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ABSTRACT

5G–Advanced is the next step in the evolution of the fifth–generation (5G) tech-

nology. It will introduce a new level of expanded capabilities beyond connections and en-

ables a broader range of advanced applications and use cases. 5G–Advanced will support

modern applications with greater mobility and high dependability. Artificial intelligence

and Machine Learning will enhance network performance with spectral efficiency and

energy savings enhancements.

This research established a framework to optimally control and manage an ap-

propriate selection of network slices for incoming requests from diverse applications and

services in Beyond 5G networks. The developed DeepSlice model is used to optimize the

network and individual slice load efficiency across isolated slices and manage slice life-

cycle in case of failure. The DeepSlice framework can predict the unknown connections

by utilizing the learning from a developed deep-learning neural network model.
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The research also addresses threats to the performance, availability, and robustness

of B5G networks by proactively preventing and resolving threats. The study proposed a

Secure5G framework for authentication, authorization, trust, and control for a network

slicing architecture in 5G systems. The developed model prevents the 5G infrastructure

from Distributed Denial of Service by analyzing incoming connections and learning from

the developed model. The research demonstrates the preventive measure against volume

attacks, flooding attacks, and masking (spoofing) attacks. This research builds the frame-

work towards the zero trust objective (never trust, always verify, and verify continuously)

that improves resilience.

Another fundamental difficulty for wireless network systems is providing a desir-

able user experience in various network conditions, such as those with varying network

loads and bandwidth fluctuations. Mobile Network Operators have long battled unfore-

seen network traffic events. This research proposed ADAPTIVE6G to tackle the network

load estimation problem using knowledge-inspired Transfer Learning by utilizing radio

network Key Performance Indicators from network slices to understand and learn net-

work load estimation problems. These algorithms enable Mobile Network Operators to

optimally coordinate their computational tasks in stochastic and time-varying network

states.

Energy efficiency is another significant KPI in tracking the sustainability of net-

work slicing. Increasing traffic demands in 5G dramatically increase the energy con-

sumption of mobile networks. This increase is unsustainable in terms of dollar cost and

environmental impact. This research proposed an innovative ECO6G model to attain sus-
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tainability and energy efficiency. Research findings suggested that the developed model

can reduce network energy costs without negatively impacting performance or end cus-

tomer experience against the classical Machine Learning and Statistical driven models.

The proposed model is validated against the industry-standardized energy efficiency def-

inition, and operational expenditure savings are derived, showing significant cost savings

to MNOs.
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CHAPTER 1

INTRODUCTION

The fifth-generation (5G) wireless technology promises to be the critical enabler

of use cases far beyond smartphones and other connected devices. The next-generation

5G-Advanced wireless standard confronts the changing face of connectivity by enabling

elevated levels of automation through continuous optimization of several Key Perfor-

mance Indicators (KPIs) such as latency, reliability, connection density, and energy effi-

ciency. 5G and Beyond networks are boosted by integrating software-defined networking

(SDN) and network function virtualization (NFV) technologies. The distributed, granular,

cloud-based, event-driven architecture of 5G allows for agile resource allocation, ultra-

low latency edge-based services, and more. Rapid software modifications and functional

requirements make it difficult for network operators to implement continuous integration

and delivery (CI/CD). By decoupling software from hardware, operators can deploy code

updates more rapidly than ever to address business challenges.

Emerging use cases and applications, such as machine-to-machine communica-

tions, multi-access edge computing, autonomous driving, and data-driven network de-

signs, have stringent reliability, latency, throughput, and security requirements. Such

requirements pose new challenges to architecture design, network management, and re-

source orchestration in next-generation wireless networks while allowing resource sharing

among multiple tenants. Zero-touch, Artificial Intelligence (AI) /Machine Learning (ML)
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empowered cognitive network, and service automation becomes crucial for continuously

ensuring highly diverse B5G networks.

Existing cellular communications and the B5G mobile network requires meet-

ing high-reliability standards, very low latency, higher capacity, more security, and high-

speed user connectivity. MNOs are looking for a programmable solution that will allow

them to accommodate multiple independent tenants on the same physical infrastructure

and 5G networks allow for end-to-end network resource allocation using the concept of

Network Slicing. Due to the traffic explosion, data-driven decision-making will be vital

in future communication networks, and AI will accelerate the 5G network performance.

A mobile radio air interface dynamically defined by AI/ML will be essential for future

networks. These interfaces could allow radios, devices, and network elements to learn

from one another and their surroundings.
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1.1 Research Objectives

This disruptive deployment of 5G has triggered the need for transformation and

a radical change in how networks and services are managed and orchestrated. The focus

of this dissertation is to study the fundamental issues in network slice management, load

prediction, resource management, network slice security, and energy efficiency in Beyond

5G Networks (B5G). More specifically, the major problem that this research study has

raised and undertaken is providing a better understanding of the question of how the 5G

network and data-driven ML models may fit together to make an efficient and optimized

solution for managing network slicing resource management, slice load-balancing, and

slice selection in B5G networks and further extend it towards energy-efficient networks.

A cornerstone of wireless connectivity involves trust and privacy in the data shared

between users and network elements as wireless connectivity becomes an integrated, fun-

damental element of society. With a large influx of data in B5G systems from end-users

and network elements, it is imperative to understand how data is collected and used for

real-time data processing operations. The current wireless network learning involves cen-

tralizing the training data, which is inefficient as it continuously requires end devices to

send their collected data to a central server.
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1.2 Network Slicing in Beyond 5G Networks

Network slicing is an essential technology for 5G and Beyond mobile commu-

nication. Slicing the physical mobile communication network into multiple virtual net-

works maximizes the benefits of high-speed communication, ultra-low latency, and ultra-

connected communication. With each segmented network, as shown in Fig. 1, a variety of

specialized services can be provided. 5G network slicing is becoming increasingly crucial

as 5G services with varying requirements cannot be fully utilized with a uniform network

service policy. Specifically, network slicing technology is vital because 5G is focused on

providing various services efficiently, such as autonomous driving, smart cities, robotic

Figure 1: 5G-Advanced Technology Overview
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factories, augmented reality (AR), and virtual reality (VR). It provides a network for ser-

vices like AR/VR streaming and 4K video streaming to provide a virtual network that

guarantees communication speeds of hundreds of megabits per second (Mbps) to several

gigabits per second (Gbps).

Network Slicing will play a vital role in enabling a multitude of 5G applications,

use cases, and services. It will provide end-to-end isolation between slices with the ability

to customize each slice based on the service demands (bandwidth, coverage, security,

latency, reliability, etc.). Maintaining the isolation of resources, traffic flow, and network

functions between the slices is critical in protecting the network infrastructure system

from Distributed Denial of Service (DDoS) attacks. The 5G network demands and new

feature sets to support ever-growing, complex business requirements have made existing

approaches to network security inadequate.

The evolution of the 5G network has opened an arena of possibilities and ca-

pabilities unavailable in the 4G/LTE network. The critical aspect of 5G wireless digital

transformation will enable the network operators to move their network functions into vir-

tualized core and cloud, leading to new vertical use cases for businesses, enterprises, and

consumers. The growing opportunities have resulted in a race among the network opera-

tors and service providers to deploy network-slicing functions. Network Slicing provides

ease of operation and flexibility to create multiple logical networks on top of a commonly

shared physical network infrastructure. Network Slicing will also allow orchestrating a

dedicated end-to-end network for specific applications at scale while maintaining their
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respective service demands and needs.

Existing automation features like Network Function Virtualization (NFV), Soft-

ware Defined Networking (SDN), and Network Slicing in 5G are the solutions to generate

new sources of revenues and reduce the operation cost incurred by a single core network

for various services. These features also aim to increase the elasticity and efficiency

for scaling new business demands from IoT, Public Safety, Automotive, and Healthcare

applications. For example, Massive Internet of Things (IoT) devices require high reli-

ability with limited data rates and low latency for connectivity of smart electric meters

and smart city sensors. Meanwhile, augmented and virtual reality (AR-VR) applications

require high throughput and low latency. In contrast, mission-critical services require

ultra-reliable low latency and high bandwidth in case of emergencies.
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1.3 Research Significance and Accomplishments

Effective slicing of the Radio Access Network (RAN) remains extremely diffi-

cult due to network dynamics, isolation of network slices, and diverse Quality of Service

(QoS) requirements of various services introduced in 5G. Moreover, radio resource man-

agement poses technical challenges for network slicing, given the scarcity of radio re-

sources and the limited spectrum. Consequently, practical and dynamic RAN slicing will

introduce unprecedented network complexity, rendering the conventional mode-based ap-

proach intractable and ineffective. The stochastic nature of wireless networks, multi-

dimensional QoS requirements of services, highly dynamic service traffic, and inevitable

limitation of resources available in networks contribute to not only impact our ability to

study or view conceptual problems but also impede our ability to obtain better solutions

or even feasible solutions in some practical situations. With a large influx of data in B5G

systems from end-users and network elements, it is imperative to understand how data is

collected and used for real-time data processing operations.

Resource sharing can be implemented using either partition-based sharing or elas-

tic sharing. Due to the changing nature of the network load, dynamic resource sharing

among slice tenants increases the efficiency of network resource consumption. There are

specific problems that need to be resolved in resource sharing. Radio resources, for in-

stance, can be shared amongst RAN slices. Allocating radio resources among these slices

requires an efficient radio scheduling algorithm. Additionally, pooling computational re-

sources and other resources must be considered.
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Future 5G network operators are concerned with how to manage network re-

sources to maximize their benefits. In this scenario, network slice life-cycle management

is a crucial issue that must be resolved. To satisfy the most significant number of requests

for various services, 5G network operators must develop virtual network functions and

rapidly assign network resources to form network slices. In addition, they should be able

to scale slices based on the fluctuating service traffic dynamically. On the other hand,

although a network operator has the most control over his network slices, a slice may

need to exercise control over itself to improve service quality. Therefore, the network

slicing technique must examine how to grant partial permissions to each slice for config-

uration and management without causing security concerns. In addition, network slice

management must be implemented automatically to eliminate manual effort and errors.

This research proposed a novel resource management framework for network slic-

ing architecture in B5G systems, realized through the Classical ML, Statistical, DLNN

and Transfer Learning-based data-driven methods. The developed framework DeepSlice,

Secure5G, ADAPTIVE6G, and ECO6G considered load from network slices to forecast

the total traffic demand and enabled network operators to configure slice resource au-

tomation more precisely, resulting in better management of network resources by avoid-

ing excessively over-provisioned or under-provisioned resources in B5G systems. The

simulated results demonstrate a considerable performance improvement and reduced er-

ror using transfer learning compared to a traditional neural network and classical ML

algorithms.

8



In a larger scientific and socioeconomic context, the proposed research and devel-

oped models would accelerate the deployment of new services and applications over 5G

and Beyond networks, which have not yet been conceptualized and will have huge soci-

etal benefits. The proposed research will aid value in 5G-Advanced and 6G development,

and a few significant contributions are as follows.

• network slice selection while maintaining slice isolation and service requirements.

• mapping slices to a physical infrastructure while providing availability guarantees

despite infrastructure failures.

• strong recovery of virtual and physical infrastructure components following catas-

trophic failure events.

• preventive measure against volume attacks, flooding attacks, and masking (spoof-

ing) attacks.

• secure framework for authentication, authorization, availability, trust, and control

for network slicing architecture in 5G systems.

• adaptive modeling for network load estimation using transfer learning

• predictions to manage the heterogeneous traffic and resource usage patterns of the

different slices and develop energy-aware resource management for network load.

• evaluate benefit-cost-analysis to operate network in B5G systems
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1.4 Organization

In chapter 2, I present the proposed DeepSlice and Secure5G framework for net-

work slicing, which discusses the adoption of DLNN for network slicing management in

B5G systems. The ADAPTIVE6G framework is presented in chapter 3, which introduces

the concept of Transfer-learning and the findings of my research on the adaptiveness of

network slicing for load prediction. Chapter 4 presents the optimization formulation for

energy-efficient network slicing in B5G networks and our proposed framework ECO6G.

The evaluation is compared with the classical ML and statistical model. Finally, the con-

clusion and future work is discussed in chapter 5.
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CHAPTER 2

A DEEP NEURAL NETWORK FRAMEWORK TOWARDS A RESILIENT,
EFFICIENT, AND SECURE NETWORK SLICING IN BEYOND 5G NETWORKS

2.1 Introduction

Mobile communication has become an essential part of human lives. The number

of mobile devices has been exponential over the past two decades, where newer services

and applications play the role of a catalyst. This change has led to a need for higher

capacity and throughput in the network and requires close integration of multiple different

technologies. The previous two generations of mobile networking have focused on mobile

broadband communications, bringing faster speeds to more devices at lower prices. As

the 5G nears its midpoint, the network is expanding in multiple new directions to bring

5G capabilities to new vertical industries and markets and support new types of devices

with modest data-rate requirements. However, seamless operations and management have

always been a challenge for heterogeneous wireless networks, but many service providers

have worked their way through to meet customer demands.

5G networks are seen to be multi-service networks with a wide range of operations

embedding diverse performance and services, which calls for a broader device ecosystem.

B5G will enable a richer mobile experience, whether it is mobilizing media and enter-

tainment, highspeed mobility, immersive experiences, augmented reality, or connected

vehicles in the congested network environment. Our work integrates Deep Learning (DL)

methods to understand traffic requirements and make accurate decisions in 5G networks.
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Networks have evolved with the introduction of programmable systems like SDN

and NFV and have benefited since their implementation. Some critical services that 5G

networks would encapsulate are autonomous driving, enterprise business models, AR-VR

solutions, industrial automation, remote monitoring, smart health, smart cities, and many

more. The Third Generation Partnership Project (3GPP) considers network slicing a crit-

ical enabling technology for 5G. Slicing would allow operators to efficiently run multiple

instances of the network over a single infrastructure for serving various applications, use

cases, and business services with superior Quality of Service (QoS).

5G New Radio (NR), the global standard for 5G networking, is the first gener-

ation of wireless communication systems to use high spectrum and the vast bandwidth

of frequencies above 24 GHz, known as millimeter Wave (mmWave), to transfer data

faster over mobile connections. 5G mobile communication is also designed for spectrum

bands below 3 GHz and mid-band between 3 GHz to 6 GHz. 5G NR aims to address

various cellular-driven applications and systems, driving different frontiers to produce

considerably higher efficiency and unprecedented cost, energy, and usage efficiency rates.

Enhanced Mobile Broadband (eMBB) will allow a user to experience not only higher

throughput but will also create use cases and content for augmented and virtual reality

(AR/VR) to deliver immersive entertainment and experiences. 5G will create a path for

Mission-Critical communications and industries requiring ultra-reliable and low-latency

links like autonomous vehicles, medical applications, and Industry 4.0 infrastructures. 5G

will enable Massive Internet of Things, a virtual world of billions of connected devices,

by offering low cost, scale-down data rates but with full mobility functionality and future
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proof for services that are unknown today.

The 5G wireless industry is creating new approaches to solve optimization prob-

lems such as capacity forecasting, traffic estimation (over-provisioned, under-provisioned),

scheduling of network resources, and planned maintenance by utilizing the available data

points from the production network and users. These Key Performance Indicators (KPIs)

are generated and collected by billions of connected UEs and RAN elements through

traditional ML and DL approaches.

Data analysis is not new in wireless networks. In general, the industry has adopted

a centralized ML approach in the current implementation, where the data points and ML

training have been conducted in a central entity, i.e., a central server. Suppose the net-

work can make reliable, dynamic, and faster decisions through the trained model (without

having to train on the larger dataset every time). In that case, this will result in a reliable

and better quality of experience (QoE) and improve low latency communications with

faster response times. Additionally, the importance and growth of on-device intelligence

are transformational and essential if we fully realize the benefits of our 6G future. Im-

proved device experiences, such as smarter beamforming, better power efficiency, reduced

interference, and better spectrum utilization, are a few examples of improved system per-

formance through which the next-generation networks can be optimized.

5G supports services with vastly different requirements to optimally serve various

verticals, such as enhanced mobile broadband, massive machine-type communications,

and ultra-low latency applications. Network Slicing is essential in this expanding envi-
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Figure 2: 3GPP based 5G Network Architecture Systems

ronment, as it provides a flexible, secure, and scalable solution for optimizing network

configurations for virtually any service capacity. Network Slicing offers the concepts and

tools essential to deploy multiple virtual networks on the same infrastructure. They are

utilizing software-defined networks and network function virtualization as foundational

concepts. Network slices enable highly flexible, efficient, customized network deploy-

ments for any 5G service.

A network slice in the B5G network is a logical virtual network on the core phys-

ical infrastructure that can be dynamically configured to have complete network func-

tionality and resources. Slicing allows Mobile Network Operators (MNOs) to serve var-

ious vertical applications based on customer service level agreements and requirements.

Network slices contain dedicated and shared Control Plane (CP), and User Plane (UP)
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network functions along with Core Network (CN) and Radio Access Network (RAN)

resources intending to provide end-to-end isolation (or at least protected and depend-

able performance) for both data traffic and network function resources. Network slicing

enables an MNO to manage network resource allocation and resource utilization (e.g.,

bandwidth, physical resource blocks, load, and capacity). It enables a flexible UE-based

subscription model to serve customers. At the time of writing this paper, mobile operators

worldwide have yet to deploy network slicing in the commercial network; many of them

are in trial and proof of concept phases with goals to commercialize in 2023.

When providing E2E network slicing, the CN and RAN perform slicing-related

functions following the 3GPP standard architecture, where the UE during the initial regis-

tration or mobility registration updates will trigger the request for a network slice instance.

The RAN routes the request to the default or appropriate Access and Mobility Manage-

ment Function (AMF) in the core network, as shown in Fig. 2. AMF is unique to each

UE and is shared by all network slice instances that serve a UE. The UE can request up

to eight Single Network Slice Selection Assistance (S-NSSAI) in the registration request

based upon its UE-type subscription and application usage. That means the UE can have

eight network slices simultaneously (though only three are defined in standards, others

can be operator-defined slices). Furthermore, depending upon the core network support

and subscription parameters, the network may accept registration for all or some or none

of the requested S-NSSAI. The AMF assigns the slice allowed by the user subscription

and interacts with the Network Slice Selection Function (NSSF) for the appropriate slice

assignment for that UE.
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Figure 3: Network Slicing Architecture in B5G Networks

The Network Slicing function, S-NSSAI, comprises the Slice/Service Type (SST)

and the Slice Differentiator (SD). The SST identifies the slice type, while the SD dif-

ferentiates the SST among the slices. The 3GPP has standardized three SST values for

global deployment and interoperability: eMBB (SST =1), URLLC (SST = 2), and mIoT

(SST = 3). We have considered these SST values as use cases for this paper to classify

slices. The other terminologies used in Fig. 3 are Session Management Function (SMF),

Unified Data Management (UDM), and User plane Function (UPF), each of them serving

different aspects of network slicing call flow which is used to establish end-to-end user

plane connectivity between the UE and a particular Data Network (DN) via the UPF.

5G-Advanced will significantly enhance network slices’ configuration, manage-

ment, and control, enabling network operators to offer their customers the most granular

service levels. In 3GPP Release 18, standards will define new features that provide ser-
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vice continuity across network slices, enable operators to configure slices for specific

geographic areas or zones, extend slice functions across roaming partners’ networks, and

provide much finer control over how individual devices use slicing services. It is expected

that MNOs will implement Network Slicing in phases. Each slice service will be offered

to a diverse set of customers (public, private, hybrid) and will follow a decentralized ap-

proach. For example, a Private Network Slice can have a different network configuration

model where resources can be decentralized and not managed by a single entity. These

types of scenarios are more decentralized, even more so with the 5G Service-based Archi-

tecture, as MNOs are undoubtedly capable of establishing an isolated network of slices as

required. Our decentralized approach for traffic forecasting from each slice could greatly

benefit MNOs in managing and maintaining these customized and isolated networks.

The telecom industry is going through a massive digital transformation with the

adoption of ML, AI, feedback-based automation, and advanced analytics to handle next-

generation applications and services. AI concepts are not new; the algorithms used by ML

and DL are currently being implemented in various industries and technology verticals.

With growing data and an immense volume of information over 5G, the ability to predict

data proactively, swiftly, and accurately is critically important. AI will enable network

functions to deliver ultralow latency, higher throughput, and reliability by optimizing net-

work performance and improving QoE.
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2.2 Related Work

Authors in [1] explore the multi-tenancy nature of the 5G network slicing by

demonstrating how the capacity of a Mobile virtual network operator (MVNO) is af-

fected by the number of users and transmit power. SDN and NFV-based 5G core network

architecture is defined in [2]. Du and Nakao propose an application-specific mobile net-

work DL architecture to apply application-specific radio spectrum scheduling in the RAN

[3]. Authors in [4] propose a framework to prioritize network traffic for smart cities us-

ing a priority management SDN approach. Authors in [5] started work early on network

slicingSINR standardization of network slicing, network slice selection, identifying slice-

independent functions, and then proposed architecture for slicing and the RRC frame.

No other work to our knowledge considers the easily overlooked but the complex

problem of deciding which devices and connections should be assigned to which network

slices. And our work here is the first to use DL to address this problem, which will provide

the benefits of fast, flexible, accurate, and informative decision-making. The authors in

[6] contrast Fade Duration Outage Probability (FDOP) based handover requirements with

the traditional SINR-based handover methods in cellular systems. Another SDN and

NFV-based work on slicing demonstrate dynamic data rate allocation and the ability to

provide hard service guarantees on 5G new radio air interfaces [7]. Many industry white

papers and network surveys have been published. An Ericsson mobility report predicts

the growth of mobile devices, 5G network connections, and overall data usage in coming

years. As for network intelligence, the authors in [8] represented handovers using B
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matrix distributions for public safety and emergency communications, which helps make

handover decisions more accurate considering all the different parameters involved in the

decision process.

Authors in [9] present network survivability framework in 5G networks demon-

strating network virtualization with multiple providers, which necessitates network slic-

ing in 5G. Virtualized networks or slices of virtualized networks are selected and assigned

based on QCI and security requirements associated with a requested service in [10]. Cam-

polo et al. share their vision about V2X network slicing by pinpointing essential needs

and providing design guidelines aligned with ongoing 3GPP standard specifications and

network softwarization directions in [11]. The proposed model in [12] enables a cost-

optimal deployment of network slices, allowing a mobile network operator to efficiently

allocate the underlying layer resources according to its user’s requirements. However,

their work needs to consider the possibility of multiple service requirements requested by

the same device, especially those requested by an unknown device. Also, network slice

load balancing and future prediction of traffic is unique in our work, especially with the

use of ML and DL neural networks.

A mathematical model that can provide on-demand slice isolation and guarantee

end-to-end delay for 5G core network slices is proposed in [13] to proactively mitigate

Distributed Denial-of-Service attacks in 5G core using slice isolation. The network slices

relying solely on common infrastructure cannot meet the highest isolation requirements.

Therefore, authors in [14] introduce different novel provisioning models for 3rd-party
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slices and discuss their isolation properties. Authors in [14] propose an efficient and se-

cure service-oriented authentication framework supporting network slicing and fog com-

puting for 5G-enabled IoT services. They also introduced a privacy-preserving slice se-

lection mechanism to preserve both configured slice types and accessing service types

of users. [8] proposes a 5G network architecture framework with network virtualization

among multiple providers, and a self-organizing ad hoc network among the eNBs that

may use another provider for network resilience when the aggregation network and the

backhaul network fail.

Three different models are demonstrated in [15] using the CoAP and MQTT appli-

cation protocol, which aims at providing efficient mechanisms and methods for over-the-

air (OTA) delivery of software updates and security patches to IoT devices. The authors

also evaluate which protocol suits proposed models and applications better. [16] applies

a deep auto-encoded dense neural network algorithm for detecting intrusion or attacks in

5G and IoT network for flooding, impersonation, and injection type of attacks. UE ca-

pability, RRC messages, and measurement reports [17] and [18] can be very helpful in

identifying irregular behavior by identifying changes in device power and thermal con-

sumption. With Secure5G, the proposed work is to utilize the UE Capability Enquiry and

UE Capability Information messages along with the measurement of neighboring cells to

identify the non-3GPP access or unauthorized base stations. Upon detection, the network

can flag the false base station as a threat and direct another UE’s to not connect to the

identified false base station.
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2.3 Research Contribution

In this research work, we have developed a DeepSlice and Secure5G model by im-

plementing Deep Learning Neural Network (DLNN) to manage network load efficiency,

network slice selection, network availability, and security of network slices utilizing in-

network deep learning and prediction. We have used available network Key Performance

Indicators (KPIs) to train our model to analyze incoming traffic and predict the network

slice for an unknown device type, as shown in Fig. 4. Intelligent resource allocation

allows us to efficiently use the available resources on existing network slices and offer

load balancing. Our proposed DeepSlice model will be able to make smart decisions and

select the most appropriate network slice, even in case of a network failure. Furthermore,

it proposed a Neural Network-based Secure5G Network Slicing model to proactively de-

tect and eliminate threats based on incoming connections before they infest the 5G core

network.

Figure 4: DLNN Model Overview

21



The following specific research issues are addressed through DeepSlice and Secure5G:

• optimal control and appropriate management of network slice selection for incom-

ing requests.

• optimizes the network and individual slice load efficiency across isolated slices.

• strong recovery of network slicing infrastructure following catastrophic failure events.

• authentication, authorization, availability, trust, and control for network slicing ar-

chitecture in 5G systems

• prevention measure against volume attacks, flooding attacks, and masking (spoof-

ing) attacks strategies towards the zero trust objective (never trust, always verify,

verify continuously) for securely operating on 5G networks that provide security

and improve availability and resilience.
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2.4 Network Slice Resource Management - DeepSlice Model

The legacy 4G LTE architecture has a rigid framework that could be more flexible

and scalable to adapt to various use cases. It often needs more customization when offer-

ing tailored business requirements or meeting specific business demands. With growing

mobile data and consumer demands, business needs for faster connectivity and higher

throughput cannot be fulfilled by today’s 4G LTE network. Network slicing in 5G can

deliver multiple logical networks cost-effectively over the same physical infrastructure.

SDN and NFV would allow us to manipulate these slices as and when needed without

touching multiple physical equipments in the network. Almost ‘no-disruption’ to any

existing services is possible. Currently, service providers must configure and stitch to-

gether several components and equipment to achieve network slicing in 4G. Use of Access

Point Name (APN) or Public Land Mobile Network (PLMN) are examples that service

providers implement today for Mobile Virtual Network Operators (MVNOs), enterprise

customers, etc. Much work is done on optimizing and efficiently scheduling radio and

network resources; however, application or service-based resource allocation is necessary

and a must-have feature in 5G networks.

Operators have a huge amount of data traffic coming through their network, which

will increase with a growing number of devices and additional services of 5G networks.

This traffic can be segmented and dealt with individually and independently. It will benefit

any service provider as they can now bill differently for each sliced segment and adjust

the cost for each slice, leading to a balance between business profitability and customer
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satisfaction. In addition, 5G network slicing allows service providers to build for all

current use cases that have been r a while and some emerging applications and services.

It will provide a ‘one size fits allpieces of equipment each. Each network slice can be

isolated and have individual control and policy management systems.

Including DL and ML here will allow us to analyze any unknowns and take nec-

essary corrective actions. ML will provide network analysis of the huge data, which can

be studied further to efficiently and cost-effectively modify any given slice as needed.

DL will provide, process, and make intelligent decisions for network resource adaptation

without human intervention. It will also combine various factors to make the best deci-

sions, possibly too many factors for a human to consider at once or even be able to process

quickly.

DL will perform real-time analysis for any given slice to determine the network

performance, create a potential baseline for performance, be proactive in anticipating

problems, inspect different network elements, and find out if anything is abnormal. A

simple example could be on a slice for a fixed wireless enterprise network. If the network

sees a sudden demand increase, automation can add more capacity in real-time to provide

efficient communication. This will help to create any newly required services or slices

in the network. Automation will facilitate all this quickly without causing performance

issues in an ongoing session. Current hurdles in the implementation of network slicing are

organizational, as one will have to touch several pieces of hardware and groups in a service

provider network to make a single change. The programmability capabilities of 5G will
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provide flexibility to seamlessly stitch together an end-to-end service for any application.

A typical consumer would request parameters like data rate, latency, mobility, isolation,

power constraints, etc. Accordingly, a specific network slice type is provisioned if the

existing network slice instance does not have enough capacity and associated network

functions are initiated on demand.

With Network Slicing, each use case receives an optimized set of resources in

the network topology covering several SLA-specified factors like connectivity, latency,

priority, service availability, speed, capacity, etc., that suit the need of an application.

The key parameters for network slicing are the slice type, bandwidth, throughput, la-

tency, equipment type, mobility, reliability, isolation, power, etc. 5G enables enormous

amounts of data collection, leading to the need for ML for big data analytics. Some of the

most relevant and useful ML-based applications in the wireless industry are identifying

and restarting sleeping cellular cells, optimizing mobile tower operations, faster wire-

less channel adoption, facilitating targeted marketing, autonomous decision-making in

IoT networks, real-time data analysis, predictive maintenance, customer churn, sentiment

analysis by social networking, fraud detection, e-commerce, etc. ML implementation in

Uber-like applications will have many advantages since Uber follows differential pricing

in real-time based on the demand, cars available, weather conditions, rush hour, etc. The

ML-based platform will allow for better accuracy and future prediction based on enor-

mous past and present data.
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Figure 5: Proposed DeepSlice Model

Fig. 5 shows the high-level overview of our developed DeepSlice. In the pro-

posed model, we predict the network load of each network slice based on the incoming

connection and keep track of which output ‘network slice’ is utilized most. We then al-

locate incoming devices to slices by efficiently distributing between the eMBB, URLLC,

mMTC, or the master slice, depending on the load and the output predicted by our model.

We have used Keras, a Python deep-learning library, for our model simulations. A DLNN

is required as there are no clear rules for how each incoming device type should be treated.

Cellular handovers, for example, are based on several network factors. With every new

scenario, an intelligent network can learn and adapt quickly to changes or new require-

ments compared to traditional algorithms. DLNN can help identify and accommodate the

unknowns in the network.

The DLNN works best when the data is unstructured and huge. We use the same
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dataset to train multiple neurons of our DLNN, and it predicts the correct network slice

based on any input from the UE information. Our DLNN can predict very accurately, and

we utilize this functionality to select the correct slice for unknown device types. It helps

redirect traffic to the Master slice if load balancing is required in the network slices and

in case of any slice failure. Neural networks are widely used in the industry today, and

their usage will only grow as the ever-growing devices on 5G networks generate massive

data. Accurate analysis and decision-making will be overwhelming for any human being,

and faster processing times are required. We first create an ML model and later build a

DLNN to help decide which network slice to use for given input information.

The developed DeepSlice is then used to manage network load, slice failure condi-

tions, and detect the most appropriate slice for any new unknown device type connecting

to the network. A statistical ML model is based on the Random Forest (RF) algorithm,

and the DeepSlice uses a convolutional neural network (CNN) classifier. Both RF and

CNN are widely used models in their respective domains. We use the same dataset for

our ML and DLNN models consisting of over 65,000 unique input combinations. Our

dataset includes the most relevant KPIs from both the network and the devices, including

the type of device used to connect (Smartphone, IoT device, URLLC device, etc.), User

Equipment (UE) category, QoS Class Identifier (QCI), packet delay budget, maximum

packet loss, time and day of the week, etc. These KPIs can be captured from control

packets between the UE and the network. Since our model will run internally on the

network, all this information is readily available.
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Table 1: Dataset inputs for DeepSlice and Secure5G

Input Type Duration Packet Loss Rate Packet Delay Budget (ms) Predicted Slice
Smartphone 300 10−2/10−3/10−6 50 eMBB/mMTC
IoT Device 60 10−2 50 mMTC

Smart Transportation 60 10−6 10 URLLC
Industry 4.0 180 10−2 300 mMTC

AR/VR/Gaming5 600 10−2 100 eMBB
Healthcare 180 10−6 100 eMBB

Public Safety / E911 300 10−6 100 eMBB
Smart City / Home 120 10−6 100 eMBB

Unknown Device Type / Home 60/120/180/300 10−6 100 eMBB

We have multiple different types of input devices requesting access to our system.

As shown in Fig. 5, these include smartphones, available IoT devices, AR-VR devices,

Industry 4.0 traffic, e911 or public safety communication, healthcare, smart city or smart

homes traffic, etc., or even an unknown device requesting access to one or multiple ser-

vices. These have UE category values defined for them, and the network also allocates

a pre-defined QCI value to each service request. In 5G, the packet delay budget and the

packet loss rate are an integral part of the 5QI (5G QoS Identifier), and we have them

included in our model. DeepSlice will also observe what time and day of the week the

request is received in the system. All this information will be recorded and used by our

DLNN to make smart decisions and efficiently predict future network resource reserva-

tions.

In Table 1, we have shown highlights of the features of our simulation model. The

second column shows the average time spent in the system by each incoming request.

All these incoming requests are directed to one or more of the network slices as pre-

dicted. We have also considered some variations in the traffic types; mMTC devices can

be further categorized as ones requiring a continuous connection link and others needing
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only a momentary connection to send data periodically. Every day, users can use smart-

phone devices to make phone calls, browse the web, and at the same time, first responders

in an emergency (lower packet loss and packet delay). Our pre-defined slice categories

include enhanced Mobile Broad Band (eMBB), Ultra Reliable Low Latency Communi-

cation (URLLC), massive Machine Type Communication (mMTC), and the Master slice.

The Master slice is the slice that will have network functions belonging to each of the

other slices. It can always act as a backup slice in a hot standby and will be used depend-

ing on the load on other slices.
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2.5 DeepSlice Use-cases

2.5.1 Objective 1: Identifying Unknown Incoming Connection

The DeepSlice model is trained using multiple unique inputs based on network

and device KPIs. Our cross-validation accuracy was close to 95% as shown in Fig. 6,

which included the entire test dataset of new input scenarios, those not used while train-

ing. At the same time, the classical ML approach using Random Forest shows 93.70%

accuracy. Our training dataset included 6 to 8 parameters in every input. However, our

model requires a minimum of two or three input KPIs to determine the services requested

and allocate the correct slice.

After training, we evaluated DeepSlice to predict network slice selection for un-

known device types. The unknown device types are new types or devices that are not yet

known or that the 5G networks have not seen. As 5G will bring plenty of new use cases,

new hardware, sensors, and devices will connect to the network and almost certainly re-

Figure 6: Unknown Slice Prediction Accuracy
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quire one of these slices. Using DeepSlice, we can predict and co-relate the device using

learned behavior and device metadata and assign appropriate slices, inline ML model.

This is essential since many devices with various capabilities request different services at

different times, and it is hard to rely on signature-based modeling for devices not built

yet. An industry 4.0 IoT application requires very low latency (URLLC). In contrast, the

same type could also be used to monitor production lines, requiring periodic connection

and very low throughput (mMTC). We also included certain unknown device types with

randomly selected parameters.

Table 2: Unknown Inputs for Predicting Network Slice

Input Type Technology Packet Loss Rate Packet Delay Budget (ms) Predicted Slice
Unknown - 1 LTE/5G or IoT 10−3 50 eMBB/mMTC
Unknown - 2 IoT 10−2 50 mMTC
Unknown - 3 IoT 10−6 10 URLLC
Unknown - 4 IoT 10−2 300 mMTC
Unknown - 5 LTE/5G 10−2 100 eMBB
Unknown - 6 LTE/5G 10−6 100 eMBB

We demonstrated an accurate Network slice prediction for unknown devices. Ta-

ble 2 shows a few unknowns and how only a portion of input information was used to

determine the network slice to be used correctly. Thus, this evaluation established a

framework to optimally control and manage appropriate network slice selection for in-

coming requests from diverse applications and services.

2.5.2 Objective 2: Network Slice Load Balancing

We evaluated DeepSlice DLNN model for a load balance mechanism to distribute

slice loads among base stations or within network slices. The B5G network needs to be
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swifter and smarter in using its resources, it should balance the load and prioritize its

customer’s needs in near real-time, and it should all happen without human intervention.

Fig. 7 shows the simulated traffic using DeepSlice model. We generated approximately a

quarter million user connection requests in a twenty-four simulation, of which 40% was

eMBB, 25% mMTC, and 35% URLLC. The simulated DLNN model gives the number of

users served in twenty-four hours. The plot began when our model reached a steady state

at the one-hour mark. Based on the Table 1 information, all incoming traffic has a pre-

defined time-to-live (TTL), so only a fraction remains alive every second. For example,

the eMBB active user average count was 275 at any given instance. URLLC and mMTC

users were allotted short TTL compared to the eMBB, which is why we have more users

alive for broadband services. This can help analyze the user pattern and will allow for

automated decisions based on the retrieved input information from the connected device.

Figure 7: Simulated Network Traffic using DeepSlice
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Figure 8: Load Balancing across Network Slices

As shown in 8, as afternoon and evening peak hours hit, the demand increases, and

users demand more bandwidth, creating a congestion-like environment in the network.

Now the network must decide whether to lower the QoS profile of users within the same

slice, move users to a new slice with the same QoS, or create a new network slice for

latency-sensitive and bandwidth-hungry applications. In short, the network needs to be

swifter and smarter in using its resources, it should balance the load and prioritize its

customer’s needs in near real-time, and it should all happen without human intervention.

For evaluation, we simulated the over-utilization of one slice, i.e., the number of

connections exceeded a threshold, 90% usage in our case. Fig. 9 shows an eMBB slice

is detected to have over 90% utilization with its traffic to go over the set threshold, so

the master slice acts as a backup for any new eMBB connections. Our DeepSlice can
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Figure 9: Network Slice Utilization exceeding a pre-defined threshold

realize this overload and can be prepared next time to redirect traffic without causing one

specific slice to be overloaded. In this case, the master slice takes over the excess traffic,

represented by a flat line on eMBB.

2.5.3 Objective 3: Network Slice Failure Scenario

In this case, we assume a complete failure of a specific slice, specifically eMBB,

as shown in Fig. 11. Here, the DeepSlice directs all new eMBB related traffic all new

eMBB-related traffic to the master slice and avoids any traffic transmission loss in the

network. We made the network slice unavailable for a set period and rerouted incoming

traffic to the Master slice. The graphs show that mMTC slices failed between 3 and 5

a.m., and eMBB slices failed between 15 and 18. However, any ongoing communication

on that slice would be hampered, and all existing connections would be lost due to an

unexpected slice failure. The master slice was identified as a backup and used to redirect

this traffic during those slice failures. We had substantial resources reserved in the master
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Figure 10: Network Slice failure and re-direction to MasterThe graphs show that

slice for each of our network slices in terms of capacity and eMBB resources.

Network slicing in 5G is critical for next-generation wireless networks, mobile

operators, and businesses. We have demonstrated the benefits of using DeepSlice for

Figure 11: Network Slice failure demonstration
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accurately predicting the best network slice and orchestrated the handling of network

load balancing and network slice failure using neural network models.
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2.6 Network Slice Security - Secure5G Model

Network Slicing will play a vital role in enabling many 5G applications, use cases,

and services. Network slicing functions will provide end-to-end isolation between slices

with an ability to customize each slice based on the service demands (bandwidth, cover-

age, security, latency, reliability, etc.). Maintaining the isolation of resources, traffic flow,

and network functions between the slices is critical in protecting the network infrastruc-

ture system from Distributed Denial of Service (DDoS) attacks. The 5G network demands

and new feature sets to support ever-growing, complex business requirements have made

existing approaches to network security inadequate. In this work, we have developed a

Neural Network-based Secure5G Network Slicing model as an extension to DeepSlice to

proactively detect and eliminate threats based on incoming connections before they infest

the 5G core network. Secure5G is a resilient model that quarantines the threats ensuring

end-to-end security from device(s) to the core network and any of the external networks.

Our designed model will enable the network operators to sell network slicing as-a-service

to serve various services efficiently over a single infrastructure with high security and

reliability.

3GPP Rel. 15 has covered several technical specifications; important ones include

the new security measurement for rogue, false base stations by masking the permanent

subscriber identifier (SUPI) so that the rogue base station cannot track the subscriber in

the 5G network. 5G Globally Unique Temporary Identifier (5G-GUTI) is another im-

provement where UE and RAN have a mandatory requirement to refresh the GUTI from
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initial registration to mobility registration update. At the time of writing this paper, 3GPP

Rel. 16, which is expected to be available mid-2020, and a list of work items being

considered for standardization indicates the security requirements for Enhanced Network

Slicing, URLLC for 5G Core, and Cellular IoT.

The vision of next-generation 5G networks is to improve the capacity, coverage,

security, and connectivity of existing 4G networks. Network operators are designing the

mmWave network to meet high capacity demand and relying on Sub 6 GHz 4G/LTE

network for coverage. The current release of 5G NR is based on 3GPP Release 15, which

takes advantage of sub-6 GHz and above 24 GHz to achieve substantial peak throughput

and low latency. Current 5G deployment is on an overlay of the 4G LTE network, and

different service providers are following a different approach. Mobile Network Operators

(MNO) are deploying or planning to deploy 5G using two architectures - Non-Standalone

(NSA) and Standalone (SA). NSA is an evolutionary step for network operators to offer

5G services without building a new dedicated 5G core network. In Non-Standalone, 5G-

enabled smartphones will connect to 5G frequencies for data-throughput purposes but still

use 4G/LTE for all control plane signaling to the cell towers and servers.

On the other hand, a Standalone will have its dedicated core, and a UE will also be

able to use the 5G NR core for control plane signaling. SA will also support the growth

of new cellular use cases such as Network Slicing, Control and User Plane Separation

(CUPS), Virtualization, Multi-Gbps support, URLLC, and other aspects natively built

into the 5G SA Packet Core architecture. We must recognize the threat, and security
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loopholes with the evolution of these new networks are growing substantially.

The threats and security challenges faced by the 5G ecosystem are the same as

those encountered by 4G/LTE today. 5G networks, in addition, will have specific re-

quirements on throughput, latency, and security to meet the service level agreements for

diverse applications and services, especially with a diverse ecosystem for IoT devices.

Fig. 12 shows today’s various threat vectors we classify in the 5G Network. In a typical

DDoS attack, a hacker floods the system by sending a huge amount of bad traffic, false

ping, and connection requests to the targeted network, making bandwidth and resources

Figure 12: Common 5G Threats Vectors across Device and Network
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unavailable or busy for normal traffic. UDP attack, for example, floods random ports on

a remote host, making the host server busy and unresponsive; ICMP packets attack ping

packets continuously without waiting for replies causing the system to clog; SYN flood

exploits the 3-way handshake mechanism and does not close the connection after receiv-

ing acknowledgment from the server causing server bottleneck situation. Ping of death,

which sends malicious pings with IP packets more than 65,535 bytes in length, is another

form of cyber-attack to saturate and overwhelm the website or server and make resources

unavailable for normal traffic.

Other network attacks include the International mobile subscriber identity (IMSI)

catcher, where the IMSI of a device is sent unencrypted over the radio and eavesdropped

on by hackers. The attacks on the user plane and control plane on the core network and

radio interface are also common exploitation points for malicious actors. This could lead

to data injection, such as the Man-in-the-Middle (MitM) attack. Radio Access Network

(RAN) attacks include UE location tracking and malicious message insertions during the

initial UE attach procedure. Bring your own device (BYOD) concepts are another threat

concern for enterprise solutions, increasing floodgates and data leakage opportunities for

attackers. With less control over BYOD devices, systems are more vulnerable to attacks

and device tampering. Battery life is a key aspect of the 5G, LTE-M, and NB-IoT tech-

nology aims to power IoT devices for a battery life span of up to 30 years by disabling the

power-saving abilities of these IoT devices through the injection of malicious code during

the initial attack could drain battery drain five to ten times faster than expected life. F-

secure threat report 2019 [4] indicates that 99.9% of the attack traffic comes from bots or
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some automation tool, IoT bot activity represented 78% of the malware network activity

(detection events) across carrier networks, more than triple the rate seen in 2016 since the

introduction of biggest DDoS attack in history with Mirai botnet. Mirai was a brute force

password guessing attack on open telnet and SSH ports by scanning the internet for open

Telnet ports, then attempting to log in default passwords.

SDN-based architecture is more prone to malicious attacks than monolithic core

architecture because of the network function virtualization, which creates more entry

points for attackers to infest into the network. With more slices, multiple network con-

figurations and virtual devices, security and privacy concerns in the cellular ecosystem

are at a critical juncture, resulting in the need for secure software and methods to build

a robust and secure ecosystem. Attacks on the 5G network could have severe conse-

quences on society in a broader aspect. Network Slicing in 5G can play a vital role in

providing dynamic and flexible security architecture for isolated networks optimized for

applications with varying needs from a security and privacy perspective by customizing

independent firewall configuration(s), security policies, along-with slice-specific authen-

tication schemes.

We have addressed the issue of DDoS attacks in 5G networks from the UE per-

spective. We have developed a Secure5G model based on DL techniques for Networking

function in 5G as shown in Fig. 13, with an aim to (1) identify the incoming connection

request and assign the most optimal slice based on the device type, (2) verification of the

connection request if it is legit or a potential threat, and (3) implementation of an action,
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,

Figure 13: Proposed Secure5G Model

either assignment of appropriate network slice (valid request) or transfer to the quarantine

slice (malicious request). The aim of the Secure5G is to mitigate the DDoS initiation

attacks by UEs by ensuring UEs can access network slices only after being authenticated

and authorized, minimizing the risk of denial of service. Secure5G protects the system

in case of a Volume-based flooding attack and in the case where hackers mask the de-

vice identity and tries to exploit the network slice by requesting system access with low

secured slice instance. The Secure5G model analyzes the overall traffic pattern and can

predict future traffic so that it can allocate resources, in advance, to the most appropriate

slice securely.

The Secure5G model primarily consists of User Equipment (UE) requesting ser-
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vice to the network for slice and resource allocation. Our model considered diverse input

types and applications like smartphones, health devices, autonomous vehicles, AR-VR

gaming, smart homes and cities, and Industry 4.0. We also included the Malware botnets

and hackers, as shown in Fig. 4. We introduced a concept of a Quarantine slice along

with the eMBB, mMTC, and URLLC standard slices. Quarantine slice has the network

functions for a bare minimum QoS, which allows a device to communicate to the network

with a very restricting set of requirements in case of slice attack, slice failures with bare

minimum service to serve the user instead of abruptly terminating the connection. The

black hole routing concept has been used to terminate the connection permanently after

observing the repeated negative traffic pattern of the device(s).

For evaluation, we considered two scenarios: Volume Based Attacks (Flooding)

and Masking Botnets. Secure5G can observe and learn the device request patterns and

assign the best optimal slice, and the model will evolve and be able to predict future

traffic patterns and can be used for the capacity forecast. The model also helps prepare

the network for assigning slices to unknown (or new) applications or service requests

unknown to the network and secure the system in case of a slice DDoS attack or Slice

failure.
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2.7 Secure5G Use-cases

2.7.1 Objective 4: Network Slice Volume Based Attack

In this section, we evaluate Secure5G DL model on how it can be used to proac-

tively prevent DDoS attacks on a 5G network based on the incoming network connec-

tions before it even reaches the core network. We also observe the traffic pattern and QoS

chNetworkingcs during slice allocation to detect anomalies. For instance, a device in an

IoT slice whose traffic no longer matches IoT traffic patterns might trigger a warning for

a potential attack. Secure5G knows if UE is accessing the unauthorized network slicing

or requesting unauthorized operation, for example, changing QoS values for prioritizing

eMBB over mMTC. The model can also detect abnormal behavior by the subscribed user,

for example, requesting access to multiple slices simultaneously repeatedly compared to

their previous usage or usage in general from similar devices on that slice.

Per 3GPP specifications, a device can access multiple Network Slices simultane-

ously; slices can have a diverse configuration, which increases the possibility of security

loopholes between slices. For example, if UE exchanges a sensitive date in one slice

(enterprise) and publishes data on another slice (consumer), data leaks between slices are

possible. The administration of data exchange between UE and different slices is a high

level of security concerns, and this impact needs to be studied further. Security policies

need to be defined on the RAN or Core network slicing, as the UE has no notion or con-

trol over which slice to request a connection. The network operator should ask UE to

re-authenticate for every network slice separately to check and validate if UE is meeting
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the SLA for every slice or not. Otherwise, a malicious UE can authenticate to a lower-

level security slice and get access to other slices through common network functions and

resource sharing.

The volume-based attack is one of the widespread forms of cyber-attacks. Hackers

disrupt normal service flow, typically by flooding the target with a high volume of pack-

ets or connection requests, overwhelming networking equipment, servers, or bandwidth

resources. We evaluated our Secure5G model by simulating the attack so that device(s)

make multiple connection requests to the network simultaneously. Our model detects bad

malicious traffic and blocking before it reaches the core network, as shown in Fig. 14. As

shown, malware botnets and attackers are trying to flood the network by sending multiple

requests. If such attackers are allowed into the network, the system may run out of capac-

ity and crash, be unable to handle huge traffic, and become unresponsive to new requests.

Figure 14: Volume-based Attack (Flooding) in Network Slicing
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A smartphone can only make one control Radio Resource Control (RRC) signaling con-

nection request to the network during the initial attach, and that too for a single network

slice instance. However, suppose it makes multiple requests to multiple slices simultane-

ously. In that case, such an unusual behavior will be identified as suspicious and Secure5G

model will detect this anomaly and quarantine these incoming connections. On the quar-

antine slice, such devices will only get the bare minimum service, eventually terminated

if their malicious activity is confirmed.

The Secure5G model continues to learn and detect the incoming connections or

the traffic pattern each time. If any known rogue (detected attacker) device continues its

suspicious behavior by trying to flood the network, it will, ultimately, be denied any more

service by the network. All its traffic will be moved to the black hole route, and this

device will be marked as a possible threat to our database. After an initial attack, any

device can make an immediate connection request to a different slice. We would not want

any genuine user or an original connection request to be flagged as suspicious just because

they make multiple requests divided by a short time interval. So, we’d like to consider a

certain expiry timer on every incoming request to avoid false flagging. Secure5G model

will only flag this as a threat if the device requests multiple slices after the timer have

expired. Timer expiry can be customized, and here we have considered 5 seconds in

our simulation, but network operators can choose to define their threshold based on slice

requirements.

Fig. 15 represents the volume-based cluster simulated using Secure5G, providing
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Figure 15: Volume-based Attack (Flooding) demonstration

the granular visibility of all incoming connections to different slices. The graph shows two

scenarios combined; the normal and the attacker traffic. Normal traffic is when all devices

follow the normal slice selection logic with DeepSlice, and the attack scenario shows

the traffic with malicious connections where we randomly used ten malicious devices,

requesting resources from all slice simultaneously. This is shown in the central region of

the plot as a sudden increase in the number of users. Our model will quickly identify and

transfer this malicious traffic to the quarantine slice.

Additionally, we evaluated the slice-centric attack scenario in our simulation as

shown in Fig. 16, where ten identified IoT devices bombard the network with multiple

requests for resources from eMBB and URLLC slice instead of their standard mMTC. Se-

cure5G will kick in immediately after observing such a DDoS traffic stream as it identifies
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Figure 16: Slice-based Attack (Flooding by IoT devices)

an influx of packets with the suspiciously-identical device, making multiple slice connec-

tions that do not match a typical pattern. By tracking such minuscule abnormalities, the

Secure5G will weed out malicious traffic without impacting regular (genuine) user flow.

2.7.2 Objective 5: Masking Botnets (Spoofing) Attack

We have evaluated the robustness of our Secure5G model by simulating the spoof-

ing attack scenario by hackers. In simple terms, device or client masking is an imperson-

ation of a user where the attacker disguises the source of an attack and allows the infected

traffic to appear legitimate. Hackers commonly spoof DNS servers and IP addresses to

spread the virus. Botnets are malware-infested devices that attackers use to generate mas-

sive traffic to consume the server capacity and multiple network connection requests to

flood the system, resulting in server downtime, and most scenarios, even without their
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owners’ knowledge.

In Secure5G, we have simulated spoofing attacks by masking as shown in Fig.

17; for example, a smartphone device appears to be an IoT device and makes a slice re-

quest for mMTC instead of eMBB. Secure5G model has an inbuilt database of devices

and user patterns from learning, which maintains all original (and previous) connection

requests made by any device. Secure5G assigns a unique global identifier when a UE tries

to connect to the network first time. For example, when a smartphone device with a cer-

tain International Mobile Equipment Identity (IMEI), e.g., 123456789012345, requests

a connection, the Secure5G model will assign a GUTI (e.g., 9a91abe4-baa2-4f55-b95e-

7ab66040aec2) to this IMEI and this information is stored in our database. Every GUTI

is mapped with the device type, IMSI, slice requested, etc. Suppose an attacker mask

smartphone as an IoT device and requests an mMTC slice. In that case, the model will

Figure 17: Device Masking Attack in Network Slicing
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understand this malicious request and flag it as a possible botnet by comparing it against

IMEI and GUTI values in the database.

This paper has investigated the security concerns in the 5G network and presented

a DLNN model to create a robust Network Slicing framework to combat DDoS attacks

filtering the malicious UE connections to the 5G network. Volume-based flooding and

spoofing attack scenarios were used as illustrations to evaluate the overall performance,

and the detection accuracy was more than 98% with our limited dataset.

2.8 Conclusion

This research’s primary objective is to develop methods and approaches for sus-

taining high availability and diverse service requirements for network slices in 5G net-

works. The DeepSlice research examines a framework that employs DL approaches to

perform slice selection, slice load balancing, and slice failure schemes for network slices

to achieve these objectives. We have extended the DLNN model to address the threats to

the performance, availability, and robustness of B5G networks by proactively preventing

and resolving threats to secure networks by understanding security threats and knowledge

of protections and potential threat responses. The developed model is critical and future-

proof in ensuring the end-to-end security of the 5G network and predicting the known

and unknown applications/services which are not defined/developed today by utilizing

the learning from a developed deep-learning model.
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CHAPTER 3

ADAPTIVE RESOURCE MANAGEMENT TECHNIQUES FOR NETWORK
SLICING IN BEYOND 5G NETWORKS USING TRANSFER LEARNING

3.1 Introduction

The network functions and the core elements of the fifth-generation of mobile

network, 5G, have transformed to serve and support various services such as enhanced

Mobile Broadband (eMBB), Massive Internet of Things (mIoT), and Ultra-reliable low la-

tency communication (URLLC). By allowing multiple virtual networks to be built within

a single physical network architecture, network slicing can be instrumental in enabling

verticals for mobile operators. Virtual networks, referred to as slices, would offer unique

network functions to enable mobile network operators and service providers to develop

innovations and business models. Optimizing cellular networks using the data collected

from the end users and the core network is becoming relevant and raises more significant

concerns over data privacy between users and operators.

Future intelligent wireless networks demand an adaptive learning approach to-

wards a shared learning model to allow collaboration between data generated by network

elements and virtualized functions. Current wireless network learning approaches have

focused on traditional ML algorithms, which centralize the training data and perform se-

quential model learning over a large data set. However, training on a large dataset is

inefficient; it is time-consuming and not energy and resource-efficient. Transfer Learn-

ing (TL) effectively addresses challenges by training based on a small data set using
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pre-trained models for similar problems without impacting neural network model perfor-

mance. TL is a technique that applies the knowledge (features, weights) gained from

a previously trained ML model to another but related problem. This work proposes an

Adaptive Learning framework ADAPTIVE6G, a novel approach for a network slicing ar-

chitecture for resource management and load prediction in data-driven B5G, 6G Wireless

systems influenced by the knowledge learning from TL techniques. We evaluated ADAP-

TIVE6G to solve complex network load estimation problems to promote a more fair and

uniform distribution of network resources.

We demonstrate that the ADAPTIVE6G model can reduce the Mean Squared Error

(MSE) by more than 30% and improve the Correlation Coefficient ‘R’ close to 6% while

reducing under-provisioned resources. TL can play a crucial role by utilizing an already

trained model for general user behavior estimations, clustering of demographic profiles,

and network environment analysis such as traffic, capacity, and resource management,

which are critical for building a reliable and efficient next-generation network [21]. Then

small amounts of specific user data can be used to target the model to that specific user

without divulging large amounts of user data.

The study of collaborative ML, and TL specifically, in 5G systems for heteroge-

neous devices generating unusual data traffic, particularly with the network slicing fea-

ture, has yet to be investigated precisely. We used this opportunity to explore the opti-

mum solutions tailored for network load estimation, thereby proposing a TL-influenced

adaptive learning framework, ADAPTIVE6G. Fig. 18 (a) represents the current state of
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(a) Typical Traditional and TL (b) TL in ADAPTIVE6G

Figure 18: (a) Traditional ML vs. (b) Transfer Learning

Traditional ML, and Fig. 18 (b) depicts the general representation of TL. The conven-

tional approach trains and constructs an individual model for each task, whereas the TL

approach leverages prior knowledge from source tasks to improve the new target task per-

formance. The TL flow comprises training a Global Model A (MA) on a large dataset DA

to predict a task TA on a different domain for a different source task but related problem.

We capture the computed weights from the Global Model for each layer, which are then

fed back to train new models using smaller datasets. The central concept here is to extract

features using the weighted layers of the pre-trained model.

Traditional ML techniques presume that the training and testing data come from

the same domain, with the same input feature space and data distribution. This is only

sometimes true in real-world ML applications. Also, collecting training data can be costly

or challenging in some cases. This is true for the Network Slicing use case, as the slic-

ing feature has yet to be commercialized in the production 5G network. As a result,

high-performance learners must be trained in various similar data domains. Deep Neu-

ral Networks are based on a reconfigurable architecture; many different hyper-parameters
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can be configured. Therefore, a knowledge transfer can be achieved by training or freez-

ing Neural Network layers and classifiers, adding additional classification layers (Dense

layers), fine-tuning, and retraining the new data on unfrozen layers based on our needs.

The primary challenges with traditional ML systems are:

• Large Training and Insufficient Dataset: Training a neural network from scratch

is not practical if there are not enough labeled datasets. Also, getting a dataset for

every domain is complex and not readily available.

• Cost of Training: Model training on a larger dataset is time and energy-consuming,

not efficient.

• Bandwidth Constraint: Larger datasets demand larger bandwidth for uploading

them to the server. TL uses smaller data and provides better, more reliable, and

faster results using a pre-trained model.

• Latency Constraints: Smaller dataset helps with RF conditions caused by poor

channels for sending data to the server, which helps analytical models to train

quickly and predict.

• Limited Resources: Fast training using a small data set is critical to implementing

ML in IoT devices with limited server and power capabilities.

• Heterogeneity among end-devices: Devices often generate data in a non-uniform,

non-identically distributed (non-IID) fashion. Each device provides its unique fea-

ture KPIs for training purposes.
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TL can overcome many of these challenges by reducing training time, improv-

ing the performance of neural networks, and using small amounts of data. TL utilizes

model learning for the new task using pre-trained models by transferring the knowledge

and extracting the feature learned from the initial training. TL is the process of enhanc-

ing learning in a new task by transferring knowledge from a previously learned related

task. TL is an ML approach and technique that allows for time and resource savings by

eliminating the need to train multiple ML models from scratch for similar tasks. By con-

trast, conventional ML algorithms have historically focused on discrete tasks. TL aims to

address this by developing methods for transferring knowledge acquired in one or more

source tasks and applying it to improve performance on a related target task.

The Network Slicing function without the ADAPTIVE6G framework takes slice

selection based on SST type and S-NSSAI request from the UE and assigns appropriate

slices upon availability. The current decision-making is based upon standards without

intelligent insight into 5G RAN and CORE protocols and is naturally not the best. Con-

sidering these, we have simulated the network load across slices using the developed ML

model DeepSlice. Network load varies throughout the day, and several factors drive net-

work utilization, like geography, time, and events. During off-hours (midnight to 6 am),

the slices have low utilization vs. utilization during peak hours (6 pm to midnight). This

variation in usage creates a huge opportunity for a reconfigurable slicing strategy for re-

sources and network management across network slices. We evaluated ADAPTIVE6G to

estimate the loads on the entire network for individual slices based on our simulated data

from the total network load using DeepSlice, which is further discussed in Section VI.
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3.2 Related Work

TL is a relatively new, under-explored paradigm in wireless communication sys-

tems, especially for a network function virtualization concept like network slicing. To

our knowledge, we are the first to use ML to learn traffic patterns and apply the TL con-

cept using the data from the individual slice toward network load prediction. The prior

art and literature discussed in this section are related but not a direct comparison to the

ADAPTIVE6G framework. DeepSlice [19], and Secure5G [20] were our first approaches

to studying network slices in 5G systems by applying machine and DL techniques. We

have demonstrated network slice selection for all UE types, including unknown devices,

load balancing techniques in case of slice failure, and security of these slices in case of

distributed denial-of-service (DDoS), flooding, and mask attacks. With ADAPTIVE6G,

we have extended the part of the DeepSlice framework using TL toward load prediction

across slices. We have categorized our related studies into the following four sections:

3.2.1 Transfer Learning and Traffic Prediction

Zeng, Q. et al. [22] proposed a wireless cellular traffic prediction model based on

a cross-domain dataset containing SMS, call, and historical Internet records. The relation-

ships of these data points with cellular traffic were studied and used against pre-trained

models by adjusting the parameter values to improve the model accuracy. The experimen-

tal results showed a better performance of the model with the transfer learning capability

than the model having no transfer learning. In contrast, in ADAPTIVE6G, we have used

historical load to train the model and the learned weights to predict the total network load
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across slices. The authors in research [23] discuss the problem of predicting channel qual-

ity and average active user equipment when only a small amount of cell data is available.

One-dimensional convolutional neural networks study several models with varying de-

grees of complexity overhead for prediction across 100 cells. The proposed framework’s

approach uses similar metrics as ADAPTIVE6G, where performance is compared to clas-

sical ML approaches in terms of accuracy and computation time. The results show that

transfer learning outperforms non-transfer approaches, especially when the cell’s data is

limited.

The [24] survey paper discusses transfer learning, deep learning, and swarm in-

telligence for future wireless networks. The authors have summarized how TL uses DL

features and applies a DNN trained in a different application instead of training a NN

from scratch, which is also the basic modeling for ADAPTIVE6G. The authors discussed

how DNNs with TL significantly improve the training process. In [25] the paper presents

Transfer Learning based Prediction (TLP), a transfer learning-based framework for traffic

prediction at the 5G edge that can achieve high prediction accuracy with limited and im-

balanced data. Authors have developed a Similarity-based Elastic Weight Consolidation

(SEWC) transfer learning technique that transfers a well-trained prediction model to a

target edge node with limited data locally. Experiments on a real-world data set demon-

strate that integrating TLP with SEWC can improve prediction accuracy by up to 57.9%

compared to the current standard. In the proposed model, EWC analyzes the importance

of different weights after training a NN, and Based on some analysis, EWC adds penalties

to the loss function during future retraining.
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M. Elsayed et al., in [26] evaluated three different ML approaches - Transfer Q-

learning (TQL), Q-learning, and Best SINR association with Density-based Spatial Clus-

tering of Applications with Noise (BSDC) algorithms and compared their performance

under different scenarios to study the impact of network load in stationery and mobility

scenarios. In [27], the authors proposed a novel framework based on transfer learning to

address the problem of insufficient actual training data sets in contemporary networking

platforms. By applying transfer learning, the agent can reuse experiential knowledge to

aid in its action, resulting in a shorter training procedure than the conventional method

and a reduction in energy expenditure.

3.2.2 Adoption of Deep Learning in the Wireless Network

This related work section discusses data-driven ML adopted and proposed by re-

searchers in their work for 5G and Wireless Networks. Q. Zhao and D. Grace in [28] used

a QoS-aware base station switching operation to reduce energy consumption and improve

QoS.parameter learning algorithm has been developed that uses previously learned knowl-

edge from spectrum assignment to make user association decisions. Also, to save energy,

a tolerance range of system QoS was used to dynamically switch eNBs between active and

sleep modes with user association load management. In contrast, in ADAPTIVE6G, we

have used historical load data from base stations to perform load predictions. A transfer

learning algorithm is used to train a smaller dataset from learned parameters, which also

indirectly saves energy by reducing epochs and training time. In article [29], the authors

discuss the design of Industrial IoT (IIoT) systems based on TL. The authors discussed

how TL could alleviate the need for extensive data samples for training ML models in the
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IIoT. Additionally, they classified TL systems for IIoT into two categories: TL for IIoT

machinery anmethodsIoT networking. They also discussed the design components and

challenges associated with each proposed category.

C. Zhang, P. Patras, and H. Haddadi in [30] have addressed how to customize

DL models to broad mobile networking applications. In this survey, they identified areas

where applying machine intelligence can be complicated and challenging in mobile net-

work environments. The authors in surveys [31][32] have explored the role of AI in 5G

wireless communication and networking by covering case studies, problems, and future

research prospects. The authors also discussed network caching, task offloading, routing

schedules, and resource allocation using reinforcement and deep reinforcement learning

algorithms. C. D. Alwis et al. [33] have provided an overview of current 6G advance-

ments by highlighting the socioeconomic and technological trends driving 6G. They also

discussed the criteria for realizing 6G applications and standardization efforts. Q. Huang

and M. Kadoch in [34] have proposed a reinforcement learning approach for radio spec-

trum resource scheduling; their evaluation suggested that the devised technique works

well for mobile networks with a high spectrum load. The authors in [35] proposed a

deep reinforcement learning model for 5G radio resource scheduling. Their experimental

results show that it outperforms existing baseline approaches in many key performance

indicators.

G. Zhu et al., [36] paper proposed supervised learning-based QoS assurance for

5G networks. Supervised ML can learn the network environment and adapt to changing

conditions. They automatically reconstruct the relationship between historical QoS data
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and current QoS anomalies. After that, they suggest automatic mitigation. Supervised

ML can also predict future QoS anomalies. The proposed framework architecture was

validated using a decision tree-based case study for QoS anomaly root cause tracking.

Y. Sun et al., in [37], discussed ML applications in resource management at the MAC

layer, networking and mobility management in the network layer, and localization in the

application layer. The performance of traditional procedures is compared to ML-based

approaches. Theoretical advice for ML implementation, available data sets and academic

platforms, and more are covered as part of the literature.

M. Karimzadeh et al., in [38], have used LSTM to predict the trajectory and traffic

flow of moving items in cities. Their developed predictors consistently deliver satisfac-

tory results over the state-of-the-art on two large-scale real-world datasets. B. Yang et

al., in [39], proposed a privacy-preserving edge-CNN framework for 5G industrial edge

networks. It can use existing image datasets to train the CNN, which is then fine-tuned

using the limited datasets uploaded by devices.

3.2.3 Network Slicing in the Wireless Network

The work in [40] addresses the status of ML-related initiatives in standards bodies

and industrial forums to design, build, deploy, operate, control, and manage 5G network

slices. Zhou, H., Erol-Kantarci, M., and Poor, V. in [41] have proposed a Transfer Re-

inforcement Learning (TRL) scheme for joint radio and cache resource allocation for

5G RAN slicing. First, they have defined a hierarchical resource allocation architecture

and proposed two TRL algorithms: Q-value TRL and action selection TRL (ASTRL).

In the proposed schemes, learner agents learn from expert agents to improve their per-
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formance. The proposed algorithms are compared to model-free Q-learning and model-

based PPF-TTL algorithms. QTRL and ASTRL have 23.9% less delay for Ultra Reliable

Low Latency Communications and 41.6% more throughput for enhanced Mobile Broad

Band, while Q-learning has significantly slower convergence. PPF-TTL has a 40.3%

lower URLLC delay and almost twice the eMBB throughput. In our recent work [42],

we use federated learning to solve complex resource optimization problems without col-

lecting sensitive, confidential information from end devices. The evaluation results reflect

more than 39% improvement in MSE, 46% better model accuracy, and more than 23%

reduced energy cost for training the proposed FED6G against the traditional deep learning

neural network model.

The authors in [43] proposed a convolutional neural network (CNN) and long

short-term memory (LSTM) hybrid deep learning model, leveraging much learning from

DeepSlice [19]. The CNN handles resource allocation, network reconfiguration, and slice

selection, while the LSTM handles network slice statistics (load balancing, error rate).

The models applicability is tested using unknown devices, slice failure, and overloading.

McClellan, M.; Cervello-Pastor, C.; and Sallent, S. in survey paper [44] discuss the DL

techniques for the wireless network, which is critical in helping 5G networks achieve

eMBB, URLLC, and mMTC goals. They discussed how DL could predict user behav-

ior and automate network resource management in 5G networks. It can improve user

experience and future operational costs for telecom companies. To achieve an adaptive

control strategy in unexpected network conditions, the authors in [45] have proposed a

self-sustained RAN slicing framework. The authors have used TL to move from model-
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based control to autonomic and self-learning RAN slicing control. The proposed RAN

slicing framework should significantly improve emerging service QoS.

J. J. Chen et al., in [46] developed a network slicing framework for IoT appli-

cations with varying needs using SDN technology. An electronic fence application illus-

trates the system’s effectiveness in its evaluation. W. Wang in [47] discusses how physical

node (PN) anomaly in substrate networks will degrade the performance of multiple net-

work slices. The authors have proposed a cooperative anomaly detection scheme based on

a transfer learning-based hidden Markov model for self-organizing network slice manage-

ment. The PNs are first divided into four states. Then the hidden Markov model (HMM)

captures the current states of PNs based on virtual node measurements. And based on

learned network knowledge and PN similarity, HMM proposes a cooperative anomaly

detection algorithm. The authors determined that the proposed TLHMM-based coopera-

tive anomaly detection algorithm achieves an average detection accuracy of over 90% in

simulations. The authors in [48] propose a model that allocates network costs to different

deployed slices, which can later be used to price different E2E services. This is a network

infrastructure provider’s allocation. A resource allocation algorithm and a 5G network

function (NF) dimensioning model are also proposed as inputs to the proposed model.

3.2.4 Other Load Prediction Studies with Machine Learning Applications

The authors in [49] have investigated a novel multimodal DL approach for Traf-

fic Classification (TC). In particular, it can capitalize on traffic data heterogeneity, over-

come the performance limitations of existing single-modality DL-based TC proposals,

and solve various traffic categorization problems associated with various providers’ needs.
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Their proposal outperforms (a) current multitask DL architectures and (b) single-task DL

baselines on a real dataset of encrypted traffic. A network survivability optimization

framework and heuristic for the network provider is proposed in [50] to depict the network

virtualization with several procedures and requires system slicing in 5G. The authors in

[51] of this paper have reviewed recent literature, publications, and critical findings. They

created a conceptual framework for cloud resource management, which they used to or-

ganize the state-of-the-art review. The authors have identified five challenges for future

research based on our findings. These concerns include providing predictable perfor-

mance for cloud-hosted applications, achieving global manageability for cloud systems,

engineering scalable resource management systems, comprehending economic behavior

and cloud pricing, and developing solutions for the mobile cloud paradigm. One of our

research work [52] proposes Balanced5G, a data-driven traffic steering framework that

takes proactive actions during the HO stage to steer traffic fairly between different fre-

quencies (low, mid, and high). Balanced5G ensures that UEs (fixed or mobile) do not

select a frequency solely based on the most robust signal strength but consider other net-

work key metrics such as network load, active network slices, and the type of service

for which the UE is requesting resources. And in Deep-Mobility, [53] we considered

multiple parameters and interactions between system events along with the user mobility,

which would then trigger a handoff in any given scenario, where network load also plays

a critical role in making a handover decision, especially for load-balancing use-cases.
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3.3 Proposed ADAPTIVE6G Model

Most ML algorithms operate in an iterative method where models learn from the

sample data repeatedly and improve over time. As network slicing in 5G supports va-

rieties of vertical use cases, one generic model does not set optimum model parameters

for all data types generated by billions of diverse sets of devices. Consider network re-

source management as an example; a smartphone is more bandwidth and data-hungry

than IoT devices like sensors, which are sensitive to power drain and generally resource-

constrained. Augmented and Virtual reality (AR/VR) applications and mission-critical

services, on the other hand, are more susceptible to latency. Also, many of these UEs are

not always active; an IoT device checks into the server periodically and does not require

high data connectivity.

Similarly, a connected car, Vehicle-to-everything (V2X) UE, can have many han-

dovers during mobility. However, there is an opportunity to avoid those handovers if we

know the car usage and the regular route and allow it to connect to sites with the least

possible handovers and consistent, reliable links along its route. These miscellaneous

network applications and services also generate quite different KPIs. Some UE types sig-

nificantly generate more data than other UE types; this makes ADAPTIVE6G a unique

learning model for wireless communication by creating an adaptive learning model for

each of these unique slices for resource management problems.

Fig. 19 summarizes our ADAPTIVE6G proposed framework, which includes net-

work load data from heterogeneous devices across slices A, B, and C. The term ADAP-
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Figure 19: Proposed ADAPTIVE6G Framework

TIVE6G reflects the adaptability of a single global model learned from a diverse dataset

being applied to a smaller set of specific data for further predictions and estimations,

which helps us achieve better performance with less training time and energy. In ADAP-

TIVE6G, Slice A represents enhanced Mobile Broadband (eMBB) services and includes

traffic data generated from end devices such as Smartphones and typical mobile broad-

band application services. Slice B represents Massive Machine-type Communication

(mMTC or mIoT) which focuses on traffic generated from devices like Industrial 4.0 and

the Internet of Things (IoT). Slice C serves Ultra-Reliable Low Latency Communication

(URLLC) data traffic like Augmented and Virtual Reality (AR-VR) and public safety.

The data generated by each of these slices is diverse in load, service, and characteristics.

67



Our goal in using ADAPTIVE6G is to forecast network load using historical data for both

scenarios, i.e., first using total network load (inputs from all three Slices A, B, and C) as

three input vectors and predict network load. Then secondly, we take an individual slice

as input (Slice A only, Slice B only, Slice C only) as one input vector to predict the load

for that slice.
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3.4 Proposed ADAPTIVE6G Step-by-Step Workflow

In this section, we detail the step by step the working of proposed ADAPTIVE6G as

shown in Fig. 20:

Figure 20: ADAPTIVE6G Framework

1. The ADAPTIVE6G framework initializes by training the traditional neural model

MDNN using observed network load data from all Slices - A (eMBB), B (mIoT),

and C (URLLC), i.e., DTOTAL. Network operators can deploy many slices; we are

considering three standard slices for our evaluation per standardized 3GPP SST val-

ues. We have employed five-layer Deep Neural Networks: Input (features), 3 Hid-

den Layers, and Output (prediction). We have tuned the model hyper-parameters

by changing the number of hidden layers, learning rate, activation function, and
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the number of epochs for the MDNN model. Our goal is to validate the model

performance between random weights and learned weights, so we kept the DNN

modeling the same for both MDNN and MADAPTIV E6G. The algorithm uses ran-

domness to find a good set of weights for the data’s specific input-output mapping

function. Each time the training algorithm is run, a different network with a differ-

ent model is fitted. The shuffling of the training dataset before each epoch also uses

randomness, resulting in differences in the gradient estimate for each batch.

2. First, we train the MDNN multi-layer model using a feed-forward back-propagation

network with initialized random weights (stochastic gradient descent). A forward

pass through the network is accomplished by iteratively computing each neuron in

the subsequent layer until the output is achieved. We evaluate the output quality

based on a cost function C and the desired result in the output layer. Mean squared

error (MSE) is a loss function for evaluation.

3. A backward pass is then used to optimize the cost function C after the first result has

been obtained by readjusting the weights and biases. We aim to optimize the output

by adjusting the entire neural network. Based on this, we can calculate the total loss

and determine the model’s suitability (good or bad), and here weights are adjusted

to obtain the least loss. After back-propagation, we capture each layer’s computed

weights (learned weights) for TL parameters and define these trained weights as

MADAPTIV E6G.

4. Now instead training the MADAPTIV E6G with random weights, MADAPTIV E6G is
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initialized using learned weights and re-train for smaller datasets DeMBB, DmIoT ,

DURLLC from individual slices, which are subsets of DTOTAL to predict total net-

work load.

Figure 21: ADAPTIVE6G Pseudo Code
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3.5 Fair and Uniform Load Forecasting using ADAPTIVE6G

The ADAPTIVE6G can act as an entity that can offer prediction and analytics from

the learned data and assist network functions in making such decisions, as shown in Fig.

22. A good network slicing example would be to provide the slice-specific analytic data

(e.g., network load, number of UEs, abnormal behavior, and alarms), which helps the

system take the slice selection decision in real-time and helps the core network achieve

better network efficiency and robust reliability. Awareness of load on the network, traf-

fic congestion, and Quality of Service sustainability, especially for the individual slice

instances, can drive more reliable network intelligence for service orchestration and net-

work automation.

The proposed ADAPTIVE6G Learning framework has been extensively evaluated

for resource optimization problems in a network slicing architecture. The goal is to fore-

cast total network loads from Slices A, B, and C using a neural model assisted with TL. To

emphasize the proposed network slicing framework’s exemplary behavior, we first used

a traditional neural model MDNN as our benchmark model without incorporating any

knowledge transfer (i.e., initialized with random weights) to predict network load across

all slices. After MDNN , we then used the pre-trained MADAPTIV E6G (using the learned

weights from MDNN to predict the network load using the same set of validation data

as MDNN . We used pre-trained model MADAPTIV E6G for the second round of evalua-

tion, which incorporated learning from the MDNN neural model to train and predict total

network and traffic data inputs from each slice DeMBB, DmIoT , DURLLC individually.

The data pattern from each slice individually further provides a faster training time using
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Figure 22: ADAPTIVE6G Framework in 5G CORE Systems

fewer data points and allows flexibility if computation and prediction are required for a

particular slice, which removes redundancy to training the whole dataset every time.

Network slicing is still in its infancy, and no mobile operator has commercially

deployed it in a production network. We evaluated ADAPTIVE6G using real-world data

collected from a mobile network operator and augmented data. We conducted real-world

measurements using commercially available 5G devices, replicating eMBB, mIoT, and

URLLC-like services on live 5G (Sub-6 GHz and mmWave) networks to generate aug-

mented data for slicing; details can be found in [19]. We used the DeepSlice framework

to augment the data further to provide the load across network slices for our modeling.

We believe that our developed ADAPTIVE6G dataset (available at [54]) will help bridge
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the gap in ML modeling, particularly for research communities interested in B5G and

6G systems for network slicing. We have carefully pre-processed the dataset to avoid

over-fitting and applied techniques like pruning and regularization for good training.

3.5.1 Objective 1: Adaptive Load Forecasting using All Slice

We used feedforward modeling using the MATLAB Deep Learning Toolbox to

train our neural model on the observed (actual) value dataset, splitting it into training

(80%) and testing subsets (20%). We estimated the model loss using regression’s ’Mean

Squared Error’ loss function metric, which is the average sum of the squared difference

between the actual value and the predicted or estimated value. As a result, the value of

MSE is always positive. Estimators and predictors with a close to zero MSE value will

be more accurate. The predictor is perfect if the MSE is zero, and lower MSE values

are preferable for good models. The Correlation Coefficient (R) is used to determine the

strength of a relationship between data variables. It measures the closeness (strength and

direction) of the association of the variables in a linear regression problem. R represents

how well-predicted outputs match actual outputs; R-values range from -1 to 1. A value

close to ‘1’ represents a strong positive correlation (good model with better fit, thus better

model accuracy), whereas ‘0’ indicates no correlation, and a ‘−1’ value indicates a strong

negative correlation between variables. A trained model on a set of features with little or

no correlation will produce incorrect results.
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Figure 23: Model Performance for Total Load - Traditional DNN vs. ADAPTIVE6G

Fig. 23 and 24 show the performance validation and regression metrics plots of

the neural model for both MDNN and MADAPTIV E6G models when trained and validated

using total load from all slices. Fig. 23(a) represents the MDNN model initialized with

random weights. In Fig. 23(b), we have started with weights from Fig. 23(a) and then

Figure 24: Metric Evaluation - Traditional DNN vs. ADAPTIVE6G
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allowed just the input layer weights learned from MDNN to be changed in the training

process. We then observed improved MSE error and Correlation Coefficient R with a

smaller number of epochs. In Fig. 23 and 24, we have further changed the weights for

subsequent hidden layers, and as illustrated in the figures, the learned weight changes on

each layer improve the model accuracy while decreasing MSE error and the total number

of epochs; numerical details are discussed in Section VII. The dashed line in each plot

represents the perfect result, i.e., outputs = targets. The solid line represents the best-fit

linear regression line between outputs and targets. The R-value is an indication of the

relationship between the outputs and targets. If R = 1, this indicates an exact linear rela-

tionship between outputs and targets. If R is close to zero, there is no linear relationship

between outputs and targets. For this example, the training data indicates a good fit. The

validation and test results also show large R values.

Figure 25: Predicted Network Load - Traditional DNN vs. ADAPTIVE6G
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Fig. 25 shows the final predicted output over the period of a week, separated

by hours (total 168 hours). For simplicity purposes, we have chosen the best-performed

ADAPTIVE6G model with weights updated for all layers and compare it against the

traditional DL model MDNN and actual observed data. The results illustrate that the

ADAPTIVE6G model is forecasting the traffic very closely with actual observed data

using a smaller dataset, lower MSE error, improved Correlation Coefficient R, and in a

smaller number of epochs.

Fig. 26 shows the error delta between Actual Load (i.e., ‘0’ as baseline) and dif-

ferences in predicted values between MDNN and MADAPTIV E6G, indicating overprovi-

sioned (above ‘0’ baseline indicating overestimated load) and under-provisioned (below

‘0’ baseline) resources. Under-provisioned resources yield a negative user experience

for better resource modeling, which is observed significantly less in the predicted out-

put from ADAPTIVE6G. The actual average load (baseline) over 168 hours for a week

is observed as 69.78%, whereas our ADAPTIVE6G predicted 70.28% (0.72% overpro-

visioned) against 69.14% (0.91% under-provisioned) when using traditional ML. The

ADAPTIVE6G approach will provide a significantly better user experience against tradi-

tional load prediction techniques with a sense of adaptability to dynamic load and traffic

needs.

3.5.2 Objective 2: Adaptive Load Forecasting using Individual Slice

It is reasonable (though not desirable) for a network operator to schedule addi-

tional resources (to be over-provisioned) to accommodate load at all times in case of an
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unpredictable surge in data traffic that requires more physical resource block utilization.

On the other hand, under-provisioned resources will result in a negative user experience

with packet loss, interrupted data transmission, and higher latency, which would violate

the agreed-upon SLA for users and degrade the Quality of Experience (QoE) overall. It

is even more challenging for a network slicing architecture to make analytics predictions

based on a single slice instance (one input vector).

With ADAPTIVE6G, we effectively addressed some of these challenges by learn-

ing features from a model trained on inputs from all three slices MDNN ; during individual

slice modeling, we initialize the model with model learned weights sequentially during

training to predict overall network load. Fig. 27, 28, and 29 shows the ADAPTIVE6G

model performance validation and regression metrics for both MDNN and MADAPTIV E6G

using slice data from slice A, slice B, and slice C individually. Isolated management of

Figure 26: Error Delta - Actual Value vs. Traditional DNN vs. ADAPTIVE6G
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Figure 27: Model Performance (Slice A - eMBB): Traditional DNN vs ADAPTIVE6G

Figure 28: Model Performance (Slice B - mIoT): Traditional DNN vs ADAPTIVE6G

a specific slice is critical for future wireless systems. It is more difficult considering the

time it takes to train a large dataset with additional energy and resources. We do not as-

sume scarce resources; therefore, load prediction is exclusively concerned with matching
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Figure 29: Model Performance (Slice C - URLLC): Traditional DNN vs ADAPTIVE6G

resource allocations to the predicted demand.
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3.6 Objective 6: Numerical Evaluation of ADAPTIVE6G

We have summarized our ADAPTIVE6G and traditional neural model simulation

using two metrics: Correlation Coefficient ‘R’ and Mean Squared Error ‘MSE’, as cap-

tured in Table 4. In the first experiment, we evaluated both models using inputs from

all three slices. The second half of the experiment includes input from individual slices

with the original aim of predicting the total network load. For simplicity purposes, we

took an average from all three simulations with learned weights and evaluated it against

the model initialized with random weights. Our Correlation Coefficient value ‘R’ evalu-

ation indicated an improvement of 5.97% (0.8811 to 0.9338), 4.14% (0.9260 to 0.9643),

and 3.76% (0.9167 to 0.9512) in predicted output when using individual slice data as

input, i.e., Slice A (eMBB only), Slice B (mIoT only), and Slice C (URLLC only) respec-

tively. An improvement of 1.4% (0.9614 to 0.9749) was observed in predicted output us-

ing ADAPTIVE6G for network load estimation using the Total Load (A+B+C) scenario.

Both scenarios demonstrate that the ADAPTIVE6G model predicts the output strongly

related to the inputs and a smaller dataset in a best-case scenario.

Also, MSE evaluation indicated a decrease of 32.82% (38.8357 to 26.0917), 7.17%

(22.2998 to 20.7010), and 12.8% (24.0873 to 21.0053) across Slice A (eMBB), Slice B

(mIoT), and Slice C (URLLC) respectively when using individual slice data as input us-

ing ADAPTIVE6G over the traditional neural network. Also, a decrease in MSE error

of 38.58% (20.9447 to 12.8637) was observed using Total Load as input for predict-

ing the network load. This evaluation also enables us to comprehend the less optimal

81



Table 3: Summary Results Traditional MDNN and MADAPTIV E6G

Showing Metrics Evaluations
resulting from 5 Iterations between MDNN and MADAPTIV E6G

Total Epochs Best Epochs MSE R Value

Total Load (A + B + C) -
MDNN Random Weights 154.4 104.4 20.9447 0.9614
Total Load (A + B + C) -

MADAPTIV E6G with Input Layer Weight Changes 76 39.2 14.6195 0.9716
Total Load (A + B + C) -

MADAPTIV E6G with Input + 1st Hidden Layer Weight Changes 89.8 48.6 12.4949 0.9747
Total Load (A + B + C) -

MADAPTIV E6G with All Layer Weight Changes 105.4 53.8 11.4767 0.9782
Average of MADAPTIV E6G 12.8637 0.9749

Slice A (eMBB only) -
MDNN Random Weights 205.4 155 38.8357 0.8811
Slice A (eMBB only) -

MADAPTIV E6G with Input Layer Weight Changes 98 69 27.0036 0.9226
Slice A (eMBB only) -

MADAPTIV E6G with Input + 1st Hidden Layer Weight Changes 111.4 61.8 26.2053 0.9318
Slice A (eMBB only) -

MADAPTIV E6G with All Layer Weight Changes 118.4 70 25.0662 0.9469
Average of MADAPTIV E6G 26.0917 0.9338

Slice B (mIoT only) -
MDNN Random Weights 91.2 61.2 22.2998 0.9260

Slice B (mIoT only) -
MADAPTIV E6G with Input Layer Weight Changes 86 52 21.2960 0.9602

Slice B (mIoT only) -
MADAPTIV E6G with Input + 1st Hidden Layer Weight Changes 90.2 52.2 20.7114 0.9649

Slice B (mIoT only) -
MADAPTIV E6G with All Layer Weight Changes 107.4 56.8 20.0957 0.9677

Average of MADAPTIV E6G 20.7010 0.9643
Slice C (URLLC only) -
MDNN Random Weights 138.6 88.8 24.0873 0.9167
Slice C (URLLC only) -

MADAPTIV E6G with Input Layer Weight Changes 98.6 65.4 22.7898 0.9429
Slice C (URLLC only) -

MADAPTIV E6G with Input + 1st Hidden Layer Weight Changes 113.0 77.6 20.1191 0.9525
Slice C (URLLC only) -

MADAPTIV E6G with All Layer Weight Changes 116.2 66.2 20.1070 0.9584
Average of MADAPTIV E6G 21.0053 0.9512

scenarios when considering updating weights on only a subset of hidden and input lay-

ers. As quantitatively demonstrated in the results, when we update only the input layer

weights or the input with hidden layer weights, we certainly obtain better results than

using ‘RandomWeights’. ADAPTIVE6G only needs data from a single slice for load

forecasting on that slice. These experiments further prove that using a smaller dataset,

the ADAPTIVE6G model converges fast and yields better results (fewer errors). One of

82



the key design goals for B5G systems leading to 6G is to improve network scalability,

reliability, latency, and efficiency while reducing operational costs. Using frameworks

like ADAPTIVE6G will be critical to achieving that goal to a certain extent. It will help

achieve prediction accuracy with less error and improve energy efficiency by reducing the

time it takes to train the model.

As shown in Table 4, we have also evaluated ECO6G against classical ML algo-

rithms. We observe a significant improvement with the ECO6G model in both total load

and individual slice load prediction scenarios. On average, we computed a 41.42% im-

provement in MSE values and a 7.92% accuracy improvement in the case of the total load

Table 4: Summary Results Classical ML Models

Metrics Evaluations between Classical ML Models MSE R Value
Total Load (A + B + C) Random Forest 20.62 0.92
Total Load (A + B + C) Decision Tree 24.73 0.87

Total Load (A + B + C) Linear Regression 20.53 0.92
Average of ALL ML models 21.96 0.90

Total Load (eMBB Only) Random Forest 24.84 0.87
Total Load (eMBB Only) Decision Tree 25.14 0.84

Total Load (eMBB Only) Linear Regression 29.99 0.88
Average of ALL ML eMBB models 26.66 0.84

Total Load (mMTC Only) Random Forest 24.21 0.89
Total Load (mMTC Only) Decision Tree 24.44 0.88

Total Load (mMTC Only) Linear Regression 21.98 0.91
Average of ALL ML mMTC models 23.54 0.89

Total Load (URLLC Only) Random Forest 25.02 0.87
Total Load (URLLC Only) Decision Tree 25.22 0.86

Total Load (URLLC Only) Linear Regression 30.00 0.81
Average of ALL URLLC Only ML models 26.75 0.85
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scenario. Furthermore, in the case of the individual slice scenario, we saw an 11.89% im-

provement in MSE values and 10.49% in model prediction accuracy. This result supports

our ECO6G superiority over classical ML, traditional DNN, and statistical modeling.
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3.7 Conclusion and Contribution

This research proposed a novel resource optimization framework for network

slicing architecture in B5G and 6G systems, realized through the TL-based framework

ADAPTIVE6G. The developed framework considered ’total load from all network slices’

and ’load from individual network slices’ to forecast the total traffic demand. The ADAP-

TIVE6G framework can enable network operators to configure slice resource automation

more precisely, resulting in better management of network resources by avoiding exces-

sively overprovisioned or under-provisioned resources in B5G systems. The simulated re-

sults demonstrate a considerable performance improvement and reduced error compared

to a traditional neural network algorithm. To our knowledge, this is the first attempt to

develop an adaptive framework that enables network resource management, especially for

the network slicing architecture, which is a crucial technology for 6G.

The following specific research issues are addressed through ADAPTIVE6G:

• developed a novel TL approach to tackle the network load estimation problem us-

ing transfer learning in the context of network slicing using KPI information from

individual slices.

• designed a knowledge-transfer framework that utilizes information from Radio Net-

work Key Performance Indicators for network load estimation problems. These

algorithms enable Mobile Network Operators to optimally coordinate their compu-

tational tasks in stochastic and time-varying network states and task arrivals.

• research topic is promising in future wireless communications for its potential to
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deliver optimized load forecasting for varying services while conserving energy by

utilizing smaller data for training the model instead of a larger dataset and accu-

rately estimating the future network load to avoid overestimation problems.

Published Work

ADAPTIVE6G: Thantharate, A., Beard, C. ADAPTIVE6G: Adaptive Resource Manage-

ment for Network Slicing Architectures in Current 5G and Future 6G Systems. J Netw

Syst Manage 31, 9 (2023). https://doi.org/10.1007/s10922-022-09693-1 [55]
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CHAPTER 4

ENERGY AND COST ANALYSIS FOR NETWORK SLICING DEPLOYMENT IN
BEYOND 5G NETWORKS

4.1 Introduction

The 5G mobile communication network is a communication infrastructure that

converges connectivity, intelligent edge, and the Internet of Things (IoT) from consumers

to industries. 5G is revolutionizing businesses and society by enabling high-speed broad-

band with ultra-low latency, high capacity, massive connectivity, and reliability. To achieve

sustainable development goals and create an environmentally conscious infrastructure to

improve people’s living standards, it is of utmost importance that the 5G network provides

high speed and reduced latency with significantly lower network energy consumption.

The 5G standard enables the Mobile Network Operator (MNO) to optimize the Quality

of Service (QoS) and improve the Quality of Experience (QoE) for the end-users with

the help of KPIs metrics such as network load, battery level, and signal strength. These

5G KPIs then guarantee both networks and device efficiency, which has always been the

fundamental concern for MNOs and device manufacturers from the optimization stand-

point. When combined with ML, 5G can further help grow businesses efficiently and

grant consumers access to more information faster than ever. On the path to the future

generation networks, we must develop an AI/ML-defined network infrastructure that is

energy efficient and can learn from its dynamic environments [56].

5G is an inherently greener technology with more data bits per kilowatt (kW) en-

87



ergy than previous generations of wireless technology. However, the exponential growth

in data traffic necessitates additional Energy Efficiency (EE) and Carbon dioxide (CO2) re-

duction measures. The Global System for Mobile Communications Association (GSMA)

found that the 5G data traffic has grown exponentially since its commercialization. By

2025, it is anticipated that the 5G data traffic will be eight times higher than fourth-

generation (4G) / Long Term Evolution (LTE), and twelve billion devices will be con-

nected to the 5G and IoT. These subscribers are expected to consume 5-10 times more

than 4G (LTE) subscribers. The MNOs will need more ways to keep network energy

consumption low as 5G services mature. According to the GSMA Intelligence Report,

67% of mobile service providers anticipate rising energy expenditures. Although 5G is

more energy-efficient, increasing traffic demand and complicated use cases will increase

the total energy consumption. On the positive side, the mobile industry has collaborated

to build a climate action plan to attain net-zero greenhouse gas emissions by 2050, with

over 30 percent of carriers making public commitments. The MNOs plan to optimize 5G

networks for energy efficiency to reduce their carbon footprints and electricity bills using

ML models to improve traffic prediction accuracy.

Developing 5G optimization strategies for EE that address data processing ca-

pacity and latency concerns is critical, especially for network slicing in the 5G archi-

tecture. Slicing a network refers to the process by which a network operator divides a

single physical network into logically distinct networks. Networks are established to pro-

vide specialized networks for diverse service providers with varying characteristics. Cur-

rently, the third generation partnership project (3GPP) has defined three network slices:

88



enhanced Mobile Broadband (eMBB), massive Machine-type Communication (mMTC),

and Ultra-Reliable Low Latency Communication (URLLC). To efficiently deliver these

tailored services with varying KPI requirements, operators must employ more integrated

and sophisticated methods than they did in 4G. Additionally, 5G’s cloud-based architec-

ture, which enables greater scalability and elasticity, is a significant differentiator from

its predecessor, which allows operators to deploy new network functions (NFs) without

incurring additional Capital Expenditure (CAPEX) to meet demand better.

For decades, the MNOs have prioritized throughput, coverage, and data latency

for building networks. However, due to environmental and economic concerns, network

energy efficiency has recently emerged as a significant factor for next-generation network

deployments. With the advent of high-capacity traffic services, wireless data traffic has

increased exponentially; this increase in wireless data traffic degrades the existing net-

work’s efficiency. To maintain QoS and per-bit cost, network operators must increase

data traffic exponentially. Focusing on high-data-rate services increases the network’s

energy consumption, posing environmental and financial concerns. Hence, in modern

wireless network operation and design, the MNOs must consider EE as one of the KPIs

due to environmental, economic, and operational concerns.
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4.2 Related Work

The 3GPP Release 17 [57] work item has limited use cases, requirements, and

solutions for measuring the energy efficiency of 5G networks, including Next Generation

RAN, core network, and network slices, for optimizing the energy efficiency or manag-

ing energy savings in 5G. Energy efficiency KPIs have been defined for network slices,

including eMBB, URLLC, and IoT. However, V2X still needs to be addressed. Also,

there needs to be a definition for the URLLC network slice reliability EE KPI in 3GPP re-

ports today. DeepSlice [19], and Secure5G [20] studied the network slices in 5G systems

by applying DNN techniques. We have demonstrated network slice selection for all UE

types, including unknown devices, load balancing techniques in case of slice failure, and

security of these slices in case of a DDoS attack. We have used various KPIs such as the

5G QoS Identifier (5QI), Packet loss rate, Packet Delay budget, UE types, Day, and time

to simulate the models.

Using the cellular traffic data set consisting of three different traffic types (SMS,

phone, and web), the authors in [58] trained LSTM to have an optimum slice resource

allocation for vehicular networks to reduce the total system delay and improve traffic pre-

diction accuracy. To further reduce the delay, the authors designed a Convolutional LSTM

(ConvLSTM) based traffic estimation on estimating the traffic of complex slice services.

Using a hybrid learning methodology, the authors in [59] put forth a 5G network slic-

ing model in a step-by-step process starting with data collection comprising attributes viz

device type, duration, PLR, packet delay budget, BW, delay rate, speed, jitter, and mod-

ulation type. It is then followed by optimal weighted Feature extraction (OWFE), further
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optimized using the combination of algorithms, Glowworm Swarm Optimization (GSO)

and Deer Hunting Optimization Algorithm (DHOA) calS-DHOA, and finally slicing clas-

sification (eMBB, mMTC, and URLLC) using the Deep Belief Network (DBN) and NN.

The authors targeted to prove better accuracy of the proposed algorithm. Our work differ-

entiates from [59] in that we propose a TL-based DNN model for improving 5G energy

efficiency (EE), ensuring lower learning time and faster convergence.

The paper [60] addresses the issue of maintaining QoS for the industrial IoT use

case using network slicing. It implements a network-slicing architecture over the SDN-

based LoRaWAN. The DDPG-based slice optimization algorithm enables the LoRaWAN

to be autonomously aware of the different slice attributes viz transmission power and

spreading factor to ensure there is no performance inefficiency and lack of resource avail-

ability for any network slices. The paper proposes a TL-based multi-agent DDPG (TMD-

DPG) algorithm for an accelerated learning process. The paper attempts to establish the

superiority of its proposed algorithm by evaluating the different slice’s performance con-

cerning delay, EE, and PLR for DDPG, DQN (Deep Q Network), and its TMDDPG.

Our work evaluates ARIMA, ETS, and DL models using random weights against the DL

model using learned weights to investigate traffic forecasting for improving the 5G en-

ergy efficiency. We use ML techniques to estimate the total load prediction and use the

predicted load to calculate energy efficiency.

The authors in [61] tackle the inherent disadvantage of slow convergence of DRL-

based solutions for Radio Resource Management (RRM) related use cases RAN slicing,

power and handover control, link adaptation, and packet scheduling that would drasti-
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Table 5: Comparison of ECO6G against state-of-the-art methodologies

Sr. No. Related Work ECO6G Work

[58] Use of the cellular traffic types (SMS, phone,
and web), to train LSTM for slice resource al-
location

Use of the network KPIs: RRC, RSSNI, and
PDU to train a DNN for predicting total load
estimation

[59] 5G network slicing model using the DBN and
NN to improve accuracy

TL-based DNN model for improving 5G en-
ergy efficiency and ensuring faster conver-
gence

[60] DDPG slice optimization and TL based multi-
agent DDPG (TMDDPG) for accelerated
learning by evaluating delay, EE, and PLR for
DDPG, DQN and TMDDPG

Evaluation of ARIMA, ETS, and DL models
to investigate traffic forecasting for enhanced
5G energy efficiency

[61] DRL based 5G RAN slicing resource allo-
cation and TL to accelerate the learning and
tackle slow convergence

Use of TL with DNN to estimate the network
load using slicing KPIs, to estimate the energy
efficiency and improved convergence rate.

[62] TL-based A2C approach to increase network
utility at the expense of reduced adaptability
of the various network topologies.

TL approach to improving energy efficiency
with an approximate OPEX savings of seven
hundred eighty-six million for the MNOs in
off-peak network load scenarios.

[63] RAN slicing architecture for autonomous
learning in interference affected and the TL
approach to facilitate self-learning RAN slic-
ing control.

The work in [63] targets autonomous RAN
slicing, whereas our work uses the data-driven
model trained on the network KPIs to estimate
the EE of 5G networks.

[64] Dynamic slicing resource allocation with an
hourly dataset of live cellular network at-
tributes recorded over five days for sites in
dense urban areas fed directly to the GRU

Our dataset is captured on a real-world 5G
base station using the MNO’s proprietary soft-
ware, including data for three sectors and net-
work KPIs from each sector.

[65] Comparative analysis of the transfer RL
(TRL), Q-value TRL, and action selection
TRL with model-free Q-learning and the
model-based priority proportional fairness and
time-to-live (PPF-TTL) to solve for slow con-
vergence and lack of generalization of RL
techniques

In contrast to [65], our work addresses the
issue of slow convergence by proposing a
comparative analysis of our ECO6G model
with ARIMA, ETS, and DNN with random
weights.

[66] Use of techniques for enabling sleep mode
methods in heterogeneous mobile networks
with the aim of reducing power consumption.

Our work proposes to enhance the energy effi-
ciency of the 5G network with an OPEX sav-
ing from the perspective of MNOs.

[67] EE DRL based resource allocation for RAN
slicing to improve computational and time
complexity

Data-driven approach for improved OPEX
savings against the conventional approaches
for MNOS in varying load

[68] DL based network slicing short-term traffic
prediction for 5G transport network

Supervised ML model for forecasting traffic
load and using the estimated load to evaluate
EE and improve OPEX savings by a margin
of 48.67% against other evaluated data-driven
models
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cally affect the end users QoE thereby violating the SLAs (Service Level Agreements).

Therefore, the authors propose to eliminate this problem by developing a DRL-based ap-

proach to 5G RAN slicing resource allocation to investigate the exploration mechanism

and reward convergence behavior of different DRL algorithms (DQN, AC, PPO, Dueling

DQN, Double DQN, and A2C). In addition, the authors propose to accelerate the learning

process and tackle slow convergence in DRL-based slicing resource allocation using a

TL-based approach. Using TL (Transfer Learning) with our DNN model (ECO6G) also

improves the convergence rate by accelerating the learning time of the algorithm. Our

work employs ML methodologies to estimate the network load using slicing KPIs, sub-

sequently used to estimate energy efficiency. Unlike the work in [61], which investigates

the benefits of using a DRL-based approach to orchestrate network resources in network

slicing, our work uses TL-based DNN to predict the network load and thereby estimate

the energy efficiency. The work in [62] uses the A2C methodology to facilitate dynamic

adaptation to changing environmental conditions. The work establishes the efficiency of

the proposed algorithm (increase in the amount of the URLLC flows without degrading

the eMBB performance flows) in terms of management of network resources regardless

of the increased network density and service heterogeneity. The authors used a TL-based

approach to increase the overall utility at the expense of reduced adaptability of the var-

ious network topologies. Our work uses the TL approach to improve energy efficiency

with an approximate OPEX savings of seven hundred eighty-six million for the MNOs

in off-peak network load scenarios. The TL approach aids in accelerating the learning

process and ensures faster convergence with a faster epoch cycle.
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To ensure a heterogeneous QoS in the B5G and 6G networks, it is necessary to

accomplish effective RAN slicing. The authors address this issue by implementing a

RAN slicing architecture in [63] that supports self-management of resources, optimizes

KPIs (spectrum efficiency, energy efficiency, and QoS metrics), and autonomously learns

in adversarial network conditions (interference in a multi-cell scenario). The authors

additionally use the TL approach to facilitate self-learning RAN slicing control. The work

in [63] targets autonomous RAN slicing, whereas our work uses the data-driven ECO6G

model trained on the network slicing KPIs to estimate the EE of 5G networks. The authors

in [64] propose a complete architecture for a big-date-based dynamic slicing resource

allocation while maintaining the constraints of SLAs using DL. The slicing approach

involves a vast hourly dataset of live cellular network attributes viz the OTTs traffic and

the consumed RRC connected users licenses per vBBU recorded over five days for sites in

dense urban areas fed directly to the Gated recurrent unit (GRU). Our dataset is captured

on a real-world 5G base station using the MNO’s proprietary software, including data for

three sectors and KPIs such as RRC counts and the number of PDU network sessions, and

network load from each sector.
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4.3 Energy Efficiency Using Data-Driven Learning

Energy consumption is a considerable portion of network OPEX, and base sta-

tions are the radio access network’s primary energy-consuming equipment. To achieve

Radio Access Network (RAN) EE, turning off cells during off-peak hours is a way to

reduce network energy usage; it would be ideal if the MNO could estimate the future load

efficiently and configure resources accordingly. Predicting a network function overload

or outage enables operators to take preventative measures (for example, avoid selecting

a heavily loaded node for latency-sensitive/resource-intensive service) to ensure smooth

network operation and improve the 5G customer quality experience. Other techniques for

improving energy efficiency include adjusting a base station’s coverage area based on its

load level, favoring lightly loaded base stations to sleep, and load balancing by handing

over the User Equipment (UE) to the micro or pico base station.

In contrast, network operators continue to deploy 5G and employ novel New Ra-

dio (NR) features like beam-forming, dynamic spectrum sharing, multiple-input multiple-

output (MIMO), and network slicing, introducing complex system design and optimiza-

tion challenges. The MNOs struggle with traditional hard-coded algorithms, which re-

quire human-machine interaction, which is error-prone, slow, costly, and cumbersome.

AI, including ML algorithms, can help operators improve network management and user

experience by analyzing and processing network KPIs and metrics. AI in 5G networks has

captivated academia and industry to explore optimization methods for UE trajectory pre-

diction, traffic steering, load balancing, energy-saving, and massive MIMO configuration
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optimization. AI and ML are enabling operators to gain new capabilities and efficiency

gains. They enable network equipment to sense, reason, infer and bring novel solutions

to technological issues. A holistic and end-to-end approach to AI and ML can provide a

pervasive system-level approach to energy efficiency improvements spanning hardware,

software, and algorithms. Energy management is a data-intensive operation; without AI,

operators cannot efficiently process information and make real-time choices at scale. To

implement adaptive energy management in the network slicing, the MNOs can assign dif-

ferent priority levels to differentiate services between slices, such as emergency services

or service characteristics (e.g., number of end-users, location, average consumption).

Energy consumption is a significant issue, both environmentally (carbon footprint)

and economically. The energy consumption of the 5G base stations is so high that elec-

tricity bills have become one of the most significant expenses for 5G providers. Costs

to the MNOs are expected to increase significantly over the next five years. Studies sug-

gest that, on average, mobile network operators spend twenty-five billion dollars annually

on energy. Telco industry reports suggest energy efficiency and optimization are crucial

for network transformation and climate action agendas. Energy is the only significant

operational expense predicted to rise soon. 5G base station (BS) energy savings involve

hardware and software, multiple power-saving features, small cell deployments, and new

5G architecture and protocols that can be combined to improve wireless network energy

efficiency. Optimizing hardware architecture, production process, and integration of cru-

cial core chips such as base-band processing, digital intermediate frequency, and radio-

frequency modules reduces hardware energy consumption on AAU (Active Antenna Unit)
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and RRU (Remote Radio Unit).

Low-traffic areas account for 70% of network sites in most cases but carry only

25% of the total traffic. However, only 30% of network sites are in medium to high-

traffic areas, yet they carry 75% of all traffic. Historically, the industry has prioritized

high-traffic sites and neglected low-traffic networks. This is a massive opportunity for

MNOs to use predicted load as one element to design network and energy optimization

strategies, where BS resources must be scheduled according to service load to conserve

energy. In, the authors have compared the load forecast for a single cell using several

prediction techniques, as shown in Fig. 30.

The simulation results of load prediction are based on the consumption of fifty

physical resource blocks (PRBs). Compared to each standalone sub-model, the ensemble

learning model has significantly enhanced the accuracy of its predictions. The developed

Figure 30: Comparative Study of Load prediction using different ML algorithms
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ensemble learning method reduces the average Mean Absolute Error (MAE) by 0.008.

The load prediction models include Arima, Prophet, Random Forest (RF), Long Short-

Term Memory (LSTM), and Ensemble learning. The models use historical and current

loads to predict future loads, so historical traffic loads are considered when building and

training the ML model.

Because ML models can swiftly analyze substantial amounts of data, it improves

the potential for network-wide energy savings. AI algorithms can be optimized to assess

real-time demand, traffic patterns, and network resource availability and translate these

data into actionable insights. In that case, more efficient resource management and net-

work planning can be achieved, which is the primary motivation for this study.

98



4.4 Current Energy and Power Challenges in 5G Networks

Power saving has been a challenge since the second generation (2G) era of wire-

less communication. The massive MIMO and high output power needs of 5G have wors-

ened this issue. Massive MIMO and high output power requirements to service the in-

creasing number of connections and data traffic will further raise energy demands. Run-

ning redundant network resources ensures excellent network availability, even if other

resources fail, but wastes much energy. Network traffic varies by time and place, so differ-

ent elements of the RAN infrastructure in each area can be put to sleep for predetermined

periods. The more components of that BS that are turned off, the more energy is saved.

There is an opportunity to develop more profound and extended sleep periods when no or

fewer data transmissions occur, lowering the network’s overall energy consumption.

Currently, industries are experimenting with AI-powered solutions for simple op-

erations like shutdown and sleep cycles for cells serving users based on estimated traffic

patterns modeled. These models are built upon historical patterns, weather, local events,

and other variables that can save energy by turning off power amplifiers, transceivers, and

antennas. Such solutions can also help with load balancing, intelligent beam forming,

interference reduction, and better spectrum utilization, among other things. In cellular

networks, base stations consume the most power; studies show that base stations con-

sume between 60 and 80% of all cellular network power even when it is not serving any

users. The increasing traffic demand and complicated new 5G use cases mean that 5G

consumes more energy than earlier wireless technologies. Thus, putting a Base Station
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Figure 31: Power Consuming Elements in Mobile Cellular Networks

(BS) to sleep or turning it off entirely when there is little user traffic can help reduce cel-

lular network power consumption. Also, BS experiments are application-layer friendly

and do not necessitate network changes and standardization, making them less costly and

easier to evaluate and implement.

As shown in Fig. 31, most network expenses are attributable to energy consump-

tion (fuel and electricity). Base station sites are the primary energy consumers in a mobile

network, requiring around 73% of a typical operator’s total energy in 2021, according to

a GSMA analysis of thirty-one MNOs. RAN energy consumption comprises the eN-

odeB (4G BS), gNodeB (5G BS), as well as the energy consumption of associated equip-

ment, such as air-conditioning (AC), inverters, and rectifiers. The core network energy

consumption comes from the network operations centers, value-added service platforms,

and any energy consumption connected with backhaul transport. Furthermore, the en-
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ergy spent by data centers includes the physical locations that host the infrastructure of

operators, including Operational Support Systems (OSS) and Business Support Systems

(BSS). It is important to note that the AC is still running and consuming the same amount

of power, even when the network has low and medium load scenarios and other associated

equipment.

The current NR design supports basic energy-saving measures such as a gNB that

can turn capacity cells on/off to save energy. The gNB autonomously makes decisions

without knowing the impact on neighboring nodes or the overall network energy con-

sumption. When neighboring nodes make conflicting decisions, the situation worsens.

Additionally, the current energy-saving tools are limited to cell deactivation. With NR

beam-forming and multi-layered radio transmission structure, reducing the load in a cov-

erage area or modifying the configuration of RAN nodes for coverage and capacity can

reduce energy consumption. The optimal EE decision is conditional on many variables,

such as node load, RAN node capabilities, KPI/QoS requirements, active UEs and mo-

bility, and cell utilization; hence, optimizing EE at the RAN level using pre-defined and

hard-coded rules is difficult.

ML can maximize the energy efficiency of a network by collecting pertinent data

and taking the appropriate action. Utilizing a solution at the RAN level can reduce net-

work energy consumption while maintaining coverage, capacity, and quality of service.

The ML model could use internal node information, neighboring RAN node information,

and UE assistance information to make an EE determination (such as offloading UEs, de-

101



activating/activating capacity cells, and adjusting node configuration) and communicate it

to neighboring nodes. Neighboring nodes can provide feedback on the energy efficiency

of a decision, and UE may also indicate if performance requirements are not met, indi-

cating that the network should modify EE. The potential for an ML-assisted solution can

be enhanced by exchanging RAN-level metrics for energy savings/consumption. MNOs

can introduce an energy status that can be communicated between RAN nodes. Such

indicators can assist neighboring nodes in understanding a node’s energy efficiency pref-

erences, which can be considered when deciding on EE actions that may affect network

energy consumption.

When a base station is powered on, its power consumption is proportional to the

traffic volume. Fig. 32 demonstrates that around sixty percent of a BSs (Base Stations)

Figure 32: Power Consumption Factor with Traffic Load
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radio power usage scales with traffic load. When the predicted traffic volume is below the

threshold, the cells can be turned off, and the UEs can be moved to the new target cell. ML

algorithms can train the relevant model and predict the next period state, especially traffic

load. In Rel-16, a new mechanism for exchanging the current load status of RAN nodes

was added, which is used as input for Mobility Load Balancing (MLB) / Energy saving

algorithms. Additionally, based on our study and analysis, we believe that considering the

predicted load status is beneficial, particularly for cells whose load status varies rapidly

and follows a consistent pattern each day, especially in the case of network slicing, where

logical networks can be managed independently.

Figure 33: Power Consumption by different technologies in Cellular Networks
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Network Equipment Manufacturer reports that compared to 4G, the power con-

sumption per unit of traffic (Watt/bit) is drastically reduced, whereas 5G’s power con-

sumption increases. The percentage of sites with more than five frequency bands will rise

from 3 percent in 2016 to approximately 43% in 2023. As shown in Fig. 33, the max-

imum power consumption of a 5G site will be greater than 10 kW and will be doubled

if more than ten frequency bands are used. A typical 5G site consumes more than 11.5

kilowatts of power, around 70% more than a base station that uses a mix of 2G, 3G, and

4G radios. Network Equipment manufacturer forecasts that Massive MIMO alone can

raise cell energy usage from 5-7 kW per 4G site per month to more than 20 kW per 5G

site. China’s 5G energy usage is projected to increase by 488% by 2035, reaching 297

billion kWh.
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4.5 Proposed ECO6G Framework

The 5G NR standard was developed with an understanding of typical radio net-

work traffic and the requirement for radio network equipment to support sleep states. The

base station can be put to sleep when no traffic is present to conserve energy. Even in

heavily loaded networks, base station resources are often unused. Most base transceiver

station (BTS) hardware components remain active to transmit 4G or 5G mandatory idle

mode signals like synchronization, reference, and system information [69]. The MNOs

expect B5G deployment solutions to be low cost, can be deployed fast, with low energy,

and simple Operations and Maintenance to improve carrier investment efficiency. To miti-

gate these challenges, we propose an energy optimization method using the learning from

the predicted load, which we have simulated using Deep Neural Network (DNN), Trans-

fer Learning (TL), ARIMA, and ETS models. The proposed ECO6G model is based on

TL concepts, which utilizes a pre-trained model M_DNN, trained on a larger traditional

DNN model.

The performance of any ML or DL model depends on the training data set size,

quality, and relevance. Real-world data sets are disorganized and unstructured. Finding

a balanced data set or working with an imbalanced data set is difficult, especially with

the lack of field data for network slicing, which is not yet deployed in the production

network. We believe that the field data is necessary for the ML model to function in real-

world environments and for training, validation, and testing to ensure the validity and

robustness of the model. Our ECO6G dataset is developed from a real-world 5G base
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station’s measurements using MNOs proprietary software, which includes data from one

base station with three sectors and KPIs such as RRC, number of PDU sessions, and the

total network load [70]. Dataset was collected over 52 weeks, of which forty-seven weeks

were used for training, and the remaining five weeks were used for testing and validation.

As network operators have yet to deploy network slices, we do not have the availability

of actual slicing data. We have used the 3GPP specification TS 28.554 [71] definitions to

augment the data for network slicing KPIs such as RSSNI and PDU session counts.

Traditional statistical methods use linear processing, whereas ML methods use

non-linear algorithms to achieve minimization objectives. This paper employs four pri-

mary approaches to achieve time-series forecasting methods and comparisons: ARIMA,

ETS, DL model using random weights, and a DL model using learned weights. The most

challenging aspect of time series problems is that they predict an uncertain future. Pre-

dictions are never accurate and are always subject to variance, and it is challenging to

discover and learn underlying patterns in time series data. Typically, patterns are cate-

gorized as trends, seasonality, and cycles. In most time-series data, these patterns are

strongly interconnected, and it is difficult to distinguish and locate them due to short

data length, noise, and outliers. In the past, univariate time-series analysis and predic-

tion problems were primarily addressed; however, multiple time-series data have gained

prominence in recent years. We have performed a comparative study between ML and

statistical modeling to rule out any issues between model superiority.

ECO6G utilizes TL, where weights are learned from a traditional deep neural net-
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work mode (M_DNN) trained on a larger data set comprising the three KPIs from each

slice and the total network load from one base station. The knowledge transfer in the case

of TL eliminates the need to train an ECO6G model from scratch, resulting in faster con-

vergence using a smaller training sample size. Finding sufficient and high-quality training

data is one of the most challenging tasks for conventional ML techniques. By leveraging

the trained knowledge from similar domains with high-quality data, TL can circumvent

this issue. Instead of learning from scratch, as with conventional ML approaches, the

training process for ECO6G can be significantly accelerated by incorporating knowledge

from a M_DNN model. Instead of maximizing the Quality of Service (QoS), we argued

that better EE could be achieved by targeting satisfactory QoS levels. Furthermore, accu-

rate prediction of estimated network load based using recent (more real-time) data, which

is also smaller in size, can be used for predictive analytics.

In this section, we detail the working of proposed ECO6G as shown in Fig. 34:

Step I The ECO6G framework initializes by training the traditional neural model MDNN

using observed RRC, number of PDU sessions, and the total network load from all

Slices - A (eMBB), B (mIoT), and C (URLLC), i.e., DTOTAL. Network operators

can deploy many slices; we are considering three standard slices for our evaluation

per standardized 3GPP SST values. We have employed five-layer Deep Neural Net-

works: Input (features), 3 Hidden Layers, and Output (prediction). We have tuned

the model hyper-parameters by changing the number of hidden layers, learning rate,

activation function, and the number of epochs for the MDNN model in MATLAB

using Deep Learning Toolbox and Alteryx Analytics Automation tool running on
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Figure 34: ECO6G Framework

Intel hardware and Windows 11 operating system. Our goal is to validate the model

performance between random weights and learned weights, so we kept the DNN

modeling the same for both MDNN and MECO6G. The algorithm uses randomness

to find a good set of weights for the data’s specific input-output mapping function,

such that each time the training algorithm is run, a different network with a differ-

ent model is fitted. The shuffling of the training dataset before each epoch also uses

randomness, resulting in differences in the gradient estimate for each batch.

Step II First, we train the MDNN multi-layer model using a feed-forward backpropagation

network with initialized random weights (stochastic gradient descent). A forward

pass through the network is accomplished by iteratively computing each neuron in

the subsequent layer until the output is achieved. We evaluate the output quality
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based on a cost function C and the desired result in the output layer. Mean squared

error (MSE) is used as a loss function for evaluation.

Step III A backward pass is then used to optimize the cost function C after the first result has

been obtained by readjusting the weights and biases. We aim to optimize the output

by adjusting the entire neural network. Based on this, we can calculate the total loss

and determine the model’s suitability (good or bad), and here weights are adjusted

to obtain the least loss. After backpropagation, we capture each layer’s computed

weights (learned weights) for TL parameters and define these trained weights as

MECO6G.

Step IV Now instead training the MECO6G with ’random weights’, we initialize MECO6G

using learned weights and re-train for smaller datasets DeMBB, DmIoT , DURLLC

from individual slices, which are subsets of DTOTAL to predict total network load.

In ECO6G, we are capturing weights on the final layer (i.e., output layer); how-

ever, we can capture weights in the initial layer and middle layer as referenced in [55]. The

model’s performance depends on the neural network architecture, the change in neurons,

the hidden layer, hidden layer, influences the model performance, and energy consump-

tion. The more time the model takes to converge, the more energy it consumes. The

complexity of a NN-based algorithm primarily depends on the number of nodes in each

NN layer, total training examples, M , and a number of epochs, N . The time complexity

T of the ECO6G algorithm can therefore be approximated as

T = O(M ∗ N ∗#nodesinlayer(i) ∗#nodesinlayer(i − 1 )) (4.1)
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ECO6G model pseudo-code can be written as:

Table 6: ECO6G Pseudo Code

Algorithm 1: ECO6G Training and Validation

1: Set parameters
2: θ ∈ (0, 1) :weights/parameters
3: b ∈ (0, 1) :bias
4: α ∈ (0, 1) :learning rate to control change in θ and b
5: σ ∈ (0, 1) :sigmoid activation function
6:

∑
= xiθi where xi is the input, Dtrain consisting of RRC, RSSNSI

and PDU of each of the three slices from the network and devices
7: Weighted sum value z = xiθi + b
8: Dtrain ← Training data for the network load of size 7729 X 9
9: Dval ← Training data for the network load of size 169 X 9
10: Initialization of the multi-layer model, MDNN consisting of param-
eters θ in [0,1]
11: Training of MDNN with Dtrain

12: Predicting the network load with error function MSEi =
1
n

∑n
i=1(yactual − ypredictedi)

2

MAPEi =
1
n

∑n
i=1

∣∣∣yactual−ypredictedi
yactual

∣∣∣
13: Optimization of cost function J(θ) through backpropagation and
gradient descent with J(θ) in step 12 until convergence
14: Selection of the learned parameters (θ(1), θ(2), θ(N)) representing
the pre-trained model as Mpretrained

15: Using the Mpretrained parameters for validating Dval where Dval

∈DTotal
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4.6 Proposed ECO6G Framework Evaluation

With TL, most data are trained by other source domains before transferring the

trained models to the target domain, reducing the computing requirements for target do-

main training. This is useful for wireless devices with hardware constraints, such as smart-

phones, IoT, and edge devices. Additionally, only knowledge, such as model weights and

biases, must be transferred, reducing communication overhead [72]. Consequently, this

can significantly improve the learning rate, which is especially important for develop-

ing applications with ultra-low latency for future wireless networks. Conventional ML

training is computationally intensive.

ECO6G uses all the layers of a pre-trained M_DNN model for initialization; this

strategy is anticipated to be advantageous because the initial layers capture more typical

characteristics, and training only the final layers is more computationally efficient. ML

and conventional statistical methods aim to enhance prediction accuracy by minimizing

a loss function, such as the mean of squared errors. A high loss indicates that the model

performed poorly, and a low loss indicates a good-fit model. Cross-validation is used in

the modeling process to determine which model performs best while remaining robust to

data not encountered during training. By sampling multiple pairs of training and test data

from a limited data set, one can ensure that the performance goals are met and that the

extent of training has been adequate while preventing over-fitting. There is no one-size-

fits-all indicator for forecast accuracy. We have used Mean Squared Error (MSE), Root

Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) metrics for
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evaluation purposes across all four models to evaluate the goodness of predictions.

The objectives of ML and conventional statistical methods are to enhance predic-

tion accuracy by minimizing a loss function, such as the mean of squared errors. A high

loss indicates that the model performed poorly, and a low loss indicates a good-fit model.

Cross-validation is used in the modeling process to determine which model performs best

while remaining robust to data not encountered during training. By sampling multiple

pairs of training and test data from a limited data set, one can ensure that the performance

goals are met and that the extent of training has been adequate while preventing over-

fitting. There is no one-size-fits-all indicator for forecast accuracy. We have used Mean

Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percent-

age Error (MAPE) metrics for evaluation purposes across all four models to evaluate the

goodness of predictions.

MSE is computed by squaring differences between the predicted and actual values

and averaging the result. The range of MSE is between 0 and∞; the lower the MSE value,

the more accurate the prediction model. MSE is the loss function of linear regression by

default in ML. The MSE for our models can be expressed as:

MSEM_DNN =
1

n

n∑
i=1

(yactual − ypredictedM_DNN
)2 (4.2)

MSEECO6G =
1

n

n∑
i=1

(yactual − ypredictedECO6G
)2 (4.3)
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MSEARIMA =
1

n

n∑
i=1

(yactual − ypredictedARIMA
)2 (4.4)

MSEETS =
1

n

n∑
i=1

(yactual − ypredictedETS
)2 (4.5)

MAPE is more robust than MSE to outliers in the dataset, and it expresses accu-

racy as a percentage of the error and measures the forecast error concerning actual values.

The lower the MAPE value, the more accurately the ML model predicts values. MAPE

less than a value of 10 percent indicates highly accurate forecasting. The MAPE for our

models can be expressed as:

MAPEM_DNN =
1

n

n∑
i=1

∣∣∣yactual − ypredictedM_DNN

yactual

∣∣∣ ∗ 100 (4.6)

MAPEECO6G =
1

n

n∑
i=1

∣∣∣yactual − ypredictedECO6G

yactual

∣∣∣ ∗ 100 (4.7)

MAPEARIMA =
1

n

n∑
i=1

∣∣∣yactual − ypredictedARIMA

yactual

∣∣∣ ∗ 100 (4.8)

MAPEETS =
1

n

n∑
i=1

∣∣∣yactual − ypredictedETS

yactual

∣∣∣ ∗ 100 (4.9)

ARIMA is a time series analysis model that is fitted to time series data to better

forecast future time series points. ARIMA uses trends, cyclic, seasonal, and irregular

changes to characterize time features and sequences in patterns. Forecasting techniques
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Figure 35: Model Evaluation and Metrics

based on ETS use a weighted sum of past observations, but the weights decrease exponen-

tially. We have simulated network load for 168 hours (about one week) using all models

as a comparative study.

Fig. 35 shows the performance of all models in terms of MSE, RMSE, and MAPE

metrics. Our proposed ECO6G algorithm performs better than the other three algorithms

in error and accuracy metrics for the given data set. In addition, our proposed algorithm

has steady performance and converges faster because of pre-trained weights. Compared

to the traditional neural network model (MDNN ), ECO6G yields 21% less error and 8.5

percent more accuracy. Table 7 also shows additional insight between various data-driven

approaches and the superiority of the ECO6G model for the given data set.

Fig. 36 demonstrates all models’ simulated forecasted network load results. The
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Table 7: ECO6G Model Evaluation between Classical ML, Statistical Model and DNNs

Models MSE RMSE MAPE R (Accuracy) Time to Run Models (x5)
MDNN 2.86 1.69 2.15 0.9723 Approx. 16 minutes
ECO6G 2.25 1.50 1.97 0.9762 Approx. 3 minutes
ARIMA 5.40 2.32 3.15 na Approx. 8 minutes

ETS 5.74 2.39 3.48 na Approx. 8 minutes
Linear Regression 10.53 3.24 na 0.8810 Approx. 6 minutes

MATLAB Time-Series 15.99 4.00 na 0.8525 Approx. 8 minutes

Figure 36: Simulation results of Network Load Prediction using Neural Network and
Statistical Modeling

load change period is seven days and reflects the peak and off-hours variation through

the day for a week, reflecting the real-world scenario. The figure also depicts the two

prominent characteristics of mobile traffic and forecasting. First, the cell load is typi-

cally characterized by a strong periodicity, with periods of low load occurring from night

to early morning. Second, the forecasting mechanism may produce non-negligible er-

rors, meaning that deactivating cells at the incorrect time may significantly affect system
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performance. ECO6G closely follows the actual traffic load, which shows the model is

reasonably accurate and provides reasonable confidence to use it against real-world net-

work resource modeling. The difference between the average of all ECO6G estimates

and the average of all actual values is only 1.10%, i.e., ECO6G is over-predicting by

a little margin, which can be compensated against any spike in unusual traffic load to

accommodate network resources during network planning.

Table 8: Simulation results of Average Load across all Models

Average Load %
Low load

(6/24)
Medium Load

(10/24)
High Load

(8/24)
Actual 42.53 74.36 88.23
MDNN 43.1 75.65 89.04
ECO6G 43.03 75.21 88.96
ARIMA 42.01 73.92 87.63

ETS 43.6 75.4 88.84

Table 9: Simulation results of Peak Load across all Models

Peak Load %
Low load

(6/24)
Medium Load

(10/24)
High Load

(8/24)
Actual 73.86 94.50 99.60
MDNN 74.44 95.32 99.59
ECO6G 74.48 95.23 99.78
ARIMA 75.39 92.96 96.86

ETS 75.15 94.21 99.61

Table 8 and 9 show the simulated average and peak load values across all models.

Daily average traffic over 24 hours is modeled through three traffic loads (low, medium,
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and high) per ETSI ES 202 706-1 definition. For a week of validation, the ECO6G,

MDNN , and ETS models have predicted a positive delta (meaning the network would

over-provision) in the case of average load against actual load for all three load scenarios.

At the same time, ARIMA estimated a negative delta (under-provisioned). For a mobile

network operator, it is moderately fair to over-provision to accommodate any spike in

traffic but not by a large sum.

4.6.1 Objective 1: Energy Efficiency and Benefit-Cost Analysis

Load-aware metrics are crucial for the next generation of green communication

networks. One of the primary objectives of 5G networks for enhancing energy efficiency

is to match system capacity and power consumption with network load. The equations

define the total system energy efficiency (EE) for different load scenarios in ETSI ES 202

706 and 3GPP TR 32.972 version 16.1.0.

EEglobal =
∑

low load

blow load ∗ EElow load (4.10)

EEglobal =
∑

med load

bmed load ∗ EEmed load (4.11)

EEglobal =
∑

high load

bhigh load ∗ EEhigh load (4.12)

EE (bits/joules) can be defined as the amount of traffic served per second by a

base station (bits/s) divided by the power utilized by a base station to provide service
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(Watt = Joule/s) multiplied by a weighting factor b based on the number of hours per

day in each load condition. The ETSI TR load levels are 10%, 30%, and 50% for low,

medium, and high loads, respectively. This weighting factor b takes on the value 6/24

for low load conditions in the last 6 hours of a typical day: low load, 10/24 medium

load, and 8/24 high load. With the energy efficiency equations defined in 4.10, 4.11, and

4.12, the network energy efficiency can now be defined as the ability to minimize energy

consumption relative to the provided traffic capacity. RAN EE measures the capability of

RAN elements to sustain a much better mobile broadband data rate while minimizing BS

energy consumption. The definition of RAN energy efficiency specified by the 3GPP is

as follows:

EE (bits/joules) can be defined as the amount of traffic served per second by a

base station (bits/s) divided by the power utilized by a base station to provide service

(Watt = Joule/s) multiplied by a weighting factor b based on the number of hours per

day in each load condition. The ETSI TR load levels are 10%, 30%, and 50% for low,

medium, and high loads, respectively. This weighting factor b takes on the value 6/24

for low load conditions in the last 6 hours of a typical day: low load, 10/24 medium

load, and 8/24 high load. With the energy efficiency equations defined in 4.10, 4.11, and

4.12, the network energy efficiency can now be defined as the ability to minimize energy

consumption relative to the provided traffic capacity. RAN EE measures the capability of

RAN elements to sustain a much better mobile broadband data rate while minimizing BS

energy consumption. The definition of RAN energy efficiency specified by the 3GPP is

as follows:
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RANEE(bits/joules) =
DataV olume

Energy consumption
(4.13)

Where; the unit of EE is bits/Joule, the unit for the data volume is bits/s/km2, and

the unit of energy consumption is Joules/km2.

The typical and peak electrical power requirement for radio base stations (macro

cell, micro cell, and pico or femtocell) related to aggregated RF power as defined in the

ETSI ES 203 700 V1.1.1 is used for the energy consumption calculation. In the case of

a complex macro base station, the peak power consumption is Pmax = 24kW , which

includes multiple frequencies across 2G/3G/4G/5G radios and MIMO configuration, and

the typical consumption is 8kW . The bits per watt can be calculated for all three loads as

follows:

Bits per watts =
Peak loadlow

Pmax ∗ Plow load level

∗ 106 (4.14)

Bits per watts =
Peak loadmedium

Pmax ∗ Pmedium load level

∗ 106 (4.15)

Bits per watts =
Peak loadhigh

Pmax ∗ Phigh load level

∗ 106 (4.16)

Therefore, concerning the power consumption vs. load (from Fig. 32), the power

consumption values are Plowloadlevel = 0.46 , Pmediumloadlevel = 0.58 , and

Phighloadlevel = 0.7 respectively. Using Table 10, power consumption using the average

load for a typical day across all load scenarios is calculated as shown in 11:
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Table 10: Peak bits per Watts Calculation

Peak bits/Watts
Low load

(6/24)
Medium Load

(10/24)
High Load

(8/24)
Weighted Avg

for 24 hrs
Actual 6690.22 6788.79 5928.57 6477.41
MDNN 6742.75 6847.70 5927.98 6514.89
ECO6G 6746.38 6841.24 5939.29 6516.87
ARIMA 6828.80 6678.16 5765.48 6411.59

ETS 6807.07 6767.96 5929.17 6498.14

Table 11: Energy consumption for a typical day

Power Consumption
(in kW)

Low load
(6/24)

Medium Load
(10/24)

High Load
(8/24)

Weighted Avg
for 24 hrs

Actual 6.36 10.95 14.88 11.11
MDNN 6.39 11.05 15.02 11.21
ECO6G 6.38 10.99 14.98 11.17
ARIMA 6.15 11.07 15.20 11.22

ETS 6.41 11.14 14.98 11.24

In most cases, as traffic volume and the number of utilized resources decrease,

the energy consumed decreases linearly. Figure 11 depicts an analysis of typical energy

consumption over a day by the BS based on the traffic pattern. The data analysis reveals

that the difference between the minimum and maximum BS energy consumption is 4.15

kWh and 16.67 kWh for the ECO6G model. The graph establishes the superiority of our

ECO6G model, as it can improve by 1.03% over the actual daily power consumption load

for the given dataset.

Additionally, the average retail price per kilowatt-hour (kWh) in the US is USD

0.1177 for commercial uses, as of drafting this dissertation [73], so the OPEX cost to
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operate one BS for a day and 5 years can be calculated as in Table 12. Note how close the

ECO6G calculation is to Actual (within $4.31, only a 0.007% error).

Table 12: OPEX Cost (in $) for MNO to operate ’a’ BS for 5 years

OPEX cost
per BS ($)

Low load
(6/24)

Medium Load
(10/24)

High Load
(8/24)

Weighted Avg
for 24 hrs

Actual 34,297.91 56,244.90 77,801.83 57,943.80
MDNN 34,561.10 56,764.43 78,064.91 58,313.76
ECO6G 34,234.89 56,167.78 77,932.57 57,939.49
ARIMA 36,089.28 57,722.90 78,865.72 59,632.10

ETS 36,729.73 58,272.96 79,048.24 59,812.24

4.6.2 Objective 2: Plausible ECO6G Use Cases in B5G Implementation

A developed country like the United States of America has four major network

operators. Suppose each operator deploys a hundred thousand 5G sites. In that case, the

OPEX savings opportunity using the ECO6G load prediction model for weighted average

load is close to two hundred and seventy eight million dollars over five years against other

data-driven model predictions for each MNO. These savings will be multifold in billions if

we consider global deployment from more than 750 mobile network operators deploying

5G where four hundred sixty-nine telecom operators from 140 countries/regions have

already invested in 5G, while 182 telecoms from seventy-three countries/regions have

started their own commercial 5G services.

We conducted five experiments using test data and concluded that the ECO6G

model predicted 100.57% better OPEX savings for low-load, medium-load, and high-
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Table 13: OPEX Cost Change (in Million $) for MNO to operate ’100,000’ BS for 5 years

OPEX Cost Change
across models

Low load
(6/24)

Medium Load
(10/24)

High Load
(8/24)

Weighted Avg
for 24 hrs

(also compared
with ECO6G)

MDNN 263.19 519.53 263.09 369.96 (+374.27)
ECO6G -63.02 -77.12 130.74 -4.31
ARIMA 1791.37 1478.00 1063.89 1418.30 (+1,422.61)

ETS 2431.82 2028.06 1246.41 1868.45 (+1,872.76)

load scenarios for the given dataset against other data-driven models and accurately pre-

dicted the network load. Thus, utilizing ECO6G, we can improve the OPEX saving for

different load levels. As shown in Table 13, an approximate saving of 374 million dollars

against MDNN , 1422 million dollars against ARIMA, and approximately 1872 million

dollars against ETS can be achieved by using ECO6G in all load scenarios considering

100,000 BSs over a five-year period.

With 5G rapidly expanding globally and more sophisticated 5G-Advanced fea-

tures planned in 3GPP Release-18, industry, standards bodies, and research organizations

are setting the groundwork for the next generation’s global sixth-generation (6G) commu-

nication standard. AI has the potential to become the foundation for the 6G air interface

and network, making data, computing, and energy the new resources that can be used to

achieve higher performance. As a result, 6G will have to deliver significantly more data

at faster rates than current networks while also meeting extremely stringent EE goals to

achieve a sustainable 6G system. This necessitates a significant reduction in the amount

of energy needed to transmit a bit and the need for solutions that can be leveraged to attain
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energy-efficient next-generation networks.

The ECO6G model can be applied in multiple scenarios, such as enabling a 3GPP-

compliant analytics service delivered in the form of statistics or predictions. Intelligence

operational in real-time for Network Functions, Application functions (AFs), and oper-

ations, administration, and maintenance (OAM) services. The serving BS, for example,

gets assistance data from RAN, such as load status, active UEs, QoS needs, and energy

consumption status [71]. The serving node executes an ML algorithm on the collected

data to choose an energy-saving action that maximizes network efficiency while main-

taining service quality. The node may announce its intention to offload traffic to neigh-

boring nodes to conserve energy. Additionally, a single analytics source in an environment

with multiple vendors, especially with Open-RAN (O-RAN) concepts, could be benefi-

cial. We are currently investigating ECO6G use cases in the core and the edge locations

with application-aware output for User plane function (UPF) load, especially with Multi-

Access Edge Computing (MEC).
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4.7 Conclusion and Contribution

This paper investigates traffic forecasting models to enable network management

to enhance the 5G OPEX savings. The report highlights the use of ML algorithms to pre-

dict the network load using network slicing KPIs and then uses the simulated predicted

load to compute the OPEX savings per industry standards definition. We presented a

comparative time-series study between Neural Network and Statistical Models and high-

lighted the proposed ECO6G superior metrics over other models. We are investigating the

feasibility of ECO6G to supplement the 3GPP specified Network Data Analytics Function

(NWDAF), introduced as part of Rel-16, which is intended to streamline how core net-

work data is consumed to develop insights and take actions to improve the end-user expe-

rience. We firmly believe the ECO6G model can enable slice-level analytics and provide

either statistics or forecasts of the performance of network load when used in conjunction

with RAN systems, which can be further used to design and orchestrate energy-efficient

network planning.

Our main contribution through this is a proposed ECO6G model using network slice KPIs

to predict the network load and evaluate the OPEX savings. The contributions of our work

are as follows:

• We have discussed the motivation for analyzing the energy efficiency using ML

approaches and the challenges in current B5G networks in Sections 4.3 and 4.4.

• We have summarized various data-driven approaches in Network Slicing, 5G, and

load forecasting. We also discuss how the proposed ECO6G model is novel and
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different from the state-of-the-art.

• We have evaluated our proposed ECO6G model against the traditional DLNN with

random weights and statistical time-series modeling, i.e., Auto-Regressive Inte-

grated Moving Average (ARIMA) and Exponential Smoothing (ETS).

• We have modeled the CAPEX for an MNO according to the EE definitions de-

fined in ETSI (European Telecommunications Standards Institute) TR 132 972 [74,

75] and highlighted the ECO6G load prediction usefulness towards the Operational

Expenditures (OPEX) saving for MNOs in Section 4.6.1.

Published Work

ECO6G: Thantharate, A.; Tondwalkar, A.V.; Beard, C.; Kwasinski, A. ECO6G: Energy

and Cost Analysis for Network Slicing Deployment in Beyond 5G Networks. Sensors

2022, 22, 8614. https://doi.org/10.3390/s22228614 [76]
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CHAPTER 5

CONCLUSION AND FUTURE SCOPE

The key to realizing the promise and potential of 5G is network slicing as a service,

but only if MNOs can overcome the complexity of establishing and managing many

concurrent slices. This opportunity has substantial risks if not executed well. Service

providers must carefully examine the level and type of control they expose to their cus-

tomers while ensuring an effective monitoring and assurance system mitigates the risk.

This research and dissertation discussed the approaches for delivering a resilient, secure,

adaptive, resource-aware, and energy-efficient network slice infrastructure capable of sup-

porting mission-critical applications under dynamic and unfavorable conditions without

impacting communication network performance.

Our research proposed a novel resource management and network load prediction

framework for network slicing architecture in B5G systems, realized through the DLNN

and Transfer Learning-based data-driven methods. The developed DeepSlice, Secure5G,

ADAPTIVE6G, and ECO6G framework can enable network operators to configure slice

resource automation more precisely, resulting in better management of network resources

by avoiding excessively over-provisioned or under-provisioned resources in B5G systems.

The performed experiments using transfer Learning and derived results demonstrate a

considerable performance improvement and reduced error compared to a traditional neu-

ral network algorithm, classical ML, and statistical models.
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The conclusive summary of all proposed models is as follows:

• DeepSlice This research’s primary objective is to develop methods and approaches

for sustaining high availability and diverse service requirements for network slices

in 5G networks. This research employs DL approaches to perform slice selection,

slice load balancing, and slice failure schemes for network slices to achieve these

objectives. We have demonstrated the benefits of using DeepSlice for accurately

predicting the best network slice based on device key parameters and orchestrated

handling network load balancing and network slice failure using neural network

models. I am looking to extend and further improve this model to handle scenarios

such as handovers, caching and predicting the future load, borrowing resources

from other slices, and application-based slice management use cases.

The developed model is critical and future-proof in ensuring the end-to-end secu-

rity of the 5G network and predicting the known and unknown applications/services

which are not defined/developed today by utilizing the learning from a developed

deep-learning model. The proposed research will aid value in 5G-Advanced devel-

opment, enabling greater control over device registration to network slices based

on the applications running on those devices. It will optimize the formation of

registration areas regarding network-slice utilization and accessibility. I am cur-

rently researching the feasibility of migrating DeepSlice to a containerized environ-

ment using Kubernetes and building an Automated deployment and management

cloud-native container orchestration system for network slicing. This research can
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be extended further to improve this model to handle scenarios such as handovers,

caching and predicting the future load, borrowing resources from other slices, and

application-based slice management use cases.

• Secure5G This research has investigated the security concerns in the 5G network

and presented a DLNN model to create a robust Network Slicing framework to

combat DDoS attacks filtering the malicious UE connections to the 5G network.

Volume-based flooding and spoofing attack scenarios were used as illustrations to

evaluate the overall performance, and the detection accuracy was more than 98%

with our limited dataset. The Secure5G implementation with DeepSlice will ensure

the end-to-end security of the 5G network. I am considering several directions to

improve further and extend the model to implement Secure5G into RAN, MEC, and

Core Slicing. The future model will also include the on-device and traffic behavior

learning to train the model in real-time using reinforcement and recurrent learning;

this will help us achieve more detection accuracy for a secured 5G ecosystem.

The proposed Secure5G can be used to protect the malicious actors from modify-

ing the RAN or Core network slice configurations for already deployed slice in-

stances. Network operators can update (add/delete/modify) the network functions

and change the security policies while in use. These flexibilities open a flood-

gate for potential threats to slice operations, and malicious actors can modify the

QoS/SLA for a targeted slice. I am exploring areas to implement Secure5G in Core

and RAN slicing to mitigate some in-network security threats, which extends the
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zero-trust security paradigm to assure service continuity in cyberattack-related cir-

cumstances. Additionally, this can be further extended to minimize the network

slice exhaustion problem. An attacker could potentially access the slice that could

have lower-level security. For example, a slice for the consumer will have lower

security compared to the security measures for Industrial or Enterprise IoT, and the

malicious attacker can exhaust the resources in the consumer slice. However, the

slices are virtually isolated if the network function resources are common to multi-

ple slices (e.g., hardware resources: memory, processing power, or authentication).

An ideal solution would be to pre-allocate security protocol resources for individual

slices or ring-fenced resources so that a slice can run irrespective of exhaustion on

other slices.

• ADAPTIVE6G This research proposed a novel resource optimization framework

for network slicing architecture in B5G and 6G systems, realized through the Trans-

fer Learning based framework. The developed framework considered load from all

network slices and load from individual network slices to forecast the total traffic

demand. The ADAPTIVE6G framework can enable network operators to config-

ure slice resource automation more precisely, resulting in better management of

network resources by avoiding excessively overprovisioned or under-provisioned

resources B5G systems. The simulated results demonstrate a considerable perfor-

mance improvement and reduced error compared to a traditional neural network

algorithm. To my knowledge, this is the first attempt to develop an adaptive frame-

work that enables network resource management, especially for the network slicing

129



architecture, which is a crucial technology for 6G.

This research topic is promising in future wireless communications for its potential

to deliver accurate load forecasting for varying services while conserving energy

by utilizing more minor data for training the model instead of a larger dataset and

accurately estimating the future network load to avoid overestimation problems.

The proposed model will help build MNO’s assessment of what the worst case looks

like and plan toward that. That means ensuring the network is flexible enough to

handle the revised view of what constitutes a worst-case scenario.

• ECO6G Sustainability is a crucial aspect of operational excellence, as more energy-

efficient and environmentally viable networks provide more significant cost savings

and fulfill the industry’s expanding social responsibilities. This research evaluates

an energy-saving method using data-driven learning through load estimation for

B5G networks. The proposed ECO6G model utilizes a supervised ML and Trans-

fer Learning approach for forecasting traffic load and uses the estimated burden to

evaluate the energy efficiency and OPEX savings. The simulation results demon-

strate a comparative analysis between the traditional time-series forecasting meth-

ods and the proposed ML model that utilizes learned parameters. Our ECO6G

dataset 34 is captured from measurements on a real-world operational 5G base sta-

tion (BS). Through simulations, I demonstrated that the proposed ECO6G model

is accurate within $4.3 million over 100,000 BSs over five years compared to three

other models that would increase OPEX cost from $370 million to $1.87 billion dur-
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ing varying network load scenarios against other data-driven and statistical learning

models. I firmly believe the ECO6G model can enable slice-level analytics and pro-

vide either statistics or forecasts of the performance of network load when used in

conjunction with RAN systems, which can be further used to design and orchestrate

energy-efficient network planning.

The ECO6G model can be applied in multiple scenarios as future research direction,

such as enabling a 3GPP-compliant analytics service delivered in the form of statis-

tics or predictions, intelligence operational in real time for Network Functions, Ap-

plication functions (AFs), and operations, administration, and maintenance (OAM)

services. The serving BS, for example, receives assistance data from RAN, such

as load status, active UEs, QoS needs, and energy consumption status [71]. The

serving node executes an ML algorithm on the collected data to choose an energy-

saving action that maximizes network efficiency while maintaining service quality.

The node may announce its intention to offload traffic to neighboring nodes to con-

serve energy. Additionally, a single analytics source in an environment with mul-

tiple vendors, especially with Open-RAN (O-RAN) concepts, could be beneficial.

We are currently investigating ECO6G use cases in the core and the edge locations

with application-aware output for User plane function (UPF) load, especially with

Multi-Access Edge Computing (MEC).

5G-Advanced is anticipated to dominate public and private networks beginning

in 2025, necessitating a rethinking of network architecture, design, and deployment. It
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will provide robust support for mission-critical network applications via communication

service providers (CSPs) or enterprise-grade private wireless networks. Following in the

footsteps of previous generations, 6G will feature an array of innovative technologies that

will shape the future of communication. I am researching the architecture, performance,

and trustworthy requirements as we evolve from 5G-Advanced to 6G. As part of this

survey research, I am emphasizing wireless networks’ evolution from connecting humans

to connecting things, the role of native intelligence in 6G architecture, open interfaces,

existing practices, challenges, opportunities, and future research direction toward next-

generation networks.

The current study focuses on defining mechanisms for deploying, orchestrating,

and managing varied MNOs available in the network slice ecosystem, proposing an ad-

dition to the 3GPP-proposed network slice management capabilities. I am currently re-

searching the network data analytics function (NWDAF) [77], which is defined in 3GPP

R16 TS 29.500, 29.501, 29.520 as part of 3GPP Rel-15 and Rel-16, which uses standard

interfaces from the service-based 5G architecture to streamline how core network data is

consumed to develop insights and take actions to improve the end-user experience. Part of

the research investigates the flow to collect data from other network functions for automa-

tion or reporting purposes where our proposed frameworks can complement the NWDAF

function to predict traffic, improve resource optimization, and schedule resources.

The proposed research presents significant enhancement opportunities to the con-

figuration, management, and control of network slices, enabling network operators to pro-
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vide clients with the most granular service levels. The proposed research will aid value in

5G-Advanced development, enabling greater control over device registration to network

slices based on the applications running on those devices. Unlocking the full value poten-

tial of 5G and Beyond communications will require resolving and proactively addressing

the security, privacy, and trust challenge in communication networks. A more energy-

efficient radio access network will increase the operating efficiency of 5G-Advanced net-

works, as will the enhanced slicing and analytics capabilities described above. In short,

Network slicing technology is sophisticated and operational excellence is essential for

constructing the sliced networks to meet the need for a connected society.
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