure 1.4(a) shows the Venn diagram of the number of SNPs identified by the five tests.
There are 11 SNPs identified by all five tests. ceCLC identifies 647 SNPs with 32 unique
SNPs not being identified by other four tests. Among the 32 novel SNPs, two SNPs,

rs13107325 (p-value = 4.6x10'°) and rs443198 (p-value = 1.73x10™), are significantly
associated with at least one of the 72 phenotypes reported in the GWAS catalog (Table
A.14). rs13107325 is reported to be associated with osteoarthritis (M19.9) 62 and rotator
cuff syndrome (M75.1) ®3. Meanwhile, rs13107325 is mapped to gene SLC39A8 that is also
reported to be significantly associated with multisite chronic pain (M25.5) 54, rs443198 is
mapped to gene NOTCH4 which is associated with systemic sclerosis (M34) %. Moreover,
the mapped gene NOTCH4 is one of the most important genes reported to be associated
with multiple diseases in the disease category of the musculoskeletal system and
connective tissue, such as rheumatoid arthritis (M06.9) %6, psoriatic arthritis (M07.3) ¢,
Takayasu arteritis (M31.4) ®8, systemic lupus erythematosus (M32.9) ®°, and appendicular
lean mass (M62.9) °. We map these 32 unique SNPs into genes with 20 kb upstream and
20 kb downstream regions. There are 27 out of 32 SNPs with corresponding mapped genes
associated with 14 phenotypes reported in the GWAS catalog (Table A.14). These 14
phenotypes and corresponding ICD-10 codes are summarized in Table A.15.

Next, we test the associations between phenotypes in each of the eight network
modules detected by the GPN and each SNP. Then, we adjust the p-value of each method
for testing the association between a SNP and all of the 72 phenotypes by Bonferroni
correction. We adopt the commonly used genome-wide significance level 5x10°%. Figure
1.4(b) shows that all tests can identify more SNPs comparing with the number of SNPs
identified in N.O. ceCLC in NET identifies 980 SNPs, where 647 SNPs are identified in
N.O. Meanwhile, there are 950 SNPs identified by HCLC, 949 SNPs by CLC, and 891
SNPs by Omnibus, where the corresponding results in N.O. are 354 SNPs, 808 SNPs, and
634 SNPs, respectively. In particular, the number of SNPs identified by O’Brien in NET is
increased a lot, where there are 948 SNPs identified in NET and only 57 SNPs identified
in N.O. As the results shown in Figure 1.4(b), there are 807 overlapped SNPs identified
by all five tests in NET which is much larger than 11 overlapped SNPs identified in N.O.

To compare the difference between the tests in N.O. and in NET, we summarize
the number of overlapping SNPs identified by each method in N.O. and NET in Figure
A.17. We observe that most SNPs identified in N.O. can be identified in NET. Meanwhile,
tests in NET can identify much more SNPs than those in N.O. As mentioned previously,
the advantage of the tests based on the network modules detected by GPN is that we can
identify potential pleiotropic SNPs and also interpret SNP effects on which network
modules based on the shared genetic architecture. Notably, we also investigate the smallest
p-value obtained by each of the eight phenotypic modules for each of the 980 SNPs
identified by ceCLC. For example, 396 SNPs have the smallest p-values for testing the
association with network module Ill. Based on the results of the univariate score test
corrected for saddlepoint approximation (SPAtest) (Figure A.13), 104 SNPs are
significantly associated with at least one phenotype in module I11. All of these 104 SNPs
can be identified by ceCLC, HCLC, and Omnibus and 103 SNPs can be identified by CLC
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and O’Brien in NET. The results show that the tests based on network modules can detect
potential pleiotropic loci which can not be detected by the univariate test.

(a) N.O. ceCLC (b) NET ceCLC

rien

Figure 1.4. The Venn diagram of the number of SNPs identified by ceCLC, CLC,HCLC,
O’Brien, and Omnibus in N.O. (a) and in NET (b). The number below each method
indicates the total number of SNPs identified by the corresponding method.

Pathway Enrichment Analysis.

ceCLC is more powerful than the other four tests in simulations and also can identify more
SNPs in real data analysis, therefore, we only perform the post-GWAS analyses of the
SNPs identified by ceCLC. There are 191 mapped genes containing at least one of the 647
SNPs identified by ceCLC in N.O. and 252 mapped genes containing at least one of the
980 SNPs identified by ceCLC in NET. In this study, significantly enriched pathways are
identified by those genes with false discovery rate (FDR) < 0.05.

From the pathway enrichment analyses, we observe that ceCLC based on the
network modules identifies more significantly enriched pathways than that without
considering network modules. Figure 1.5 shows that 16 pathways are significantly
enriched by 191 mapped genes in N.O. and 29 pathways are significantly enriched by 252
mapped genes in NET, where all of the 16 pathways identified in N.O. are also identified
in NET. Two pathways identified in N.O. and NET, rheumatoid arthritis (hsa05323; FDR
= 8.72x107 in N.O. and FDR = 6.48x10°® in NET) and systemic lupus erythematosus
(hsa05322; FDR = 4.25x10™ in N.O. and FDR = 1.02x10 in NET) showed in Figure
1.5, are related to the diseases of the musculoskeletal system and connective tissue. For
example, osteopetrosis (M19.9) and rheumatoid arthritis (M06.9) are related to the
rheumatoid arthritis pathway. Meanwhile, the pathway related to at least one of the 72
phenotypes, hematopoietic cell lineage (hsa04640; FDR = 1.08x107°), is only identified
in NET. Notably, DBGET (https://www.genome.jp/dbget-bin/www_bget?hsa05322)
reports that there are two pathways related to systemic lupus erythematosus: antigen
processing and presentation (hsa04612; FDR = 4.83x10° in N.O. and FDR = 2.82x10*
in NET) identified in both N.O. and NET and cell adhesion molecule (hsa04514; FDR =
1.04x107°) only identified in NET.
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Meanwhile, the above five pathways related to the diseases of the musculoskeletal
system and connective tissue contain more enriched genes identified by ceCLC in NET
than the enriched genes identified in N.O. For example, 43 SNPs within six mapped genes
identified by ceCLC in N.O. are enriched in rheumatoid arthritis pathway, including
ATP6V1G2, HLA-DRA, LTB, TNF, HLA-DRB1, and HLA-DQAL; and 111 SNPs within 12
mapped genes in NET are enriched in this pathway, including HLA-DMA, HLA-DMB,
ATP6V1G2, HLA-DRA, LTB, HLA-DOA, TNF, HLA-DOB, HLA-DQA2, HLA-DRBI,
HLA-DQAL, and HLA-DQB1. Compared with the results of ceCLC in N.O., the test based
on network modules identifies six more enriched genes, especially, gene HLA-DMB

(including rs241458; p-value = 7.09x107°) and gene HLA-DOA (including rs3097646; p-
value = 5.50x10°°) that have not been reported in the GWAS catalog.
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Figure 1.5. The results for the pathway enrichment analysis based on the genes identified
by ceCLC and the KEGG database in N.O. (a) and NET (b). The red marked pathways
denote the pathways related to the diseases of the musculoskeletal system and connective
tissue. There are 191 genes in N.O. and 252 genes in NET that are applied to the pathway
enrichment analysis.

Tissue Enrichment Analysis.

To further investigate the biological mechanism, we use FUMA?® to annotate 191 mapped
genes in N.O. and 252 mapped genes in NET in terms of biological context. Due to these
mapped genes associated with at least one phenotype in the diseases of the musculoskeletal
system and connective tissue, we can test if these mapped genes are enriched in the
relevant-tissue based on FUMA. Figure A.17 shows the ordered enriched tissues based on
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the mapped genes identified by ceCLC in N.O. and NET. We observe that the mapped
genes identified by ceCLC in N.O. are most enriched in brain-related tissue (Figure
A.17(a)). Nevertheless, Figure A.17(b) shows that the mapped genes identified by ceCLC
in NET are significantly enriched in the Muscle-Skeletal tissue with p-value < 0.05. The
construction of GPN is benefit to multiple phenotype association studies by clustering the
related phenotypes based on the genetic information. Notably, the identified SNPs are more
likely to be within the same relevant biological context.

Colocalization of GWAS and eQTL analysis.

We perform the colocalization analysis on the 33 unique SNPs identified by ceCLC (Table
A.14; one SNP in NET and 32 SNPs in N.O.) and all SNP-gene association pairs in the
Muscle Skeletal tissue reported in GTExX. Figure A.18 shows the colocalization signals
with the uniquely identified SNPs by ceCLC that are selected to be the lead SNPs in the
colocalization analysis. NET identifies one unique SNP, rs4148866, which is mapped to
gene ABCBO9. Even if gene ABCB9 has no reported associations with any diseases of the
musculoskeletal system and connective tissue in the GWAS Catalog, the Bayesian
posterior probability of colocalization analysis for shared variant of significant SNPs
identified by ceCLC and gene expression in the Muscle Skeletal tissue (PPna) is 98.4%.
The higher value of PPns indicates that gene ABCB9 and Muscle Skeletal tissue play an
important role in the disease mechanism due to the same variant responsible for a GWAS
locus and also affecting gene expression®®. Among 32 unique SNPs identified by ceCLC
in N.O., there are two SNPs, rs34333163 and rs6916921, selected to be the lead SNPs
(Figure A.18). Both of them are reported in the GWAS Catalog that have associations with
at least one of the diseases in the musculoskeletal system. However, the PPHs values for
the corresponding genes SLC38A8 and ATP6V1G2 are lower than 50%.

1.4 Discussion

In this paper, we propose a novel method for multiple phenotype association studies based
on genotype and phenotype network. The construction of a bipartite signed network, GPN,
is to link genotypes with phenotypes using the evidence of associations. To understand
pleiotropy in diseases and complex traits and explore the genetic correlation among
phenotypes, we project genotypes into phenotypes based on the GPN. We also apply a
powerful community detection method to detect the network modules based on the shared
genetic architecture. In contrast to previous community detection methods for disease
networks, the applied method benefits from exploring the biological functionality
interactions of diseases based on the signed network. Furthermore, we apply several
multiple phenotype association tests to test the association between phenotypes in each
network module and a SNP. Extensive simulation studies show that all multiple phenotype
association tests based on network modules have corrected type | error rates if the
corresponding test is a valid test for testing the association between a SNP and phenotypes
without considering network modules. Most tests in NET are much more powerful than
those in N.O. Meanwhile, we evaluate the performance of the association tests based on
network modules detected by GPN through a set of 72 EHR-derived phenotypes in the
diseases of the musculoskeletal system and connective tissue across more than 300,000
samples from the UK Biobank. Compared with the tests in N.O., all tests based on network
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modules detected by GPN can identify more potentially pleiotropic SNPs and ceCLC can
identify more SNPs than other methods.

In addition, the construction of GPN does not require access to individual-level
genotypes and phenotypes data, which only requires association evidence between each
genotype and each phenotype. Therefore, when individual-level data are not available, this
evidence can be obtained from GWAS summary statistics, such as the effect sizes (odds
ratios for binary phenotypes) and corresponding p-values. Meanwhile, the simulation
studies show that the powerful network community detection method can correctly
partition phenotypes into several disjoint network modules based on the shared genetic
architecture. Since the determination of the number of network modules by applying
community detection method is independent of the association tests45, we only need to
perform the perturbation procedure once in real data analyses. In our real data analysis with
72 phenotypes and 288,647 SNPs, it only takes 1.5 hour with 1,000 perturbations to obtain
the optimal number of network modules on a macOS (2.7 GHz Quad-Core Intel Core i7,
16 GB memory).

In summary, the proposed GPN provides a new insight to investigate the genetic
correlation among phenotypes. Especially when the phenotypes have extremely
unbalanced case-control ratios, the weight of an edge in the signed bipartite network can
be calculated based on the saddlepoint approximation. The power of multiple phenotype
association tests based on network modules detected by GPN are improved by
incorporating the genetic information into the phenotypic clustering. Therefore, the
proposed method can be applied to large-scale data across multiple related traits and
diseases (i.e., biobanks data set, etc.).

1.5 Availability of data and materials

Data

The UK Biobank data are accessed via https://www.ukbiobank.ac.uk/*.

The GWAS catalog summary data are accessed via https://www.ebi.ac.uk/gwas/.

The SNP-gene associations in the Muscle Skeletal tissue are downloaded via
https://gtexportal.org/home/.

Software

The  software  for  the proposed method is  publicly available
at https://github.com/xueweic/GPN.

PLINK version 1.9 can be downloaded from https://www.cog-genomics.org/plink/1.9/ %4,

LDSC: the command line tool for estimateing heritability and genetic correlation from
GWAS summary statistiscs can be downloaded from https:/github.com/bulik/ldsc?’.

FUMA: the platform that can be used to annotate, prioritize, visualize and interpret GWAS
results can be found from https://fuma.ctglab.nl/®.

DAVID: the functional tool can be found from https://david.ncifcrf.gov/>>°.

Cytoscape: an open source software platform for visualizing complex networks which can
be accessed via https://cytoscape.org/™.
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2 Chapter 2

Constructing genotype and phenotype network helps reveal
disease heritability and phenome-wide association studies

Abstract

Analyses of a bipartite Genotype and Phenotype Network (GPN), linking the genetic
variants and phenotypes based on statistical associations, provide an integrative approach
to elucidate the complexities of genetic relationships across diseases and identify
pleiotropic loci. We first assess contributions to constructing a well-defined GPN with a
clear representation of genetic associations by comparing the network properties with a
random network, including connectivity, centrality, and community structure. Next, we
construct network topology annotations of genetic variants that quantify the possibility of
pleiotropy and apply stratified linkage disequilibrium (LD) score regression to 12 highly
genetically correlated phenotypes to identify enriched annotations. The constructed
network topology annotations are informative for disease heritability after conditioning on
a broad set of functional annotations from the baseline-LD model. Finally, we extend our
discussion to include an application of bipartite GPN in phenome-wide association studies
(PheWAS). The community detection method can be used to obtain a priori grouping of
phenotypes detected from GPN based on the shared genetic architecture, then jointly test
multiple phenotypes in each network module and one genetic variant to discover the cross-
phenotype associations and pleiotropy. Significance thresholds for PheWAS are adjusted
for multiple testing by applying the false discovery rate (FDR) control approach. Extensive
simulation studies and analyses of 633 EHR-derived phenotypes in the UK Biobank
GWAS summary dataset reveal that most multiple phenotype tests based on GPN can well-
control FDR and identify more significant genetic variants comparing with the tests based
on UK Biobank categories.

Keywords: genotype and phenotype network, network topology annotation, disease
heritability, phenome-wide association studies, GWAS summary statistics

2.1 Introduction

The studies based on the biological networks have proven to be successful in providing a
comprehensive understanding of the complex relationships that exist within the biological
systems, such as gene regulatory networks’>"3, protein-protein interaction networks’,
human disease networks®, et al. In particular, the human disease network is usually
describing the system as a bipartite network, explicitly including two different types of
nodes, in which diseases are connected to their associated genes. Rather than simply
identifying the association between a genetic variant and a specific disease, constructing a
bipartite network is presented the opportunity to explore the integrated molecular
underpinnings of diseases’. Therefore, it can be used to explore whether human diseases
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or complex traits and the corresponding genetic variants are related to each other at a higher
level of cellular and organization’®"’. In addition, due to many complex diseases being
affected by a shared set of pleiotropic variants, the construction of a bipartite network can
also be used to determine the pathobiological relationship of one disease to other diseases”™
and elucidate the complexities of genetic relationships across diseases’.

Over the past decade, genome-wide association studies (GWAS) have generated an
impressive list of genetic variant and phenotype association pairs®’8, which offer a great
opportunity to establish a bipartite network connecting genetic variants and phenotypes,
referred to as a genotype and phenotype network (GPN)’’. GPN provides integrative
analyses to characterize complex relationships between genetic variants and phenotypes
that are reproducible and accurately represent biological relationships and is thus of
increasingly significant importance®:". Notably, the construction of a well-defined GPN
is crucial as it comes up with a clear representation of the genetic association between
genetic variants and phenotypes, including connectivity, centrality, community structure,
et al. Meanwhile, the real-world biological network, including GPN, often exhibits a scale-
free degree distribution®8!, which means that a small number of nodes (genetic variants
and phenotypes) have a much larger number of connections than the majority of nodes. In
a random network, the nodes are connected randomly without any preferential attachment,
resulting in a network with a relatively uniform degree distribution®?. Therefore, comparing
the degree distribution of a bipartite GPN to that of a random network can reveal important
insights into the underlying mechanisms driving the construction of the network.
Additionally, random networks can serve as a useful null model for testing the significance
of network properties observed in the bipartite GPN.

The centralities of the bipartite GPN are one of the most important properties that
measure the importance of genetic variants (phenotypes) across phenotypes (genetic
variants) based on the connectivity in the network®3. The nodes with high centrality often
act as hubs for information flow within the network®. For example, a genetic variant with
high centrality accounting for all phenotypes is more likely to be a pleiotropic variant, as
it is highly connected to multiple phenotypes in a bipartite GPN. Therefore, these
centralities can be used to define the network topology annotations of genetic variants that
quantify the possibility of a genetic variant being a pleiotropic variant. To study whether
these network topology annotations are enriched for disease heritability, we apply stratified
linkage disequilibrium (LD) score regression (S-LDSC)®*# along with the leave-one-
phenotype-out strategy to quantify the contribution of these annotations to disease
heritability. We condition our analyses of the network topology annotations on the
baseline-LD model, which includes a broad set of coding, conserved, regulatory, and LD-
related functional annotations®. Meanwhile, in a bipartite GPN, a phenotype with a higher
centrality accounting for all genetic variants is more likely to have a higher heritability, as
it is connected to multiple genetic variants or with higher association evidence.

With the widespread availability of electronic health records (EHR) data, phenome-
wide association studies (PheWAS) have been used to systematically examine the impact
of one genetic variant across a broad range of phenotypes. Phenotypes in the whole
phenome can be grouped by digitized codes (e.g., ICD-10 code) to represent the common
clinical factors underlying the diseases. However, the taxonomy of digitized codes depends
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on their etiology rather than their genetic architecture. As a consequence, applying the
community detection method for GPN allows us to identify network modules that provide
an integrative approach to understanding the complex genetic relationships across
phenotypes’’. A network module is loosely defined as a subnetwork with high local link
density so that the phenotypes within a network module share more genetic architecture
across all genetic variants than phenotypes outside the network module®”#, Therefore, the
network modules can serve as an a priori grouping of phenotypes in PheWAS, then we can
jointly test multiple phenotypes in each network module and a genetic variant to discover
the cross-phenotype associations and pleiotropy. For multiple testing corrections, we apply
a refined false discovery rate (FDR) control approach to obtain the significance thresholds
for PheWAS.

2.2 Methods and Materials

In this section, we first describe our approach to construct Genotype and Phenotype
Networks (GPN; section 2.2.1) and define the network topology annotations for genetic
variants and phenotypes (section 2.2.2). The construction of GPN does not require access
to the individual-level genotypes and phenotypes data and only requires the marginal
association evidence between each genetic variant and each phenotype (e.g., z-scores or
estimated effect sizes from GWAS summary datasets). We identify differences in both
denser representation and sparse representations of GPN with various sparsity approaches.
We then provide details of the implementation of these approaches, such as heritability
enrichment of network topology annotations (section 2.2.3), estimation of the genetic
correlation of multiple phenotypes and community detection of phenotypes (section 2.2.4),
and phenome-wide association studies (section 2.2.5). Figure 2.1 shows the overview of
this study.

2.2.1 Bipartite genotype and phenotype networks construction

We consider GWAS summary statistical results from the same or different study cohorts
with K phenotypic traits. Assume that the GWAS summary results for the k" (
k=1,---,K) phenotype are calculated by testing the marginal association between a

genetic variant and the k" phenotype based on a sample with N, unrelated individuals.
Note that N, =N, (k=l) if the GWAS summary data of the k" phenotype and I"
phenotype are calculated from the same study cohort, otherwise, N, = N, . For simplicity,
we assume the generalized linear regression, g(E(yik|gim)):aOmk+aLkXik+,8mkgim,
where y, isthe k™ phenotype value and X, is the vector of covariates, for example, used
to account for population stratification in the study, for the i" (1<i<N, ) individual and
the k™ phenotype. Assuming that there are M, genetic variants in the GWAS summary

statistics for the k™ phenotype and g, is the genotype of the m" (1<m<M, ) genetic
variant taking values from 0, 1, and 2 that counts the number of copies of the minor allele.
Here, g(+) is either the identity link function for quantitative phenotypes or the logit link

for binary phenotypes.
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Construction of Bipartite Genotype and Phenotype Network (GPN)
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Figure 2.1. Graphical Abstract. Construction of bipartite genotype and phenotype network
(GPN) includes: (a) — (c) Construction of the denser and well-defined representations of
GPN by comparing the network properties with the random networks, including
connectivity, centrality, and system entropy; (d) The weighted degree distributions with
different thresholds and the examples of two network topology annotations, approximate
betweenness centrality and degree centrality, used in the heritability enrichment analysis;
(e) The one-mode projection of GPN onto phenotypes that are linked through shared
genetic architecture. Heritability enrichment analysis and phenome-wide association
studies are introduced as two important applications of the constructed GPN.

The GWAS summary results are calculated for testing the genetic association
between the k™ phenotype and the m™ genetic variant under the null hypothesis

Ho i  Buc =0. The commonly used Wald-type statistic is defined as Z,, = Bmk/se(,@mk)
under the generalized linear regression model, where 3, is the maximum likelihood
estimation (MLE) of 3, and se(,ﬁmk) is its estimated standard error®. The p-value p_,

may also be calculated by assuming Z, ~ N(0,1) in the GWAS summary results.
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Let M be the total number of unique SNPs included in the GWAS summary
statistics for K phenotypes with the property of Q,?(K{MK}SM st:le . In

particular, M =kr_rllaXK{Mk} if and only if there is at least one GWAS summary data

containing all unique genetic variants and M = ZkK: M, if and only if there are no variants

included in different GWAS summary data. We can exclude the case M = Z::l M, from
our analyses since it occurs wirelessly in most GWAS summary datasets.

Denser representation of GPN.

We first define a signed bipartitt GPN, <, =(Y,G,E), where Y ={Y,,---,Y, .} and
G:{Gl,---,GM} denote two disjoint and independent sets of phenotypes and genetic

variants, and E denotes the set of edges in GPN. Similar to Chapter 1, denote T=(T )
as an M xK adjacency matrix of GPN, where T, =sign (,Bmk ) Fou (1= P ) s the weight
of the edge between the m™ genetic variant and the k™ phenotype. F,. () denotes the
cumulative distribution function (CDF) of 4?; sign(/?mk):l if 3, >0, sign(ﬁmk):Oif
ﬁmk =0, otherwise, sign(,@mk):—l. Note that |ka| represents the strength of the

association and sign ( ﬁmk) represent the direction of the association.

The construction of T can be considered to be a denser representation of GPN,
where T, #0 for m=1---,M, and k=1,---,K. The denser representation includes all
associations and does not involve thresholding. Same as the expression quantitative trait
locus (eQTL) network construction introduced by Gaynor et al.>!, the denser representation
of GPN allows us to capture the fact that we have no prior knowledge of precisely which
genetic variants and phenotypes might have an association.

Sparse representations of GPN.

Sparsity makes biological sense as even disease-associated genetic variants are known to
generally have a small effect size, meaning they are unlikely to exert their influence across
the genome®.. Therefore, we introduce the false discovery rate (FDR) based sparse
representations of GPN, where the networks only include edges where associations meet a
measure of significance below a threshold from the denser representation of GPN. Let

Zin = (Y,G, E’) be a sparse representation of a bipartite GPN for a specific threshold

, Where E” denotes the set of edges in the sparse representation of GPN. T% = (T’

mk) IS an
M x K adjacency matrix of GPN, where T =T, - I( P, < 'r) with T_, from the denser
representation of GPN. I(+) is an indicator function that takes value 1 when p,, <7,

otherwise, it takes value 0. p, is a measure of the significance of genetic association
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between the m™ genetic variant and the k™ phenotype by correcting for the multiple
comparisons in each GWAS summary data. We use g-value®’! to define p;, in our main

analyses, but other definitions can also be used, same as Gaynor et al.*!, such as local FDR
(LFDR)°*% and an adaptation of Benjamini-Hochberg (BH) FDR**. We use different

thresholds 7 e [0,1] , where 7=1 represents the denser representation of GPN since all

edges are included; 7 =0 represents the empty network with no edges between genetic
variants and phenotypes.

Well-defined sparse representation of GPN.

The choice of the threshold, z, is very important for the GPN construction. The threshold
is a sort of information filter, as decreasing 7, the resulting network will change from a
denser network to a very sparse one. An overly denser network can sometimes present
challenges in understanding the most biologically informative interactions between genetic
variants and phenotypes due to the abundance of information. Conversely, an excessively
sparse network may result in the loss of important information. The construction of a well-
defined sparse representation of GPN can be presented to determine the optimal threshold

(7) of &, , which can retain the key information about the interactions between genetic

variants and phenotypes®. Therefore, we propose an approach to determine the optimal
threshold by comparing the network properties with a corresponding random network,
including connectivity, centrality, and community structure.

More specifically, we first calculate the network “connectance” for each Z7 ,
which is defined as the ratio of the number of edges in GPN to the total number of possible
edges®®*”. Mathematically, it can be expressed as: connectance” = #{E" | /(M x K, where

#{+} is the counting measure, that is, #{E’} represents the number of edges included in

“Zon - The “connectance” of GPN can provide insight into the structure and functioning
between genetic variants and phenotypes. As decreasing 7, the resulting network will
change from a denser network ( connectance™ ~1 ) to a very sparse one (
connectance™ =0). For a specific 7, we then construct a corresponding random network
by shuffling the edges of the original network Z=, . Let Z5m ™" :(Y,G, E“"”“"m) be the

corresponding random network, where conectance® equals to conectance™ " . We also
build an adjacency matrix T™®*™ by keeping the same weights of the edges in E". Then,
we compute the following network properties of <=, and ZZ=", respectively.

Clustering coefficient. The clustering coefficient measures the extent to which two
genetic variants share the same set of phenotypes. A genetic variant with a high cluster
coefficient indicates that it tends to be associated with similar phenotypes; a genetic variant
with a low cluster coefficient indicates that it tends to be associated with distinct sets of

phenotypes. Let N(m) and N () be a set of phenotypes that are linked to the m" genetic

variant and the m"™ genetic variant, respectively. Similar to Latapy et al.%, we first define
the clustering coefficient for any pair of genetic variants (m,M) as
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cc(m,rﬁ):#{N(m)mN(m)}/#{N(m)uN(rﬁ)}. Let N*(m) be the sets of genetic
variants that are linked to N(m). The genetic variants in N?(m) are defined as the

distance 2 neighbors of the m" genetic variant, that is, two genetic variants are linked
together if they have at least one associated phenotype in common. We then define the
clustering coefficient for the m™" genetic variant as

cc(m)=ZmeN2(m)cc(m,m)/#{N2(m)}. Finally, the clustering coefficient of all genetic

variants is the average of cluster coefficients of each genetic variant, cc = Z:ﬂcc(m)/M

. The clustering coefficient of all phenotypes can also be defined in the same way as that
of all genetic variants. We also calculate the clustering coefficient of all genetic variants

and phenotypes for the random network ZZ2®".

Weighted and unweighted degree. The unweighted degree of a genetic variant
(phenotype) in a bipartite GPN is defined as the number of edges across all phenotypes

(genetic variants)’®. The unweighted degree of the m™ genetic variant and the k"
phenotype are defined as dS*™™" =>"" I(T; #0) and d/"™" =>" 1(T,; #0).
The weighted degree is reflecting the strength of the associations of edges, which are

defined as d3" =>"" IT_|and d/"o" =>" IT_|.

Kullback—Leibler (KL) divergence. We define KL divergences®*'® of degree of
genetic variant and phenotypes between &= and ZZ5" to determine the diversities

between a bipartite GPN and a random bipartite network, which are given by

KL(DG | DG random) Zd G |Og( n(];/d_r;;,random),
KL(D:’ ” DTP,random) — Zd_kP Iog(d_kP/d_kP,random )’
k=1

where GG and d_P are the min-max standardized degree (either weighted and unweighted)
which is defined as d° = (dG —min {d })/(maxm {d,f}—minm {drﬁ}) for the m™ genetic

variant and chF’:(dkp—mink{dkp})/(maxk {d}—min {dp}) for the k™ phenotype.
KL(D | DZ™*™) and KL(D/ || D™ ") are used to measure the difference between

degree distributions of genetic variants and phenotypes in <, and &M .
KL(DG | DS ”‘”d"m) will equal 0 if the degree of genetic variants are the same in &, and

random , random

on 5 1t will be negative if most degrees in

are greater than those in & ;
random

and it will be positive if most degrees in £z are greater than those in ZZ (™" .
KL(Df || DFrandom ) has the similar properties. We also define a global KL divergency of a

bipartite network as KL(D, || D" )=KL(D? || D" )+ KL (D} || Df ™).
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Without loss of the generality, the optimal threshold z should be selected by
maximizing KL(Df ||DS™") and KL(D[[|D]"™*") . Meanwhile, in the case of

equivalent numbers and weights of edges in the original network and the corresponding
random network, the greater the difference of network topologies between < and

random

o the more information &7, includes. Therefore, we also assess the difference for

cluster coefficients between <, and Z®" for r<[0,1] , which is defined as

AcC =cc” —cc™™™™ . To investigate the stability of the diversities, KL(DTG I Df’”‘”d"m) and

KL(Df | Df 'ra”d"m) , We construct 1,000 random networks correspondingto <=, . We thus

can estimate the standard error of KL divergence and then obtain the stability by computing
their 95% confidence intervals (Cls). For a clustering coefficient, we only evaluate it by
generating one random network since it is time consuming in a large-scale network. We
also evaluate two other network properties, degree entropy and cross entropy of degree
(details in Text B.1).

2.2.2 Network topology annotations

For both denser and sparse representations of GPN, we constructed two probabilistic
annotations based on the following network centralities. The centralities of a bipartite
network are measuring the importance of genetic variants (phenotypes) across phenotypes
(genetic variants) in the network. To simplify the notation, we use T to denote the
adjacency matrix of GPN, which can be constructed by either denser or the sparse
representation introduced in section 2.2.1.

Degree centrality.

For the bipartite GPN, a genetic variant with a high degree across phenotypes is more likely
to be pleiotropic, as it is highly connected to multiple phenotypes; a phenotype with a high
degree across genetic variants is more likely to have higher heritability, as it is connected
to multiple genetic variants or with higher association evidence. Same as section 2.2.1, the

weighted degree of the m™ genetic variant and the k™ phenotype are defined as follows:

de :Z::1|ka| and d; =Z::1|ka|.

Approximate betweenness centrality.

In a bipartite GPN, we define an approximate betweenness centrality of a genetic variant
which can be used to measure its importance in connecting different phenotypes. A genetic
variant with high approximate betweenness can be considered an important connector

between phenotypes. The approximate betweenness centrality of the m™ genetic variant is
defined as

b,= > o, (m)/max{s,,.1},

(k,I)EY
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where o, is the number of shortest paths between the k™ phenotype and the "
phenotype and o, , (m) is the number of the shortest path between the k™ phenotype and

the 1" phenotype that pass through the m™ genetic variant. Note that there are no direct
edges between phenotypes in the bipartite GPN. Therefore, the shortest path o, is the

number of genetic variants that are associated with both the k™ phenotype and the I™
phenotype; the shortest path o, , (m) only takes the value 0 or 1, where o, (m)=1 if the

m" genetic variant is associated with both the k™ phenotype and the I™ phenotype,
otherwise, o, (m)=0.

2.2.3 Heritability enrichment of network annotations

Note that the network topology annotations of genetic variants quantify the possibility of a
genetic variant being a pleiotropic variant. To study whether these annotations are enriched
for disease heritability of the highly correlated phenotype, we first perform a leave-one-
phenotype-out (LOPO) approach to construct the network topology annotations. Then, we
use stratified LD score regression (S-LDSC) to estimate the enrichment and the
standardized effect size of an annotation®®,

Leave-one-phenotype-out (LOPO).

In this section, we consider K highly genetically correlated phenotypes. To simplify the
notation, we use 'T'k to denote the adjacency matrix of GPN by removing the k™ phenotype

in the construction. 'T'k can be constructed by either denser or one of the sparse
representations introduced in section 2.2.1. Then, we use one of the network topology
annotations in section 2.2.2 to assign the numeric value to each genetic variant for the
evaluation of the k™ phenotype. Assigning a network topology annotation to each genetic
variant is a way to quantify its potential for pleiotropy. The LOPO approach can assist in
determining whether genetic variants have highly evidenced impacts on other K-1
phenotypes through pleiotropy and can also contribute to the heritability of the k"
phenotype.

Stratified LD score regression (S-LDSC).

S-LDSC is a method to assess the contribution of the annotation to disease heritability8+8°
conditional on other functional annotations. We use 86 functional annotations in the
baseline-LD model (v2.1), including regulatory annotations (e.g., promoter, enhancer,
histone marks, TF binding sites), LD-related annotations, et al. In this section, we ignore
the index of k to simplify the notations. Let a__ be the annotation value of the m" genetic

variant for the c" annotation, where m=1,---,M, and ¢=0,---,C. In particular, a

represent the network topology annotation of the m™ genetic variant constructed by the
LOPO approach.
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S-LDSC assumes that the per-SNP heritability or variance of the effect size of each
genetic variant is given by Var Z o &ncTe, Where 7 is the per-SNP contribution
of the ¢ annotation to disease herltablllty. We can estimate 7, using S-LDSC,

C

E(x2)=NYI(m,c)z, +1,

c=0

where 47 is the chi-square test statistic for testing the association between the m" genetic

variant and a phenotype in GWAS summary data, |(m,c) Z a,I., isthe LD score of

the m™ genetic variant to the ¢ annotation, and I IS the genotypic correlation between
the m™ and the m"™ genetic variants.

We only focus on the network topology annotation z,. As demonstrated by
Finucane et al.’%, 7, will be positive if the network annotation increases per-SNP
heritability, accounting for all other factors. Let sd (ao) be the standard deviation of the
network topology annotation. The standardized effect size 7, is defined by

< 7sd(ay) .
L2 var(By)/M,

Note that 7, is defined as the proportionate change in per-SNP heritability associated with
a one-standard-deviation increase in the network topology annotation conditioning on all
the other annotations®. The standard error on the estimate of z;, sd(z; ), is computed

using a block jackknife®*. Then, we can compute the p-value to test if 7, >0 by assuming
7o/sd(z5)~ N(0,1).

We also calculate the enrichment of the network topology annotation, which is
defined as the proportion of the heritability explained by genetic variants in the annotation
divided by the proportion of genetic variants in the annotation.

S(TO)/hg2
2o /My

where hZ=3%" Var(p,) is the estimated heritability and h7(z,) is the heritability

captured by the network annotation. Enrichment >1 represents the network annotation is
not enriched for the disease heritability. Same as z,, the significance for Enrichment is

computed using a block jackknife®*. The inclusion of the 86 functional annotations in the
baseline-LD model can minimize the risk of bias in enrichment estimates and can also
estimate the effect size 7, conditional on known functional annotations®“.

Enrichment =
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2.2.4 Community detection methods

Community detection methods are essential in comprehending the global and local
structures of associations between genetic variants and phenotypes, and in shedding light
on association connections that may not be easily visible in the network topology®.
Calculating the projection of GPN onto phenotypes that are linked through shared genetic

variants is a very important step in the community detection. Let <, :(Y, EP) be the

one-mode projection of GPN, called Phenotype and Phenotype Network (PPN), where EP
denotes the set of edges between phenotypes in PPN. Denote W:(Wk,) as an KxK
adjacency matrix of PPN, where W, is the weight of the edge between the k" phenotype

and the 1™ phenotype. In this study, we perform the community detection methods to
partition K phenotypes into L disjoint network modules based on the adjacency matrix of
PPN.

Community detection method for the denser representation of GPN.

For the denser representation of GPN, one straightforward way to define the adjacency
matrix W is to compute the direct correlation of T, W=cor(T)77. The elements of W

can be both positive and negative, indicating that the PPN given by the adjacency matrix
of W is a signed network. Inspired by our previously proposed modularity-based
community detection method!®®, we introduce a community detection method for the

signed network in this study. Let W~ =(Wk,+) and W~ =(Wk,‘) be adjacency matrices of
the positive and negative weights, respectively, where W, =max{W,,0} and
W, :—min{Wkl,O} such that W=W"—-W". First, we assume K phenotypes can be
divided into k, network modules using a hierarchical clustering method with similarity

matrix W for k, =1,---, K . Let C* :(C£ﬁ°)) be a KxK connectivity matrix, where
Cﬁ‘fﬁ) =1 if the k™ phenotype and the I™ phenotype are in the same network module,

otherwise, Cﬁﬁ“ =0. Then, we calculate the modularity of network with only positive

K A+
weights, W, for each k, as Q; = 23)* kzll(wk,* —%jcéf;’) , where d; = W, and
=

D* =Z::1dk*/2 represent the degree of the k™ phenotype and overall degree of W*.
Similarly, we calculate the modularity of W™ as Q- Therefore, we define the modularity
2D" Q- 2D
2D*+2D” *° 2D*+2D"
a high modularity value has dense connections between phenotypes within network
modules but sparse connections between phenotypes in different modules®®. Then, we

determine the optimal number of network modules as L =arg max{Ql,Qz,---,QK}.

for the signed network as Q, = Q,, - Note that a network with
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Community detection method for the sparse representation of GPN.

To eliminate the biases in projections caused by a large number of genetic variants that are
unlikely to exert their influence across the whole genome®!, we also provide a weighted
projection approach by only focusing on the shared genetic variants between two

phenotypes in the (well-defined) sparse representations of GPN, T Let S, be the set
of the genetic variants that are connected with the k™ phenotype and the 1™ phenotype.
We define W, :Zmesg / d;*™ and W, = zmesg / d ™, where d**"* and

d P are the weighted degree of the k™ and the I" phenotypes, respectively. More

T sparse

sparse
mk T

ml

specifically, W, is a proportion of degree of the k™ phenotype explained by the shared
associations between the k™ and the I" phenotypes; similarly, W, is a proportion of

degree of the 1™ phenotype explained by the shared associations between the k™ and the
I"" phenotypes. Therefore, W, =W, indicates that the projected PPN is a directed network.

Ith

If W, >W,, , the shared associations between the k™ and the I" phenotypes are more

important to the k™ phenotype than the I™ phenotype. In particular, W, =1 if and only if

the k™ phenotype only links with the genetic variants in S, . The modularity is easily
generalized to both weighted and directed network, where the modularity based on
LinkRank is given by'**'®: Q = ZK (”ka,| — 7, T, )CS‘{’) . Let W' = ZIK: W, be the

k,1=1
out-degree of the k™ phenotype for a directed PPN. Then, 7,7 1s the PageRank
vector indicating the probability of a phenotype being visited by a random surfer.
G, =a-Wy /W +1/K-(ag, +1-a) is the Google Matrix, where « is the damping
parameter for PageRank'® (with probability 1—« random surfer jumps to a random
phenotype) and ¢, = I(WkOUt =0) is an indicator of dangling phenotype. Same as the

community detection method for the denser representation of GPN, we also determine the
optimal number of network modules as L =argmax {Ql, Q-+ Q } .

2.2.5 Phenome-wide association studies (PheWAS)

The community detection method for PPN based on W has potential applications in
PheWAS and multiple phenotype association studies. In Chapter 1, we introduced the
application of multiple phenotype association tests for analyzing K correlated phenotypes.
In this section, we extend our discussion to include the application of GPN and PPN in
PheWAS. We can obtain an a priori grouping of phenotypes from the community detection
method of GPN and PPN, then jointly test multiple phenotypes in each network module
and one genetic variant to discover the cross-phenotype associations and pleiotropy.

Assume that K is the total number of phenotypes in the whole phenome, which
can be partitioned into L disjoint network modules from section 2.2.4. Let

K =K, +---+K_, where K, isthe number of phenotypes in the 1™ network module. In this
section, we apply four powerful GWAS summary-based multiple phenotype association
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tests to identify the association between phenotypes in the 1™ network module and a
genetic variant, including minPY’, ACAT!%® MTAG!", SHom!® (details in Text B.2).
Then, we refine our previous approach to evaluate FDR by thresholding the p-values

obtained from the multiple phenotype association tests*’. Let { pW,.-, pr(nL)} be a sequence

of p-values for testing the association between phenotypes in each of the network modules
and the m" genetic variant. For a given nominal FDR level «<(0,1), the optimal

threshold for the m™ genetic variant is given by
o max {1,2|L:1 1(pl) < p)}

P, =sups pe[0,1]:t< ,
I'.nO

where m, is the number of network modules under the null hypothesis that phenotypes in
the network module and the m™ genetic variant have no association. We refine the
estimation m,=L—m, , where m1=Z.le( o S0.0S/L) is the number of identified

network modules that are associated with the m™ genetic variant based on the Bonferroni
Correction.

2.2.6 Empirical GWAS summary datasets

In our analyses, we consider two publicly available GWAS summary datasets to evaluate
the performance of constructions of bipartite GPN, heritability enrichment of network
annotations, community detection methods, and applications of PheWAS.

GWAS summary statistics for correlated phenotypes.

To perform the heritability enrichment of network annotations, we obtain publicly
available GWAS summary data for 12 highly genetically correlated phenotypes in
individuals of European ancestry, including attention deficit/hyperactivity disorder
(ADHD), smoking initiation (Smkinit), autism spectrum disorder (ASD), neuroticism
(NSM), anxiety disorder (AXD), major depressive disorder (MDD), obsessive-compulsive
disorder (OCD), anorexia nervosa (AN), bipolar disorder (BD), schizophrenia (SCZ),
educational attainment (EA), and cognitive performance (CP). The details of GWAS
summary data for the 12 phenotypes are summarized in Table B.1. As demonstrated by
Zhang et al.»%, the global genetic correlations among the 12 phenotypes estimated by their
proposed SUPERGNOVA are ranging from -0.41 to 0.69. 51 out of 66 pairs of phenotypes
have significant non-zero global genetic correlations (right upper triangle of Table B.2).
Meanwhile, they also reported the proportions of correlated regions between two
phenotypes that are ranging from 0.11% to 93%. 46 pairs of phenotypes contain at least
one significantly correlated region after Bonferroni correction (left lower triangle of Table
B.2). We only include the genetic variants in 22 autosomes.

GWAS summary in the UK Biobank.

The UK Biobank is a population-based cohort study with a wide variety of genetic and
phenotypic information®. It recently released genome-wide association data on ~ 500K
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individuals from all around the United Kingdom**3, We obtain the publicly available
GWAS summary data for 633 EHR-derived phenotypes with main ICD10 diagnoses from
Neale lab (Data availability). These GWAS summary data are calculated based on a basic
association test on ~337,000 unrelated individuals of British ancestry. We run the LD score
regression (LDSC)''® to each of these 633 phenotypes, therefore, we exclude 45
phenotypes in our analyses since the estimators of their heritability are out of bounds. There
are 588 phenotypes across 1,096,648 genetic variants in autosomes in our analyses.

2.3 Results

2.3.1 Construction of GPNs for 12 genetically correlated phenotypes

We construct three bipartite GPNs for 12 genetically correlated phenotypes listed in Table
B.1, including a denser representation, an arbitrary sparse representation, and a well-
defined representation. There are a total of 17,585,432 unique genetic variants from 12
GWAS summary datasets. The global genetic correlations and proportions of correlated
regions among the 12 phenotypes estimated by SUPERGNOVA!® are shown in Table
B.2. We also perform LDSC to estimate phenotypic correlation (right upper triangle of
Table B.3) and genetic correlation (left lower triangle of Table B.3) among the 12
phenotypes. Among a total of 66 pairs of phenotypes, 45 pairs of phenotypes have
significant non-zero genetic correlations (p-values <0.05/66 =7.58x10™). In particular,
MDD has significant non-zero genetic correlations with other 11 phenotypes; NSM has
significant non-zero genetic correlations with 10 phenotypes except for BD; SCZ and EA
have significant non-zero genetic correlations with other 10 phenotypes, but SCZ and EA
do not have significant non-zero genetic correlation.

The denser representation of GPN is constructed without using any thresholds.
Since the 12 GWAS summary datasets contain differet numbers of the 17,585,432 unique
genetic variants, the connectance of the denser representation of GPN is 0.5123 (Figure
B.1(a)). The well-defined sparse representation of GPN is constructed by comparing the
network properties with the corresponding random networks. Since we only have 12
phenotypes in this analysis, we only consider the network properties for genetic variants of

the constructed GPN and the corresponding random networks. For each z‘e(O,l), we

generate 1,000 corresponding random networks. Figure 2.2(a) shows the comparisons of
the KL divergence for genetic variants across 1,000 random networks. The KL divergence
increases from 0 to a specific value of the threshold and then decreases from that value to
1, indicating that the difference between the original and random network reaches the
maximum at the specific value. We also calculate the cross entropy of the weighted degree
of genetic variants compared to the corresponding random network (Figure 2.2(b)).

Note that the weighted degree of genetic variants in a corresponding random
network becomes more different than the original one if the original network retains the
key information about the interactions between genetic variants®. The network properties,
KL divergence and cross entropy, will reach the maximum value at the most informative
network. In our analysis, we prioritize choosing the optimal threshold with respect to KL
divergence and then check the cross entropy and weighted degree entropy at that optimal

threshold. The maximum mean of KL divergence equals 9.02x10° at 7 =0.45, where the
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mean of cross entropy equals a larger value (9.83x10°) even though it does not reach the
maximum value. Therefore, we constructed the well-defined sparse representation of GPN
with 7=0.45. This optimal threshold is much larger than the significant level for the
association testing (e.g., 7 =0.05 for controlling FDR at the nominal level of 0.05). The
optimal threshold in the construction of GPN does not represent the significant associations
between genetic variants and phenotypes. It is only used to ensure that the constructed GPN
is more informative than a random network.

As a comparison, we also construct an arbitrary sparse representation of GPN by
using the threshold 7=0.1. Figure 2.2(c) shows the weighted degree distribution of
genetic variants for three GPNSs, denser representation ( z=1), well-defined sparse
representation (7 =0.45), and an arbitrary threshold sparse representation (7 =0.1). We
observe that the degree distributions of all three networks follow the power law with
different scale parameters y, indicating that a small number of genetic variants have a

much larger number of connections than the majority of genetic variants. In particular, the
degree of genetic variants in the denser representation of GPN is greater than those in a
sparser GPN, resulting in the scale parameter increases with increasing the threshold 7 .

We also calculate the network properties of the unweighted GPNs by comparing
them with the corresponding random networks (Figure B.2). Furthermore, the adjacency
matrix of the projected PPN, W introduced in section 2.2.4, can be considered as the
phenotypic correlation among 12 phenotypes based on the shared genetic architecture.
Figure B.3 shows the comparisons of the adjacency matrix of PPN constructed by the
denser and well-defined sparse representations of GPN with the genetic correlation matrix
estimated by SUPERGNOVA!® (Table B.2) and LDSC!? (Table B.3).
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Figure 2.2. Network properties of the weighted bipartite GPNs for 12 genetically
correlated phenotypes. (a) KL divergency for genetic variants. The blue line is the mean of
KL divergencies across 1,000 random network comparisons. The boxplots show the scaled
distributions of the KL divergency for each threshold. (b) Cross entropy for genetic
variants. Blue lines are the means of cross entropy across 1,000 random network
comparisons. The boxplot shows the scaled distribution of the cross entropy for each
threshold. (c) Plot of the weighted degree distribution of genetic variants for three GPNs
on the log-log scale, denser representation (z=1), well-defined sparse representation (
7 =0.45), and an arbitrary threshold sparse representation (z =0.1).
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2.3.2 Heritability enrichment analysis of network annotations

For each of the above three bipartite GPNs for 12 phenotypes, we perform S-LDSC along
with LOPO to evaluate whether the network topology annotations are enriched for disease
heritability. We consider both degree centrality and betweenness centrality of genetic
variants, conditioning on 86 functional annotations in the baseline-LD model (v2.1),
These 86 existing functional annotations have been demonstrated to be highly informative
by capturing functionality and LD-related features, thus, we evaluate the added value of
our network topology annotations in capturing disease heritability, contributed by the
pleiotropic variants with other genetically correlated phenotypes.

Table 2.1 shows the heritability enrichment analysis results for degree centrality
calculated from denser, arbitrary sparse, and well-defined sparse representations of GPN,
respectively. From the LDSC results (Table B.3), MDD has significant non-zero genetic
correlations with all other 11 phenotypes. Table 2.1 shows that the degree centrality
annotation is significantly enriched for the heritability of phenotype MDD based on all of
the three constructed GPNs ( p-values<0.05/12 ~0.0042). As we demonstrated in section

2.2.2, the network topology annotation of each genetic variant quantifies its possibility for
pleiotropy among other correlated phenotypes. After we use the LOPO approach to
construct the network annotations of MDD, the significance enrichment indicates that the
network annotation can contribute more information to disease heritability if it is computed
based on other highly genetically correlated phenotypes. In particular, even though the
arbitrary sparse representation of GPN (z =0.1) contains less information than the denser
and well-defined GPN, the degree centrality annotation is still significantly enriched in
heritability of MDD (p-value = 2.79x10™°) conditioned on the 86 functional annotations.
Meanwhile, the degree annotation is also significantly enriched in heritability of CP (
p-value = 2.76x107°) and SCZ ( p-value =0.0021) for the arbitrary sparse representation

of GPN: SCZ has significant non-zero genetic correlations with 10 phenotypes except for
EA (Table B.3); CP has the significant proportions of correlated regions with 9 phenotypes
in which there are over 15% of correlated regions with 8 phenotypes (Table B.2).

The network annotation based on degree centrality obtained by the denser
representation of a bipartite GPN includes the complete information for explaining the
associations between phenotypes and genetic variants. It is significantly enriched to disease
heritability of 11 out of 12 phenotypes as expected, except for AXD, with enrichment
estimates ranging from 1.4457 (OCD with p-value=0.0016 ) to 2.2894 (ASD with

p-value =8.69x10?*). We identify the most significant enrichment of network annotations
based on degree centrality for CP ( Enrichment = 2.2026 with p-value =6.33x10™) and

EA ( Enrichment =2.0406 with p-value =1.14x10"). These two phenotypes have a

significant proportion of correlated regions, 93%, estimated by SUPERGNOVA®,
Figures B.4(a) and B.4(b) show the qg-plot of EA versus CP based on the weight of the
denser and the well-defined sparse representations of GPN. Most of the genetic variants
have similar weights for both EA and CP, lying in the diagonal line, but there exist some
genetic variants that have the largest weights for only one phenotype. The same
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relationship between EA and CP is shown in the marginal associations from GWAS
summary datasets (Figures B.4(c) and Figure B.4(d)).

The network topology annotations obtained by the well-defined sparse
representation of GPN ( z=0.45) perform similarly on the heritability enrichment
compared to the denser representation of GPN. Even though some information is excluded
from the well-defined GPN, the annotations obtained by the well-defined GPN contribute
similar effects to disease heritability. Table 2.1 and Table B.4 show the annotations from
both denser and well-defined sparse representations of GPN can significantly enrich to
disease heritability of the same phenotypes. However, the network topology annotations
obtained by the arbitrary sparse representation of GPN (7 =0.1) are not enriched to most
disease heritability. We can conclude that a more informative network can be used to
understand heritability rather than an arbitrary one with a smaller threshold. For example,
if we use the significance level of the associations (e.g., 7 =0.1 or 7 =0.05) to construct
a GPN, it may loss more information and key connections even though its edges represent
the significant associations between genetic variants and phenotypes.

However, the network annotation based on approximate betweenness centrality
performs differently on the heritability enrichment analysis with the annotation based on
degree centrality. Table B.4 shows the heritability enrichment analysis results for
betweenness centrality calculated from denser, arbitrary sparse, and well-defined sparse
representations of GPN, respectively. We observe that the betweenness centrality
calculated by the denser representation of GPN significantly enriches the disease
heritability of only seven phenotypes, whereas the annotation calculated by the well-
defined GPN can significantly enrich the heritability of 10 phenotypes. The strength of the
associations between genetic variants and phenotypes is not considered in the betweenness
centrality and the denser representation of GPN includes all edges. Therefore, the
betweenness centrality of GPN is not an important feature that can be considered in the
heritability enrichment analysis. Alternatively, it is an important network property for the
sparse representation of GPN since only the edges with strength evidence of associations
are included in the GPN. A genetic variant with high approximate betweenness can be
considered an important connector between phenotypes. Therefore, the network
annotations based on the approximate betweenness centrality calculated from the well-
defined ( 7=0.45) and the arbitrary ( 7=0.1) sparse representation of GPN are
significantly enriched to 10 phenotypes’ heritability. Meanwhile, the network annotation
calculated by a well-defined GPN has stronger evidence than that calculated by the
arbitrary one.

According to heritability enrichment results, we observe that network annotations
are not enriched to the disease heritability of AXD and OCD. Figure B.5 shows the
heatmap of edge weights in the well-defined sparse representation of GPN for the top 100
and the top 1000 genetic variants with the highest degree centrality, respectively. We
observe that these top genetic variants have smaller weights on AXD and OCD, which
means that the genetic variants with the highest degree centrality are not associated with
AXD and OCD. Therefore, the network annotation is not enriched to their heritability. In
particular, there are no edges between OCD and genetic variants if the threshold is smaller
than 0.4.
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Table 2.1. Heritability enrichment analyses of network topology annotation (degree
centrality) based on denser and sparse representations of bipartite GPN for each of the 12
phenotypes.

Denser Sparse (t = 0.45) Sparse (t = 0.1)

Trait Enrichment Effect 7* Enrichment Effect t* Enrichment Effect t*

(Standard error)  (se(z*)) (Standard error)  (se(z*)) (Standard error)  (se(z*))
p-value z-score p-value z-score p-value z-score
2.2175 3.5434 3.3012 3.5192 3.4734 2.6504

ADHD  (0.1697) (0.3247) (0.3209) (0.3423) (0.9173) (0.9882)
8.26e-24 10.8870 8.49e-22 10.2797 0.0072 2.6820
1.7796 1.5274 2.5216 1.5866 2.5594 1.1405

AN (0.1097) (0.1694) (0.2174) (0.1823) (0.9810) (0.7423)
4.31e-21 9.0145 3.73e-19 8.7030 0.1119 1.5364
2.2894 2.2771 3.4316 2.3124 6.1025 3.5573

ASD (0.2640) (0.2373) (0.4836) (0.2580) (1.9961) (1.4359)
8.69e-24 9.5973 6.52e-21 8.9614 0.0118 2.4773
1.5678 0.2486 2.1892 0.2913 5.6798 0.7908

AXD (0.5801) (0.1613) (1.1815) (0.1703) (5.0946) (0.6693)
0.0754 1.5382 0.0653 1.7102 0.2467 1.1816
2.0745 3.8595 3.2647 4.3352 2.9583 2.5011

BD (0.1184) (0.3194) (0.2417) (0.3547) (0.7146) (0.9309)
7.61e-31 12.0837 1.25e-30 12.2213 0.0043 2.7835
2.2026 3.4031 3.9373 4.1757 4.6075 3.3237

CP (0.0562) (0.1680) (0.1260) (0.1972) (0.7325) (0.6999)
6.33e-54 20.2517 2.63e-55 21.0983 2.76e-06 4.7485
2.0406 1.9705 3.7963 2.4471 3.5526 1.2735

EA (0.0459) (0.1001) (0.1204) (0.1267) (0.8799) (0.4486)
1.14e-52 19.5241 1.24e-50 19.3187 0.0045 2.8389
1.9550 0.7342 3.0106 0.7761 3.6246 0.6783

MDD (0.0715) (0.0580) (0.1537) (0.0615) (0.6172) (0.1609)
4.40e-32 12.6561 1.19e-29 12.1223 2.79e-05 4.2153
1.8706 1.0423 2.8629 1.1485 4.1886 1.3055

NSM (0.1088) (0.1147) (0.2225) (0.1243) (1.0518) (0.5086)
1.06e-19 9.0888 9.01e-20 9.2426 0.0097 2.5669

1.4457 1.3711 1.8569 1.4454 0.6951 -0.5192

OCD (0.2218) (0.5976) (0.4276) (0.6231) (2.1090) (3.1212)
0.0016 2.2942 0.0022 2.3197 0.8867 -0.1663
1.9353 5.4211 3.0742 5.6948 3.2212 4.0283

SCz (0.0668) (0.3765) (0.1512) (0.4217) (0.7209) (1.3343)
2.65e-36 14.3994 1.38e-33 13.5116 0.0021 3.0190
1.6750 0.5857 2.3947 0.6398 2.1556 0.3691

Smklnit  (0.0918) (0.0675) (0.1866) (0.0731) (0.8704) (0.2839)
9.76e-21 8.6809 8.62e-20 8.5610 0.1839 1.2888

Notes: The estimated effect size and its estimated standard error, * and se(t*), are scaled by dividing 107°.
Z-score of the effect size is reported to test the null hypothesis that either T < 0 (one-sided) or T = 0 (two-
sided). P-value of enrichment is reported to test the null hypothesis that Enrichment > 1. The bold-faced
p-values indicate the annotation significantly enriched in the disease heritability after accounting for multiple
testing (p-value< 0.05/12 = 0.0041).
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2.3.3 Construction of GPNs for 588 EHR-derived phenotypes in the UK
Biobank

For a total of 1,096,648 genetic variants and 588 EHR-derived phenotypes with main
ICD10 diagnoses after preprocessing, we construct two bipartite GPNs including a denser
representation and the well-defined sparse representation. Different from the previous 12
GWAS summary datasets obtained from different studies, GWAS summary datesets of
these 588 phenotypes are calculated based on a basic association test on the same ~337,000
unrelated individuals of British ancestry. Therefore, connectance of the denser
representation of GPN equals 1, that is, all genetic variants link with all phenotypes with
strength of the associations (Figure B.1(b)).

We consider the network properties for both genetic variants and phenotypes of
constructed GPN and the corresponding random networks. For each 7 e (0,1), we generate

1,000 corresponding random networks. Figure 2.3(a) and 2.3(b) show the KL divergence
for genetic variants and phenotypes across 1,000 random network comparisons,
respectively. The KL divergence increases from 0 to a specific value of the threshold and
then decreases from that value to 1, indicating that the difference between the original and
random network reaches the maximum at the specific value. We also calculate the cross
entropy and degree entropy of the weighted degree of genetic variants compared to the
corresponding random network (Figure B.6). The maximum mean of KL divergence
equals 1.14x10% at 7 =0.6, where the mean of cross entropy equals 3.90x10* with the
largest standard error (17.08) compared with other thresholds. Therefore, we constructed
the well-defined sparse representation of GPN with z=0.6. We also compare degree
distributions of the well-defined network with a more denser representation (z =0.8) and
two arbitrary threshold sparse representations (7 =0.2 and z=0.4) of GPN. Similar to the
constructed GPN of 12 genetically correlated phenotypes, the degree distributions of all
four networks follow the power law with different scale parameters y, indicating that a

small number of genetic variants have a much larger number of connections than the
majority of genetic variants. In particular, the degree of genetic variants in the denser
representation of GPN is greater than those in a sparser GPN, resulting in the scale
parameter increases with increasing the threshold = . Meanwhile, we calculate the network
properties of the unweighted GPNs by comparing them with the corresponding random
networks (Figure B.7).

We calculate three network topology annotations of genetic variants in the
constructed GPNs with 7=0.2,0.4,0.6,0.8 , including weighted degree centrality,
unweighted degree centrality, and approximate betweenness centrality (Figures B.7 and
B.8). Figure B.7 illustrates the relationship between the approximate betweenness
centrality of genetic variants and the weighted degree centrality of genetic variants. We
mark the genetic variants with the highest centralities.
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(a) KL divergence of genetic variant (b) KL divergence of phenotype
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Figure 2.3. Network properties of the bipartite GPNs for 588 EHR-derived phenotypes in
the UK Biobanks. (a) and (b) KL divergency for genetic variants and phenotypes. The blue
line is the mean of KL divergencies across 1,000 random network comparisons. The
boxplots show the scaled distribution of KL divergency for each threshold. (c) and (d)
Weighted degree distribution of genetic variants and phenotypes for four GPNs on log-log
scale, more denser representation (7 =0.8), well-defined sparse representation (z =0.6),
and two arbitrary threshold sparse representations (7 =0.2 and 7=0.4).

2.3.4 Community detection for phenotypes

For the denser representation of GPN, we construct the one-mode projected PPN by taking
the correlation of the adjacency matrix of GPN. After applying the modularity-based
community detection method to the signed PPN, we partition 588 EHR-derived phenotypes
into 132 disjoint network modules. The number of phenotypes in each network module
ranges from 1 to 87. For the well-defined sparse representation of GPN with, we also
construct a directed PPN by only focusing on the shared genetic variants between two
phenotypes. In the sparse representation of GPN, phenotypes link with multiple genetic
variants, but different phenotypes may not share a link with the same genetic variants. That
is, we define the adjacency matrix for the k™ phenotype as W, =0 for all I =1,---, K if

the k™ phenotype does not share the same genetic variants with other phenotypes.

Therefore, we first isolate 125 phenotypes without sharing any genetic variants with other

phenotypes as 125 network modules for a single phenotype. Then, we partition the

remaining 463 phenotypes into 71 network modules using the community detection

method introduced in section 2.2.4. The number of phenotypes in the 71 network modules
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ranges from 2 to 37, and there are a total of 196 network modules. For a comparison, we
also apply our proposed community detection method based on denser representation of
GPN to LDSC phenotypic correlation. 588 phenotypes are divided into 114 categories with
the number of phenotypes ranging from 2 to 82.

2.3.5 Phenome-wide association studies (PheWAS)

In PheWAS, a priori grouping (network module) of phenotypes in whole phenome can be
obtained by the community detection of PPN. For each network module, we jointly test the
phenotypes within this module and a genetic variant to discover the cross-phenotype
associations and potential pleiotropy. In this study, we perform five powerful GWAS
summary-based multiple phenotype association tests to identify the association between
phenotype in each network module and each of genetic variants, including minP*’, ChiSq’,
ACAT® MTAG!Y, SHom!® (details in Text B.2). Then, we use the refined FDR
controlling approach to evaluate FDR by thresholding the p-values obtained from the
multiple phenotype association tests.

Simulation studies.

We first conduct extensive simulation studies to evaluate whether multiple phenotype
association tests used in our study can well-control FDR. We consider two simulation
settings of the number of phenotypes: 500 phenotypes with 50 phenotypic categories and
1,000 phenotypes with 100 phenotypic categories (details in Text B.3). We assume that
only the phenotypes within the same phenotypic category are correlated with each other.
Similar to Lee et al.®, we consider two scenarios of correlations among phenotypes within
the same category: 1) same correlation between each pair of phenotypes (SAME); 2)
different correlation between each pair of phenotypes that is generated by using an
autoregressive (AR(1)) model. Table B.4 and Table B.5 show the average FDR in the
simulation studies for 500 phenotypes and 1,000 phenotypes, respectively. FDR is
evaluated using 10 Monte-Carlo (MC) runs, equivalent to 1,000 replications at a nominal
FDR level of 5% (Text B.3). The 95% confidence interval (CI) is (0.0365, 0.0635). Note
that we directly generate z-scores instead of effect sizes of genetic variants on phenotypes
without considering LD, therefore, we do not consider MTAG in our simulation studies.
The correlations among phenotypes are estimated by the method introduced in Kim et al.*’.
We observe that minP cannot control FDR in all scenarios but ACAT, and SHom well-
control FDR as expected.

PheWAS based on 165 UK Biobank level 1 categories:

As benchmarked categories in our analysis, we use 165 UK Biobank level 1 categories
defined in data-field 41202 (https://biobank.ndph.ox.ac.uk/showcase/field.cqi?id=41202).
The number of phenotypes in each category ranges from 1 to 20: there are 43 categories
containing only one phenotype; 35 and 31 categories contain 2 and 3 phenotypes,
respectively; only 7 categories contain more than 10 phenotypes. In our real data analyses,
we only apply three multiple phenotype association tests (ACAT, SHom, and MTAG) to
test the association between phenotypes in each network module and each genetic variant.
minP is not considered here since it cannot control FDR evaluated in our simulation studies.
We use the commonly used genome-wide nominal FDR level 5x107°. After applying our
refined FDR controlling approach for the tests of each genetic variant, ACAT can identify
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6,105 genetic variants associated with at least one category. We observe that most genetic
variants are associated with only one category. SHom can identify 2,701 genetic variants
and MTAG can identify 2,980 genetic variants (Figure 2.4).

SHom MTAG

Well-Defined 1LDSC Well-Defined 1LDSC
(1934) (1603)

UKB

(6139) (1849)

Figure 2.4. Venn plots for genetic variants identified by three multiple phenotype
association tests based on different phenotypic categories and network modules.

PheWAS based on 114 phenotypic categories from LDSC.

As a comparison, we also apply three multiple phenotype association tests to 114 categories
detected from the phenotypic correlation estimated by LDSC. ACAT identifies 6,205
genetic variants, SHom identifies 2,237 genetic variants, and MTAG identifies 1,603
genetic variants. Compared with the association tests based on the phenotypic categories
in the UK Biobank, ACAT based on the LDSC can identify all of the 6,105 genetic variants
identified by ACAT based on the UK Biobank (Figure 2.4). Meanwhile, there are 100
genetic variants that are uniquely identified by ACAT based on the LDSC. Figure B.10
shows the heatmap of -log10(p-value) from GWAS summary datasets of these 100 genetic
variants. We observe that all of these 100 genetic variants significantly associated with at
least one phenotype at the GWAS significance level 5x107°. According to results from
SHom and MTAG, tests based on the UK Biobank identify more genetic variants than the
tests based on the LDSC.

PheWAS based on 132 network modules from denser representation of GPN

According to the 132 network modules from denser representation of GPN (section 2.3.4),
ACAT can identify 6,142 genetic variants associated with at least one network modules
and SHom can identify 6,139 genetic variants. In the application of MTAG, it is time
consuming and out of memory for one network module with 87 phenotypes. Therefore, we
perform MTAG on the other 131 network modules and MTAG identifies 6,220 genetic
variants. Figure 2.4 shows the Venn plot for genetic variants identified by three multiple
phenotype association tests based on different phenotypic categories and network modules.
Based on the network modules detected from the denser representation of GPN, all three
methods (ACAT, SHom, and MTAG) can identify ~6,000 genetic variants associated with
at least one network module.
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PheWAS based on 196 network modules from well-defined representation of GPN.

According to the 196 network modules from well-defined representation of GPN (section
2.3.4), ACAT can identify 6,060 genetic variants associated with at least one network
modules; SHom can identify 2,385 genetic variants; and MTAG can identify 1,934 genetic
variants. From ACAT results, 6,060 genetic variants are identified by ACAT based on at
least two other grouping of phenotypes, even if it identifies a smaller number of genetic
variants. According to results from SHom and MTAG, tests based on the network modules
detected from well-defined GPN identify more genetic variants than the tests based on the
LDSC and the UK Biobank, but it identify less genetic variants than the tests based on the
network modules detected from denser GPN.

2.4 Discussion

In this paper, we perform a comprehensive analysis to construct the bipartite genotype and
phenotype networks (GPN), which can be a routine procedure in post-GWAS analyses.
Owing to increasingly accessible GWAS summary statistics, the construction of GPN only
requires the marginal association evidence between each genetic variant and each
phenotype in GWAS summary data instead of accessing individual-level genotypes and
phenotypes data. The denser representation of the bipartite GPN can be directly constructed
by linking all genetic variants and phenotypes in GWAS summary datasets. Although a
denser representation of bipartite GPN contains information on all pairwise associations
between genetic variants and phenotypes, pruning the network makes biological sense and
is computationally efficient®!. The thresholding approach for pruning networks leads to
stable network properties, but the threshold is significantly impacted by the size of a
network (connectance). To address this, we propose to construct a well-defined GPN with
a clear representation of genetic associations by comparing the network properties with a
random network, including connectivity, centrality, and community structure. Our findings
indicate that a well-defined network with an optimal threshold can preserve critical
information on the associations between genetic variants and phenotypes.

Based on the construction of the denser and well-defined representation of bipartite
GPN, we further propose two network topology annotations based on the degree centrality
and the approximate betweenness centrality. Both of the annotations can be used to
quantify the possibility of pleiotropy for genetic variants. We highlight one of our
significant discoveries that link pleiotropy and disease heritability through the utilization
of heritability enrichment analysis using the stratified LD score regression. We analyze 12
genetically correlated phenotypes to show that the genetic variants with high degree
centrality and approximate betweenness centrality are enriched for disease heritability
conditioning on known functional annotations from the baseline LD model. First, in
analyses of the degree centrality based on the denser and the well-defined GPNs, we
identify 10 phenotypes with significant heritability enrichment after using the LOPO
approach. The significant enrichment indicates that the degree annotation can contribute
more information to disease heritability if it is computed based on other highly genetically
correlated phenotypes. We also observe that the denser GPN provides more information in
the degree centrality as the degree centrality contains the strength of marginal association
evidence. Second, we determine that network annotation based on the approximate
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betweenness centrality calculated from the well-defined GPN is strongly enriched for
disease heritability. However, the disease heritability of some phenotypes is fully explained
by annotations from the baseline-LD model in the analysis of the approximate betweenness
centrality calculated from the denser GPN.

Construction of the bipartite GPN also has important implications for the phenome-
wide association studies (PheWAS). In particular, detecting the network modules of
phenotypes from the constructed GPN is essential in understanding the global and local
structures of associations between genetic variants and phenotypes, and in shedding light
on association connections that may not be easily visible in the network topology. The
detected network modules can be used as a priori grouping of phenotypes in PheWAS, then
jointly testing of multiple phenotypes in each network module and one genetic variant can
be performed to discover the cross-phenotype associations and pleiotropy. Significance
thresholds for PheWAS are adjusted for multiple testing by applying the false discovery
rate (FDR) control approach. First, we discover that the three multiple phenotype
association tests (ACAT, SHom, and MTAG) applied in this study can well-control FDR
as demonstrated by extensive simulation studies. Second, we analyze 633 EHR-derived
phenotypes in the UK Biobank GWAS summary datasets. Based on the network modules
detected from the denser representation of GPN, all three tests can identify more genetic
variants associated with at least one network module (~6,000 genetic variants) compared
with the tests based on the UK Biobank, LDSC, and well-defined GPN.

There still are some limitations to the work presented here. First, genetic effects can
be heterogenous across phenotypes and studies based on different GWAS summary
statistics**11? due to different sample sizes, genetic architectures, and quality of the
genotyping and phenotyping data, et al. In our current analyses, we ignore the influence of
different sample sizes for different GWAS summary statistics in the construction of GPN.
However, larger sample sizes are typically associated with smaller standard errors and
more precise effect size estimates, which can help to reduce bias and increase the stability
of effect size estimates. To construct a GPN with stable evidence of the associations in the
edges, we suggest that the sample sizes used to calculate the GWAS summary results in
each study are sufficiently large (e.g., N, >10,000 ). Second, we use the marginal

association between each genetic variant and each phenotype to define the edge of GPN.
The challenge in validating our proposed construction of GPNSs is that there is no source of
genome-wide “ground truth”. There may exist spurious associations between multiple
genetic variants and a phenotype due to LD?. For example, a genetic variant in high LD
with a true causal variant may be detected instead of the causal variant itself. However,
several powerful fine-mapping and colocalization approaches have been developed to
leverage information on LD to identify the putative causal variants in a specific genomic
region'3115 which provides a great opportunity to construct a more informative GPN for
future studies. Third, we do not consider the functional relationships between genetic
variants and phenotypes. Filtering candidate (functional) regions based on strength of
powerful gene-based associations may reduce multiple testing burdens and consequently
improve statistical power in the construction of GPN. For example, transcriptome-wide
association studies can combine genetic and transcriptomic data in a specific tissue to
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identify functional variants and genomic regions, which provide insights into biological
pathways!?®,

2.5 Data availability

GWAS summary statistics for 633 EHR-derived phenotypes with main ICD10 diagnoses
can be found from Neale lab: http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-
thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank.

GWAS summary statistics for 12 highly correlated phenotypes can be downloaded from
the corresponding consortium websites reported in Zhang et al.*%.

LDSC: the command line tool for estimateing heritability and genetic correlation from
GWAS summary statistiscs can be downloaded from https://github.com/bulik/ldsc?”.

Cytoscape: an open source software platform for visualizing complex networks which can
be accessed via https://cytoscape.org/™.
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3 Chapter 3

Gene-based association tests using GWAS summary
statistics and incorporating eQTL

Abstract

Although genome-wide association studies (GWAS) have been successfully applied to a
variety of complex diseases and identified many genetic variants underlying complex
diseases via single marker tests, there is still a considerable heritability of complex diseases
that could not be explained by GWAS. One alternative approach to overcome the missing
heritability caused by genetic heterogeneity is gene-based analysis, which considers the
aggregate effects of multiple genetic variants in a single test. Another alternative approach
is transcriptome-wide association study (TWAS). TWAS aggregates genomic information
into functionally relevant units that map to genes and their expression. TWAS is not only
powerful, but can also increase the interpretability in biological mechanisms of identified
trait associated genes. In this study, we propose a powerful and computationally efficient
gene-based association test, called Overall. Using extended Simes procedure, Overall
aggregates information from three types of traditional gene-based association tests and also
incorporates expression quantitative trait locus (eQTL) information into a gene-based
association test using GWAS summary statistics. We show that after a small number of
replications to estimate the correlation among the integrated gene-based tests, the P values
of Overall can be calculated analytically. Simulation studies show that Overall can control
type | error rates very well and has higher power than the tests that we compared with. We
also apply Overall to two schizophrenia GWAS summary datasets and two lipids GWAS
summary datasets. The results show that this newly developed method can identify more
significant genes than other methods we compared with.

Keywords: extended Simes procedure; eQTL - derived weights; GWAS summary
statistics; gene-based association study

3.1 Introduction

Although genome-wide association studies (GWAS) have successfully identified
thousands of single nucleotide polymorphisms (SNPs) associated with a wide range of
complex human traits'?, there is a common limitation in which GWAS focus on only a
single genetic variant with a trait at a time. This limitation may limit the power to identify
clinically or biologically significant genetic associations!'’. Furthermore, many genome-
wide significant genetic variants are in linkage disequilibrium (LD). Different LD patterns
can cause non-replicated results of the same variant in different populations'®%°,
Therefore, several powerful gene-based statistical association tests, in which the genetic
information of all genetic variants in a gene is combined to obtain more informative results,
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have been developed, such as the Burden Test (BT)'?, the Sequence Kernel Association
Test (SKAT)'?L, and the Optimized SKAT (SKATO)!2%,

When individual-level genotype and phenotype data are not available, the
traditional gene-based association tests, BT, SKAT, and SKATO, can be extended by using
GWAS summary statistics'?®. Currently, there are many GWAS summary statistics
available in public resources!®. In GWAS summary statistics, the Z-scores of genetic
variants in a gene are assumed to asymptotically follow a multivariate normal distribution
with a correlation matrix among all genetic variants in a gene under the null hypothesis!?,
where the correlation matrix can be estimated by LD among the genetic variants in the
genell®1% When individual-level data are not available, LD is usually estimated using
external reference panels!?’1?8 (j.e., 1000 Genomes Project'?®). Due to the small sample
size of reference panels used to estimate LD, statistical noise (i.e., inflated type I error rates
or large numbers of false positives) often exists which needs to be accounted for'3%!3!, One
way to reduce the statistical noise is to correct the estimated LD by a regularization
procedure’®, In the regularization procedure, a statistical white Gaussian noise is added to
the LD matrix which is estimated by a reference panel. After correcting the estimated LD
by the regularization procedure, we can assume that, under the null hypothesis, the Z-scores
from GWAS summary statistics asymptotically follow a multivariate normal distribution
with the correlation matrix being the corrected LD matrix among the genetic variants in a
gene.

To increase statistical power in identifying genes that are associated with complex
diseases, PrediXcan®®® and transcriptome-wide association study!¢!3* (TWAS) were
developed by incorporating expression gquantitative trait locus (eQTL) data into GWAS.
As pointed out by Zhang et al.}?®, PrediXcan and TWAS can be viewed as a simple
weighted linear combination of genetic variants with an eQTL - derived weight. In fact,
the genetic architecture of complex traits is rarely known in advance and is likely to vary
from one region to another across the genome and from one trait to another*?. Therefore,
only considering one single eQTL - derived weight, such as in PrediXcan and TWAS, may
lose statistical power in identifying significant genes. Zhang et al.*?® developed an omnibus
test (OT) using Cauchy combination method to integrate association evidence obtained by
BT, SKAT, and SKATO based on GWAS summary data with multiple eQTL-derived
weights. They showed that OT using multiple eQTL - derived weights had some potential
advantages.

Inspired by the advantage of OT, in this paper, we propose a more powerful and
computationally efficient method, called Overall, to aggregate the information from three
types of traditional gene-based association tests (BT, SKAT, SKATO) with multiple eQTL
- derived weights using GWAS summary statistics. To combine information from the three
gene-based association tests, the Overall method utilizes the extended Simes
procedure!’®*® To apply the Overall method, we first need to estimate the correlation
matrix among the three gene-based association tests with eQTL - derived weights under
the null hypothesis. We provide an estimation method using a replication procedure®:137,
The replication procedure only needs to be performed once to obtain the correlation matrix
for each gene. Then, the p-values of Overall can be analytically computed without using
permutations. To calculate the p-values of the three types of gene-based association tests
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(BT, SKAT, SKATO) using GWAS summary statistics with eQTL - derived weights, we
use the “sumFREGAT” package in R'?%. Once we obtain the p-values of these three tests,
the p-values of our proposed method can be easily calculated using its theoretical
distribution. Extensive simulation studies show that Overall can control type | error rates
well and has higher power than the comparison methods across most of the simulation
settings. Similar to Zhang et al.1?, we apply our method to two schizophrenia (SCZ) and
two lipids trait (HDL) GWAS summary data sets. Compared with OT and other tests, the
proposed method can identify more significant genes. More interestingly, some significant
genes reported by GWAS catalog are only identified by our proposed method.

3.2 Statistical Models and Methods
3.2.1 Statistical Models

Consider a set of M genetic variants in a gene. Let Z =(Z,,--+,Z,, )T be an M x1 vector

of Z-scores of the M genetic variants. Note that the Z-scores is either directly provided by
publicly available GWAS summary statistics or calculated from a GWAS individual-level
genotype and phenotype data set. We are interested in testing the null hypothesis H, that
none of the genetic variants in the gene is associated with a trait, whereas the alternative
hypothesis is that at least one genetic variant in the gene is associated with a trait. Following

Gusev et al.’® and Yang et al.’%, we assume Z =(Z,,---,Z,,)" ~ MVN(0,R) under the

null hypothesis, where R is the correlation matrix among Z , which can be estimated by
LD among the genetic variants in the gene'*%?_ If individual-level data are not available,
LD can be estimated using external reference panels (i.e., 1000 Genomes Project!?9).
However, if the sample size of a reference panel is small, LD may not be estimated
correctly so that it will induce statistical noise (i.e., inflated type | error rates or large
numbers of false positives)*>!3L. One way to correct the estimated LD is to use a
regularization procedure by adding a statistical white Gaussian noise'?**3, Let I,, be an

M x M identity matrix, and the corrected correlation matrix U can be defined as
U=aR+(1-a)l,, 0<a<l,

where a is a scalar tuning parameter which represents the coefficient of proportionality
between the corrected correlation matrix U and the original R estimated using an external
reference panel. The optimal tuning parameter a can be estimated by maximizing the log-

likelihood function of the distribution of Z ~ MVN(0,U), that is,
d=arg max{log(L(Z :O,U))}.

ae[0,1]

Then the corrected correlation matrix U =4aR +(1-4)1,, . Therefore, under the

null hypothesis, we consider Z =(Z,,---,Z, )T ~ MVN(O, U).

Suppose that there are a total of K different eQTL - derived weights from gene
expression data (i.e., Genotype-Tissue Expression (GTEX; https://gtexportal.org/home/)),
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denoted as Wk:diag(Wlk,---,V\?“j) for k=01---,K , where W, =diag(L- 1)

represents a status without using any weight. In order to avoid the influence of the scale
among genetic variants within each weight, we first standardize the eQTL - derived weights

W, as W =V\7nf/2:=l’\A7rT'f for m=1,---,M . Based on the k" standardized weight W, ,
the weighted Z-score W, Z follows a multivariate normal distribution. That is,
W,Z ~MVN(0,£, ) and £, =W,0W,.

We extend the three types of gene-based association tests, BT*?°, SKAT?, and
SKATO??, to incorporate the eQTL - derived weights based on GWAS summary

statistics'?>'%°, For the k™ eQTL - derived weight, the three gene-based test statistics can
be written as
2
Q =(2'W,1, ),
T
Q:KAT Z(sz) W.Z,

QgKATO = min {(1_p)QgKAT +pQ;T}’

pe0.1]

where 1, is an M x1 vector with elements of all 1s. Under the null hypothesis, Qf;
follows a 4* distribution with 1 degree of freedom; Q. follows a weighted sum of 3

distributions with 1 degree of freedom; and Qf,,, follows a mixture of 4 distribution*?,

The p-values of these three test statistics can be easily calculated using the “sumFREGAT”
package in R%,

3.2.2 Overall Method

To aggregate information from these three gene-based association tests with multiple eQTL
- derived weights, we develop a novel method, called Overall, which utilizes the extended

Simes procedure™®!®, Let pg., phor, Pocaro D€ the p-values of BT, SKAT, SKATO with
k™ eQTL - derived weight, k=0,1,---,K , respectively, where k=0 denotes a status
without using any weight. Thus, there are a total of L :3(K +1) p-values from three gene-

based tests with different weights. Let (p(l),m, p(L)) be a sequence of the ascending p-

values with p, = kD(?mK { Por+ Pogar p:KATO} and p,, = onax { Per Psar p;KATO} - Overall

combines these L p-values using the extended Simes procedure'®!®, and the p-value of

Overall is defined as
_ winJ ePo)
poverall - Il\l/“nL{ m }!

e(1)
where m, is the effective number of p-values among the L gene-based association tests

with multiple weights, p, is the I element of the ascending p-values, and m,,, is the
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effective number of p-values among the top | association tests. We use a more robust
measure to obtain the effective numbers m, and m,,, which was proposed by Li et al. 1o,

The values of m,, and m, can be estimated as

(1)
|
My, =1 _;[(ﬂ’l ~1)1(4>1)] and m, = M1y

where 1 denotes the i" eigenvalue of the correlation matrix Q of p-values from L
association tests with multiple weights (the estimation of © will be discussed in the next
section), I(+) is an indicator function. If the L association tests are independent, all

eigenvalues A equal 1, and m,, =| for I =1,---,L;ifthe L association tests are perfectly

dependent, then A4 =1 which is the number of tests used to calculate m, | and the other

(
eigenvalues equal 0. In this case, m,,, =1-(1-1)=1for I =1,---,L.

The R codes and a sample data set for the implementation of Overall are available
at GitHub https://github.com/xueweic/Overall.

3.2.3 Estimation of @ under the null hypothesis

To apply our proposed method, we need to estimate the correlation matrix of p-values Q
under the null hypothesis. Since the exact correlations among all L gene-based association
tests are unknown, we perform the estimation procedure with B replications. For each
replicate b, b=1,---, B, we implement the following two steps:

Step 1: We first generate a new Z-score vector Z™" under the null hypothesis. That is,
Z™" follows a multivariate normal distribution with mean 0 and variance-
covariance matrix R, where R can be estimated by LD among the genetic variants
in a gene using external reference panels (i.e., 1000 Genomes Project).

Step 2: We use the regularization procedure to obtain the corrected correlation matrix of

Z-scores U . Then, we calculate QX" Q" Qi)  and the corresponding p-

values i, pk®  pk®)  using the simulated z™' for k=0,1,---,K . The

distributions of Q" Q%) QL) _ depend on the corrected correlation matrix U,

and the standardized eQTL - derived weights W, for k=0,1,---,K.

To estimate the correlation matrix of p-values © used in the Overall method, we
use the sample correlation matrix of the p-values obtained from the replications. We denote

the sample correlation matrix of p-values as Q. For example, Q,, is the (1,2)-element of
Q which is the estimated correlation between BT and SKAT without using any weight. If

0 _ (.00 oB)\" . .
we let pgr —(pBT R ) be a Bx1 vector of the p-values of BT without using any

;
weight and pl,; = ( P pgfj?T) be a Bx1 vector of the p-values of SKAT without

using any weight obtained from the replications, then the sample correlation of p-values
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between these two tests is defined as Q,, = cor( Doty Pocar ) where cor(-) is the sample
correlation.

The estimation procedure to estimate € is independent of our proposed method,
therefore we only need to perform this procedure once for each gene. After we estimate Q
, the p-value of Overall can be computed analytically without using permutations.

3.3 Simulation Studies

3.3.1 Materials and Comparison Methods

In our studies, we use four data sets to obtain the eQTL - derived weights downloaded from
the website (http://qusevlab.org/projects/fusion/#reference-functionaldata). The resources
to obtain the four eQTL - derived weights are listed in Table 3.1. For each eQTL data set,
we use the weights estimated by the Best Linear Unbiased Prediction (BLUP)°,

Table 3.1. Resources of the four eQTL - derived weights used in the simulation studies.

Study Tissue # of Samples Reference

NTR Peripheral blood 1247 Wright et al 14!
YFS Whole blood 1264 Gusev et al. 11
METSIM | Adipose 563 Gusev et al !
CMC Brain 452 Gusev et al. 11

We compare our proposed method with three existing methods, OT*?® | S-
PrediXcan'#?, and S-TWAS!, These three methods are all based on GWAS summary
statistics and incorporate eQTL-derived weights. Here, we briefly introduce these methods.

OT: For a total of K different eQTL - derived weights and the three gene-based
association tests (BT, SKAT, SKATO), OT aggregates information from different weights
and tests by using the Cauchy combination method'*3, The test statistic of OT is defined as

Qo = K 0) kZ:‘[tan{(O.S— P )ﬂ}+tan {(0.5— P )n}+tan {(0.5— pgmo)”ﬂ and

the corresponding p-value can be approximated by p,; =1/2—arctan(Qq; )/7 .

S-PrediXcan: For a given eQTL-derived weight, provided by a matrix
W, = diag (W, W,; ), the test statistic of S-PrediXcan i Z¢ pregixean = 2, Wk GnZn /6,
where &, is the estimated standard deviation of the m" SNP in a gene and & is the
estimated standard deviation of the predicted expression of a gene. The p-value of S-

PrediXcan can be computed as P, eqixcan = 2<D(—‘Z§_Predix°an ) , Where CD() is the standard

normal CDF function.

k

S-TWAS: For a given eQTL-derived weight, provided by a vector w, = (Wl",---,W,\,I )T :

w, -Z

the test statistic of S-TWAS is defined as Z¢ . = , where R is the estimated

w, -R-w,
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LD structure among the genetic variants in a gene and the corresponding p-value can be
calculated by P s = 2@(—‘Z§_TWAS‘).

3.3.2 The Number of Replications Needed in Estimation of Q

To apply our proposed method, we first need to estimate the correlation matrix of p-values,
Q, under the null hypothesis for each gene. Following the estimation procedure introduced
in the method section, we generate Z-scores instead of generating individual-level
genotype and phenotype data. To determine the number of replications needed in the
estimation of ©, we consider 18 genes that contain different numbers of SNPs and have
different LD structures. Table C.1 gives a summary of these 18 genes. We can see from
Table C.1, the number of SNPs in a gene is ranging from 23 to 359 and the average per-
SNP LD score in a gene is ranging from 12.72 to 170.85. We simulate a Z-score vector
from a multivariate normal distribution with mean 0 and variance-covariance matrix R,

Z~ MVN(O, R), where R is the LD matrix of each gene which can be estimated using
the 1000 Genomes Project (unrelated Europeans in 1000 Genomes in Phase 3;
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). First, we use B =10 replications to estimate
Q under the null hypothesis, where the estimated matrix is denoted by €. Then, we denote
Q° as the correlation matrix of p-values by using B, replications. We vary the value of

B, from 16 to 5,000, and test the null hypothesis that the two correlation matrices, Q° and

Q , are the same by wusing “lavaan” package (https://CRAN.R-
project.org/package=lavaan)'**. Figure C.1 shows that the p-values for the hypothesis
testing in each gene are greater than 0.05 after B, =1,000 replications for all of the 18

genes. Therefore, we recommend using 1,000 replications to obtain Q for each gene under
the null hypothesis. Consequently, 1,000 replications are used in the following sessions to
evaluate the type | error rates and powers of Overall.

3.3.3 Type | error rates

To evaluate if our proposed method can control type | error rates, we perform simulations
based on the aforementioned 18 genes. For each of the 18 genes, we generate Z-score
vectors under the null hypothesis, Z ~ MVN (O, R) ,Where R isthe LD matrix of the gene
estimated using the 1000 Genomes project. Then, we use the regularization procedure to

obtain the corrected correlation matrix of Z-scores U, and calculate the three types of
gene-based association tests, BT, SKAT, and SKAT-O, with or without the four eQTL -
derived weights (NTR, YFS, METSIM, CMC) based on the corrected correlation matrix

U. Finally, we apply our proposed method to combine the p-values using the estimated
correlation matrix of p-values, Q. with 1,000 replications.
We generate simulated data to mimic real lipids data which we will use in real data

analysis section. Gene AGTRAP is associated with lipids trait HDL'®, There are a total of
23 genetic variants in gene AGTRAP. The LD block structure of these 23 genetic variants

is shown in Figure C.2. Figure C.3 shows the estimated correlation matrix Q for this
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gene. We use 10 replications to evaluate type | error rates of Overall for gene AGTRAP
at 5x1072, 1x107?, 1x1072, 1x10™*,1x10°°, and 1.75x10°® significance levels. With 10’
replications, a Bonferroni corrected significance level of 1.75x10° can be reached to
obtain the empirical type | error rates (i.e., for 28,625 genes in the real data analysis section,
the Bonferroni corrected significance level is 0.05/28625=1.75x10"° at 5% significance
level). We further evaluate type I rates based on the other 17 genes. To save computational
time, we use 2x10° replications to evaluate type | error rates of Overall for the 17 genes
at significance levels of 1x107?, 1x107, and 1x10™. Table 3.2 and Tables C.2 show the
estimated type | error rates of Overall under various nominal significance levels for gene
AGTRAP and the other 17 genes, respectively. From these tables, we can see that our
proposed method can control type | error rates very well at different significant levels.

Table 3.2. Estimated type | error rates at different significance levels with 10" replications.
The subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC,
METSIM, NTR, and YFS indicate the resources to obtain the eQTL - derived weights. O
indicates the methods without using eQTL — derived weights.

o — Level 5% 1072 1x1072 1x1073 1x107* 1x107° 1.75 x 107°
BTo 503x1072 1.06x1072 1.00x1073 1.01x10™* 9.76x107® 1.84x107°
SKAT, 524x1072 1.07x1072 1.01x107% 1.00x10™* 1.04x1075 1.80x107°
SKATO, 458x1072 957x107% 1.02x107% 1.04x10™* 9.72x10°® 1.46x107°
BTcmc 517x1072 1.04x1072 1.01x1073® 9.82x10™> 9.58x107® 1.72x107°
SKATceme 5.08x1072 9.89x107% 9.71x10™* 9.75x107> 9.48x10™°® 1.66x107°
SKATOcmc 516x1072 1.09x1072 1.17x107%® 121x107* 122x107°> 2.14x107°
BTwmeTsIM 502x1072 1.03x1072 1.02x107%® 1.01x10™* 9.86x107® 1.66x107°

SKATwmeTSIM 530x1072 1.08x 1072 1.02x107%® 991x10™> 1.00x107> 2.12x107°
SKATOwmersim = 4.84x 1072 1.05x1072 1.11x107% 1.09x10™* 1.06x107> 1.84x107°

BTnTr 502x1072 1.06x1072 1.00x10™3> 993x10™5 1.01x10"°> 1.76x107°
SKATNTR 509% 1072 1.03x1072 998x10~* 1.00x10™* 1.01x10° 2.00x 107
SKATOnNTR 508x 1072 1.18x1072 134x10™3 145x107* 152x10"°> 292x10°°
BTvrs 510%x 1072 1.02x1072 995x10™* 995x1075 1.05x1075 210x10°°
SKATyFs 498x 1072 1.03x1072 997x10™* 1.01x10™* 1.02x105 2.06x10°°
SKATOvrs 558x 1072 132x1072 143x10™3 155x107* 1.69x10"°> 3.50x10°°
Overall 467%1072 1.01x1072 112x1073 1.14x10™* 124x10° 244x10°°

3.3.4 Power Comparison

To evaluate the performance of the Overall method, we use several simulations to compare
the power of Overall with the power of OT, S-PrediXcan, S-TWAS, and three types of
gene-based association tests with and without eQTL - derived weights. We use BEST to
represent the test with the maximum power among the three traditional gene-based
association tests with and without an eQTL - derived weight, S-TWAS.B and S-
PrediXcan.B to represent the maximum power of S-TWAS and S-PrediXcan with each of
the eQTL — derived weights, respectively. Following the simulation settings in Nagpal et
al.1*® and Zhang et al.*?®, we generate individual-level genotypes, phenotypes, and different
gene expression levels using the following steps:
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(1) The genotype data are generated using the haplotypes of a gene obtained from the
1000 Genomes Project reference panel. To generate the genotype of an individual,
X, , we select two haplotypes according to the haplotype frequencies from the

haplotype pool and then remove genetic variants with MAF<0.05.
(2) We consider K different weights derived from gene expression data which can be

estimated using BLUP. To generate a vector of weights, w, , for the k™ gene

expression level, we randomly select causal variants according to the proportion of
causal variants, p_, ., - Then, the effect sizes for the k™ gene expression levels and

M_ .. Causal variants can be generated from a standard normal distribution,
W, ~N(0,1) for m=1,---,M
After we rescaled the weights to ensure the targeted expression heritability hez, we

where M, i =M X P > Otherwise, w, =0.

causal ’ causal

generate the k™ gene expression level by E, =X, W, +&, with each element of

random error g, follows N (O,l—hj).

(3) Let E:(E1,~--,EK) be the matrix of gene expression levels. Phenotypes are
generated by using a formula Y =Ef+¢, with each element of random error &,

follows N (O,l—hﬁ), where ﬂ:(ﬁl,---,ﬂK )T is a vector of genetic effect sizes

which can be assigned based on the phenotypic heritability h,f .

(4) The Z-score vector is estimated from individual-level genotype and phenotype data
using beta coefficient and its standard division estimated based on the ordinary least
squares method in linear regression.

In our simulation studies for power comparison, we consider two genes, AGTRAP
and C3orf22, from the 18 genes used in the type | error evaluation and K =4 and K =20
eQTL - derived weights. AGTRAP contains 458 haplotypes for 23 genetic variants (11
common variants and 12 rare variants; MAF ranging from 0 to 0.39775); C3orf22 contains
295 haplotypes for 42 variants (18 common variants and 24 rare variants; MAF ranging
from 0 to 0.43558). Figure C.2 shows the LD block structure of the 23 genetic variants at
AGTRAP and the 42 genetic variants at C3orf22. We vary the proportion of causal variants
with p. =(0.2,0.3,0.4,0.5) for AGTRAP and p_,, =(0.1,0.2,0.3,0.4) for C3orf22.

We also consider two different directions of genetic effects: g =---= £, (Scenario 1: Uni-
directional effects) and f =---=f, =—fpn =--=—f (Scenario 2: Bi-directional

effects). For each simulation scenario, we vary the proportion of gene expression
heritability and the phenotypic heritability with different values of he2 and h;.We consider

the sample size to be 2,000 (unless it is specified) and the power is calculated as the
proportion of 1,000 replications with p-value <1.75x10°°.

Figure 3.1 (Figure C.4) shows the power comparisons based on gene AGTRAP
(and C3orf22) with K =4 under the Uni-directional effects ( g =4, =4, =/£,) with
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different p_,, - We consider two settings here. First, we vary phenotypic heritability h;
with a fixed expression heritability hj =0.2 (Figure 3.1(a) and Figure C.4(a)). Second,
we vary the expression heritability h? with a fixed phenotypic heritability h?=0.2
(Figure 3.1(b) and Figure C.4(b)). Figure 3.2 (Figure C.5) shows power comparisons

based on gene AGTRAP (and C3orf22) under the Bi-directional -effects
(B, =p, =—p, =—p,) with different p_ ., for K=4. We also consider two simulation

settings, power against the phenotypic heritability h,f with a fixed expression heritability
he2=0.2 and power against the expression heritability he2 with a fixed phenotypic
heritability h; =0.2. The pattern of the power in Figure 3.2 (Figure C.5) is similar to

what we observe in Figure 3.1 (Figure C.4). These figures show that (1) Overall and OT
perform uniformly better than BEST, S-TWAS.B, and S-PrediXcan.B. We can see that
Overall and OT boost power significantly due to integrating association evidence by
different traditional tests and multiple eQTL — derived weights. Overall is slightly more
powerful than OT in all of the scenarios. (2) Among BEST, S-TWAS.B, and S-
PrediXcan.B, BEST are more powerful than S-TWAS.B and S-PrediXcan.B in all of the
scenarios for gene C3orf22; For gene AGTRAP, S-TWAS.B and S-PrediXcan.B perform
better than BEST when the proportion of causal variants in a gene is small
( Peassar =(0.2,0.3) ); otherwise, BEST performs better than S-TWAS.B and S-PrediXcan.B.

To evaluate if Overall and OT that integrate different types of association tests and
multiple eQTL — derived weights are robust for more eQTL studies, we also consider 20
(K=20) eQTL - derived weights under Uni-directional effect and Bi-directional effect
models on gene C3orf22 with settings similar to the settings in Figures C.4 and C.5. After
integrating L =3(K +1) =63 traditional gene-based association tests, we observe that the
patterns of the power for K =20 are similar to that in Figures C.4 and C.5 with K =4,
and the power gain of Overall and OT is higher than that of the tests only consider one
eQTL — derived weight, such as BEST, S-PrediXcan.B, and S-TWAS.B (Figure C.6).

Furthermore, we consider simulation settings with noise to the eQTL. We consider
simulation settings by adding less noise to the eQTL from the most relevant tissues and
more noise to those from the less relevant tissues. For the Uni-direction scenario, we

consider the first study being the most relevant tissue, where 5, =, + N (0,0.1h§) and

B, =B, =B, =PB,+N(0,05h); A, =/h/K depends on the phenotypic heritability h.
For the Bi-direction scenario, we consider 1% and 3" studies being the most relevant tissues
that have opposite effect directions, where 8, =—£,+N(0,0.1h?), A, = S, +N(0,0.1h})
and 8, =—f,+N(0,0.5n2), B, = B,+N(0,0.5h% ). Other parameter settings are the same

as these in Figures C.4 and C.5. The power comparison results are shown in Figures C.7
and C.8. From these figures, we find that the patterns of the power in Figures C.7 and
C.8 are very similar to those in Figures C.4 and C.5.
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Figure 3.1. Power comparisons of gene-based association tests at 1.75x10°° significance
level under Uni-directional effects ( g =24, =4, =4,) with p_., =(0.2,0.30.4,0.5)

based on gene AGTRAP. (a) Estimated power against phenotypic heritability h§ with fixed
expression heritability h” =0.2; (b) Estimated power against expression heritability h?
with fixed phenotypic heritability hf) =0.2.
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Figure 3.2. Power comparisons of gene-based association tests at 1.75x10°° significance
level under Bi-directional effects ( g =4, =—/f, =-4,) with p_, =(0.2,0.3,0.4,0.5)

based on gene AGTRAP. (a) Estimated power against phenotypic heritability h; with
expression heritability hj =0.2; (b) Estimated power against expression heritability he2
with phenotypic heritability h? =0.2.
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In all of the previous power comparisons, we use a sample size of 2,000. We also
consider simulation settings as those in Figures C.7 and C.8, but with a large sample size
of 100,000. Figure C.9 shows the results of power comparisons. We can see from this
figure, all powers are increased with this larger sample size, but the patterns of the power
are very similar to those in Figures C.7 and C.8.

To remove noise in LD matrix computed from a reference sample, we shrink the
observed LD matrix toward an identity matrix with the shrinkage parameter estimated by
maximum likelihood. To evaluate how well this regulation process performs, we compare
the powers of three traditional gene-based association tests with and without eQTL —
derived weights, OT, and Overall based on corrected and uncorrected LD structure. We
use the same simulation settings as those in Figures C.7 and C.8. Figure C.10 shows the
power comparison results based on gene C3orf22 under Uni-directional effects and Bi-
directional effects with noise to eQTL. We can see that the powers of these tests based on
corrected LD structure perform better than those based on uncorrected LD structure in most
of the settings.

3.4 Real Data Analysis

To evaluate the performance of our proposed method, we apply Overall, OT, the three
traditional tests with and without eQTL - derived weights, S-PrediXcan, and S-TWAS to
the GWAS summary statistics data sets used in Zhang et al.'?8: two SCZ GWAS summary
data sets and two lipid GWAS summary data sets. We estimate the LD between genetic
variants using the 1000 Genomes Project reference panel*?®, and obtain the corrected
matrix of Z-score after the regularization procedure. We consider four eQTL - derived
weights estimated by the BLUP method using the resources listed in Table 3.1 (NTR, YFS,
METSIM, CMC).

3.4.1 Application to the SCZ GWAS summary data

We consider two SCZ GWAS summary data sets, SCZ1 and SCZ2, which can be
downloaded from the Psychiatric Genomics Consortium website
(https://www.med.unc.edu/pgc/results-and-downloads/)*#6. SCZ1 is a meta-analysis of
SCZ GWAS data set with 13,833 cases and 18,310 controls. SCZ2 is a more recent and
larger SCZ GWAS summary data set with 36,989 cases and 113,075 controls for partial
validation'*'. In our real data analysis, we define a gene to include all of the SNPs from 20
kb upstream to 20 kb downstream of the gene and test the association between each gene
and the trait. We consider all genes according to the GENCODE version 35 (GRCh37)
human comprehensive gene annotation list which can be downloaded from the GENCODE
website (https://www.gencodegenes.org/human/release 35lift37.html).

To make fair comparisons among all these weighted tests, the genetic variants are
removed if there is at least one weight missing in the four eQTL - derived weights. After
pruning, there are 26,575 genes in SCZ1 and 17,823 genes in SCZ2 left in our final analyses.
Therefore, the Bonferroni corrected significance level for gene-based association analysis
is defined as 0.05 divided by the number of genes. First, we apply BT, SKAT, and SKATO
with and without an eQTL - derived weight, OT, Overall, S-PrediXcan, and S-TWAS to
the SCZ1 and SCZ2 data sets. Table 3.3 (SCZ1 and SCZ2) shows the number of genes
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identified by each method for the SCZ data sets, respectively. As we can see in Table 3.3,
Overall identifies more genes than all of the other methods for two SCZ GWAS summary
data sets. Among the three types of gene-based association tests, BT, SKAT, and SKATO,
with or without different eQTL — derived weights, SKATOo identifies the greatest number
of genes. S-TWASyrs and S-PrediXcanyrs identify the greatest number of genes compared
with S-TWAS and PrediXcan based on the other three eQTL — derived weights,
respectively. Therefore, in Figure 3.3, we only show the number of genes identified by
Overall, OT, SKATOqy, S-PrediXcanyrs, and S-TWASyrs. The number below each method
indicates the total number of genes identified by the corresponding method. From Figure
3.3, we can see that Overall identifies all of the genes identified by OT for SCZ1; for SCZ2,
there are two genes identified by OT but failed to be identified by Overall; there are 66 and
24 genes identified only by Overall for SCZ1 data and SCZ2, respectively.

We further investigate the 90 genes identified only by Overall for the SCZ data sets
by searching the GWAS catalog (https://www.ebi.ac.uk/gwas/). Among the 66 genes for
the SCZ1 data set, there are six genes reported in the GWAS catalog; among the 24 genes
for the SCZ2 data set, there are six genes reported in the GWAS catalog (Table 3.4). We
also use these two SCZ GWAS data sets for partial validation. Table 3.3 shows that there
are 45 overlapping genes identified by Overall using SCZ1 and SCZ2 data sets and only
17 overlapping genes identified by OT using both SCZ1 and SCZ2 data sets. Furthermore,

we search for genome-wide significant SNPs ( p <5x10®) from the two SCZ GWAS

summary data sets and consider the genes covering at least one genome-wide significant
SNP from 20 kb upstream to 20 kb downstream of the gene. There are 63 genome-wide
significant genes for SCZ1, and 2422 genome-wide significant genes in SCZ2. Table 3.3
(GWASscz1 and GWASscz2) summarizes the numbers of genome-wide significant genes
that are identified by each method for the two SCZ data sets. Among the 63 genome-wide
significant genes for the SCZ1 data set, Overall identifies the greatest number of genes,
followed by SKATo and SKATOo; OT, S-PrediXcanntr and S-TWASNtr only identify 6
genes. Meanwhile, among 2422 genome-wide significant genes for SCZ2, Overall
identifies 167 genes; OT identifies 166 genes; SKATO and SKATOo identify 153 genes;
S-TWASyrs and S-PrediXcanyrs only identify 58 and 72 genes respectively.

Overall Ovecrall
(271) (359)

S-TWASypg
(64)

S-TWASyrg

S-PrediXcanyyg (105)

(83)

S-PrediXcany pg
(128)

Figure 3.3. Venn diagram of the number of genes identified by Overall, OT, SKATOo, S-
PrediXcanyrs, and S-TWASyrs for SCZ1 data (left) and SCZ2 data (right). The number
below each of the methods indicates the total number of significant genes identified by the
corresponding method.
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Table 3.3. The numbers of genes identified by each method for the two SCZ data sets. The
subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC, METSIM,
NTR, and YFS indicate the resources to obtain the eQTL - derived weights. 0 indicates the
methods without using any weights.

SCZl SCZZ SCZoverlap GWASSCZl GWASSC22
7 1

BTo 97 166 38
SKAT), 47 305 20 15 153
SKATO, 136 394 27 15 153
BTcmc 44 137 2 1 56
SKATcme 12 225 6 1 134
SKATOcmc 30 263 2 1 130
BTwmeTsim 44 136 5 1 48
SKATMeTSIM 23 223 9 4 132
SKATOMEeTsIM 31 205 3 0 100
BTnTr 48 119 7 6 48
SKATNTR 27 230 9 8 141
SKATOnNTR 40 280 8 6 143
BTvrs 89 166 14 1 53
SKATvrs 20 223 6 7 137
SKATOvrs 47 321 7 0 140
S-PrediXcancmc 42 43 7 0 38
S-PredchanMETs.M 41 44 8 1 30
S-PrediXcanntr 48 70 14 6 59
S-PrediXcanygs 83 128 29 2 72
S-TWAScme 33 45 6 0 43
S-TWASwMETSIM 36 29 5 1 20
S-TWASNTR 37 54 13 6 46
S-TWASvrs 64 105 29 2 58
oT 133 522 17 6 166
Overall 271 559 45 16 167

Notes: SCZ1 indicates the number of genes identified by each method for SCZ1 data; SCZ2 indicates the
number of genes identified by each method for SCZ2 data; SCZoveran indicates the number of overlapping
genes identified by both SCZ1 and SCZ2 data sets; GWASscz1 and GWASscz, indicate the numbers of
genome-wide significant genes that are reported in the GWAS catalog and are also identified by each method
for SCZ1 and SCZ2, respectively.

Table 3.4. Genes identified only by Overall based on the two SCZ data sets that are
reported in the GWAS catalog.

Gene Data Overall Reference
RAI1 scz1 2.63E-31 148
SLC7A6 scz1 2.17E-15 149,150
AP001931.2 scz1 1.27E-13 147-155
MARK2 scz1 2.64E-07 151
GULOP scz1 1.24E-07 148-151,156
ZBED4 scz1 9.02E-07 151
RAB11FIP5 SCz2 1.05E-06 151,156
AL669918.1 SCz2 2.03E-06 151
YPEL1 SCz2 2.80E-06 151
LINC00606 SCz2 2.57E-06 151
ERLIN1 SCz2 2.34E-06 151
AC024597.1 SCz2 2.56E-06 152
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3.4.2 Application to the lipids GWAS summary data

We consider two lipids GWAS summary data sets, HDL1 and HDL2, which can be
downloaded at the Center for Statistical Genetics (CSG) at the University of Michigan.
HDL1 is a meta-analysis of HDL GWAS data set with about 100,000 samples downloaded
at the website (http://csg.sph.umich.edu/willer/public/lipids2010/)*”. HDL2 is the follow-
up data with about 189,000 samples for partial validation downloaded at the Global Lipids
Genetics Consortium (http://csg.sph.umich.edu/willer/public/lipids2013/)*%8. We perform
the same analysis as we did in the previous section for the two SCZ GWAS summary data
sets. There are 17,389 genes in HDL1 and 16,917 genes in HDL2. Table 3.5 (HDL1 and
HDL2) shows the number of genes identified by each method for the two lipids data sets,
respectively. As we can see from Table 3.5, among the three traditional gene-based
association tests with and without eQTL - derived weights, SKATOg and BTy identify the
most number of genes in HDL1 and HDL2, respectively; Among the four S-PrediXcan
tests, S-PrediXcanyrs and S-PrediXcancwmc identify the most number of genes in HDL1
and HDL2, respectively; for the four S-TWAS tests, S-TWASyrs and S-TWAScmc identify
the most number of genes in HDL1 and HDL2, respectively. For the HDL1 data set, Overall
identifies the greatest number of genes (249), followed by OT that identifies 233 genes; for
the HDL2 data set, BTo identifies the greatest number of genes (836), followed by Overall
and OT, where Overall identifies 765 genes and OT identifies 688 genes. In Figure 3.4,
we compare genes identified by SKATOo, S-PrediXcanyrs, and S-TWASvrs, along with
Overall and OT for the HDL1 data set and genes identified by BTo, S-PrediXcancmc, S-
TWAScme, Overall, and OT for the HDL2 data set. Again, we observe that Overall
identifies the greatest number of genes for the HDL1 data set and the second most for the
HDL2 data set; all genes identified by OT are also identified by Overall; 82 and 24 genes
are identified only by Overall and OT for the HDL1 and HDL2 data sets, respectively;
there are 13 and 6 genes only identified by Overall for the HDL1 and HDL2 data sets,
respectively. We search the GWAS catalog (https://www.ebi.ac.uk/gwas/). Table 3.6
shows that five out of 13 genes identified only by Overall based on HDL1 data have been
reported, and one out of 6 genes has been reported on HDL2 data in the GWAS catalog.
We also use these two HDL GWAS data sets for partial validation by looking for the
number of overlapping genes identified by both of the data sets (Table 3.5, HDLoverlap)-
There are 177 overlapping genes identified by Overall for both SCZ1 and SCZ2 data sets
and 167 overlapping genes identified by OT for both SCZ1 and SCZ2 data sets.

Same as the analyses for the SCZ GWAS summary data sets, we search for genome-
wide significant SNPs ( p <5x10®) from the two lipids GWAS summary statistics. There

are 1,911 genome-wide significant genes for HDL1 and 2,682 genome-wide significant
genes for HDL2. Table 3.5 (GWASHpL1 and GWASHpL2) summarizes the numbers of
genome-wide significant genes that are identified by each method for the two lipids data
sets. Among the 1,911 genome-wide significant genes for the HDL1 data set, Overall
identifies the greatest number of genes (122), followed by OT (120), then SKAT, (104);
S-TWASyrs only identifies 29 genes and S-PrediXcanvrs identifies 31 genes. Meanwhile,
among 2,682 genome-wide significant genes for HDL2, Overall identifies the greatest
number of genes (192); OT and SKATOq identify 190 genes; S-TWASwmersiv and S-
PrediXcanwversim identify 112 and 118 genes. respectively.
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Figure 3.4. Venn diagram of the number of genes identified by Overall, OT, SKATOy, S-
PrediXcanvrs, and S-TWASvrs for HDL1 data (left) and HDL2 data (right). The number
below each of the methods indicates the total number of significant genes identified by the
corresponding method.

S-TWAS e
(207)

Table 3.5. The number of genes identified by each method for the two lipids data sets. The
subscript denotes BT, SKAT, and SKATO using eQTL - derived weights; CMC, METSIM,
NTR, and YFS indicate the resources to obtain the eQTL - derived weights. 0 indicates the
methods without using any weights.

HDL1 HDL2 HDL overlap GWASHpL1 GWASpL2

BTo 95 836 78 50 185
SKAT, 116 174 114 99 157
SKATO, 157 762 138 104 190
BTcmc 79 130 41 46 107
SKATcme 105 159 99 95 146
SKATOcmc 130 177 103 96 150
BTwmeTsimv 83 160 59 58 111
SKATMeTsIM 120 259 118 102 149
SKATOwmeTsimM 131 199 118 98 152
BTntr 78 136 50 49 111
SKATNTR 105 156 100 90 148
SKATOnTR 131 183 111 95 154
BTvrs 88 154 50 53 113
SKATvrs 106 148 102 94 137
SKATOvrs 142 185 112 99 144
S-PrediXcancmc 43 213 18 29 114
S-PredchanMETsm 45 201 23 30 118
S-PrediXcanntr 33 187 14 19 108
S-PrediXcanyrs 69 195 25 31 117
S-TWAScmc 40 207 17 23 109
S-TWASMETSIM 37 202 16 15 112
S-TWASNTR 25 176 10 11 97

S-TWASyrs 59 183 24 29 115
oT 233 688 167 120 190
Overall 249 765 177 122 192

Notes: HDL1 indicates the number of genes identified by each method for HDL1 data; HDL?2 indicates the
number of genes identified by each method for HDL2 data; SCZveran indicates the number of overlapping
genes identified by both SCZ1 and SCZ2 data sets; GWASHpL1 and GWASp. 2 indicate the numbers of
genome-wide significant genes that are reported in the GWAS catalog and are also identified by each method
for HDL1 and HDL2, respectively.
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Table 3.6. Genes identified only by Overall based on the two lipids data sets that are
reported in the GWAS catalog.

Gene Data Overall Reference
AP002954.1 HDL1 2.27E-11 159

EDC4 HDL1 1.65E-11 160-162
PACSIN1 HDL1 2.24E-06 163

AFF1 HDL1 2.10E-06 164-168
AC106779.1 HDL1 2.85E-06 169
NHLRC2 HDL2 1.98E-06 166,168,170-173

3.5 Discussions

In this paper, we develop a powerful and computationally efficient method, Overall, for
gene-based association studies using GWAS summary data. Overall aggregates
information from three traditional types of gene-based association tests (BT, SKAT,
SKATO) and also incorporates eQTL data. Both our simulation studies and real data
analysis confirm that our proposed method can control type | error rates correctly and has
very good performance compared with other comparison methods. In real data analysis,
Overall identify more significant genes than other methods, and there are some genes
reported by GWAS catalog which are only identified by Overall.

There are some advantages of our proposed method. First, Overall adaptively
aggregates information from multiple gene-based association tests. Most combination tests
(i.e., Fisher’s combination test'’#) assume that the p-values should be calculated from
independent tests. To combine information from highly correlated gene-based association
tests, Overall utilizes the extended Simes procedure'®!%, It is shown that this procedure
to combine multiple tests is stable and effective regardless of whether the tests are highly
correlated¥"17>, Second, Overall is more powerful than the traditional gene-based
association tests, some popular transcriptome association tests (i.e., S-PrediXcan*? and S-
TWAS!8), and other eQTL weighted combination tests (i.e., ominous test'?®). By
aggregating information from different tests and incorporating multiple eQTL - derived
weights, Overall can achieve a higher statistical power under a variety of situation settings.
Meanwhile, our simulation studies and real data analyses show that the extended Simes
procedure is more powerful than the Cauchy combination method, especially if the
proportion of causal variants in a gene is small. Third, the p-values of Overall can be
analytically computed without using permutations, therefore, Overall is computationally
efficient. Finally, using the regularization procedure to correct the estimated LD can reduce
the potential statistical noise in the LD estimation if LD is estimated using a reference panel
with small sample size. In addition, Overall can be easily applied to genetic association
studies with either individual-level data or GWAS summary statistics.

In this paper, we combine three types of traditional gene-based association tests
(BT, SKAT, SKATO). However, the combination procedure used in the paper is very
general. Other more powerful gene-based association tests can also be combined using the
same approach, such as some state-of-the-art methods (i.e., S-TWAS!® E-MAGMA®'S,
and SMRY""),
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In this current study, we utilize the weights derived from four single tissue gene
expression studies (CMC, METSIM, NTR, YFS). Although the extended Simes procedure
in Overall allows us to employ more eQTL — derived weights from a number of studies
(i.e., GTEX gene expression version 8178 et al.), there is a possibility that the noise can be
increased with the increment in the number of unrelated studies. Therefore, the power of
the combination tests (i.e, Overall and OT) might be attenuated. Thus, to obtain the most
robust identification of phenotypic associated genes in a real data analysis with the Overall
method, we suggest incorporating eQTL datasets from the most relevant tissues to the
phenotype. The last but the most important thing is that population stratification can be
confounded association results®”®, Systematic minor allele frequency difference between
transcriptomic studies of different cohorts and no matching between the estimated LD
structure of Genomes Project with that in the study may increase the chances of false
positive findings. Therefore, we need to eliminate false positive findings possibly caused
by population stratification®®81, When applying the Overall method, the population of
GWAS summary dataset, external reference panel (i.e., 1000 Genomes Project) used to
estimate LD structure, and eQTL — derived weights should be consistent.

In this study, the computational time of the proposed method is acceptable even if
the estimated correlation matrix of multiple tests is obtained by the replication procedure.
Meanwhile, the estimation procrdure is independent of gene-based association tests,
therefore we only need to perform this procedure once for each GWAS summary dataset.
For example, there are a total of 29,008 gene in the 1000 Genomes Project and we use
1,000 replicates to estimate the correlation matrix of multiple tests for each gene. We
perform this using the high-performance computing (HPC) cluster (Intel Xeon E5 — 2670
2.6 GHz, 16 GB RAM). The computational time for all genes is about 36 hr CPU time with
500 nodes. Then, the p-value of the proposed method can be computed analytically which
is independently performed in each GWAS summary dataset. The computational time for
each GWAS dataset is about 1 hr CPU time with 10 nodes.
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4 Chapter 4

TGPred: Efficient methods for predicting target genes of a
transcription factor by integrating statistics, machine
learning, and optimization

Abstract

Six statistical selection methods were developed based on the penalized regression models
with two loss functions (mean squared error (MSE) and Huber function (Huber)), and three
penalty functions (Lasso, elastic net (ENET) and network-based penalty (Net)), for
inferring target genes of a transcription factor (TF) of interest. We also ameliorated an
accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection
processes of the six methods, resulting in a much more efficient APGD algorithm than the
commonly used convex optimization solver (CVX). As the synthetic data generated from
the general setting was used to test four non-Net methods, MSE-ENET penalty performed
better while Huber-Lasso performed worse than other methods. As the synthetic data
generated from the network setting was used to test all six methods, MSE-Net and Huber-
Net outperformed the non-Net methods. The non-Net methods were also tested with SND1
and GL3 overexpression real transcriptomic data sets. Huber-ENET and MSE-ENET
outperformed Huber-Lasso and MSE-Lasso in overall. The methods we developed will fill
the gap of lacking the appropriate methods for predicting target genes of a TF, and are
instrumental for validating experimental results yielding from ChlP-seq and DAP-seq, and
conversely, selection and annotation of TFs based on their target genes.

Keywords: transcription factors, target gene prediction, selection probability, statistical
selection, and convex optimization

4.1 Introduction

Construction and delineation of transcriptional regulatory networks are essential for
systematically understanding how various biological processes and complex traits are
regulated at system level and how plants grow and develop in response to environmental
cues. Although biological experiments can be performed to obtain gene regulatory
relationships, they are labor-intensive and time-consuming, and are only applicable to
acquire a small number of true regulatory relationships due to a tremendous amount of
work. In the last two decades, the advent of high throughput technologies including
microarray, RNA-Seq, and ChlP-seq as well as DAP-seq, made it easier to generate a
terabyte transcriptome data for network inference. As the high-throughput data in public
repositories increase exponentially, various computational algorithms and tools utilizing
high-throughput transcriptome data and ChIP/DAP-seq provide an alternate approach to
infer gene regulatory relationships and acquire gene regulatory networks. However, the
acquisition of transcriptional gene regulatory network with high accuracy is pivotal for
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such an approach. To develop highly accurate methods, exploration of machine learning,
statistics and optimization combined approaches is promising and opens a new avenue for
doing this more efficiently.

In the earlier stage, for example, one to two decades ago, high-throughput
transcriptome data were primarily generated from single cell organisms like bacteria and
yeast, or the cell lines of eukaryotic organisms, which allowed to generate time-course
microarray data with small time intervals. These types of data encouraged the development
of many dynamic methods that incorporated the temporal variable into the models to
accurately predict gene regulatory relationships, such as differential equations®®?, finite
state'®, dynamic Bayesian'®*, Boolean network'®®, and stochastic networks® and ordinary
differential equations (ODE)'®’. For these methods, the time-course data with very small
time intervals are critically important to the accuracy of inferred networks and the
regulatory relationships therein contained. Since it is very time-consuming to harvest
specific cell types or tissues from the multi-cellular organisms, more and more high-
throughput transcriptome data were generated from various tissues of multicellular
organisms like plants and mammals in a loosely timed series or entirely no points. Static
data are thus characterized by very large time intervals (e.g. days or weeks) or non-time-
points at all. To analyze this kind of data, the static methods, which do not involve temporal
variable, were developed, such as ParCorA, maximum relevance/minimum redundancy
Network (MRNET)®, mutual information based relevance networks'*®°, Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNE)®*!, Context Likelihood of
Relatedness (CLR)%2, C3NET!%, Mutual Information 3 (MI3)%, and probabilistic-based
Bayesian network!®®, random forests'%.

Recently, more methods have been developed for constructing local gene
regulatory networks especially the multilayered gene regulatory network, such as top-down
GGM¥"1% hottom-up GGM algorithm®, and BWERF?®, and gene regulatory network
controlling a pathway or a biological process, for instance, TGMI?°* and HB-PLS?%, In
addition, the methods for constructing multiple joint gene regulatory networks using data
from multiple sources, for example, JGL?®® and JRmGRN?**, have been developed.
However, the above-mentioned methods are not specifically tailored to the needs of
inferring the target genes of a transcription factor (TF). In reality, we desperately need the
methods for inferring the targets genes of each TF for facilitating construction of a
complete network and validating regulatory relationships or the networks inferred based
on in-silico analyses and biological experiments. For example, we need the methods of
inferring the targets genes of a TF of interest, which can be employed to validate
experimental results of ChlP-seq and DAP-seq. Conversely, such methods allow us to infer
a TF’s functions based on the functions of its target genes. After multiple TFs’ targets genes
are inferred, we can screen TFs for specific purposes based on their target gene functions.

In this study, we developed six statistical selection methods to infer the potential
TGs for a given TF, which combined two loss functions and three penalty functions. The
loss functions, mean squared error (MSE) and Huber function (Huber), were used to
measure the errors between the predicted values and the observed values. Huber can avoid
the sensitivity of heavy-tailed errors or outliers than MSE. The penalty functions, Lasso,
elastic net (ENET) and network-based penalty (Net), contain the [; norm of the estimated
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effect sizes which can control the sparsity of the selected TGs. Meanwhile, Net penalty can
incorporate prior biological genetic network information into the prediction 2%°. We also
modified and implemented an accelerated proximal gradient descent (APGD) algorithm
for the parameter optimization in all six methods. Our simulations showed that the APGD
was much more efficient than a commonly used method called convex optimization solver
(CVX). To obtain a stable selection result, we applied the stability selection method,
namely, half-sample approach, which does not need to choose the optimal tuning
parameters in selection methods. We tested all the methods with simulated data, and four
non-Net methods with the real transcriptomic data of all genomic genes, and two Net
methods with the real transcriptome data of all metabolic pathways, especially lignin
pathway genes. Our study showed that the four non-Net methods were useful for
identifying the target genes of a TF of interest in genome-wide analysis, which implies that
the methods could be used to validate target genes of a TF resulting from TF ChlP-seq or
DAP-seq experiments, while the two Net-based methods can identify TGs involved or
associated with a pathway or a biological process, and TFs that regulate them. When
multiple TFs are analyzed, the results can be used for TF selection and screening based on
the distinct functions of their target genes.

4.2 Materials and Methods
4.2.1 Materials

Simulated gene expression data

The simulated data were generated in two settings: (1) general setting; (2) network setting.
In the general setting, p TGs were independent with each other and the first 50 TGs were
regulated by a given TF (Details in Text D.1). In the network setting, we simulated p TGs
with two biological network structures, the hierarchical network and Barabasi-Albert
network. For the hierarchical network, there were 5 disjointed subnetworks and each of
them consisted of 100 TGs. The subnetwork was constructed as the same as Kim et al.?®
(Figure D.1). For the Barabasi-Albert (BA) network, there were 50 subnetworks and each
of them was a BA-based network comprising of 10 TGs?%. There were 45 TGs and 40 TGs
that were regulated by a given TF for the hierarchical network and Barabasi-Albert
network, respectively (Details in Text D.2).

Populus trichocarpa SND1 transcriptomic data and analysis

The poplar data used for simulation were from our previous studies'®’. The data can be
retrieved from Gene Expression Omnibus (GEO) with accession number GSE49911.
Briefly, the data were generated and then analyzed as following: Poplar protoplasts isolated
from stem developing xylem were transfected with plasmid vector harboring poplar SND1
gene under the control of 35S promoter, and then harvested for RNA-seq at 7, 12 and 25
hours. Three samples of SND1-driven by 35S at each time point were harvested while three
control samples (control vector without SND1) at each time point were harvested. The raw
count data were used for identification of differentially expressed genes (DEGSs) for each
time point using the edgeR package?®’, and for normalization with trimmed mean of M-
values (TMM) contained in the edgeR package. Normalized data were used for real data
simulation to validate the methods we developed in this study.
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Maize gl3 transcriptomic data and analysis

Two transcriptional-activator like effectors (dTALes) that target two non-overlapping 16-
bp regions of the gl3 promoter for overexpression were constructed. The two regions are
located 5 bp and 48 bp upstream of the transcription start site. 14 day-old seedlings were
used to test for gI3 dTALes-mediated induction of gl3, and bacterial strains carrying either
dT1 or dT2 activated gl3 expression by 24 hours after the bacterial inoculation. Three
samples and three controls, upon being infected with Xv1601 bacteria carrying dTALes,
were harvested in a time-series with four time points: 6, 12, 24, and 48 hours. Sequencing
data were trimmed by Trimmomatic (version 0.38)%%. Trimmed reads were aligned to the
maize B73 reference genome (B73Ref4) using STAR (2.7.3a)2%°. The data were aligned to
maize genome B73 from which FPKM values were generated with Cufflink package?'°,
and DEGs were identified with Cuffdiff package?!*. FPKM data were used for simulation
with gl3 as TF and DEGs and all genomics genes as candidate TGs. The dTALe RNA-Seq
data are available at NCBI SRA under the project of PRINA692729.

Maize B73 transcriptomic data for validation of Net-based methods

In total, the expression levels of 739 RNA-seq data of B73 were downloaded from NCBI
Sequence Read Archive (SRA) repository. The accession numbers are shown in Table S1.
Raw read counts generated per gene were calculated by STAR and then normalized with
Cufflink?'?. 2,539 unique pathway genes were extracted from the Plant Metabolic Network
(PMN)?E and 23 lignin pathway genes as well as 23 transcription factors (TFs) that are
known to regulate lignin pathway?'4?'8 were used for validating the Net-based methods,
Huber-Net and MSE-Net.

4.2.2 Statistical selection methods

Consider that the expression levels of a TF y and the expression levels of the TGs x in the
whole-genome form a linear relationship:

Yi =ﬁ0+x?ﬁ+gi' i=1,-,n,

where n is the number of samples, x; = (xl-l, ---,xip)T is the expression levels of p TGs in
sample i, and y; is the expression level of the TF gene in sample i. S, is the intercept and
B = (,81, -~-,,b’p)T are the regulated regression coefficients. The TF gene regulates TG j if
Bi#0( =1,-,p), the TG j and TG k are co-regulated by TF gene if both §; # 0 and

Br # 0. g is independent and identically distributed random errors with mean 0 and
variance o2.

Based on the above statistical model, we developed six statistical selection methods
to infer the potential TGs for a given TF based on the penalized regression model. The
general objective function of the penalized regression model was defined as

f(B;4,a) =L(B;y,x) + P(B; 4, ),

where L(f; y;, x;) is the loss function according to the observed expression levels of TGs
and TF and P(B; A, @) is the penalty function which can control the sparsity of the selected
TGs.
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Loss functions

In the above general objective function of the penalized regression model, we considered
the following two loss functions, MSE and Huber. The MSE loss function is defined as

LMSE(B;y,x) = —Z " (yi — Bo — xT B)?, which is very sensitive to outliers. Therefore,

the use of Huber Ioss function has been proposed and is more robust to the heavy-tailed
errors or outliers than MSE?%°. The Huber loss function is defined as L*?¢"(B;y, x) =
> Hy(y; — Bo — xI B), where Hy,(z) is the Huber function for an input value z, which
is quadratic function for small z values but grows linearly for large values of z. In this
study, the parameter M is defaulted to be one-tenth of the interquartile range (IRQ), as
suggested by Deng et al.?%. For any given positive real M (called shape parameter), the
Huber function is defined as

z2 lz| <M
H ={ =
@D = omlz = M2 (2] > M

Penalty functions

All of the three penalty functions we considered, Lasso, ENET, and Net, contained the [,
norm of the estimated effect sizes (||B]l;). The ENET penalty is the combination of the

I, norm and squared I, norm, PENET(B; 2, ) = Aa|| B, +%/1(1 —a)|IBll5 . 2> 0 and

a € [0,1] are the tuning parameters, where A controls the sparsity and « is the mixing
proportion between [; norm and [, norm. The Lasso penalty is the special case of ENET
(a = 1) and PLass°(B; 2, a) = A||B]l;, which only contains one tuning parameter A > 0.
For the Net penalty, we assume that the genes involved in the same pathway are often co-
regulated by a TF or the same regulatory mechanism, which is supported by previous
studies??%-222, The Net penalty function can utilize prior biological network knowledge such
as genetic pathways?%, which is a combination of the I, norm and squared [, penalty using
the genetic network structure. As introduced in Kim and Sun?®, the PNet(B; 1, a) is
defined as

P (Bia,c) = 2l 21— )pTSTLS

- MZV?JI +-201 —a)ZZ(S’ﬁJ %)

Jj=1j~

In the above formula S = dlag(sl," ,sp) is a diagonal matrix whose diagonal
entries are the signs of estimated regression coefficients, which can be obtained from either
the ordinary regression when p < n, or the ridge regression when p > n. It has been shown
that the matrix S can accommodate the problem of failure of local smoothness between
linked genes?®. For example, if two nearby TGs are negatively regulated by TF, the signs
in their regression coefficients are expected to be different. L is a symmetric normalized
Laplacian matrix, where the elements of L, L;;, are given by

1 ifj=kandd; #0
1
Lk =y—(q;d)?  ifj #kand j~k *
0 otherwise
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where j~k means that the TGs j and k are linked in the genetic network and d; is the total
number of genes linked with the TG j. Note that the genetic network information L are
considered as the functional relationships among the TGs, which can be obtained from the
existing annotation. For example, we can construct an association network using the
pathways or biological processes information, where the TGs are associated with each
other if they are within a metabolic pathway or a biological process.

Based on the above two loss functions along with three penalty functions, we
developed six statistical selection methods, named MSE-Lasso, MSE-ENET, MSE-Net,
Huber-Lasso, Huber-ENET, and Huber-Net. For a given pair of A and «, we can estimate
the regression coefficients of p TGs, B, by minimizing the objective function f(B; 1, a)
introduced in formula (2). In other words, g = argmingf (B; 4, ). The penalty function
P(B; A, «) is convex?®224 5o the solution to B can be obtained via one of the convex
optimization algorithms.

4.2.3 Algorithm to solve the penalized regression models

Since |ﬁj| is convex but not differentiable at g; = 0 for j = 1,---, p, it is difficult to use
the gradient descent method to find B = argmingf(B). Although here we can use the
general convex optimization solver CVX?%, it is too slow for real biological applications
especially when there are a large number of genes involved in the analysis. Therefore, we
adapted an accelerated proximal gradient descent (APGD) algorithm which is an effective
algorithm when the objective function can be decomposed as a sum of a convex
differentiable function and a convex non-differentiable function. In the six methods we
developed, the objective function f(B) can be decomposed as f(B) = g(B) + h(B),
where g(B) is a convex differentiable function and h(B) is a convex non-differentiable
function. The idea behind APGD method is to make a quadratic approximation to g(f8)
and leave h(B) unchanged 2%, then use the iterations to solve B = argmingf(B) (Details
in the Texts D.3-D.8).

4.2.4 Selection probability

To obtain a stable selection result, we applied the stability selection method, namely, half-
sample approach, to each TG, which does not need to choose the optimal tuning parameters
in selection methods. For a pair of fixed values of 1 and @ (a = 1 for Lasso penalty), n/2
samples are selected at random without replacement and then the regression coefficients
are estimated based on this subset of samples. This process is repeated B times for each

pair of a and A over a grid set of a and A. Let ﬁ} (Sp; a, 1) denote the estimated regression
efficient for the bth sample (S, b = 1,--+, B), the selection probability of TG j, SP;, is the
maximum portion of non-zero Bj (Sp; a, A) over all pairs of @ and A. In other words,
1w .
SP; = rgaxEZ I(,Bj(Sb;a,l) * O)
b=1

where 1(B;(Sy;a,2) # 0) is an indicator function and I(B;(Sp; @A) #0) =1 if
Bi(Sp;a,2) = 0forb =1, ,B.
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There are two major advantages for the use of selection probability. First, we avoid
selecting the optimal tuning parameters A and a, which is challenging in penalized
regression analysis. Second, it has been shown that the results obtained from the half-
sample approach and the selection probability are more stable than those obtained from the
cross-validation?®>2?’, The main challenge of the stability selection method is how to
appropriately choose the grid sets of the two parameters A and «. For a given «a, the
smallest A such that all estimated coefficients are zeros from two loss functions, MSE and
Huber, can be defined as

n
Amax = Max |z (yi — Bo — xijB;)xij
j=1,p i=1

/@

n
Huber _—
Amax - j£n13Xp | E VHM(yi)xij|/a
=1, i=1

where VHy (y;) = 2y;1(ly;| < M) + 2Msign(y;)I(ly;| > M) is the gradient of Huber
function. Therefore, the grid set of A can be set as a logio-scale from ratio * 4,45 10 Aax
where the ratio = 0.01 as suggested by R package glmnet.

Six statistical selection methods based on the penalized regression models and the
APGD algorithm for solving these six statistical methods had been implemented in both
Python3 and R and then packed into TGPred, which have been made publicly available on
GitHub as open-source software for downloading (https://github.com/xueweic/TGPred);
more detailed information on how to install and run the tool was enclosed in the packages;
also see Text D.9.

4.3 Simulation studies

Simulation studies were used to evaluate the performance of the six statistical selection
methods we developed based on the penalized regression models. We considered two
simulation settings, the general setting and the network setting, and we used n = 300
samples and p = 500 TGs in all simulation settings. For each simulation setting, the
regulation effects for all genes based on each method were estimated by APGD, and the
selection probabilities were calculated by B = 500 half-sample approach. Then, the true
positive rates (TPRs) were used to evaluate the selection performance, which is defined as
the number of the truly regulated genes among the selected top-ranked genes divided by
the total number of truly regulated genes.

In the general setting, TGs were independent with each other. Therefore, we only
compared the performances of Huber-Lasso, MSE- Lasso, Huber-ENET, and MSE-ENET
in the general setting. Figure 4.1 showed the TPRs of these for methods in the general
setting based on the number of selected top-ranked genes. As it is known, the bigger pre-
set regulation effects may result in the higher TPRs of all methods, since all methods can
select the genes with larger true regulation effects. On the contrary, the lower pre-set
regulation effects may result in the lower TPRs of all methods. In both cases, we cannot
differentiate the performances of different methods. Therefore, we pre-set the regulation
effects § = 0.2 or 0.3, and 50 TGs were regulated by a given TF in this simulation setting.
For f = 0.3, all four methods achieved over 80% TPRs when we selected 50 top-ranked
genes, while all of them performed equivalently well when we selected 40 top-ranked
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genes or less. After selected 85 top-ranked genes, all methods achieved over 95% TPRs
and MSE-ENET performed better than the other three methods. Compared with Huber loss
function, MSE loss function had higher TPRs no matter what penalty functions were used.
The Area under the Receiver Operating Characteristic curve (AuROC) measured the
performance across all possible thresholds of selection probabilities. Note that the larger
the AuROC, the better the performance of the method. All of four methods obtained an
AUROC that exceeded 0.9. As shown in Figure D.2, AUROC (MSE-ENET) = 0.97,
AUROC (MSE-Lasso) = 0.95, AUROC (Huber-ENET) = 0.95, and AUROC (Huber-Lasso)
= 0.91. Similar to 8 = 0.3, MSE-ENET performed best and all methods achieved over
70% TPRs when we selected 50 top-ranked genes along with over 0.8 AUROC.
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Figure 4.1. The TPRs of different methods in general setting. The selection probabilities
were calculated using half-sample approach method with B = 500 times of resampling.

For the network setting, we considered two network structures, the hierarchical
network (Figure D.1) and the Barabasi-Albert network (not shown). Figure 4.2 showed
how TPRs varied with the different numbers of the top-ranked genes for different methods
in the hierarchical network and the Barabasi-Albert network. For the hierarchical network
where 45 TGs (out of 500 genes) were truly regulated by a given TF, we pre-set the
regulation effects § = 0.3 or 0.4. Since the Net penalty function incorporated the network
structure, TPRs of Huber-Net and MSE-Net were higher than the other four methods. For
the Barabasi-Albert network where 40 true TGs (out of 500 genes) were regulated by a
given TF, we pre-set the regulation effects § = 0.1 or 0.2. Huber-Net and MSE-Net had
the highest TPRs in all settings as expected, indicating that Huber-Net and MSE-Net have
the same performances and outperform the other four non-Net methods in both network
structures. We then plotted the ROC curves for all methods in two network settings. For
the hierarchical network setting, the AUROCSs of both Huber-Net and MSE-NET were 0.73
for § = 0.3, and were 0.78 for B = 0.4, which were higher than the AUROCs of the other
four methods (Figure D.3), indicating that Huber-Net and MSE-Net can incorporate the
functionally associated genes and increase the probability of these genes to be selected as
the TGs for a given TF. Meanwhile, for the Barabasi-Albert network, the AUROC:s of both
Huber-Net and MSE-Net were 0.9 for § = 0.1, and were 0.95 for § = 0.2, which were
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also higher than the AUROCs of the other four methods (Figure D.3). Based on both TPR
and AuROC, we conclude that Huber-Net and MSE-Net performed equivalently well and
out-performed all other four non-Net methods. Compared to the general setting, it is
obvious that the four non-Net methods performed less differentially in the two network
settings, as shown in Figures 4.2 and Figure D.3.

We also compared the computation time and the regression coefficients estimated
by APGD and CVX, a commonly used package for convex optimization, for several pairs
of tuning parameters A and @. The comparison results were shown in Figures D.4-D.9,
which were also summarized into Text D.10 for the detailed analyses. For brief, our
simulation results showed that APGD was not only capable of obtaining the similar
estimated regulation effects of all TGs for a given TF, but also shortened the computation
time to 1/10 of that by using CV X, which enables us to predict true TGs of a TF out of a
large number of candidate TGs (e.g. more than 30,000 as demonstrated in Figure D.4).
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Figure 4.2. The TPRs of different methods in network setting. The selection probabilities
were calculated using half-sample approach method with B = 500 times of resampling.
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4.4 Real data analysis

4.4.1 Validating Non-Net methods with SND1 transcriptomic data

DEG analysis yielded 178 genes that had significant p-values (< 0.05) as shown in our
early publication'®’. The Top-down GGM algorithm identified 94 genes that were tightly
responsive to SND1, from which we identified 84 genes that were interfered by SND1
directly and hereafter, referred to as putative direct TGs of SND1. Of these 84 direct TGs,
we randomly drew 16 genes for experimental validation with ChIP-PCR, all 16 genes
tested are proven to be the direct TGs of SND1, which 15 of 16 genes chosen from
indirectly genes (178 — 84 = 94) are proven to be true indirect TGs, indicating the high
accuracy (93%) of the Top-down GGM algorithm. Using the same data set we then
simulated SND1 and all 33,691 genomic genes, and attempted to identify the direct TGs
based on the selection probabilities yielded from each method. When the all genes being
ranked by selection probabilities, Huber-ENET, MSE-ENET, HuberLasso and MSE-Lasso
identified 58, 53, 42 and 43 responsive genes, and 53, 49, 38 and 39 TGs, among the top
178 genes, respectively. We plotted AUROC and obtained ROC and AuROC of the four
methods (Figure 4.3). The ROC curves showed that the Huber-ENET and MSE-ENET
ranked more positive TGs to the very top of lists as compared to Huber-Lasso and MSE-
Lasso, indicating that ENET penalty outperformed Lasso. Interestingly, the Huber-ENET
and MSE-ENET performed very well when they were used to identify TGs of SND1 from
all genomic genes all genomic genes (33, 691 genes) (Figure 4.3 left), as evidenced by the
AUROCs > 0.75.

4.4.2 Validating Non-Net methods with gl3 transcriptomic data

We employed the Transcriptional-Activator Like effectors (TALes) to activate glossy3
(g13), aglossy master regulator. Two dTALes, referred to as dT1 and dT2, were constructed
to target two non-overlapping 16-bp regions in the gl3’s promoter. The two regions
targeted by dT1 and dT2 are 4 and 48 bps upstream of the transcription start site of gl3.
Analysis of RNA-seq data yielded at 24 h revealed 144 genes (93 upregulated and 51
downregulated genes), that were activated by both dT1 and dT22%8. From these 144 genes,
we identified 93 tightly responsive genes to gI3 and 78 TGs of gl3using Top-Down GGM
Algorithm with a cut-off corrected p-values < 0.05. The 78 genes contain 6 of 9 known
glossy genes in the literature, supporting that the 78 genes are true positive TGs. When we
implemented the four non-Net methods we developed to gl3 and all 30,263 genomic genes,
and attempted to identify the responsive genes and TGs of gl3 based on the selective
probabilities. When the top 144 genes were ranked by selective probabilities, Huber-
ENET, MSE-ENET, HuberLasso and MSE-Lasso identified 78, 81, 91, and 93 responsive
genes and 57, 49, 68 and 70 TGs, respectively, among the top 144 genes. We plotted
AUROC and obtained ROC and AuROC of the four methods (Figure 4.3). The ROC curves
showed that the Huber-ENET and MSE-ENET ranked slightly more positive TGs to the
top of list as compared to Huber-Lasso and MSE-Lasso, indicating ENET penalty
outperformed Lasso. Intriguingly, all four non-Net methods performed very well when they
were used to identify TGs of gI3 from all genomic genes (30, 263 genes) (Figure 4.3,
right), as evidenced by the AUROCs > 0.91.
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Figure 4.3. The performance of four non-Net methods in TGPred package. A. ROC
generated with the data set of 178 differentially expressed genes (DEGs) of SND1 from
Populus trichocarpa. B. ROC generated with the data set of all genes (33,691) in the RNA-
seq data from Populus trichocarpa. C. ROC generated with the data set of 144 DEGs of
gl3 from Zea mays. B. ROC generated with the data set of all genes (30,263) in the RNA-
seq data from Zea mays. DEG, differentially expressed genes. AUROC, area under the
receiver-operating characteristic curve.

4.4.3 Validating Net-based methods with lignin pathway in Maize

Maize expression data has been used for predicting the regulatory relationships between
transcription factor (TFs) and pathway genes (PWGs). A total of 2,539 PWGs belonging
to at least one pathway were obtained after the genes that have 90% expression values are
0 in the 739 samples were removed. These 2,539 PWGs belong to 446 pathways. To
evaluate the performance of our proposed six methods and APGD algorithm in real data
analysis, we applied each method to each of 23 TFs versus 2,539 PWGs. The Laplacian
matrix L of 2,539 PWGs was constructed based on 446 pathways, that is, two PWGs were
associated together if they belong to at least one of 446 pathways. Since these 23 TFs are
the known TFs that regulate lignin pathway in multiple plant species®?®. We specifically
examined 21 genes in maize which were curated by Plant Metabolic Pathway?® as lignin
pathway genes.
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We applied our proposed six methods to the 739-sample data sets of 2,539 PWGs,
and 23 TFs to calculate the selection probability of 2,539 PWGs for each TF. For three
penalized regression methods, HuberNet, HuberENET, and ENET, nine «a values (a =
0.1,0.2,---,0.9) and 10 different A values in a calculated range from the loss function
(“Lambda_gird” function from our developed package “TGPred”) were used, respectively.
For Huber-Lasso, 100 A values in a calculated range from the loss function with ¢ = 1
were used. Furthermore, the parameter B representing the number of subsets of samples
drawn with the half-sample resampling method were used to calculate the selection
probabilities of 2,539 PWGs for each TF. Then, we specifically checked 21 lignin pathway
genes to verify the reliability of our methods. There are two criterions that are regarded as
existing regulator relations. We chose the PWGs with the selection probabilities greater
than 0.90. The PWGs were captured by the six methods were shown in Figure 4.4A and
Figure 4.4B. The results yielded from three methods with Huber loss function (Figure
4.4A) and the results yielded from three methods with MSE loss function (Figure 4.4B)
were placed side-by-side for comparisons. It is obvious that the values of selection
probabilities calculated by three methods with Huber loss functions were larger than those
of three methods with MSE loss function, as indicated by the color depths (Figure 4.4).

Currently, there are no methods that have been developed and tailored specifically
towards identifying the TGs of a given TF, especially for a genome-wide analysis. As a
result, we could not find a similar or closely related method that can be used as a
comparison to illustrate the efficacy of the six methods. We finally used a widely used
network construction method, ARANCE?®®!, as a comparison. The results yielded by
ARANCE are shown in Figure 4.4C when the same inputs (2,539 PWGs) as six methods
were fed. Nevertheless, only a few regulatory relationships were captured by the
ARANCE. When we used only the 21 lignin pathway genes as the input for ARANCE,
more regulatory relationships were captured (Figure 4.4D), which were still much less
than those identified by the six methods. Compared to ARANCE, the six methods
identified many additional and unique relationships.

Huber-Net identified the unique pathway genes that were not identified by Huber-
ENET and Huber-Lasso. For example, CAD1 regulated by MYB20, 4CL2-1 by VND1,
HCT1.1 by MYB59. However, based on the lignin pathway genes alone, the differences in
target identification by the six methods were not largely different. To examine this with all
pathways, we show the common and unique TGs of the same TFs of the three methods that
use the same loss function (Huber or MSE) for 23 TFs versus all 2,539 pathway genes. As
shown in the Venn diagram (Figure D.10), Huber-Net and MSE-Net identified up to 10
and 27 unique genes for TF of Zm00001d047716, respectively, indicating the value of the
Net-based methods in identifying unique targets. The results of 46 Venn diagrams
representing common and unique TGs out of 2,539 pathway genes regulated by the 23 TFs
are shown in Figure D.10.

To compare the difference in the networks generated by different methods, we
showed the networks constructed by the six methods, with the networks constructed by
ARANCE method being used as a comparison. All the gene regulatory networks of lignin
pathway genes built are shown in the Figure D.11. Although each TF’s targets were
analyzed separately, the results could be merged to obtain a network, in which the TFs
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were ranked clockwise based on the number of their connectivities to pathway genes; the
TFs with higher connectivities are assumed to regulate more pathway genes and/or have
larger impact on pathway genes and thus were ranked earlier. These results indicate that
the six methods could be used to rank and select TFs given the TGs are functionally
associated structural genes, for example, genes from a pathway or a biological process. In
addition, Figure D.10 manifests that Huber loss function and MSE loss function contribute
more to the ranking of TFs than the penalty functions because TFs ranked by Huber-ENET,
Huber-Lasso and Huber-Net were more consistent as compared to those by MSE-ENET,
MSE-Lasso and MSE-Net.

A. Comparison of Huber-ENET (HE), Huber-Lasso (HL) and Huber-NET (HN) for identifying lignin pathway genes as targets
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Figure 4.4. Comparison of six methods (Huber-ENET, Huber-Lasso, Huber-Net, MSE-
ENET, MSE-Lasso, MSE-Net) in identifying TGs (lignin pathway genes). A. the three
methods with Huber loss functions. The inputs are the expression data sets of 2,539
pathway genes and 23 known lignin pathway regulators in the in maize. B. the three
methods with MSE loss functions. The inputs are the expression data sets of 2,539 pathway
genes and 23 known lignin pathway regulators in the in maize. C. the ARACNE method
that was used as a comparison with the same inputs as the six methods. D. the ARACNE
method that was used as a comparison with the expression data sets of 21 lignin pathway
genes and 23 known lignin pathway regulators being used as the inputs.

76



4.5 Discussion

4.5.1 Solving Convex optimization problem by implementing APGD

It has been shown that both the loss functions and the penalty functions we used in this
study are convex functions?®2220, Currently, CVX is the commonly used software for
solving convex optimization problems®®, but one overt problem of CVX is its slowness
when being used for large datasets. In this paper, we implemented an accelerated proximal
gradient descent (APGD) algorithm?? instead of using CVX in our methods. APGD is an
effective algorithm to solve an optimization problem with a decomposable objective
function, which enabled us to predict true TGs of a TF out of a large number of candidate
TGs (e.g. more than 30,000) in the analysis. In principle, CVX cannot be used to calculate
the stable selection probability. The stable selection probability is calculated based on the
proportion of non-zero estimated regulation effect of a TG over the number of times we
resampled in the half-sample approach, and all candidate tuning parameters. When using
APGD, we can obtain a subset of TGs with non-zero regulation effects, and the rest subsets
of TGs with zero regulation affections. Therefore, we do not need to choose with zero
regulation affections. Therefore, we do not need to choose threshold by applying APGD to
the half-sample approach.

4.5.2 Development and elucidation of six novel methods for identifying
TGsofaTF

With the improved new APGD algorithm, we set out to develop novel methods to predict
the TGs of a TF of interest using omics data, an important issue that has not been well
solved in current bioinformatics. With two loss functions, Huber and MSE, and three
penalty functions, Lasso, ENET and Net, we developed six statistical selection methods,
namely, MSE-ENET, Huber-ENET, MSE-Lasso, Huber-Lasso, MSE-Net and Huber-Net.
The Huber loss function is a hybrid of squared errors for relatively small errors, and
absolute errors for relatively large errors, which has been shown to be more robust than
MSE loss function when there are outliers?®®. As the synthetic data generated from the
general setting was used to test the first four non-Net methods, we found that MSE-ENET
performed better while Huber-Lasso performed worse than other methods if all TGs are
independent. When the network setting was used to test the six methods, especially MSE-
Net and Huber-Net, as anticipated, the MSE-Net and Huber-Net outperformed the other
four non-Net methods since the Net penalty could incorporate the network structure of
TGs. Notably, one tuning parameter A from Lasso penalty and two tuning parameters a
and A from ENET and Net penalties are usually obtained from the cross-validation by
minimizing the predicted accuracy?°>?%°, However, the results are not stable due to the
samples being randomly split in the cross-validation®®. Therefore, a stability selection
method, which uses a subsampling approach to obtain a stable selection result has been
developed by Meinshausen and Bihlmann??’; the subsampling approach has been
manifested to determine the amount of regularization. In this study, we used the selection
probabilities to evaluate candidate TGs of a given TF.

In our extensive simulation studies, we showed that the proposed methods, Huber-
ENET and MSE-ENET, outperformed Huber-Lasso and MSE-Lasso in terms of the true
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positive rates. Meanwhile, all of these four methods are useful for predicting or in-silicon
validating the TGs of a TF of interest in many circumstances. For example, numerous
biologists develop transgenic lines or employ a transient system in which a TF is perturbed
(Figure 4.5), followed by RNA-seq experiments to obtain the transcriptomic data; efficient
methods are thus needed to predict or validate the TGs of the TF. Usually, the biologists
first identify DEGs after the perturbation of a TF before they use one of the following
methods to identify candidate TGs for experimental validation: (1) selecting some DEGs
based on significant levels of the corrected p-values or g-values and assume these gene are
candidate TGs; (2) using a correlation method as shown®! or a dependence-based
method®? or a modeling method to identify causal relationships between the TF and
DEGs?®, (3) using Top-down GGM algorithm?8234235 g predict TGs of the TF from the
DEGs; However, these approaches usually have a low accuracy (e.g. correlation or mutual
information) or a scalability limitation (e.g. Top-down GGM) due to the high cost of
searching the space of a complete combination of a subset of candidate genes. Thus, there
is a pressing need to develop methods for efficient modeling of candidate genes efficiently
and predicting the network dynamics accurately. In addition, there are some other
circumstances where we need new methods to identify or validate the TGs of a TF in-
silicon. For example, when genome-wide experiments like ChlP-seq and DAP-seq are
conducted, analysis of ChIP-seq or DAP-seq data usually yields a few to even twenty
thousand putative TGs whose promoters can be bound by a TF. However, the presence of
a binding site of the TF in the TGs’ promoters does not necessarily mean there is an
activation. We need highly efficient methods to validate the existence of an effect-and-
response in expression. In this sense, our methods, Huber-ENET, Huber-Lasso, MSE-
ENET and MSE-Lasso, fill in a gap of lacking efficient methods for predicting or validating
TGs of a TF of interest using large-scale omics data. Such methods are sought by a
multitude of biologists. Our results showed that some TGs identified by our methods
couldn’t be identified by p-values/FDR-based ranking, Top-down GGM algorithm and
correlation/dependence-based methods. Compared to correlation /dependence-based
methods that are often applied to pairwise genes, our methods resampled a large number
of subsets of data (e.g. 500) to compute the selection probabilities of all genes to one TF
simultaneously, and then select top-ranked TGs based on the stabilities of selection
probabilities across all subsets. Therefore, our methods augmented the selection process
and increased the reliability of TGs. Even if each time we computed linear relationships of
one TF with all genomic genes or DEGs with one re-sampled subset, the aggregation to the
selection probabilities from all subsets could increase the chance of the nonlinear true
relationships to be captured.

Instead of identifying TGs of a TF independently, we sometimes need to investigate
if a TF regulates a pathway or a biological process. In this case, we can examine if a TF’s
TGs contain multiple genes belonging to a pathway or a gene ontology that represents a
biology process. Toward this goal, we developed Huber-Net and MSE-Net methods based
on network-based penalty. In our extensive simulation studies based on the network setting,
we showed that Huber-Net and MSE-Net performed better than the other four methods in
terms of the true positive discovery rates. We then applied these two methods to all 2,539
PWGs of maize as candidate TGs and 23 TFs which were identified as the true regulatory
TFs of some PWGs in the lignin and phenylpropanoid pathways. By comparing the existing
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experimental regulatory relationships from published articles?*4?8, the results contained
most of the proven positive regulatory relationships. Moreover, we also applied the other
four proposed methods, Huber-ENET, MSE-ENET, Huber-Lasso, and MSE-Lasso to
examine the differences in the predicted results by two Net methods. We found that most
of the regulated relationships are similar while Huber-Net has more rigorous results than
others. Thus, the proposed six methods can be used as the reliable methods to predict and/or
validate the regulatory relationships between PWGs and TFs.
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Figure 4.5. An integrative framework for identifying target genes of a TF of interest using
transcriptomic data by integration of statistics, machine leaning and convex optimization.
Huber and MSE represent Huber loss function and mean squared error MSE, respectively,

while ENET, Lasso and Net represent three penalty functions, elastic net, least absolute
shrinkage and selection operator, and network-based penalty (Net).

4.5.3 The power of statistics, machine learning and optimization
combined approaches

In this study, we combined statistics (half-sample approach-derived selection probability),
machine learning (regularization in unsupervised learning) and convex optimization
(solving regularization with APGD) to identify TGs of a TF of interest, which is illustrated
in Figure 5. Our results showed that this kind of combined approach has great efficacy in

identifying the true TGs, as we shown early?%,

In our methods, we utilized two loss functions. The Huber loss function is a
combination of linear and quadratic loss functions. The MSE loss function, which measures
the average of the squared errors, ensures that our trained model has no outlier predictions
with huge errors. MSE puts larger weight on these errors due to the squared part of the
function. The mathematical benefits of MSE are particularly evident in its use at analyzing
the performance of linear regression, as it allows one to partition the variation in a dataset
into variation explained by the model and variation explained by randomness. Huber loss
is more robust to outliers as compared to MSE loss and least absolute deviation (LAD)
loss, and has higher statistical efficiency than the LAD loss function in the absence of
outliers?'®. In addition, we utilized three different penalty functions. Lasso penalty adds a
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penalty for non-zero coefficients to penalize the sum of their absolute values (1; penalty).
As a result, for high values of A, many coefficients are exactly zero under Lasso. ENET
penalty was proposed in response to the critique on Lasso because the variable selection of
Lasso only considers the absolutely value of estimated effects resulting in instability. It
combines the penalties of ridge regression and Lasso to gain “super-penalty”. Net penalty
is capable of incorporating a set of genes like a pathway or a biological process as
represented by a gene ontology and enables us to investigate if a TF regulates multiple
genes involved in a pathway or a biology process. When TGs of multiple TFs are predicted,
we can then use the results to screen the TFs for regulating a specific metabolic pathway,
biological process, and complex trait.

We manifested that APGD has the most computational efficiency for solving the
convex optimization problem with both differentiable and undifferentiable functions.
Traditional regularization methods need to choose optimal tuning parameters. One
limitation of traditional regularization methods with cross-validation is that it depends on
the saturation of the data, different data sets may obtain different tuning parameter sets,
leading to different or instable results. APGD is a highly efficient approach to solve our
proposed methods as well as the other penalized regression, which is a combination of
convex optimization and machine learning. The incorporation of half-sample-based
selection probability allow to obtain more stable results, and avoid to choose the optimal
tuning parameters. Therefore, integration of statistics, machine learning and optimization
enables us to take the advantage of all methods and combines them to generate a powerful
approach to identify true TGs of a TF with high efficacy. Due to the disadvantage of the
feature selection procedure, we cannot check if the selected genes have strong evidence
related to the outcome. For future studies, we plan to integrate statistical inference in the
selection procedure and further investigate the selection performance by integrating both
selection and statistical inference.

4.6 Conclusions

Six new statistical selection methods termed Huber-ENET, MSE-ENET, Huber-Lasso,
MSE-Lasso, Huber-Net and MSE-Net were developed for identifying TGs of a TF of
interest for the first time by integration of statistics, machine leaning and convex
optimization approaches. An accelerated proximal gradient descent algorithm was
specifically developed to solve convex optimization. Comprehensive simulations and
analyses of the six methods using synthetic data under general setting indicated Huber-
ENET, MSE-ENET, Huber-Lasso, and MSE-Lasso could be used to identify true TGs of
a TF with high efficacy. When simulating with the data from network setting, Huber-Net
and MSE-Net outperformed any other non-Net methods for identifying true TGs involved
in a subnetwork. For real data, ENET penalty function appears to contribute greatly to the
method efficiency as compared to Lasso, and the Huber optimization has a noticeable
contribution to the identification of true TGs of a given TF by increasing the selection
probabilities as compared to MSE. AuROC plots showed that all six methods could rank
more positive known regulators to the top of output regulatory gene lists. Our results
suggest that the overall performances of six methods are instrumental for identifying real
TGs of a TF. Our study filled a gap of scarcity of efficient tools for predicting true targets
of a TF in gene-wide simulation.
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5 Chapter 5

Gene selection by incorporating genetic networks into case-
control association studies

Abstract

Large-scale genome-wide association studies (GWAS) have been successfully applied to
a wide range of genetic variants underlying complex diseases. The network-based
regression approach has been developed to incorporate a biological genetic network and to
overcome the challenges caused by the computational efficiency for analyzing high-
dimensional genomic data. In this paper, we propose a gene selection approach by
incorporating genetic networks into case-control association studies for DNA sequence
data or DNA methylation data. Instead of using traditional dimension reduction techniques
such as principal component analyses and supervised principal component analyses, we
use a linear combination of genotypes at SNPs or methylation values at CpG sites in a gene
to capture gene-level signals. We employ three linear combination approaches: optimally
weighted sum (OWS), beta-based weighted sum (BWS), and LD-adjusted polygenic risk
score (LD-PRS). OWS and LD-PRS are supervised approaches that depend on the effect
of each SNP or CpG site on the case-control status, while BWS can be extracted without
using the case-control status. After using one of the linear combinations of genotypes or
methylation values in each gene to capture gene-level signals, we regularize them to
perform gene selection based on the biological network. Simulation studies show that the
proposed approaches have higher true positive rates than using traditional dimension
reduction techniques. We also apply our approaches to DNA methylation data and UK
Biobank DNA sequence data for analyzing rheumatoid arthritis. The results show that the
proposed methods can select potentially rheumatoid arthritis related genes that are missed
by existing methods.

Keywords: gene selection, genetic network, case-control association study

5.1 Introduction

With the maturation of modern molecular technologies, genomic data is increasingly
available in large, diverse data sets?®. Those data sets provide us an opportunity to use a
large volume of human genetic data to explore meaningful insights about diseases. Over
the last decade, large-scale genome-wide association studies (GWAS) have been
successfully applied to a wide range of genetic variants underlying complex diseases?.
Different types of genetic variants have different biological functions in the human
genome. Genotyping can identify small variations in DNA sequence within populations,
such as single-nucleotide polymorphisms (SNPs)?’. Meanwhile, DNA methylation is an
epigenetic marker that has suspected regulatory roles in a broad range of biological
processes and diseases?®. Most penalized regression approaches have been developed to
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overcome the challenges caused by the computational efficiency for analyzing high-
dimensional genomic data, such as elastic net??, precision lasso?*°, group lasso?*1242, etc.
However, Kim et al.?% showed that these approaches ignore genetic network structures that
have the worst selection performance in terms of the true positive rate.

There is strong evidence showing that genes are functionally related to each other
in a genetic network and network-based regularization methods by utilizing prior biological
network knowledge to select phenotype related genes can outperform other statistical
methods that do not utilize genetic network information®®, Utilizing genetic network
information indeed improves selection performance when genomic data are highly
correlated among linked genes in the same biological process (i.e., genetic pathway).
Therefore, the network-based regularization method has been developed in gene expression
data®*® and DNA methylation data®**. To avoid the computational burden in analyzing
high-dimensional genomic data, Kim et al.?® proposed the approach that combines data
dimension reduction techniques with network-based regression to identify phenotype
related genes. The dimension reduction techniques can capture the gene-level signals from
multiple CpG sites or SNPs in a gene, such as the principal component (PC) based methods
(PC, nPC, sPC, et al.)?®. PC method uses the first PC of DNA methylation data and nPC
normalizes the first PC by the largest eigenvalue of the covariance matrix of methylation
data. In addition, sPC uses the first PC of the data that only contains the CpG sites
associated with the phenotype. It has been demonstrated that network-based regression
using PC-based dimension reduction techniques can outperform other methods that ignore
genetic network structures?® and the selection performance can be improved if the gene-
level signals can capture more information.

To date, several popular and powerful gene-based association tests for GWAS have
been developed to capture the combined effect of individual genetic variants on a
phenotype within a gene, including Sequence Kernel Association test (SKAT)?! and
Testing an Optimally Weighted combination of variants (TOW)*°. The combined effect of
individual genetic variants on a phenotype offers an attractive alternative to single genetic

variant analysis in GWAS. Let x; denote the genotype (number of minor alleles) of the i"

individual at the j™ variant in a gene. To combine information from individual genetic
variants into a single measure of risk allele burden, BT, SKAT, and TOW employ a

weighted combination of genetic variants, Zj w;X; , to test the association between a gene

and a phenotype with different ways to model the weights w,. SKAT uses the weights

related to the minor allele frequencies of the genetic variants. An important feature of
SKAT is that it can handle the genetic effects on a phenotype with different directions and
magnitudes by incorporating flexible weight functions to boost power. TOW uses the
optimal weights obtained by maximizing the score test statistic to test the association
between a weighted combination of genetic variants and a phenotype. TOW is more
powerful than SKAT when the percentage of neutral variants larger than 50%. However,
these three weighted combinations of individual genetic variants do not account for the LD
structure among genetic components in a gene. To adjust for LD between genetic variants,
the polygenic LD-adjusted risk score (POLARIS) and quadratic polygenic risk score
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(PRSg) were developed to improve upon the standard PRS by correcting the inflated Type
| error rates observed in the standard PRS in the presence of LD?4>24¢,

Inspired by these popular gene-based association tests using a weighted
combination of genetic variants to capture the combined effect of individual genetic
variants within a gene, in this paper we propose to use weighted combinations of genetic
variants in a gene to capture gene-level signals in network-based regression into case-
control association studies with DNA sequence data or DNA methylation data. Instead of
using traditional dimension reduction techniques such as PC-based methods, we use a
linear combination of genotypes at SNPs or a linear combination of methylation values at
CpG sites in each gene to capture gene-level signals. We employ three weighted
combinations of variants used in TOW®®, SKAT*?!, and PRSg?®® to capture gene-level
signals. We call these three weighted combinations as optimally weighted sum (OWS),
beta-based weighted sum (BWS), and LD-adjusted polygenic risk score (LD-PRS). After
we use one of the weighted combinations of genotypes or methylation values in each gene
to capture gene-level signals, we regularize them to perform gene selection based on the
biological network. Simulation studies show that our proposed methods have higher true
positive rates than using traditional dimension reduction techniques. We also apply our
methods to DNA methylation data and UK Biobank DNA sequence data for rheumatoid
arthritis patients and normal controls. The results show that the methods with the three
weighted combinations, OWS, BWS, and LD-PRS, can select potentially rheumatoid
arthritis related genes that are missed by the PC-based dimension reduction techniques.
Meanwhile, the genes identified by our proposed methods can be significantly enriched
into the rheumatoid arthritis pathway, such as genes HLA-DMA, HLA-DPB1, and HLA-
DQAZ2 in the HLA region. The overall graphical abstract is summarized in Figure E.1.

5.2 Statistical Models and Methods

Consider a sample with n unrelated individuals, indexed by i=1,2,---,n. Support that
there are aset of M genes in the analysis and a total of Z:ﬂ k, genetic components, such
as SNPs in DNA sequence data or CpG sites in DNA methylation data, where k, is the
number of genetic components inthe m™ gene. Let X, :(x{”,---,xg‘m) bean nxk  matrix

m

of genetic components in the m" gene, where X§ :(x{‘},---,xnj )T is the n-dimensional
vector which represents the genetic data for the j™ genetic component, genotypes of SNPs
and M values of CpG sites. Let y=(y,, -, ¥, )T be an nx1 vector of phenotype, where
y; =1 denotes a case and y, =0 denotes a control in a case-control study. We define a

w_ X"

. L . . th K
linear combination of genetic components in the m™ gene as ZH i X

5.2.1 Weighted linear combination methods

To capture gene-level signals from multiple genetic components in a gene, we employ three
weighted combinations of variants, OWS, BWS, and LD-PRS. In the following, we give a
summary for each of the weighted combinations. Without loss of generosity, we ignore the
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index of the gene and use Zj w;x; toindicate a linear combination of genetic components
in a gene in this section.

OWS uses the weights in TOW to combine the genetic components in a gene. In
TOW®, the weight are determined by maximizing the score test statistic to test the

association between ijjxij and a phenotype. The weight are given by

w,=>" (v —¥)(% —X, )/Zinzl(xij X, )2 ,where § and X; represent the sample mean
of the phenotype and sample mean of genetic data for the j" genetic component,
respectively. Large weight w; represents strong association between the genetic
component and the phenotype.

BWS uses the weights given in SKAT?! where the genetic component is
weighted by the beta function, w; :(Beta( ﬂj?al,az))z , and is extracted without using the

phenotype. For DNA sequence data, x; =MAF, and the suggested settings of two
parameters in SKAT are a =1 and a, =25'%, where MAF, denotes the minor allele
frequency of the j" genetic component in a gene. For DNA methylation data,

7 =%qu and x; is the methylation g value for the j™ CpG site of the i"
i=1
individual and a, =a, =0.5 corresponds to w; =1/ x; (1- 1;).

Both BWS and OWS are combining the effects of all genetic components in a
gene by giving different weights, however, they do not account for LD structure among
genetic components in a gene. Motivated by POLARIS?®, we employ the LD-adjusted
genetic data to adjust for the influence of LD. The LD-adjusted genetic data is defined as

X =X-R™? where R is the correlation matrix of X .However, R™? may not be stable
if there are very small eigenvalues of R. To make the LD-adjusted genetic data more

robust, we use the method developed by Yan et al.** to calculate R™%. Let A, >---> A,
and e,,---,e, be the eigenvalues and corresponding eigenvectors of R . Then we only use
the first J components to calculate R™?, where J is the smallest number such that

Zj:l/lj/thl;tj >0.999. Therefore, R™? can be writtenas R™* ~ > ee] /\jz
Then LD-PRS uses the weights w; =sign(T; )T proposed by Yan et al.2*%, where

T,=>" % (v, —7)/\/Z:=1(xij %) S (y, —7)2/n is the score test statistic to test

the association between the j" genetic component and the phenotype. The sign(Tj)

represents the direction of the effect and sz represents the strength of the association.
Therefore, LD-PRS to capture the gene-level signal is given by ij.f(.

i X5 where X; Is

the j™ column of X.
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Notably, OWS and LD-PRS are supervised methods since their weights are based on
the association between each genetic component and the phenotype; BWS is an
unsupervised method and the weights depend on the genetic component and not on the
phenotype.

5.2.2 Network-based regularization

Consider A:(amk) is an M xM adjacency matrix which represents the undirected
network connections among genes, where a_ =1 represents the m” and k™ genes are
within the same biological set (i.e., pathway, etc.) and a, =0 otherwise. Let
D:diag(dl -ee,d ) be an M dimensional degree matrix, where the m™ diagonal
element is d | Zk _, 8 Which represents the total number of genetic links of the m™"

gene. Therefore, the symmetric normalized Laplacian matrix L=1-D%?ADY?
represents a genetic network structure, where the elements of L are given by

1 ifm=kandd, #0;
l =1—(d.d, )™, ifm=k,d, =0, mandk are linked to each other;
0, otherwise.

Let z :(zil,m, Zo )T be a gene-level signal of the i™ individual across all genes,
which can be obtained by each of the three weighted combinations, OWS, BWS, LD-
PRS. Let B, and f=(f,- () be the intercept and the effect vector of M genes,
respectively. The likelihood function of the phenotype is given by

L(5, B:Y) Hf (V5o B )=li[p(zi)y‘(l—p(zi))l‘y‘,

tth

where p(z)=Pr(y; =1|z) represents the probability that the i
which can be calculated by

individual is a case,

exp(8,+7 B)
1+exp(B,+7 B)

Based on the genetic network structure, the penalized logistic likelihood using
network-based regularization®® is given by

p(zi)=

Q. (BorB) = =1 (B BiY)+P(B),

where |(4,, B;y)=logL(4, B;y) is the log-likelihood function and P() is a penalty
term which is a combination of the |, penalty and squared |, penalty incorporating the
genetic network structure. P () is defined as
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m=1 m~k

where

isal norm, and S=diag(s,,--,S, ) is a diagonal matrix of the estimated

signs of the regression coefficients on the diagonal entries s e{—Ll} for m=1---,M,

which can be obtained from ordinary regression for M <n, and ridge regression for
M>n . A is a tuning parameter that controls sparsity of the network-based

regularization, « € [0,1] Is a mixing proportion between lasso penalty and network-based

penalty, and m~k denotes that the m™ and k™ genes are linked to each other in the
genetic network.

For a given pair of 1 and o, we can estimate the interpret, S, and the effect vector
of M genes, g, by minimizing the penalized logistic likelihood Q, , (ﬁo,ﬂ). It is not
difficult to show the penalty function P(f) is convex 2%>?*, so the solution 3, and g

can be obtained via one of the convex optimization algorithms. We use the R package
“pclogit” to estimate £, and g which implements the cyclic coordinate descent

algorithm?#24’ Same as Chapter 4.2.5, we use half-sample method to calculate the
selection probability of each gene, SP,, for m=1--- M .

5.3 Simulation Studies

To evaluate if the methods with the three weighted combinations, OWS, LD-PRS, and
BWS, outperform the methods with PC-based dimension reduction techniques, we follow
the simulation settings in Kim et al.?® (Details are in Text E.1, Figure E.2). After
generating the individual-level DNA methylation data and DNA sequence data based on a
biological network structure, we use the three weighted combinations, OWS, LD-PRS, and
BWS, and the three competing PC-based methods, PC, nPC, and sPC, to capture the gene-

. T . . .. .
level signals z; =(z;,---,z,,) for the i"™ individual across all genes. Then, the selection

probability for each gene can be obtained by using a half-sample method 100 times and the
network-based regression across 600 pairs of tuning parameters A and « . We use the true
positive rate (TPR) and the area under the receiver operating characteristic (ROC) curve
(AUC) to evaluate the selection performance. TPR is defined as the number of true genes
that are selected divided by the number of true genes.

For each scenario, we consider a total of n=1000 individuals which contain 500
cases and 500 controls for the balance case-control studies. Figures 5.1-5.2 show the TPR
comparisons for the balance case-control studies in scenario 1. We compare the methods
with the three weighted combinations and the methods with the three PC-based dimension
reduction techniques, PC, nPC, and sPC, which have been shown higher TPR than other
methods that do not utilize biological network information. We first compute selection
probabilities of all genes and then rank top genes based on the selection probabilities for
each method.
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In DNA sequence data analysis (Figure 5.1 and Table E.1), we pre-set the strength
of association signals (6 = 2,3), the number of components correlated with the gene-level

signal (w=4,6), and the error variance which controls the noise level of association
signals ( o?=2,3). The proposed OWS, LD-PRS, and BWS have better selection

performance in all eight simulation settings according to TPR and AUC. When the number
of causal SNPs in a gene is small (w=4), BWS has the uniformly highest TPR and AUC
regardless of the size of the error variance. However, selection performance of the
supervised approaches, OWS and LD-PRS, are better than or similar as that of the
unsupervised approach, BWS, when the number of SNPs in agene is large («w=6). Overall,
BWS shows the best selection performance in all simulation settings for DNA sequence
data analysis. LD-PRS is better than OWS due to LD-PRS adjusted for the LD structure of
the SNPs. In DNA methylation data analysis (Figure 5.2 and Table E.2), we pre-set
0=2,25, w=4,6, and o° =6,7. All methods have similar performance according to

TPR when the strength of the association signal is small (& =2); while the methods with
three weighted combinations have higher AUC compared with the three PC-based methods
(Table E.2). The methods with the three weighted combinations have higher TPRs and
AUCs than PC-based methods when the strength of the association signal is large (6 =2.5).
Particularly, when the number of components correlated with the gene-level signal is large
(w=6), BWS has the uniformly highest TPR regardless of the size of the error variance
and the strength of association signals. BWS also shows the best selection performance in
all simulation settings for DNA methylation data analysis. LD-PRS and OWS have similar
performance but have higher TPRs than the other three PC-based methods.

Figures E.3-E.4 show the TPR comparisons for the balance case-control studies
under scenario 2. The patterns of TPR comparisons under scenario 2 for DNA methylation
data and DNA sequence data are similar to those under scenario 1 (Figures 5.1-5.2).
Meanwhile, we also perform TPR comparisons for the unbalance case-control studies,
where there are a total of individuals with 100 cases and 900 controls. Figures E.5-E.8
show the TPR comparisons for the unbalance case-control studies. The patterns of TPR
comparisons under these two scenarios for DNA methylation and DNA sequence data are
similar to those observed in Figures 5.1-5.2 and Figures E.3-E.4.

We also compare the network-based regression (Net) with two penalized
regressions without considering the network structure, elastic net (ENET) and least
absolute shrinkage and selection operator (Lasso). The comparison results of the selection
performance and the computational time are shown in Figures E.9-E.13, which are also
explicated in Text E.2 in more details. In summary, the results show that OWS, LD-PRS,
and BWS with Net, always perform better than those with Lasso and ENET. However,
three competing PC-based methods (PC, nPC, sPCn=1000) with Net may not increase
TPR compared with Lasso and ENET. With respect to model fitting, we use the accuracy
rate (ACC) as the measurement for the model fitting quality?*® (Text E.3) and we observe
that the supervised methods (LD-PRS, OWS, sPC) have higher ACC compared with the
three unsupervised methods (BWS, PC, nPC). Notably, LD-PRS and OWS always
outperform sPC (Figure E.14). Meanwhile, the network-based regression with partially
corrected network structure still outperform ENET and Lasso (Text E.4 and Figure E.15).
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Scenario 1: DNA sequence (Balance)
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Figure 5.1. The true positive rates of the methods based on different gene-level signals for
balance case-control studies with DNA sequence data in scenario 1, where there are five
rare variants and five common variants in each gene. According to the different number of
selected top genes, three parameters are used to vary the genetic effect: the strength of
association signals ¢, the number of SNPs in each gene related to gene-level signals o,

and the noise level of association signals o*. The selection probabilities are calculated
using half-sample method 100 times.

Scenario 1: DNA methylation (Balance)
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Figure 5.2. The true positive rates of the methods based on different gene-level signals for
balance case-control studies with DNA methylation data in scenario 1. According to the
different number of selected top-genes, three parameters are used to vary the genetic effect:
the strength of association signals ¢ , the number of CpG sites in each gene related to gene-
level signals @, and the noise level of association signals . The selection probabilities
are calculated using half-sample method 100 times.
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5.4 Applications

To evaluate the performance of our proposed methods with three weighted combinations
in real data analyses, we apply our methods to DNA methylation data?*®?° and UK
Biobank data for DNA sequence of rheumatoid arthritis (RA) patients and normal controls
(see details in Text E.5). Due to the outperformance of the nPC?® compared with the
other PC-based methods, we only apply nPC to compare the performance with our
proposed methods in real data analyses.

5.4.1 Application to DNA methylation data

In the application to DNA methylation data, we select the top 100 genes according to the
selection probabilities of each method. We search the GWAS catalog for genes that are
associated with RA. Table 5.1 shows the genes in the GWAS catalog that are also
identified by OWS, LD-PRS, BWS, and nPC. OWS identifies 11 genes, LD-PRS identifies
12 genes, BWS identifies 8 genes, and nPC identifies 10 genes. Meanwhile, the number of
overlapped genes by each method in the DNA methylation data analysis is summarized in
Figure E.16. There are four genes identified by all of these four methods, HLA-DQAZ2,
HLA-DRB1, HLA-DQB1, and CD1C. Gene HLA-DRB1%! and gene HLA-DQB167:252-258
play a central role in the immune system and have been reported in the GWAS catalog. No
literature reported gene HLA-DQAZ2 that was significantly associated with RA in GWAS
catalog. However, the SPs of gene HLA-DQAZ2 calculated by the methods with the three
weighted combinations, OWS, LD-PRS, and BWS, are all 1.000. Also, the SP of gene
HLA-DQAZ2 is 0.852, which is also on the top 100 genes identified by nPC method.
Notably, gene HLA-DQAZ2 is in the rheumatoid arthritis pathway (KEGG: hsa05323) and
the literature?®® has shown that genes in the human leukocyte antigen (HLA) region remain
the most powerful disease risk genes in RA.

Table 5.1. GWAS catalog reported genes identified by OWS, LD-PRS, and BWS in DNA
methylation data.

OWSs LD-PRS BWS nPC

Gene SP Gene SP Gene SP Gene SP
HLA-DRB1 1.000 HLA-DRB1 1.000 HLA-DRB1 1.000 CCR6 1.000
HLA-DRB5 1.000 KIF26B 1.000 PRKCH 0.998 ZFP36L1 1.000
CCR6 0.992 HLA-DRB5 0.974 HLA-DQA1 0.992 TCF7 0.992
ZFP36L1 0.988 TNXB 0.974 HLA-DOB 0.894 TNFSF1A 0.988
NFATC1 0.986 PRDM16 0.970 HLA-DQB1 0.858 TLR4 0.986
TNFRSF1A 0.950 HLA-DQA1 0.950 FNBP1 0.844 IL2RB 0.980
SPSB1 0.928 HLA-DQB1 0.950 TCF7 0.842 HLA-DRB1 0.966
ETS1 0.898 HLA-DMA 0.912 CD247 0.804 CD247 0.962
HLA-DQA1 0.888 NOTCH4 0.854 HLA-DQB1 0.936
HLA-DQB1 0.880 HLA-DRA 0.806 HLA-DRB5 0.894
TCF7 0.794 RIM26 0.784 ZNF175 0.866

CCR6 0.776

To better understand the biological meaning behind the top 100 selected genes by
each method, we perform the pathway enrichment analysis. In this study, significantly
enriched pathways are identified by the top 100 selected genes if FDR < 0.05. In Figure
E.17, there are 21 significantly enriched pathways identified by OWS, BWS, and LD-PRS,
in which the RA pathway is significantly enriched with FDRows=1.48E-04, FDRgws =
7.80E-03, and FDRLp-rrs = 8.03E-07, respectively; RA pathway is also significantly
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enriched in a total of 18 pathways identified by nPC with FDRnpc = 2.91E-03. The
overlapping genes between the top 100 genes identified by each method and genes in RA
pathway are shown in Figure 5.3(A). The number below each method indicates the total
number of overlapping genes identified by the corresponding method and genes in RA
pathway. LD-PRS has the smallest pathway enriched FDR and identifies the most
overlapping genes (n = 10); genes HLA-DMA (SP = 0.912) and LTB (SP = 0.998) are
uniquely identified. OWS identifies eight overlapping genes which contain one unique
gene HLA-DPB1 (SP = 0.85); meanwhile, BWS identifies six overlapping genes that
contain two unique genes TNF (SP = 0.980) and HLA-DOB (SP = 0.894). Comparing the
results of the methods with the three weighted combinations, OWS, LD-PRS, and BWS,
and nPC, five HLA-family genes (HLA-DMA, HLA-DOB, HLA-DPB1, HLA-DPA1, and
HLA-DQAL) and two RA pathway genes (LTB and TNF) are uniquely identified. The
results show that the proposed methods can select potentially RA related genes that are
missed by nPC.

(A) LD-PRS nPC

(n=10) (n=T)

Figure 5.3. Venn diagrams of (A) the number of RA pathway genes identified by BWS,
LD-PRS, OWS, and nPC for DNA methylation data; (B) the number of overlapping genes
among the top 200 genes identified by each method and reported in the GWAS catalog for
DNA sequence data.

5.4.2 Application to DNA sequence data in UK Biobank

In the applications to DNA sequence data, we use 4,541 individuals with RA disease and
randomly select 5,459 individuals without RA disease in the UK Biobank. The number of
genes with selection probabilities of 1 for DNA sequence data is larger than that of DNA
methylation data. For example, there are 80 genes with SP=1 using OWS and 135 genes
with SP=1 using LD-PRS. Therefore, we select the top 200 genes according to SPs for
DNA sequence data analysis. We also search the GWAS catalog for genes that are
associated with RA. Figure 5.3(B) and Table 5.2 show the genes in the GWAS catalog
that are also identified by OWS, LD-PRS, BWS, and nPC. Similar to DNA methylation
data analyses, LD-PRS identifies the most genes (n=23) reported in the GWAS catalog,
including four uniquely identified genes (HLA-DQB1, GFRA1, GABBR2, EDIL3); OWS
identifies 22 genes in which genes STAT4 (SP=0.994) and IKZF1 (SP=0.986) are uniquely
selected. There are 13 genes identified by both LD-PRS and OWS, where 12 genes have
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selection probabilities of 1 in both methods. Two unsupervised methods, BWS and nPC,
can identify 17 and 18 genes in the GWAS catalog. They can uniquely identify 11 and 12
genes, respectively. Moreover, there are two genes identified by all four methods, genes
HLA-DQAL and HLA-DRA (boldfaced in Table 5.2), and two genes identified by three
proposed methods, genes RATB and CTNNAS.

Table 5.2. GWAS catalog reported genes identified by OWS, LD-PRS, BWS, and nPC in
DNA sequence data.

OWSs LD-PRS BWS nPC
Gene SP Gene SP Gene SP Gene SP
HLA-DRB1 1.000 HLA-DRB1 1.000 HLA-DRA 1.000 HLA-DRB5 1,000
HLA-DQAl1 1.000 HLA-DQA1 1.000 HLA-DQA1 1.000 HLA-DQA1 0.998
PRDM16 1.000 HLA-DQB1 1.000 TNXB 0.996 IRF5 0.966
PRKCB 1.000 HLA-DRA 1.000 HLA-DMA 0.946 SOCS2 0.944
PCSK5 1.000 PRDM16 1.000 SUOX 0.932 HLA-DRB1 0.942
NOTCH4 1.000 PRKCB 1.000 WNT16 0.930 TYK2 0.928
GPC5 1.000 PCSK5 1.000 TYK2 0.928 PRDM1 0.890
RBFOX1 1.000 NOTCH4 1.000 RPS6KB1 0.902 NOTCH4 0.884
DOCK1 1.000 GPC5 1.000 CTNNA3 0.898 IL7R 0.872
KIF26B 1.000 RBFOX1 1.000 HLA-DRB5 0.892 ATXN2 0.872
CTNNA3 1.000 DOCK1 1.000 HIPK1 0.890 B3GNT2 0.870
GALNT18 1.000 ZMIZ1 1.000 SLC9A8 0.882 UBE2L3 0.870
PCDH15 1.000 SLCYA9 1.000 SKIV2L 0.860 ELMO1 0.864
PTPRM 1.000 RARB 1.000 TNIP1 0.860 GATA3 0.846
HLA-DRB5 0.998 KIF26B 1.000 PDF2A 0.836 RMI2 0.844
RARB 0.998 CTNNA3 1.000 TNFAIP3 0.834 RORC 0.836
HLA-DRA 0.996 GALNT18 1.000 RARB 0.824 HLA-DRA 0.836
ZMIZ1 0.996 PCDH15 1.000 RBXW8 0.828
SLCYA9 0.994 PTPRM 1.000
STAT4 0.994 PDE3A 0.998
PDE3A 0.990 GFRAL 0.996
IKZF1 0.986 GABBR2 0.994
EDIL3 0.992

Notes: boldface means that the genes are identified by four methods.

5.5 Discussions

In this paper, we employ three weighted combinations to capture the gene-level signals
from multiple CpG sites or SNPs: optimally weighted sum (OWS), LD-adjusted
polygenic risk score (LD-PRS), and beta-based weighted sum (BWS) in DNA
methylation or DNA sequence data. To identify phenotype related genes, we apply the
three gene-level signals to a stability gene selection approach by incorporating genetic
networks. Compared with the traditional dimension reduction techniques such as PC
based gene-level signal, the methods with the three weighted combinations, OWS, LD-
PRS, and BWS, have very good performance according to the true positive rates. By
applying the methods to real DNA methylation and DNA sequence data, we show that the
methods with the three weighted combinations can select more potentially RA related
genes that are missed by nPC. Meanwhile, OWS, LD-PRS, and BWS can select more
significantly enriched genes in the RA pathway comparing with nPC, such as genes HLA-
DMA, HLA-DPBL1, and HLA-DOB in the HLA region.

There are some advantages of the three weighted combinations to capture gene-
level signals. First, the three weighted combinations can capture more information from
genetic components (SNPs or CpG sites) in a gene than the traditional dimension
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reduction techniques, such as PC-based methods. OWS and LD-PRS are two supervised
approaches based on the association between each genetic component and phenotype,
where OWS utilizes the optimally weighted combination® of components and LD-PRS
can adjust for the highly correlated structure*® of components. OWS puts large weights
on components with large effects on the phenotype®. Since the genetic components in a
gene are commonly correlated, LD-PRS transforms the original data into an orthogonal
space to adjust for LD structure. Moreover, OWS and LD-PRS perform better according
to TPR when the genetic components are highly correlated. Even though BWS is an
unsupervised method that can be extracted without using phenotype, our simulation
studies show that BWS has the highest TPR and AUC in most of the settings. Second, the
methods with the three weighted combinations, OWS, LD-PRS, BWS, can select more
potential phenotype related genes. In our application to DNA methylation of RA patients
and normal controls, the top 100 genes selected by our proposed methods can be
significantly enriched into RA pathway and contain more RA pathway genes, especially
by LD-PRS. Furthermore, all of our proposed methods have strong evidence to select
gene HLA-QDA2 (SP=1) which is not reported in the GWAS catalog.

Recently, large-scale biobanks linked to electronic health records provide us the
possibility of analyzing DNA sequence data using a large sample size. Although three
weighted combinations combined with the network-based regression have several
advantages, there are three limitations we need to resolve in our future works. First, the
method with the three weighted combinations are not suitable for extremely unbalanced
case-control studies. To avoid the extremely unbalanced case-control ratio in the data
from UK Biobank, we match the number of individuals with and without RA disease in
the application of DNA sequence data. This may be the reason for a large number of genes
with SP=1 using OWS and LD-PRS, and the SP of the 200" gene using OWS and LD-
PRS over 0.97. In the future, we will investigate new methods to handle extremely
unbalanced case-control studies. We can use the saddlepoint approximation method** to
adjust the network-based regression, or use random under-sampling or over-sampling®®
methods instead of using the half-sample approach in the calculation of selection
probabilities. The second limitation is that we do not know if the genes selected by the
methods with the three weighted combinations are significantly associated with the
phenotype. For future studies, we plan to integrate statistical inference in the selection
procedure, and further investigate the selection performance by integrating both selection
and statistical inference. The third limitation is that the network-based regression is only
used for case-control study?®. For the continuous phenotypes, we need to switch the
logistic model with logistic likelihood to the linear regression model with mean squared
error or more robust loss function, such as Huber function?®?,
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A Supplementary Materials for Chapter 1

Al Supplementary Text
Text A.1. Details of the six multiple phenotype association tests.

To test the association between phenotypes in each network module and a SNP, we perform
the following six multiple phenotypes association tests. To simplify the notation, we
assume that the tests are applied to test the association between K phenotypes and a SNP.

CLCY: CLC classifies K phenotypes into L clusters for L=1---, K . The test
statistic with L clusters is T.. =(DT)' (DED') " (DT), where T =(T,,--,T,)' with T,
being the score test statistic to test the association between the k™ phenotype and a SNP;
D=B"X™ with X being a correlation matrix of K phenotypes and B=(h, ) being a

K xL matrix with b, =1 if the k™ phenotype belongs to the 1" cluster and b, =0
otherwise. Under the null hypothesis that none of the K phenotypes are associated with a
SNP, T follows a chi-square distribution with degrees of freedom L. The overall test

statistic of CLC is given by T.. = lrpL@éTcLLC and the corresponding p-value can be
evaluated by a simulation procedure.

ceCLC?: ceCLC is a computational efficient version of CLC, where the p-value of
overall test statistic is derived by the Cauchy combination method*. Let p_ be the p-value

of TS, then the test statistic of ceCLC is given by T_.,c :Ziltan 0.5-p. )7 / K.
The null distribution of T, . can be well approximated by a standard Cauchy distribution.
Therefore, p-value of ceCLC can be approximated by p_. . = 0.5—{arctan (Teecrc )/ 72'}.

HCLC?: Instead of considering all possible number of clusters in CLC and ceCLC,

HCLC determine the optimal number of clusters, L, by using a stopping criterion that
maximizes the cluster separation®. Therefore, the test statistic of HCLC is defined as

Tucic =Tae and the p-value is calculated by assuming T, follows a chi-square
distribution with degrees of freedom L.

MultiPhen’: MultiPhen uses the ordinal regression (also known as proportional
odds logistic regression) to regress genotype of a SNP on K phenotypes. MultiPhen uses
a likelihood ratio test to test whether effect sizes of K phenotypes are significantly
different from zero. The resulting test statistic asymptotically follows a chi-square
distribution with degrees of freedom . K ..

O’Brien®: O’Brien uses a linear combination method of the score test statistic, T,
to test the association between the k™ phenotype and a SNP. That is, the test statistic of
O’Brien is given by To e = (1K E ) where 1, is a K x1 vector with elements of all

1s. Under the null hypothesis, T.
freedom.

follows a chi-square distribution with 1 degree of

Brien
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Omnibus!: Omnibus is developed to overcome the limitation of O’Brien. The test
statistic of Omnibus is T =TT"X T . Under the null hypothesis, T, follows a chi-

omnibus

square distribution with degrees of freedom K.

mnibus

Note that a normal approximation of the score test statistic T, for k=1,---,K used

in CLC, ceCLC, HCLC, O’Brien, and Omnibus has inflated type I error rates from binary
phenotypes with extremely unbalanced case-control ratios °. In this case, we modify these

five methods by calculating T, =[5’k/se(,3k) , Where Bk and se(/?‘k) can be estimated by

saddlepoint approximation®.
A2 Supplementary Tables

Table A.1. Simulation settings with 4 = #(1,---,1)" and 4, = E(l k).

k+1
Category SNP1-50 SNP51-100 SNP 101-150 SNP 151-200

Modell - “ ° ° °
2 0 -2, 0 0

Model 2 ! il O 0 0
2 0 -2, 0 0

1 J 0 0 0

Model 3 2 0 -1, 0 0
3-5 0 0 0 0

1 il 0 0 0

Model 4 2 0 -2, 0 0
3-5 0 0 0 0

1 J 0 0 0

Model 5 2 0 A 0 0
3 0 0 2, 0

4 0 0 0 12

1 J 0 0 0

2 0 -J, 0 0

Model 6 %) 0 0 2, 0
4 0 0 0 -

5-10 0 0 0 0
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Table A.2. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 1. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC cLc HCLC MultiPhen |  O’Brien Omnibus
Model 1

K Sample a-evel | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.959 0.992 0.889 0.978 0.798 0.964 1.408 1.120 0.995 0.991 0.796 0.863

0.0001 0.830 0.920 0.760 0.940 0.730 0.910 1.500 1.240 1.040 1.050 0.650 0.880

4000 0.001 1.087 1.094 1.014 1.005 0.944 1.001 1.282 1.142 1.061 1.001 0.958 1.051

0.0001 1.080 1.040 0.950 1.080 1.020 1.140 1.450 1.130 1.050 0.990 1.020 1.070

80 2000 0.001 0.926 0.970 0.839 0.931 0.801 0.957 1.790 1.279 0.995 0.972 0.775 0.842

0.0001 0.760 0.850 0.900 1.020 0.680 0.990 1.960 1.260 0.930 0.930 0.640 0.750

4000 0.001 1.061 1.031 0.960 0.952 0.884 0.975 1.388 1.166 0.985 0.936 0.894 0.980

0.0001 1.090 1.040 0.930 1.120 0.790 1.090 1.350 1.160 1.040 0.910 0.810 1.020

100 2000 0.001 0.902 0.943 0.800 0.889 0.703 0.930 2.147 1.291 0.935 0.927 0.706 0.815

0.0001 0.870 0.790 0.840 0.850 0.610 0.830 2.440 1.500 0.790 0.860 0.620 0.870

4000 0.001 0.985 1.032 0.940 0.970 0.887 0.977 1.523 1.155 0.941 1.003 0.890 0.946

0.0001 0.890 0.980 1.010 1.100 0.630 1.030 1.390 1.110 1.110 1.010 0.710 0.880

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type I error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O.”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.3. The estimated type I error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 2. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC cLC HCLC MultiPhen |  O’Brien Omnibus
Model 2

K Sample a-level | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.968 0.988 0.899 0.936 0.851 0.956 1.501 1.206 1.006 0.974 0.848 0.909

0.0001 0.910 0.840 0.870 0.870 0.780 1.060 1.540 1.300 1.080 0.940 0.790 0.810

4000 0.001 1.047 1.057 0.976 0.969 0.930 0.993 1.230 1.122 0.984 0.972 0.915 0.977

0.0001 0.960 1.010 1.030 1.000 1.000 1.000 1.380 1.180 1.110 1.000 0.970 1.080

80 2000 0.001 0.894 0.997 0.841 0.967 0.757 0.944 1.738 1.253 1.051 1.018 0.751 0.847

0.0001 0.810 1.010 0.730 0.880 0.760 0.890 1.990 1.580 1.160 1.150 0.770 0.950

4000 0.001 0.967 0.992 0.965 0.912 0.879 0.955 1.300 1.095 1.030 1.011 0.861 0.908

0.0001 0.980 0.970 0.840 0.920 0.700 0.980 1.270 1.120 0.990 0.970 0.780 0.740

100 2000 0.001 0.858 0.939 0.821 0.885 0.707 0.908 2.128 1.344 1.015 0.930 0.704 0.782

0.0001 0.810 0.960 0.730 0.880 0.570 1.090 2.390 1.430 0.980 0.850 0.610 0.790

4000 0.001 0.995 0.984 0.886 0.962 0.881 0.980 1.461 1.193 1.046 0.957 0.870 0.922

0.0001 1.080 0.990 0.970 0.890 0.930 0.990 1.900 1.070 1.030 1.040 0.910 0.760

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.4. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 3. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC cLc HCLC MultiPhen |  O’Brien Omnibus
Model 3

K Sample a-evel | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.958 1.004 0.893 0.997 0.826 0.919 1.481 1.155 1.014 1.073 0.803 0.941

0.0001 0.880 1.000 0.800 1.170 0.620 0.990 1.530 1.230 0.930 1.170 0.610 0.790

4000 0.001 1.030 1.052 0.941 0.940 0.909 0.976 1.210 1.114 0.984 1.064 0.903 0.981

0.0001 0.700 1.050 0.840 1.010 0.840 1.080 1.420 1.180 1.010 1.210 0.960 0.840

80 2000 0.001 0.949 0.952 0.843 0.909 0.769 0.882 1.741 1.194 1.009 1.099 0.739 0.903

0.0001 0.710 0.850 0.790 0.760 0.580 0.740 2.060 1.250 0.990 1.070 0.580 0.740

4000 0.001 1.006 0.965 0.903 0.912 0.881 0.907 1.358 1.131 0.915 1.000 0.887 0.951

0.0001 0.890 0.920 0.900 1.070 0.810 0.910 1.470 1.070 0.840 1.090 0.850 1.020

100 2000 0.001 0.907 0.946 0.835 0.911 0.767 0.884 2171 1.383 0.979 1.071 0.751 0.892

0.0001 0.830 0.890 0.670 0.810 0.740 0.780 2.760 1.430 0.840 1.070 0.680 0.770

4000 0.001 1.005 0.961 0.902 0.967 0.833 0.925 1.393 1.170 0.977 1.038 0.797 0.927

0.0001 0.900 0.730 0.950 0.950 0.630 0.770 1.410 0.940 0.960 1.060 0.650 0.710

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type I error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.5. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 4. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC CLC HCLC MultiPhen O’Brien Omnibus
Model 4

K Sample a-level | NO. NET | NNO. NET | NNO. NET | NO. NET | NO. NET | N.O. NET
60 2000 0.001 0935 0983 | 0.872 0.982 | 0.783 0.923 | 1.417 1.098 | 0.988 1.071 | 0.789  0.907
0.0001 0.890 0.980 | 0.930 0.800 | 0.650 0.950 | 1.460 1.260 | 0.980 1.370 | 0.690  0.850
4000 0.001 1.019 0979 | 0915 0959 | 0923 0943 | 1.183 1.084 | 0.975 1.060 | 0.870 0.935
0.0001 1120 1.090 | 0.870 0.890 | 0.940 1.020 | 1.320 1.190 | 0.940 0.990 | 0.860  1.000
80 2000 0.001 0.905 0.974 | 0910 0.923 | 0.785 0.891 | 1.778 1250 | 1.028 0.994 | 0.789  0.900
0.0001 0.860 0.860 | 0.760 0.880 | 0.550 0.910 | 1.870 1.290 | 1.020 1170 | 0.510  0.820
4000 0.001 1.018 1.024 | 0936 0983 | 0.887 1.005 | 1.338 1.116 | 1.012 1.024 | 0.887 0.957
0.0001 0.870 0.940 | 0.790 0.980 | 1.000 0.990 | 1.700 1.060 | 0.970  1.090 | 1.050  0.860
100 2000 0.001 0902 0996 | 0.851 0.909 | 0.739 0.918 | 2186 1.311 | 0.981 1.022 | 0.750  0.858
0.0001 1.000 0.890 | 0.830 1.010 | 0.680 0.810 | 2.750 1.450 | 0.840 1.020 | 0.770  0.680
4000 0.001 1.000 1.043 | 0.902 0957 | 0.855 0.969 | 1537 1.148 | 0.989 1.027 | 0.876 0.933
0.0001 0.980 1.040 | 1.000 1.030 | 0.970 1.070 | 1.760 1.180 | 0.980 1.020 | 1.000  1.030

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.6. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 5. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC cLc HCLC MultiPhen |  O’Brien Omnibus
Model 5

K Sample a-evel | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 1.017 1.011 0.888 0.948 0.872 0.908 1.451 1.154 1.015 1.017 0.816 0.926

0.0001 0.780 1.060 0.780 1.000 0.770 1.040 1.580 1.240 1.060 0.890 0.750 0.890

4000 0.001 1.047 1.061 0.919 0.968 0.926 0.997 1.225 1.069 1.024 1.057 0.918 0.959

0.0001 0.980 1.060 0.900 0.950 0.930 1.070 1.350 1.150 1.180 1.180 0.840 0.880

80 2000 0.001 0.973 1.006 0.852 0.929 0.854 0.959 1.846 1.283 1.028 1.056 0.837 0.891

0.0001 0.970 0.840 0.930 1.050 0.750 0.940 2.080 1.220 1.110 1.370 0.640 0.720

4000 0.001 1.032 0.998 0.893 0.956 0.873 0.911 1.347 1.087 0.977 1.033 0.872 0.928

0.0001 1.100 0.950 0.930 0.970 0.860 0.850 1.250 1.070 1.090 1.120 0.850 0.930

100 2000 0.001 0.843 0.964 0.834 0.891 0.706 0.837 2.103 1.266 0.978 1.007 0.700 0.824

0.0001 0.790 0.980 0.740 0.760 0.560 0.890 2.350 1.360 1.050 1.100 0.540 0.760

4000 0.001 0.937 1.003 0.931 0.943 0.884 0.935 1.483 1.100 1.028 1.026 0.861 0.888

0.0001 0.880 0.990 0.860 1.020 0.660 0.900 1.590 1.110 0.970 1.020 0.690 0.850

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type I error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.7. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 mixture phenotypes (half
continuous phenotypes and half binary phenotypes with balanced case-control ratios) under
model 6. The type | error rates are evaluated using 500 MC runs (equivalent to 10°
replicates).

Mixture Phenotypes ceCLC CLC HCLC MultiPhen O’Brien Omnibus
Model 6

K Sample a-level | NO. NET | NNO. NET | NNO. NET | N.O. NET | NO. NET | N.O. NET
60 2000 0.001 0949 0980 | 0.840 0.958 | 0.868 0.891 | 1.460 1.143 | 1.002 1.124 | 0.804 0.898
0.0001 0.960 1.020 | 0.830 1.000 | 0.830 0.940 | 1.660 1.250 | 0.900 1.030 | 0.770  0.850
4000 0.001 1.041 1.036 | 0953 0996 | 0913 0911 | 1.212 1.025 | 0.985 1.130 | 0.882 0.952
0.0001 0990 0980 | 0950 1.120 | 0.780 0.870 | 1.220 1.100 | 1.030 1.320 | 0.820  0.940
80 2000 0.001 0921 0952 | 0.848 0.965 | 0.787 0.867 | 1.761 1193 | 0.994 1103 | 0.754  0.887
0.0001 0.800 0.890 | 0.780 0.800 | 0.630 0.870 | 1.840 1.310 | 0.940 1.050 | 0.540  0.730
4000 0.001 0989 1.040 | 0974 1.021 | 0.923 0.926 | 1.363 1.061 | 1.026 1.126 | 0.917  0.898
0.0001 0.820 0.950 | 0.880 0.950 | 0.770 0.930 | 1.420 1.130 | 1.040 1.360 | 0.900  0.920
100 2000 0.001 0.885 0954 | 0.815 0.961 | 0.714 0.895 | 2.097 1.317 | 0.947 1.048 | 0.656  0.898
0.0001 0.780 1.060 | 0.710 0.940 | 0.700 1.020 | 2.460 1.400 | 0.960 1260 | 0.640  0.880
4000 0.001 0.974 0976 | 0915 0.924 | 0.881 0.897 | 1.445 1.069 | 0.994 1137 | 0.844 0.861
0.0001 0980 1.160 | 0.810 0.960 | 0.920 0.900 | 1.800 1.040 | 0.910 1.480 | 0.940  0.970

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type I error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.8. The estimated type I error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 1. The type | error rates are
evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC cLC HCLC MultiPhen O’Brien Omnibus
Model 1

K Sample a-level | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.965 0.973 0.657 0.715 0.792 0.811 3.865 2.433 0.960 1.014 0.550 0.531

0.0001 1.020 1.130 0.510 0.680 0.830 0.820 5.310 2.760 1.190 1.330 0.400 0.440

4000 0.001 1.027 1.011 0.748 0.846 0.871 0.852 2.251 1.695 0.988 1.013 0.766 0.747

0.0001 1.030 1.120 0.690 0.740 0.860 0.810 2.510 1.870 1.010 1.070 0.600 0.610

80 2000 0.001 0.969 1.011 0.659 0.682 0.747 0.775 5.638 2.972 0.924 1.051 0.550 0.530

0.0001 0.870 0.910 0.570 0.620 0.780 0.630 8.280 3.430 0.960 1.190 0.500 0.320

4000 0.001 1.000 1.035 0.790 0.778 0.900 0.846 2.820 1.964 0.969 0.975 0.785 0.761

0.0001 1.240 1.190 0.740 0.760 0.990 0.900 3.620 2.290 0.940 1.180 0.670 0.680

100 2000 0.001 0.965 1.053 0.663 0.702 0.819 0.826 8.393 3.867 0.926 1.016 0.553 0.580

0.0001 1.000 1.110 0.600 0.710 0.740 0.910 13.66 5.150 1.020 1.190 0.470 0.500

4000 0.001 1.034 1.061 0.730 0.790 0.847 0.866 3.454 2.212 0.971 1.014 0.681 0.728

0.0001 1.070 1.120 0.640 0.840 0.810 0.880 4.500 2.670 1.030 1.220 0.600 0.490

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.9. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 2. The type | error rates are

evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC CLC HCLC MultiPhen O’Brien Omnibus
Model 2

K Sample a-level | NO. NET | NNO. NET | NNO. NET | N.O. NET | NO. NET | N.O. NET
60 2000 0.001 0951 1.034 | 0729 0.712 | 0.784 0.776 | 4.020 2.401 | 0910 1.070 | 0.585 0.549
0.0001 0.900 1.100 | 0.590 0.730 | 0.670 0.830 | 5190 2.630 | 0.800 1.420 | 0.420  0.440
4000 0.001 0994 1.062 | 0.835 0.852 | 0.887 0.878 | 2.181 1.703 | 0.983 1.006 | 0.730  0.742
0.0001 1170 1.100 | 0.720 0.950 | 0.910 0910 | 2.640 1.890 | 0.920 1.130 | 0.520 0.630
80 2000 0.001 0977 1.061 | 0.671 0.715 | 0.807 0.793 | 5751 2996 | 0.897 1125 | 0.543  0.542
0.0001 1130 1170 | 0570 0.690 | 0.870 0.880 | 8540 3.650 | 1.050 1.440 | 0.430 0.370
4000 0.001 1.027 1054 | 0811 0.829 | 0.904 0.823 | 2.722 1.945 | 0.927 1037 | 0717 0.761
0.0001 1170 1.090 | 0.610 0940 | 0920 0.850 | 3.440 2.330 | 1.090 1.300 | 0.750  0.520
100 2000 0.001 0992 1.029 | 0.675 0.695 | 0.791 0.789 | 8.261 3.754 | 0.906 1.036 | 0.506  0.543
0.0001 1.000 1.180 | 0.600 0.630 | 0.810 0.930 | 12.77 4530 | 0.930 1.370 | 0.490  0.490
4000 0.001 1.061 1.090 | 0.814 0817 | 0915 0.874 | 3.458 2279 | 0975 1.036 | 0.743 0.764
0.0001 1120 1100 | 0.860 0.750 | 0.980 0.970 | 4.380 2.730 | 1.040 1170 | 0610 0.750

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.10. The estimated type I error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 3. The type | error rates are

evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC cLC HCLC MultiPhen O’Brien Omnibus
Model 3

K Sample a-level | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.949 1.003 0.704 0.730 0.789 0.761 3.525 2.089 0.870 1.054 0.571 0.578

0.0001 1.040 1.160 0.720 0.820 0.850 0.910 4.610 2.390 0.870 1.120 0.500 0.680

4000 0.001 0.970 1.040 0.786 0.905 0.935 0.903 2.076 1.494 0.969 1.014 0.786 0.727

0.0001 1.050 1.100 0.760 0.800 0.950 0.790 2.670 1.580 0.890 1.210 0.770 0.710

80 2000 0.001 0.940 1.044 0.632 0.689 0.773 0.855 4.629 2.299 0.855 1.056 0.519 0.544

0.0001 1.070 1.120 0.660 0.840 0.700 1.050 6.390 2.770 0.840 1.190 0.430 0.460

4000 0.001 1.009 1.061 0.770 0.850 0.925 0.899 2.358 1.617 0.954 1.093 0.728 0.715

0.0001 0.980 1.120 0.780 0.900 0.930 0.820 2.900 1.690 1.000 1.160 0.740 0.580

100 2000 0.001 0.968 1.050 0.680 0.701 0.731 0.811 6.697 3.000 0.876 1.058 0.533 0.570

0.0001 0.930 1.110 0.720 0.710 0.680 0.920 10.29 3.760 0.790 1.150 0.400 0.430

4000 0.001 0.998 1.060 0.764 0.794 0.898 0.873 2.978 1.831 0.987 1.093 0.690 0.715

0.0001 1.140 1.190 0.650 0.820 0.750 0.970 3.330 2.040 0.930 1.190 0.600 0.760

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type 1 error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.11. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 4. The type | error rates are

evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC CLC HCLC MultiPhen O’Brien Omnibus
Model 4

K Sample a-level | NO. NET | NNO. NET | NNO. NET | N.O. NET | NO. NET | N.O. NET
60 2000 0.001 0978 1.036 | 0.656 0.750 | 0.801 0.892 | 3.362 1.986 | 0.924 1.055 | 0.537 0.574
0.0001 1.110 1.120 | 0.700  0.710 | 0.720 0.830 | 4.040 2430 | 1.050 1.440 | 0.340 0.470
4000 0.001 1.031 1.049 | 0.827 0824 | 0929 0.853 | 2.068 1.527 | 0.968 1.061 | 0.724  0.759
0.0001 1.080 1.100 | 0.800 0.790 | 1.050 0.800 | 2.390 1.670 | 1.180 1.170 | 0.650  0.600
80 2000 0.001 0.946  1.059 | 0.666 0.736 | 0.792 0.853 | 4719 2412 | 0896 1119 | 0.543  0.585
0.0001 1.050 1110 | 0.620 0.810 | 0.860 0.850 | 6.410 2.780 | 0.830 1.420 | 0.420  0.500
4000 0.001 0944 1.061 | 0.786 0.842 | 0.895 0.913 | 2417 1.707 | 0919 1.053 | 0.750  0.769
0.0001 1.070 1.250 | 0.630 0.860 | 0.830 0.880 | 3.170 1.930 | 0.960 1.120 | 0.740  0.800
100 2000 0.001 1.023 1.037 | 0.731 0.748 | 0.823 0.847 | 6.615 2.861 | 0.944 1.074 | 0.526  0.542
0.0001 1.090 1170 | 0.740 0780 | 0.730 1.040 | 10.04 3.580 | 0.950 1.230 | 0.430 0.470
4000 0.001 1.010 1.057 | 0.761 0.802 | 0.905 0.914 | 2986 1.760 | 0.909 1.053 | 0.720  0.729
0.0001 0.960 1.120 | 0.660 0.590 | 0.790 0.930 | 3.770 1.930 | 0.900 1290 | 0.680  0.650

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.12. The estimated type I error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 5. The type | error rates are

evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC cLC HCLC MultiPhen O’Brien Omnibus
Model 5

K Sample a-level | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET | NO. NET

60 2000 0.001 0.974 1.044 0.727 0.715 0.866 0.869 3.530 2.140 0.973 1.058 0.560 0.541

0.0001 1.020 0.960 0.630 0.620 0.830 0.780 4.460 2.350 0.930 1.180 0.330 0.380

4000 0.001 1.025 1.056 0.804 0.837 0.883 0.899 2.053 1.540 0.944 1.062 0.734 0.746

0.0001 1.160 1.140 0.670 0.760 0.980 0.860 2.570 1.510 1.030 1.180 0.730 0.470

80 2000 0.001 0.965 1.057 0.687 0.740 0.807 0.875 4.909 2.588 0.909 1.130 0.522 0.577

0.0001 1.040 1.110 0.570 0.680 0.870 0.950 6.400 3.210 0.820 1.250 0.410 0.450

4000 0.001 0.993 1.036 0.838 0.819 0.879 0.882 2.450 1.732 0.924 1.056 0.713 0.722

0.0001 1.120 1.150 0.610 0.930 1.070 0.990 3.130 2.070 1.000 1.350 0.600 0.680

100 2000 0.001 0.871 1.060 0.714 0.736 0.746 0.807 6.884 3.209 0.874 1.058 0.550 0.537

0.0001 1.040 1.180 0.670 0.690 0.600 0.990 10.67 3.870 0.880 1.130 0.360 0.460

4000 0.001 0.969 1.099 0.819 0.804 0.915 0.897 3.179 1.904 0.914 1.050 0.786 0.733

0.0001 1.040 1.160 0.710 0.970 0.770 1.030 4.410 2.220 1.070 1.160 0.550 0.600

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type 1 error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).

Table A.13. The estimated type | error rates of the six multiple phenotype association tests
divided by the nominal significance level for 60, 80, and 100 binary phenotypes (with
extremely unbalanced case-control ratios) under model 6. The type | error rates are

evaluated using 500 MC runs (equivalent to 10° replicates).

Binary Phenotypes ceCLC CLC HCLC MultiPhen O’Brien Omnibus
Model 6

K Sample a-level | NO. NET | NNO. NET | NNO. NET | N.O. NET | NO. NET | N.O. NET
60 2000 0.001 0995 1.061 | 0.719 0.852 | 0.838 0.900 | 3.288 1.771 | 0.907 1.024 | 0.566  0.537
0.0001 1130 1.180 | 0.710 0.780 | 0.800 1.010 | 4290 2.030 | 1.000 1.140 | 0.410 0.470
4000 0.001 1.004 1.006 | 0.849 0943 | 0.890 0964 | 1.949 1452 | 0.967 1.082 | 0.726  0.739
0.0001 1120 1.130 | 0.770 1.020 | 1.070 1.120 | 2.200 1.580 | 1.070 1.280 | 0.710  0.850
80 2000 0.001 0.940 1.072 | 0.708 0.785 | 0.776 0.876 | 4481 2167 | 0953 1061 | 0.570  0.549
0.0001 0.980 1.070 | 0.690 0.810 | 0.740 0.880 | 6.110 2520 | 0.840 1130 | 0.420  0.400
4000 0.001 1.011 1129 | 0.774 0.838 | 0913 0923 | 2303 1549 | 0.988 1.150 | 0.718 0.743
0.0001 0910 1.240 | 0.670 1.120 | 0.810 0.990 | 3.130 1.910 | 0.900 1.360 | 0.770  0.770
100 2000 0.001 0938 1.081 | 0.684 0.744 | 0.776 0.892 | 6.011 2547 | 0.927 1.012 | 0.499 0.534
0.0001 0.890 1.160 | 0.600 0.810 | 0.590 1.040 | 8730 3.130 | 0.940 1120 | 0.390  0.410
4000 0.001 0.974 1.026 | 0.783 0.862 | 0.889 0.951 | 2.780 1.584 | 0.997 1.033 | 0.721  0.723
0.0001 0.890 1.180 | 0.680 1.010 | 0.900 1.080 | 3.560 1.990 | 0.910 1110 | 0.680  0.660

Notes: bold-faced values indicate that the values are beyond the upper bounds of the 95% Cls. 95% Cls for type | error
rates divided by nominal significance levels 0.001 and 0.0001 are (0.938, 1.062) and (0.804, 1.196), respectively. “N.O”
represents the type | error rates calculated by the formula in Comparison 1 (Apply methods without considering network
modules.). “NET” presents the type | error rates evaluated by the formula in Comparison 2 (Apply methods by
considering network modules).
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Table A.14. 33 unique SNPs identified by ceCLC for testing the association in NET (one
SNP) or in N.O. (32 SNPs).

SNP Position Mapped gene P value Reported diseases Reference
rs4148866" chrl2: 123425575 ABCB9 2.97E-08 - -
513107325 chr4:102267552 SLC39A8 4.60E-10 M19.9/M25.5/M75.1 10-12
rs34333163 chr4:102361960 SLC39A8 2.84E-08 M19.9 / M25.5/ M75.1 10-12
rs9468413 chr6:28721895 - 2.91E-08 - -

rs880638 chr6:28739135 - 4.02E-08 - -
1$9257802 chr6:29375578 OR5V1 1.50E-08 - -
rs1264362 chr6:30808813 HCG20 1.54E-09 MOQ07.3 8
rs915664 chr6:30826840 LINC00243 1.02E-08 - -
rs1264344 chr6:30832800 LINC00243 9.31E-09 - -
51632854 chr6:31007872 Mca 2.77E-08 MO07.3/ M32.9 / M85.8 1315
rs4713422 chr6:31032125 MUC22 8.63E-14 MO07.3 / M85.8 1315
rs10947121 chr6:31032220 MUC22 1.08E-13 MO07.3 / M85.8 13.15
. Cé6orf15 / : 1618
rs2233967 chr6:31113051 PSORS1C1 4.61E-09 M31.4 / M34 / M35.2
_ PSORSIC1 / ] 1o
rs1265086 chr6:31142105 PSORS1C2 5.07E-12 M31.4/ M34 /| M35.2
rs130071 chr6:31148433 PSP%Ruslecll / 2.46E-10 | MO07.3/M31.4/ M34 / M35.2 13,1618
rs4516988 chr6:31208825 HCG27 7.30E-10 M32.9 9
rs4351302 chr6:31209144 HCG27 4.08E-10 M32.9 9
rs9295967 chr6:31216243 HCG27 6.65E-10 M32.9 9
. HLA-C/ . 1317
rs9264733 chr6:31276437 LINCO2571 1.10E-08 MO07.3/ M31.4
rs3094682 chr6:31296684 LINC02571 2.58E-09 MO07.3 3
1s2596472 chr6:31461190 HCP5/MICB 1.33E-10 M33.2 / M60 / M62.9 2022
rs3130615 chr6:31507636 MICB 1.79E-11 M60 2
rs3132468 chr6:31507709 MICB 1.57E-11 M60 2
rs3131635 chr6:31508357 MICB 1.13E-11 M60 2
rs1065076 chr6:31509904 MICB 1.26E-11 M60 2
rs2395045 chr6:31516740 MICB 1.07E-09 M60 2
rs3093999 chr6:31516773 MICB 8.32E-10 M60 2
rs3131631 chr6:31516906 MICB 9.63E-10 M60 2
rs2734574 chr6:31526111 MICB 5.30E-09 M60 2
. ATP6V1G2 / 21,23
rs6916921 chr6:31552649 DDX39B / LTA 2.28E-11 M30.3/ M60
, MO06.9/ M07.3/ M31.4/ 1o 192208
rs915895 chr6:32222440 NOTCH4 1.94E-09 M32.9 / M34 / M62.9
_ ] MO06.9/ M07.3/ M31.4/ ro7 192920
rs915894 chr6:32222613 NOTCH4 2.14E-08 M32.9/ M34 / M62.9
_ MO06.9 / M07.3/ M31.4/ 1o 192228
rs443198 chr6:32222629 NOTCH4 1.73E-11 M32.9/ M34 / M62.9

Notes: “* indicates the unique SNP identified by ceCLC in NET. Bold-faced SNPs are the lead SNPs in the colocalization
analysis. Mapped gene denotes the gene that includes the corresponding SNP with a 20kb window region. P-value is
calculated by ceCLC. The corresponding diseases with ICD-10 codes in reported diseases are listed in Table A.15.

Table A.15. ICD-10 codes and names of thel4 reported diseases shown in Table A.14.

ICD-10 Disease ICD-10 Disease
M06.9 rheumatoid arthritis M33.2 Polymyositis
M07.3 psoriatic arthritis M34 systemic sclerosis
M19.9 osteoarthritis M35.2 Behcet's disease
M25.5 multisite chronic pain M60 myositis
M30.3 Kawasaki disease M62.9 appendicular lean mass
M31.4 Takayasu arteritis M75.1 rotator cuff syndrome
M32.9 systemic lupus erythematosus M85.8 disorders of bone density and structure
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A3

Supplementary Figures

Figure A.1. Flow chart of UK Biobank data preprocessing. Pre-process on phenotype: i
Select White British subjects (White British); ii. Remove individuals who are marked as
outliers for heterozygosity or missing rates (Low Heterozygosity); iii. Exclude individuals
who have been identified to have ten or more third-degree relatives or closer (Not Three-
degree Relatives); iv. Remove individuals having very similar ancestry based on a principal
component analysis of the genotypes (Similar Ancestry); v. Remove individuals based on
removal by the UK Biobank (Removal by the UK Biobank). Quality controls (QCs) on
genotype: Filter out genetic variants, with i. Missing rate larger than 5% (“--mind 0.05”),
ii. Hardy-Weinberg equilibrium exact test p-values less than 10° (“--hwe 1e-6), iii.
Minor allele frequency (MAF) less than 5% (“--maf 0.05”"). We also filter out individuals,
with iv. Missing rate larger than 5% (“--mind 0.05”) v. Individuals without sex (“--no-

sex”
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Figure A.2. Power comparisons of the six tests as a function of effect size g under six

models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 80 and the sample size is 2,000. The power
of all of the six tests is evaluated using 10 MC runs.
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Figure A.3. Power comparisons of the six tests as a function of effect size g under six

models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 60 and the sample size is 2,000. The power
of all of the six tests is evaluated using 10 MC runs.
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Figure A.4. Power comparisons of the six tests as a function of effect size g under six

models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 60 and the sample size is 4,000. The power
of all of the six tests is evaluated using 10 MC runs.
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Figure A.5. Power comparisons of the six tests as a function of effect size g under six

models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 100 and the sample size is 2,000. The
power of all of the six tests is evaluated using 10 MC runs.
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Figure A.6. Power comparisons of the six tests as a function of effect size g under six

models. The number of mixture phenotypes (half continuous phenotypes and half binary
phenotypes with balanced case-control ratios) is 100 and the sample size is 4,000. The
power of all of the six tests is evaluated using 10 MC runs.
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Figure A.7. Power comparisons of the six tests as a function of effect size £ under the six

models. The number of binary phenotypes (with extremely unbalanced case-control ratios)
is 80 and the sample size is 20,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.8. Power comparisons of the six tests as a function of effect size g under six
models. The number of binary phenotypes (with extremely unbalanced case-control ratios)

is 80 and the sample size is 10,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.9. Power comparisons of the six tests as a function of effect size g under six
models. The number of binary phenotypes (with extremely unbalanced case-control ratios)

is 60 and the sample size is 10,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.10. Power comparisons of the six tests as a function of effect size £ under six

models. The number of binary phenotypes (with extremely unbalanced case-control ratios)
is 60 and the sample size is 20,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.11. Power comparisons of the six tests as a function of effect size £ under six

models. The number of binary phenotypes (with extremely unbalanced case-control ratios)
is 100 and the sample size is 10,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.12. Power comparisons of the six tests as a function of effect size £ under six

models. The number of binary phenotypes (with extremely unbalanced case-control ratios)
100 and the sample size is 20,000. The power of all of the six tests is evaluated using 10
MC runs.
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Figure A.13. The Manhattan plots of four different diseases based on the saddlepoint
approximation. Systemic lupus erythematosus (M32.9), Sicca syndrome (M35.0), and
Trigger finger (M65.3) are detected in Module 111 by our proposed GPN. Both Trigger
finger (M65.3) and Synovitis and tenosynovitis (M65.9) are classified into the same ICD-
codes category (M65). The horizontal red dashed line represents the threshold for

commonly used genome-wide significance level 5x107°.

(a) SPAtest for Systemic lupus erythematosus (M32.9)
Thm == = = = = = = .l.i ______________
& E
o 50- .
8 ISR LR Xyt
T 25- QAR R
0.0- ' J ( 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20212
Chromosome
(b) SPAtest for Sicca syndrome (M35.0)

10.0 - l

75 o s mm mm omm mm omm mml s mm mm mm s e Em e

o

=%

o 5.0-

S -

1 et % f ®
25- “ &
0.0' 1 1 1

11 12 13 14 15 16 17 18 1920282
Chromosome
(c) SPAtest for Trigger finger (M65.3)
6- .

o [,

sS4

o

o]

] 2_

0- T 1 Ll T T
1 2 & 9 10 11 12 13 14 15 16 17 18 19 20202
Chromosome
(d) SPAtest for Synovitis and tenosynovitis (M65.9)
6-

o

>S4

o

o

8 9 10 11 12 13 14 15 16 17 18 19 20202
Chromosome

129



Figure A.14. Dendrogram of hierarchical clustering method based on the genetic
correlation of phenotypes obtained by GPN and the phenotypic correlation estimated by
LDSC, respectively.
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Figure A.15. Dendrogram of hierarchical clustering method based on the genetic
correlation of phenotypes obtained by GPN and the genetic correlation estimated by LDSC,
respectively.
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Figure A.16. The Venn diagrams of the number of significant SNPs identified by ceCLC,

CLC, HCLC, O’Brien, and Omnibus in N.O. and NET.
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Figure A.17. Tissue expression analysis for mapped genes identified by ceCLC in N.O. (a)

and NET (b), respectively.
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Figure A.18. Colocalization signals. Lead SNPs are selected for colocalization analysis
when the top associated SNP identified by ceCLC was also associated with gene expression
in the Muscle Skeletal tissue.
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B Supplementary Materials for Chapter 2

B.1 Supplementary Texts
Text B.1. Details of other network properties by comparing with random network.

In this study, we also consider two network properties, degree entropy and cross entropy,
in comparison between the constructed sparse representation of GPN, < , and the

corresponding random network, ZZ=", for a specific 7 e (0,1).

Degree entropy. The Shannon entropy of the degree can be used to measure the
diversity of associations between genetic variants and phenotypes through their degrees®.
For a specific threshold 7, we define the Shannon entropy for degree of genetic variants

and phenotypesas H° ——ZdG Iog( ) and HY :—de Iog( ) where the min-max

standardized degree are given by d°® :(drf —mlnm{dm})/(maxm {d,‘j}—minm{dfj}) for
the m™ genetic variant and d,] :(df—mink{df})/(maxk {d } min {dkp}) for the k"

phenotype. The global degree entropy of a bipartite network is given by H =H® +H".
For the corresponding random network, we use the same way to calculate the degree
entropies HG,random HP,random and Hrandom

Cross Entropy. We define the cross-entropy of weighted or unweighted degree of
genetic variants and phenotypes between &, and Z5“" to determine the diversity

between a bipartite GPN and a random bipartite network.

cross — _Z[ de |Og(d G, random) (1—d_n?)|09 (l_cTr;B,random )]’
=587 00 (@) (137 oofe- 87
k=1

where, H® _ and H® _ are used to measure the difference between degree distributions

Cross Cross

of genetic variants and phenotypes in &, and ZZ53“", respectively. HS _ and H

Cross Cross
are always positively valued and it will increase if the degree distributions tend to be more
different. Same as degree entropy, we also define the global cross entropy of a bipartite

networkas H_.. =HS +H" . With the loss of the generality, the optimal threshold ¢

Cross Cross cross *

should be selected by maximizing HS__ and H _ . Meanwhile, in the case of equivalent

numbers and weights of edges, the greater the difference of network topologies between
Z, and ZZ=°" the more information the 27, includes. Therefore, we also assess the

difference of degree entropy between &= and Zr®" for r €[0,1], which are defined
as AH® =H® —H®™" and AH® =HF —H"™®" _ To investigate the significance of
differences and the stability of the cross entropies, we construct 1,000 random networks
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corresponding to &z, . For network degree entropy, we evaluate their distributions of the
random network, then compare HZ(H?) and the upper bound of the 95% confidence

interval (CI) of H&en (Hf*“‘”d‘)m) . For cross-entropy, we can estimate the standard errors
of them and then obtain the stability by computing their 95% Cls.

Text B.2. Details of the five multiple phenotype association tests.

In this study, we apply four powerful GWAS summary-based multiple phenotype
association tests to identify the association between phenotypes in each network module
and a genetic variant, including minP?®, ACAT* MTAG?', SHom?. To simplify the
notation, we assume that the tests are applied to test the association between K phenotypes
and a genetic variant.

minP. Consider the z-score vector is Z =(Z,,-++,Z )T , Where Z, is the z-score for testing

the association between the k™ phenotype and a genetic variant. Assume that Z is
asymptotically multivariate normal MVN (O,R) under the null hypothesis that K

phenotypes and a genetic variant have no association, where R is the correlation matrix of
phenotypes. The minP test statistic is given by T_. . = kr_1?ax}({|zk|} and the corresponding

minP

T

p-value can be calculated by p,. ., =1—IT:W ITP

~ 'minP ~ 'minP

f(xl,---,xK;O,IQ) is the density function for MVN (O,Ii) and R can be estimated by

f(xl,---,xK;O,Ii)dxl---de, where

using ‘estcov’ function in aSPU package.

ACAT. Let p,,---, p; be the p-values of Z ,---,Z,, respectively. The ACAT test statistic
is Toear =2 tan{(.5-p,)z}/K and the p-value of T, is approximated by
Pacar = 0.5—arctan{T,c.r }/7.

A A A T
MTAG. Let Byrac =(ﬂMTAG,1,---, ,BMTAG,K) be the vector of MTAG estimator correcting

for both genetic correlation © and phenotypic correlation X among K phenotypes. Q

can be estimated by the method of moments using the moment condition, and X can be
estimated by LD score regression (LDSC)®. Let Pyrac1* Puracx D€ the corresponding

p-value of MTAG estimator. Then, a Bonferroni correction is used to adjust for multiple
testing for K phenotypes.

A A T A
SHom. The SHom test statistic is given by Tg,,., = (lT z-lz)(f z-lz) /(1T ):‘11) , Where

1= (1,---,1)T isa K x1 vector that contains all 1s and X can be estimated by LDSC. The

p-value of T, is calculated by assuming T, ., follows a chi-square distribution with 1
degree of freedom.
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Text B.3. Simulation studies for PheWAS.

In this study, we expand the application of constructing the bipartite GPN and unipartite
PPN to phenome-wide association studies (PheWAS). In PheWAS, correcting for multiple
testing is crucial to reduce the risk of false positives and ensure the reliability of the results.
Therefore, applying the community detection method for GPN and PPN can obtain a prior
grouping of phenotypes based on the shared genetic architecture. Then, jointly testing
multiple phenotypes in each network module and one genetic variant can discover the
cross-phenotype associations and pleiotropy. Finally, significance thresholds for PheWAS
are adjusted for multiple testing by applying the refined false discovery rate (FDR) control
approach. We conduct comprehensive simulations to evaluate the FDR of PheWAS based
on network modules detected by GPN.

We directly generate a z-score matrix, Z , for M genetic variants and K
phenotypes in the whole phenome ( K =500 and 1,000 in our simulation studies). Suppose
thereare L phenotypic categories and k = K/L in each category. Let £ be the phenotypic
correlation matrix, where X =Bdiag(X,,---, X, ) is a block diagonal matrix, that is, the

phenotypes within a category are correlated and between categories are uncorrelated. We
consider two scenarios of X3¢, SAME and DIFF. In the SAME scenario, there is the same
correlation coefficient of each pair of phenotypes within the category, that is, the off-
diagonal elements of X, equal p. In the DIFF scenario, the correlation coefficients are

differentand X, is generated by using an autoregressive (AR(1)) model, that is, X, = p‘k‘"

. We use p=0.3 in the simulation studies.

is the set of M
vector for the m" (m=1,---,M) genetic variant from

Assume S true causal variants. Then, we generate a z-score

causal causal

MVN(0,Z), formeS,,,
MVN (g, E), formeS_ .’

causal

Zm =(Zml"“’me)T ~{

where g, =Ly s Mg )T is the K dimensional vector of the true effects for causal

variants. In the simulation studies, we consider a total of M =10° genetic variants and
define the first M_, ., =100 as the true causal variants. Based on the different numbers of

phenotypic categories L =50and 100, we consider the following two models to define g
T
. Let 6,=5(L---,1) and 62:2—5(1551j be two k dimensional vectors of
k/2 2 2
true effect sizes.

Model 1. Only the phenotypes in the first two categories are associated with at least
one causal variant with the same effect sizes but in different directions. The is, first 50
causal variants impact the phenotypes in the first category with 4, ; the second 50 causal

variants impact the phenotypes in the second category with -4, .
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Model 2. Only the phenotypes in the first four categories are associated with at least
one causal variant with different effect sizes and different directions. That is, the first 25
causal variants impact the phenotypes in the first category with 4, ; the second 25 causal

variants impact the phenotypes in the second category with -4, ; the third 25 causal variants
impact the phenotypes in the third category with 4, ; the fourth 25 causal variants impact
the phenotypes in the fourth category with -4, .

For each simulation model, we run B Monte-Carlo (MC) runs and use the
following steps for the b™ MC run: i) generate a z-score matrix using the above simulation
models; ii) construct the bipartite GPN using the method introduced in section 2.2.1; iii)

detect L™ network modules of K phenotypes using the method introduced in section

2.2.4; iv) test the association between phenotypes in each of L® network modules and
each and each of M genetic variants using one of the multiple phenotype association tests

(Text B.2), obtaining pﬁf’,) ; V) calculate the optimal threshold, f)ﬁf’) , by applying the refined
FDR controlling approach.

(b)
Let D& =3 |(p§nb|) < f),(nb)) be the total number of discoveries. Then, we define
the true discoveries and false discoveries as TDY =) I(pr(nbl) < f),(nb)) and

FDY =D —TD, respectively. L, is the set of network modules containing at least one

phenotype that is associated with the m™ genetic variant. Therefore, the average FDR can
be computed by

1 B Mcaysal FD(b)

FDR=—F— e
BXxM i b2 m max { Dr(nb) ,1}

Note that we do not generate linkage disequilibrium (LD) of genetic variants in our
simulation studies, therefore, we can not use LDSC? to estimate the phenotypic correlation
matrix X inapplications of SHom. We use the same estimation method introduced in minP
and Chisq?® to approximately estimate X in the simulation studies. Meanwhile, we directly
generate Z-scores instead of effect sizes of genetic variants on phenotypes, therefore, we
do not consider MTAG in our simulation studies.
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B.2

Supplementary Tables

Table B.1. Phenotypes, abbreviations, samples sizes, disease heritability, and GWAS
resources used in heritability enrichment analyses.

Phenotype Abbreviation | Sample size Heritability Reference
Qt;g{‘(;g” deficivhyperactivity ADHD 53,203 0.2354 (0.0153) | Demontis et al 2!
Smoking initiation SmkInit 632,802 0.0724 (0.0068) Liu et al.®?
Autism spectrum disorder ASD 46,351 0.1941 (0.0168) Grove et al.®
Neuroticism NSM 170,911 0.0877 (0.0067) Okbay et al.?*
Anxiety disorder AXD 31,890 0.0417 (0.0156) Meier et al.®®
Major depressive disorder MDD 500,199 0.0599 (0.0023) Howard et al.%6
Obsessive-compulsive disorder OCD 9,725 0.3217 (0.0496) Arnold et al.%”
Anorexia nervosa AN 72,517 0.1773 (0.0116) Watson et al.%®
Bipolar disorder BD 51,710 0.3469 (0.0174) Stahl et al.%°
Schizophrenia SCz 105,318 0.4101 (0.0113) Pardinas et al.*°
Educational attainment EA 766,345 0.1066 (0.0026) Lee et al.*
Cognitive performance CP 257,828 0.192 (0.0062) Lee et al.*

Notes: Heritability is calculated by LD score regressionzg: heritability (standard error of heritability).

Table B.2. Global genetic correlations (right upper triangle) and proportions of correlated
regions (left lower triangle) estimated by SUPERGNOVA®,

ADHD  Smklnit  ASD NSM AXD MDD  OCD AN BD SCz EA CP

ADHD 0.47° 0.28" 0.21" 0.45" 0.35" -0.16 0.008 0.12" 0.07 -0.417 -0.29"
Smklnit 81%" 0.04 0.15" 0.42 0.32" -0.19" 0.01 0.10" 0.13" -0.35" -0.15"
ASD 32%" 1.33% 0.25" 0.30" 0.30" 0.10 0.13 0.12 0.19" 0.18" 0.15"
NSM 41% 46%" 15%" 0.417 0.69" 0.26" 0.26" 0.10 0.18" -0.247 -0.17°
AXD 52% 63%" 41% 69% 0.65" 0.15 0.30" 0.20" 0.27" -0.28" -0.19"
MDD 69% 65%" 51%" 89%" %" 0.20" 0.26" 0.28" 0.29" -0.17° -0.10
OCD 0.25% 15%" 0.32% 2.3%" 0.11%" 6.4%" 0.42" 0.23" 0.29" 0.21" 0.01
AN 0.26% 1.52%" 0.19% 54%" 30%" 53%" 37% 0.12" 0.26" 0.20" 0.07
BD 1.37% 2.72%" 453%" | 1.11% 35% 55%" 2% 21% 0.57" 0.14" -0.06
SCZ 12%" 39%" 35%" 35%" 42%" 60%" 33%" 58%" 83%" 0.02 -0.22"
EA 76%" 79%" 33%" 61% 51%" 38%" 31% 4% 32%" 7.5%" 0.63"

CP 67%" 39%" 15%" 38% 20%" 27%" 0.5% 1.9%" 3.4%" 57%" 93%"

Notes: " indicates the significance genetic correlations and proportions of correlated regions between two

phenotypes.

Table B.3. Phenotypic correlations (right upper triangle) and genetic correlations (left
lower triangle) estimated by LDSC?.

ADHD Smkinit ASD NSM AXD MDD OCD AN BD SCZ EA  CP
ADHD 0.0034 0.3626 0.0092 0.0040 0.0860 0.0082 -0.1235 0.0398 0.0289 -0.0165 -0.0040
Smkinit -0.4628" 0.0033 -0.0125 -0.0039 -0.0167 -0.0080 -0.0081 0.0058 0.0055 0.0332 0.0115
ASD 0.3459" -0.1819" -0.0125 -0.0024 0.0598 -0.0003 -0.1226 0.0134 0.0170 -0.0003 -0.0013
NSM 0.2642" -0.1342° 0.2723" 0.0514 0.1211 0.0049 -0.0026 0.0069 0.0036 -0.0403 -0.0212
AXD 0.3008 -0.1579 0.2607 0.9339" 0.0342 0.0027 -0.0108 0.0078 0.0144 -0.0067 -0.0030
MDD 0.4537" -0.2187" 0.3526" 0.7313" 0.8790" 0.0062 -0.0627 0.0594 0.0375 -0.0146 -0.0111
OCD -0.1695 0.1185 0.1185 0.2821" 0.2989 0.2591" -0.0127 0.0376 0.0331 -0.0080 -0.0070
AN -0.0082 -0.0668 -0.1057 -0.2671" -0.1976 -0.2870" -0.4490" -0.0536 -0.0321 0.0147 0.0116
BD 0.1205 -0.0873 0.1373 0.1213 0.2000 0.3320" 0.3106" -0.1592" 0.1898 0.0021 0.0119
SCZ 0.1679" -0.1335" 0.2379" 0.2164" 0.3044" 0.3301" 0.3318" -0.2527" 0.6667" -0.0054 -0.0066
EA -0.5159" 0.2825" 0.2081" -0.2512" -0.3416" -0.1734" 0.2390" -0.2380" 0.1820" 0.0106 0.1681
CP -0.3677" 0.0992" 0.2002" -0.1677" -0.2459 -0.0866" 0.0456 -0.0819 -0.0701 -0.2438" 0.6840"

Notes: “indicates the significance genetic correlations between two phenotypes.
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Table B.4. Heritability enrichment analyses of network topology annotation (betweenness
centrality) calculated from denser and sparse representations of bipartite GPN for each of
12 phenotypes.

Denser Sparse (t = 0.45) Sparse (t = 0.1)

Trait Enrichment Effect t* Enrichment Effect t* Enrichment Effect t*

(Standard error)  (se(z*)) (Standard error)  (se(z*)) (Standard error)  (se(z*))
p-value z-score p-value z-score p-value z-score
1.1065 19.9545 1197.52 10.0116 498.39 6.9712

ADHD (0.0397) (14.6723) (134.831) (0.8860) (76.248) (1.0241)
0.0088 1.3600 3.18e-23 11.3003 1.10e-10 6.8073
1.1342 13.4534 670.61 4.1649 292.19 3.1944

AN (0.0450) (10.1444) (106.029) (0.6006) (57.763) (0.6120)
0.0019 1.3262 5.40e-11 6.9350 4.27e-07 5.2198
1.0499 -10.6735 1284.50 7.4179 129.45 3.9185

ASD (0.1275) (34.4418) (216.018) (0.8219) (28.518) (0.7609)
0.7047 -0.3101 1.47e-16 9.0256 5.34e-07 5.1501
1.3694 12.5210 85.3863 0.3191 187.30 0.4038

AXD (0.3546) (10.8825) (83.1066) (0.2555) (158.517) (0.1944)
0.0827 1.1506 0.1246 1.5317 0.0387 2.0767

1.1634 40.1394 1005.12 10.8984 500.87 10.0078

BD (0.0258) (6.5713) (109.477) (1.0510) (65.368) (1.2369)
5.94e-14 6.1082 3.47e-20 10.2816 3.70e-14 8.1479
1.0888 9.6528 863.223 8.3341 744.55 7.1091

CP (0.0143) (4.1834) (55.5744) (0.6674) (101.854) (1.2339)
1.94e-09 2.3074 7.68e-27 12.4864 3.04e-08 5.7613
1.0876 6.4808 991.484 5.6591 738.32 4.1130

EA (0.0096) (1.5985) (58.1901) (0.4291) (102.370) (0.7518)
2.20e-17 4.0543 5.39%e-29 13.1869 1.31e-07 5.4712
1.1198 5.2452 1345.72 2.6991 624.41 1.9156

MDD (0.0144) (1.0707) (93.838) (0.2275) (73.576) (0.2575)
7.81e-16 4.8990 6.24e-25 11.8632 2.85e-12 7.4392
1.0392 -2.0694 1030.86 3.0760 730.19 3.4041

NSM (0.0692) (11.3005)  (110.868) (0.3472) (88.155) (0.4767)
0.5804 -0.1832 4.37e-16 8.8586 1.65e-11 7.1413
1.1530 40.7436 236.746 3.6566 52.57 1.0209

OCD (0.1135) (37.4199) (118.689) (1.4789) (46.183) (0.8355)
0.0942 1.0888 0.0141 2.4725 0.2173 1.2218

1.1640 60.5467 1275.95 18.4038 624.72 13.0659

SCz (0.0198) (10.4817) (86.122) (1.4660) (85.240) (2.0790)
7.51e-16 5.7764 3.33e-27 12.6051 1.95e-09 6.2848
1.0719 3.7899 568.13 1.8560 205.23 15744

Smklnit  (0.0221) (1.6834) (88.322) (0.2193) (45.469) (0.2906)
9.78e-05 2.2514 5.35e-12 8.4633 1.61e-07 5.4185

Notes: The betweenness are scaled by multiplying the number of phenotypes and the number of genetic
variants due to it much smaller than the baseline LD annotations. The estimated effect size and its estimated
standard error, t* and se(t*), are scaled by dividing 10712, Z-score of the effect size is reported to test the
null hypothesis that either T < 0 (one-sided) or T = 0 (two-sided). P-value of enrichment is reported to test
the null hypothesis that Enrichment > 1. The bold-faced p-values indicate the annotation is significantly
enriched in the disease heritability after accounting for multiple testing (p-value< 0.05/12 =~ 0.0041).
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Table B.5. The average FDR in the simulation studies for 500 phenotypes and 50
phenotypic categories.

Ce=SAME, Model 1 Ce=SAME, Model 2
u minP | ACAT | SHom | 4 minP | ACAT | SHom
2.0 0.0846 0.0522  0.0415 15 0.0860 0.0462  0.0493
2.2 0.1203 0.0632  0.0407 2.0 0.1111 0.0583  0.0528
2.5 0.1040 0.0630  0.0527 25 0.1001 0.0512  0.0451
2.8 0.0959 0.0532  0.0493 3.0 0.1017 0.0521  0.0518
Ce=DIFF, Model 1 Ce=DIFF, Model 2
u minP | ACAT | SHom | 4 minP | ACAT | SHom
13 0.1030 0.0527  0.0462 13 0.0947 0.0427  0.0505
15 0.0993  0.0483  0.0517 15 0.0844  0.0423  0.0522
1.7 0.1109 0.0622  0.0491 1.7 0.1080 0.0645  0.0453
19 0.0928 0.0477  0.0482 19 0.1011 0.0491  0.0427
Notes: FDR is evaluated using 10 MC runs, equivalent to 1,000 replications at a nominal FDR level of 5%. The 95%
confidence interval (CI) is [0.0365, 0.0635] and bold-faced values indicate that the values are beyond the upper bounds
of the 95% CI.

Table B.6 The average FDR in the simulation studies for 1,000 phenotypes and 100
phenotypic categories.

Ce=SAME, Model 1 Ce=SAME, Model 2
u minP | ACAT | SHom | 4 minP | ACAT | SHom
20 | 00982 00535 0049 | 15 | 00809 00452 0.0473
22 | 01143 00556 00482 | 20 | 01036 00475 0.0500
25 | 01102 00578 00501 | 25 | 01110 00576 0.0556
28 | 01024 00535 00481 | 30 | 01097 00535 0.0526
Ce=DIFF, Model 1 Ce=DIFF, Model 2
u minP | ACAT | SHom | 4 minP | ACAT | SHom
13 | 01068 00535 00556 | 13 | 00997 00425 0.039
15 | 00925 00503 00491 | 15 | 01002 00560 0.0431
17 | 00942 00460 00483 | 17 | 00914 00412 00483
19 | 00977 00470 00483 | 19 | 00998 00555 0.0515

Notes: FDR is evaluated using 10 MC runs, equivalent to 1,000 replications at a nominal FDR level of 5%. The 95%
confidence interval (Cl) is [0.0365, 0.0635] and bold-faced values indicate that the values are beyond the upper bounds
of the 95% CI.

B.3 Supplementary Figures

Figure B.1. Network connectance of GPN with different thresholds for (a) 12 genetically
correlated phenotypes and (b) 588 EHR-derived phenotypes in the UK Biobank.
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Figure B.2. Network properties of the unweighted bipartite GPNs for 12 genetically
correlated phenotypes. (a) KL divergency for genetic variants. The blue line is the mean of
KL divergencies across 1,000 random network comparisons. The boxplots show the scaled
distribution of KL divergency for each threshold. (b) Cross entropy for genetic variants.
Blue lines are the means of the cross entropy across 1,000 random network comparisons.
The boxplots show the scaled distribution of cross entropy for each threshold. Red lines
represent the degree entropy for the original network. The boxplots show the distribution
of degree entropy for each threshold across 1,000 random networks. The blue line
represents the difference between the original and random networks. (c) Unweighted
degree entropy for genetic variants. (d) plot of the unweighted degree distribution of
genetic variants for three GPNs on the log-log scale, denser representation (z=1), well-
defined sparse representation (z =0.45), and an arbitrary threshold sparse representation (

7=0.1).
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Figure B.3. The correlation of 12 highly correlated phenotypes calculated by different
methods: (a) Adjacency matrix of Phenotype and Phenotype Network (PPN) projected
from the denser representation of the bipartite GPN; (b) Adjacency matrix of PPN from the
well-defined sparse representation of GPN; (c) Genetic correlation matrix estimated by
LDSC; (d) Global genetic correlation estimated by SUPERGNOVA.
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Figure B.4. The qg-plot of EA versus CP based on weight of (a) the denser representation
of GPN and (b) the well-defined sparse representation of GPN. The qg-plot of EA versus
CP based on (c) -log10(p-values) and (d) z-scores from GWAS summaries.
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Figure B.5. Heatmap of edge weights in the well-defined sparse representation of GPN for
(a) the top 100 and (b) the top 1000 genetic variants with the highest degree centrality.
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Figure B.6. Cross entropy and degree entropy the unweighted bipartite GPNs for 588
EHR-derived phenotypes in the UK Biobank. Cross entropy for (a) genetic variants and (b)
phenotypes. The blue line is the mean of cross entropy across 1,000 random network
comparisons. The boxplots show the scaled distribution of cross entropy for each threshold.
Degree entropy for (a) genetic variants and (b) phenotypes. Red lines represent the degree
entropy for the original network. The boxplots show the distribution of degree entropy for
each threshold across 1,000 random networks. The blue line represents the difference
between the original and random networks.
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Figure B.7. Network properties of the unweighted bipartite GPNs for 588 EHR-derived
phenotypes in the UK Biobank. (a) and (b) KL divergency for genetic variants and
phenotypes. The blue line is the mean of KL divergencies across 1,000 random network
comparisons. The boxplots show the scaled distribution of KL divergency for each
threshold. (c) and (d) Cross entropy for genetic variants and phenotypes. The blue line is
the mean of cross entropy across 1,000 random network comparisons. The boxplots show
the scaled distribution of cross entropy for each threshold. (e) and (f) Unweighted degree
entropy for genetic variants and phenotypes. The red line represents the degree entropy for
the original network. The boxplots show the distribution of degree entropy for each
threshold across 1,000 random networks. The blue line represents the difference between
the original and random networks. (g) and (h) Unweighted degree distribution of genetic
variants and phenotypes for four GPNs, more denser representation (= =0.8), well-defined
sparse representation (z =0.6), and two arbitrary threshold sparse representations (z =0.2
and 7=0.4).
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Figure B.8. Degree centrality and betweenness centrality of genetic variants of the
weighted bipartite GPNs for 588 EHR-derived phenotypes in the UK Biobank.

(a) ©=0.2 (b) 1=0.4
o 151800552 5
rs1800562
3000 3000
152854275 rslyaazi7 - rs2854275
» 2000 r517342717§0r53125716 ’ 2000 rs3129718
[ 7e4882 O [ 13131296
o & 9o ©
[ o 1]
o 133098844 o
r86027022 ¢, °
1000 186025 1000 =] a r56028
o o a
317843504 rsagsssz
rscz)524005 o o
a 152853677
Se)
o 2 — o -
0 3 0 [ 5 10 15
betweeness betweeness
(c) ©=0.6 (d) ==0.8
o 151800562 o 51800562
3000 anao
5854275 152854275
817342717 = [e]
12971 ° orsi7asey T rs?ﬁmzaz 153129716
R PR 8 red12aTe R
o ovs el o
o 2 o
& offp © a8 b}
° o eB® | o °
o] TR ref02s " 156925
1000
® 151333042
0811244 [=}
o q®
T 132736100 rsgnemo
o ° o]
o QO rs10063690 = o 1510069690 b0
o 5 10 % o 5 0 1
betweeness betweeness

147



Figure B.9. Degree centrality and betweenness centrality of genetic variants of the

unweighted bipartite GPNs for 588 EHR-derived phenotypes in the UK Biobank.
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Figure B.10. Heatmap of -logio(p-value) of 100 genetic variants from GWAS summary
datasets, which are uniquely identified by ACAT based on LDSC compared with ACAT
based on the UK Biobank. Only the p-values smaller than GWAS significance level (

5x10°%) shown in the heatmap.
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C Supplementary Materials for Chapter 3

C.l Supplementary Tables

Table C.1. Information of the 18 genes used to obtain the number of replications in the

estimation of Q and to evaluate type | error rates of Overall.

gene position #SNPs  Average LD
AGTRAP chrl: 11736084 - 11754802 23 12.72
TP53 chrl7: 7661779 - 7687538 25 13.78
OR8D2 chrl1:124319262-124320197 27 65.44
FNBP4 chrl1:47716494-47767443 29 108.34
HLA-DOA chr6: 33004182 - 33009591 38 13.21
C3orf22 chr3: 126526999 - 126558965 40 24.29
GOSR1 chrl7: 17:30477362-30527592 40 78.42
LRRFIP2 chr3:37052626-37183689 56 92.67
MCU chr10:72692131-72887694 56 144.73
Cllorf49 chr11:46936689-47164385 79 126.56
HLA-DOB chr6: 32812763 - 32820466 85 19.34
AKR1E2 chrl0: 4786629 - 4848062 89 16.05
DOCK3 chr3:50674927-51384198 102 170.85
CCDC7 chr10:32446140-32882874 117 56.56
SYNE2 chrl4: 63761899 - 64226433 174 36.13
UGT1A10 chr2: 233636454 - 233773305 189 38.69
MCPH1 chr8: 6406596 - 6648508 262 20.86
CDH13 chrl6: 82626965 - 83800640 359 17.25

Notes: “# SNPs” indicates the number of SNPs in the corresponding gene. “Average LD” indicates the average of LD

scores of SNPs in the gene.

Table C.2. Estimated type | error rates of Overall divided by the significance level for each

of the 17 genes at different significance levels with 2x10° replications.

Gene 1x1072 1x10°3 1x10™*
TP53 1.03 1.23 1.12
OR8D2 0.73 0.78 0.80
FNBP4 0.94 1.08 1.15
HLA-DOA 0.97 1.12 1.10
C3orf22 0.98 1.08 0.95
GOSR1 0.95 1.01 0.95
LRRFIP2 0.98 1.04 1.00
MCU 0.81 0.85 0.80
Cllorf49 0.96 0.93 1.05
HLA-DOB 0.91 1.07 1.19
AKR1E2 1.10 1.07 1.21
DOCKS3 0.98 0.94 0.65
CCDC7 1.01 1.20 1.10
SYNE2 0.94 1.03 1.00
UGT1A10 0.97 1.03 0.86
MCPH1 0.99 1.17 1.14
CDH13 1.10 1.13 1.12
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C.2 Supplementary Figures

Figure C.1. The p-values to test if the estimated correlation matrix of p-values based on
B =10 and the estimated correlation matrix of p-values based on B, are the same for the

18 genes. The red dotted line indicates the significant level 0.05.
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Figure C.2. The LD block structures of gene AGTRAP (left) and gene C3orf22 (right).
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Figure C.3.

Estimated correlation matrix of p-values Q for gene AGTRAP.
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Figure C.4. Power comparisons of gene-based association tests at 1.75x10°° significance
level under Uni-directional effects ( 8 =4, =4,=4,) with p,., =(0.1,0.2,0.30.4)

based on gene C3orf22. (a) Estimated power against phenotypic heritability h§ with fixed

expression heritability h’ =0.2; (b) Estimated power against expression heritability h?

with fixed phenotypic heritability h> =0.2.
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Figure C.5. Power comparisons of gene-based association tests at 1.75x10°
significance level under Bi-directional effects ( B =p4,=—-£=-08, ) with

[T =(O.l 0.2, 0.3,0.4) based on gene C3orf22. (a) Estimated power against
phenotypic heritability h; with expression heritability h’> =0.2; (b) Estimated power
against expression heritability he2 with phenotypic heritability hf) =0.2.
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Figure C.6. Power comparisons of gene-based association tests at 1.75x10°° significance
level with p_,., =(0.2,0.3) based on gene C30rf22 with eQTL - derived weights from

K =20 studies. Estimated power against phenotypic heritability h,f with expression
heritability h’ =0.2. (a) Uni-directional effects (B =---= A, ); (b) Bi-directional effects (
Bo==By="Pxppa=""==P)-
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Figure C.7. Power comparisons of gene-based association tests at 1.75x10°° significance
level under Uni-directional effects ( g =/, =4, =/, ) with noise to the eQTL for

[T =(O.l 0.2,0.3, 0.4) based on gene C3orf22. (a) Estimated power against phenotypic
heritability h§ with expression heritability h?=0.2 ; (b) Estimated power against
expression heritability h: with phenotypic heritability hf) =0.2.

(@) h?=0.2 and h2 =0.2,0.4,0.6,0.8 (b) h=0.2 and h? =0.2,0.4,0.6,0.8
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Figure C.8. Power comparisons of gene-based association tests at 1.75x10°° significance
level under Bi-directional effects ( g =/, =—f =—/,) with noise to the eQTL for

Peausal :(O.l 0.2,0.3, 0.4) based on gene C3orf22. (a) Estimated power against phenotypic
heritability h§ with expression heritability h? =0.2 ; (b) Estimated power against
expression heritability h? with phenotypic heritability h? =0.2.
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0.05 at 1.75x10° significance level on gene C3orf22 with

Figure C.9. Estimated power against phenotypic heritability hf, with expression

heritability h’

(O.L 0.2) and sample size of 100,000. (a) Uni-directional effects with noise to
eQTL; (b) Bi-directional effects with noise to eQTL.
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D Supplementary Materials for Chapter 4

D.1 Supplementary Texts
Text D.1. The general simulation setting.

We considered the general simulation setting for comparison. To simulate expression
levels of p target genes (TGs), we used the following linear model,

Xi =yiﬁ+£ir

T , . .
Here x; = (x;1,-+,%;,) represents the expression level of p TGs in sample i. y;
is the expression level of a transcription factor (TF) in sample i and was generated from a

standard normal distribution. g = (ﬁl,---,ﬁp)T represents the fixed regulation effects of
the TF on p TGs. &; represents the error terms for p TGs in sample i, where &; was
generated from a multivariate normal distribution with mean 0 and covariance matrix I,,
(identity matrix), &,~MVN,(0,1,,). We used n = 300 samples, p = 500 TGs in this
simulation studies.

The regulation effects B were determined based on the relationship between TGs
and the TF. In the general simulation settings, only the first 50 TGs were regulated by the
TF. Therefore, the regulation effects B were defined as

ﬁ' lf] € (1;,25),
Bi =v—FB, ifj€(25,--,50),
0, otherwise.

Text D.2. Simulation settings if the target genes have the biological network structure.

To simulate correlated expression levels of p TGs within a biological network, we added
the network factor into the general linear model,

xi=yiB+Z;+g,

Here Z;~MVN,(0,X) is the network factor values in sample i with a network
structure, where X is the covariance matrix of x;, and Z; was generated from a multivariate
normal distribution with mean 0 and covariance matrix X. For a given network, X was
simulated by the following ways, as described by Peng et al.*® and Cao et al.**. First, an
initial concentration matrix is generated. For a pair of TGsmand k (im =1,---,p,k =
1,---,p), the corresponding element in the initial concentration matrix was set as 0 if they
were not linked or was generated from a uniform distribution on [-0.7, —0.1] U [0.1, 0.7]
if they were linked. Then the non-zero elements in the initial concentration matrix were
rescaled to assure its positive definiteness and the rescaled matrix was averaged with its
transpose to ensure the symmetry. Denote W = (w,y) as the inverse of the matrix after
rescaling and averaging based on the initial concentration matrix, the element Z;; in the

covariance matrix X was determined by Zj; = Wi/ Wmm@kk-
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In this simulation, we used n = 300 samples and p = 500 TGs and considered
two types of networks: hierarchical network and Barabasi-Albert network. For the
hierarchical network, there were 5 disjointed subnetworks and each of them consisted of
100 TGs. The subnetwork was constructed as the same as Kim et al.*® (Figure D.1). For
Barabasi-Albert network, there were 50 subnetworks and each of them consisted of 10 TGs.
For each subnetwork, a BA-based network was generated*®. For both types of networks,
the network structure A = (a,,,;,) of 500 TGs was constructed. a,,;, = 1 if m** TG and
k™" TG were within the same subnetwork and a,,,, = 0 otherwise.

The regulation effects B were determined based on the relationship between TGs
and the TF. In the hierarchical network, only 45 TGs in the first subnetwork, which
contained one centered TG and four groups of TGs denoted as g4, g2, g3, and g,, were
regulated by the TF. Therefore, the regulation effects g were defined as

( B, if TG j is the centered TG,

p/3x [4,  ifjegiorjegs
Bj = 1
—B/3 X dj, ifj€gyorjE gy,

\ 0, otherwis.

where d; is the degree of TG j, which represents the number of TGs that were
linked with TG j. In the Barabasi-Albert (BA)-based network, only 40 TGs in the first four
subnetworks denoted as g, g2, g3, and g,, were regulated by the TF. Therefore, the
regulation effects B were defined as

ﬁx\/z,- if j € g1 orj € g,

pi = o .
7\ =B x [d;, ifj€Eg,orjE g,

0, otherwise.

Text D.3. APGD algorithm to solve Huber-Lasso.

In Huber-Lasso, we considered the Huber loss function and the Lasso penalty. Therefore,
the penalized loss function can be decomposed as

fB) = 9(B)+h(B) = <Z Hu (v = o — x?ﬁ)) +QIBID. (5L

where g(B) and h(pB) are given by

9B) = ) Hui— o~ x), G
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h(B) = AlBIl;- (S1.3)
The APGD in k" iteration can be defined as
Ek+1 - Bk + wk(ﬁ" _ Bk—l)
0k+1 P Ek+1 —kag(Ek“)
B! := Prox, i, (8**") (S1.4)

where w* € [0,1) is an extrapolation parameter and y* is the usual step size. These
parameters must be chosen in specific ways to achieve convergence acceleration. One
simple choice #’ for w® is k/(k + 3). Here Vg(&**1) is the gradient of the convex
differentiable function g(-) at €¥**, which can be calculated by

Vg@EE) = > —VHu (0 — fo — K€D (SL5)
i=1

where let A;:= y; — B, — x7 1, then the gradient of Huber function can be calculated as
VHy (4A;) = 20;1(|1A;| < M) + 2Msign(A;)I(|A;| > M). The operator PrOkah(9k+1) is
called proximal mapping for h(B). To solve the Huber-Lasso, the key is to compute the

proximal mapping for the convex non-differentiable function h(f). It is not difficult to
verify*®:

1
Prox,i,(8**!) = argming {AIIBIIl + o 1B — 9k+1||%}

= sign(6**")max{[|6“**||, — y*4,0}.

To obtain a valid estimation in each iteration, we also defined an upper bound of
g() as g,x(B,§***) which is given by

(S1.6)

1
Gye(B,§Y) =g +vg@E )T (B - + F 1B — &3 (SL.7)

Algorithm S1 APGD for Huber-Lasso
1: function APGD.HUBERLASSO(X, y, \)

2 Initiate B = B! = 0,y = 1000

3 for k € 1...niter do

it 51 BF 4 k/(k +3) x (B* — BE1)

H: Compute Vg({k+1) from (S1.5)

6 while TRUE do

it Compute BP"°" from (S1.4)

8: Compute g(B7"°") from (S1.2) and g., k (8, €511 from (S1.7)
9: break if g(B8P7°%) < g.x (B, &F 1)

10: v+ v x0.5

11: IBI\'~1 G Bpru.r

12: break if |f(B8P"°%) — f(B8*)| < 1078 or |BP"* — BF| < 104
133 return grro*
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Text D.4. APGD algorithm to solve Huber-ENET.

In Huber-ENET, we considered the Huber loss function and the Elastic Net penalty.
Therefore, the convex differentiable function g(B) and the convex non-differentiable
function h(B) are given by

c 1
9B) = ) Hy(i— o= KB + 21—~ OB, h(B) = Aallfl. (S2.1)
i=1

Therefore, the proximal operator in APGD for Huber-ENET and the gradient of

convex differentiable function g(-) at &1, which can be calculated by the following
formulas.

PPOkah(9k+1) = sign(@* ) max{||0* ||, — y*1a, 0} (S2.2)
n

Vg(§+t) = z —VHy (i — Bo — x] E*Dx; + A(1 — ) &1 (S2.3)
i=1

Algorithm S2 APGD for Huber-ENET

1: function APGD.HUBERENET (X, y, \, o)
Initiate B8° = B = 0, = 1000

NS

3: for k € 1...niter do

4: g1 « BF +k/(k+3) x (BF — gF1)

5: Compute Vg(£€F+1) from (52.3)

6: while TRUE do

(6 Compute BP"°* from (S2.2)

8: Compute g(BP"°") from (S2.1) and Q-VA-(,B.ﬁl‘*]) from (S1.7)
9: break if g(8°7°") < g, x (8, €"1)

10: v +—vx05 '

11 pBrtl  geroz

12: break if |f(8P7°%) — f(8%)| < 1078 or |@P"* — B*| < 10~
13: return 37"

Text D.5. APGD algorithm to solve Huber-Net.

In Huber-Net, we considered the Huber loss function and the network-based penalty.
Therefore, the convex differentiable function g(B) and the convex non-differentiable
function h(B) are given by

c 1
9B) = ) Hu(i— fo— ¥ B) +3A(1 ~ BTSTLSB,

 r(B) = AalBll..

Therefore, the proximal operator in APGD for Huber-Net and the gradient of

convex differentiable function g(-) at £&¥*1, which can be calculated by the following
formulas.

(S3.1)

Prox i, (0**") = sign(6**" )max{[|6**||; — y*Aa, 0} (S3.2)
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P = ) ~THy (i — fo = xT§4Dx +2(1 - OSTLSEL, (833)

=1

Algorithm S3 APGD for Huber-Net
1: function APGD.HUBERNET(X,y,L, S, \, )

2 Initiate B8° = B = 0,~ = 1000

3 for k € 1...niter do

4: gl o BF L k/(k+3) x (BF —BF 1)

5: Compute Vg(€**1) from (S3.3)

6: while TRUE do

i Compute BP"?* from (S3.2)

8: Compute g(BP"°") from (S3.1) and g (B, &F 1) from (S1.7)
9: break if g(8P7°%) < g_x (B, &F 1)

10: v+~ x0.5 ‘

11: ﬁl\'+1 Vi ﬁ[}l'(},l'

12: break if |f(BP"°%) — f(B%)| < 1078 or |BPT* — BF| < 104
13: return P

Text D.6. APGD algorithm to solve MSE-Lasso.

In MSE-Lasso, we considered the MSE loss function and the Lasso penalty. Therefore, the

convex differentiable function g(f) and the convex non-differentiable function h(g) are
given by

1 n
98) = %Zl(yi ~Bo—xTB7,  h(B) = 2B, (s4.0)

Therefore, the proximal operator in APGD for MSE-Lasso and the gradient of

convex differentiable function g(-) at &*1, which can be calculated by the following
formulas.

PI'Okah(ak+1) = sign(@%* V) max{||0* ||, — y*2,0} (S4.2)
1 n

7@ == ~(i — o — AT D (343)
i=1

Algorithm S4 APGD for MSE-Lasso

1: function APGD.MSELAsso(X, y, \)
2: Initiate B° = B' = 0, = 1000

3 for k € 1...niter do

it -1 BF 4 k/(k+3) x (B — @)

5: Compute Vg(€FT1) from (S4.3)

6: while TRUE do

(i Compute BP"°% from (S4.2)

8: Compute g(BP"") from (S4.1) and g. x (B, €+1) from (S1.7)
9: break if g(BP"°%) < g1 (B, €F1)

10: v+ vx%x0.5 '

11: Bk+l “ ﬁpr'om

12: break if |f(B8P7°%) — f(BF)| < 1078 or |BPT* — BF| < 104
13: return 3P
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Text D.7. APGD algorithm to solve MSE-ENET.

In MSE-ENET, we considered the MSE loss function and the Elastic Net penalty.
Therefore, the convex differentiable function g(B) and the convex non-differentiable
function h(B) are given by

n
1 1
9B) = 5= 0= o~ 1B + 540U - BB, h(B) = AalBll,. (S5.1)
Therefore, the proximal operator in APGD for MSE-ENET and the gradient of

convex differentiable function g(-) at &1, which can be calculated by the following
formulas.

PPOkah(9k+1) = sign(@* ) max{||0* ||, — y*1a, 0} (S5.2)

PgE) ==Y~ By~ Ex + A - DEH ($59)

Algorithm S5 APGD for MSE-ENET
l: function APGD.MSEENET(X,y, A\, )

2 Initiate B8° = B = 0, = 1000

3: for k£ € 1...niter do

4: -1 BE 4 /(K + 3) x (8% — B*1)

5: Compute Vg(£F+1) from (S5.3)

6: while TRUE do

13 Compute BP"?% from (S5.2)

8: Compute g(BP"") from (S5.1) and g, x (B, €51 from (S1.7)
9: break if g(877°%) < g (8,€+1)

10: v+ v%x0.5 ‘

11: g+l grror

12: break if |f(B8P7°%) — f(B*)| < 1078 or |BPTo* — BF| < 104
13: return BP"*

Text D.8. APGD algorithm to solve MSE-Net.

In MSE-Net, we considered the MSE loss function and the network-based pnalty.
Therefore, the convex differentiable function g(B) and the convex non-differentiable
function h(B) are given by

9(8) = ZHZ(yl Bo— K1 B)* +32(1 ~ TSTLS, (6.1

h(ﬁ) = Aa||Bll1.

Therefore, the proximal operator in APGD for Huber-Net and the gradient of
convex differentiable function g(-) at £&¥*1, which can be calculated by the following
formulas.

Prox i, (0“*") = sign(6**" )max{|6"**||; — y*a, 0} (S6.2)
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PG = >~ = fo — [ Ex AL - DSTLSEH. (69)
i=1

Algorithm S6 APGD for MSE-Net

l: function APGD.MSENET(X,y,L,S, A\, a)
Initiate B° = B! = 0,~ = 1000
for k € 1...niter do
g5 ¢ A5 Lk /(k - 3) x (B% — gFT)
Compute Vg(€**1) from (S6.3)
while TRUE do
Compute BP"°" from (S6.2)

N

20 SN o L

Compute g(BP"°") from (S6.1) and g.“k(ﬁ.g"*“) from (S1.7)
9 break if g(877°") < .« (8. £"1)
10: v+ vx0.5
11: Bk+1 P Bpr(u‘
12; break if |f(BP"°%) — f(B*)] < 10~8 or |@P7°% — gF| < 10~ 4
13: return B°P"oF

Text D.9. Implementation of APGD and TGPred.

Six statistical selection methods based on the penalized regression models and the APGD
algorithm for solving these six statistical methods had been implemented in both Python3
and R and then packed into TGPred. Both of them used commonly used libraries for
scientific computing. For Python3 version of TGPred, we used numpy, scipy, and sklearn
to support efficient mathematical and dataframe computing, cvxpy to compare the runtime
and estimated results of APGD with commonly used CVX, and networkx to generate
synthetic data based on the BA network setting. For R version of TGPred, we used Matrix
and MASS to support the efficient mathematical computing, and mvtnorm and igraph to
generate synthetic data. TGPred can be directly used within Python and R. Both regulation
effect 5; and selection probability SP; of target gene j can be calculated by TGPred for j =
1,---,p. Note that the large-scale genetic data set is acceptable to APGD and the
computation time was evaluated on the high-performance computing (HPC) cluster (Intel
Xeon E5-2670 2.6 GHz, 16 GB RAM). For example, when the number of TGs are greater
than 30,000 (p > 30,000) and B = 500 times of half-sample approach, the computation
times of ENET penalty along with MSE and Huber loss functions for all genes were about
12h CPU time with 90 pairs of tuning parameters a and A; the computation times of Lasso
penalty was about 8h CPU time with 50 tuning parameters A; and the computation times
of Net penalty was about 26h CPU time with 90 pairs of tuning parameters a and A.
TGPred packages have been made publicly available on GitHub as open-source software
for downloading (https://github.com/xueweic/TGPred); more detailed information on how
to install and run the tool was enclosed in the packages.
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Text D.10. Comparison of computational time and regression coefficients estimated by
APGD and CVX.

We also compared the computational efficiency and the regression coefficients estimated
by APGD and CVX, a commonly used package for convex optimization, for several pairs
of tuning parameters A and «. Figures D.4-D.6 showed that the computation times of CVX
and APGD among all grid sets of « and A based on B = 500 subsamples drawn with the
half-sample approach. Figure D.4 showed the computation times of Huber-Lasso, Huber-
ENET, MSE-Lasso, and MSE-ENET under the general setting with § = 0.2. For ENET
penalty function, ny = 1,---,10 indicated the order of selected A in a logl0-scale from
ratio * Apmax 10 Apax, Where A, 1S related to « = 0.1, -+-,0.9. For Lasso penalty, n; =
1,---,100 indicated the order of selected A in a logl0-scale from ratio * A4, 10 Amax,
where 4,,,4, IS related to « = 1. The datasets were simulated under the same setting (Text
D.1). All analyses were performed on a macOS (2.7 GHz Quad-Core Intel Core i7, 16 GB
memory). It can be seen that APGD is much more computationally efficient than CVX
since the running time of APGD was less than one fifth time of CVVX for all six methods
(Figure D.4). A disadvantage of CVX is that all of the estimated regression coefficients
are not equal to O (around 10722 for non-zero regression coefficients). Therefore, the
stability selection method may not be applicable to the CVX method since it is difficult to
find a cut-off threshold for the regression coefficients. The APGD algorithm was also
evaluated under the hierarchical network and Barabasi-Albert network settings. As shown
in Figures D.5-D.6, the computation times of APGD were much shorter than those of CVX
no matter which methods (Huber-Lasso, Huber-ENET, Huber-Net, MSE-Lasso, MSE-
ENET, and MSE-Net) it was applied to. The results manifested that APGD was
consistently more computational efficient than CVX, as we had observed for the general
setting.

We compared the regression coefficients estimated by APGD and CVX for several
pairs of tuning parameters A and a. Figures D.7-D.9 showed that the QQ plots of the
regression coefficients estimated by both CVX and APGD. Figure D.7 showed the
estimation of regulation effects of Huber-Lasso, Huber-ENET, MSE-Lasso, and MSE-
ENET under the general setting with 8 = 0.2. The values lied along the diagonal line as
the Huber loss function was used, indicating the regression coefficients estimated by CVX
and APGD were identical. When the MSE loss function was used, the non-zero estimations
of regulation effects of CVX were greater than that of APGD (Fig D.7). However, there
were only 50 true TGs (out of 500 genes) that were regulated by a given TF in this
simulation setting. That is, CVX obtained more false positives than APGD. Except for
those false positives estimated by CVX, the regression coefficients estimated by these two
methods were nearly identical. Figures D.8-D.9 showed that the estimation of regulation
effects of our proposed six statistical selection methods under the network setting, where
we used f = 0.4 in the hierarchical network setting (Figure D.8) and f = 0.1 in the
Barabasi-Albert network setting (Figure D.9). We observed that the patterns of the
estimation performance were similar to that shown in Figure D.7.
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D.2

Figure D.1. The hierarchical network module is used in the hierarchical network setting.
There is a total of 100 genes that contain a centered gene.
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Figure D.2. The AUROC of the selection probabilities of the different methods in the
general setting, which corresponding to Figure 4.1.
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Figure D.3. The AuROC of the selection probabilities of the different methods in the
network setting, which corresponding to Figure 4.2.
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Figure D.4. The computation times of CVX versus APGD in the general setting (8 = 0.2)

among all grid sets of @ and A based on half-sample approach with B = 500 times of
resampling.
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Figure D.5. The computation times of CVX versus APGD in the hierarchical network

setting (8

0.4) among all grid sets of a and A based on half-sample approach with B =

500 times of resampling.
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Figure D.6. The computation times of CVX versus APGD in the Barabasi-Albert network

setting (8 = 0.1) among all grid sets of @ and A based on half-sample approach with B =
500 times of resampling.
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Figure D.7. The estimation of regulation effects (beta) comparison of CVX versus APGD
in the general setting (8 = 0.2) by different algorithms.
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Figure D.8. The estimation of regulation effects (beta) comparison of CVX versus APGD

in the hierarchical network setting (8 = 0.4) by different algorithms.
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Figure D.9. The estimation of regulation effects (beta) comparison of CVX versus APGD
in the Barabasi-Albert network setting (8 = 0.1) by different algorithms.
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Figure D.10. Venn diagram representing the numbers of common and unique target genes
of each of the 23 TFs identified by the three methods with Huber loss function (Huber-
ENET, Huber-Lasso and Huber-Net) and three methods with MSE loss function (MSE-

ENET, MSE-Lasso, and MSE-Net).
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Figure D.11. The gene regulatory networks of lignin pathway genes produced by the six
methods, Huber-ENET, Huber-Lasso, Huber-Net, MSE-ENET, MSE-Lasso, MSE-Net,
where regulatory genes were ranked based on their connectivities to pathway genes in
clockwise. The inputs were the expression data sets of 2539 pathway genes (PWGSs) and
23 known lignin pathway regulators in the in maize. The network of
ARACNE_ALL_PWGs was produced by ARANCE method with the same inputs as the
six methods we developed, while the network of ARACNE_PWG21was produced by
ARANCE method with the expression data sets of 21 lignin pathway genes and 23 known
lignin pathway regulators being used as the inputs.
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E Supplementary Materials for Chapter 5

E.l Supplementary Texts
Text E.1. Simulation Setups.

The individual-level genetic data where linked genes within a biological network are
correlated with each other are generated using the following three steps:

Step 1: Construct an M dimensional covariance matrix from an arbitrary graph based on
a Gaussian graphical model.

Consider a total number of M =1000 genes that contain 10 disjointed network
modules, each of which consists of 100 genes. Similar to Kim et al.**, we construct each
network module from Figure E.1, which contains a centered gene correlated with other

genes with a few links in one network module. Therefore, the adjacency matrix A:(amk)

of those 1000 genes is constructed based on the connections among genes in each network
module, where a_ =1 represents the m" and k" genes are within the same network

module and a_, =0 otherwise. Next, we apply a Gaussian graphical model to generate a

covariance matrix of 1000 genes*®. Following the settings in Peng et al.*}, the initial
concentration matrix =(p,,),,.,, is generated by

1, if m=k;
Puc =1~U(D), if mandk are linked to each other;
0, otherwise,

where D=[-0.7,-0.1]L[0.1,0.7] and U (D) represents a random variable from a

uniform distribution on the domain D. We then rescale the non-zero elements in the
concentration matrix to assure positive definiteness, that is, we divide each off-diagonal
element by 1.5-fold of the sum. Finally, we average the rescaled matrix with its transpose
to ensure symmetry and set the diagonal entries to be one. We denote the final matrix as

Q and the covariance matrix X can be determined by X, :Q;}(JQ;;Q& , Where Q1
represents the (m,k)th element of the inversed concentration matrix Q™. Note that the
correlations between linked genes are much higher than that of unlinked genes.

Step 2: Generate M gene-level signals from different multivariate normal distributions
for cases and controls, respectively.

In this step, we consider two scenarios to set up the phenotype-related genes. In
scenario 1, we assume that only 45 genes in the first network module are phenotype related,
where these 45 genes contain the centered gene and four subgroups of genes denoted as
d,» 9,, 95, and g,, respectively. In scenario 2, we assume that 48 genes in the first four

network modules are phenotype related, where each of network modules contains one
centered gene and a subgroup of genes which are denoted as g,, g,, g,, and g,,
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respectively. For each scenario, let m=(g, -ty )T be the mean vector, where

H =(O,---,O)T for the control group. In the case group, we set x =0 for neutral genes

(i.e., 955 genes in scenario 1 and 952 genes in scenario 2). In contrast, the mean of
phenotype related genes g is defined as

o if centered gene;

= %x\/a, if meg, or g;;
_gé&ﬁ; if meg,org,,

where ¢ is the strength of association signals and d, is the total number of genetic links

for the m" gene. Therefore, the gene-level signals for each individual can be generated
from a multivariate normal distribution, z, ~ MVN (#,X) for i=1---,n.

Step 3: Generate DNA methylation and DNA sequence data based on each gene-level
signal.
Consider k, =10 genetic components for m=1,---,M and a total of 10,000

genetic components in simulation studies. In this step, we consider two types of genetic
data, DNA methylation data and DNA sequence data. Let @ be the number of components

correlated with the gene-level signal value z,_ for the i" individual and the m™ gene,
which controls the number of causal or neutral components. The methylation value of the

i" individual and j" CpG site in the m" gene is denoted by X' which can be generated

by

o | dim T & =1 o
j=o+1--- K

m!

where &; ~ N (0,02) indicates the difference between the j" CpG site and gene-level

signal z,, and o is the error variance that controls the noise level of association signals.

n

g; follows a normal distribution with mean Zi:l z,, /n and variance o*.

The value of genotype data usually indicates the genotypic score of an individual
at a SNP which is the number of minor alleles that the individual carries at a SNP. We first

generate two different continuous data g;;, for k=1 or 2 to indicate the genotypic value
for two alleles which are defined as

m Zint &, =10
Oijx =

g, j=o+l-,J.
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Next, we convert continuous data g, to binary data x{, based on a fixed MAF"
for the j™ SNP inthe m" gene. Finally, the genotype data x' for the j" SNP in the m"

gene is generated by X' = X} +X;', . Therefore, the genotype data is coded as 0, 1, or 2. In

our simulation studies, we consider five rare variants and five common variants in each
gene, where the MAFs for rare variants are randomly generated from a uniform distribution

U (0.001,0.01) and MAFs for common variants are from U (0.01,0.5).

Text E.2. Comparison of the Methods without Considering Network Structure.

After using the three weighted combinations (OWS, LD-PRS, BWS) and three PC-based
competing methods (PC, nPC, sPC) to capture gene-level signals, several penalized
regression approaches can be used to select genes that are related to a phenotype, including
elastic net (ENET) and least absolute shrinkage and selection operator (Lasso). However,
ENET and Lasso ignore genetic network structures that are expected to perform poorer
according to the feature selection. To compare the network-based regression (Net) with
ENET and Lasso, we use the following procedure: 1) Calculate gene-level signals using
six methods. 2) Apply three different regressions, Net, Lasso, and ENET, to each of six
gene-level signals. 3) Calculate selection probability based on the half-sample approach
for each of the 18 combinations, which contains six gene-level signals from 1) and three
regressions from 2), such as OWS+Net, OWS+Lasso, OWS+ENET, etc. 4) After we obtain
the selection probabilities of each combination, we select top 100 genes and then calculate
the true positive rates (TPRS).

The penalty of ENET is defined as P, (ﬁ’)lea||ﬂ||l+%/1(l—a)ﬂTﬂ and the

penalty of Net is defined as B, () = Aa ||, +%/1(1—a)ﬁTST LSp . The only difference

between these two penalties is the second term, where STLS represents the network
structure among all genes. If there is no network structure among genes, all elements of the
adjacency matrix A equal O since there is no pair of genes that are connected. The
symmetric normalized Laplacian matrix L=1—-DY?AD¥? =1, so the penalty of Net is
equal to the penalty of ENET, that is,

P (8) = 2| B, +2 41~ ) BSTLS= ], +5 A (1-@) BT 1= Puer (5)

Therefore, ENET is a special case of Net without considering the network structure.

Figures E.9 — E.12 show the TPR comparison results for DNA methylation and
DNA sequence data with balanced (Figures E.9 and E.10) and unbalanced (Figures E.11
and E.12) disease status under different simulation settings. We can observe that Net is
better than Lasso and ENET in all simulation scenarios, and ENET is better than Lasso in
most scenarios. That means, if there is a network structure of the genes, the network-based
regression performs better regarding the selection. Meanwhile, we observe that the three
weighted combinations (OWS, LD-PRS, BWS) along with Net always perform better than
those along with Lasso and ENET in all simulation settings. However, the three PC-based
competing methods along with Net may not increase TPR compared with Lasso and ENET.
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Therefore, the methods used to capture gene-level signals are very important for feature
selection. We can conclude that the performance of feature selection will be boosted if we
can capture more information on the gene-level signals.

Computational efficiency is very important for analyzing high-dimensional
genomic data. We compare the computational time between our proposed methods and the
competing methods. To include the stability selection in the total time, we choose 600 pairs
of tuning parameters to evaluate ENET and Net; 500 tuning parameters to evaluate Lasso.
For each of the three regressions (Net, ENET, Lasso), there are six methods to capture the

gene-level signals, eight combinations of parameters (5, w, o) in the simulation, and two

scenarios of the network structure. Based on 6x8x2 =96 replicates in the simulation, we
estimate the computational time (s) of the three regressions based on 1,000 genes and 1,000
sample size. All analyses are performed on a macOS (2.7 GHz Quad-Core Intel Core i7,
16 GB memory). The computing times are shown in Figure E.13. Based on the figure,
although network-based regressions need more computational time than ENET and Lasso,
the average time of Net is only 236.75s by using the half-sample approach 100 times. In
the application of the DNA methylation data, we consider 10,737 genes and 689 individuals.
The average computational time for network-based regression based on 600 pairs of tuning
parameters is 6 hours by using the half-sample approach 500 times. In the application to
the DNA sequence data, we consider 10,907 genes and 10,000 individuals. The average
computational time for the network-based regression based on 600 pairs of tuning
parameters is 11 hours by using the half-sample approach 500 times.

Text E.3. Evaluation of Model Fitting.

Model validation is a most important step in the model building process, which is carried
out after model training where the trained model is evaluated with a separate testing data
set. To evaluate the model fitting regarding our proposed methods along with the selection
probability, we use the following steps. First, we calculate the selection probabilities of all
genes by using the methods with three weighted combinations (OWS, LD-PRS, BWS) as
well as using the three competing methods (PC, nPC, sPC). Then, we choose the top K
genes with the largest selection probabilities from each of the six methods. We use the
accuracy rate (ACC) as a measurement to evaluate models, where ACC is defined as the
sum of true positives and true negatives divided by the total number of genes*°. Based on
different numbers of top selected genes, we perform a 10-fold cross-validation to calculate
the average ACC and the standard deviation of ACC.

There are 45 genes in scenario 1 and 48 genes in scenario 2 that are related to the
phenotype. To evaluate the model fitting, we select top 40 and 60 genes ( K =40 and 60)
by each of the six methods according to the selection probabilities. Figure E.15 shows
ACCs with the standard deviations for both DNA sequence and DNA methylation data
under different simulation settings for the phenotype with a balanced case-control ratio. As
expected, the two proposed supervised methods, LD-PRS and OWS, have higher ACC
compared with the unsupervised method, BWS. Also, sPC is the supervised competing
method, which also has higher ACC compared with the other two unsupervised PC-based
methods, PC and nPC. Notably, LD-PRS and OWS always outperform sPC even though
all of the three methods are supervised. Among the unsupervised models, BWS has higher

176



ACC than the two PC-based methods in the DNA sequence data analysis, while these three
methods perform equivalently in the DNA methylation data analysis.

Text E.4. Comparison of the Methods with Partially Corrected Network Structure.

One of the most important issues for applying the network-based regression is how to select
a biological network. In the study, we consider the functional relationships among genes
in the genetic network, which can be obtained from the existing annotations. For example,
in the real data application, we construct an association network using the pathways from
seven genetic network databases, where the genes are associated with each other if they are
within a metabolic pathway or a biological process. However, the constructed network may
contain some incorrect or missing connections between genes. Therefore, we perform the
simulation studies to evaluate if the network-based regression with partially corrected
network structure still outperform the regressions without considering the network
structure. In the simulation studies, we consider a total of 1,000 genes with 10 subnetwork
modules shown in Figure E.2, where the existing genetic network contains 990 undirected
edges. To mimic a partially correct network structure, we randomly remove 250 out of 990
edges and then randomly add 250 new edges to the genetic network. That means the genetic
network has around 25% incorrect relationships. Figure E.14 shows the TPR results. We
can see that the TPRs of the methods with the partially correct genetic network are lower
than those with the correct network as expected. Even though the genetic network is
partially incorrect, the performance of the network-based regressions still performs better
than the methods without considering the genetic network structure (ENET and Lasso) in
most simulation settings.

Text E.5. Real Data Applications for DNA Methylation and DNA Sequence

Biological network: In order to utilize biological network information, we employ the same
pathway information as in Kim et al.*® , where there are seven genetic network databases
from Biocarta, HumnaCyc, KEGG, NCI, Panther, Reactome, and SPIKE in R package
‘graphite’. There are 11,381 linked genes in the package, of which 672,571 edges among
those genes are in the biological network. To matach SNPs and CpG sites to the linked
genes, we consider all genes according to the USCS (GRCh37/hg19) genome sequence
annotation  list which can be downloaded from the UCSC website
(https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/).

DNA methylation data: The DNA methylation data was measured using the Illumina
HumanMethylation450 BeadChip from 354 RA patients (cases) and 335 normal
controls®®%, The dataset can be found in the NCBI Gene Expression Omnibus (GEO) with
identifier GSE42861, where the methylation £ values of CpG sites are provided. Then,

we convert £ values to M values using logit (base 2) function for further analysis. We find

that only 10,737 linked genes matched with genes in the above biological network that
contain at least one CpG site. After pruning CpG sites in each gene, we capture gene-level
signals using OWS, LD-PRS, BWS, and nPC.

DNA sequence data: The UK Biobank is a population-based cohort study with a wide

variety of genetic and phenotypic information®?. It includes ~500K individuals from the

United Kingdom who are currently aged between 40 and 69 when recruited in 2006-2010%2,

We follow the same preprocess procedure in Liang et al.>* to exclude individuals who self-
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report themselves not from a white British ancestry, who are marked as outliers for
heterozygosity or missing rates, who have been identified to have ten or more third-degree
relatives, and who are recommended for removal by the UK Biobank. Meanwhile, the
quality control (QC) for DNA sequence data is also performed on both SNPs and samples
using PLINK 1.9 (https://www.cog-genomics.org/plink/1.9/). We filter out SNPs with
missing rates larger than 5% and Hardy-Weinberg equilibrium exact test p-values less than
10°. We also exclude individuals with missing rates larger than 5% and without sex. After
QC of DNA sequence data and preprocess of phenotype data, there are 583,386 SNPs and
322,607 individuals remaining. In our analysis, we use 4,541 individuals with RA disease
and randomly select 5,459 individuals without RA disease. We define a gene to include all
of the SNPs from 20 kb upstream to 20 kb downstream of the gene. We find that only
10,907 linked genes matched with genes in the above biological network that contain at
least one SNP. Then, we capture gene-level signals using OWS, LD-PRS, BWS, and nPC,
respectively.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways: In this study, we map those
genes to the KEGG pathways using a functional annotation tool named Database for
Annotation, Visualization, and Integrated Discovery Bioinformatics Resource®®®’
(DAVID: https://david.ncifcrf.gov/) for pathway enrichment analysis.
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E.2 Supplementary Tables

Table E.1. AUCs of the six methods for DNA sequence data analyses in all simulation
settings.

6=2 §=2 6=2 =2 6=3 6=3 6=3 6=3

Method w=4 w=4 w=6 w=6 w=4 w=4 w=6 w=6

0°=2 | 6°=3 | ¢*=2 | 0*=3 | 6°=2 | ¢*=3 | ¢* =2 | 0*=3

Scenario 1: DNA sequence (Balance
ows 0.77 0.56 0.98 0.94 0.86 0.76 0.99 0.99
LD-PRS 0.84 0.60 0.99 0.93 0.89 0.84 0.99 0.99
BWS 0.88 0.74 0.96 0.89 0.97 0.92 0.99 0.99
PC 0.50 0.56 0.67 0.62 0.54 0.50 0.84 0.66
nPC 0.53 0.57 0.69 0.64 0.57 0.54 0.84 0.69
sPC 0.48 0.58 0.67 0.64 0.51 0.52 0.81 0.65
Scenario 2: DNA sequence (Balance
OwWs 0.79 0.67 0.96 0.97 0.86 0.86 0.99 0.99
LD-PRS 0.84 0.68 0.96 0.96 0.89 0.89 0.99 0.99
BWS 0.86 0.82 0.92 0.90 0.97 0.91 0.98 0.99
PC 0.52 0.49 0.71 0.65 0.55 0.56 0.81 0.78
nPC 0.53 0.52 0.73 0.61 0.54 0.54 0.78 0.77
sPC 0.53 0.59 0.66 0.54 0.54 0.55 0.80 0.74
Scenario 1: DNA sequence (Unbalance)
Oows 0.66 0.62 0.93 0.85 0.76 0.71 0.95 0.89
LD-PRS 0.67 0.64 0.93 0.82 0.76 0.71 0.94 0.89
BWS 0.83 0.75 0.89 0.74 0.86 0.79 0.95 0.87
PC 0.55 0.53 0.73 0.69 0.55 0.54 0.79 0.60
nPC 0.54 0.51 0.74 0.66 0.57 0.55 0.79 0.61
sPC 0.53 0.54 0.76 0.69 0.54 0.53 0.81 0.63
Scenario 2: DNA sequence (Unbalance)

Oows 0.68 0.60 0.89 0.83 0.80 0.65 0.92 0.97
LD-PRS 0.70 0.60 0.88 0.81 0.75 0.66 0.91 0.96
BWS 0.78 0.74 0.85 0.73 0.88 0.78 0.87 0.85
PC 0.50 0.53 0.68 0.62 0.53 0.58 0.76 0.67
nPC 0.51 0.56 0.67 0.58 0.54 0.54 0.76 0.66
sPC 0.49 0.54 0.68 0.60 0.49 0.58 0.73 0.69

Note: the bold-faced values denote the maximum AUC across all six methods in the same simulation
settings.
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Table E.2. AUCs of the six methods in DNA methylation data analyses in all simulation

settings.
6=2 6d=2 6=2 6=2 6=25 =25 | 6=25| §=25
Method w=4 w=4 w=6 w=6 w=4 w=4 w=6 w=6
0°=6 | 02=7 | ¢*’=6 | ¢ =7 | d*=6 =7 | 6°=6 | 0%*=7
Scenario 1: DNA methylation (Balance)
Oows 0.91 0.86 0.96 0.93 0.97 0.95 0.97 0.96
LD-PRS 0.90 0.86 0.96 0.94 0.97 0.93 0.97 0.96
BWS 0.93 0.89 0.97 0.95 0.99 0.94 0.99 0.99
PC 0.76 0.75 0.95 0.85 0.88 0.74 0.94 0.90
nPC 0.78 0.76 0.95 0.84 0.86 0.75 0.94 0.91
sPC 0.80 0.76 0.90 0.80 0.89 0.70 0.93 0.92
Scenario 2: DNA methylation (Balance)
ows 0.91 0.90 0.95 0.94 0.97 0.92 0.98 0.96
LD-PRS 0.90 0.91 0.96 0.93 0.96 0.90 0.98 0.97
BWS 0.94 0.92 0.98 0.96 0.97 0.92 1.00 0.98
PC 0.85 0.79 0.95 0.87 0.85 0.77 0.93 0.89
nPC 0.85 0.79 0.96 0.87 0.84 0.79 0.92 0.91
sPC 0.79 0.74 0.95 0.85 0.80 0.75 0.93 0.90
Scenario 1: DNA methylation (Unbalance)
ows 0.81 0.81 0.90 0.90 0.90 0.86 0.94 0.88
LD-PRS 0.80 0.80 0.89 0.91 0.89 0.85 0.95 0.87
BWS 0.81 0.81 0.94 0.88 0.80 0.80 0.93 0.95
PC 0.66 0.60 0.82 0.77 0.69 0.70 0.81 0.74
nPC 0.64 0.59 0.81 0.78 0.69 0.72 0.81 0.75
sPC 0.66 0.62 0.80 0.63 0.67 0.59 0.71 0.68
Scenario 2: DNA methylation (Unbalance)
ows 0.87 0.77 0.89 0.84 0.89 0.87 0.96 0.87
LD-PRS 0.87 0.76 0.91 0.83 0.89 0.88 0.96 0.88
BWS 0.80 0.69 0.93 0.91 0.88 0.86 0.96 0.94
PC 0.79 0.58 0.84 0.68 0.70 0.69 0.83 0.80
nPC 0.75 0.57 0.82 0.70 0.70 0.70 0.85 0.79
sPC 0.61 0.62 0.73 0.64 0.69 0.56 0.74 0.71

Note: the bold-faced values denote the maximum AUC across all six methods in the same simulation
settings.
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E.3 Supplementary Figures

Figure E.1. The graphical abstract of the methods in this study. To capture gene-level
signals from multiple CpG sites or SNPs in the m™ gene (m=1,---,M ), we first employ
three weighted combinations, OWS, BWS, and LD-PRS (left). Then we use half-sample
approach B times on the phenotype (y) and gene-level signals (z,---,z,,) (center). For
each time of the half-sample approach, we apply the network-based reression for a grid set

of tuning parameters. Finally, we calculate the selection probability of each gene and select
genes with the highest selection probabilities (right).

Selection Probability

E - o ~ Gene 1
i 4G v Gene 2
E : t Sg:::etzd - Gene 3
| X 2, Half-sample approach Gene 4

1 L - H
i =

: u H

i B times Gene M-2
H Network-based

i regression Gene M-1

1

1

i
|

Figure E.2. The network module used in simulation studies. There are a total of 100 genes
which contain a centered gene.
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Figure E.3. The true positive rates of the methods based on different gene-level signals for
balance case-control studies with DNA sequence data in scenario 2, where there are five
rare variants and five common variants in each gene. According to the different number of
selected top-genes, three parameters are used to vary the genetic effect: the strength of
association signals ¢, the number of SNPs in each gene related to gene-level signals o,
and the noise level of association signals o*. The selection probabilities are calculated
using half-sample method 100 times.
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Figure E.4. The true positive rates of the methods based on different gene-level signals for
balance case-control studies with DNA methylation data in scenario 2. According to the
different number of selected top-genes, three parameters are used to vary the genetic effect:
the strength of association signals ¢, the number of CpG sites in each gene related to gene-
level signals @, and the noise level of association signals . The selection probabilities
are calculated using half-sample method 100 times.
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Figure E.5. The true positive rates of the methods based on different gene-level signals for
unbalance case-control studies (case:control=100:900) with DNA sequence data in
scenario 1, where there are five rare variants and five common variants in each gene.
According to the different number of selected top-genes, three parameters are used to vary
the genetic effect: the strength of association signals ¢, the number of SNPs in each gene

related to gene-level signals @, and the noise level of association signals o . The selection
probabilities are calculated using half-sample method 100 times.
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Figure E.6. The true positive rates of the methods based on different gene-level signals for
unbalance case-control studies (case:control=100:900) with DNA methylation data in
scenario 1. According to the different number of selected top-genes, three parameters are
used to vary the genetic effect: the strength of association signals ¢, the number of CpG
sites in each gene related to gene-level signals @, and the noise level of association signals
o? . Selection probabilities are calculated using half-sample method 100 times.
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Figure E.7. The true positive rates of the methods based on different gene-level signals for
unbalance case-control studies (case:control=100:900) with DNA sequence data in
scenario 2, where there are five rare variants and five common variants in each gene.
According to the different number of selected top-genes, three parameters are used to vary
the genetic effect: the strength of association signals ¢, the number of SNPs in each gene
related to gene-level signals @, and the noise level of association signals o . The selection
probabilities are calculated using half-sample method 100 times.
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Figure E.8. The true positive rates of the methods based on different gene-level signals for
unbalance case-control studies (case:control=100:900) with DNA methylation data in
scenario 2. According to the different number of selected top-genes, three parameters are
used to vary the genetic effect: the strength of association signals ¢, the number of CpG
sites in each gene related to gene-level signals @, and the noise level of association signals

o? . Selection probabilities are calculated using half-sample method 100 times.
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Figure E.9. The true positive rates of the methods by selected top 100 genes according to
the selection probabilities based on different gene-level signals for balance case-control
studies with DNA sequence data in scenarios 1 and 2. The selection probabilities are
calculated using half-sample method 100 times.
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Figure E.10. The true positive rates of the methods by selected top 100 genes according to
the selection probabilities based on different gene-level signals for balance case-control
studies with DNA methylation data in scenarios 1 and 2. The selection probabilities are

calculated using half-sample method 100 times.
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Figure E.11. The true positive rates of the methods by selected top 100 genes according to
the selection probabilities based on different gene-level signals for unbalance case-control
studies (case:control=100:900) with DNA sequence data in scenarios 1 and 2. The selection
probabilities are calculated using half-sample method 100 times.
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Figure E.12. The true positive rates of the methods by selected top 100 genes according to
the selection probabilities based on different gene-level signals for unbalance case-control
studies (case:control=100:900) with DNA methylation data in scenarios 1 and 2. The
selection probabilities are calculated using half-sample method 100 times.
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Figure E.13. The comparison of computational time required by the methods with Net
regression and the methods with two methods without considering the network structure
(ENET and Lasso). We choose 600 pairs of tuning parameters to evaluate ENET and Net;
500 tuning parameters to evaluate Lasso; 100 times of the half-sample approach.
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Figure E.14. The accuracy (ACC) with standard deviation for both DNA sequence and
DNA methylation data under different simulation settings for the phenotype with a
balanced case-control ratio.
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Figure E.15. The true positive rates of the methods by selected top 100 genes according to
the selection probabilities based on different gene-level signals for balance case-control
studies with DNA sequence data in scenario 2. The selection probabilities are calculated
using half-sample method 100 times.
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Figure E.16. Venn diagram of the number of top 100 genes identified by BWS, LD-PRS,

OWS, and nPC for DNA methylation data.
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Figure E.17. The KEGG pathway enrichment analysis results of BWS, LD-PRS, OWS,

and nPC for DNA methylation data.
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