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Abstract. To increase modularity, many aspect-oriented programming
languages provide a mechanism based on implicit invocation: An aspect
can influence runtime behavior of other modules without the need that
these modules refer to the aspect. Recent studies show that a significant
part of reported bugs in aspect-oriented programs are caused exactly
by this implicitness. These bugs are difficult to detect, because aspect-
oriented source code elements and their locations are transformed or even
lost after compilation. We investigate four dedicated fault models and
identify 11 tasks that a debugger should be able to perform for detecting
aspect-orientation-specific faults. We show that existing debuggers are
not powerful enough to support all identified tasks, because the aspect-
oriented abstractions are lost after compilation.

This paper describes the design and implementation of a debugger
for aspect-oriented languages using a dedicated intermediate represen-
tation preserving the abstraction level of aspect-oriented source code.
This is based on a model of the more general formalism of advanced
dispatching. Based on this model, we implement a user interface with
functionalities supporting the identified tasks, such as visualizing point-
cut evaluation and program composition. Due to the generality of our
intermediate representation, our debugger can be used for a wide range of
programming languages. To account for the syntactic differences among
these languages, we allow language designers to customize the textual
representations on the user interface.

Keywords: Debugger, AOP, visualization, advanced-dispatching, fine-
grained intermediate representation, customization.

1 Introduction

Aspect-oriented programming-(AOP) allows programmers to modularize con-
cerns which would be crosscutting in object-oriented programs into separate
aspects. An aspect can define functionality and when it must be executed, i.e.,
other modules do not have to explicitly call this functionality. Due to this im-
plicitness, it is not always obvious where and in which ways aspects apply during
the program execution. A recent study carried out by Ferrari et al. [18] focuses
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on the fault-proneness in evolving aspect-oriented (AO) programs. They inves-
tigated the AO versions of three medium-sized applications. It shows that 42
out of 104 reported AOP-related faults were due to the lack of awareness of
interactions between aspects and other modules.

For locating faults in AO programs, a programmer can inspect the source
code and browse static relationships. This is supported by tools like the As-
pectJ Development Tools (AJDT)1 and Asbro [25]. To detect a fault in this
way, programmers are required to inspect multiple files and mentally construct
the dynamic program composition, which is a tedious and time-consuming task.
Furthermore, connections between aspects and other modules are often based on
runtime states which cannot be presented by static tools. Debuggers are, thus,
needed for inspecting to the runtime state to help programmers understanding
the program behavior and eventually finding a fault.

AOP languages are nowadays compiled to the intermediate representation
(IR) of an established non-AO language; this usually entails transforming code
already provided in that IR [5], a compilation strategy often called weaving. A
typical example is AspectJ which is compiled to Java bytecode.

Because of that approach, it is possible to use an existing debugger for the
underlying non-AO language, like the Java debugger in the case of AspectJ. But
a consequence of that weaving approach is that the AO source code is compiled
to an IR whose abstractions reflect the module concepts of the so-called base
language, but not those of the AOP language. Therefore, what is inspected in
the described approach is actually the woven and transformed code instead of
the source code.

Other emerging languages with advanced-dispatching (AD) concepts, such as
predicate dispatching or many domain-specific languages, share this implemen-
tation technique and its limitations. Nevertheless, the identified problems are
most significant in AOP languages with their implicit invocation. This is why
we focus our study of the state-of-the-art on the wide field of AOP languages,
while our solution is applicable more generally to AD languages.

Multiple authors discuss AOP debuggers to provide information closer to the
source code, such as the composite source code in Wicca [16], the aspect-aware
breakpoint model in AODA [15], or the identified AOP activities in TOD [26].
Nevertheless, all of these debuggers use only the woven IR of the underlying
language. AOP-specific abstractions, such as aspect-precedence declarations,
and their locations in the source code are partially or even entirely lost after
compilation.

While, e.g., the AspectJ language provides runtime-visible annotations that
can represent all AO source constructs, these annotations are not suitable to
alleviate the above-mentioned limitations. Also in the presence of these annota-
tions, bytecode is woven and it is not always possible to retrieve the annotations
that have influenced certain instructions during debugging.

In this paper, we introduce our concept and implementation of a dedicated
debugger for AO programs which is able to support locating all types of

1 See http://www.eclipse.org/ajdt/

http://www.eclipse.org/ajdt/
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dynamic AO-related faults identified in previous research, such as that of Ferrari,
mentioned above. Our debugger is aware of AO concepts and presents runtime
states in terms of source-level abstractions, e.g., pointcuts and advices. It allows
programmers to perform various tasks specific to debugging AO constructs. Ex-
amples of such tasks are inspecting an aspect-aware call stack, locating AO con-
structs in source code, excluding AO definitions at runtime, etc. Our debugger
is integrated into Eclipse and provides visualizations illustrating, e.g., pointcut
evaluation and advice composition.

Our implementation is independent of a concrete source language and provides
a generic, default visualization for all AO constructs. While being generic, it still
matches the structure of the debugged program; most importantly, all source-
level definitions and their dependencies are explicit in our model. To make the
experience of using our debugger even more integrated with the source language
used, we offer an extension point for customizing the textual representation in
the debugger.

This paper extends our AOSD’12 publication [31]; the sections 5.5—discussing
a new breakpoint view—and 6—showing how to customize the visualization in
our debugger to specific languages—are completely new. Besides, we now discuss
in detail the risks involved with “excluding and adding AO definitions” and
we have identified an additional task to cope with the risks (section 2.2); this
additional task is also considered in our infrastructure (section 4.2) and our
user interface (sections 5.1 and 5.2). We have extended the discussion of related
work in sections 2.3 and 7 and have updated the introduction and conclusion
according to our changes.

Section 2 describes how we generate requirements from existing AOP fault
models. Section 3 introduces a dedicated advanced-dispatching meta model and
how we improve the compilation process to preserve advanced-dispatching in-
formation. Sections 4 and 5 present the underlying debugging model and the
user interface of our debugger. Section 6 shows how to extend our debugger to
customize the visualization in favor of a specific language. Sections 7 and 8 list
related works and conclude the paper respectively.

2 Problem Analysis and Requirements

Recently, fault models for AOP languages have been investigated with the goal
to systematically generate tests that execute all potentially faulting program el-
ements. We can use the results of these studies to derive the capabilities required
of a debugger to locate all faults in a program related to (dynamic) features of
aspect-orientation. In the following subsections, we summarize the work on AO
fault models, discuss tasks required to localize the faults, evaluate the capabil-
ities of existing debuggers, and formulate requirements for a debugger with full
support for AOP.
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2.1 AO Fault Models

We have investigated four fault models—which cover pointcut-advice and inter-
type declarations—proposed in the literature and summarize them in table 1.
As inter-type declarations change the static structure of a program, identifying
faults in them requires different kinds of tools than identifying faults in dynamic
features. We focus our study on the dynamic features because the static code
inspection tools offered by modern IDEs such the AJDT are already usually
sufficient for localizing these faults. For example, a wrongly declared inheritance
(declare parents) in an aspect can be detected from the editor or the type hier-
archy view on Eclipse.

In table 1, the first column shows the fault model by Alexander et al. [2] which
contains examples of AOP-specific faults, such as incorrect pointcut strength.
Ceccato et al. [23] extend this model with three types concerning exceptional
control flow and inter-type declarations (ITD). Ferrari et al. [19] proposed a fault
model, presented in the second column, reflecting where a fault originates, i.e.,
in pointcuts, advices, ITDs, or the base program. Column three shows the fault
model of Baekken [6] which follows a similar approach; he focuses on AspectJ [22]
programs and systematically considers its syntactic elements as potential fault
origins. In the last column, we define a category name summarizing the fault
kinds described in literature and presented in the same row.

2.2 Detecting Faults

When a programmer encounters an error during the execution of an AspectJ
program, this can be caused by a fault in one of the categories presented in the
previous sub-section. But the observed error does not yet tell the programmer
what the actual fault is. To figure this out, a debugger may be used. In the
following, we discuss tasks to be provided by an ideal debugger for identifying a
fault in each of the fault categories. We tag these tasks in the format “T#”.

If a pointcut-advice definition is faulty, the programmer needs to (T1) set a
breakpoint at the join point2, rerun the program, analyze program states, and
eventually (T2) locate faulty constructs.

Detecting Pointcut-Related Faults. If the programmer finds out that an
advice is unexpectedly executed or not executed, she knows that the pointcut
evaluated to the wrong value at one join point. To understand the exact cause
why the pointcut matches or fails to match, the programmer needs to further
(T3) evaluate sub-expressions of this pointcut and to check the structure of the
pointcut. As the right-most column in table 1 shows, possible causes are in-
correct pointcut composition, incorrect pattern, incorrect designator, or incorrect
context.

2 In this paper, we use the term join point to refer to a code location (often also called
join-point shadow) and to its execution.
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Table 1. A systematic and comprehensive fault model for aspect-oriented programs

Alexander et al.
(extended by
Ceccato et al.)

Ferrari et al. Baekken Category

Advice bound to
incorrect pointcut

Incorrect or missing
composition operator;
Inappropriate or
missing pointcut
reference

Incorrect
pointcut
composition

Incorrect strength
in pointcut
patterns

Incorrect matching
based on exception
throwing patterns;
Base program does
not offer required
join points

Incorrect method/
constructor/ field/
type/ modifier/
identifier/ parameter/
annotation pattern

Incorrect
pattern

Incorrect use of
primitive pointcut
designators

Mix up pointcuts
method call and
execution, object
construction and
initialization, cflow
and cflowbelow, this
and target

Incorrect
designator

Incorrect matching
based on dynamic
values and events

Incorrect arguments to
pointcuts this/ target/
args/ if/ within/
withincode/ cflow/
cflowbelow

Incorrect
Context

Incorrect aspect
precedence

Incorrect advice type
specification

Incorrect advice type
Incorrect
composition
control

Incorrect changes
in control
dependencies;
Incorrect changes
in exceptional
control flow
(extended)

Incorrect control or
data flow due to
execution of the
original join point;
Infinite loops
resulting from
interactions among
advices

Incorrect or missing
position of proceed;
Incorrect arguments
to proceed

Incorrect
flow change

Failure to establish
expected
postconditions;
Failure to preserve
state invariants

Incorrect advice logic,
violating invariants and
failing to establish
expected postconditions

Violated
requirement
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Incorrect Pointcut Composition. First, the programmer can consider the correct-
ness of the pointcut structure which may include references to named pointcuts
and composition operators. To inspect the actual pointcut expression that is
evaluated, pointcut references must be (T4) substituted with their definition.
To check the composition operators &&, ||, and !, the programmer needs to (T3)
determine the evaluation result of sub-expressions, perform further evaluations
on them and check whether the structure violates the intention.

Incorrect Pattern. From the above inspection, it may turn out that a pointcut
designator like call or get, which defines a pattern matching a signature, is wrong.
Patterns are composed of sub-patterns; thus, the programmer needs to (T5)
evaluate each sub-pattern to find the actual fault. As an example, consider the
AspectJ pattern ∗ Customer.payFor(∗); it matches any method named payFor in
the Customer class that takes one argument with any type and returns any type.
When debugging the evaluation of that pattern at a join point with the signature
void Customer.payFor(int, boolean), a programmer should be able to determine that
the parameters sub-pattern causes the pattern to fail.

Incorrect Designator. The programmer may also determine the fault in a point-
cut designator specifying a dynamic condition instead of a pattern, like target
constraining the type of a runtime value, or cflow specifying the currently exe-
cuting methods. Then the programmer needs to (T6) check the runtime values
on which the evaluation of that pointcut designator depends; or she must (T7)
inspect the current control flow, i.e., the join points which are currently executing
on the stack.

Incorrect Context. When a pointcut designator depends on a runtime value and
the evaluation result is unexpected, the programmer needs to (T6) inspect the
context value to which the designator refers and (T3) evaluate the restriction
on this value specified by the pointcut designator. As an example, consider the
pointcut sub-expression target(Customer); the callee object is required to be an
instance of the type Customer. The programmer must be able to inspect the value
and type of the callee object to determine if the pointcut is specified wrongly or
the program uses the wrong object.

Detecting Advice-Related Faults. An error can also occur when an advice
is neither missing nor redundant at a join point, but the advice does not be-
have as expected. Possible faults leading to such an error are incorrect program
composition, incorrect flow change, and violated requirements.

Incorrect Program Composition. There are four types of composition control in
AspectJ influencing the execution order of advices at shared join points: advice-
type specification, precedence declaration, lexical order, and aspect inheritance.
Advice-type specification, e.g., the keywords before or after, define the order
between advices relative to the join point. Precedence declaration defines the
partial order between different aspects. The precedence of advices defined in
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the same aspect is determined by their lexical order. The aspect inheritance
implies that advices in the inheriting aspect precede those in the inherited aspect.

To detect incorrect program composition, a programmer needs to (T8) inspect
how programs are composed at a join point, be able to (T9) reason about the
composition controls affecting that composition, and (T2) locate the definition
of the composition controls.

Incorrect Flow Change. The execution of an advice at a join point may alter the
control flow or the data flow at that join point. Take the around advice as an
example: It can skip the join point execution or modify runtime values from the
dynamic context of the join point by invoking proceed.

To determine which advice is responsible for the wrong control or data flow,
the programmer needs to (T7) inspect the stack of executing join points includ-
ing (T8) the composition of advices applicable at each join point. To observe
data flow, she needs to (T6) inspect the runtime values.

Violated Requirements. Advices may also violate requirements, like post condi-
tions or state invariants, of the modules they apply to. To localize such faults,
the programmer may need to (T6) inspect runtime values. Another technique
often used for localizing faults is to run the program with one or more modules
disabled; if the error disappears, the fault most likely lies in the disabled module.
To be able to apply this technique, the programmer must be allowed to (T10)
disable single pointcut-advice pairs, ideally at runtime.

Dynamic (de-)activation of aspects or advices has the risk of leaving the aspect
in a wrong state, e.g., when join points at which the aspect performs an initial-
ization have already passed. This can happen when (de-)activating pointcut-
advice manually or programmatically in the source code3. (De-)activation can
also be performed statically, e.g., in AspectJ, all declared pointcut-advice pairs
are deployed before the program is executed. Different (de-)activations may be
interleaved and it is confusing to observe the current (de-)activation state with-
out knowing the history. Therefore, programmers must be able to (T11) inspect
the history of (de-)activation. In this way, when a wrong behavior of an advice is
observed during debugging, programmers can (at least in some cases) recognize
if this is due to a fault in the program or due to wrong usage of the debugger.

2.3 State-of-the-Art in Debugging AO Programs

Table 2 summarizes the required debugging tasks identified in the previous sub-
sections and gives them short names. In the following we discuss how these tasks
are supported by the traditional Java Debugger and by AOP debuggers proposed
in the literature.

The Java debugger is the most commonly used tool for debugging AspectJ
programs which are compiled to pure Java bytecode. Some elements of the as-
pect definition are partially evaluated during compilation and drive a series of

3 For example, the languages JAsCo or CaesarJ support programmatic, dynamic de-
ployment; thus, not all advices are deployed at all times.
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Table 2. Tasks that an ideal AOP debugger should perform

Tag Task Name

T1 Setting AO breakpoints
T2 Locating AO constructs
T3 Evaluating pointcut sub-expressions
T4 Flattening pointcut references
T5 Evaluating pattern sub-expressions
T6 Inspecting runtime values
T7 Inspecting AO-conforming stack traces
T8 Inspecting program compositions
T9 Inspecting precedence dependencies
T10 (De-)activating AO definitions
T11 Inspecting the history of (de-)activation

code transformations applied to the aspect and non-aspect modules. Thus, there
is no one-to-one mapping between elements in the source code and in the byte-
code; because of this and due to limitations of the Java bytecode format, the
contained debugging information is not sufficient to store source location infor-
mation about all aspect-oriented elements that are compiled. Thus, tasks are
either only partially supported (T1, T6, T7) or not at all (T2, T3, T4, T5, T8,
T9, T10, T11). For example, the stack trace (T7) becomes misleading when it
involves the execution of advices. A stack frame representing the execution of
an advice indicates that this execution is invoked by the method represented by
the previous frame. However, this method does not contain this invocation but
the advice is implicitly triggered by a pointcut defined in another piece of code.

The Aspect-Oriented Debugging Architecture (AODA) by De Borger et al. [15]
is built based on the debugging interface AJDI which restores some source-
level abstractions from the bytecode. Entities in the debugging interface model
reflect many AspectJ concepts, such as join points, advices, etc. The debugging
interface allows to query advices applied at a join point, the stack trace with
advice execution history, and so on. Besides, the AODA contains an aspect-
aware breakpoint model which allows programmers to set a breakpoint to aspect-
related operations like the instantiation of an aspect. However, their model is not
fine-grained enough; it lacks entities which cannot be represented in a non-AO
IR like patterns, or precedence declarations. Thus, tasks T2, T3, T6 are partially
supported and T5, T9 are not supported by AODA. Due to the compile-time
weaving strategy fostered by AODA, it is impossible to exclude AO definitions
at runtime (T10, T11).

The AWESOMEDEBUGGER [3] is a command-line debugger for debugging ap-
plications written in multiple domain-specific aspect languages. It uses MDDI
which is a debug interface extending AJDI with inspection facilities that consider
specifications of inter-language composition. The specification includes types of
join points that a language can intercept, whether a join point is advisable, and
how a language affects a join point. This debugger extends the abilities of AODA
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in handling multiple languages instead of providing a finer-grained debugging
model. Therefore, the AWESOMEDEBUGGER has the same characteristics with
respect to our tasks as identified for AODA above.

Wicca [16] is a dynamic AOP system for C# applications that performs source
weaving at runtime. For debugging purposes, the woven source code can be
inspected, e.g., checking if programs are composed correctly. Wicca also allows
to enable/disable aspects at runtime. Though Wicca fully supports T8, and T10,
it does not support our other identified tasks because it debugs the woven code
and the history of (un-)activation is not tracked. Although the presented C#
source code is more easy to understand than woven bytecode, which is available
in other systems, it does not contain the AO source-level abstractions anymore.

Pothier and Tanter [26] implemented an AO debugger based on an open source
omniscient Java debugger called TOD. TOD records all events that occur dur-
ing the execution of a program and the complete history can be inspected and
queried offline after the execution. Programmers can choose to present all, part
or none of the aspect activities carried out during runtime. It can show the ex-
ecution history of join points related to particular AO elements, e.g., where a
pointcut matched or did not match. However, the granularity of such elements
in TOD is as coarse as in the other presented approaches for debugging woven
code. Therefore, TOD only partially supports T1, T2, T6, T7, T8, and it does
not support the other tasks at all.

2.4 Requirements for an AOP Debugger

Based on the above observations and discussions, we formulate requirements for
a dynamic debugger dedicated to AO programs. In the following four sections,
we describe how we achieve each of these.

– An intermediate representation must be provided that preserves all AO con-
structs found in the source code as well as their source locations. Since many
AO languages greatly overlap in their execution semantics, an IR suitable
for several languages is desirable.

– A fine-grained debugging interface must be provided to allow observation of
and interaction with the execution at the granularity of AO abstractions.
The past interactions must be transparent to the users.

– The debugging infrastructure should be integrated with an integrated devel-
opment environment (IDE) to provide a dedicated user interface on which
all tasks listed in table 2 can be performed.

– The information presented to the developer in the user interface should have
a representation specific to the concretely used AO language.

3 Debugging Information

We chose to base the implementation of the debugger on our previous work,
a generic implementation architecture of so-called advanced-dispatching (AD)
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languages which includes AOP languages. This makes our debugger applicable to
a wider range of programming languages than AOP. One of the main components
of this ALIA4J architecture4 [9] is a meta-model of AD declarations, called
LIAM 5. When implementing, e.g., AspectJ in ALIA4J, an advanced-dispatching
declaration corresponds to a pointcut-advice definition. A model instantiating
the LIAM meta-model is an intermediate representation (IR) of the AD program
elements.

For our debugger, we have extended LIAM to store detailed source-location in-
formation with every element in the IR. Since ALIA4J keeps the IR as first-class
objects at runtime, it can be accessed by our debugger to observe the program
execution in an AD-specific way. This fact as well as the declarative and fine-
grained nature of LIAM facilitate the support for all identified debugging tasks.
We cannot claim that the identified tasks are also fully sufficient when debug-
ging programs written in AD languages which are not AO, since a systematic
study of respective fault models is currently missing. Nevertheless, our approach
supports at least debugging such language concepts that overlap with AOP.

3.1 Advanced-Dispatching Intermediate Representation

The meta-model, LIAM, defines categories of language concepts concerned with
(implicit) invocation and how these concepts relate; e.g., a dispatch may be
ruled by atomic predicates which depend on values in the dynamic context of
the dispatch. LIAM has to be refined with the concrete language concepts like
the cflow or target pointcut designators.

Attachment

Action Specialization ScheduleInfo

Context Predicate Pattern

AtomicPredicate

PrecedenceRuleCompositionRule

2..*

1..*

* 0..1

*

*

0..1

0..2

Fig. 1. The LIAM meta-model of advanced dispatching

Figure 1 shows the meta-entities of LIAM, discussed in detail by Bockisch
et al. [8,10], which capture the core concepts underlying the various dispatch-

4 The Advanced-dispatching Language Implementation Architecture for Java. See
http://www.alia4j.org

5 The Language-Independent Advanced-dispatching Meta-model. See
http://www.alia4j.org/alia4j-liam/

http://www.alia4j.org
http://www.alia4j.org/alia4j-liam/
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ing mechanisms. The meta-entities Action, AtomicPredicate, and Context can
be refined to concrete concepts; we provide refinements for several languages,
including AspectJ [9].

An Attachment corresponds to a unit of dispatch declaration, roughly cor-
responding to a pointcut-advice pair in AspectJ. Action specifies functionality
that may be executed as the result of dispatch (e.g., the body of an advice).
Specialization defines static and dynamic properties of state on which dispatch
depends. Pattern specifies syntactic and lexical properties of the dispatch site.
Predicate and Atomic Predicate entities model conditions on the dynamic state
a dispatch depends on. Context entities model access to values like the called
object or argument values. The Schedule Information models the time relative
to a join point when the action should be executed, i.e., before, after, or around.
Finally, Precedence Rule models partial ordering of actions, and Composition
Rule models the applicability of actions at a shared join point; for example,
overriding can be expressed by this.

3.2 Compilation Process

In a traditional compilation process, the declarations of AD—such as pointcuts
and advices—written in the source code is discarded after transformations like
weaving. In result, one source file may be compiled to several compiled files, and
one compiled file may originate from several source files. The traditional debug-
ger assumes that there is a one-to-one mapping between source files and compiled
files. Therefore, it sometimes shows incorrect information in AD programs.

Figure 2 shows the compilation strategy used in our approach. Compared to
the traditional compilation, there are two differences. First, each source file is
compiled to a separate IR file. Thus, the one-to-one relationship is kept. Second,
AD declarations written in the source code are stored in a separate AD IR file.

Following the bold directed lines, AD declarations are collected from the
source code and then compiled into the AD IR file. At runtime, the AD IR
file is interpreted and the program is executed taking the aspect definitions into
account. The AD IR can be in any form, e.g., text or binary. We chose to use
XML in our implementation.

This approach requires a specific compiler to generate the IR. In the context
of this paper, we just elaborate on our implementation of an AspectJ compiler
based on the abc compiler [5]. As an example of the compilation, consider the
AspectJ code in listing 1. After compilation, it is transformed into an Attachment
XML element presented in listing 2.

There is a many-to-many relationship between source language constructs
and LIAM entities. For example, in listing 1, the pointcut designator target(b)

is transformed to two LIAM entities, because it plays two roles: It specifies a
dynamic condition under which the pointcut matches a join point (represented
by the AtomicPredicate in lines 4–12, listing 2), as well as a value that is exposed
to associated advices (represented by the Context in lines 13–15). The pointcut
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Runtime 
Debugger

Byte
Code

XML

compile compile

import
load

reflectAspects

AD 
IR

AD 
programs

Fig. 2. Debugging information life cycle

designator, and thus also the atomic predicate, additionally depends on the
declaration of the formal advice parameter Base b: The callee object must be an
instance of type Base. Thus, the atomic predicate is influenced by two places in
the source code and the locations of both places are stored in our IR, as shown
on lines 6 and 10 in listing 2.

1 aspect Azpect {
2 before(Base b) : call(∗ Base.foo()) && target(b) { ... }
3 }

Listing 1. An aspect example in AspectJ

1 <attachment language=”AspectJ”>
2 <specialization>
3 <pattern> ... </pattern>
4 <atomicPredicate type=”InstanceofPredicate”>
5 <requiredTypeName
6 file=”Azpect.aj” line=”2” column=”9” endLine=”2” endColumn=”13”>
7 test.Base
8 </requiredTypeName>
9 <context type=”CalleeContext”

10 file=”Azpect.aj” line=”2” column=”25” endLine=”2” endColumn=”50”>
11 </context>
12 </atomicPredicate>
13 <context type=”CalleeContext”
14 file=”Azpect.aj” line=”2” column=”25” endLine=”2” endColumn=”50”>
15 </context>
16 </specialization>
17 <action> ... </action>
18 <scheduleInfo> ... </scheduleInfo>
19 </attachment>

Listing 2. XML-based AO intermediate representation
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Besides <attachment> elements for pointcut-advice pairs, the AD IR also
contains two more types of elements. The <precedence> element corresponds to
the statement declare precedence and records its location in the source code. The
<inheritance> element corresponds to aspect inheritance and it takes the line,
where the extends clauses is declared, as the source location.

With our intermediate representation (IR) presented above, we support the
task locating constructs (T2) presented in section 2.3. Besides locations, we also
store the source language in the IR (line 1); in case of multi-language projects,
this information can be used to choose appropriate visualizations in the user
interface (see section 6 for details). All elements nested in the same attachment
share the same language attribute. The usage of the language attribute is de-
scribed in section 6.

4 Infrastructure of Our Debugger

Extending figure 2, the overall structure of our debugger is presented in figure
3. It consists of a debuggee side and a debugger side; both sides communi-
cate via the Java Platform Debugger Architecture (JPDA)6 and the Advanced-
Dispatching language Debugging Wire Protocol (ADDWP). The debuggee-side
virtual machine runs the debuggee program and sends debugging data and events
via the two channels. Our user interface (debugger side) presents this informa-
tion and provides controls to the programmer to interact with the debuggee.
These controls are implemented by using the Java Debug Interface (JDI) and
the Advanced-Dispatching Debug Interface (ADDI). As our debug interface is
based on ALIA4J’s meta-model of advanced dispatching, we reuse that termi-
nology in our infrastructure, even though our case study is based on AspectJ.

The ADDWP is implemented as two agents running on the debugger and
debuggee sides, respectively. It has a similar structure and working mechanism
as the JDWP but sends and receives AD-specific information. The following sub-
sections describe the execution environment and the ADDI in detail. The UI is
explained in the next section.

4.1 Debuggee Side

In the ALIA4J approach, an execution environment is an extension to a Java
Virtual Machine (JVM). The extension allows deploying and undeploying LIAM
dispatch declarations and derives an execution strategy per call site that considers
all dispatch declarations present in the program.

The execution strategy consists of the so-called dispatch function (for details
see Sewe et al. [28]) that characterizes which actions should be executed as the
result of the dispatch in a given program state. This function is represented as
a binary decision diagram (BDD) [12], where the inner nodes are the atomic
predicates used in the predicate definitions and the leaf nodes are labeled with

6 See http://java.sun.com/javase/technologies/core/toolsapis/jpda/

http://java.sun.com/javase/technologies/core/toolsapis/jpda/
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Fig. 3. The architecture of our AD debugger

the actions to be executed. For each possible result of dispatch, the BDD has one
leaf node, representing an alternative result of the dispatch, i.e., which actions
to execute and in which order.

Our current implementation of the debugger is based on the ALIA4J NOIRIn
execution environment [9], which is implemented as a Java 6 agent intercepting
the execution of the base program to perform the dispatch. NOIRIn can integrate
with any standard Java 6 JVM, therefore our approach does not require using a
custom virtual machine.

4.2 Advanced-Dispatching Debug Interface

The Advanced-Dispatching Debug Interface (ADDI) is the debugger-side inter-
face of the debugging infrastructure. It provides various functionalities to per-
form the tasks identified in section 2.3, and implements them in collaboration
with the debuggee virtual machine. A simplified UML class diagram of ADDI is
presented in figure 4.

The Java Debug Interface (JDI) provides mirrors for every runtime entity in
a Java program, like objects, classes, or threads. The ADDI extends the JDI by
additionally providing mirrors for the LIAM entities, which exist in the debuggee
virtual machine and represent the pointcut-advice definitions. Since LIAM en-
tities are plain Java objects, the ADDI mirrors are implemented by aggregating
the JDI mirrors of those objects.

ADDI’s breakpoints do not wrap the breakpoint event provided by the JDI.
When a breakpoint is set, the debugger-side sends the breakpoint information
to the execution environment at the debuggee side. The execution environment
registers a breakpoint event according to the received information. When a
registered breakpoint event occurs, the execution environment sends the JDI
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Fig. 4. A simplified UML class diagram of the Advanced-Dispatching Debug Interface
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command for suspending the virtual machine. Below, we discuss the top-level
mirrors of the ADDI:

Breakpoint reifies breakpoints that can be set at join points (T1). There are
currently two different ways for specifying join points, by specifying a valid
pointcut expression (ADPointcutBreakpoint) and by specifying a line location
(ADLineBreakpoint). ADPointcutBreakpoint matches all join points satisfying its
expression, and ADLineBreakpoint matches all join points on the specified line.

ILocatable is an interface for locating entities. Multiple equivalent AD IR el-
ements applicable at the same join point are represented by a single en-
tity by NOIRIn for performance reasons. Therefore, the locations() method
returns a list of all source locations a runtime entity may originate from.
A Location consist of one or more ranges, i.e., positions in a file (see sec-
tion 3.2). In contrast to the AD IR, which stores the source language in-
formation of many entities jointly in an Attachment, to simplify the ac-
cess, in the ADDI this information is provided through the locations of
an entity. ActionMirror, AtomicPredicateMirror, PatternMirror, AttachmentMirror,
DispatchFrameMirror, and PrecedenceRuleMirror implement this interface. Thus,
corresponding constructs can be located in the source code (T2).

ADEvaluator can perform evaluation on given pointcut expressions or sub-
expressions (T3). It takes strings as input, and sends them to the back-
end. The back-end compiler compiles received strings into LIAM entities,
evaluates their value according to the current program state, and returns
the result to the debugger side. If the expression is syntactically incorrect,
an error message is returned.

DispatchFrameMirror reifies a stack frame containing the execution strategy
at a join point (T7). It provides inspection of the call context (T6) and of
the program composition (T8) at the current join point.

AtomicPredicateMirror reifies primitive pointcut sub-expressions (T3).
ActionOrderElementMirror reifies the program composition (T8). It con-

sists of four parts, namely before, after, around, and inner. The before, after,
and around parts point to advices (respectively the action representing the
join point operation) which are sequentially executed at a join point. The
inner part refers to the actions to be executed when the around advice per-
forms the proceed operation.

AttachmentMirror first provides access to the three parts of an attachment
declaration (corresponding to a pointcut-advice): action, specialization (cor-
responding to the pointcut), and schedule information. Second, it can be
activated or deactivated at runtime (T10). This mirror also stores the his-
tory of (un-)deployments in the states list (T11). A history record contains
information whether the (un-)deployment was performed manually through
the debugger, or programmatically in the source code, or statically. In the
case of programmatic (de-)deployment, additionally, the source location is
stored.

PrecedenceRuleMirror reifies the ordering relations between attachments
(T9). The type of a precedence rule represents how it was specified: in As-
pectJ, precedence can be defined through the declare precedence statement
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(declared), through the before, after, or around keywords (implied), through
the lexical order of advice definitions (lexical), and through aspect inheri-
tance (inherited).

SpecializationMirror reifies static and dynamic sub-expressions of pointcuts
which are decomposed into a pattern, a predicate, and contexts.7 Referenced
named pointcuts are resolved and inlined in the specialization (T4).

PatternMirror can be used to perform evaluations to patterns used in point-
cuts. As illustrated by the example of method patterns in figure 4, patterns
consist of smaller sub-patterns which are separate entities in ADDI and can
be evaluated respectively (T5).

5 User Interface

The front-end of our debugger is integrated into the Eclipse IDE, although any
IDE with a comparable infrastructure would also be applicable. Our AD debug-
ger extends the Eclipse Java debugger with additional user interfaces. These are
Eclipse views specific to visualizing and interacting with ALIA4J’s representa-
tion of pointcut-advices in order to support the tasks discussed in section 2. The
developed debugger provides four new views, namely the Join Point view, the
Attachments view, the Pattern Evaluation view, and the Advanced Breakpoints
view.

Throughout this section, we illustrate the functionalities of our debugger by
means of an example AspectJ program. Listing 3 shows the base program whose
actions are advised by the aspect in listing 4. There are four advices (on line
5, 8, 12, and 15, listing 4) declared in Azpect. Suppose the program is currently
suspended at line 16 of listing 4. We introduce each view in this scenario in the
following sub-sections.

1 package test;
2 public class Base {
3 private int someField;
4 public static void main(String [] args) {
5 Base b = new Base();
6 b.normalMethod();
7 }
8 public void normalMethod() {
9 advicedMethod();

10 }
11 public void advicedMethod() {
12 someField = 1;
13 }
14 }

Listing 3. An example base program

7 See Bockisch et al. [7] for a detailed discussion of how to transform any AspectJ
pointcut to our data structure.
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1 package aspects;
2 import test.Base;
3 public aspect Azpect {
4 pointcut base() : call(∗ Base.advicedMethod());
5 before() : base() && target(Base) {
6 System.out.println(”before−target”);
7 }
8 Object around() : base() {
9 proceed();

10 return null;
11 }
12 before() : base() && !target(Base) {
13 System.out.println(”before−!target”);
14 }
15 after() : set(∗ Base.someField) {
16 System.out.println(”after−set”);
17 }
18 }

Listing 4. An example aspect

5.1 Join Point View

The Join Point view is the central view of the debugger showing runtime infor-
mation about the join point at which the debuggee is currently suspended. A
snapshot of the Join Point view is given in figure 5.

Fig. 5. A snapshot of the Join Point view

Structure of the Join Point View. The view has several parts to allow the pro-
grammer interacting with the debuggee. The top left panel displays the stack of
join points that are currently executing when the debuggee is suspended. Each
explicit invocation—whether selected by a pointcut or not—is represented as one
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row in the stack trace. For each join point, the signature and the source location
of the corresponding join-point shadow are presented (T7). By unfolding a join
point, corresponding applied actions can be inspected. Thus, the join point stack
covers all information also presented in the standard stack trace, plus additional
information about advice application.

Actions are organized as the structure of the program composition at each
join point (T8). Take the second frame representing a call to the advicedMethod

for example, it sequentially executes a before advice and an around advice with a
nested execution to the advicedMethod. We divide actions into three types which
are executed, executing, and to be executed and use tick, arrow, and exclamation
mark icons to tag them, respectively.

Locating an entity consists of two steps. First, double-clicking an item, like a
label representing an action in the stack, activates a location window which is
shown in figure 6. The window contains a list of items which represent different
locations the corresponding entity has. Each location is described by its file name
and ranges, like “(5,25)–(5,36)” where the four numbers represent the start row,
the start column, the end row, and the end column respectively. Second, the
editor highlights the source code ranges when the user double-clicks one of the
listed items (T2). If there is only one possible location, the location window is
not opened, but the corresponding source range is immediately highlighted.

Fig. 6. A snapshot of the location window

The bottom-left panel gives a graphical representation of the execution strat-
egy for the join point selected in the top-left panel (T8). Each label represents
an action that has been executed, is executing, or will be executed at this join
point. Figure 5 displays one composition with two sequential actions which are a
field assignment and an advice execution. In AspectJ, advices do not have names.
Therefore, we chose to use the name of the aspect and the line number where an
advice is defined to uniquely identify the advice, like Azpect.after@line15(). The
label with green (highlighted) background indicates that the action it represents
is currently executing.

The top-right panel of the Join Point view uses a tree viewer to show all
context values needed to evaluate the join point’s execution strategy and exposed
to the actions (T6). The bottom-right panel gives a string description of the item
currently selected in the tree view.

Graphical Representation of Dispatch. The graphical representation of a join
point visualizes the execution strategy applied by the ALIA4J execution envi-
ronment and allows navigating to the corresponding definitions in the source
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Fig. 7. A graphical representation of dispatch

code. For illustration, consider that the second frame is selected in the example.
Figure 7 shows the join point visualization for this case.

This graphical representation consists of an AtomicPredicate testing whether
the callee object at this call site is an instance of test.Base and two Action nodes
with different program compositions according to the evaluation result of the
AtomicPredicate (T3). The blue (bold) path indicates the evaluation result of
the atomic predicates and the composition of actions to be performed at the cur-
rent join point. The highlighted Action node first performs Azpect.before@line5()

and then Azpect.around@line8(); when the latter proceeds, Base.advicedMethod() is
executed. The dashed box surrounding Base.advicedMethod() visualizes the fact
that the execution of proceed cannot be decided until it is actually performed.
Double-clicking on a label representing an atomic predicate or an action reveals
the source location or, if multiple locations are possible, invokes the location
window (T2).

If more complex pointcuts apply to this join point, i.e., more atomic predi-
cates are evaluated, the size and complexity of the BDD may grow significantly.
To reduce the presented information the “-” icon in labels representing atomic
predicates can be clicked to collapse subtrees. Furthermore, a more compact
tabular representation of the execution strategy is available as detailed below.

We provide additional information to show the potential influence of currently
undeployed attachments in the graphical representation of dispatch. Suppose, the
same join point occurs as explained above and the attachment with the action
to call Azpect.before@line5() is defined in the program, but was not deployed.
The graphical representation of dispatch in this scenario is shown in figure 8.
Compared to figure 7, there is an additional node with the title “Satisfied but
Undeployed Actions” which lists all actions that would have been applied at the
current join point if the corresponding attachments were deployed (T11); more
details about T11 is given in section 5.2. Double-clicking an action can perform
locating (T2).

Textual Representation of Dispatch. By clicking the “Table” button on the tool-
bar, the bottom-left panel is switched to a table, as shown in figure 9. This
table contains several pieces of information to support T3 and T8: First it lists
all actions that are potentially applicable at this join point, i.e., the standard



A Fine-Grained, Customizable Debugger for AOP 21

Fig. 8. A graphical representation of dispatch with a node showing “Satisfied But
Undeployed Actions”

Fig. 9. A textual representation of dispatch

join point action (Base.advicedMethod()) and all advices whose pointcut statically
matches the join point.

Second, for all actions whose pointcut dynamically matches the join point, the
execution sequence and nesting levels (for around actions) are shown. For exam-
ple, “2.1” for Base.advicedMethod() means that this action is executed as the first
action when the second action from the level above (advice Azpect.around@line8()

numbered with 2) performs proceed. Similar to the graph representation, the cur-
rently executing action is highlighted with green background. For those actions
whose pattern statically matched, but where the dispatch function determined
that they are not applicable at this call, the table shows an ‘X’ in the order
column.

Third, the table shows the results of all atomic predicates of pointcuts that are
evaluated at this join point. Compared to the graphical representation, the table
does not show the process of evaluation and other possible program compositions.

Visualization of Precedence Dependencies. To reason about the composition
of advices at a join point (T9), the precedence relationships between the ad-
vices are visualized. To illustrate how the visualization of precedence depen-
dencies works, we use four additional aspects which are shown in listing 5.
Three aspects, PrecedingAzpect, AbstractPrecededAzpect, and PrecededAzpect, de-
clare a before advice. Among them, PrecededAzpect extends AbstractPrecededAzpect.
The aspect IrrelevantAzpect defines the precedence between PrecedingAzpect and
PrecededAzpect.
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1 package aspects;
2 import test.Base;
3 aspect PrecedingAzpect {
4 before() : call(∗ Base.advicedMethod()) { ... } }
5 abstract aspect AbstractPrecededAzpect {
6 before() : call(∗ Base.advicedMethod()) { ... } }
7 aspect PrecededAzpect extends AbstractPrecededAzpect{
8 before() : call(∗ Base.advicedMethod()) { ... } }
9 aspect IrrelevantAzpect {

10 declare precedence : PrecedingAzpect, PrecededAzpect; }
Listing 5. Aspect illustrating precedence dependencies

Consider that the execution is suspended at the call to advicedMethod() at line 9,
listing 3. By clicking the “Precedence” button on the toolbar of the Join Point
view, the graph panel changes to a representation of the precedence dependencies
as shown in figure 10.

Fig. 10. The graphical representation of precedence dependencies

Labels representing actions are numbered and connected by directed lines.
The direction of a connection indicates the precedence between two actions. We
use the numbers as substitute for action names in the following paragraph; for
example, “action 2” represents Azpect.before@line5().

There are four types of connection representing the types of precedence rules
distinguished in ADDI: Precedence may be declared explicitly by means of the
declare precedence statement, visualized by a bold blue (dark) connection labeled
with “declared”; it may be defined by the lexical order of advice definitions in the
same aspect, visualized by a bold gray (light) connection labeled with “lexical”;
it may be implied by the aspect inheritance, visualized by a connection labeled
with “inherited”; or it may be determined by the kind of action (i.e., before,
after, around advice or the join point action), visualized by a connection without
label.

The “declared” precedence is explicitly declared in source, like line 10 in listing
5. For the “inherited” precedence, the extends clause is the source location, like
line 7 in listing 5. The location is revealed when the corresponding connection is
double-clicked (T2). An example of precedence declaration by means of lexical
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order is shown in listing 4: Action 2 is declared on line 5, and thus precedes action
3 defined on line 8. The precedence between any two actions without a connection
is not specified, such as action 1 and action 2. Therefore, the execution order of
the two actions is random at runtime.

5.2 Attachments View

In order to dynamically (un-)deploy attachments during runtime, the Attach-
ments view is provided. A snapshot of the Attachments view is given in figure
11. The top panel shows textual representations of all attachments that are de-
fined in the executing program. Unchecking or checking one of the items will
lead to undeployment or deployment of the corresponding attachment in the
debugged program (T10) and change the state of the attachment accordingly.
The middle panel lists the deployment history of the selected attachment in the
reversed chronological order. Whether an attachment was (un-)deployed stat-
ically (“Statically”), or by the source code (“By code”), or manually through
the debugger (“By debugger”) is shown in the third column (T11). If an (un-
)deployment is performed explicitly by the source code, double-clicking the item
can highlight the corresponding code. The bottom panel presents details of the
selected attachment.

Fig. 11. A snapshot of the Attachments view

In figure 11, the first attachment, representing the before advice declared on
line 5 in listing 4, is selected. This advice has a pointcut containing a reference to
another pointcut declared on line 4. The Specialization of the selected attachment
describes the related pointcut in the bottom panel and the referred pointcut is
inlined in the description (T4).



24 H. Yin, C. Bockisch, and M. Akşit

5.3 Pattern Evaluation View

To debug patterns used in pointcuts, we visualize the pattern evaluation at
the granularity of sub-patterns specified for the separate parts of the join-point
signature. Since patterns that do not match at a join point are not shown in the
Join Point view, this functionality is accessible through the Attachments view
which contains all pointcut-advice definitions in the program.

For illustration suppose we select the third frame representing the call to
method test.Base.normalMethod() in figure 5. We find that the before advice de-
clared on line 5 in listing 4 does not appear in the execution strategy. That means
the pattern used in the before advice is unsatisfied. To evaluate the method sig-
nature against the pattern, we use the item representing the before advice in the
Attachment view. Then, an evaluation result of each sub-pattern is presented in
the Pattern Evaluation view as shown in figure 12. It gives the evaluation results
for each sub-pattern (T5).

Fig. 12. A snapshot of the Pattern Evaluation view

5.4 Extended Display View

The pointcut evaluation provided in the Join point view shows only expressions
existing in the source code. The programmer is unable to test a new pointcut
expression unless she modifies and reruns the program. To provide more flexibil-
ity in evaluating pointcut expressions (T3), we extended the Display view. For
example, suppose the second frame shown in figure 5 is selected, the program-
mer evaluates the expression cflow(call(∗ test.Base.advicedMethod())). The result is
shown in figure 13.

Fig. 13. The extended Display view for evaluating pointcut expressions
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5.5 Advanced Breakpoints View

We added the Advanced Breakpoints view, as figure 14 shows, to allow setting
breakpoint at pointcuts (T1). We currently provide two types of breakpoints
which are line-based and expression-based. In figure 14, the first two breakpoints
are line-based and the last two are expression-based.

Setting a line-based breakpoint requires the programmer to select a line in
the editor and then use the view to add a breakpoint. The program will be
suspended at all join points on this line during debugging. For example, the first
breakpoint is set at the line 6 in listing 3. There is only one join point on this
line—calling method normalMethod. Therefore, when this method is called on this
line, the program is suspended.

Setting an expression-based breakpoint requires the programmer to input a
valid pointcut expression. The program will be suspended on all join points
satisfying this expression. If the input expression is not valid, the corresponding
breakpoint does not take effect.

Fig. 14. A snapshot of the Advanced Breakpoints view

Both advanced breakpoints and conventional breakpoints can an be used in
the same debugging session with our debugger. However, some AD and con-
ventional debugging facilities cannot be used if the program is suspended in an
unexpected context. When a conventional breakpoint is hit, the AD debugger
cannot recognize the suspension place as a join point. Therefore, the Join Point
view, the Pattern Evaluation view, and the extended Display view cannot show
valid AD information. The Attachments view and the Advanced breakpoints view
can still be used, because their presented information is joinpoint-independent.
Similarly, when an advanced breakpoint is hit, the execution is suspended in
infrastructure code. Thus, the conventional views, such as the Variables view
and the Stack view, show the debugging information of the infrastructure code
instead of the source code.

6 Customization of Visualizations

Our debugger is built based on the meta-model LIAM which supports many
different, advanced-dispatching languages; thus it can be applied to programs
written in several languages. While these languages have some overlap in their
semantics, they may significantly differ in the syntax. Table 3 lists four definitions
with the same meaning, but written in different languages. This includes two
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Table 3. Same dispatching restrictions expressed in different languages

Language Syntax

AspectJ call(Shape Shape.intersect(Shape)) && args(Circle)

JBoss AOP call(Shape Shape−>intersect($instanceof{Circle}))

MultiJava Shape Shape.intersect(Shape@Circle s)

JPred Shape Shape.intersect(Shape s) when s@Circle

AOP languages (AspectJ and JBoss AOP [1]), and two predicate-dispatching
languages (MultiJava [13] and JPred [24]). All statements specify the dispatch
of a call to method Shape Shape.intersect(Shape) in which the first argument should
be an instance of type Circle.

Our debugger renders the same presentations for these four languages if no
specific customization is provided. But programmers become less productive if
descriptions from the debugger do not resemble the source code. In this section,
we describe how to extend our debugger with language-specific customizations
(section 6.1), how to choose a customization at runtime (section 6.2), and how
to construct customized descriptions (section 6.3).

6.1 Customizing the Presentation of an Entity in a Modular Way

Figure 15 shows the relationships between participants in a debugging session.
The top-left part which contains the debuggee programs is developed by appli-
cation developers, who are also debugger users. The top-right part contains our
debugger which takes the compiled application as input and provides interfaces
for customizations. The bottom part, which contains a complier and a customiza-
tion extension for the debugger, is developed by language designers. The dashed
line indicates that the customization is not mandatory for debugging.

Language designer

Debugger developerApplication developer

Application 
program Debugger

CustomizationCompiler

debugged by

compiles entends

Fig. 15. Components which are used in debugging are developed by different parties
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Fig. 16. The plug-in structure of our debugger. An extension point defines that a
customization extension needs to realize the interface ITextRepresentation

.

Our debugger is implemented as Eclipse plug-ins. Eclipse uses the mechanism
of extensions and extension points to allow incrementally implementing func-
tionalities in separate plug-ins. Extension points are declared by the extended
plug-in and they define contracts how other plug-ins should connect to it.

Figure 16 shows how a customization works with our debugger. The debug-
ger component contains two plug-ins. The UI plug-in (org.alia4j.addb.ui) im-
plements the user interfaces. The model plug-in (org.alia4j.addb.core) contains
the ADDI implementation. The model plug-in provides an interface ITextRep-
resentation, which defines a list of displaying functions for ADMirrors. The UI
plug-in contains widgets such as ItemFigure, which render text representations
of ADMirrors, and a default implementation of the ITextRepresentation. The
DefaultTextRepresentation is language-independent, and it describes entities in
a way how LIAM models AD concepts. Texts presented in previous UI snapshots
are provided by DefaultTextRepresentation.

Each extension point has an identifier, and it declares several attributes that
its extensions should have. In our implementation, the extension point requires
the name of the class that implements ITextRepresentation and the name of the
source language to which the customization is applicable. Listing 6 shows an
extension declaration defined in the plug-in org.alia4j.addb.ui.aspectj. The dec-
laration first refers to the extension point by using the identifier (line 1) and
then specifies the realizing class and the language name (lines 3 and 4).

1 <extension point=”org.alia4j.addb.text.display”>
2 <TextCustomization
3 class=”org.alia4j.addb.ui.aspectj.AspectJTextRepresentation”
4 language=”AspectJ”>
5 </TextCustomization>
6 </extension>

Listing 6. An extension declaration for AspectJ textual customization
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At runtime, we use the extension registry provided by the Eclipse platform to
retrieve all desired extensions by specifying the identifier of the extension point.
We store the language name and an instance of the customization in a hash map.

6.2 Choosing a Customization for an Entity

A Multi-language Example. Our debugger can be used for projects writ-
ten in multiple AD languages. We use the motivating example from the paper
introducing AWESOMEDEBUGGER [3]—which also identified debugging multi-
language programs as a relevant problem—to illustrate this. We show this ex-
ample program in listing 7. For brevity, we only show code related to one join
point shadow and AD definitions that are applied at that join point shadow. The
listing contains three AD units which are written in three different languages re-
spectively: The aspect (line 4) is written in AspectJ, the coordinator (line 7) is
written in Cool, and the validator (line 12) is written in Validate.

1 public class Stack {
2 public void push(Object obj) { ... }
3 }
4 public aspect Tracer {
5 before() : !cflow(within(Tracer)) { ... }
6 }
7 coordinator Stack {
8 condition full=false;
9 push : requires !full;

10 on exit { ... }
11 }
12 validator Stack {
13 validate push(Object obj) { ... }
14 }

Listing 7. A multi-aspect-language example.

When the program in listing 7 is suspended at the execution of Stack.push(), AD
actions declared at lines 5, 10, and 13 may be performed. To illustrate possible
program compositions at this join point shadow, figure 17 shows a graphical
representation of the execution strategy and a label describing the join point
shadow (top left corner). Labels corresponding to elements from AD definitions
are tagged with language information: “A” is for AspectJ, “C” is for Cool, and
“V” is for Validate. The language information means that the corresponding
entity is referred or used in the program written in that language. For example,
the atomic predicate cflow(...) at the top of the execution strategy is used in the
AspectJ program.

In NOIRIn, equivalent entities, which, e.g., originate from different source
languages are only evaluated once at the same join point for performance reasons.
Such LIAM entities are AtomicPredicate, Context, and Pattern. To design a neat
user interface, we also show the join point, which may be referred by different
source languages, only once in the stack trace of the Join Point view.
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Fig. 17. Graphical representations tagged with language information

If an entity from one language is rendered by a customization for another
language, it is confusing for debugger users. Take Cool, for example, the method
execution is the only available join point. Therefore, language designers may
omit the “execution” keyword in describing a join point. This becomes confusing
for AspectJ programmers, because advices can be applied not only at method
executions but also at method calls. Therefore, when multiple customizations
are required, choosing which one and where to apply the chosen one are the
main challenges.

Three Customization Approaches. We can apply a customization either
globally or locally. Global strategy means that all entities use the same cus-
tomization, which can be either language-independent or language-specific. Local
strategy means that entities from different source languages use different cus-
tomizations. We discuss three feasible approaches in the following paragraphs.

Local Customization. This approach uses customizations locally. Recall the
ADDI in figure 14: Each location of an entity has a source language name.
Therefore, all source languages of an entity can be read from its location
information. If an entity has only one source language, the debugger can
automatically choose the customization. For those with multiple source lo-
cations with different languages, the debugger uses the first available cus-
tomization. For rectification, programmers may need to manually choose a
customization by using widgets, such as a context menu.

Global Default Customization. This approach is globally applying the de-
fault customization which provides sufficient information describing the AD
semantics. The default customization uses LIAM terms, which are language-
independent. For example, it uses “action” for “advice” and “callee” for
“target”.
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Global Specific Customization. This approach requires debugger users to
manually choose a language-specific customization and the chosen customiza-
tion is applied globally.

An Evaluation of the Three Approaches. To evaluate the aforementioned
three approaches, we analyse the full example used in [3]. The program creates
a stack, pushes five elements to the stack, and then pops five elements from the
stack. We are interested in only the 6 common types of join points within class
Stack, which are constructor-call/execution, method-call/execution, and field-
get/set. To find out the precision of the three customization approaches, we
count the number of LIAM entities shared between languages at the join points
of this program.

There are 69 join points in total and all of them are advised by the AspectJ
program. Among them, 11 join points are shared by AD definitions written in
at least two languages. The 11 shared join points, which originate from 3 join
point shadows, are described in the table below. The “Count” column shows the
number of join points corresponding to the join point shadow. The “Details”
column specifies the statistics about entities and their source languages at each
join point. For example, “1AV” means that there is 1 entity from the AspectJ
program and the Validate program.

Join Point Shadows Count Details

execution(Stack.new(..)) 1 1AV, 4A
execution(Stack.push(..)) 5 1ACV, 7A, 4C, 4V
execution(Stack.pop()) 5 1AC, 7A, 6C

The “local customization” approach maximally restores the language-specific
descriptions for rendered entities. 97.5% entities at all 69 join points are definitely
shown by the appropriate customizations, because each of them has only one
source language. To choose the right customization at the shared join points,
six join points have entities shared between two languages and thus, require at
most 1 manual configuration of the used customization. Five join points have
entities shared between three languages, requiring at most 2 configurations. This
approach requires that all 3 language-specific customizations are implemented.

The “global default customization” approach reduces the comprehensibility of
the representations, because it requires the programmers to get familiar with the
mappings from LIAM concepts to the constructs of each specific source language.
We do not have exact statistics to quantify to what extent LIAM terms decrease
the comprehensibility. The advantages of this approach is that it does not require
any customization configuration and implementation.

The “global specific customization” approach needs at least one language-
specific customization. We assume that the debugger users use the AspectJ cus-
tomization, because 82.5% entities are not shared between languages, but only
come from the AspectJ program. At the shared join points, if all customizations
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Table 4. A comparison between different approaches applying customizations in a
multi-AD-language example

Precision
Number of

Configurations
Required

Implementations

Local Customization 97.5% < 16 3
Global Default Customization - 0 0
Global Specific Customization
(AspectJ)

82.5% < 16 > 0

are available, the maximum number of configurations is the same as for the
“local customization”.

Table 4 summarizes the above discussion. Columns 2 and 3 reflect the compre-
hension and configuration effort spent by the debugger users. Column 4 shows
the implementation effort spent by the language designers. Overall, there is no
“best” approach that is superior to the other two. The first approach is the most
accurate one. The second approach requires the least effort in configuration and
implementation. The third approach provides relatively high accuracy without
much implementation effort.

According to the comparison above, we have chosen the third approach, which
is a trade-off between the other two approaches, in our implementation. We
provide a widget which lists all available customizations and programmers can
manually select which one to use.

6.3 Constructing Descriptions for Entities

A text description may be determined by different factors including the source
language, the entity class, the runtime values, and the entity contexts. The source
language determines which customization to choose. The entity class determines
which specific displaying method to invoke. The runtime values provide con-
tents to the description. However, the description may vary in a different entity
context.

The interface ITextRepresentation, as shown on lines 1–6 in listing 8, defines
a list of functions displaying different ADMirrors. Language designers need to
realize ITextRepresentation and implement concrete displaying methods.

The DefaultTextRepresentation basically calls mirrorString for each individual
displaying method, such as line 10. The method mirrorString returns the tex-
tual description of the mirrored object on the debuggee side. By extending
DefaultTextRepresentation, language designers only need to override those display-
ing methods which are different from the default implementation.

The runtime values related to the displayed entity may significantly affect
what the textual description looks like. Suppose the method declared on line 15
is executed; that means the entity to be rendered is an InstanceofPredicateMirror

written in AspectJ. Line 18 tests if the context is an ArgumentContextMirror. In
InstanceofPredicateMirror, the syntax of a value is tied to the kind of value that is
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tested. For example, its syntax starts with args for the arguments context and
with target for the callee context. Lines 19–30 give a specific implementation for
the arguments context. In this case, the AspectJ syntax also requires to encode
the position of the tested argument. For this reason the rendered text depends
on the index of the restricted argument; the comments on lines 23 and 26 show
examples.

The textual representation of the same entity may be different if it is in a dif-
ferent context. Suppose the source code is args(Circle, Rectangle), it is transformed
to two InstanceofPredicateMirrors at runtime. The debugger shows args(Circle, ..)
and args(∗, Rectangle, ..) separately if it uses the method on lines 15-34. To con-
struct texts for more coarse-grained entities, like a SpecializationMirror which
contains the args expression, merging the two descriptions is necessary.

Sometimes, rendering part of the source code may lead to loss of semantics.
Take the MultiJava expression on row 4 in table 3 for example, the whole ex-
pression requires the first argument to be an instance of type Circle. The textual
description of the corresponding InstanceofPredicateMirror is “Shape@Circle” which
misses the index of the argument. Our solution is to add auxiliary information
to variable names, like “Shape@Circle arg#1” that uses “#1” to indicate the index
of the argument.

1 public interface ITextRepresentation {
2 public String display(ArgumentContextMirror mirror);
3 public String display(AttachedActionMirror mirror);
4 public String display(MethodCallActionMirror mirror);
5 ...
6 }
7 public class DefaultTextRepresentation implements ITextRepresentation {
8 @Override
9 public String display(InstanceofPredicateMirror mirror) {

10 return mirror.toString();
11 }
12 }
13 public class AspectJTextRepresentation extends DefaultRepresentation {
14 @Override
15 public String display(InstanceofPredicateMirror mirror) {
16 ContextMirror context = mirror.context();
17 StringBuffer sb = new StringBuffer();
18 if(context instanceof ArgumentContextMirror) {
19 ArgumentContextMirror argsCtx =
20 (ArgumentContextMirror) context;
21 sb.append(”args(”);
22 int index = argsCtx.index();
23 if(index >= 0) { // args(∗, ∗, Clazz, ..)
24 for(int i=0; i<index; i++) { sb.append(”∗, ”); }
25 sb.append(mirror.requiredType()).append(..);
26 } else { // args(.., Clazz, ∗, ∗)
27 sb.append(”.., ”).append(mirror.requiredType());
28 for(int i=index+1; i<0; i++) { sb.append(”, ∗”); }
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29 }
30 sb.append(”)”);
31 } else if(context instanceof CalleeContextMirror) { ... }
32 ...
33 return sb.toString();
34 }
35 }

Listing 8. The interface ITextRepresentation and its two implementations

7 Related Work

The related work basically falls into three parts which are debuggers for AOP
languages and other development tools for AOP languages. In the following
subsections we present tools in these categories and discuss them according to
the requirements listed in this paper.

7.1 Debuggers for Aspect-Oriented Languages

We discussed the state-of-the-art AOP debuggers in section 2.3 and the evalua-
tion is summarized in table 5. Aws is short for the AWESOMEDEBUGGER, since it
is based on AODA and both approaches have the same evaluation results with
respect to the identified tasks, they are grouped. In the table, tasks T5 and T9
are not supported at all by any of these debuggers; for tasks T2, T3 and T6
only partial support is provided by the related approaches. The reason for these
limitations is the approach that all previous debuggers share: They debug woven
code which lost some of the aspect-oriented abstractions. In contrast, our ap-
proach introduces an intermediate representation that preserves all source-level
abstractions and thus allows observing and interacting with the execution of the
debuggee in terms of these abstractions.

Table 5. Comparison between different AOP debuggers from the perspective of sup-
porting the identified tasks. Aws stands for the AWESOMEDEBUGGER.

Tag Task Name Our
debugger

JDB AODA
& Aws

Wicca TOD

T1 Setting AO breakpoints
√ © √ ©

T2 Locating AO constructs
√ © ©

T3 Evaluating pointcut sub-expressions
√ ©

T4 Flattening pointcut references
√ √

T5 Evaluating pattern sub-expressions
√

T6 Inspecting runtime values
√ © © ©

T7 Inspecting AO-conforming stack traces
√ © √ ©

T8 Inspecting program compositions
√ √ √ ©

T9 Inspecting precedence dependencies
√

T10 (De-)activating AO definitions
√ √

T11 Inspecting the history of (de-)activation
√
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7.2 Development Tools for Advanced-Dispatching Languages

AO-specific information provided by tools or systems are not only provided in
online debuggers. Static tools can be used as auxiliary approaches to understand
program behavior or structure during debugging.

Common IDE tools for AOP languages, like the AspectJ Development Tools
(AJDT)8, CaesarJ [4] Development Tools (CJDT)9, JAsCo [29] Development
Tools (JAsCoDT)10, etc., require using the Java debugger. Thus, abstractions
inspected during debugging are Java abstractions resulting from the weaving
compilation. They provide additional, static features decreasing the effort in
understanding and coding corresponding programs. For example, AJDT provides
the Aspect Visualiser to find places affected by an aspect. JAsCoDT has an
Introspector which displays the connectors found within the system.

For the ObjectTeams programming language an Eclipse-based IDE exists that
enhances the standard JDT Java debugger [21]. The enhancement filters call
frames that belong to infrastructural code and adapts the placement of break-
points. The step-into debugger action is aware of “callin bindings” which corre-
spond to advices in AOP. The ObjectTeams Development Tools (OTDT) pro-
vide a view for showing the active and inactive “Teams”, their form of aspect
declarations, allowing to dynamically enable and disable Teams, similar to the
Attachments view of our debugger. While these enhancements hide the details
of generated code from programmers, it still falls short in providing additional
language-specific functionality.

Some work has been performed on enhancing the visualization of the struc-
ture of AO programs. Pfeiffer and Gurd [25] introduced a treemap-based visu-
alization, called Asbro. Asbro uses colored and nested rectangles to present the
hierarchy as well as the crosscutting structure. It is especially effective in nav-
igating large-scale AO programs. Fabry et. al. [17] also use a hierarchical way
visualizing how aspects affect the base code. However, their work provides more
specific information, such as the precedence between advices, at the granularity
level of methods. Coelho and Murphy [14] implemented ActiveAspect that can
automatically decide which subset of the crosscutting structure should be pre-
sented depending on the selected elements in the IDE. Thus, it decreases the
complexity of information to be analyzed. These tools or systems aid language
users to comprehend programs by simplifying the presentation of the crosscut-
ting structure. Our debugger concentrates on dynamic information, especially
for pointcut and pattern evaluation, and program composition.

The JPred Eclipse plug-in11 provides a view showing implication relationships
between predicates used for methods sharing the same signature. This is shown
in terms of a Binary Decision Diagram, similar to ALIA4J’s dispatch execution
strategy. It indicates that a method with a more specific predicate has higher
priority to be executed. Compared to this view, the graphical representation of

8 See http://www.eclipse.org/ajdt/
9 See http://caesarj.org

10 See http://ssel.vub.ac.be/jasco/index.html
11 See http://sourceforge.net/projects/eclipse-plug130/

http://www.eclipse.org/ajdt/
http://caesarj.org
http://ssel.vub.ac.be/jasco/index.html
http://sourceforge.net/projects/eclipse-plug130/
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our dispatch function decomposes each predicate into a set of atomic predicates.
It shows the evaluation order of predicates instead of the relationship between
them. In contrast to our online debugger, the JPred plug-in only statically shows
the decision process of dispatch.

7.3 Tool Customizations

To provide highly tailorable user interfaces, many frameworks are created. For
example, FlexiBeans [30] uses a component technology to provide a tool with
run-time flexibility. Heer et. al. [20] found that existing information visualizations
like treemaps [11] are difficult to be reused in a different context. Therefore, they
proposed the tool prefuse on which programmers can interactively compose the
visualization of data by using predefined visualization components. Schäfer and
Mezini [27] also argued that modern tools lack flexibility of customization and
presented an approach implementing a flexible framework for visualizing code
structure.

8 Conclusions and Future Work

In this paper we have investigated four fault models for aspect-oriented program-
ming (AOP) languages and categorized AOP faults related to dynamic features
into seven fault categories. To detect all kinds of dynamic AOP faults, we iden-
tified eleven tasks that an ideal AOP debugger should be able to perform.

To enable these tasks, the debugging infrastructure must use an interme-
diate representation of the program to debug which preserves all source-level
abstractions. This is necessary to let the programmer inspect and influence the
execution of all aspect-oriented program elements in the source code. It must
be possible to add source-location information to elements in the IR to be able
to localize their source definition during a debugging session. One source con-
struct can be mapped to multiple compiled entities and vice versa. We have
based our prototype on our previous work which provides an intermediate rep-
resentation for languages with advanced-dispatching which is a generalization of
aspect-oriented programming mechanisms such as pointcut-advice or inter-type
declarations. This IR is expressive enough to represent many-to-many relation-
ships with source code elements, as outlined above. We transform aspect-oriented
declarations into AD models and store them in an XML file after compilation.
The stored information is available to the debugger by means of the Advanced-
Dispatching Debug Interface (ADDI), which allows observing the program ex-
ecutions in terms of AD abstractions. Based on the ADDI, we implemented a
user interface in terms of four new and one extended Eclipse views.

Built on the language-independent meta-model, our debugger can be applied
to all AD languages. To support language-specific presentations of the model
in the user interfaces, we allow programmers to customize the description of
an entity. To enable implementing customizations without changing existing in-
frastructure we leverage the extension point mechanism provided by Eclipse
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platform. We discuss three alternative approaches for choosing a customization
and where to apply it in multi-language projects: (1) local customization, (2)
global default customization, and (3) globally specific customization. We have
performed a preliminary evaluation of comprehension, configuration, and imple-
mentation effort in the three approaches. According to the evaluation, the third
approach provides relatively high precision without much implementation effort.
This is the reason why we chose this approach in our implementation. To be
able to restore the original source representation for an IR entity as faithfully as
possible, customizations can consider the following information: the source lan-
guage, the entity class, the runtime values, and the context of other IR entities
in which it is used.

According to the identified AOP debugging tasks which we generalized from
commonly identified AOP faults in the literature, our debugger is the first ap-
proach to fully provide the following features.

1. It visualizes all evaluation results of pointcut sub-expressions at a join point,
and it represents the constraints defined in the AOP program that lead to a
specific composition.

2. It performs evaluations on pointcut and pattern sub-expressions.
3. All elements that rule the execution at a join point are shown by the visual

debugger and the source code defining them can be located.
4. The runtime stack is enhanced to present join points as well as all applicable

advices at once.
5. It visualizes the declarations leading to a program composition at a join

point.
6. It shows all advices defined in the program and allows (un-)deploying them

at runtime. Besides, it can show the history of (un-)deployments.
7. While being generically applicable to aspect-oriented and advanced dispatch-

ing languages, the user interface of our debugger allows customizing the vi-
sualization to a language-specific flavor.

This work can already support other advanced-dispatching programming lan-
guages supported by the ALIA4J architecture, like predicate dispatching or
domain-specific languages. However, we need to first identify dedicated fault-
models for these paradigms to make out paradigm-specific debugging tasks as
we did for aspect-oriented programming. Furthermore, we will investigate sup-
porting debugging in ALIA4J’s optimizing execution environments.
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