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Abstract 

Accidents while driving might result in minor injuries. Alternatively, it might result in a loss of 

life, which is highly detrimental to society. The loss of an expert due to fatalities can have a 

tremendous influence on humanity's scientific growth. Three factors can lead to accidents on the 

road: 1) The human, 2) the road, and 3) the vehicle. We look at the first element in our analysis, 

accounting for 93 percent of all accident causes. We will not look at the psychological aspects of 

driving behaviour in this study. The first step is to classify the vehicle; Self-driving vehicles and 

regular automobiles, both of which may be used to evaluate driving, are the two types of vehicles 

that can be checked. Aggressive driving behaviours have been identified as one of the most critical 

subcategories of human factors that contribute to accidents. To prevent road accidents, constant 

monitoring of drivers' driving behaviour can modify the driver's driving behaviour or notify the 

driver of a potential hazard. As a result, it is vital to devise a method of detecting aggressive driving 

behaviour. 

Aggressive driving is every day among American drivers. According to AAA Foundation for 

Traffic Safety data from 2019, approximately 80% of drivers displayed severe anger, hostility, or 

road rage while driving at least once in the preceding 30 days. Aggressive driving has been a 

significant source of concern for many road users. 

There are numerous methods for detecting aggressive driving behaviour, including changes in 

vehicle speed, lane shifts, eye and hand movement analyses, and others. We conducted this study 

using deep machine learning approaches rather than classic time series analysis methods. We 

analyzed roughly sixty similar publications to learn the procedures employed in the prior studies. 

The CNN was utilized in most publications to determine how to drive. We used RNN algorithms 
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to execute this experiment since the vehicle GPS data is a time series. We employed an external 

test technique during the experiment that was not used in earlier studies that dealt with the same 

data set. The provided model produced satisfactory results incorporated in the dissertation's 

conclusion. 
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Chapter One: Introduction 

1.1 Background 

Each year, over 1.3 million individuals are killed in automobile accidents. Road traffic accidents 

cost most countries 3% of their GDP. More than half of all road traffic fatalities occur among 

vulnerable road users, such as pedestrians, cyclists, and motorcyclists. Despite having about 60% 

of the world's automobiles, low- and middle-income nations account for 93 percent of road deaths. 

Road traffic accidents are the leading cause of mortality for children and young people aged 5 to 

29 [1]. Road traffic accidents have been a significant source of injury and death in most countries. 

Road accidents are the eighth-most significant cause of mortality worldwide, according to the 

World Health Organization [2]. Only human factors accounted for roughly 90% of road crashes, 

aside from vehicle and environmental variables [3]. 

It is possible to help the driver be more confident in the decision he makes at any given moment 

due to obstacles and crossings. Ryder et al. [4] discovered that in-vehicle warnings about accident 

hotspots enhance driver behaviour over time. As a result, they show that DSSs and design research 

may be useful in the field of connected automobiles, which has traditionally not been a critical 

focus of DSSs and information systems research. Research has been conducted that confirms the 

relationship between psychological tests and driving behaviours. Psychological tests can help 

score drivers' driving behaviour regarding Marjana et al. [5] proposed an assessment and decision 

support model. They believed using their model when a driver should be examined about their 

propensity for traffic accidents, based on an estimation of their psychological traits. 

There may be issues or perspectives that are not obvious at first glance, but extensive research has 

measured them. For example, being familiar with the road (the experience of driving on the road 
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before) is one of those examples. Intini et al. [6] have proved road familiarity as an influential 

factor in accident risk, presumably due to distraction and more unsafe behaviours caused by 

overconfidence. In this work, we employed a database that requested drivers to drive aggressively, 

then fed the data into the model to uncover its in-depth patterns. The model will be able to find 

those patterns in the test dataset to be evaluated. They believed that while crashes involving 

unfamiliar drivers may cluster in locations with substantial summer traffic variation and maybe 

more common during the summer months, several correlations between accident-related variables 

and the measured drivers' unfamiliarity remain unknown (such as the proneness to different 

accident types) [6]. 

On the other hand, Kalsi et al.'s [7] study support that sleep deprivation is a significant risk of fatal 

car accidents. They confirm that sleep deprivation is a health-related issue on its own. After a 

period of sleep deprivation, anyone can fall asleep unknowingly. Drivers should be more aware of 

the dangers of sleep deprivation in terms of road safety. As a general guideline, one should sleep 

at least 6 hours before driving for an extended amount of time [7]. There are different definitions 

for aggressive behaviour. In the belief of Archer et al. [8], a behaviour is aggressive when there is 

a desire to inflict harm, and if the persuasion is successful, it will result in psychological pain. 

However, there is a problematic dividing line between using such a method openly to harm 

someone and using it covertly, for example, to advance oneself in an organizational context [8], or 

in our context, the way of driving that will harm others. Aggressive driving presents itself in 

various ways, including vocally, physically, and via the course of driving on vehicles [9]. 
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1.2 Research Motivation and Relevance 

The main motivation came from a question from the Professor Behrouz H. Far (research 

supervisor) sparked the idea for the study: Is it possible to identify aggressive driver behaviour in 

self-driving cars while driving by finding the patterns in their raw GPS data? When the automobile 

is in auto mode, continue driving in the manner with which the driver is most comfortable. During 

studies and meetings, we narrowed the scope of the research. In response to the topic of what 

technologies are available for detecting driving behaviour in both types of cars, So, first and 

foremost, we attempted to review the articles on this topic. The literature review yielded a survey 

paper in chapter two. Scope We have specialized in reviewing publications in the technical 

methodologies used with the deep machine learning methodology. We discovered a lack of 

approach to high-risk driving diagnostics after listing all the technologies and methodologies. We 

next presented a model employing deep machine learning approaches on a labelled dataset. 

Research in the field of intelligent transport optimization conducted (or is conducting) in Professor 

Behrouz H. Far's laboratory falls into three general categories: optimization and intelligence before 

driving, while driving, and gathering information for Analysis after completing a driving course. 

The research that I have concentrated on, is in the category of smart driving safety optimization. 

It has been highlighted in the following figure. 
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The Optimization of the Intelligent Transportation System 

A course of transportation 

Before During After 

(Prediction and Planning) (Driving Behaviour Analysis) (Traffic Analysis) 

Vehicle Trajectory Prediction with 
Gaussian Process Regression in 

Connected Vehicle Environment 
[10]. 

Deep Learning Approach for Aggressive 
Driving Behaviour Detection [11]. 

Managing Urban Traffic Networks 
Using Data Analysis, Traffic Theory, 
and Deep Reinforcement Learning 

[12]. 

Table 1 Research big picture 

 

Regarding the optimization of safety while driving, in this research, an attempt has been made to 

inform the driver of a possible danger. By sending a portion of the vehicle's GPS information to 

the model, it labels that portion of the trip into one of two aggressive or non-aggressive modes. 

 

Figure 1 Model training phase 

 

There are two main phases for model design in this research. First, model training with labeled 

data, and second, using the model to classify drivers' trips into two categories: aggressive and non-

aggressive. 
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Figure 2 Classification phase 

 

1.3 Research Objectives and Questions 

There are two primary goals for conducting research, which is then broken into smaller objectives. 

The primary purpose is to research and examine scientific approaches for detecting high-risk 

driving. The dilemma here is whether the tactics used are psychological methods or the aim and 

the driver's current attributes. To answer it, we will not conduct behavioral research so we will do 

the pattern recognition methods to find aggressive driving behaviour.  Is it done using traditional 

methods or machine learning approaches if it is a formulation method? Is it a subset of deep 

machine learning if machine learning methods are used? 

The second purpose is to see if, after analyzing existing technologies, a new approach or method 

to improve on past methods can be presented. What is the new method's adequacy? To what extent 

does the provided approach have a discrepancy between laboratory and actual results? What 

approach is offered, and why is this technique presented? 
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1.4 Research Methodology and Scope 

The first goal includes any scientific work completed between October 2015 and September 2020 

with keywords containing "Driving Behaviour Analysis" and "DL algorithms," concentrating on 

computer-related journals and databases such as IEEE, ACM, Scopus, and Springer. We omit 

classical ML, psychological driving analysis, and any paper published after the dates specified. 

Furthermore, thanks to the "dynamic survey" technique, which means "adding papers dynamically 

in the future," our database will include all related papers on future dates.  

The second goal comprises a proposed model that can detect aggressive driving patterns in less 

than 3 minutes (the choice of 180 seconds will be discussed later in this research) by gathering 

GPS data every second. We investigate two RNN-based approaches (GRU and LSTM) in a variety 

of scenarios.  

The studies were evaluated in two ways: 1) by separating the dataset into training, validation, and 

test datasets; and 2) reserving a driver dataset for the real-world test. 

 

1.5 Research Benefits 

What makes some people more prone to road rage, and how to keep them from becoming a danger 

on the road. Environmental factors such as crowded roads can boost anger behind the wheel. In 

this study, we can alert aggressive driving behaviour and lots of casualties by detecting aggressive 

driving at the right time and location. The difference between the proposed model and a simple 

high speed detection application is described in the following. Our model deeply went through all 

the different experiments of aggressive driving behaviour and captured all aggressive patterns with 
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RNN (LSTM/GRU) methods. Sometimes a driver is not driving over speed but changing lanes in 

a aggressive mode. 

 

1.6 Research Contributions 

This research contains two parts: 1) A survey paper of “driving behaviour analyses” articles in 

the defined scope. The survey paper studies algorithm and approaches of pieces of literature on 

this subject that leveraged deep machine learning methods. This survey paper also presents the 

term “Dynamic survey” that tries to auto-update the articles' database. The methodology of the 

dynamic survey is a crawler that browses popular journals to find any science movements on the 

driving behaviour analyses. Although this is not a direct contribution of practical deep learning 

approach, but we designed this crawler to be sure not eliminated any research during our 

experiments and study. 

2) A proposed model detects aggressive driving behaviour with a deep learning algorithm 

(Stacked LSTM) with a high confidence score. It leverages GPS-only data, extracts new data 

features, smartly converts input data shape, and then classifies to two classes of “Aggressive” 

and “Non-Aggressive.” It is evaluated with a real world-test and is reached to a high promising 

evaluated score. 

 

1.7 Organization of Thesis 

This thesis is organized into three chapters. The first chapter discusses the research's history and 

introduction of the fundamental research. The second chapter is a literature review created as a 
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dynamic survey and submitted to the “arXiv.org” as a preprint. The third chapter includes an 

aggressive driving behaviour detection model submitted to the “arXiv.org” as a preprint. 

  

Chapter 2: "Dynamic and Systematic Survey of Deep Learning Approaches for Driving Behavior 

Analysis," Farid Talebloo, Emad A. Mohammed, Behrouz H. Far 

Chapter 3: "Deep Learning Approach for Aggressive Driving Behaviour Detection," Farid 

Talebloo, Emad A. Mohammed, Behrouz H. Far 
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Chapter Two: Dynamic and Systematic Survey of Deep 

Learning Approaches for Driving Behavior Analysis 

 

2.1 Introduction 

2.1.1 Abstract 

Improper driving results in fatalities, damages, increased energy consumptions, and depreciation 

of the vehicles. Analyzing driving behaviour could lead to optimizing and avoiding mentioned 

issues. By identifying the driving and mapping them to the consequences of that driving, we can 

get a model to prevent them. In this regard, we try to create a dynamic survey paper to review and 

present driving behaviour survey data for future researchers in our research. By analyzing 58 

articles, we attempt to classify standard methods and provide a framework for future articles to be 

examined and studied in different dashboards and updated about trends. 

 

2.1.2 Keywords 

driving behaviour identification, driving behaviour analysis, dynamic survey, deep learning 

approaches, intelligent transportation systems. 

 

2.1.3 DBA Introduction 

The lives of nearly 1.35 million people are lost every year due to road traffic accidents [13]. 

Between 20 and 50 million more people suffer non-fatal injuries, many of whom experience 

disability due to injuries [13]. More than 32,000 fatalities occurred in the US in 2013 due to drunk 
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driving and speeding, leading to more than 19,500 deaths [14]. Even with these staggering numbers 

in the US, China has the most road traffic accidents globally. There were 8934 traffic accidents in 

2016, causing 5947 deaths and 11,956 injuries on China's freeways. Although freeways account 

for just 2.8% of the overall length of public roads in China, traffic collisions, casualties and 

fatalities accounted for 7.7%, 9.4% and 13.7% of all traffic accidents, injuries, and deaths. 

Compared to other road grades, the collision rate, damage rate and death rate per 100 km of 

Chinese highways are 3.0 times, 3.8 times and 5.1 times higher, respectively [15]. 

One of the innovations developed in vehicles today to meet the need for protection and comfort in 

driving is Advanced Driver Assistance Systems or ADAS. ADAS are vehicle control systems that 

use environmental sensors (such as radar, laser, vision) to enhance driving comfort and safety by 

helping drivers identify and respond to potentially unsafe traffic situations. One of the primary 

ADAS studies relates to model driving behaviour. Driving behaviour research needs to be carried 

out because, based on WHO data, driver factors are among the leading causes of vehicle accidents.  

Examples of driver factors include over-speed speeding, drunkenness; exhaustion; dark road 

driving; impaired visibility; and vehicle quality factors [16]. The most vital aspect of on-road 

driving safety is the behaviour of drivers. The level of driving skills (e.g., professional; beginner) 

affect driving behaviour, and the set of decisions made at any given moment in driving may lead 

to one type of driving behaviour at each stage. On the other hand, driving events such as 

acceleration, deceleration; turning; braking lead to driving behaviour. These two separate sets are 

affected by the prevailing driving conditions such as traffic, weather, cars, and roads [17]. 
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2.1.4 Scope of research 

The scope of this survey paper includes all the research work performed between October 2015 to 

September 2020, having keywords with "Driving Behaviour Analysis" and "DL algorithms," 

focused on computer-related journals and databases including IEEE, ACM, Scopus, and Springer. 

We exclude traditional ML, psychological analysis of driving, and any paper out of the mentioned 

dates. Moreover, fortunately, with the algorithm of the "dynamic survey," which means "adding 

papers dynamically in future," our database will include all related papers on future dates. 

 

2.1.5 Dynamic Survey Approach 

It is common for "Survey papers" to usually limit the scope and study them so that the researchers 

will review them over a period. Consequently, after publishing the paper, any activity such as new 

articles or new chapters of a book related to the topic to be published after the survey paper should 

be considered in a new survey paper. Nevertheless, in this dynamic survey, the included articles 

will be updated using an algorithm in its database. (Although, this section does not have a direct 

relation to the main subject of the thesis, but it helped us not to miss any studies during our 

research. And on the other hand its an original method that can help other researchers as well.) 
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Figure 3 Dynamic survey mechanism 

 

In the following, we explain how the algorithm works: in this mechanism, first, we adjust the 

recurrence period (i.e., daily, weekly, monthly) of the web requests. Then, it starts sending web 

requests to the APIs of defined journals (i.e., IEEE, Elsevier, Springer, …) to get the list of newly 

submitted articles in DBA. After receiving the list of newly published articles, it compares them 

with the existing list in the database to avoid duplicating an article. 

Finding a new paper submitted related to DBA is not enough; we needed a space to store the data. 

We decided to use a relational database (i.e., MS SQL Server). Other advantages of using the 

relational database are avoiding redundant data, ease of inquiry, easily transferable, high security, 

and high efficiency. In designing a normalized database, we tried to make it article-centric. The 
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newly found article title and core information will store in the main table, and other pieces of data 

will be stored and pointed to it. 

 

Figure 4 Papers database structure diagram 

 

In addition, we develop a dashboard to display all articles' values as an interactive chart in Google 

Data Studio [18]. The researchers can use these charts to find out the trends of driving behaviour 

analysis in the future. They can change the dimensions, change the sorting types, zoom in and out 

in geographical charts to study this topic further.  
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Figure 5 Dynamic sortable charts 

 

There are four sortable charts that we will explain their functionality of in the following: 1) Sorted 

the countries that have more studied paper 2) Sorted the approaches that research have been used 

to tackle DBA studies 3) Sorted keywords of studied documents in this study 4) Showed the trend 

of paper counts from 2015 to 2020 

[Figure 4] shows the geographical distribution diagrams of studies conducted in the field of driver 

behaviour analysis. The figures above present a data set in two different forms to make the study 

more accessible. However, in the table below, the information related to the approaches used by 

the researchers and the country in which the research was conducted is shown appears as a matrix. 
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Figure 6 Geographical distribution of studies on DBA 

 

In [Figure 5], we used a treemap diagram to look at the data set from four angles. The chart on the 

top left of the scale shows the number of times researchers used the solutions. The chart on the top 

right shows the scale of the number of surveys in countries. The chart on the bottom left shows the 

scale of the number of times keywords are used in papers. Furthermore, the exemplary bottom 

diagram shows the number of attributes of each article. In [Figure 6], we develop a dynamic 

sortable table that includes approach and citation counts of each approach used by researchers. 
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Figure 7 Treemaps of different features in studied papers 

 

All the developed files and processes are added to the GitHub repository [19]. Our database design 

mandates adding a newly published paper in the driving vehicle behaviour as the main object of a 

referable record. All the other values can be attached to the primary node (Name of the article). 

Moreover, concepts such as authors, affiliations; type of input and output data; and result 

presentation may be added. 
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Figure 8 Approaches, Counts, and Citation counts 

 

2.2 Background of the Driving Behaviour Analysis 

2.2.1 Declarations of Driving behaviour Analysis 

It is helpful to define Driving Behaviour Analysis (DBA) by considering the term word by word. 

Analysis can be said to refer to "The process of studying or examining something in an organized 

way to learn more about it or a particular study of something." [20]. Behaviour is typically 

understood as" the response of an individual, group, or species to its environment" [21]. Finally, 

driving can be defined as" to operate the mechanism and controls and direct the course of (a 

vehicle)" [22]. Taken together, then, the meaning of DBA is to detect and study drivers' behaviour 

by leveraging the output data gathered from their vehicles. Drivers can be identified for unsafe 
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driving behaviour such as harsh accelerating, sharp slowing; frequent braking; speeding; harsh 

high-speed turning; sluggish driving, frequent parking, and fatigued driving [IBM]. Driving 

behaviour insights can help automotive manufacturers improve design and manufacturing, assist 

with quality control; enhance protection, and simplify maintenance. This can help manage vehicle 

fleet activities, and insurance providers can get powerful insights into the vehicle use and risk 

evaluation of their customers. Considering the importance of DBA from another angle, we find 

that one of the most critical consumers of this algorithm is insurance companies that can take 

advantage of dynamic insurance systems by ensuring that each driver will be charged according 

to their driving behaviour.  

 

2.2.2 History of Driving Behaviour Analysis 

The first car built and offered for purchase occurred in the early twentieth century. Consequently, 

at that time, all efforts were focused on car mechanics [23]. The "Duesenburg Model A" became 

the first vehicle to have hydraulic four-wheel brakes in 1922; this is considered the first step in 

increasing car safety [24]. One of the first studies to analyze driver behaviour was the paper by 

Hsing-Shenq Hsieh et al. [25]. They assumed that most video systems were ineffective at 

unsaturated intersections due to the chaotic combinations of aggressive driver behaviour and the 

geometric design of curved lines. They defined their methodology using several reference points, 

and the Bleyl transfer method was developed as a matrix and the least-squares method (LSM). 
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2.2.3 Deep Learning Methods used in aggressive driving behaviour analysis 

AI aims to give computers the mental power to program them to learn and solve problems. Its 

purpose is to simulate computers with human intelligence [26]. In recent years, various algorithms 

in the analysis and understanding of driving behaviour have been used. To the best of our 

knowledge, we explore the papers scoped in the "scope of research"; related to the DBA concept.  

Furthermore, we explore the DL approaches those researchers used to prepare results. In the next 

step, we have investigated the citation number of each paper and tried to find out the best of them 

regarding their method and approach popularity. 

Our paper focuses on studies that used DL for this research. Instead of defining the hierarchy and 

layering of existing algorithms classically, we address the popularity of algorithms to provide a 

background for analyzing and categorizing existing articles in this field. The following section 

lists the most popular methods to detect driving behaviour patterns in the researcher's papers. 

 

2.2.3.1 Convolutional Neural Network 

The term CNN means that a statistical operation called Convolution (a specialized sort of linear 

reaction) is used for the network [27]. Convolution is a function derived from two functions by 

integration (in strictly mathematical words), which describes how one's form is changed by another 

[28]. The most significant benefit of CNN relative to its contemporaries is that it automatically 

identifies the vital features without any human supervision [29]. CNN has several critical 

drawbacks: many training samples are needed for learning weight parameters, and a strong GPU 

is needed to speed up the learning process. Also, the strong CNN is often not taken advantage of 
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by researchers who do not have such computing resources, time, and large-scale training data [30]. 

In the reviewed literature, the most popular methodology is the CNN algorithm. 

 

2.2.3.2 Recurrent Neural Network – Long Short-Term Memory 

A subset of neural networks used to analyze sequential data input or output are RNN. RNNs have 

a temporal relationship between input/output sequences [31]. RNNs use the previous outputs as 

inputs that have hidden states. The advantages of RNNs are 1) the possibility to process the input 

of various lengths, 2) the fact that the size of the model does not increase with the input size; and 

3) the reality that the history of the previous information is included in the calculation, and that the 

weights are shared over time. However, RNN has several disadvantages, including 1) slow 

calculation, 2) difficulty accessing information from long-term history, and 3) that future inputs 

cannot be considered for the current situation [32]. 

 

2.2.3.3 Auto Encoders 

AEs are practical learning approaches that aim to transform input to output with the least possible 

error [33]. An AE finds a representation or code to classify different inputs to perform valuable 

transformations on the input data. For instance, a neural network finds a code that can turn noisy 

data into clean data by denoising AEs. Noisy data can be transformed into coherent sound in an 

audio recording of static noise [34]. 

AEs require considerable computational resources and data. The functionality we attempt to 

retrieve can often be blurred by a loosely organized testing dataset used in AE training. AEs can 

be coupled with various neural network architectures, such as feedforward NNs, CNNs, and RNNs, 
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in semi-supervised learning activities. The combinations listed previously can provide good results 

in multi-task ML problems by simplifying the inputs to a representative code. Nevertheless, it can 

also harm the model's interpretability even more as it is a trade-off for researchers to select between 

the simplicity of network or complexity of interpretation. AEs can collaborate with other neural 

networks independently in unsupervised and semi-supervised learning activities, considering their 

drawbacks [35]. 

 

2.2.3.4 Self-Organizing Map 

The Self-Organizing Map (SOM) projects a high dimensional distribution on a primary grid that 

is in order. SOM converts complicated nonlinear relationships between high-dimensional data 

objects to more straightforward geometric relationships. Compressing the most important 

topological and metric relationships while preserving specifics will result in complex abstractions. 

SOM process analysis, perceptions, and communications in complex activities [36]. 

 

2.3 Key-Papers Review 

In this section, we review the most cited papers related to our review. A more detailed summary 

is illustrated in Appendix A. Recent work by Weishan Dong et al. [37] examined and identified 

driving behaviour, extracted them, and added five new statistical features using only latitude and 

longitude characteristics; it was essential for them to help the model interpretation. The authors 

used GPS data only and claimed that in the future, with complete information, such as On-Board 

Diagnostics (OBD) data and other sensors, the results will be more accurate. They then split the 

data into specific frames. Each frame was labelled "Driver Id," and the method was "supervised." 
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First, the researchers used the method of Yang et al. [38], followed by the use of the Integrated 

Recurrent Neural Network (IRNN) method, plus the "two stacked recurrent layer." In addition to 

these two methods, Dong et al. utilized "non-deep learning" methods. Gradient Boosted Decision 

Tree (GBDT) and "TripGBDT" methods employed the Kaggle site dataset for implementation; In 

this method, statistical data is used along with the available features (57 in total). Several studies 

investigated whether the deep learning methods (i.e., hidden global travel information) perform 

better than the GBDT method (i.e., information is shared as a feature). One result showed that if 

the sampling rate were less than 0.1 Hz (a record in 10 seconds), the results would be severely low. 

The Kaggle 2015 competition on driver telematics analysis data [39] was used to test the proposed 

researches. Dong and colleagues found that the derived traits were not as strong as those learned 

by DL. 

Furthermore, the "Stacked-IRNN" method was seen to perform better than the others. However, it 

naturally costs a lot to converge over time. The researchers noted the operational issues that DL 

methods for online prediction are much more helpful than "TripGBDT." Privacy is one of the 

critical issues in the use of telematics data. Furthermore, road shape, traffic, and weather can affect 

driving behaviour. Also, vehicle sensor data such as OBD can be added to the model as a feature.  

Pengyang Wang et al. [40] assumed that driving activity is a dynamic task that involves 

professional multi-level movements, such as acceleration, deceleration, constant speeding, left 

turning, right turning, and straight movement that would be complex interpretation for an AI 

model. Wang et al. claimed that studying driving behaviour will help to analyze driver 

performance, improve traffic safety, and eventually facilitate the development of intelligent and 

resilient transport systems to allow many critical applications, such as tracking drivers, 

automobiles, and highways; providing early warning and driving assistance; improving driving 
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comfort; and saving energy. Three distinct types of DBAs exist: 1) Descriptive analysis is the first 

type, in which transport experts identify metrics (e.g. harsh or repeated acceleration/braking, sharp 

turn, or pre-turn acceleration) based on a transport theory that explains driving behaviour [41]. 2) 

In the second type, predictive analysis, researchers utilize driving data patterns and ML methods 

(e.g. SVM; Naïve Bayesian) to forecast vulnerable scores [42]. 3) Casual analysis describes the 

causal factors in driving behaviour and demonstrates how these factors affect road safety [43]. 

Wang et al. developed a peer and temporal-conscious representation learning-based analytical 

framework for DBA using GPS tracks. Firstly, a series of Multiview driving state change graphs 

from GPS tracks were created to describe each vehicle's complex driving activity. Secondly, graph-

graph peer and current-past time-dependent driving behaviour patterns were defined, and peer and 

time-dependent modelling were integrated into a single auto-encoder-based optimization system. 

Driving behaviour representations for estimation and historical evaluation were studied, with risky 

zone identification as implementations. Finally, detailed tests were performed to demonstrate the 

proposed system's improved efficiency with GPS tracks in real-world cars. The researchers 

described two phrasal terminologies that allowed them to incorporate their method. Driving 

Operations are defined as a collection of actions and measures that a driver operates while driving 

a car, according to the driver's judgement, expertise, and skills. Driving State is concerned with 

how vehicles travel at a certain time point or in a short time window. In other words, a driving 

condition of a car varies with time, which involves the speed status (i.e., acceleration, deceleration, 

steady speed), and the path status (i.e., turning left, turning right, going straight). A series of driving 

states may be: [<acceleration, moving straight>, <constant speed, moving straight>, <deceleration, 

turning right>]. The suggested approach took advantage of Multiview driving state transfer graphs. 
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Different observers interpret the transition from two different perspectives: the likelihood of 

transition and how long the transfer continues. 

Three objectives were followed in the model design. First, structural consideration: by designing 

the desired graphs, they were transformed into vector data. A second objective was peer 

dependency: Drivers who mimic each other's actions, patterns, and attitudes. The model should 

reflect them according to the graph-graph peer dependency model. The third objective was 

temporal dependency: The current time slot's driving operations demonstrate clear autocorrelation 

connected with the previous driving states. 

Wang et al. [40] analyzed driving habits from the context of representation learning. They 

considered how fast and how long people travelled by building driving state transition graphs. 

They investigated how one specific driving behaviour relies on another driving behaviour. The 

framework was generated by empirical modelling of the interconnections between the peer and 

temporal dependencies. They first defined driving behaviour using Multiview driving state graphs. 

They developed the idea of graph-graph (definition = trajectories with similar driving behaviour 

in the graph-graph peer dependency should have near representations in the learnt representation 

feature space [40])peer penalties to capture the temporal dependency of a single G-G peer by 

contrasting a graph-graph peer's present value with its initial value. They also applied the device 

to detect hazardous routes and rank drivers according to driving behaviour automatically. Test runs 

on real-world data have shown that Spatiotemporal Representation Learning is efficient for 

driving. 

Jun Zhang et al. [44] recommend a DL system for behaviour identification by fusing convolutional 

and recurrent neural networks, called attention-based DeepConvGRU (Convolutional, Gated 

Recurrent Unit) DeepConvLSTM. First, in-vehicle sensor data via CAN-BUS is gathered to 
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classify drivers' driving habits. The data was separated into parts for the method of normalization 

and sliding window study. Finally, the derived driver action patterns were used in a "deep learning" 

algorithm for recognition. Their key contributions are described as follows: their architecture 

conducted automated behaviour detection on real-time multi-dimensional in-vehicle "CAN-BUS" 

sensor data, capturing local dependence among the temporal component (i.e., velocity, 

acceleration) data and across spatial locations. By incorporating the attention function, their model 

may catch salient structures of high-dimensional sensor data and explore the correlations among 

multiple sensor data channels for rich feature representations, enhancing the model's learning 

efficiency. Their architecture can be used to train end-to-end with no function engineering (which 

means, instead of adding statistical functions to add more value to the dataset), utilizing raw sensor 

data without preprocessing relevant to any sort of sensor. 

The GRU/LSTM cells distinguish driving habits by adding historical habit values to secular values. 

The "Deep Convoluted GRU" model used DL to exploit temporal dynamics. The proposed 

approach outperformed the conventional system on the "Ocslab driving dataset[45]". The proposed 

methodology learnt features from the original signals and fused the learned features without any 

special preprocessing. Surprisingly, the DeepConvGRU obtained competitive "F1 ratings" (0.984 

and 0.970, respectively) using at least 51 raw sensor input channels.  

Jooyoung Lee et al. [46] established a method to analyze in-vehicle driving data and demonstrate 

possible violent driving signs. The mentioned system for detecting sudden shifts was based on a 

two-tier clustering strategy. Some researchers have utilized these methods to detect sudden shifts 

in driving and cluster driving incidents. With this process, actual in-vehicle driving records of taxis 

in Korean metropolitan cities were examined. The clusters were used to assess whether another 
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driver's driving record is a possible risk of violent driving and include statistics on potentially 

aggressive driving. 

The research of Jooyoung Lee et al. [46] was performed sequentially to recognize violent driving 

habits. The technique comprised a three-stage advancement of a mission, detecting a transition, 

and extracting functions. An in-vehicle recorder was developed to document driving conditions 

over time. As the data on RPM (revolutions per minute), acceleration and yaw rate are used, the 

model's precision improves as the three time-series data display significant improvements. When 

the change point is observed, they decide it has passed the 5th percentile of the results. Once a 

rapid shift in direction, acceleration, and yaw rate are observed, they can identify the phenomenon 

as a driving event. The researchers used unsupervised learning to gather sudden shift events 

(unexpected shifts) and categorize instances (driving incidents). The framework can evaluate 

driver behaviour and give recommendations to drivers on their driving style. They think it can be 

a helpful tool for driver education because driving records may include driving behaviour in actual 

road conditions, unobservable in controlled environments. Although the driver's self-reported 

aggressive driving incidents could be related to collisions, it is not yet confirmed if aggressive 

driving events or accidents are connected. The authors suggested they might have potentially 

affected their study's findings through driver characteristics, but driving reports have already 

collected these factors. Researchers could not analyze the effect of other variables on driving 

activity because personal data and sensor limitations hindered precise estimates of the other 

factors. 
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2.4 Reviewing the datasets 

The "Kaggle. Driver Telematics Analysis" [39] dataset has a directory containing multiple files. 

There are 200 CSV files found inside each folder. Each file defines a driving trip. The trips are 

recordings of the location of the vehicle per second (in meters). The trips were based on starting 

at the origin (0,0), arbitrarily rotated, and short lengths of trip data were omitted from the start/end 

of the trip to safeguard the privacy of the drivers' locations. A small and random number of false 

trips (trips that the driver of interest did not drive) are put in each driver's folder. The number of 

false trips or a labelled training set of authentic festive trips is not given (it varies). In any given 

folder, most of the trips belong to the same driver [39]. 

Driver ID, order ID, time, latitude, and longitude are included in the "Didi Chuxing GAIA 

Initiative to the research community" dataset. The GPS trajectory's precision is 3 s, and the tying 

lane processes it. With picking the one-month drip taxi data for October 2016 in Xi'an, China; A 

more straightforward scoring system was used to mark this dataset [38]. 

The "UAH-DriveSet" is a public data array captured in multiple settings by the driving tracking 

software "DriveSafe," by separate testers, supplying a vast number of recorded and processed 

variables across all smartphone sensors and capabilities during independent driving experiments. 

The application was tested on six different drivers and cars, with three different behaviours 

(normal, drowsy, and aggressive) performed on two types of roads (motorway and secondary 

roads), resulting in more than 500 minutes of naturalistic driving with its related raw data and 

additional semantic knowledge, along with video records of the trips [47]. 

It was legislated in Korea in 2011 that all commercial vehicles (e.g., cars, buses, and taxis) must 

have a digital tachograph (DTG) fitted, a kind of in-vehicle driving recorder for safety monitoring, 
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to capture the "DTG database" dataset (Traffic Safety Act Article 55 in Korea). The DTG device 

imports the driving documentation from the On-Board Diagnostic Systems (OBD-II) terminal and 

stores them on the Secure Digital memory card (SD). Data stored in the memory is periodically 

extracted and transmitted to the Korea Transport Protection Authority (TS) server via the internet 

[46].  

"OSeven Telematics, London, United Kingdom": Data is obtained from an already established 

mobile program on both iPhone and Android smartphones. The program is still running in the 

mobile operating system such that no user intervention is taken when commuting. The program 

gathers raw data from smartphones using multiple parameters using accelerometers, gyroscopes, 

and GPS cameras. In m/s2, the accelerometer will record the acceleration of a smartphone in terms 

of gravity acceleration, while the gyroscope measures the angular velocity of the smartphone in 

rad/sec. Finally, GPS data is obtained to monitor the speed of the vehicle and the vehicle's 

coordinates. Because the program uses cloud-based services, data is transmitted to the server for 

storage anonymously for further analysis after automated identification at the end of the ride [48]. 

The "KITTI" Data Collection includes the specifics of raw gray stereo squares; natural colour 

stereos and colour squares; 3D Velodyne point clouds; 3D GPS/IMU data; calibrations, and 3D 

entity track-list marks, which can then be processed and registered at 10 Hz. Directories and 

directories with dates of formation are presented. Most consumers need to transform and cleanse 

the data after processing it [14]. KITTI dataset indicates a one-week route of 10.357 taxis in the 

"T-Drive trajectory dataset." This dataset comprises approximately 15 million points and a 

cumulative distance of nine million kilometres [49]. 
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The HCRL dataset comprises a ride from Korea University to the SANGAM World Cup Stadium 

of ten drivers, a cumulative driving period of around 23 hours, and a route that involves riding via 

Seoul and the surrounding areas for about 46km [45].  

The "Warrigal" dataset is a broad, rich dataset extracted in an industrial environment from the 

experiences of large trucks and smaller 4WD vehicles. A fleet of 13 vehicles working in a surface 

mine for three years collected the results. Information about the vehicles' status (e.g., location, 

speed, and heading) and their peer-to-peer radio contact descriptions are contained in the dataset. 

With a resolution of 1 Hertz, the data extends three years. To the best of our knowledge, no other 

publicly accessible data collection comes near this degree of information over such a significant 

period. There is no precedent for the research possibilities and applications that these data allow. 

This dataset has already been used to analyze map formation, protection analysis, driver purpose 

inference and wireless network antenna failure [50]. 

 

2.5 Survey Dimensions 

After reviewing the articles published in this field, we categorized them by the method used for 

DL, concluding that CNN, LSTM and AEs were the most common methods [Figure 7].  



30 

 

 

Figure 9 Approaches used counts 

In terms of publications, we have categorized and sorted the articles. The largest share of article 

publishing was found to be in Scopus, IEEE, and ACM, respectively [Figure 8]. 

 

Figure 10 Database's paper counts in the DBA field 
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We have found that some researchers do not make available their research data, which is typically 

owned by a specific organization and only report the results of their research. At the same time, 

some other researchers made their data available to the public. The proportion of these two types 

in the total number of articles we considered is 37 to 19, respectively [Figure 9].  

 

Figure 11 Dataset statuses of reviewed papers 

 

There are times in the research process when a researcher uses several datasets to prove a proposed 

theory or algorithm. Examining the available articles, we found that the number using more than 

one dataset is seven, versus 33, which used one input database. 



32 

 

 

Figure 12 Sources of data status 

 

 

Figure 13 Geographical distribution of publications 
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2.6 Future Direction and Outlook 

Following the publication of this paper, we decided to enhance the accuracy of driving behaviour 

identification using deep learning neural networks and the "LSTM" technique under the "RNN" 

branch. Using one of the available datasets, we attempt to build, test, and assess the required 

modelling. 

Following that, we will expand on the technique we presented to implement survey papers so that 

researchers may use it as a general open-source library for any research publications, independent 

of the subject covered in this study. 

 

2.7 Challenges and Opportunities 

We report the challenges of researchers in this field and then address our challenges in this review. 

One of the most critical challenges facing researchers in this field is finding suitable datasets to 

perform various calculations to improve their algorithms. Usually, data heterogeneity presents 

another challenge once data sets are found, meaning that the measurements made during the data 

collection process may not have been carried out at the same time interval. Researchers need to 

homogenize their data at this stage. Next, researchers must decide what features to accept in their 

proposed model. 

Furthermore, because the scope of our review lies in the field of DL algorithms, researchers have 

tried to use all the features and sometimes even add the calculated features to them. For example, 

instantaneous velocity was calculated and sent to the model using different points in the associated 

times. Some researchers question these calculated features and believe that the deep ML model 

extracts them. 
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A challenge related to our review is the number of papers to be surveyed and the adoption of 

inclusion and exclusion criteria. Several publications took place over different periods and in 

separate databases. The lack of a centralized database update motivates us to redesign our survey 

methodology to be dynamic to cover future work in this field. We further implement a dynamic 

relational database management system that periodically crawls several pre-set databases. 

Moreover, the dynamic database design allows other databases under user control with different 

inclusion/exclusion keywords. Another challenge to our survey methodology is the means of 

actively representing extracted information from reviewed papers. Most of the previous work 

provides static views of this information that may not reflect the future directions in this field. We 

propose actively demonstrating the extracted information using an interactive platform (i.e., 

Google Data Studio). In addition to the challenges mentioned above, we encounter another issue 

when developing this dynamic database: communicating with different interfaces in different 

database search engines. We further address the inconsistency in the database interface by 

implementing an adaptable interface in dynamic database design that can easily connect to several 

interfaces. 

 

2.8 Conclusion 

Accidents impose severe socio-economic complications for the community, and thus safe driving 

behaviour is a critical component in saving lives on the roads. Considerable research efforts were 

conducted to understand the fundamental factor that affects driving behaviour in different settings. 

In this survey, we began by discussing the primary methodologies used to analyze driving 

behaviour patterns. Considering the analysis of different publications in this area, we find that the 
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field of driving behaviour analysis is increasing due to the interests of different stakeholders in 

studying driving behaviours for a safer transportation environment.  

We have presented a dynamic methodology for the previous review in analyzing driving patterns 

to identify driving behaviour. We collected several previous studies and categorized them 

according to the methodologies used in data analysis. We compared the advantages and limitations 

of the major papers in this field. We realized the importance of a dynamic survey mechanism that 

enables research to add new research efforts to existing ones. Fortunately, our dynamic survey 

methodology will assist researchers in this field in the future to better understand the current 

contributions to driving behaviour analysis. If an article on driving behaviour is published, the 

dynamic database automatically adds it to our database data warehouse and makes it available for 

further analysis. The availability of data on this field is crucial to the success of driving behaviour 

analyses. We discuss several publicly available data sources that can be used to analyze driving 

behaviour. 

Another important point we wish to highlight is that, after analysis of different models and 

algorithms proposed by previous researchers, we conclude that the precision of algorithms which 

in some way implemented the subject of time series in their models is higher than those models 

that deal only deals with data changes regardless of time. The number of articles that considered 

this field from a graph perspective has so far been minimal. In this way, the vehicle movement 

sequences to extract driving behaviour are considered consecutive graphs; the existing pattern in 

modifying these graphs is classified. The most up-to-date articles in this field show the high 

accuracy of this way of thinking. Fortunately, in the future, our framework will assist researchers 

in this field in following and analyzing the existing trend in this field from other angles. 
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Chapter Three: Deep Learning Approach for Aggressive Driving 

Behaviour Detection 

3.1. Introduction 

3.1.1 Abstract 

Driving behaviour is one of the primary causes of road crashes and accidents, and these can be 

decreased by identifying and minimizing aggressive driving behaviour. This study identifies the 

timesteps when a driver in different circumstances (rush, mental conflicts, reprisal) begins to drive 

aggressively. An observer (real or virtual) is needed to examine driving behaviour to discover 

aggressive driving occasions; we overcome this problem by using a smartphone's GPS sensor to 

detect locations and classify drivers' driving behaviour every three minutes. To detect timeseries 

patterns in our dataset, we employ RNN (GRU, LSTM) algorithms to identify patterns during the 

driving course. The algorithm is independent of road, vehicle, position, or driver characteristics. 

We conclude that three minutes (or more) of driving (120 seconds of GPS data) is sufficient to 

identify driver behaviour. The results show high accuracy and a high F1 score. 

 

3.1.2 Keywords: 

Driving behaviour detection, driving behaviour analysis, Aggressive driving detection, Supervised 

deep learning classifier 

 



37 

 

3.1.3 DBC Introduction 

With the number of automobile accidents, fuel economy, and determining the level of driving 

talent, the DBA (Driving Behaviour Analysis) becomes a critical subject to be calculated. 

Depending on the types of car sensors, the inputs and outputs can then be examined to establish if 

the DBC (Driving Behaviour Classification) is normal or deviant.  According to World Health 

Organization (WHO) publications, studying driving behaviour is necessary. Because it is one of 

the primary factors contributing to catastrophe, driver factors include altitude, intoxication, fatigue, 

poor road conditions, eyesight impairment, and vehicle performance considerations [16]. Thus, 

considering the amount of damage in a car accident, in this study, we examine the problem of 

detecting violent driving using GPS data with a few minutes of driving per person. 

There are many types of sensors connected to a control area network to monitor driving behaviour. 

Driving behaviour data is multidimensional, time-series data that has been calculated. In some 

cases, the dimensions of time series data are not statistically independent [51]. A proper depiction 

of driving characteristics might be critical in applications such as autonomous driving, auto 

insurance, and others. On the other hand, traditional methods rely significantly on handcrafted 

features, impeding ML algorithms' potential to reach superior efficiency [37]. Driving is a dynamic 

endeavour requiring various ability levels (e.g., acceleration, braking, turning); this dynamicity 

can distinguish drivers' driving behaviour. Compared to a fingerprint, everyone has distinct driving 

patterns, such as a set speed, acceleration, and braking patterns [52]. However, there are different 

ways to find patterns and classify them in particular [53], [54]. 

Driving behaviour analysis will assist us in determining driver efficiency, enhancing traffic safety, 

and eventually encouraging the development of intelligent and resilient transportation systems. 

Although various attempts have been made to evaluate driving behaviour, representation learning 
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can improve current methodologies by exploring peer and temporal connections in driving 

behaviour [40]. 

Numerous reports on road safety have focused mainly on the elements that contribute to severe 

and fatal accidents. As a result, less emphasis has been placed on minor injuries or events before 

a crash [55]. This reality may lead to inaccurate beliefs about injury prevention and management. 

While the DBC received considerable attention in the past, much remains to be learned about it, 

including the dimensions of driving patterns and their potential impact on road safety [56]. 

 

3.1.4 Scope of research 

This study proposes a model that can discover the aggressive driving pattern in less than 3 minutes 

(the selection of 180 seconds will be described later in this research) by capturing GPS records 

every second. We examine two different RNN-based methods (GRU, LSTM) in various 

circumstances. The experiments have been evaluated in two approaches: 1) Splitting the dataset 

into training, validation, and test datasets; and 2) reserving a driver dataset to have the real-world 

test. 

 

3.2. Driving Behaviour 

Because of different driving factors (fatigue, intoxication, drowsiness, distraction), drivers' 

Behaviour may vary; road adhesion, traffic, and weather conditions also influence driving traits 

[57]. The choice of driving speed is one element of driving style that has emerged as a significant 

predictor of differential accident participation in recent years [58]. Unsafe driving habits may 

develop because of two main factors. First and foremost, drivers may have varying attitudes about 
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driving, including varying anxiety levels about the potential of a collision. Second, drivers may 

have differing perspectives on what constitutes good and poor driving and their level of 

competence and safety on the road [53]. Although there is a link between some demographic 

characteristics and accident risk, this link is mediated by several other variables that should be 

considered. Despite this, age and gender are related to accident risk even after considering these 

driving style variables [59]. In this study, we want to find the correlation between changes in 

vehicle states and driving behaviours. The following section will discuss different sensors that may 

be utilized to find the relation above. 

 

3.2.1 Sensors 

An observer (online = human, fleet tracker / offline = sensors, camera records) must evaluate their 

driving conduct in a driving course. There are proposed models that try to monitor the drivers by 

utilizing various sensors and detecting driving Behaviour by changing drivers' different conditions 

[60] [61]. There are two types of sensors in autonomous and non-automated vehicles: 

"Environmental" and "Vehicle State" [62]. In this study, we are using the vehicle states (position 

and changes) sensors. The most applicable vehicle states sensors are: IMU, CAN J1939, Magnetic 

Compass and GPS. Regarding the dataset used in this study, we will study GPS deeper in the 

section that follows.  

 

3.2.2 GPS 

The GPS does not require data transmission from the user; it functions independently of any 

cellphone or internet reception [63]. GPS is crucial for military, civil, and commercial purposes 
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worldwide [63]. The US government developed, maintains, and makes the system openly available 

to anybody with a GPS device [63].  

The GPS receiver determines its position and time using data from many GPS satellites. This data 

is sent to the receiver by each satellite. A very stable atomic clock, synced with ground clocks, is 

carried by each satellite. Day-to-day corrections are made for time differences. Similarly, the 

satellite placements are precise[64]. GPS receivers also contain clocks, but they are less accurate 

and steady. Radiation delays are proportionate to distance since radio waves have a fixed speed 

regardless of satellite speed. Because the receiver must compute four unknown values, four 

satellites are required at minimum (three position coordinates and a clock deviation from satellite 

time)[64]. 

The raw GPS record captured from the mobile devices has at least these attributes: Speed (Km/h), 

Latitude, Longitude, Altitude, Vertical accuracy, and Horizontal accuracy. This article attempts to 

classify driving behaviour using most of these parameters first and subsequently only using speed 

variations and their correlation with latitude and longitude variations. 

 

3.3. Classification approaches 

This step uses GPS (Latitude, Longitude, Altitude) data to classify aggressive or non-aggressive 

driving behaviour. As the trajectory data of a driver is a sequential dataset (time series), we use 

RNN approaches in this study [65]. RNN is a subtype of supervised DL in which the previous 

step's output is used as input for the next phase. For sequential data, the RNN deep learning method 

is optimal [65]. The hidden state, which memorizes certain information about a sequence, is the 

most crucial aspect of RNN. RNN transforms independent activations into dependent activations, 
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decreasing the complexity of increasing parameters and remembering each previous output by 

sending each output to the next hidden layer as input. In this study, we go through LSTM and GRU 

methods to experiment with the accuracy of the proposed model in different circumstances. In the 

following section, the differences between GRU and LSTM are described. 

 

3.1 GRU vs. LSTM 

RNNs are designed to work with time series; they use previous sequence information to produce 

current output. Memory problems arise in RNNs because of a vanishing gradient. RNN suffers 

from vanishing gradients more than other neural networks as the number of steps increases[26]. 

To explain vanishing gradients, consider the following procedure: to train an RNN, we 

backpropagate through time, computing the gradient at each step. The gradient is used to update 

the weights of the network. The gradient value will be below if the previous layer's effect on the 

current layer is modest. If the gradient of the previous layer is slight, the gradient of the following 

layer will be as well. Gradients grow smaller as we backpropagate. A smaller gradient indicates 

that there will be no weight update. Consequently, the network fails to learn prior inputs, causing 

short-term memory problems [31].  

Two customized variants of RNN were developed to solve the vanishing gradients issue. They are 

as follows: 1) GRU and 2) LSTM. LSTMs and GRUs use memory cells to store the activation 

value of preceding steps in a long sequence. Gates are used in networks to regulate the flow of 

information. Gates can learn which inputs in a sequence are significant and store their knowledge 

in a memory unit. They may provide data in lengthy sequences and utilize it to generate predictions 

[32]. 
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The workflow of GRU is the same as RNN, but the difference is in the operations inside the GRU 

unit. Inside GRU is two gates: 1) reset gate and 2) update gate. Gates are nothing but neural 

networks; each gate has its weights and biases. The update gate decides if the cell state should be 

updated with the candidate state (current activation value) or not. The reset gate is used to decide 

whether the previous cell state is essential or not. The candidate cell is simply the same as the 

hidden state (activation) of RNN. The final cell state is dependent on the update gate. It may or 

may not be updated with the candidate state. The final cell Removes some content from the last 

cell state and writes some new cell content [31].  

Long short-term memory (LSTM) is like GRU in that they are designed to address the vanishing 

gradient issue. In addition to GRU, there are two additional gates here: 1) the forget gate 2) the 

output gate. Because all three gates use the sigmoid activation function, they are between 0 and 1. 

The forget gate determines what is retained and forgotten from the previous cell state; it determines 

how much information from the previous state should be kept and how much should be lost. The 

output gate determines which portions of the cell are sent to the concealed state [31]. 

 

3.4. Dataset and challenges 

The "UAH-DriveSet" [66] is a public repository of data collected from various testers in various 

conditions by the driving monitoring program "DriveSafe." This dataset intends to speed progress 

in driving analysis by providing many characteristics collected and analyzed during independent 

driving tests using all smartphones' sensors and capabilities. The application was run on six distinct 

drivers and vehicles. At the same time, they engaged in three distinct behaviours (normal, drowsy, 

and aggressive) on two distinct types of roads (highway and secondary road), yielding over 500 
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minutes of naturalistic driving with associated raw data and additional semantic information, as 

well as video recordings of the trips [66]. This dataset contains six distinct drivers; each driver 

drove two roads - one of which was 25 kilometres long and with a maximum speed limit of 120 

kilometres per hour, and the other of which was 16 kilometres long and had a maximum speed 

limit of 90 kilometres per hour - while exhibiting three distinct driving behaviours: normal, 

drowsy, and aggressive. Because the "RAW GPS.txt" file contains nearly all the information we 

want, including speed, latitude, longitude, altitude, vertical and horizontal precision, and sample 

timestamp. We use it to categorize the drivers' Behaviour. While this is the ideal dataset for our 

situation, it does have some limitations. The drivers are comprised of five men and one female. 

The minimum and maximum age ranges are 20-30 and 40-50. Except for one car, they are all made 

in Europe. Additionally, one of the cars is a battery-electric vehicle. In the next section, we 

examine the limitations and the solutions that we propose to mitigate them. 

Driver Gender Age Vehicle Fuel type 

D1 Male 40-50 Audi Q5 (2014) Diesel 

D2 Male 20-30 Mercedes B180 (2013) Diesel 

D3 Male 20-30 Citroen C4 (2015) Diesel 

D4 Female 30-40 Kia Picanto (2004) Gasoline 

D5 Male 30-40 Opel Astra (2007) Gasoline 

D6 Male 40-50 Citroen C-Zero (2011) Electric 

Table 2 List of drivers and vehicles that performed the tests 



44 

 

 

3.4.1 Dataset limitations and solutions 

1. Each driver's Behaviour differs from the others; for example, one driver's normal Behaviour 

may differ from others. As a solution, we have all the drivers' training data by splitting a trip 

into smaller batches and giving some to the system for learning and the rest for validation and 

testing. 

2. The most challenging aspect of the dataset is labelling an entire route with a single style of 

driving. However, there have been instances when the driver drove contrary to the label. We 

choose to ignore it as noise; given the nature of human beings, it is quite natural for an 

individual's Behaviour to vary throughout a driving course. 

3. Because each driver's driving speed varies, the quantity of data points in each dataset file 

varies. The solution is to divide our dataset into smaller groups, work on them individually, 

and make the frequency of the events the same. 

4. The batches must have the exact dimensions to feed our data to the model. For example, we 

cannot provide 20 kilometres of one route for learning in one batch and the remaining 5 

kilometres (3 kilometres for testing and 2 kilometres for validation) in two separate batches. 

The solution is to divide our dataset into smaller batches, the same size as the data points, and 

work on them individually. 

5. The low volume dataset for deep learning is an issue, as the dataset content described 

previously. Obviously, for deep learning pattern recognition, we need to have more volume of 

the dataset. So, we proposed overlapped time series sequences to provide more training, 

validation, and test dataset as input for the designed model. 
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6. Model sensitivity occurs during the model training because of imbalanced weights of classes. 

The nature of aggressive or non-aggressive driving made this an issue. It means that when we 

drive, the potential of aggressive driving is far less than normal driving. We oversampled 

aggressive driving during the training and validation phase and used weighted classes in our 

RNN models to address this phenomenon. 

 

3.5. Methodology 

Our proposed model is a labelled (supervised) data-based deep learning pattern recognition model. 

The best outcome is then reached in the evaluation (real-world test) process by adjusting the 

topology and hyperparameters. The time-series data of speed changes in a driving trajectory is 

shown in the figure-1. In addition to speed, our dataset also includes geographic position 

information, which leads to a better outcome in the deep learning process. 

 

Figure 14 Speed changes of a trajectory 
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We construct various LSTM and GRU architectures with varying parameter values and evaluate 

their output to determine which design best fits our situation. The original dataset is divided into 

three sections: training, validation, and test. Two types of normalization (Min-Max and 

Standardization) approach are used first, followed by a seven-layer LSTM/GRU model with drop-

out, batch normalization, delta, and shuffled training datasets before splitting.  

Figure 2 shows that in the first layer, we are preparing a trajectory value of a driver with 120 

seconds of their driving that each moment has eight features (speed, longitude, latitude, altitude, 

and differentials). Then, the following seven neural networks are LSTM/GRU (different 

experiments), drop out (make it more complex for the model to find patterns easier), and a batch 

normalizer that helps to the consistency of values sent to the next layer. After seven layers of 

LSTM/GRU layers, a dense layer with activation of sigmoid classify the pattern of the trajectory 

to one of the classes of aggressive or non-aggressive. 

 

Figure 15 Neural Network Diagram 

 

We implement 24 different models based on the parameters below:  
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1. Input shape: The input shape went from 60 seconds to 120 and then to 180, which improved 

the accuracy; the trend shows that we will get better accuracy than driving GPS records to be 

sent for the input layer. Nevertheless, as we want to implement a real-world model to be 

deployable on an embedded device, the accuracy (98% on test evaluation) of the model that 

works with 2 minutes of driving would be sufficient. 

2. Normalization type: Normalization is used to reduce the amount of duplication in a 

connection or collection of relationships. In the experiments, the "Standardization" was shown 

to be superior to "Min-Max" normalization. 

3. The number of Hidden Layers: To obtain the optimal decision boundary, we must use hidden 

layers; thus, we gradually increase the number of hidden layers from one to seven, with seven 

providing the best results. We make the model complex enough to capture all the patterns and 

map them to the correct target class. 

4. Drop-out: Drop-out is a technique for preventing a model from overfitting, and so introducing 

drop-out after each GRU/LSTM layer helped our model avoid overfitting. We use a 70% drop-

out value to let the model find all its nodes, relations, and weights. 

5. Batch normalization: Batch normalization is a technique for standardizing the inputs to a 

network that can be applied to either the activations of a preceding layer of inputs or to the 

activations of a subsequent layer of inputs directly. Batch normalization accelerates training in 

some situations by halving or bettering the number of epochs and provides some regularization, 

hence lowering generalization error. Batch normalization undoubtedly aids our model. 

6. Shuffling the training Dataset: After several tests, we discovered that one of the issues with 

model training is that the last segment of each trajectory is always given to the model for 

validation. However, the model picked up on 70% of drivers' first Behaviour. Nevertheless, 
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the model will encounter all drivers' Behaviour using this new method, which involves 

shuffling the training dataset before dividing it. 

7. Adding differentials: The delta rule is a gradient descent learning rule for updating the 

weights of the inputs to a neural network. It is a particular case of the more general 

backpropagation algorithm and helps in slightly improving the accuracy. 

 

3.6. Data preprocessing 

1. Single row as a data point vs time-series: If we treat each row as a data point in the primary 

technique and pass them to our model, we notice that this strategy is invalid for our problem 

because the data points are related in time. It is illogical to classify a driver's Behaviour based on 

a single geographical data point. For example, if only an individual driver is in a specific location, 

we cannot judge that they are driving aggressively. 

2. Window size of data points, time-correlation: We know our dataset is a time series dataset since 

each row corresponds with the preceding and next rows. Additionally, we understand that the 

driver's current location is irrelevant at any given time, but the location changes and how they 

occur are critical to us. As a result, we chose to employ the window size notion, treat a batch of 

rows as a single data point, and send them to the model to verify that it is discovering relationships 

between distinct data points. 

3. Variation and road-type features: We enhance our model by including variations and road-type 

variables. Variations may be a more helpful feature for our model because they connect two 

distinct data points and aid the model in determining their correlation. Additionally, given that we 

have two distinct roads, understanding the road type can aid the model. Nevertheless, we try to 
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add those variations to make the dependency of the model to the specific location of the road that 

the dataset gathering occurs, and it drastically helps the proposed model. 

4. Shuffling: We choose various segments of each road as a test and validation dataset to 

demonstrate the route's whole course to our model. For instance, rather than utilizing the first 20 

kilometres of our road for training and the remaining five kilometres for validation and testing (on 

a 25-kilometre road), we split our dataset into the specified window size first, then mixed the data 

and utilized a percentage of batches for testing. 

5. Overlapping the datapoints: When we utilized a larger window size, for example, 180 sequences 

of GPS records, the number of data points decreased substantially. Thus, we applied the 

overlapping idea. In this study, we use the sliding window concept to choose the batches. 

6. The "speed limit" as a feature: We included a speed difference with the road's maximum speed 

to the dataset because we have two roads with varying maximum speeds in our dataset. It enables 

the model to link the top speed with driving behaviour. 

7. Evaluation based on "not seen driver" (real-world evaluation): Since our dataset has six distinct 

drivers, we partition it to make our model more generic. Five drivers are chosen for training and 

validation, and one is separated and never shown to the model to reserve for the testing phase. This 

practice simulates real-world tests conducted in our model evaluation section. 

By more understanding of the data, it is possible to enhance the subsequent stages of DL activities. 

Comprehending data implies the completeness of the data, its purpose and application[26]. Then 

comes the data cleaning phase, which entails completing gaps in data, smoothing out noise, 

identifying and removing outliers, and addressing discrepancies. Following that, data integration 

is required, which is often necessary when combining different databases or files. Each driver's 
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dataset occupies a separate folder, and each folder contains different types of driving on different 

roads. So, in this step, we code a function to walk between folders and combine all the files into 

one integrated file with the tags of driver label, type of driving and name of the trajectory. In the 

following data conversion, we are confronted with data normalization, modification, and 

aggregation procedures at this data preprocessing step. We use both Min-Max scaling and 

standardization in preprocessing of feature scaling of data for the model. A critical finding of Min-

Max Scaling is that it is strongly affected by our data's highest and lowest values, which means it 

will be skewed if our data includes outliers. So, all experiments that utilize standardization have 

better results. In the following, there are two examples and charts of the feature scaling concept. 

 

Figure 16 Min-Max and Standardization normalization formula and examples 

 

3.6.1 Split dataset preparation 

Dataset Split is a technique to evaluate the performance of the ML classification model. We take 

a given dataset and divide it into three subsets. The training dataset is a set of data used for learning 

(by the model), that is, to fit the parameters of the ML model [67]. The validation dataset is a set 
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of data used to provide an unbiased evaluation of a model fitted on the training dataset while tuning 

model hyperparameters. It also plays a role in other forms of model preparation, such as feature 

selection and threshold cut-off selection. The testing dataset is a set of data used to provide an 

unbiased evaluation of a final model fitted on the training dataset [26]. 

Our proposed model for the learning phase experiences two different methods. In the first method, 

shown in Figure 2, all the information is first merged. Then the training, validation and test dataset 

are split. In this experiment, the model has a chance to see at least part of the trajectory of all 

drivers. However, in the second method, the D5 driver is wholly excluded from the training and 

validation process and is only evaluated during the model testing. The advantage of the first 

method is that the model faces more occurrences of different datasets. Hence the disadvantage is 

that the model may have poorer performance in the real world. The benefit of the second method 

is that the simulation model has practically passed the real-world test. However, at the same time, 

it loses the chance of encountering a more significant data set during training, which will be solved 

during deployment. The way to solve the last problem is that the model is simultaneously in 

classifier and learning mode in the production environment, which also classifies driving 

behaviour. Moreover, it learns new scenes. 

 

Table 3 Unseen driver for the test phase 
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Table 4 Normal approach of dataset split 

 

3.6.2 Changes of the values 

One of our primary responsibilities as model designers is to minimize the model's reliance on the 

dataset. As a result, we added modifications to each dataset record's GPS values, such as latitude, 

longitude, and altitude, in this phase. Thus, the first record of each route is treated as 0. 

Furthermore, each timestep tracks changes. For example, in Figure 3, it is shown that the latitude 

value changes from 23.45 to 29.45. Thus, in the "latitude delta" cell, positive six changes of values 

are logged. 
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Figure 17 Changes of values 

 

3.6.3 The overlapped divided method 

The UAH database contains various trajectories of six drivers on two distinct roads while 

exhibiting various driving behaviours. If we utilize basic cuts to identify driving patterns, our data 

volume will significantly decrease. If we create trajectories using the overlapping split method, 

our data volume will grow by up to tenfold. In another way, since our suggested model is based 

on deep machine learning techniques, it needs a more significant amount of data. In Figure 4, it is 

evident that with 6 points of timesteps instead of two trajectories, we use them in 6 trajectories. 
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Figure 18 Overlapping of trajectories timeseries 

 

3.7. Evaluation 

Once we fit a deep learning neural network model, we must assess its performance on a test dataset 

[67]. Evaluation of the Test dataset is crucial since the reported performance lets us pick between 

candidate models and educates us about how optimum the model is at handling the problem. We 

employ a conventional binary classification issue in this work. We investigated two distinct 

techniques to analyzing the data in this investigation. To assess model outcomes, one utilizes cross-

validation, while the other uses external evaluation. We used cross-validation as a technique for 
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determining how well a statistical study generalizes to a different data set. This approach evaluates 

deep learning models by training them on existing input datasets and then testing them on 

complementary datasets. We were able to obtain excellent outcomes in this manner. However, to 

boost confidence in the outcomes. We also employed the process of external evaluation. In this 

manner, we repeated the tests on the designed model, but with alterations in the sort of way in 

which the training dataset, validation, and testing were separated. Before separating the data, we 

alternatively put aside one of the drivers to operate as if it were the actual world. As a result, the 

model does not observe the driver, and we only used all of that data while testing and assessing 

the model. 

Another distinction between khodairy et al.'s [68] research and ours is that they employ the fixed 

split approach to divide driving trajectories into equal sections. In our technique, we employ the 

dynamic method. As indicated in Section 3.6.3, we attempted to prepare as many trajectory pieces 

as feasible to find more patterns. 

3.7.1 Accuracy 

The difficulty with accuracy as our primary performance metric is that it does not fare well with a 

significant class imbalance. Let us explain our model parameters in our target vector, 0 signifies 

normal, and 1 means aggressive driving. If we utilize the accuracy statistic, it says that 99 percent 

of the time, the model characterizes the "normal" driving accurately. However, when it comes to 

identifying aggressive driving, it can categorize 70 percent of inputs. So, the accuracy cannot 

reflect an acceptable metric for our model. In the following section, we will explain the "F1 Score". 

 



56 

 

3.7.2 F1 Score 

The F1 measurement is an overall assessment of a model's correctness that combines precision and 

recalls in that addition and multiplication blend two compositions to form a different notion 

entirely [69]. An excellent F1 score indicates we have low false positives and low false negatives, 

so we properly detect genuine threats and are not bothered by false alarms. An F1 score is ideal 

for 1, whereas the model is a dismal failure with 0.  

All models will create some false negatives, some false positives, and maybe both. While we may 

tweak a model to reduce one or the other, we typically confront a trade-off, where a decrease in 

false negatives increases false positives or vice versa. We will need to optimize for the performance 

measures that are most beneficial for our unique situation. 

 

3.8. Experimental results 

The findings (Figure 5) indicated that with the LSTM algorithm, we had an accuracy of 99.6 

percent in three minutes of driving and 98.4 percent in two minutes of driving. Due to the near 

distance between three minutes and two minutes, we might offer the model based on two minutes 

between two to three minutes. 

The characteristics and settings of the model are detailed below. The number of input ports is 120 

nodes, and the number of intermediate levels is eight, with each layer containing 360 nodes. In the 

last layer, we employed a layer with a Sigmoid activation function to conduct the categorizing. In 

the last layer, we utilized the output bias initializer to alter the weight between classes. 
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Figure 19 Models Evaluations 

In Figure 6, we can see the accuracy and F1 score values. These tests are generated by entirely 

reserving the dataset of a driver (Driver 5) for the validation phase. Our suggested model achieves 

93 percent accuracy in real-world testing with three minutes of driving. In prior investigations, this 

approach has not been employed for validation and is essential in its type. 
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Figure 20 Real-world Evaluations 

 

3.9. Conclusion 

Our dataset comprises time-series data, and algorithms that can detect the relationship between 

time and feature changes produce excellent results in our study, as shown in table 6. Regardless of 

whether the model is evaluated using reserved validation data or real-world tests. The real-world 

results also show that their driving behaviour can be characterized (aggressive or non-aggressive) 

by having GPS recordings of around three minutes of the driving trajectory. 

Table 6 categorizes the studies we conducted into two broad groups. For experiments, we 

employed the GRU approach initially, followed by the LSTM method. This approach is 

substantially quicker and more efficient than previous RNN methods in performing computations. 
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We began with little outings (one minute). The time was then raised to three minutes. We tried 

with multiple normalizing approaches for each trip size, utilizing two MIN-MAX methods and 

ultimately the Standardization method. 

Normalization outperformed standardization in both types of algorithms. To eliminate bias in 

studies, we attempted to employ two alternative methods of assessment (cross-validation and 

external). And we displayed all of the experiments and results in a table. I attempted to utilize 

several criteria such as loss, accuracy, precision, and F1 to ensure that, despite the fact that our 

data is of the unbalanced weight class type, there are no measurement mistakes in assessing the 

findings. 

3.10. Future works 

This model will be embedded in a program run on multiple smartphone operating systems in the 

following phases. Because the suggested AI model can identify the driver's behavioural driving 

behaviour every three minutes, the information is synced every three minutes with the server 

system situated in the cloud. This device will function with any cellphone that permits access to 

GPS, regardless of the type of vehicle and whether the vehicle is a self-driving or conventional 

type. 

 

Figure 21 Embedded AI Model in the smartphone 
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In the proposed approach, which deals with the aggressive driving detection model, good things 

can be done in the future. Psychological research, for example, can be incorporated into this 

paradigm. A future proposal would be to give the driver a questionnaire before and after driving 

or to include personal medical information such as heart rate or blood pressure as input to the 

model before, during, and after driving. One of the benefits of the model we provided is that a new 

feature may be added to it forever, and it detects an aggressive driving style using deep learning 

approaches. 
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Chapter Four: Conclusion 

4.1 Summary and conclusion 

Supervised behavioural pattern detection is an interesting deep learning technique that can allow 

for an interpretable output. The system proposed in this work (Chapter 3) takes this a step further 

by ensuring that each section of the process, data preprocessing, trajectory preparation, overlapped 

time-series input, stacked RNN customized model strike a good balance between simplicity and 

performance. Specifically, this work uses a customized value changes calculation stage (Section 

3.6.2) that adds the number of features without losing the model's performance, improving pattern 

detection. The ability to add the unlimited features as input of the proposed model (Section 3.5) 

that utilizes the algorithm adapted for aggressive driving behaviour detection is essentially a new 

way of improving supervised deep learning algorithms. 

The proposed Stacked layer LSTM model adds a layer on top of the classification algorithm that 

enables monitoring systems to identify aggressive drivers within a much shorter time scale and 

can be applied on an embedded system independent of any vehicle type. This work was evaluated 

with two different approaches: 1. Cross-Evaluation 2. The external dataset (Section 3.8) was as 

performant as previous research with simpler and faster calculations (Section 3.7.2). 

Overall, this approach shows promise and has the potential to be used in regulatory organizations 

and other settings where non-technical people require insight into deep learning models. 
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4.2 Thesis contribution summary 

A summary of the list of contributions to this thesis: 

• Survey paper:  

Our research attempted to construct a complete survey paper to examine and offer driving 

behaviour analysis survey data to future scholars. We sought to identify conventional 

approaches by examining 58 publications and create a framework for future articles to be 

analyzed and explored in various charts and datasets. 

• Dynamic survey approach: 

In contrast to traditional "survey papers," which typically limit the breadth of the study, we 

attempted to present a new model called "Dynamic Survey," which aids in the study's 

implementation. In a typical "survey paper," any action connected to the topic published 

after the survey paper, such as new articles or chapters of a book, should be considered a 

new survey paper. Nonetheless, the included articles in this dynamic survey will be updated 

using an algorithm in its database and a crawler that finds and submits linked published 

papers to the database. As a result, all dashboards and trends are still active and ready for 

analysis by the next researchers. 

• New approach of overlapped data preparation: 

Our study dataset included a variety of trajectories from different drivers on two separate 

routes while demonstrating a variety of driving behaviours. If we had used basic cuts to 

identify driving patterns, our data amount would have been massively diminished. As a 

result of applying the overlapping split approach to build trajectories, our data amount 

increased tenfold. In another sense, because our proposed model is based on deep machine 

learning techniques, it required a larger amount of data. 
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• Stacked deep learning model: 

We built various LSTM and GRU architectures with variable parameter values and 

assessed their output to decide which design best suits our needs. Before splitting, a seven-

layer LSTM/GRU model with drop-out, batch normalization, delta, and shuffled training 

datasets is utilized, followed by two types of normalizing procedures. We created a 

trajectory value for a driver based on 60/120/180 seconds of driving, with each instant 

including eight characteristics. The next seven neural networks include LSTM/GRU, drop 

out, and a batch normalizer, which improves the consistency of values delivered to the next 

layer. After seven LSTM/GRU layers, a thick layer with sigmoid activation classifies the 

trajectory pattern as aggressive or non-aggressive. 

• Multiple way of evaluation: 

In this study, we looked into two different approaches for assessing data. We performed 

cross-validation to see how statistical research generalizes to a different data set. This 

method assesses them by first training them on current input datasets and then testing them 

on complementary datasets. We were able to get good results in this method. However, in 

order to increase trust in the outcomes. We also used the external evaluation technique. As 

a result, we repeated the tests on the planned model; alternatively, we set apart one of the 

drivers to work as if it were the real world. As a result, the model does not watch the driver, 

and we only used all of that data during testing and evaluation. 

 

4.3 Suggestions for future works 

The dynamic survey study extends this research path by allowing keywords to be tracked and 

current dashboards to be re-examined. When new inputs are received, these dashboards are 
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intended to highlight new patterns. What if, for example, the most recent research approach 

documented with "aggressive driving detection" has moved from CNN to RNN? or is the RNN 

still the best approach to identify time-related datasets? 

Adding psychological information to the suggested technique, which deals with the aggressive 

driving detection model, would be a smart thing to undertake in the future. This paradigm can 

integrate, for example, psychological studies. A future idea would be to provide a questionnaire to 

the driver before and after the drive, or to integrate personal medical information such as heart rate 

or blood pressure as input to the model before, during, and after the trip. One advantage of the 

model we supplied is that new features may be added to it indefinitely, and it detects aggressive 

driving behavior using deep learning methodologies. 

In the future phases, this concept might be included in a software that runs on several smartphone 

operating systems. Because the proposed AI model can recognize the driver's aggressive driving 

behavior every three minutes, the data is synchronized with the cloud server system. This gadget 

will work with any cellphone that has GPS access, regardless of the type of automobile or whether 

it is self-driving or conventional. 
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Appendix: 

Article 
Proposed 

approaches 
Citation Dataset Summary 

[37] 

CNN; 

Pooling; 

RNN; 

77 

Kaggle. Driver 

Telematics 

Analysis. [39] 

For DL-based driving behaviour analysis, 

GPS data was utilized; extracting important 

attributes explains behaviour patterns. Human 

effort and effort both suffered. 

[38] CNN 0 

The Didi 

Chuxing GAIA 

Initiative to the 

research 

community; [70] 

The paper proposes dividing drivers into four 

types: risky, dangerous, safe, and low risk. 

This paper's main contribution is using CNNs 

(Convolutional Neural Networks) to process 

raw trajectories into inputs for the CNNs. 

After training the CNN network, 77.3% 

accuracy was achieved. 

[71] 

RuLSIF; 

SOM; 

Clustering; 

Deep auto-

encoder; 

1 

Kaggle. Driver 

Telematics 

Analysis. [39] 

The vehicle data recorder was replaced with 

an internal smartphone sensor. However, 

unlabeled telematics data limits their 

application in analyzing driving patterns. 

Unsupervised learning was used to obtain 

mobile telematics data. Three significant 

components included a self-organizing map, a 

nine-layer deep auto-encoder, and partitive 

clustering algorithms. 

[72] 

Resampling; 

Normalizatio

n; Stacked-

LSTM; 

47 
U-AH Dataset 

[47] 

Recent Stack LSTM Recurrent Neural 

Networks for classifying driving behaviour; 

time-series classification was applied using 

smartphone sensors. The Stacked-LSTM 

model was validated using the dataset known 

as UAH-DriveSet. An LSTM stack excelled 

on the UAH-DriveSet. 

[46] 

Abrupt 

change 

detection; 

Sparse auto-

encoder; 

Two-level 

clustering 

(SOM; K-

means) 

16 

DTG database 

maintained by the 

TS (Traffic 

Safety) 

The findings find habits in driving. Three 

different data analytic analysis methods were 

used, including abrupt change detection. This 

model was developed on data from 43 Korean 

city taxis. The framework can find aggressive 

driving clusters in large-scale driving records. 

[48] 
Two-level K-

Means 
8 

OSeven 

Telematics, 

London, United 

Kingdom 

Information about harsh events occurrence, 

acceleration profile, mobile usage, and 

speeding was used in this study to detect 

unsafe driving behaviour. To separate 

aggressive from non-aggressive trips, they 

conducted an initial clustering. A second-level 

clustering was done to delineate "normal" 

trips from unsafe ones. 
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[73] 

Multi-CNN; 

GBDT 

predictor 

1 
KITTI dataset 

[14] 

Feature integration is critical, which is why 

they propose the multi-CNN architecture. A 

dynamic fixed point compression method is 

applied in our system; smaller model size and 

faster speed can be achieved while the 

accuracy is high; prediction results are a 

driving score that reflects driver behaviour. 

[74] 

maximum 

entropy 

inverse 

reinforcemen

t learning 

(MEIRL) 

with 

automatic 

feature 

correction 

22 N/A 

The building block for many LBS 

applications is trajectory outlier detection. 

The paper focuses on accurately detecting 

outliers in-vehicle trajectories. The proposed 

solution uses a late-stage alarm for a missed 

outlier trajectory (i.e., the trajectory has not 

yet reached the destination). 

[40] 

Auto-

Encoder; 

Deep Walk; 

CNN; LINE 

32 

T-Drive 

trajectory dataset 

[49] 

A GPS trajectory analysis framework 

(PTARL) was developed. GPS traces were 

used to track driving operations and driver 

states. When determining a driver's behaviour, 

multiview driving state transition graphs were 

used. A representation learning method for 

sequence learning from time-varying, yet 

relational state transition graphs were 

produced. According to the method, graph-

graph dependency and temporal dependency 

can be handled using a unified optimization 

framework. 

[75] 

Pattern 

recognition; 

GHSOM; 

3 N/A 

A pattern recognition process was used to 

model the driving pattern based on one driver 

and a fleet's energy consumption. The 

GHSOM shows that learned driving 

behaviours can be recognized as the number 

of driving cycles increases. Additionally, the 

proposed framework would enhance driver 

behaviours and make it easier to design an 

ADAS. 

[76] 

SFG; GRU 

(an 

enhancement 

of LSTM) 

combine with 

FCN; 

1 

HACKING AND 

COUNTERMEA

SURE 

RESEARCH 

LAB. [45]  

This paper presents a new technique, LiveDI, 

which uses driving behaviour to identify 

drivers. The model uses GRU and FCN to 

learn long-short term patterns of driving 

behaviours from drivers. Additionally, 

training time was increased by implementing 

the SFG algorithm to identify a time window 

for analysis. 

[77] 

GHSOM 

(Unsupervise

d) + SVM 

(Supervised) 

5 N/A 

A pattern recognition approach is proposed to 

model the driving pattern, given the 

consumption of an EV. Gradual drivers' 

behaviour change is implemented through the 
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GHSOM, and classifiers are implemented 

with clustered neurons for an online process 

using SVM. 

[78] 
CGARNN-

Edge 
9 N/A 

A "pBEAM" platform for personalized 

driving behaviour modelling is promoted. The 

driving behaviour model is built on top of 

"GARNN," which follows dynamic changes 

in everyday driving. Moving models to the 

edge improves model performance and 

robustness. "CGARNN-Edge" is a model 

tailored to drivers' personal information and 

preferences as additional conditions. 

[79] 
SVM; RF; 

NN 
4 N/A 

This paper uses ML methods to analyze and 

predict driving routes, establishing a solid 

foundation for improving driver behaviour.  

[80] 

 
DNN; LSTM 12 

Kaggle. Driver 

Telematics 

Analysis. [39] 

This study analyzes sensor data to identify 

sematic-level driving behaviour. A large 

dataset was utilized layer-by-layer for driving 

maneuvers. The specific maneuver driver ID 

is helpful in supervised learning of higher-

level feature abstraction. This paper proposes 

a joint histogram feature map to normalize the 

"Shallow features" for DL. The results show 

that DNN is suitable for classifying driving 

maneuvers, with 94% accuracy, whereas 

LSTM NN has the accuracy of 92% when 

identifying a specific driver. 

[81] LSTM; 9 N/A 

The perceived risk by drivers in different 

groups on a two-lane road is tested, using a 

DNN method to summarize environmental 

features. These training and testing data are 

for the learning network. Using an LSTM 

model, risk perception is modelled as a 

function of traffic conditions and vehicle data. 

[51] 
PCA; Fast 

ICA; KPCA 
89 N/A 

The DSAE method is used to uncover 

previously hidden driving features for 

visualization. The DSAE has a method of 

producing a driving colour map using 3-D 

hidden feature extraction to RGB colour 

space. For a driving map, colours are placed 

in the corresponding map locations. 

[82] 
Rep-DRQN; 

LSTM; 
1 

Simulated data 

(SUMO) 

Traffic flow can be improved by applying 

reinforcement learning techniques to a traffic 

control system. First, a microcosmic state 

representation, which integrates vehicle 

dynamics, such as lane changing, car-

following, and previous phases of a traffic 

light, is proposed. The red light flooding the 

system is also incorporated into the action 

space. A partially LSTM network is used to 
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improve travel experience and efficiency. In 

practice, parallel sampling is used to speed up 

training convergence. 

[83] 

 

 

LSTM; 3 

HACKING AND 

COUNTERMEA

SURE 

RESEARCH 

LAB. [45] 

The uniqueness of a driver's driving behaviour 

helps driver profiling and vehicle security 

(anti-theft systems). This paper analyzes data-

driven end-to-end models intended for 

behaviour identification and examines the 

principles that underlie the model designs. 

The real-world driving dataset is employed in 

cross-validation to test various data-driven 

DL and machine, learning models. 

[84] CNN; LSTM 4 
Gathered by 

themselves 

This promising research employs a two-

stream CNN approach for video-based driving 

behaviour recognition. CNN collects motion 

information by computing optical flow 

displacement over a few adjacent frames. A 

spatial-temporal fusion study was conducted 

to determine behaviour recognition, 

constructing a 1237-video dataset simulating 

different driving behaviours to test the 

model's efficacy. 

[85] Deep RL 10 Simulated data 

A decision-making method based on deep 

reinforcement learning is proposed for 

connected vehicles in complex traffic 

scenarios. The model has three primary 

components: a data preprocessor that 

transforms hybrid data into a grid matrix data 

format; a two-stream deep neural network that 

extracts the hidden features; and a deep 

reinforcement learning network that learns the 

optimal policy. Additionally, a simulation 

environment is built to train and test the 

proposed method. The results show that the 

model can learn the best overall driving 

policy, such as driving fast through diverse 

traffic without unnecessary lane changes. 

[60] 
Dedistracted

Net; CNN; 
4 

Gathered by 

themselves 

DedistractedNet was built to identify 

distracted driving behaviours from an image. 

DedistractedNet uses neural networks to 

identify driving behaviour features without 

onboard diagnostics or sensors. The 

experiments show that the DedistractedNet 

performs better than the other baseline CNN 

methods. 

[61] 

MV-CNN + 

Data 

Augmentatio

n 

14 
Gathered by 

themselves 

This paper introduces a driver behaviour 

recognition system utilizing a six-axis motion 

processor. DL learns from onboard sensor 

data. A new algorithm is proposed (called 

MV-CNN) that includes the multi-axis 
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weighted fusion algorithm, background noise 

fusion algorithm, and random cropping 

algorithm. Following the CNN model, a new 

model, called MV-CNN, was developed. 

[86] 

Stacked 

Auto-

Encoders; 

0 Simulated data 

DL is the proposed method of classifying 

individual drivers (stacked autoencoders). 

Sensor signals from a driving simulator were 

used to assess drivers' driving skills. The 

maximum driving skill recognition rate was 

98.1 percent, and the recognition rate was also 

increased in this research. 

[87] DBN 6 
Gathered by 

themselves 

A deep belief network (DBN) was used to 

build the learning model, and training data 

was collected from real-world road drivers. 

Using the model, they predicted the front 

wheel's steering angle and the vehicle's speed. 

Prediction results show that DBN has higher 

accuracy and adapts to different driving 

scenarios with fewer modifications. 

[88] 

Reviewing 

all 

approaches; 

4 N/A 

“HIDB” is categorized into two major 

categories: Driver Distraction (DD), Driver 

Fatigue (DF), or Drowsiness (DFD). 

Aggressive Driving (ADB) is also discussed. 

ADB is a wide range of driving styles that 

have significant consequences. DD, DFD, and 

ADB are affected by the experience, age, and 

gender or illness. 

[89] 
Deep Auto 

Encoders; 
4 

Gathered by 

themselves 

A new approach to proactive driving using 

human experts and autonomous agents is 

introduced. DL methods extracted latent 

features. Velocity profiles were created to 

provide an autonomous driving agent with 

human-like driving skills. Being proactive 

was shown to help avoid unnecessary 

jerkiness. 

[90] 

Spectral 

Clustering 

Algorithm; 

LSTM; 

19 
Gathered by 

themselves 

Using unsupervised spectral clustering, 

researchers identified a macroscopic 

relationship between driving behaviour and 

fuel consumption in the natural driving 

process. Additionally, dynamic information 

was acquired from the driving environment 

and driving data to link different driving 

behaviours to fuel consumption features to 

give computers the ability to recognize 

environments. The vehicle's operating signal 

data was used to provide the training data for 

the DL network. Fuel consumption feature 

distribution was based on roadway data and 

historical driving data. 
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[91] LSTM; 0 
The Warrigal 

dataset [50] 

The researchers have developed (1) a novel 

feature extraction method for raw CAN bus 

data;(2) a novel boosting method for driving 

behaviour classification (safe or unsafe) that 

combines advantages of DL and shallow 

learning methods; and (3) a first-of-its-kind 

public transportation industry evaluation 

using real-world data to ensure accurate labels 

from industry experts. 

[92] 
Deep Q-

Network 
3 

Gathered by 

themselves 

This L-HMC combines deep reinforcement 

learning with collision avoidance capacity. An 

improved DQN method is used to learn the 

best driving policy for pedestrian collision 

avoidance. The findings demonstrate that the 

deep reinforcement learning-based method 

can rapidly learn an effective pedestrian 

collision avoidance driving policy. 

Meanwhile, L-HMC uses flexible policies to 

avoid pedestrian collisions in typical 

scenarios, improving overall driving safety. 

[93] 

Stacked 

Auto-

Encoders; 

3 
Gathered by 

themselves 

This novel DL-based model is built for 

abnormal driving detection. A stacked sparse 

autoencoder enables learning driving 

behaviour features. Training is layer-wise, 

greedy. This study is the first time researchers 

have used DL to build representations of 

driving features using autoencoders. The 

algorithm is also denoised with an algorithm, 

making it more stable. Dropout is commonly 

used in training to reduce overfitting. The 

proposed system has better performance for 

finding abnormal driving. 

[94] LSVDNN 0 
Gathered by 

themselves 

By using the designed model, the output used 

for controlling the vehicle is obtained. The 

learning and validation approach for self-

driving vehicles (LSV-DNN) is outlined, and 

a convolutional network based on vehicle 

cameras and computer data is developed. 

Obstacle detection is carried out with the best 

accuracy and speed using the Yolo algorithm 

version 3. 

[95] 

 
DCNN 2 

https://github.co

m/abdugumaei/A

DBs-Dataset 

A real-time detection system is proposed, 

utilizing bio-signals and a deep CNN model, 

incorporating edge and cloud technologies. 

The system contains vehicle edge devices, 

cloud platforms, and monitoring 

environments linked via a telecommunication 

network. Processed bio-signal datasets are 

employed to test the proposed DCNN model. 

The dataset was collected using a different 
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time window and time step than the bio-signal 

datasets. 

[96] 

Denoising 

Stacked 

Autoencoder 

(SDAE) 

4 
Gathered by 

themselves 

An improved DL model is proposed in this 

study to develop a graphical representation of 

driver behaviour and the road environment. A 

Denoising Stacked Autoencoder (SDAE) is 

proposed to provide output layers in RGB 

colours. The dataset was collected from an in-

vehicle GPS tracking device on an 

experimental driving test. By using graphics, 

the method efficiently identifies simple 

driving behaviours and other events 

encountered along the path. 

[97] 

Deep 

Deterministic 

Policy 

Gradient 

(DDPG); 

0 
Simulated data 

(TORCS) 

Adaptive driving behaviour for simulated cars 

is proposed using continuous control deep 

reinforcement learning. The DDPG delivers 

smooth driving maneuvers in simulated 

environments. Recurrent Deterministic Policy 

Gradients were used to encode time (or 

Recurrent DDAGs). A trained agent adapts to 

traffic velocity. 

[98] 
DBN; 

LSTM; 
42 

Simulated data 

(NGSIM, 2006) 

This paper uses data-driven LC modelling 

using DL. To better model the LC process, 

Deep Belief Network (DBN) and Long Short-

Term Memory (LSTM) neural networks are 

employed (LCI). The “NGSIM” project's 

empirical LC data is used for training and 

testing the proposed DBN-based and LSTM-

based LCI models. 

[99] 
DBN-FS 

(Fuzzy sets) 
1 

Gathered by 

themselves 

The feature matrix contains data on nearly 

2,000 lane-change videos. Also, vehicle 

information is obtained based on license 

plates. A state-of-the-art DBN DL algorithm 

creates a lane-change behaviour model 

incorporating relevant vehicle, driver, and 

driving variables. The model's superior 

accuracy, feasibility, and concreteness are 

verified by comparison with other standard 

models. 

[100] CNN 0 
Simulated data 

(OpenAI) 

DL-based learning techniques are proposed in 

this paper, which can be applied in various 

driving scenarios. The proposed method is 

tested for effectiveness and efficiency, and the 

proposed methods are shown to outperform 

other ML methods. 

[101] LTSM-FCN 5 
U-AH Dataset 

[47] 

The solution proposed in this paper is based 

on a Long Short-Term Memory Fully 

Convolutional Network (LTSM-FCN) to 

identify driving sessions that include 

aggressive behaviour. The problem is 
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formulated as a time series classification, and 

the validity of the approach is tested on the 

UAH-DriveSet, a dataset that provides 

naturalistic driving data collected from 

smartphones via a driving monitoring 

application. 

[102] CNN 18 

SEU-DRIVING / 

KAGGLE-

DRIVING 

A DL method for classifying driving 

behaviour in a single image is investigated in 

this paper. The classification of driving 

behaviour is a multi-class problem. The 

research team discovered a solution to this 

problem in two ways: Extract multi-scale 

features using multi-stream CNN was 

extracted and then combined into a final 

decision for driving behaviour recognition. 

[103] 

gradient 

boosted 

model with 

grid search; 

1 
https://insight.shr

p2nds.us 

Given road conditions and driver behaviour, 

the study included multiple factors to produce 

an interpretable model for accident 

occurrence. Seven thousand seven hundred 

trips were studied using four ML and DL 

techniques. Accident prediction was achieved 

by a gradient boosted model. Predictive 

factors were shown to be primary behaviour, 

pre-incident maneuvers, and secondary task 

duration.  

[104] 

Feature 

selection 

with NN 

1 
Gathered by 

themselves 

Feature extraction and a DL model are 

suggested to detect abnormal driving 

behaviour. This method was developed based 

on bin variation calculation and subsequent 

feature generation. Variance similarity was 

used to expand the subset. Variance data from 

data segments with specific driving behaviour 

class definitions revealed the connection. 

Driving behaviours included weaving, sudden 

braking, and everyday driving. 

[44] 
CNN; 

LSTM; GRU 
22 

HACKING AND 

COUNTERMEA

SURE 

RESEARCH 

LAB. [45] 

A unified end-to-end DL framework based on 

convolutional and recurrent neural networks 

is proposed for time series CAN-BUS sensor 

data. This method is capable of learning 

driving and temporal information without 

prior knowledge. The method can access rich 

feature representations of driving behaviours 

from multi-sensor data. 

[105] 
NCAE; MC-

CNN; 
1 

HACKING AND 

COUNTERMEA

SURE 

RESEARCH 

LAB. [45] 

The researchers first propose utilizing an 

unsupervised three-layer nonnegativity-

constrained autoencoder to search for the 

sliding window's optimal size and then build a 

deep nonnegativity-constrained autoencoder 

network to complete driver identification. 

Their method can search for optimal window 
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size and save many data compared to 

conventional sparse autoencoder, dropout-

autoencoder, random tree, and random forest 

algorithms. Also, their technique helps 

classifiers distinguish the differing class 

boundaries. Finally, their method helps 

increase the prediction time and reduce model 

overfitting. 

[106] 

Decision 

Tree; 

Random 

Forest; 

13 
https://insight.shr

p2nds.us 

ML is suggested to identify secondary tasks 

drivers use while driving. First, drivers' 

distraction is found, and second, unique kinds 

of distractions are discovered. Nine 

classification methodologies are utilized to 

identify three secondary tasks (hand-held 

cellphone calling, cellphone texting, and 

interaction with an adjacent passenger). The 

models use five driving behaviour parameters 

(including standard deviations) as inputs. The 

paper's findings show that using a proposed 

methodology for characterizing drivers' 

involvement in secondary tasks (like texting) 

helps drivers identify driving hazards and 

alert them to problems on the road. 

[107] CNN; RNN 9 
Gathered by 

themselves 

This paper proposes a DL framework for 

behaviour extraction. The machine used for 

their method models temporal features 

captures salient structure features and fuses 

CNN and RNN with an attention unit. 

Gathering a driving behaviour dataset also 

takes into consideration gravity's effect. 

Device-independent sensor data is collected. 

The preferred sensor information is furnished 

by this method. 

[108] 
CNN; FC; 

LSTM; 
0 

Gathered by 

themselves 

A driver's eyes are the primary source of 

information while they are driving. Data show 

that drivers' gazes precede and correlate with 

driving maneuvers. Thus, GazMon is 

designed to detect and predict driving 

maneuvers. The “GazMon” facial analysis 

uses facial landmarks, including facial 

features and head posture, to evaluate the 

effects. Their GazMon outperforms the 

competing products in predicting and 

reducing distracting behaviours. It is easy to 

customize and will work with existing 

smartphones. 

[109] DenseNet 6 

https://www.kagg

le.com/c/state-

farm-distracted-

This paper stresses D fusion techniques. For 

the first time, three novel DL-based fusion 

models for abnormal driving behaviour 

detection are proposed. WGD network, 
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driver-

detection/data 

WGRD network, and AWGRD network are 

three DL-based fusion models equivalent to 

their functional characteristics. The actual 

model structure of WGD is modelled using 

DenseNet. 

[110] Autoencoders 10 
Gathered by 

themselves 

This paper studies encoding, clustering, and 

modelling driver behaviours to build an 

autonomous vehicle agent. A typical Japanese 

suburban area driver provided driving speed, 

braking, steering, and acceleration data. A 

fully Connected Deep Autoencoder was used 

to long datasets of consecutive measurements 

to collect driving data for clustering purposes. 

Data were modelled and validated in a ROS 

car simulator. 

[111] 
t-SNE; 

CVAE; 
2 

Gathered by 

themselves 

This paper offers a DL approach to vehicle 

driving styles. The neural network groups 

short behavioural segments into a latent 

space. The driving dataset had 59 drivers on a 

highway. Embedded driving behaviour data 

were clustered into clusters using a 

topological map. Elements exhibit 

probabilistic distributions that compactly 

describe driving episodes. 

[112] DCNN 1 
Gathered by 

themselves 

This paper focuses on the end-to-end 

technique that emulates human drivers' 

decisions, such as steering angle, acceleration, 

and deceleration. Ignoring previous states is 

investigated by comparing predicted accuracy 

and variation, using data collected in a 

simulation study. 

[113] 
DNNR-

Ensemble 
0 N/A 

By using PAYD, insurance carriers can avoid 

unjust and inefficient policies. The authors 

propose a PAYD method that incorporates 

user behaviour factors from multiple 

dimensions. This first dimensionally divides 

all factors. Treating each dimension of the 

factors separately improves the model's 

efficiency. “DNNRegressor” is used to make 

each classification dimension weak. The 

DNNRegressor classifier yields the final 

output. 

[114] LSTM; 51 

Next Generation 

Simulation 

(NGSIM)  

This paper proposes an LSTM NN-based car-

following (CF) model to capture natural 

traffic flow characteristics. The proposed CF 

model is calibrated and validated using 

NGSIM data. Three driving-related 

characteristics are investigated: hysteresis, 

discrete driving, and intensity difference. The 
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simulation results show the CF model's good 

traffic flow features reproduction. 

[115] R-CNN 1 
Gathered by 

themselves 

In this paper, vehicle-mounted camera-based 

driver detection that utilizes Faster R-CNN is 

proposed. First, a residual structure is added 

to the ZF network. BN replaces LRN, which 

increases parameter stability and accelerates 

network convergence. 

[116] NK-DNA 6 
Gathered by 

themselves 

A new security model using driving data and 

the neural knowledge DNA is proposed in this 

paper. A novel knowledge representation 

method helps computers discover, store, 

reuse, improve, and share knowledge. 

[56] 

Autoencoder 

and Self-

organized 

Maps 

(AESOM) 

21 

Shenzhen Urban 

Transport 

Planning Center, 

Shenzhen, China 

A hybrid unsupervised DL model for 

modelling driving behaviour and risky 

patterns was developed for this paper. The 

extraction method uses Autoencoders and 

Self-Organized Maps (AESOM). 

[117] 

deep 

convolutional 

neural 

network; 

LSTM; 

6 
Gathered by 

themselves 

Because many traffic accidents occur at 

intersections due to unsafe driving 

behaviours, this paper presents a smartphone-

based system for analyzing driving behaviour 

at intersections. A deep convolutional neural 

network-based model is proposed to detect 

traffic lights, crosswalks, and stop lines. The 

LSTM-based model estimates vehicle speed 

using an accelerometer and gyroscope 

embedded in the smartphone. 

[118] DSAE 4 N/A 

A driving behaviour time series is assumed to 

be generated from a single-dimensional 

dataset that everyone has access. Sensor time-

series data is faulty because of a sensor 

failure. Another essential function is to limit 

the negative impact when extracting low-

dimensional time-series data. Using a 

“DSAE,” low-dimensional time-series data is 

extracted. 
Table 5 Summarized articles 
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NN timestep normalization Evaluation loss accuracy precision recall F1 Score 

GRU 60 Min-Max Seen 0.5617 0.776 0.687 0.822 0.748461233 

GRU 60 Standardization Seen 0.4212 0.822 0.775 0.789 0.78193734 

GRU 120 Min-Max Seen 1.0759 0.781 0.736 0.714 0.724833103 

GRU 120 Standardization Seen 0.379 0.867 0.81 0.877 0.842169532 

GRU 180 Min-Max Seen 0.8107 0.736 0.689 0.629 0.657634294 

GRU 180 Standardization Seen 0.4329 0.878 0.843 0.857 0.849942353 

GRU 60 Min-Max Unseen 0.2487 0.896 0.805 0.711 0.755085752 

GRU 60 Standardization Unseen 0.3219 0.846 0.619 0.83 0.709137336 

GRU 120 Min-Max Unseen 0.5059 0.801 0.533 0.802 0.640398502 

GRU 120 Standardization Unseen 0.3903 0.87 0.643 0.927 0.759313376 

GRU 180 Min-Max Unseen 0.4403 0.828 0.58 0.789 0.668546384 

GRU 180 Standardization Unseen 0.2088 0.845 0.588 0.991 0.738072198 

LSTM 60 Min-Max Seen 0.3348 0.822 0.762 0.816 0.788076046 

LSTM 60 Standardization Seen 0.2913 0.858 0.821 0.829 0.824980606 

LSTM 120 Min-Max Seen 0.2997 0.923 0.963 0.841 0.897874723 

LSTM 120 Standardization Seen 0.0544 0.984 0.973 0.987 0.97995 

LSTM 180 Min-Max Seen 0.0602 0.981 0.974 0.98 0.976990788 

LSTM 180 Standardization Seen 0.0124 0.996 0.994 0.997 0.99549774 

LSTM 60 Min-Max Unseen 0.4245 0.837 0.632 0.664 0.647604938 
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LSTM 60 Standardization Unseen 0.3991 0.832 0.619 0.675 0.645788253 

LSTM 120 Min-Max Unseen 0.7365 0.86 0.667 0.727 0.695708752 

LSTM 120 Standardization Unseen 0.5766 0.893 0.764 0.746 0.754892715 

LSTM 180 Min-Max Unseen 0.4201 0.903 0.771 0.778 0.774484183 

LSTM 180 Standardization Unseen 0.4131 0.93 0.855 0.809 0.831364183 

Table 6 Experiments details 
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