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The Optimized Link State Routing (OLSR) protocol is a well-known route discovery protocol
for ad hoc networks. OLSR optimizes the flooding of link state information through the net-
work using multipoint relays (MPRs). Only nodes selected as MPRs are responsible for for-
warding control traffic. Many research papers aim to optimize the selection of MPRs with a
specific purpose in mind: e.g., to minimize their number, to keep paths with high Quality of
Service or to maximize the network lifetime (the time until the first node runs out of
energy). In such analyzes often the effects of the network structure on the MPR selection
are not taken into account. In this paper we show that the structure of the network can
have a large impact on the MPR selection. In highly regular structures (such as grids) there
is even no variation in the MPR sets that result from various MPR selection mechanisms.
Furthermore, we study the influence of the network structure on the network lifetime
problem in a setting where at regular intervals messages are broadcasted using MPRs.
We introduce the ‘maximum forcedness ratio’, as a key parameter of the network to
describe how much variation there is in the lifetime results of various MPR selection heu-
ristics. Although we focus our attention to OLSR, a widely implemented protocol, on a more
abstract level our results describe the structure of connected sets dominating the 2-hop
neighborhood of a node.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Optimized Link State Routing (OLSR) protocol is a
well-known and often implemented MANET (Mobile Ad
Hoc Network) route discovery protocol. OLSR optimizes
the flooding of link state information through the network
by using multipoint relays (MPRs). Only nodes selected as
MPRs are responsible for forwarding control traffic. Besides
the mechanism for flooding control traffic like OLSR, there
exist also flooding mechanisms for data traffic, like the
Simplified Multicast Forwarding (SMF) protocol [6] that
can work together with MPR selection algorithms (like
the one in OLSR). An improved version of SMF is BMF
. All rights reserved.

p.com (M. de Graaf),
[15]. Both mechanisms flood IP Multicast traffic over an
OLSR network, where the MPRs identified by OLSR are used
to optimize the flooding.

In this paper we present a graph related study investi-
gating the impact of the network structure on the MPR
selection. A main question in this context is how to mea-
sure the impact of the structure of the graph on the MPR
selection. We show that for highly regular network struc-
tures (such as e.g. grids) MPR selection algorithms only
can have a marginal influence on the choice of MPR nodes
since many nodes are fixed as MPR nodes in the sense that
every MPR selection algorithm has to choose these nodes.
To demonstrate the influence of the fixed nodes, we con-
sider the maximization of the network lifetime (the time
at which the first communication fails due to depletion
of battery-resources). We introduce a key parameter of
networks (maximum forcedness ratio) and show how the
network lifetime under different MPR selection algorithms
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depends on this parameter. Although we focus our
attention to OLSR, being a widely implemented protocol,
on a more abstract level our results describe the structure
of connected dominating sets covering the 2-hop neigh-
borhood of a node.

This paper consists of two main parts. In Section 3 we
provide structural results on MPR-sets that are indepen-
dent of the selection algorithm that is used. In Sections 4
and 5 we apply this theory to grid graphs showing that
for ‘central nodes’ in grid graphs all MPR selection algo-
rithms yield the same sets. In Section 6 the network life-
time is addressed, showing that a new graph parameter,
the ‘maximum forcedness ratio’ is strongly related to the
degree in which the structure of the graph allows improve-
ment of the network lifetime by a better MPR selection
heuristic. For graphs with a maximum forcedness ratio
close to 1, the concrete MPR selection heuristic has little
impact on the resulting network lifetime.
2. Related work

2.1. MPR selection

The classical MPR selection problem is to find for a given
node a set of MPRs of minimum size that covers the whole
2-hop neighborhood. Selecting the MPR-set of minimal car-
dinality has been proven to be NP-complete [14,17].

In practice, heuristic algorithms are used to select MPR-
sets. To set up MPR-sets in a network, different MPR selec-
tion algorithms exist. In these algorithms each node (the
selector nodes) independently chooses its MPR-set. These
sets then act as relay nodes for messages sent by the selec-
tor node, and, thus can organize the broadcast communica-
tion in a network. The existing approaches mostly aim to
optimize the selection of MPRs with a specific purpose in
mind: e.g., to minimize their number (as was the objective
in the original specification [5]), or to improve QoS (see
[1]). In [12] other purposes are presented: to reduce the
number of collisions, minimize the overlap between MPRs
or maximize the global bandwidth.

The heuristics mentioned above have a structure that
can be divided into three steps and use an incremental
approach to compute an MPR-set. The first step always
consists of selecting neighboring nodes as MPR that cov-
er nodes in the 2-hop neighborhood that cannot be cov-
ered by other neighboring nodes. The second step
extends this set in order to ensure that the complete 2-
hop neighborhood is covered, and in the last step it is
investigated if some of the current selected nodes can
be dropped without violating the requested properties
of an MPR-set. In [2] an interesting probabilistic analysis
of the influence of the first step is given. The authors
conclude that almost 75% of the relay nodes are selected
by the first step of the heuristics. In this paper we show
that for a specific class of graphs all MPRs are selected in
the first step of the algorithm. In [8] MPR selection algo-
rithms in a specific probabilistic setting are analyzed. In
this setting the edges in the graph have a weight, which
represents the probability of successful transmission over
that edge. For this probabilistic edge model the MPR
selection heuristics are more complicated than the three
step model.

2.2. Network lifetime problem

The network lifetime is an important parameter for bat-
tery-operated networks. Examples of such networks are
personal area networks that are used in emergency situa-
tions. Such networks are deployed in regions where it is
impractical to recharge/replace the battery of a node. This
limited battery capacity of nodes participating in a MANET
is a topic of a wide variety of literature on problems related
to energy-efficiency. Many algorithms have been devel-
oped addressing the Network Lifetime Problem in general
networks. From them, the following approaches are closely
related to the topic of this paper:

(a) Maximization of network lifetime for broadcast traffic.
Kang and Poovendran [9] present an algorithm that
maximizes the static network lifetime. Low and
Goh [11] consider the problem of maximizing the
minimum residual energy that remains after a
broadcast transmission from a source. Park and
Sahni [13] present an alternative heuristic for deter-
mining a tree with maximum ‘critical energy’ (min-
imum residual energy). These references form a
small collection of approaches in this area. Note, that
all approaches above assume that the transmission
originates from a single source and that none of
the approaches provides a specific discussion of the
impact on MPR selection.

(b) Minimization of total energy consumption for broad-
cast traffic. The problem of minimizing the total
energy consumption for broadcast has been widely
studied. The relation with the lifetime problem is
that each broadcast reduces the sum of all battery
capacities in the network with the total energy
required for that broadcast. Cagalj et al. [3] and
Liang [10] have proven independently that the
minimum-energy broadcast problem with the
objective of minimizing the total transmitted
power is NP-hard. One of the first algorithms on
broadcasting in wireless network with usage of
the wireless multicast advantage is the Broadcast
Incremental Power algorithm (BIP) [19], with its
variants [20].

(c) Extension of network lifetime by topology control. The
idea behind topology control is to reduce the num-
ber of connections in a network, to get a subnetwork
with some given desired properties. This reduction
can be realized by lowering the transmission power
at certain nodes. The main issue is to find a topology
with less connections and consequently less trans-
mit power. The distributed algorithm XTC [18] is
an algorithm that provides such a reduction. Caline-
scu et al. [4] study an approach where the lifetime of
the network is maximized taking into account the
energy cost to maintain the topology. Closest to
the problem studied in this paper is [7], where
adjustments are made to the MPR selection algo-
rithm to increase the network lifetime.
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Fig. 1. An example network with forced and fixed nodes.

Table 1
F1ðuÞ and F�1ðuÞ for the example network in Fig. 1.

Node u F1ðuÞ F�1ðuÞ
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3. The structure of MPR-sets: forced sets and fixed
nodes

In this section we derive properties of multipoint relay
(MPR) sets. A MPR-set of a node is defined as a subset of its
neighbors which cover the complete 2-hop neighborhood
of that node, i.e., if all vertices of an MPR-set of a vertex
v forward a message received by v, the complete 2-hop
neighborhood of v receives that message.

More formally, let G ¼ ðV ; EÞ be a connected graph
(throughout this paper we assume bi-directional links),
and let NkðuÞ denote the strict k-hop neighborhood of u,
i.e., the set of nodes for which the shortest path to u has ex-
actly k edges. A subset MðuÞ � N1ðuÞ is called an MPR-set if
MðuÞ dominates N2ðuÞ, i.e., each node in N2ðuÞ has a neigh-
bor in MðuÞ. Furthermore, for a given MPR-set MðuÞ, we call
nodes from this set an MPR of node u. Finally, we denote
the set of all possible MPR-sets of u by MPRðuÞ.

To avoid circulating messages, MPRs only react on the
first instance of a message. If this first instance is received
by a neighboring node for which the given node is an MPR,
the message is retransmitted, otherwise it is ignored. Further
instances of the same message are ignored independently of
the sender of this message. This is called ‘duplicate message
detection’. To be able to implement this process, every node
maintains a duplicate set, in which all received messages are
listed. This set is used to check if an incoming message al-
ready has been processed. Consequently, the following is
possible: (1) a node receives a message from a node for which
it is not an MPR and (2) later it receives the same message
from a node for which it is an MPR. Both messages will not
be retransmitted: in case (1) because the node was not an
MPR, in case (2) because the message is in the duplicate
set. However, it is still easy to see that broadcasting via MPR’s
in the above sense reaches all possible nodes in the network.

The existing MPR selection algorithms differ in the selec-
tion process of the sets MðuÞ; u 2 V . In this section, we are
interested in the subset of nodes of a neighborhood N1ðuÞ
which belong to every possible MPR-set of u. We denote this
set by F1ðuÞ and call it the forced set of node u. Note, that
nodes in F1ðuÞ are chosen as MPR for node u by every MPR
selection algorithm. We also introduce the inverse notion
of a forced MPR-set. For a given node u 2 V , the set of nodes
that force u to be MPR, is defined as F�1ðuÞ ¼ fvju 2 F1ðvÞg.
Clearly, both definitions are related by: v 2 F1ðuÞ ()
u 2 F�1ðvÞ. In the remainder of this paper, when it is not of
any interest to the situation at hand, we simply state that v
is an MPR and omit the name of the selector node.

The following lemma gives a characterization of F�1ðuÞ
in terms of properties of the graph G.

Lemma 1. v 2 F�1ðuÞ if and only if there exists a node
v� 2 NðuÞ such that there is a unique 2-hop path from v to v�,
being the path v—u—v�. In this case, node v� belongs also to
the set F�1ðuÞ.
u1 fu2; u3g ;
u2 fu4g fu1; u4g
u3 ; fu6g
u4 fu2g fu2; u5;u6g
u5 fu4g ;
u6 fu3; u4g ;
Proof. (�) Suppose that there exists a node v� 2 NðuÞ such
that there is a unique 2-hop path from v to v�, being the
path v—u—v�. Then any subset of N1ðvÞ that dominates
N2ðvÞ must contain u in order to dominate v�. So
v 2 F�1ðuÞ, and by symmetry also v� 2 F�1ðuÞ.
()) Let v 2 F�1ðuÞ and suppose that every node
v� 2 N2ðvÞ can be reached via a 2-hop path v—w—v� with
w – u. In this case N1ðvÞ n u is a possible MPR-set of v,
which contradicts the fact that u is forced to be MPR.
Consequently, there exists a v� 2 N2ðvÞ for which the only
2-hop path between v and v� is v—u—v�. Since we have bi-
directional links, v� 2 N2ðvÞ means that also v 2 N2ðv�Þ. If
we combine this with the fact that u is the only node that
connects to both v and v�, u has to be MPR for v� in each
possible MPR selection. Thus, v� 2 F�1ðuÞ. h

An extreme case occurs, when all neighbors of a node u
force u to be MPR, i.e., F�1ðuÞ ¼ NðuÞ. In such a case we call
u a fixed MPR. An example of a fixed MPR is e.g. the center
node in a star topology. In Fig. 1 and Table 1 we present an
example graph with its forced and fixed nodes. In this
example there is only one fixed node, namely node u4.

Fixed nodes have an important impact on the network
lifetime. The following proposition states that fixed nodes
provide an upper bound to the network lifetime indepen-
dent of which nodes initiate the broadcasts. In the setting
of this paper, we assume that different broadcasts do not
interfere in time (a new broadcasts does not start before
the previous is finished). Therefore, the network lifetime
can be expressed in the number of messages that can been
broadcasted until the first node runs out of energy.

To formulate the proposition, we introduce the notion
of the Network Lifetime NLTðGÞ of a graph G. This value de-
notes the maximum number of messages which can be
broadcasted within the network represented by G, if MPR
flooding is used. Note, that in this definition the nodes
which broadcast the messages may be chosen in such a
way that a maximal lifetime is achieved.

Proposition 2. Let G ¼ ðV ; EÞ be a connected graph with a
set S – ; of fixed MPRs. Furthermore, let the initial battery
capacity of a node u be denoted by EðuÞ and the battery cost
per transmission of a message in node u 2 V be CðuÞ. Then,
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NLTðGÞ 6min
u2S

EðuÞ
CðuÞ

� �
: ð1Þ

Proof. Let u be a fixed MPR in a connected network, so u is
MPR for every neighbor. We claim that u transmits each
broadcast message exactly once. To see this, we distinguish
two cases. If u is the source, it obviously transmits the mes-
sage once. If u is not the source, the message reaches node
u via one of its neighbors. Since u is fixed MPR, the first
message that arrives at u is being relayed and the (possi-
bly) next duplicate messages are ignored. So, every broad-
cast message reduces the battery of a node u 2 S exactly
once with CðuÞ. This immediately gives the bound stated
in the proposition. h

Note, that we need the fact that u is MPR for all its
neighbors to ensure that it relays all messages it receives.
If node u would not be MPR for some neighbor v and the
first message that u receives comes from v, then u would
not relay this message due to the duplicate message detec-
tion property.

The previous proposition provides an upper bound to
the network lifetime. In general, the lifetime of the net-
work may be even smaller, if a non-fixed MPR, say w, ex-
ists with a low ratio EðwÞ

CðwÞ. However, if we assume that this
is not the case, the given bound is tight as we show
below.

Corollary 3. Let G ¼ ðV ; EÞ be a connected graph with a set
S – ; of fixed MPRs. If

min
w2V

EðwÞ
CðwÞ

� �
P min

u2S

EðuÞ
CðuÞ

� �
; ð2Þ

then NLTðGÞ ¼minu2S
EðuÞ
CðuÞ

j k
.

Proof. By the duplicate message detection property, a sin-
gle message will reduce the battery capacity of a node w by
at most CðwÞ. Therefore node w cannot run out of battery
before EðwÞ

CðwÞ broadcasts. Thus, the inequality (2) guarantees
that the bound in Proposition 2 is tight. h
4. The structure of MPR-sets in grid graphs

In this section, we apply the results of the previous sec-
tion to grid structures. Grid structures are characterized by
their regular structure and turn out to have restricted pos-
sibilities to vary their MPR-sets. Even though grid graphs in
Fig. 2. Two graph
their pure form hardly occur in practical settings, a lot of
real networks have grid-like structures or sub-structures
and, as a consequence, the results derived for pure grid
graphs occur in some ‘weaker’ sense also in these
networks.

Formally, we denote by Gm�nðrÞ a graph with m � n nodes
on grid points of a m� n grid. We assume the horizontal
and vertical distance between neighboring grid points to
be 1. Furthermore, two nodes u and v are connected by
an edge in Gm�nðrÞ if and only if dðu;vÞ 6 r, where dðu;vÞ
denotes the Euclidean distance between the nodes u and
v. Note, that n and m determine the vertex set and r deter-
mines the edge set of the graph Gm�nðrÞ. As examples (see
Fig. 2) we consider the graphs for r ¼ 1 and r ¼

ffiffiffi
2
p

. Gm�nð1Þ
has only horizontal and vertical edges and Gm�nð

ffiffiffi
2
p
Þ has

also edges between diagonal neighboring grid points. Note,
that Gm�nð1Þ is what normally is considered as a grid graph.

The grid structure of a graph induces two important
properties, which are the basic elements for the proof of
the theorem presented below:

� Translation property.

If u;v are grid points and~a is a vector such that uþ~a is
a grid point, then v þ~a is also a grid point.

� Symmetry property.

If v is a grid point, then the point obtained by mirroring
v through another grid point is again a grid point.

Note, that for the two mentioned properties we assume
that the grid structure is large enough; i.e. that the trans-
lated or mirrored point is still within the grid. Also for
the following results, we are not interested in the specific
issues at the border of the graph, but we concentrate on
central nodes. A node v 2 Gm�nðrÞ is called a j-hop central
node, with j 2 f1;2g, if v is located in the
ðm� 2jbrcÞ � ðn� 2jbrcÞ subgrid that is created by remov-
ing jbrc grid rows from the upper and lower side of the grid
and jbrc grid columns from the left and right side of the
grid. Nodes in Gm�nðrÞ that are not j-hop central
nodes, are called border nodes. Note that the j-hop neigh-
borhood of a j-hop central node v is point symmetrical in
v ; j ¼ 1;2.

Using the above terminology, we now apply the results
of the previous section to grid graphs. The following theo-
s on grids.
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rem states the rather surprising fact that, for a 2-hop cen-
tral node u in a grid graph we have F�1ðuÞ ¼ F1ðuÞ and that
F1ðuÞ is an MPR-set of u. As can be seen from Fig. 1, this is
in general not true.

To keep the paper concise, we only present a sketch of
the proof of Theorem 4. A full proof can be found in [16].

Theorem 4. For every 2-hop central node u 2 Gm�nðrÞ with
r P 1, the set F�1ðuÞ is an MPR-set of u, i.e. F�1ðuÞ 2 MPRðuÞ.
Proof. (Sketch). Let u be a 2-hop central node in Gm�nðrÞ
with r P 1.

(1) Then v 2 F�1ðuÞ if and only if the mirror image �vu

(obtained by point mirroring v in u) is the only node
in NðuÞ with a unique 2-hop path to v.

(2) Using this, it follows from the translation property
that v 2 F�1ðuÞ if and only if u 2 F�1ðvÞ, hence
F�1ðuÞ ¼ F1ðuÞ.

(3) Next a geometrical characterization of F�1ðuÞ is
given: v 2 NðuÞ is in F�1ðuÞ if and only if v is an
extreme point of the convex hull CðuÞ of NðuÞ; i.e.
the smallest convex space in which all nodes in
NðuÞ are located (a point x 2 C is called an extreme
point if it is not an interior point of any line segment
in C).

(4) Let u be a 2-hop central node in Gm�nðrÞ with r P 1.
Then for every node w 2 N2ðuÞ it holds that
w 2 C2ðuÞ. Here, C2ðuÞ is the convex hull multiplied
by a factor of 2: C2ðuÞ ¼ f2xkx 2 CðuÞg.

(5) The proof is completed by showing: all grid points in
C2ðuÞ are the grid points defined by

S
f2F�1ðuÞNðf Þ.

This can be proven by a simple geometric argu-
ment. h
5. MPR selection algorithms

The analysis in the previous section forms the funda-
ment for our main result on MPR selection algorithms for
grid graphs. Before presenting the theorem we discuss
the structure of MPR selection algorithms. MPR selection
algorithms are localized algorithms, where each node
u 2 V selects an MPR-set MðuÞ, independently from the
other nodes. Most MPR selection algorithms use the fol-
lowing structure to calculate an MPR-set MðuÞ for node u:

(1) Start with an empty MPR-set of node u, and add
nodes of NðuÞ that are the only neighbor of a node
in N2ðuÞ. So, after this step MðuÞ ¼ F1ðuÞ.

(2) While there are still uncovered nodes in N2ðuÞ, select
the nodes from NðuÞ that cover at least one uncov-
ered node and provide the highest revenue (the def-
inition of revenue depends on the MPR selection
algorithm).

(3) Optimize the MPR-set by attempting to remove a
node from MðuÞ and checking if N2ðuÞ is still domi-
nated. If this is the case, the node is removed from
MðuÞ. Nodes are removed in the order ‘lowest reve-
nue first’.
For every MPR selection algorithm, the MPR-set of node
u contains at least the forced set of node u. Consequently,
Step 1 of the three-step algorithmic procedure has to be
part of each MPR selection algorithm. A procedure to opti-
mize the selected MPR-set, as in Step 3, can also be ex-
pected to be part of an MPR selection algorithm.
However, there is some variation possible in the order
the nodes are considered for discarding. Between Step 1,
and Step 3, there has to be a Step 2, that selects non-forced
MPRs according to some optimization criteria. These crite-
ria vary per MPR selection algorithm and, therefore, this
step characterizes the MPR selection algorithm. For exam-
ple, instead of adding nodes with maximum coverage, one
can add nodes from NðuÞ in the order ‘most energy first’.

Based on the above considerations, we present our main
theorem of the study on MPR selection in graphs Gm�nðrÞ. It
states that the MPR-set for a 2-hop central node in a grid
graph is equal to its forced set.

Theorem 5. For every 2-hop central node u 2 Gm�nðrÞ with
r P 1, the set F1ðuÞ is selected as MPR-set of node u if a three
step MPR selection algorithm is used.
Proof. Since F1ðuÞ ¼ F�1ðuÞ (see the proof of Theorem 4)
and since F�1ðuÞ dominates N2ðuÞ (Theorem 4), after Step
1 the set MðuÞ dominates N2ðuÞ. Thus, Step 2 of the general
three step MPR selection algorithm is never processed.
(Step 2 of the algorithm is only processed if there are
uncovered nodes in N2ðuÞ). So there are no nodes added
to the MPR-set and therefore F1ðuÞ is selected as MPR-set
of u. Step 3 cannot remove any of the nodes in the MPR-
set as they are all forced to be MPR. h

This theorem implies that in the case of graphs of type
Gm�nðrÞ, MPR selection algorithms do not influence the life-
time of 2-hop central nodes. Since the above results mainly
are a consequence of the regular structure (translation,
symmetry) of the graphs, we may expect similar results
for all graphs with regular (sub) structures.

6. Network lifetime simulations

In this section we describe simulation results for MPR
flooding. First, we describe how the theoretical results de-
rived for grid graphs are supported by simulations. After-
wards, we complement the analysis on grid graphs by
concentrating on random graphs. For the simulations we
use three MPR selection algorithms: MinCar, MaxWill
and MaxWillMinForced. These algorithms are described
in Table 2. (For the ‘revenue’ we refer back to Section 5.)

6.1. Grid graphs

We performed simulations to verify the results for grid
graphs presented in this paper. The simulations we present
here consider grid graphs Gm�mðrÞ with m ¼ 10; . . . ;15 and
r ¼ 1;2;3 on the torus. In [16] more simulations are de-
scribed, including simulations on grid graphs on the plane.
As before, we assume the broadcasts do not interfere in
time, so that the network lifetime can be expressed as the
number of broadcasts. Each node starts with an amount



Table 2
The MPR selection algorithms considered in this paper.

MinCar Revenue is defined as ‘the number of uncovered nodes from N2ðuÞ that are covered’. This leads to the well-known algorithm
minimizing the cardinality of MPRðuÞ.

MaxWill Revenue is defined as ‘willingness’. OLSR has eight values available for the willingness (from 0 (‘‘will never”) to 7 (‘‘will
always”)). This MPR selection algorithm selects first the nodes with the highest willingness. When willingness indicates the
remaining energy of the node, this algorithm attempts to maximize the minimum energy of the network by saving energy of
nodes with a low remaining energy. In this paper we assume ‘willingness’ to be equal to the residual energy, to avoid rounding
effects.

MaxWillMinForced Revenue is defined as sðvÞ ¼ EðvÞð1� f ðvÞÞ. The term EðvÞ denotes the residual energy of a node v. This additional element aims
to further improve the network lifetime. It provides a look-ahead on the residual energy in the future, as it describes the
expectation that a node will consume much energy as it is forced to be MPR by many nodes.

Table 3
The network lifetime realized by MPR flooding with the different MPR selection algorithms for the torus variant of the grid graphs. The results are presented as
a 3-tuple ðx1; x2; x3Þ where x1 denotes the network lifetime according to algorithm MinCar, x2 according to MaxWill and x3 according to MaxWillMinForced.

Range Grid size

10� 10 11� 11 12� 12 13� 13 14� 14 15� 15

1 (20,20,20) (20,20,20) (20,20,20) (20,20,20) (20,20,20) (20,20,20)
2 (80,80,80) (36,36,36) (76,76,76) (50,50,50) (68,68,68) (39,39,39)
3 (77,87,87) (49,45,45) (45,36,36) (43,43,43) (49,49,49) (43,43,43)
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of energy sufficient for 20 broadcasts. For each algorithm
the same, randomly chosen, sendpattern is used. For the
MPR selection algorithms: MinCar, MaxWill and MaxWill-
MinForced the network lifetime is presented in Table 3.

The results of the simulations in Table 3 and the addi-
tional simulations in [16] show that: (1) on the torus, for
grid graphs Gm�mðrÞ with r ‘small’ with respect to
mðr < m=4) (corresponding to the 2-hop central node
hypothesis in Theorem 4), the three considered MPR selec-
tion algorithms give exactly the same lifetimes. (2) When
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Fig. 3. The effect of the Maximum Forcedness Ratio on the performance differen
the MinCar algorithm.
r ¼ 1 for both torus and plane all algorithms yield exactly
the same lifetime. (3) On the plane (see [16]), for grid
graphs Gm�mðrÞ, with r > 1 some border effects occur,
resulting in different network lifetimes for the three
algorithms.

These observations coincide with the theoretical con-
siderations in Theorem 4. Results (1) and (2) directly fol-
low, where result (3) can be explained from the fact that
not all nodes are 2-hop central nodes, and therefore the
algorithms have some freedom in choice.
.6 0.7 0.8 0.9 1
cedness Ratio
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6.2. Random graphs

In Section 3 we have shown that fixed nodes provide an
upper bound to the network lifetime, independent of the
MPR selection algorithms. We therefore are interested in
the impact of ‘almost’ fixed nodes on the network lifetime
performances of different MPR selection algorithms. To
that order, we introduce the Forcedness Ratio to define
‘how fixed’ a node is. For a node u the Forcedness Ratio
f ðuÞ is defined as the fraction of nodes in N1ðuÞ that is
forced to choose u as MPR,

f ðuÞ ¼ jF
�1ðuÞj
jN1ðuÞj

:

Obviously, we have 0 6 f ðuÞ 6 1 and f ðuÞ ¼ 1 if and only
if node u is fixed. If f ðuÞ is close to 1, node u is forced to be
MPR by many of its neighbors. We define
MFR :¼maxu2V f ðuÞ. Evidently, MFR ¼ 1 if there is a fixed
node in the network. Consequently, when MFR is close to
1, we expect the MPR selection algorithms too have little
influence on the network lifetime.

To analyze the relation between the MFR and the net-
work lifetime realized by different MPR selection algo-
Table 4
The mean and standard deviation of the Performance Ratio concerning MaxWill a

Maximum Forcedness Ratio intervals

½0:2;0:3Þ ½0:3; 0:4Þ ½0:4;0:5Þ ½0:5; 0:6Þ

Mean 1.89 1.71 1.52 1.29
SD 0.32 0.39 0.33 0.22
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Fig. 4. The effect of the Maximum Forcedness Ratio on the performance differe
algorithm and the MinCar algorithm.
rithms, we generated a set of networks with a wide
range of MFRs. Based on preliminary simulations, we
choose to place 150 nodes in a square field of
1000� 1000 units, while selecting for each simulation a
transmission range from the set [200,250,300,350] and
assigning this range to all nodes. For every transmission
range we created 200 networks, resulting in 800 networks
in total.

In each of these networks we initiated broadcast mes-
sages according to the same sendpattern. The messages
are broadcasted by MPR flooding, where the MPRs are se-
lected by the different algorithms. We discuss them
separately.

6.2.1. MaxWill versus MinCar
The results of the simulations are presented in Fig. 3.

The Performance Ratio in this graph is defined as the net-
work lifetime using MaxWill divided by the network life-
time using MinCar.

Analyzing the graph, we see that when the Maximum
Forcedness Ratio approaches 1 the difference in network
lifetimes become smaller. This can also be concluded
from Table 4 in which the mean and the standard devia-
tion of the Performance Ratio is listed per intervals of
nd MinCar per interval of the Maximum Forcedness Ratios.

½0:6;0:7Þ ½0:7;0:8Þ ½0:8; 0:9Þ ½0:9;1Þ

1.19 1.10 1.05 1.02
0.15 0.11 0.06 0.03

.6 0.7 0.8 0.9 1
cedness Ratio

nces using MPR flooding with MPRs selected by the MaxWillMinForced



Table 5
The mean and standard deviation of the Performance Ratio concerning MaxWillMinForced and MinCar per interval of the Maximum Forcedness Ratios.

Maximum Forcedness Ratio intervals

½0:2;0:3Þ ½0:3; 0:4Þ ½0:4;0:5Þ ½0:5;0:6Þ ½0:6; 0:7Þ ½0:7;0:8Þ ½0:8; 0:9Þ ½0:9;1Þ

Mean 1.91 1.74 1.51 1.29 1.18 1.10 1.05 1.01
SD 0.41 0.40 0.34 0.22 0.17 0.11 0.07 0.03
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the Maximum Forcedness Ratio. The results support the
expected effect that the ‘more fixed’ the ‘most fixed’ node
is, the smaller the performance differences are. If the Max-
imum Forcedness Ratio is smaller, also bigger perfor-
mance differences occur. The graph also shows that in
almost every simulation the network lifetime of MPR
flooding using MaxWill is larger than the network lifetime
of MPR flooding using MinCar.
6.2.2. MaxWillMinForced versus MinCar
The relation between the performances of MPR flooding

using MaxWillMinForced and MinCar to select MPRs are
shown in Fig. 4 and Table 5. In the graph the Performance
Ratio is defined as the network lifetime using the Max-
WillMinForced MPR selection algorithm divided by the
network lifetime using the MinCar algorithm. There are
some similarities between this graph and the correspond-
ing table and the ones discussed in the previous section,
which is not surprising, as the MaxWillMinForced algo-
rithm is based on MaxWill and only adds a sort of look-
ahead for the energy consumption. So, the performances
vary less if the Maximum Forcedness Ratio approaches
one and the MaxWillMinForced algorithm is almost in
every situation better than the MinCar.
6.2.3. MaxWillMinForced versus MaxWill
The performance comparison between the MaxWillM-

inForced and MaxWill MPR selection algorithms does not
yield a clear winner. The absence of a winner is underlined
by the mean of the Performance Ratio, which equals
1.0023. When we compare MaxWillMinForced with Max-
Will we see that for 424 of the 800 simulations the selec-
tion algorithms lead to exactly the same network
lifetime. MaxWillMinForced beats MaxWill in 203 simula-
tions, but on the other hand, MaxWill beats MaxWillMin-
Forced in 173 simulations.
7. Conclusions

We presented an analysis of MPR flooding by looking
separately at MPRs, MPR flooding and MPR selection. By
this, we are able to point out the effects of the specific ele-
ments of MPR flooding. Our conclusions are that for gen-
eral graphs fixed nodes provide an upper bound to the
network lifetime, independent of the MPR selection
algorithm.

For grid graphs all MPR selection algorithms provide the
same MPR-set for 2-hop central nodes, namely the set of
forced nodes that is selected in the first step of a three step
MPR selection algorithm. Since this result is a consequence
of the regular structure (translation, symmetry) of the
graphs, we may expect similar results for all graphs with
regular (sub) structures.

For random graphs, the Maximum Forcedness Ratio
parameter, that we introduce in this paper, seems a good
descriptor of the degree in which MPR selection algorithms
yield different network lifetimes. In random graphs with
an MFR close to 1 there is less difference between MPR
selection algorithms than in graphs with MFR close to 0.
Therefore, it is not worthwhile to investigate new MPR
selection algorithms if the networks under consideration
have an MFR close to 1. More generally, all computational
studies on MPR selection should take into account the MFR
to ensure that no wrong conclusions are drawn from the
achieved results.

As a byproduct of the simulations we got some insight
in the effectiveness of some MPR selection algorithms for
random networks. MPR flooding with MPR-sets selected
by MaxWill or MaxWillMinForced leads to a significantly
longer network lifetime compared to MPR flooding with
the MPR-sets selected by MinCar. However, the compari-
son between MaxWill and MaxWillMinForced does not
yield a clear winner, even if the networks have a low
MFR. Combined with the fact that MaxWillMinForced is
more difficult to implement, MaxWill therefore seems a
good choice to implement in OLSR networks where life-
time of the network is important.

While in this paper we focus on mechanisms for homo-
geneous broadcast traffic, further research is needed to
verify if similar conclusions hold for heterogeneous unicast
traffic.
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