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1 Introduction

In recent years, artificial neural networks (ANNs) have made swift and remarkable pro-

gress in various practical applications, in speech recognition[1], image classification[2],

and natural language processing[3]. While artificial neural netwroks have gained great

popularity and achieved remarkable success in the data-driven computing paradigm,

they also have some limitations. Firstly, most existing artificial neural networks rely

on supervised learning, which necessitates vast amounts of labeled training data, in

contrast to the unsupervised and reward-modulated learning mechanisms employed by

biological brains. Secondly, the predominant learning algorithm employed by artificial

neural networks, error backpropagation, demands high precision and lacks robustness

and biological plausibility. Thirdly, mainstream artificial neural network models do not

incorporate human cognition or functions that inspire artificial intelligence.

As a contrast, the human brain is a very complex system consisting of approximately 90

billion neurons [4]. It is structurally composed of trillions of interconnected synapses.

Information is passed between neurons through electrical impulses called spikes. The

effect of spiking sent by a presynaptic neuron to a receiving neuron depends on the

strength of the synapse connecting the two neurons. Synaptic strength and connection

patterns between neurons play an important role in the information processing capa-

city of the nervous system. Inspired by the human brain, the spiking neural network

(SNN) is proposed [5]. In contrast to classical artificial neural networks that utilize

non-spiking units, spiking neural networks employ the same event-based communica-

tion mechanism utilized by the human brain, where neurons communicate via spikes.

As computational neuroscience has progressed, extensive neuromorphic models have

been developed to simulate particular brain functions. Neuromorphic computing is

considered a promising approach to achieve artificial general intelligence (AGI) due to

its brain-like features. Among the brain-like cognitive models constructed, the spik-

ing neural network is regarded as the neural network model that closely mimics the
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brain’s mechanism. Compared with the artificial neural network (ANN), SNN possess

distinct benefits in various aspects such as response latency and power consumption,

and is more biologically interpretable. A variety of computational models have been

developed, taking into account biological experimental evidence and constraints across

various scales. [6]–[8]. These models usually adopt learning rules that mimic beha-

viours of biological neurons, i.e. spike-timing-dependent plasticity (STDP) and other

Hebbian-based learning rules [9]. SNNs are considered a crucial foundation for real-

izing more intricate cognitive functions of the brain, including memory, concepts, and

structured knowledge.

In a recent study, a working memory (WM) theory was implemented in an SNN model,

showcasing how WM emerges through the close collaboration of short-term memory

(STM) and long-term memory (LTM) [10]. The model employed is a scalable spik-

ing neural network known as the Bayesian Confidence Propagation Neural Network

(BCPNN) [11], which which can realize Bayesian statistics using either spiking or non-

spiking neural networks. The simulations of BCPNN (with 29 million spiking units and

295 billion plastic connections) were conducted in a massively parallel manner on su-

percomputers. [12]. Nevertheless, the further expansion of BCPNN is frequently lim-

ited by computational capabilities. To put it in perspective, the human brain has over

86 billion neurons and 100 trillion synapses [13], necessitating significant financial re-

sources and running costs to simulate such a vast scale of the brain on supercomputers.

Although GPU is a good alternative platform for SNN training [14], [15], it can not

handle spike communication and processing well in real-time. Besides, GPU suffers

from high power consumption, which also limits its application in SNN. The develop-

ment of ASIC chips [16]–[18] can offer superior performance and energy efficiency,

but the disadvantages are high fabrication costs and restricted flexibility. A comprom-

ised solution is an FPGA-based design [19]–[21], which provides reasonable cost, low

power consumption, and reconfigurability for the acceleration of neuromorphic com-

puting.

The thesis is divided into the following sections. First, Chapter 2 introduces some

basics, including the spiking neural network (SNN), the Bayesian confidence propaga-
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tion neural network (BCPNN), and the current applications and implementations of

BCPNN. Then chapter 3 presents the architecture of the FPGA-based hardware accel-

erator. The optimization methods employed in the design are also described. After

that, Chapter 4 reports the experimental results of the FPGA-based hardware acceler-

ator. Chapter 5 evaluates the hardware design and discusses the resource-saving scheme

through module reuse. Finally, Chapter 6 concludes the thesis.
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2 Fundamentals

In this chapter a broad overview of spiking neural networks is given, as well as the

Bayesian confidence propagation neural network and its current applications and im-

plementations.

2.1 Spiking Neural Network
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Figure 2.1: The structure of a typical spiking neural network.

Spiking neural networks are inspired by information processing in biology and are con-

sidered to be the third-generation neural networks [22]. A spiking neural network is

composed of spiking neurons and interconnecting synapses that are modeled by ad-

justable scalar weights.

Fig. 2.1 demonstrates a typical case of the spiking neural network. The spiking neural

network is composed of an input layer, several hidden layers and an output layer. In

SNNs, the input data is binary spiking message, which is different from ANNs. Besides,

the neurons and synapses of SNNs are different from that of the traditional ANNs.
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2.1.1 Network Topology

The topology of spiking neural networks is usually classified into three types, the feed-

forward, recurrent, and hybrid networks [23].

The feedforward neural network is the network where the connections between neurons

do not form a cycle. The information moves in only one direction, from the input layer,

through the hidden layer and to the output layer. There is no cycle in such a network

topology. A typical case of the feedforward network is visualized in Fig. 2.2.

Figure 2.2: The network topology of a typical feedforward neural network.

Figure 2.3: The network topology of a typical recurrent neural network.
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The recurrent neural network (RNN) is a class of network in which connections between

neurons can create a loop, allowing the output of some neurons to affect subsequent

inputs of the same neuron. This allows the neural network to exhibit temporal dynamic

behavior. A typical case of the recurrent network is visualized in Fig. 2.3.

2.1.2 Neuron Model

Neurons are the basic processing units of the biological brain. The neurons communic-

ate with each other by sending and receiving action potentials [24].

In 1952, Hodgkin and Huxley experimented with giant axons in squid and developed

a four-dimensional (4D) detailed neuron model that could reproduce electrophysiolo-

gical measurements [25]. However, this neuron model has relatively high computa-

tional complexity, which increases the computational cost. Hence, simpler phenomen-

ological spiking neuron models are used to model large-scale SNNs, neural coding,

and memory. The Leaky Integrate-and-Fire (LIF) model [26] and the Spike Response

Model (SRM) [27] are two popular low computational cost 1D spiking neural models,

but they are less biologically plausible than the Hodgkin and Huxley models. Izhikevich’s

2D model [28] provides a good trade-off between biological plausibility and computa-

tional efficiency. Although it can generate a variety of spiking dynamics, many of these

properties, such as chaos and bistability, are not yet used in current learning algorithms.

Pre-synaptic 

spikes



Membrane Potential 

of LIF neuron

Threshold

(Vth)

t1 t2

t1 t2

Post-synaptic 

spikes

Vmem
W1

W2

W3

Figure 2.4: The leaky-integrate and fire (LIF) neuron model.
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Here we take the most commonly used LIF model as an example, as shown in Fig. 2.4.

The neurons integrate the input spiking signals, and once the membrane potential of

neurons reaches a certain threshold, the neurons send out a spike.

2.1.3 Synaptic Plasticity

In the nervous system, a synapse is a structure that allows a neuron (or nerve cell)

to transmit electrical or chemical signals to another neuron. Fig. 2.5 describes the

structure of a synapse. Dendrites are projections of neurons (nerve cells) that receive

signals (information) from other neurons. The transmission of information from one

neuron to another takes place through chemical signals and electrical impulses, known

as electrochemical signals. Information transmission is usually received by chemical

signals at the dendrites, then travels to the cell body (cell body), continues along the

neuron’s axon as an electrical impulse, and finally passes to the next neuron at the

synapse, which is the place where two nerves Elements exchange information through

chemical signals. At a synapse, the end of one neuron meets the beginning of another—

the dendrites.

Figure 2.5: The structure of a biological synapse [29].

The synaptic learning of spiking neural networks mimics the biological synaptic plasti-

city. The learning process of SNNs is quite different from the global back-propagation

algorithm adopted in ANNs. The learning of SNNs mainly adopts Hebbian-based

learning rules, which means in short, that neurons that fire together, wire together.

The spike-timing-dependent plasticity (STDP) learning rule is a widely-used Hebbian
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synaptic learning rule whose weight update depends on the relative timing of pre- and

post-synaptic spikes [9], as shown in Fig. 2.6. Unlike the global back-propagation al-

gorithm in ANNs, the STDP learning rule is localized and unsupervised and does not

require labeled data.

0

0

50

-50

100

-100

t

 [
%

]
w


t >0

Si
Sj

t <0

Figure 2.6: The spike-timing-dependent plasticity (STDP) learning rule.

2.2 Bayesian Confidence Propagation Neural Net-

work (BCPNN)

The BCPNN, a neural network, initially drew inspiration from Bayesian inference prin-

ciples [11], [30]. It evolved into a design patterned after the mammalian cortex’s mod-

ular structure, utilizing hypercolumn units (HCUs) and minicolumn units (MCUs).

Later, the BCPNN was incorporated into SNNs, enabling the mapping of neural and

synaptic mechanisms in the human cortex [31]. Compared to other SNN models,

BCPNN’s hierarchical and coarse-grained architecture is a compact and practical op-

tion for large-scale neural network deployment [32].
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2.2.1 Network Topology

The hypercolumn, also known as the cortical column, is a collection of neurons in the

cerebral cortex of the biological brain that can be penetrated successively by a probe

perpendicular to the cortical surface, with nearly identical receptive fields. Each hyper-

column comprises approximately one hundred minicolumns, with neurons within the

same minicolumn possessing similar attributes. Figure 2.7 depicts the configuration of

the mammalian cortex.

MinicolumnHypercolumnCortical Sheet

Figure 2.7: The organization of the mammalian cortex [33].

The BCPNN follows a modular design pattern using HCUs and MCUs, which are based

on the generalization of the mammalian cortex’s structure initially proposed by Hubel

and Wiesel [34]. In models of the mammalian cortex, an HCU module is roughly

500 µm in diameter and comprises about 100 MCUs, each with a diameter of 50 µm.

Each MCU consists of roughly 100 neurons, primarily excitatory pyramidal cells and

one or two local inhibitory double bouquet cells [35]. Lateral inhibition is governed

by inhibitory basket cells, which regulate activity within an HCU. In abstract models,

this is achieved through softmax, which standardizes the total HCU activity (i.e., the

sum of the corresponding MCU activities) to 1. The human cortex is estimated to

contain approximately two million HCUs. The modular, hierarchical architecture of the

BCPNN is an efficient and concise approach to building large-scale neural networks.
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The BCPNN network is composed of H HCUs and M MCUs arranged in an H ×M

pattern. Typically, H is much larger than M , with no maximum limit on the number

of HCUs. However, biological evidence limits the number of MCUs to approximately

100. Thus, in extensive networks, the number of HCUs is generally higher. In small

networks, every MCU can connect entirely to its local HCU and other HCUs, as de-

picted in Fig.2.8. However, such full connectivity is not feasible in large networks due

to the substantial computational and storage costs. Instead, sparse, patchy connectiv-

ity influenced by the cortex’s structure is implemented, which reduces the number of

connections while maintaining proper functionality [36].
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Figure 2.8: The structure of the bayesian confidence propagation neural network (BCPNN).

The HCU structure, illustrated in Fig.2.9, consists of four elements: 1) the presynaptic

vector that stores presynaptic traces, includingZi, Ei, and Pi; 2) the postsynaptic vector

that stores postsynaptic traces, such asZj ,Ej , Pj , and the bias βj; 3) the synaptic matrix

that stores synaptic traces like Eij , Pij , and the weight wij; and 4) a specific number

of MCUs that integrate incoming spiking activities and fire in a soft winner-take-all

manner.
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Figure 2.9: The structure of the hypercolumn unit (HCU).

At a higher level, HCUs function as independent network modules that exchange spikes

with one another. The size of an HCU is determined by the number of incoming con-

nections and MCUs it has. Due to biological limitations, the maximum number of

incoming connections and MCUs is restricted to 10,000 and 100, respectively. There-

fore, in an HCU of maximum size, a synaptic matrix with a dimension of 10000× 100

is necessary, representing one million plastic synapses.

2.2.2 BCPNN Learning Rule

The BCPNN learning rule differs from the commonly used Spike Timing Dependent

Plasticity (STDP) learning rule, as it is derived from Bayes’ rule, and it assumes in-

dependence between neural activities. This probabilistic inference approach results

in a unique neural activation function achieved through a transformation to log-space

[11], [30], [37]. Unlike other Hebbian learning rules, in which synaptic updates are

driven by co-activation between the pre- and post-synaptic neural units, the BCPNN
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learning rule generates positive weights when neural activity is positively correlated,

zero weights when they are uncorrelated, and negative weights when they are anti-

correlated. Moreover, the BCPNN learning rule accounts for the prior activation of

each neural unit, as observed experimentally [31], by including an intrinsic bias. The

estimation of network unit activation and co-activation is performed using a cascade of

three exponential running averages, which are illustrated in Fig.2.10, and the dynamics

of the three types of traces are shown in Fig. 2.11.
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Figure 2.10: The BCPNN learning rule.

Initially, the pre- and post-synaptic Z-traces are activated by incoming spikes:

dZi

dt
= Si−Zi

τzi

dZj

dt
=

Sj−Zj

τzj
(2.1)

Here, the symbol i refers to pre-synaptic variables, j refers to post-synaptic variables,

and S represents incoming and generated spiking activity. The Z-traces, which are

12



(b)
Time (s)

S
p

ik
e

s
X

 t
ra

c
e

Z
 t

ra
c
e

E
 t

ra
c
e

S
p

ik
e

s

(a)

P
 t

ra
c
e

1

0

×10
-3

Spike = 1 Spike = 0

Time (s)

Figure 2.11: The dynamics of three kinds of traces in the BCPNN learning rule.

driven by the spiking activity, then influence the E-traces and P-traces through a similar

dynamic process, but with distinct time constants:

dEi

dt
= Zi−Ei

τe

dEj

dt
=

Zj−Ej

τe

dEij

dt
=

ZiZj−Eij

τe
(2.2)

dPi

dt
= (Ei−Pi)

τp
κ

dPj

dt
=

(Ej−Pj)

τp
κ

dPij

dt
=

(Eij−Pij)

τp
κ (2.3)

The learning process is modulated by the learning rate κ in the dynamics of P-traces.

Ultimately, network unit biases and weights are updated using the P-traces, as shown in

equation (2.4), with an additional parameter ε that accounts for the minimum spiking

activity assumed for the pre- and postsynaptic units:

βj = log(Pj + ε) Wij = log( Pij+ε2

(Pi+ε)·(Pj+ε)
) (2.4)
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2.3 Application and Implementation of BCPNN

The BCPNN model has been utilized in various neural computation applications, in-

cluding modeling synaptic plasticity, such as long-term potentiation (LTP) and long-

term depression (LTD). One prominent application of BCPNN is in the creation of

scalable self-organizing associative memory [38]. Recent advances in cortical associ-

ative memory models have focused on using BCPNN as a framework for rapid cortical

synaptic plasticity in synaptic working memory [10], [39]. In these models, positive

BCPNN weights serve as excitatory connections between pyramidal cells, while neg-

ative weights inhibit distant pyramidal cells through disynaptic connections, such as

those mediated by double bouquet cells. Although these spiking neural network (SNN)

models are much smaller than their biological counterparts, typically composed of up

to a thousand MCUs partitioned into around thirty HCUs, they represent a promising

direction in the pursuit of artificial general intelligence (AGI) by emulating various as-

pects of human cognitive function within a system based on brain-like BCPNN.

Furthermore, the BCPNN model has been applied in the field of machine learning, par-

ticularly in building cortex-inspired neural networks for pattern recognition tasks. A

recent breakthrough in this area involves the integration of a novel structural plasticity

algorithm inspired by the brain, which constructs a hidden layer in an unsupervised

manner using the original synaptic trace variables of BCPNN [40], [41]. These mod-

els have achieved competitive classification performance on benchmark datasets like

MNIST and Fashion-MNIST, attaining test set accuracies of 98.6% and 88.9% respect-

ively [41]. The unsupervised nature of the structural plasticity algorithm permits effi-

cient use of unlabeled training examples, enabling semi-supervised learning that yields

promising results even when only 10-1000 labeled training samples are available [42].

These advances in simulating cognitive function with BCPNN-based neural networks

offer hope for the development of artificial general intelligence.

The BCPNN model has been deployed in a range of software and hardware systems,

including supercomputer clusters and GPUs. Custom hardware implementations util-

izing 3D integration of DRAM for synaptic weights have been developed [43]–[46].
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Due to the ability to execute the BCPNN learning rule with low precision [47], cortical

memory models based on BCPNN have demonstrated robustness and resilience to both

external and internal noise, as well as imprecision in weights and unit biases. There-

fore, it has potential as a highly scalable, modular, and hardware-friendly neuromorphic

architecture suitable for compact and low-power digital or mixed-signal design.

The most demanding computational tasks in the BCPNN implementation are updating

the synaptic and MCU internal state variables during training and inference processes.

To enhance computation efficiency while retaining programming flexibility, this thesis

presents a hardware accelerator for BCPNN, implemented on FPGA.
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3 Architecture and Design

This chapter first introduces the two computationally intensive parts of BCPNN, includ-

ing the training process where the synaptic state variables are updated, and the inference

process where the internal state variables of minicolumn units (MCUs) are updated. Es-

pecially, a lazy-update method is employed in the update of synaptic state variables. To

accelerate these two computationally intensive parts, an FPGA-based hardware accel-

erator is architected and designed. The hardware accelerator can work in two modes,

the training mode and the inference mode. In the hardware design, several optimiza-

tion methods are employed, including a hybrid update mechanism, a LUT-based block

memory for exponential operations, and the optimization technique by maximizing par-

allelism.

3.1 The training process and inference process of

BCPNN

3.1.1 The training process

In the spike-based BCPNN, the strength of the connections between MCUs is modu-

lated based on the simultaneous activation of pre- and post-synaptic neural units. A cor-

related pre- and post-synaptic activity gives a positive weight, while an anti-correlation

gives a negative weight. The probability of pre-, post-synaptic and synaptic activities

are tracked with eight local synaptic state variables called traces. These traces are up-

dated in a cascaded manner. The training process can be seen in Figure 2.10, where Si

is the presynaptic spike train, Sj is the postsynaptic spike train, Zi, Zj , Ei, Ej , Pi, Pj ,

Eij , Pij are synaptic traces, τzi , τzj , τe, τp are time constants, and k is the learning rate.
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(a) Time-driven

Simulation Time

dt dt dt dt

(b) Event-driven

…

Δt = dt

Δt = 3 dt Δt = 2 dtΔt = 3 dt Δt = 2 dt

Figure 3.1: The hybrid update mechanism.

As depicted in Figure 2.10, the pre- and post-synaptic spikes are first filtered into Z, E,

and P traces with specific time constants. Three P traces (Pi, Pj , and Pij) are utilized

to calculate the post-synaptic bias βj and weight wij .

In the simulation of spike-based BCPNN, the time-driven simulation with a fixed step

size is a typical approach. A time-driven simulation employing the explicit Euler method

with a relatively long time step of dt = 1 ms is presented in [44]. However, this ap-

proach demands more computational resources and frequent memory access compared

with the event-driven manner. As shown in Figure 3.1, in a time-driven manner, the

state variable is updated at each time step, and the update interval ∆t is always equal

to the simulation time step dt. While in an event-driven manner, the state variable is

only updated when an event (a spike) happens, and the update interval ∆t can be the

multiples of time step dt.
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To alleviate the computation intensity of the training process, a method called the lazy-

update method, which combines both time-driven and event-driven approaches, was

proposed in [47]. With this method, the post-synaptic state variables Zj , Ej , Pj , and βj

are updated every time step dt, while the other synaptic state variables are only updated

when a pre- or post-synaptic event occurs.

For the presynaptic traces Zi, Ei and Pi, the lazy-update solutions are as follows:

Zi(t) = Zi(t
last) · e−

∆t
τzi + Si(t) (3.1)

Ei(t) = Ei(t
last) · e−

∆t
τe + Zi(t

last)ai(e
− ∆t

τzi − e−
∆t
τe ) (3.2)

Pi(t) = Pi(t
last) · e−

∆t
τ∗p + aibi(e

− ∆t
τzi − e

−∆t
τ∗p )Zi(t

last)

+(Ei(t
last)− aiZi(t

last))c(e−
∆t
τe − e

−∆t
τ∗p )

(3.3)

Here, the symbol tlast represents the time when each state variable was last updated,

while ∆t = t − tlast is the time elapsed since the last update until the current time t.

The coefficients ai, bi, and c are used in the update equations. To obtain the update

formulas for the postsynaptic traces Zj , Ej , and Pj , the indices i in the presynaptic

update formulas (3.1, 3.2, 3.3) are replaced by j.

For the synaptic traces Eij and Pij , the lazy-update solutions are as follows, where aij ,

bij , and c are constants:

Eij(t) = Eij(t
last) · e−

∆t
τe

+Zi(t
last)Zj(t

last)aij(e
− ∆t

τzij − e−
∆t
τe )

(3.4)

Pij(t) = Pij(t
last) · e−

∆t
τ∗p

+aijbij(e
− ∆t

τzij − e
−∆t

τ∗p )Zi(t
last)Zj(t

last)

+(Eij(t
last)− aijZi(t

last)Zj(t
last))c(e−

∆t
τe − e

−∆t
τ∗p )

(3.5)
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3.1.2 The inference process

With the bias βj and weight wij obtained in the above training process, the activation

oj and firing probability rj of each MCU can be calculated in the following inference

process [47]. Firstly, the pre-synaptic spike Si leads to a synaptic current ssyn,j:

τzi
dssyn,j(t)

dt
=

∑
i

wij(t)Si(t)− ssyn,j(t) (3.6)

Then the synaptic current ssyn,j is accumulated with the bias βj and an external input

Ij to obtain the support value sj:

sj(t) = βj(t) + ssyn,j(t) + Ij(t) (3.7)

The support value sj is low-pass filtered to get the membrane potential mj:

τm
dmj(t)

dt
= sj(t)−mj(t) (3.8)

Then the activation oj of each MCU is calculated as:

oj =


eγmmj∑M

k=1 e
γmmk

, if
∑m

k=1 e
γmmk > 1

eγmmj , otherwise

(3.9)

The activation oj is then transformed to the firing rate rj:

rj(t) = oj(t) · rmax,HCU (3.10)

Here, τzi, γm, rmax,HCU are all constants.
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3.2 Architecture for the Hardware Accelerator

To accelerate the computationally intensive parts of both the training and the inference

process of BCPNN, a hardware architecture is proposed for efficient processing.

As shown in Figure 3.2, the design of the training process consists of five modules:

the update module for presynaptic traces, the update module for synaptic traces, the

update module for postsynaptic traces, the computation part for the weight, and the

computation part for the bias. These trace update modules are used to update eight

trace variables, Zi, Zj , Ei, Ej , Pi, Pj , Eij , and Pij , to track pre-synaptic, post-synaptic,

and synaptic activities at different time scales. The weight and the bias computation

modules calculate the weight wij and the bias βj based on the three updated P traces

(Pi, Pj , Pij) from the three trace update modules. As for the inference process, it is im-

plemented with an inference computing core, which is responsible for the computation

of the activation and firing rate of MCUs.

In order to maximize the parallelism, these update modules all require two adders and

two multipliers respectively, which will be explained in Section 3.4.3. Besides, a block

memory is employed to implement efficient exponential operations due to the lazy-

update method, whose detailed design will be presented in Section 3.4.2. As for the

weight and the bias computation module, a logarithmic IP core is employed for the

logarithmic calculation. As for the inference core, three adders and two multipliers

are needed to maximize parallelism. In addition, a block memory is used to store the

weights, and an exponential IP core is employed for general exponential operations,

which is different from the exponential operation in the training process. It should be

noted that the operations in the weight and bias modules are both in the form of floating-

point, thereby a fixed2float core and a float2fixed core are needed as well. It is the same

for the inference module.
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Figure 3.2: The architecture of the hardware accelerator.

3.3 The update mode and the inference mode

The proposed hardware accelerator can work in two modes, the training mode and the

inference mode. The training mode is used to update eight local synaptic traces, the

weight, and the bias. During the inference mode, the activation and firing probability

of each MCU are calculated and updated. As illustrated in Figure 3.3 (a), the training

mode consists of three parts: the update of the pre-synaptic vector (Zi, Ei, Pi), the

update of the synaptic matrix (Eij , Pij , wij), and the update of the post-synaptic vector

(Zj , Ej , Pj , βj). Especially, the update of the synaptic matrix can be further divided

into the row update and the column update, because both the pre- and post- spikes can

trigger the update of the synaptic matrix.
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As shown in Figure 3.3 (b), the hardware design is based on the lazy-update method

mentioned in Section 3.1.1. The pre-synaptic vector, the specific row and column of

the weight matrix are all updated in an event-driven manner, which are triggered by

pre-synaptic spikes and post-synaptic spikes. Besides, the update of the post-synaptic

vector and the inference process are both in a time-driven manner, which are triggered

at every simulation time step.

Time Driven

Event Driven

Pre-synaptic vector

Training Mode 

Post-synaptic vector

Inference Mode 

MCU inference 

Synaptic

P
re

-s
y

n
a

p
ti

c

Post-synaptic

……

Row
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o
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m

n

MCUs

(a) (b)

Column 

Update

Row 

UpdateSynaptic 

Matrix

Figure 3.3: The training mode and the inference mode.

3.4 Optimization Methods

3.4.1 Hybrid Update Mechanism

This hardware accelerator adopts a hybrid update mechanism, where the event-driven

manner is used for the update of presynaptic vector and the synaptic weight matrix, and

the time-driven manner is used for the update of postsynaptic vector and the MCU state

variables.

In the training process, the input presynaptic spike Si and the output presynaptic spike

Sj of the MCU are detected first. If there is a Si, then the corresponding cell of the

presynaptic vector will be updated. If not, the cell of the presynaptic vector will remain

the same as the last timestep. In this case, time will be saved compared with the original
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time-driven manner. Similarly, if there is a Si, the corresponding row of the synaptic

weight matrix will be updated. Otherwise, this update step will be skipped. As for

the column update of the weight matrix, if the corresponding MCU cell sends out a

spike, the corresponding column of the synaptic weight matrix will be updated, and

vice versa.

In the inference process, the postsynaptic vector and the MCU state variables are up-

dated in a time-driven manner. Therefore, their values will change in each timestep.

3.4.2 The Exponential Operation for the Training Process

During the training mode, the synaptic state variables are updated using exponential

operations. More specifically, this refers to the computation of the attenuation factor of

traces, which is defined as follows:

f(∆t) = e
− ∆t

τzi (3.11)

Equation (3.11) uses the variable ∆t which represents the duration between the current

time t and the last time the variable was updated, denoted as tlast, as shown below:

∆t = t− tlast (3.12)

Furthermore, hardware design complexity is increased by other exponential operations

involving different time constants, such as τzj , τzij , τze , and τ ∗p .

Considering the computational accuracy and resource cost, implementing exponential

operations in FPGA is a challenging task. Several methods for implementation include

piecewise linear approximation, CORDIC algorithm, higher-order polynomial approx-

imation, and table lookup. The piecewise linear approximation method is simple to

implement, but its accuracy level is low. The CORDIC algorithm is commonly used in

FPGA, but it has a limited input range and requires longer latency, which is not ideal
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Figure 3.4: The structure of the block memory for exponential operations.

in this scenario. While the higher-order polynomial approximation method offers good

accuracy, it requires too many hardware resources.

In this design, a modified table lookup method is utilized due to the lazy-update mech-

anism described earlier. One advantage of this method is that the output of Equation

(3.11) is bounded between 0 and 1, and the exponential function decreases monotonic-

ally. Therefore, when the time interval ∆t becomes sufficiently large (e.g., 1023), the

exponential result can be approximated as zero, leading to good accuracy with a limited

depth of block memory. Additionally, this method allows for obtaining the exponential

results with five different time constants simultaneously for the same input variable ∆t,

which significantly accelerates the calculation process.

Figure 3.4 illustrates the structure of the block memory used for exponential operations

in the training process. Increasing the width and depth of the block memory can provide

a wider calculation range and higher accuracy.

The modified table lookup structure is particularly well-suited to the training process

design, as it enhances the calculation speed and accuracy, while substantially reducing

the consumption of hardware resources. Besides, it should be noted that the exponen-

tial operations in the training process and the inference process are implemented with

different methods. In the training process, the exponential operation can be implemen-
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ted with a modified table lookup structure due to the lazy-update mechanism. While in

the inference process, an exponential IP core is employed due to the need for general

exponential calculations.

3.4.3 The Optimal Design by Maximizing Parallelism

To optimize the hardware accelerator’s computing performance, we have implemented

an optimal design that maximizes parallelism in the calculation process. This is accom-

plished by breaking down the formula calculation steps and analyzing their inherent

data dependencies. Independent calculation can be allocated to separate computation

units for better parallelism while operations that have temporal relevance may need to

be executed sequentially.
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Figure 3.5: The computation process of E trace in the presynaptic module.

To optimize the computing performance of the hardware accelerator, we implemented

a design that maximizes parallelism in the calculation process. This was accomplished
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by breaking down the computation steps of equations and analyzing the inherent data

dependency. For instance, let us consider the calculation of the E trace in the presyn-

aptic module, as defined in Equation (3.2). Equation (3.2) can be decomposed into

five steps consisting of two additions and three multiplications, as illustrated in Figure

3.5. Given the data dependency of the operands, the first three steps can be executed

independently and in parallel. The fourth and fifth steps, however, must be performed

sequentially since they are interdependent. As a result, we employ two multipliers to

allow for the simultaneous execution of the two multiplication operations. This same

design principle is applied to all calculation steps. In total, the three trace update mod-

ules require two adders and two multipliers each, while the inference module needs

three adders and two multipliers. Thus, we achieved the optimal design by maximizing

parallelism to achieve the best computing performance.
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4 Implementation of the FPGA-based Hard-

ware Accelerator

This section reports the experimental results of the FPGA-based implementation of the

hardware accelerator, including the hierarchy of the design, the behavior simulation

results for both the training mode and inference mode, and the overall implementation

results.

4.1 Hierarchy of the Design

The hierarchy of the hardware accelerator is illustrated in Fig. 4.1. The design is com-

posed of two main modules, the update module and the inference module.

The update module is used to calculate five parts in the training mode, including the pre-

synaptic trace, the post-synaptic trace, the synaptic trace, the weight, and the bias. To

realize the pre-, post-synaptic, and synaptic traces, several computing units are needed,

including two adders, two multipliers, and a block memory ”exp_result_bram” for ex-

ponential operations. The bit width of the two input operands and the output of the

adder are all 33 bits. As for the multiplier, the bit width of the two input operands

of the multiplier is 33 bits, and the output bit width is also 33 bits after truncation.

Especially, the computing blocks can be reused and reconfigured to reduce hardware

overheads, which will be discussed in Section 5.

The inference module is responsible for the update of the internal state variables of

MCUs. In this module, three adders and two multipliers are needed. Besides, a block

memory ”mcu_inf_bram” is used to store the state variables of MCUs. The weight

memory ”weight_bram” is used for weight storage. Another block memory ”exp_oj_bram”

is used for the exponential calculation of the activation of MCUs.
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Figure 4.1: The hierarchy of the design.

In the top-level file ”BCPNN_Accelerator.v”, it calls two submodules, the ”mcu_update_mode.v”

and the ”mcu_inference_mode.v”, as shown in Fig. 4.2.

28



,

'

,

，

'

，

'

,

＇

,

'

,

＇

，

'

,

'

,

'

，

＇

,

'

，

'

,

＇

,

'

,

＇

,

'

,

'

,

'

,

＇

，

＇

，

＇

,

＇

,

'

,

＇

,

'

，

'

,

＇

，

'

,

＇

l

,

＇

,

'

，

＇

,

'

,

'

，

'

,

'

,

'

,

＇

，

'

,

'

,

＇

，

＇

，

'

,

'

,

＇

,

'

,

'

，

'

,

.

 

l

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

 

6

6

6

6

6

6

6

6

6

7

7

7i

7

7

7

7

7

7

7

8

8

8

8

 

mcu_updating_mode mcu_updating�mode （
 . elk (clk_200M) 

. rst_n (sys_rst_n), 

. syn_ini t (syn_ini t), 

. update_en (update_en), 

. spike_i_ value (spike上value),

. spike_j_ value (spike—j_value), 

. s_axi s_tva1 id (s_axis_tval id), 

. curr_time (curr_time) 

. output—tvalid—l(output—tvalid—1)' 

匾 output_tvalid_2(output_tvalid._2)

） ； 

mcu inference mode mcu inference mode 

. elk (clk_200M) 

. rst_n (sys_rst_n), 

. update_en (update_en) 

. const_ini t (const_ini t), 

. mcu_id (mcu_id), 

（
 

. spike_co皿ections(spike_connections),

. s_axi s_tval id (s_axis_tval id), 

. s_axis_tready(s_axis_tready) 

） ； 

Figure 4.2: The instantiation part of the top-level module.

In the submodule ”mcu_update_mode.v”, it calls five modules, including the presyn-

aptic trace update, the postsynaptic trace update, the synaptic trace update, the weight

update, and the bias update module, as shown in Fig. 4.3 and 4.4.

The definition of parameters including the bit width of the variables is defined in the

header file, as shown in Fig. 4.5.
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Figure 4.3: The instantiation part of the update mode (part 1).
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Figure 4.4: The instantiation part of the update mode (part 2).
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Figure 4.5: The parameter definition in the header file.

4.2 Computing Blocks of the Design

In the implementation of the design, a variety of computing blocks are involved, in-

cluding the adder, the multiplier, the logarithmic module, and some format conversion

modules.

4.2.1 Adder

The adder is responsible for the addition operations in the computing process. The

input width of the two operands A and B are both 33 bits, as shown in Fig. 4.6. The

output width of the output S is 33 bits. The adder modules are implemented with the

DSP48 resources in the FPGA.
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Figure 4.6: The adder module.

4.2.2 Multiplier

The diagram of the multiplier is illustrated in Fig. 4.7. The input width of the two input

operands A and B are both 33 bits. It should be noted that the width of the calculation

result of the multiplier is truncated. As shown in Fig. 4.8, 33 bits (from the 28 th to the

60 th bit) are selected from the original 66-bit calculation result.
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Figure 4.7: The multiplier module.

Figure 4.8: The output bit width truncation of the multiplier.

4.2.3 Logarithmic Module

The logarithmic operations in the computing process are implemented with the logar-

ithmic module, as shown in Fig. 4.9. The computation of the logarithmic module is
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in the form of floating point. Therefore, a fixed2float module and a float2fixed module

are also needed, which will be introduced in the next section.

Figure 4.9: The logarithmic module.

4.2.4 Format Conversion Module

As mentioned above, the addition and multiplication are in fixed-point format, but log-

arithmic operations are in floating-point format. Therefore, the fixed2float module and

the float2fixed module are required for the format conversion, as shown in fig. 4.10 and

Fig. 4.11.

The fixed-point format is shown in Fig. 4.12. There is one bit for the sign, four bits

for the integer part, and also 28 bits for the decimal part. The floating-point format is

illustrated in Fig. 4.13. The total bit width of single-precision floating-point numbers is

32 bits. Among them, the sign bit is 1 bit, the exponent width is 8 bits, and the fraction

width is 24 bits.
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Figure 4.10: The fixed2float module.

Figure 4.11: The float2fixed module.
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Figure 4.12: The format of the fixed-point number.

Figure 4.13: The format of the floating-point number.

4.3 Behavior Simulation

To verify the functionality of the proposed hardware accelerator, the behavior simula-

tion is performed.
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The signal control part of the testbench file is shown in Fig. 4.14. The ”clk” is the

clock signal. The ”rst_n” is the reset signal, which is valid when the value equals

0. The ”update_en” is the signal that controls the switch between the training stage

and the inference stage. When the value of ”update_en” is 1, the accelerator works

in the training mode. Vice versa, when ”update_en” is 0, the accelerator works in the

inference mode.

Figure 4.14: The signal control part in the testbench.
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During the simulation, each timestep can be adjusted and reconfigured in the simulation

time control part of the testbench, as shown in Fig.4.15.

Figure 4.15: The simulation time control part in the testbench.

Fig. 4.16 and Fig. 4.17 present the behavior simulation results. As mentioned before,

the accelerator can work in the training mode and the inference mode. The switching

of the training mode and the inference mode is controlled by the ”update_en” signal.

The simulation wave is generated with the testbench file above. As marked with a

yellow line in Fig. 4.16, when the ”update_en” is set to 1, the accelerator works in the
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Figure 4.16: The behavior simulation of the training mode.

Figure 4.17: The behavior simulation of the inference mode.

training mode. In this mode, the synaptic traces Zi, Ei, Pi, Zj , Ej , Pj , Eij and Pij are

updated.

When the ”update_en” is set to 0, the accelerator works in the inference mode. In this

mode, the internal state variables of the MCUs are calculated and updated, as marked
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with the yellow line in Fig. 4.1. The results of the behavior simulation are compared

with the ideal reference model and the simulation results are as expected. The error

analysis of the results will be explained in Section 5.1.

4.4 Implementation Results

The Xilinx Artix-7 XC7A100T FPGA is used to implement the RTL design, as illus-

trated in Figure 4.18. The implementation results are summarized in Table 4.1. The

total on-chip power consumption is 265 mW. The timing constraints are satisfied with

a worst negative slack of 0.219 ns. The timing and power summary can be found in

Figure 4.19 and Figure 4.20, respectively.

To carry out a weight update in training mode, 22 cycles are needed, while an inference

process of a spiking unit takes 36 cycles. The accelerator has been designed and im-

plemented on an FPGA to speed up these processes while maintaining programming

flexibility. At a clock frequency of 200 MHz, the accelerator can update each synaptic

weight in 110 ns and complete an MCU’s inference process in 180 ns. Assuming a time

step of 1 ms, up to 9090 synaptic connections can be updated simultaneously.

Total On-Chip

Power (mW)

Worst Negative

Slack (ns)

Cycles for

Weight Update

Cycles for

Inference

265 0.219 22 36

Table 4.1: The overall synthesis and implementation results.

The basic programmable unit of an FPGA is the configurable logic block (CLB). The

CLB consists of the lookup table (LUT), the multiplexer (MUX), a carry chain, and

registers. LUTs and MUXs can realize combinational logic functions, and registers

(which can be configured as flip-flops or latches) can realize sequential logic functions.

In the Xilinx FPGA devices, a CLB consists of multiple (usually two or four) identical

slices and additional logic. The slice can be further divided into two types, the SLICEL
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Xilinx xc7a100tfgg484-2Xilinx xc7a100tfgg484-2

Figure 4.18: Implementat the accelerator on the Xilinx Artix-7 XC7A100T FPGA.

Figure 4.19: The timing summary.

for logic and the SLICEM for memory. SLICEL and SLICEM both contain four 6-

input lookup tables (LUT6), three multiplexers, a carry chain and eight flip-flops. The

schematic of the device after implementation can be seen in Fig. 4.21 (a). Fig. 4.21 (b)

demonstrates the routing of the hardware resources on the FPGA device.

To take a close look at the utilization of the hardware resources on FPGA, Fig. 4.22

demonstrates part of the used resources after implementation. The one marked with

a red box on the right is a SLICEL unit. In this slice, four LUTs and a carry chain
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Figure 4.20: The power summary.

are utilized. The one marked on the left is a DSP, which is utilized for addition and

multiplication operations.

Table 4.2 presents the utilization of FPGA hardware resources. The results indicate that

DSPs consume the majority of the hardware resources, with a maximum utilization rate

of 17.50 %. In Section 5.3, we will elaborate on how we can minimize the consumption

of DSP slices through module reuse.

Resource Utilization Available Utilization (%)

LUT 4024 63400 6.35

FF 2778 126800 2.19

BRAM 11.50 135 8.52

DSP 42 240 17.50

IO 21 285 7.37

Table 4.2: Hardware resource utilization.
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(a) (b)

Figure 4.21: (a) The schematic of the FPGA device. (b) Routing resources on the FPGA device.

SLICE

DSP

Figure 4.22: The schematic of the hardware resources on the FPGA device.
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Figure 4.23: The utilization of the hardware resources on the FPGA device.
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5 Evaluation and Discussion

5.1 Performance Benchmark and Comparison

Since there are no hardware accelerators for BCPNN currently available, we compared

the performance of the FPGA accelerator with that of the CPU through experiments.

Table 5.1 displays the time taken by the FPGA and CPU to perform a synaptic weight

update and an inference process of the MCU. This comparison was conducted to provide

a rough idea of the accelerator’s performance.

The Artix-7 FPGA chip was used in the experiment, which required 22 cycles for a

weight update and 36 cycles for an inference process. Running at a clock frequency of

200 MHz, the FPGA can perform a weight update in 110 ns and an inference process

in 180 ns.

The performance evaluation of the CPU was carried out on a MacBook Pro equipped

with a 2.6 GHz dual-core Intel Core i5 processor that can reach a Turbo Boost speed

of up to 3.2 GHz. It comes with 3 MB shared L3 cache and has 8 GB of onboard

memory with a clock speed of 1600 MHz. The operating system used was Mac OS

10.15, and the code was compiled using Xcode. The weight update and inference pro-

cess were implemented in C++ using Xcode, taking on average 25,800 ns and 10,600

ns, respectively, to complete each operation.

The hardware accelerator based on FPGA greatly enhances the computation speed when

compared to the CPU test, with the processing time decreased by two magnitudes.

The precision of calculations is evaluated by recording and comparing the specific val-

ues of weights, biases, and activations, which is presented in Table 5.2. It is important

to mention that the recorded activation of each MCU needs to be normalized based on

the total number of MCUs.
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Platform IDE
Working

Frequency (Hz)

Weight Update

Time (ns)

Inference

Time (ns)

CPU Xcode 2.6 G 25800 10600

FPGA Vivado 200 M 110 180

Table 5.1: Comparison of calculation speed.

Although the FPGA processes computations in fixed-point format, conversion from

floating-point to fixed-point can introduce errors. Moreover, truncation of multiplica-

tion results can also cause errors during the FPGA calculation process. Nevertheless,

the comparison of calculation accuracy between the FPGA experiment and the CPU test

presented in Table 5.2 demonstrates that the weight, bias, and activation calculations in

the FPGA experiment match those in the CPU test up to the sixth decimal place. This

suggests that the hardware accelerator achieves computational precision similar to that

of the CPU.

Mode
Format of

operation

Result of

weight

Result of

bias

Result of

activation

CPU Floating point -0.60796681 0.60773897 7.38905610

FPGA Fixed point -0.60796648 0.60773867 7.38905621

Table 5.2: Comparison of calculation accuracy.

In conclusion, the experiment illustrates that the FPGA-driven hardware accelerator de-

livers considerably better computing speed while preserving a high degree of accuracy

in calculations.

5.2 Resource Saving through Module Reuse

Based on the architecture depicted in Figure 3.2, the adders and multipliers used in the

training mode can be customized and reused to minimize hardware resource require-

ments, especially the DSPs used. The adders and multipliers utilized in the inference
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mode can be optimized with those in the training process after FPGA synthesis and

implementation. Therefore, the reuse of adders and multipliers in the inference process

is not addressed in this study.

No. Reused
Number of

adders

Number of

multipliers

Total

cycle

DSP

used

1 None 6 6 22 42

2 Partially 4 4 22 32

3 Fully 4 4 25 28

4 Fully 2 2 30 18

Table 5.3: Reuse the adders and multipliers to reduce hardware overheads.

Table 5.3 presents the performance and hardware overheads of different levels of adder

and multiplier reuse. In the first scenario, where no computational modules are reused,

the basic design consists of 2 adders and 2 multipliers used in three trace update mod-

ules, which results in a total of 6 adders and 6 multipliers. This configuration requires

42 DSP slices and takes 22 cycles to complete a weight update process.

In the second scenario, if a partial reuse of adders and multipliers is employed, a config-

uration with 4 adders and 4 multipliers can achieve the same weight update time of 22

cycles while reducing the DSP slice usage by 23.8%. It should be emphasized that only

the multipliers in the three trace modules are being reused, except for the multiplier in

the weight computation module.

Furthermore, in order to further minimize the hardware resource overheads, it is pos-

sible to fully reuse the computational modules, including the multiplier in the weight

computation module. In the third case, the implementation requires 28 DSP slices and

takes 25 cycles with 4 adders and 4 multipliers when fully reused. Although the weight

update time increases by 13.6%, the DSP usage decreases by 33.3%. Finally, in the

fourth scenario, only 18 DSPs are used, but this comes at the cost of increased update

time.
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The accelerator design can employ module reuse to decrease hardware resource usage

while maintaining the same computational performance. Depending on the perform-

ance requirements and hardware resource constraints, a balance between performance

and hardware overheads can be considered. If there is room for slight performance de-

gradation, hardware overheads can be decreased, and if not, then they can be increased.
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6 Conclusion

Over the last decade, ANNs have achieved substantial advancements in practical ap-

plications such as speech recognition, image classification, and natural language pro-

cessing. Despite their success and popularity in the data-driven computing paradigm,

these networks have some limitations.

In contrast to conventional ANNs that employ non-spiking units, spiking neural net-

works utilize an event-based communication mechanism similar to that of the human

brain, where neurons communicate via spikes.

The BCPNN is a unique type of spiking neural network that is based on Bayesian infer-

ence principles and has an architecture inspired by the modularity of the mammalian

cortex, HCUs and MCUs. It has been implemented within the framework of SNNs,

allowing for mapping to neural and synaptic processes in the human cortex. In com-

parison to other SNN models, BCPNN has a modular, coarse-grained, and hierarchical

architecture that makes it a practical and compact solution for the implementation of

large-scale neural networks.

The main contribution of this thesis is the proposal of a hardware architecture that accel-

erates the training and inference process of BCPNN. To achieve this, various techniques

have been utilized such as a hybrid update mechanism, customized LUT-based design

for exponential operations, and optimization by maximizing parallelism. The proposed

hardware accelerator is implemented on the Xilinx Artix-7 XC7A100T FPGA. Exper-

imental results demonstrate that the computing speed of the FPGA-based hardware ac-

celerator is significantly improved by two orders of magnitude when compared to the

CPU. Additionally, by reusing computational modules, the accelerator can reduce hard-

ware resource overheads while maintaining comparable computing performance.

The proposed accelerator presents a promising solution for efficiently implementing

training and inference processes for large-scale BCPNN neural networks. This ad-
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vancement may enable the implementation of higher-level cognitive phenomena such

as synaptic working memory based on BCPNN in an efficient manner.
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