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Abstract: The Fourth Industrial Revolution, also known as Industry 4.0, is attracting a significant 
amount of attention because it has the potential to revolutionize a variety of industries by developing 
a production system that is fully automated and digitally integrated. The implementation of this 
transformation, however, calls for a significant investment of resources and may present difficulties in 
the process of adapting existing technology to new endeavors. Researchers have proposed integrating 
the Analytic Hierarchy Process (AHP) with extensions of fuzzy rough sets, such as the three-
dimensional q-spherical fuzzy rough set (q-SFRS), which is effective in handling uncertainty and 
quantifying expert judgments, to prioritize projects related to Industry 4.0. This would allow the 
projects to be ranked in order of importance. In this article, a novel framework is presented that 
combines AHP with q-SFRS. To calculate aggregated values, the new framework uses a new formula 
called the q-spherical fuzzy rough arithmetic mean, when applied to a problem involving the selection 
of a project with five criteria for evaluation and four possible alternatives, the suggested framework 
produces results that are robust and competitive in comparison to those produced by other multi-
criteria decision-making approaches. 
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1. Introduction  

In 2017, Lu [31] presented the fourth industrial revolution, which includes remote-control 
components, ERP, industrial internet, adaptive production, and collaborative product development. 
These technologies led to “smart manufacturing”. Adaptive manufacturing improves production 
performance for integrated infrastructure and appropriate methodologies. Industry 4.0 includes 
digitization, optimization, and customization of production; automation and adaptation; human-
machine interaction (HMI); value-added services and businesses; and automatic data exchange and 
communication, according to Posada et al. [32]. In addition to an autonomous structure, smart 
manufacturing's ICT-connected technologies offer Industry 4.0 opportunities and benefits. Smart 
manufacturing triggers robust tailored production, real-time integrated system tracking, and value 
chain optimization. Integrated manufacturing services and business models reduce operating costs. 
Technology selection criteria are crucial to Industry 4.0 technologies. Gossen et al. [33] recommend 
analyzing the interaction between selection criteria and alternative technologies. Smart manufacturing 
requires IT-focused approaches and digitalization, so all possible scenarios should be researched using 
a multi-criteria decision and selection method to find the best Industry 4.0 technology. The novel q-
spherical fuzzy rough set has fuzzy membership functions with membership, non-membership, and 
hesitation parameters and lower and upper set approximations. To keep their q sum below 1, these 
parameters can be individually specified between 0 and 1. q-spherical fuzzy rough sets accurately and 
adaptably describe linguistic terms due to their structure. This research uses the q-spherical fuzzy 
rough AHP approach to prioritize Industry 4.0 projects in an organization. This enhances the standard 
AHP technique to handle linguistic fuzziness and ambiguity in decision-making problems. The fuzzy set 
theory develops from the more traditional crisp set theory. To add to that, Zadeh was the pioneer in bringing 
up the concept of a fuzzy set, which considers only those grades that were awarded a positive grade. The 
correlation between the problems of Industry 4.0 project prioritization and fuzzy set theory lies in the fact 
that many of the criteria used to evaluate Industry 4.0 projects are inherently fuzzy. For example, the 
benefits of implementing new technology may not be immediately clear, or the risks associated with a 
project may be difficult to quantify. In such cases, fuzzy set theory can be used to represent these criteria 
more flexibly and intuitively. By using fuzzy set theory, decision-makers can assign degrees of membership 
to different project criteria, which allows for a more nuanced and realistic evaluation of the projects. This 
can help organizations prioritize their Industry 4.0 projects more effectively, leading to better outcomes 
and competitive advantage. In conclusion, the problems of Industry 4.0 project prioritization and fuzzy 
set theory are closely connected. The fuzzy set theory [1] develops from the more traditional crisp set 
theory. To add to that, Zadeh was the pioneer in bringing up the concept of a fuzzy set, which considers 
only those grades that were awarded a positive grade. Fuzzy set theory can provide decision-makers 
with a more flexible and intuitive way to evaluate Industry 4.0 projects, helping them to make better 
decisions and achieve their strategic goals. As a development of the fuzzy set, the intuitionistic fuzzy 
set (IFS) was proposed by Atanassov [2]. It includes both positive and negative grades, but only if their 
sum is less than or equal to 1. In other words, both good and bad grades are considered by the IFS. IFS 
has become more important since it was first introduced, and it has been used a lot to solve problems 
with making decisions. In 2014, Cuong [3] added to the ideas of fuzzy sets and IFS by coming up with 
a new idea he called a picture fuzzy (PF) set. In this idea, he talks about grades that are positive, neutral, 
and negative. Using intuitionistic fuzzy frank power aggregation operations, Zhang et al. [4] developed 
multiple attribute group decision-making procedures in 2015. Seikh and Mandal [5] have decided to 
make fuzzy Dombi aggregation operators that are easy to understand and have used them to solve 
MCDM problems. Also, Zeng et al. [6] made the MCDM by combining social network analysis with 
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an intuitionistic fuzzy hybrid contingent aggregation operator. It is important to remember that in IFS, 
the restriction sum (𝜇ା, 𝜇ି) ∈ [0, 1] limit the chance of getting both a good grade “+” and a bad grade 
“-’’ for the same work. To get around this problem, Yager [7] built what is now called the Pythagorean 
fuzzy set as an extension of the IFS (PyFS). For this generalization, we will use the condition that must 
be met, which can be written as 0 ൑ 𝜇ାଶ ൅ 𝜇ିଶ  ൑ 1. PyFS is a better mathematical tool, and it gives 
decision-makers (DMs) in fuzzy set theory more freedom to use the information they have at hand. 
After PyFS came out, other academics tried to make “forks” of it by adding more “aggregation 
operators” (AOs). Because of this, Akram et al. [8] showed some fuzzy Pythagorean Dombi AOs. Also, 
Garg [9] makes different PyF aggregation operations based on the level of confidence and uses them 
in DM situations. Also, Wang and Garg [10] came up with an algorithm for MADM that works based on 
the PyFS principle and uses the interactive Archimedean norm operations. Wu et al. [11] showed that the 
MAGDM is flexible by using the information fusion approach and uncertain Pythagorean fuzzy sets. PyFS 
is a limited idea that has been brought to the attention of researchers because when DMs give 0.8 as a 
positive grade (PG) and 0.7 as a negative grade (NG), then sum ሺ0.8ଶ ൅ 0.7ଶሻ ൑ ∉ ሾ0, 1ሿ, PyFS cannot 
be used, so PyFS cannot solve this problem in the current situation. Yager [12] came up with the idea 
of a q-rung orthopair fuzzy set (q-ROFS) as a generalization of IFS and PyFS to make this task easier. 
In a recent work [13] written by Xing et al., the authors presented various point-weighted AOs for q-
ROFSs and discussed how these AOs may be used for MCDM issues. Liu and Wang [14] have also 
made several q-ROFS-based AOs for MADM problems. AOs have been made for these. It is important 
to note that PG and NG are the only grades that are mentioned in any of the concepts. The abstinence 
grade (AG) is completely ignored, even though it is important to talk about the AG in many different 
types of real-life situations. Cuong and Kreinovich [15] brought this problem to light, and they came 
up with a new idea that is called a picture fuzzy set (PFS) in published works. PFS is a better tool for 
dealing with the ambiguity and uncertainty that come with MCDM issues. Note that the PFS uses the 
rule that the sum of (𝜇ା, 𝜇ᇱ, 𝜇ି) ∈ [0, 1], must be between 0 and 1. This makes the PFS different from 
all other theories and makes it more general. Wei [16], which is based on PFS, also talks about a few 
PF Hamacher AOs. If all the membership grades end up being 0.5 (positive), 0.4 (negative), or 0.2 
(negative), then PFS is not a valid formation because its main requirement is not met. This is because 
the formula 0.5 + 0.2 + 0.4 ∉ [0,1] doesn't work in this case. Mahmood et al. [17] think that a spherical 
fuzzy set (SFS) could be used to control this problem. Since SFS has been around, researchers have 
been paying more attention to it. Also, Deli and Cagman [18] have come up with some theories about 
fuzzy spherical numbers and a method called the MCDM method. Raq et al. [19] have also shown 
some cosine similarity measures based on SFS, as well as how they can be used to solve DM problems. 
Ashraf et al. [20] also come up with several symmetric-based AOs for the SF data. To address the 
problem of uncertainty, Kahraman [21] developed the q-spherical fuzzy set. He used the idea to help 
him figure out what to do. It is thought to be a bigger version of what is called a “spherical fuzzy set”. 
In q-SFS, the element is described by one of three degrees: positive (𝜇ା), neutral (𝜇ᇱ), or negative (𝜇ି). 
However 0 ൑ ሺ𝜇ାሻ௤+ሺ𝜇ᇱሻ௤+ሺ𝜇ିሻ௤ ൑ 1, must be true. Opinions in this q-spherical fuzzy set include 
not only “yes” and “no”, but also “don't know” and “refuse”. It is required that the sum of the q powers 
of (𝜇ା), (𝜇ᇱ), and (𝜇ି), respectively, be less than or equal to one. So, q-SFSs (q-Spherical Fuzzy Sets) 
give decision makers a larger number of preferences to choose from so they can make their own 
decisions about membership, non-membership, and hesitant degrees.  

Rough sets (RS) are a way to deal with the ambiguity that was first suggested by Pawlak [23,24]. 
This setup is like ambiguity and uncertainty from a mathematical point of view. Rough set theory 
(RST), which is an expansion of classical set theory, uses the relation, which is a way to show how 
information systems work, as its main tool. People have noticed that the Pawlak relational semantics 



18812 

AIMS Mathematics  Volume 8, Issue 8, 18809–18832. 

theory's equivalence relation is limited in many real-world situations. Considering this, numerous 
authors have supplemented Pawlak's rough set theory by introducing non-equivalence relations, and 
similarity relations are illustrated in [25,26]. 

Even though intuitionistic fuzzy sets, Pythagorean fuzzy sets, and q-rung orthopair fuzzy sets all 
have their uses, they can only look at binary options like yes or no, and people's opinions are never 
just yes or no. Take voting as an example. There are four possible outcomes: voting yes, voting no, not 
voting at all, or not voting at all. No theory that is currently accepted can explain this event. Remember 
that the picture fuzzy set and the spherical fuzzy set can solve these kinds of problems, even though 
they have some limits. The q-spherical fuzzy set, on the other hand, has proven to be the best way to 
deal with this kind of problem. Also, keep in mind that the current theories must overcome problems 
in their structures or conditions, as shown below. 

(1) IFRS [27], PyFRS [28], and q-ROFRS [29,30] are all well-known theories that fail horribly 
when all three possible grades are included in the data (positive, neutral, and negative). 

(2) It is feasible to consider voting with the help of the concept of a picture fuzzy rough set 
(PFSRS), but this is constrained by the presence of lower and upper approximations like 0 ൑
𝜇ା ൅ 𝜇′൅ 𝜇ି ൑ 1 and 0 ൑ 𝜇^ ൅ ൅𝜇′൅ 𝜇ି ൑ 1. On the other hand, when information is given 

to decision-makers as q-spherical fuzzy rough sets (q-SFRS), which include lower and upper 
approximations like {(0.9,0.8,0.9), (0.9,0.7,0.9)}, etc., be aware that the sum of the lower and 
upper approximation values is outside the range [0, 1]. This means that ሺ0 ≰ 0.9ଶ ൅ 0.8ଶ ൅
0.9ଶ ≰ 1ሻ and ሺ0 ≰ 0.9ଶ ൅ 0.7ଶ ൅ 0.9ଶ ≰ 1ሻ  that can never be handled by SFRS and that 
limit the SFRS concept. 

The concept q-spherical fuzzy rough set was first introduced by Azim et al. [22] in 2023. This 
kind of fuzzy set has good things about both the rough set and the q-spherical fuzzy set. Because of 
this, the most important thing that this work adds to what we already know is a practical way to make 
decisions that work for the q-spherical fuzzy rough set. In q-SFRS, there are a total of three 
independent parameters with lower and upper set approximations. For the sake of future study, we 
want to create brand new aggregation operators in addition to defuzzification processes. As a result, 
considering everything, the q-spherical fuzzy rough set seems to be a promising new idea, opening the 
door to a wide variety of opportunities for study in the future. Reviewing the relevant literature shows 
that in the years after the first industrial revolution, several revolutionary changes caused the 
manufacturing sector to think deeply about its ability to be both effective and efficient. On the other 
hand, Lu et al. [31] say that corporations are likely to investigate the root cause of problems that come 
up when making their products. To reach this goal, complex technologies and structures that were once 
separate must be brought together to make important advances. In 2011, the German government was 
the first to use the term “Industry 4.0” at the Hannover Fair. This was done by integrating information 
systems better and making sure that different industrial processes worked together better. 
Interoperability and constant data exchange are two of the most important things to think about when 
making Industry 4.0-style distributed manufacturing systems. A real-time tracking system is also 
needed to predict how a system will act so that production can be controlled automatically. When 
enabling technologies are used a lot, these effects influence the whole manufacturing process as well 
as the standardization of production. The main things that drive these creative innovations are the 
ability to meet specific consumer needs, the allocation and use of resources, and the shortening of the 
average product's lifespan. Qin et al. [35] say that this is why applications of Industry 4.0 are leading 
to big breakthroughs, and these applications have the potential to help the economy grow. For instance, 
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the associated sector is responsible for about 17% of the gross domestic product and almost 32 million 
jobs across the European Union. In 2015, Posada et al. [32] showed that visual computing is a key 
technology that makes Industry 4.0 and the industrial internet possible. Gossen et al. [33] introduced the 
idea of using multiple criteria to choose track and trace technologies as part of a plan to stop counterfeiting. 
Dogan and Oztaysi [35] in 2018 talk about how fuzzy decision-making could be used to choose in-store 
behavioral analytics technology. Lee et al. [36] introduced a cyber-physical systems architecture for 
manufacturing systems that are based on Industry 4.0 projects. In the end, Lasi et al. [37] talked about 
the improvements in automation, digitization, and networking that are needed for the sector to work 
well and are part of the technologies that support it. To start, it is important to coordinate the many 
basic needs, such as mobile technologies, RFIP/RTLS technologies, and sensors, to make the advances 
that Industry 4.0 promises and create value in the manufacturing process. Also, for Industry 4.0 to be 
used, protocols and procedures for protecting distributed systems and cyber security systems need to 
be made the same. Shen et al. [38] proposed in 2010 that if you want to use or buy new technology, 
you should choose it based on the principle of choosing the best option out of several competing 
options. To keep up with modern technological changes, the company needs to get digital skills and 
spread them throughout the organization. As an example of how technology selection issues can be used, 
several studies have come up with different ways to judge how well people make decisions based on 
different criteria. As part of the technology selection problem, this has been done. Saatay [39] came up with 
the AHP in 1987 to solve complicated problems with multiple criteria. It was then made into a fuzzy form 
so that it could be used to choose technologies based on imperfect information. Oztaysi [40] in 2014 
suggested that when choosing IT, an AHP with a fuzzy TOPSIS-Grey technique built-in should be used. 
Oztaysi also said that choosing the right technology means spending a lot of money to build the right 
infrastructure and running the risk of having to change the way things are done. Because of this, there 
needs to be a more scientific and methodical way to make decisions about which technologies to use. 
This will increase the number of successful Industry 4.0 adaptations for both the current system and 
the new system. So, the choice of technology could be seen as an example of a group decision-making 
(GDM) issue, which involves analyzing and interpreting possible solutions while considering the 
qualities of several different decision criteria. Oztaysi et al. [41] in 2019 suggested a hesitant fuzzy 
AHP to choose gamification features that can be used in the field of demand-side energy management. 
Solar technology is being looked at. Vermat et al. [42] in 2021 used an interval-valued intuitionistic 
fuzzy-analytic hierarchy process to measure the impact of security attributes in the fog-based internet 
of things paradigm. This helped them choose alternative fuel vehicles. In addition to fuzzy AHP, fuzzy 
TOPSIS, and fuzzy ANP are also ways to deal with problems involving making decisions based on 
more than one factor. Rajak and Shah [43] in 2019 came up with an AHP-integrated fuzzy TOPSIS-
based way to find mobile application health systems (mHealth). Zhao et al. [44] in 2019 presented a 
fuzzy TOPSIS technique for energy-aware fuzzy job-shop scheduling for engine remanufacturing at 
the level of multiple machines. In their 2019 study, Fetanat et al. [45] introduced the idea of an energy 
justice-based decision-making framework for waste-to-energy technologies selection in sustainable 
waste management: A case of Iran. The concept of covering-based multi-granulation (I, T)-fuzzy rough 
set models and applications in multi-attribute group decision-making was introduced by Zhan [46] in 
2019. The idea of a novel type of soft rough covering and its application to multicriteria group decision-
making is presented by Zhan and Alcantud [47] in 2019. The concept of fuzzy β-covering based (I, T)-
fuzzy rough set models and applications to multi-attribute decision-making is presented by Zhang et 
al. [48] in 2019. The concept of an N -soft set approach to rough sets is given by Alcantud et al. [49] 
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in 2019. Rao and Parnichkun [50] introduced the concept of flexible manufacturing system selection 
using a combinatorial mathematics-based decision-making method in 2009. Maniya and Bhatt [51] in 
2011 published an article on the selection of a flexible manufacturing system using the preference 
selection index method. Karande and Chakraborty [52] in 2013 presented the evaluation and selection 
of flexible manufacturing systems using MACBETH method. Mathew and Thomas [53] in 2019 
introduced the idea of interval-valued multi-criteria decision-making methods for the selection of 
flexible manufacturing systems. Zhang et al. [54] in 2021 introduced the concept of multi-source 
information fusion based on rough set theory. Yuan et al. [55] in 2021 presented the idea about the 
attribute reduction methods in fuzzy rough set theory: An overview, comparative experiments, and 
new directions. Che et al. [56] in 2023 presented the concept of learning instance-level label correlation 
distribution for multi-label classification with fuzzy rough sets. Ali et al. [57] in 2023 introduced a 
novel idea of averaging aggregation operators under the environment of q-rung orthopair picture fuzzy 
soft sets and their applications in MADM problems. 

The remaining parts of the work are organized as follows: Section 2 provides an extensive 
overview of fundamental concepts such as fuzzy sets (FS), picture fuzzy sets (PFS), spherical fuzzy 
sets (SFS), q-spherical fuzzy sets (q-SFS), rough sets (RS), and q-spherical fuzzy rough sets (q-SFRS). 
The aim is to establish the necessary background knowledge for the subsequent sections. In Section 3, 
we discuss the operational laws and aggregation operators specifically designed for q-spherical fuzzy 
rough numbers (q-SFRNs). These laws and operators serve as essential tools for performing 
computations and aggregations within the q-spherical fuzzy rough AHP framework. Section 4 delves 
into the q-spherical fuzzy rough AHP technique, providing a detailed breakdown of its steps. This section 
offers a comprehensive understanding of how the q-spherical fuzzy rough AHP method is applied and 
implemented. Section 5 applies the q-spherical fuzzy AHP concept to evaluate Industry 4.0 project 
prioritization. We discuss the specific application of the q-spherical fuzzy rough AHP technique in this 
context, demonstrating how it can be effectively used to assess and compare different Industry 4.0 
project prioritization. Section 6 focuses on the managerial implications of the q-spherical fuzzy rough 
AHP approach. We emphasize the importance of conducting comparative analysis to compare rankings 
obtained from different MCDM techniques and performing sensitivity analysis to evaluate the 
method's robustness. These analyses contribute to informed and reliable decision-making processes. 
The final Section 7 presents the conclusion, summarizing the key findings and contribution. 

2. Preliminaries 

This section investigates the concepts of the fuzzy set (FS), picture fuzzy set (PFS), spherical 
fuzzy set (SFS), q-spherical fuzzy set (q-SFS), and rough set (RS), in addition to operational laws and 
aggregation operators for q-spherical fuzzy numbers (q-SFSs), q-spherical fuzzy relation, and q-
spherical fuzzy rough approximation space. 
Definition 2.1. Zadeh [1] came up with the idea of a fuzzy set in 1965. It is a generalization of the 
crisp set. Mathematically, it's defined as: 

𝐴 ൌ ሼ〈𝑥, 𝜇஺ሺ𝑥ሻ〉: 𝑥 ∊ 𝑋ሽ         (1) 

with the condition, 

0 ൑ 𝜇஺ሺ𝑥ሻ ൑ 1. 

Where 𝜇஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ represents the membership function. 
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Definition 2.2. Picture fuzzy set is the generalization of fuzzy set and intuitionistic fuzzy set, which 
was proposed by Cuong et al. [3] in 2014. Mathematically it is defined as:  

𝐴 ൌ ሼ〈𝑥, 𝜇ା
஺ሺ𝑥ሻ, 𝜇ᇱ

஺ሺ𝑥ሻ, 𝜇ି
஺ሺ𝑥ሻ〉: 𝑥 ∊ 𝑋ሽ      (2) 

with the condition, 

0 ൑ 𝜇ା
஺ሺ𝑥ሻ ൅ 𝜇ᇱ

஺ሺ𝑥ሻ ൅ 𝜇ି
஺ሺ𝑥ሻ ൑ 1. 

Where 𝜇ା
஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ, 𝜇ᇱ

஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ and 𝜇ି
஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ represents the positive, neutral, 

and negative membership functions respectively. 
Definition 2.3. The spherical fuzzy set is the generalization of the picture fuzzy set proposed by 
Mehmood et al. [17] in 2019. Mathematically it is defined as: 

𝐴 ൌ ሼ〈𝑥, 𝜇ା
஺ሺ𝑥ሻ, 𝜇ᇱ

஺ሺ𝑥ሻ, 𝜇ି
஺ሺ𝑥ሻ〉: 𝑥 ∊ 𝑋ሽ      (3) 

with the condition, 

0 ൑ ቀ𝜇ା
஺ሺ𝑥ሻቁ

ଶ
൅ ቀ𝜇ᇱ

஺ሺ𝑥ሻቁ
ଶ

൅ ൫𝜇ି
஺ሺ𝑥ሻ൯

ଶ
൑ 1. 

Where 𝜇ା
஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ, 𝜇ᇱ

஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ and 𝜇ି
஺ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ represents the positive, neutral, 

and negative membership functions respectively. 
Definition 2.4. A q-Spherical fuzzy set is the generalization of the spherical fuzzy set proposed by 
Kahraman et al. [21] in 2020. Mathematically it is defined as: 

Let X be a non-empty set. A q-spherical fuzzy set 𝐴௤ିௌிௌ is of the form 

𝐴௤ିௌிௌ ൌ ቄ〈𝑥, 𝜇ା
஺೜షೄಷೄ

ሺ𝑥ሻ, 𝜇′஺೜షೄಷೄ
ሺ𝑥ሻ,  𝜇ି

஺೜షೄಷೄ
ሺ𝑥ሻ〉 : 𝑥 ∈ 𝑋ቅ    (4) 

with the condition that 

ቆ0 ൑ ቆ𝜇ା
஺೜షೄಷೄ

ሺ𝑥ሻቇ
௤

൅ ൬𝜇′஺೜షೄಷೄ
ሺ𝑥ሻ൰

௤

൅ ቆ 𝜇ି
஺೜షೄಷೄ

ሺ𝑥ሻቇ
௤

൑ 1, q ൒ 1ቇ. 

Where 𝜇ା
஺೜షೄಷೄ

ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ , 𝜇′஺೜షೄಷೄ
ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ and 𝜇ି

஺೜షೄಷೄ
ሺ𝑥ሻ: 𝑋 → ሾ0,1ሿ is the positive, 

neutral, and negative membership functions respectively. 
Definition 2.5. Pawlak [23] was the first to introduce the concept of a rough set in 1982, which is 
defined as: 

Let R be an arbitrary binary relation on 𝑈ଵ ൈ 𝑈ଶ , then the triplet ሺ𝑈ଵ, 𝑈ଶ, 𝑅 ) is called 
approximation space. For any, 𝑋 ⊆ 𝑈ଵ  and 𝐴 ⊆ 𝑈ଶ  the lower approximation 𝑅ሺ𝐴ሻ  and the upper 

approximation 𝑅ሺ𝐴ሻ are defined as  

ቆ
𝑅ሺ𝐴ሻ ൌ ሼ𝑥 ∊ 𝑈ଵ: ሾ𝑥ሿ஺ ⊆ 𝑋ሽ

𝑅ሺ𝐴ሻ ൌ ሼ𝑥 ∊ 𝑈ଵ: ሾ𝑥ሿ஺⋂𝑋 ് 𝜙ሽ
ቇ.      (5) 

Where ሾ𝑥ሿ஺ denote indiscernibility.  
Then the pair ൫𝑅ሺ𝐴ሻ, 𝑅ሺ𝐴ሻ൯ is called a rough set. 
Definition 2.6. Azim et al. [22] 2023 introduce the concept of a q-spherical fuzzy rough set, which is 
defined as 

Let A⊆ 𝑈ଶ, then the lower and upper approximation of A for ሺ𝑈ଵ, 𝑈ଶ, 𝑅ሻ is defined by 
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𝐴௤ିௌிோௌ ൌ ሺ𝐴௤ିௌிோௌ, 𝐴̅௤ିௌிோௌ ൌ

ቄ𝑠, 〈𝜇ା
஺೜షೄಷೃೄ

ሺ𝑠ሻ, 𝜇ᇱ
஺೜షೄಷೃೄ

ሺ𝑠ሻ,  𝜇ି
஺೜షೄಷೃೄ

ሺ𝑠ሻ, 𝜇ା
஺̅೜షೄಷೃೄ

ሺ𝑠ሻ, 𝜇ᇱ
஺̅೜షೄಷೃೄ

ሺ𝑠ሻ,  𝜇ି
஺̅೜షೄಷೃೄ

ሺ𝑠ሻ〉 : 𝑠 ∈ 𝑈ଵቅ, (6) 

where, 

𝜇ା
஺೜షೄಷೃೄ

ሺ𝑠ሻ ൌ ⋀௦∈௎మ
൛𝜇ା

ோሺ𝑟, 𝑠ሻ⋀𝜇ା
𝑨ሺ𝑠ሻൟ 

𝜇′஺೜షೄಷೃೄ
ሺ𝑠ሻ ൌ ⋁௦∈௎మ

ሼ𝜇′ோሺ𝑟, 𝑠ሻ⋁𝜇′𝑨ሺ𝑠ሻሽ 

 𝜇ି
஺೜షೄಷೃೄ

ሺ𝑠ሻ ൌ ⋁௦∈௎మ
൛ 𝜇ି

ோሺ𝑟, 𝑠ሻ⋁ 𝜇ି
𝑨ሺ𝑠ሻൟ 

𝜇ା
஺̅೜షೄಷೃೄ

ሺ𝑠ሻ ൌ ⋁௦∈௎మ
൛𝜇ା

ோሺ𝑟, 𝑠ሻ⋁𝜇ା
𝑨ሺ𝑠ሻൟ 

𝜇′஺̅೜షೄಷೃೄ
ሺ𝑠ሻ ൌ ⋀௦∈௎మ

ሼ𝜇′ோሺ𝑟, 𝑠ሻ⋀𝜇′𝑨ሺ𝑠ሻሽ 

 𝜇ି
஺̅೜షೄಷೃೄ

ሺ𝑠ሻ ൌ ⋀௦∈௎మ
൛ 𝜇ି

ோሺ𝑟, 𝑠ሻ⋀ 𝜇ି
𝑨ሺ𝑠ሻൟ, 

with the condition that 

⎩
⎪
⎨

⎪
⎧ቆ0 ൑ ቆ𝜇ା

஺೜షೄಷೃೄ
ሺ𝑠ሻቇ

௤

൅ ൬𝜇′஺೜షೄಷೃೄ
ሺ𝑠ሻ൰

௤

൅ ቆ 𝜇ି
஺೜షೄಷೃೄ

ሺ𝑠ሻቇ
௤

൑ 1ቇ ,

ቆ0 ൑ ቆ𝜇ା
஺̅೜షೄಷೃೄ

ሺ𝑠ሻቇ
௤

൅ ൬𝜇′஺̅೜షೄಷೃೄ
ሺ𝑠ሻ൰

௤

൅ ቆ 𝜇ି
஺̅೜షೄಷೃೄ

ሺ𝑠ሻቇ
௤

൑ 1ቇ
⎭
⎪
⎬

⎪
⎫

. 

The pair of q-spherical fuzzy sets is then said to represent a q-spherical fuzzy rough set (q-SFRS) if 
𝐴௤ିௌிோௌ ് 𝐴̅௤ିௌிோௌ . For simplicity, we write 𝐴 ൌ ሺ𝐴௤ିௌிோௌ, 𝐴̅௤ିௌிோௌሻ  and the expression 𝐴 ൌ
ሺ𝐴௤ିௌிோௌ, 𝐴̅௤ିௌிோௌሻ is called a q-spherical fuzzy rough number. 𝐴௤ିௌிோௌ௜ denotes the collection of all 
q-SFRNs. 
Example 2.1. Let’s say that a person in charge of making decisions, Z, purchases a home, as shown in 
the set 𝑈ଵ ൌ ሼ ℎଵ, ℎଶ, ℎଷ, ℎସ, ℎହሽ that are now being considered.  

Let 𝑈2 = {beautiful (a1), size (a2), expensive (a3) 𝑎𝑛𝑑 location (a4)} is the set of alternatives. 
A person who makes decisions Z would want to buy a home from among those that are currently on the 
market and which, to the greatest degree possible, satisfy the requirements that have been outlined. 

Consider the fact that decision-maker Z displays the attractiveness of the homes in the form of a 
q-SFR relation, which can be found in Table 1 below. 

Table 1. q-Spherical fuzzy rough relation. 

1 2 3 4

1

2

3

4

(0.7,0.2,0.4) (0.5,0.2,0.7) (0.6,0.5,0.3) (0.7,0.2,0.5)

(0.6,0.3,0.1) (0.3,0.2,0.5) (0.3,0.2,0.4) (0.5,0.2,0.5)

(0.3,0.1,0.2) (0.7,0.4,0.3) (0.2,0.3,0.7) (0.3,0.4,0.1)

(0.4,0.5,0.2) (0.8,0.4,0.5) (

R a a a a

h

h

h

h

5

0.5,0.3,0.4) (0.4,0.3,0.2)

(0.6,0.1,0.5) (0.4,0.3,0.5) (0.9,0.3,0.5) (0.3,0.2,0.1)h

 

Consider a decision-maker Z that provides the optimal normal decision object A, which is a q-SFS 
subset over the attribute set U2; that is to say, 
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A= {(a1/ (0.8,0.1,0.3)), (a2/ (0.8,0.4,0.3)), (a3/ (0.5,0.1,0.4)), (a4/ (0.5,0.4,0.6))}. 

In this case, we use Definition 3.4 to determine the lower and upper approximations of A 
approximations regarding (U1, U2, R, A). 

𝐴௤ିௌிோௌ={(h1/(0.5,0.5,0.7)),(h2/(0.3,0.4,0.6)),(h3/(0.2,0.4,0.7)),(h4/(0.4,0.5,0.6)),(h5/(0.3,0.4,0.6))}. 

𝐴̅௤ିௌிோௌ={(h1/(0.8,0.1,0.3)),(h2/(0.8,0.1,0.1)),(h3/(0.8,0.1,0.1)),(h4/(0.8,0.1,0.2)),(h5/(0.9,0.1,0.1))}. 

Hence 𝐴௤ିௌிோௌ = {(h1/(0.5,0.5,0.7),(0.8,0.1,0.3)),(h2/(0.3,0.4,0.6),(0.8,0.1,0.1)),(h3/(0.2,0.4,0.7), 
(0.8,0.1,0.1)),(h4/(0.4,0.5,0.6),(0.8,0.1,0.2)),(h5/(0.3,0.4,0.6),(0.9,0.1,0.1))}. 

3. Operations of q-spherical fuzzy rough sets  

This section examines the basic operational laws and aggregation operators of q-spherical fuzzy 
rough numbers. 
Definition 3.1. Basic operators  

(i) Intersection: Let 𝐴௤ିௌிோௌ and 𝐵௤ିௌிோௌ are two q-SFRNs in (U1, U2, R), then 

𝐴௤ିௌிோௌ ∩ 𝐵௤ିௌிோௌ ൌ 𝐴௤ିௌிோௌ ∩ 𝐵௤ିௌிோௌ, 𝐴̅௤ିௌிோௌ ∩ 𝐵ത௤ିௌிோௌ where, 

𝐴௤ିௌிோௌ ∩ 𝐵௤ିௌிோௌ ൌ ർmin ቄ𝜇ା
஺೜షೄಷೄೃ

, 𝜇ା
஻೜షೄಷೃೄ

ቅ , max ቄ𝜇ᇱ
஺೜షೄಷೃೄ

, 𝜇ᇱ
஻೜షೄಷೃೄ

ቅ , min ቄ1 െ

ቀቀmin ቄ𝜇ା
஺೜షೄಷೄೃ

, 𝜇ା
஻೜షೄಷೃೄ

ቅቁ
௤

൅ ቀmax ቄ𝜇ᇱ
஺೜షೄಷೄೃ

, 𝜇ᇱ
஻೜షೄಷೃೄ

ቅቁ
௤

, min ቄ𝜇ି
஺೜షೄಷೄೃ

, 𝜇ି
஻೜షೄಷೃೄ

ቅቁቅ඀. 

𝐴̅௤ିௌிோௌ ∩ 𝐵ത௤ିௌிோௌ ൌ ർmin ቄ𝜇ା
஺̅೜షೄಷೃೄ

, 𝜇ା
஻ത೜షೄಷೃೄ

ቅ , max ቄ𝜇ᇱ
஺̅೜షೄಷೃೄ

, 𝜇ᇱ
஻ത೜షೄಷೃೄ

ቅ , min ቄ1 െ

ቀቀmin ቄ𝜇ା
஺̅೜షೄಷೃೄ

, 𝜇ା
஻ത೜షೄಷೃೄ

ቅቁ
௤

൅ ቀmax ቄ𝜇ᇱ
஺̅೜షೄಷೃೄ

, 𝜇ᇱ
஻ത೜షೄಷೃೄ

ቅቁ
௤

, min ቄ𝜇ି
஺̅೜షೄಷೃೄ

, 𝜇ି
஻ത೜షೄಷೃೄ

ቅቁቅ඀. 

(ii) Union: Let 𝐴௤ିௌிோௌ and 𝐵௤ିௌிோௌ are two q-SFRNs in (U1, U2, R), then 

𝐴௤ିௌிோௌ⋃𝐵௤ିௌிோௌ ൌ 𝐴௤ିௌிோௌ⋃𝐵௤ିௌிோௌ, 𝐴̅௤ିௌிோௌ⋃𝐵ത௤ିௌிோௌ where, 

𝐴௤ିௌிோௌ⋃𝐵௤ିௌிௌோ ൌ ർmax ቄ𝜇ା
஺೜షೄಷೃೄ

, 𝜇ା
஻೜షೄಷೃೄ

ቅ , min ቄ𝜇ᇱ
஺೜షೄಷೃೄ

, 𝜇ᇱ
஻೜షೄಷೃೄ

ቅ , max ቄ1 െ

ቀቀmax ቄ𝜇ା
஺೜షೄಷೄೃ

, 𝜇ା
஻೜షೄಷೃೄ

ቅቁ
௤

൅ ቀmin ቄ𝜇ᇱ
஺೜షೄಷೄೃ

, 𝜇ᇱ
஻೜షೄಷೃೄ

ቅቁ
௤

, max ቄ𝜇ି
஺೜షೄಷೄೃ

, 𝜇ି
஻೜షೄಷೃೄ

ቅቁቅ඀. 

𝐴̅௤ିௌிோௌ⋃𝐵ത௤ିௌிோௌ ൌ ർmax ቄ𝜇ା
஺̅೜షೄಷೃೄ

, 𝜇ା
஻ത೜షೄಷೃೄ

ቅ , min ቄ𝜇ᇱ
஺̅೜షೄಷೃೄ

, 𝜇ᇱ
஻ത೜షೄಷೃೄ

ቅ , max ቄ1 െ

ቀቀmax ቄ𝜇ା
஺̅೜షೄಷೃೄ

, 𝜇ା
஻ത೜షೄಷೃೄ

ቅቁ
௤

൅ ቀmin ቄ𝜇ᇱ
஺̅೜షೄಷೃೄ

, 𝜇ᇱ
஻ത೜షೄಷೃೄ

ቅቁ
௤

, max ቄ𝜇ି
஺̅೜షೄಷೃೄ

, 𝜇ି
஻ത೜షೄಷೃೄ

ቅቁቅ඀. 

(iii) Addition: Let 𝐴௤ିௌிௌ and 𝐵௤ିௌிௌ are two q-SFRNs in (U1, U2, R), then 

𝐴௤ିௌிோௌ ⊕ 𝐵௤ିௌிோௌ ൌ 𝐴௤ିௌிோௌ ⊕ 𝐵௤ିௌிோௌ, 𝐴̅௤ିௌிோௌ ⊕ 𝐵ത௤ିௌிோௌ where, 

𝐴௤ିௌிோௌ ⊕ 𝐵௤ିௌிோௌ ൌ ൽቀቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

൅ ቀ𝜇ା
஻೜షೄಷೃೄ

ቁ
௤

െ

ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ା
஻೜షೄಷೃೄ

ቁ
௤

ቁ
భ
೜

, ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ᇱ
஻೜షೄಷೃೄ

ቁ
௤

, ൭ቆቀ1 െ ቀ𝜇ା
஻೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
௤

൅
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ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஻೜షೄಷೃೄ

ቁ
௤

ቇ െ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ି
஻೜షೄಷೃೄ

ቁ
௤

൱

భ
೜

ං.  

𝐴̅௤ିௌிோௌ ⊕ 𝐵ത௤ିௌிோௌ ൌ ൽቀቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

൅ ቀ𝜇ା
஻ത೜షೄಷೃೄ

ቁ
௤

െ

ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ା
஻ത೜షೄಷೃೄ

ቁ
௤

ቁ
భ
೜

, ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ᇱ
஻ത೜షೄಷೃೄ

ቁ
௤

, ቆቆቀ1 െ ቀ𝜇ା
஻ത೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
௤

൅

ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஻ത೜షೄಷೃೄ

ቁ
௤

ቇ െ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ି
஻ത೜షೄಷೃೄ

ቁ
௤

ቇ

భ
೜

ං. 

(iv) Multiplication: Let 𝐴௤ିௌிோௌ and 𝐵௤ିௌிோௌ are two q-SFRNs in (U1, U2, R), then  

𝐴௤ିௌிோௌ ⊗ 𝐵௤ିௌிோௌ ൌ 𝐴௤ିௌிோௌ ⊗ 𝐵௤ିௌிோௌ, 𝐴̅௤ିௌிோௌ ⊗ 𝐵ത௤ିௌிோௌ, where, 

𝐴௤ିௌிோௌ ⊗ 𝐵௤ିௌிோௌ ൌ ൽቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ା
஻೜షೄಷೃೄ

ቁ
௤

, ቀቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

൅ ቀ𝜇ᇱ
஻೜షೄಷೃೄ

ቁ
௤

െ

ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ᇱ
஻೜షೄಷೃೄ

ቁ
௤

ቁ
భ
೜

, ቆቆቀ1 െ ቀ𝜇ᇱ
஻೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
௤

൅ ቀ1 െ

ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

ቁ ቀ𝜇ି
஻೜షೄಷೃೄ

ቁ
௤

ቇ െ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
௤

ቀ𝜇ି
஻೜షೄಷೃೄ

ቁ
௤

ቇ

భ
೜

ං. 

(v) Multiplication by a scaler: Let 𝐴௤ିௌிோௌ be a q-SFRNs in (U1, U2, R) and λ >0  then 
λ𝐴௤ିௌிோௌ ൌ λ𝐴௤ିௌிோௌ, λ𝐴̅௤ିௌிோௌ where, 

λ𝐴௤ିௌிோௌ ൌ ൾቆ1 െ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቁ
஛

ቇ

భ
೜

, ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
஛

, ቈቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቁ
஛

െ

 ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
୯

ቁ
஛

቉

భ
೜

ං. 

λ𝐴̅௤ିௌிோௌ ൌ ൾቆ1 െ ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
஛

ቇ

భ
೜

, ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
஛

, ቈቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
஛

െ

 ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
୯

ቁ
஛

቉

భ
೜

ං. 

(vi) 𝛌 Power of 𝑨ഥ𝒒ି𝑺𝑭𝑺: Let 𝐴௤ିௌிோௌ be a q-SFRNs in (U1, U2, R) and λ >0  then 

𝐴௤ିௌிோௌ
஛ ൌ 𝐴௤ିௌிோௌ

஛, 𝐴̅௤ିௌிோௌ
஛
 where, 
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𝐴௤ିௌிோௌ
஛ ൌ ൾቀ𝜇ା

஺೜షೄಷೃೄ
ቁ

஛
, ቆ1 െ ቀ1 െ ቀ𝜇ᇱ

஺೜షೄಷೃೄ
ቁ

௤
ቁ

஛
ቇ

భ
೜

,  ቈቀ1 െ ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

ቁ
஛

െ

ቀ1 െ ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
୯

ቁ
஛

቉

భ
೜

ං. 

𝐴̅௤ିௌிோௌ
஛

ൌ ൾቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
஛

, ቆ1 െ ቀ1 െ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
஛

ቇ

భ
೜

,  ቈቀ1 െ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
஛

െ

ቀ1 െ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
୯

ቁ
஛

቉

భ
೜

ං. 

Definition 3.2. For two q-SFRNs 
𝐴௤ିௌிோௌ ൌ 〈𝜇ା

஺೜షೄಷೃೄ
 , 𝜇ᇱ

஺೜షೄಷೃೄ
 , 𝜇ି

஺೜షೄಷೃೄ
 , 𝜇ା

஺̅೜షೄಷೃೄ
 , 𝜇ᇱ

஺̅೜షೄಷೃೄ
 , 𝜇ି

஺̅೜షೄಷೃೄ
 〉  and 𝐵௤ିௌிோௌ ൌ

〈𝜇ା
஻೜షೄಷೃೄ

 , 𝜇ᇱ
஻೜షೄಷೃೄ

 , 𝜇ି
஻೜షೄಷೃೄ

 , 𝜇ା
஻ത೜షೄಷೃೄ

 , 𝜇ᇱ
஻ത೜షೄಷೃೄ

 , 𝜇ି
஻ത೜షೄಷೃೄ

〉 , then the following are valid 

under the condition 𝜆, 𝜆ଵ, 𝜆ଶ >0. 

ሺ𝑖ሻ 𝐴௤ିௌிோௌ ⊕ 𝐵௤ିௌிோௌ ൌ 𝐵௤ିௌிோௌ ⊕  𝐴௤ିௌிோௌ 

ሺ𝑖𝑖ሻ 𝐴௤ିௌிோௌ ⊗ 𝐵௤ିௌிோௌ ൌ 𝐵௤ିௌிோௌ ⊗ 𝐴௤ିௌிோௌ 

ሺ𝑖𝑖𝑖ሻ 𝜆ሺ𝐴௤ିௌிோௌ ⊕ 𝐵௤ିௌிோௌሻ ൌ 𝜆𝐴௤ିௌிோௌ ⊕ 𝜆𝐵௤ିௌிோௌ 

ሺ𝑖𝑣ሻ 𝜆ଵሺ𝐴௤ିௌிோௌሻ ⊕ 𝜆ଶሺ𝐴௤ିௌிோௌሻ ൌ ሺ𝜆ଵ ⊕ 𝜆ଶሻ𝐴௤ିௌிோௌ 

ሺ𝑣ሻ ሺ𝐴௤ିௌிோௌ ⊗ 𝐵௤ିௌிோௌሻఒ ൌ 𝐴௤ିௌிோௌ
ఒ ⊗ 𝐵௤ିௌிோௌ

ఒ 

ሺ𝑣𝑖ሻ 𝐴௤ିௌிோௌ
ఒభ ⊗ 𝐴௤ିௌிோௌ

ఒమ ൌ 𝐴௤ିௌிோௌ
ఒభାఒమ. 

Definition 3.3. q-Spherical Fuzzy Rough Arithmetic Mean (q-SFRAM) concerning, 𝑤 ൌ
ሺ𝑤ଵ, 𝑤ଶ, 𝑤ଷ, … , 𝑤௡ሻ; 𝑤௜∈ [0,1]; ∑ 𝑤௜ ൌ 1,௡

௜ୀଵ  q-SFRAM is defined as 

q െ SFRAM௪൫𝐴௤ିௌிோௌଵ, 𝐴௤ିௌிோௌଶ, 𝐴௤ିௌிோௌଷ, … , 𝐴௤ିௌிோௌ௡൯ 

ൌ 𝑤ଵ𝐴௤ିௌிோௌଵ ⊕ 𝑤ଶ𝐴௤ିௌிோௌଶ ⊕ 𝑤ଷ𝐴௤ିௌிோௌଷ ⊕, … ,⊕ 𝑤௡𝐴௤ିௌிோௌ௡ 

ൌ ൽ൤1 െ ∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ ൨

భ
೜

, ∏ ቀ𝜇ᇱ
஺೜షೄಷೃೄ೔

ቁ
௪೔௡

௜ୀଵ , ൤∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ

∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ ൨

భ
೜

, ൤1 െ ∏ ቀ1 െ௡
௜ୀଵ

ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

൨

భ
೜

, ∏ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ೔

ቁ
௪೔௡

௜ୀଵ , ൤∏ ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ ∏ ቀ1 െ௡

௜ୀଵ

ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

൨

భ
೜
ඁ. 
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Definition 3.4. q-Spherical Fuzzy Rough Geometric Mean (q-SFRGM) for 𝑤 ൌ ሺ𝑤ଵ, 𝑤ଶ, 𝑤ଷ, … , 𝑤௡ሻ; 
𝑤௜∈ [0,1]; ∑ 𝑤௜ ൌ 1,௡

௜ୀଵ  q-SFRGM is defined as 

q െ SFRGM൫𝐴௤ିௌிோௌଵ, 𝐴௤ିௌிோௌଶ, 𝐴௤ିௌிோௌଷ, … , 𝐴௤ିௌிோௌ௡൯ 

ൌ 𝑤ଵ𝐴௤ିௌிோௌଵ ⊗ 𝑤ଶ𝐴௤ିௌிோௌଶ ⊗ 𝑤ଷ𝐴௤ିௌிோௌଷ ⊗, … ,⊗ 𝑤௡𝐴௤ିௌிோௌ௡ 

ൌ ൽ∏ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
𝒘𝒊௡

௜ୀଵ , ൤1 െ ∏ ቀ1 െ ቀ𝜇ᇱ
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
𝒘𝒊

௡
௜ୀଵ ൨

భ
೜

, ൤∏ ቀ1 െ ቀ𝜇ᇱ
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ

∏ ቀ1 െ ቀ𝜇ᇱ
஺೜షೄಷೃೄ೔

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ ൨

భ
೜

, ∏ ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
𝒘𝒊௡

ூୀଵ , ൤1 െ ∏ ቀ1 െ௡
௜ୀଵ

ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
𝒘𝒊

൨

భ
೜

, ൤∏ ቀ1 െ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ ∏ ቀ1 െ ቀ𝜇ᇱ

஺̅೜షೄಷೃೄ೔
ቁ

௤
െ ቀ𝜇ି

஺̅೜షೄಷೃೄ೔
ቁ

௤
ቁ

௪೔
௡
௜ୀଵ ൨

భ
೜
ඁ. 

Definition 3.5. The score function of sorting q-SFRNs is defined by  

𝑆𝑐𝑜𝑟𝑒൫𝐴௤ିௌிோௌ൯ ൌ ଵ

ଷ
ቀ2 ൅ ቀ𝜇ା

஺೜షೄಷೃೄ
ቁ

௤
൅ ቀ𝜇ା

஺̅೜షೄಷೃೄ
ቁ

௤
െ ቀ𝜇ᇱ

஺೜షೄಷೃೄ
ቁ

௤
െ ቀ𝜇ᇱ

஺̅೜షೄಷೃೄ
ቁ

௤
െ

ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ , 𝑆𝑐𝑜𝑟𝑒൫𝐴௤ିௌிோௌ൯ ∈ ሾെ1,1ሿ, 𝑞 ൒ 1. 

Note that if 𝐴௤ିௌிோௌ ൏ 𝐵௤ିௌிோௌ if and only if  

𝑆𝑐𝑜𝑟𝑒൫𝐴௤ିௌிோௌ൯ ൏ 𝑆𝑐𝑜𝑟𝑒൫𝐵௤ିௌிோௌ൯ or 

𝑆𝑐𝑜𝑟𝑒൫𝐴௤ିௌிோௌ൯ ൌ 𝑆𝑐𝑜𝑟𝑒൫𝐵௤ିௌிோௌ൯ 𝑎𝑛𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦൫𝐴௤ିௌிோௌ൯ ൏ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦൫𝐵௤ିௌிோௌ൯. 

4. q-Spherical fuzzy analytic hierarch process 

Step 1: Constructing the hierarchical structure is the first step. At this stage of the process, a 
hierarchical structure with at least 3 stages will be constructed. 
Step 2: Construct pairwise comparisons by making use of q-spherical fuzzy rough judgments 
matrices and basing them on the linguistic terms presented in Table 2.  

Table 2. Linguistic terms and their corresponding q-spherical fuzzy rough numbers. 

 ( , , ) , , Score Index (SI)

Absolutely more Importance (AMI) (0.95, 0.55, 0.55) (0.91, 0.51, 0.51) 9

Very High Importance (VHI) (0.90, 0.60, 0.60) (0.86, 0.56, 0.56) 7

High Importance (HI) (0.85, 0.65, 0.65) (0

     

.81, 0.61, 0.61) 5

Slightly More Importance (SMI) (0.80, 0.70, 0.70) (0.76, 0.66, 0.66) 3

Equally Importance (EI) (0.75, 0.75, 0.75) (0.71, 0.71, 0.71) 1

Slightly Low Importance (SLI) (0.70, 0.80, 0.70) (0.66, 0.76, 0.66) 1/3

Low Importance (LI) (0.65, 0.85, 0.65) (0.61, 0.81, 0.61) 1/5

Very Low Importance (VLI) (0.60, 0.90, 0.60) (0.56, 0.86, 0.56) 1/7

Absolutely Low Importance (0.55, 0.95, 0.55) (0.51, 0.91, 0.51) 1/9
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Step 3: Do a check to ensure that each pairwise comparison matrix (J) is consistent. Converting the 
linguistic terms in the pairwise comparison matrix into their respective score indices is the first step in 
accomplishing this goal. After that, apply the classical consistency check. 
Step 4: Determine the q-spherical fuzzy rough local weights of the alternatives and the criteria. Find 
out how much each of the possibilities weighs. Calculate the weight of each alternative regarding each 
criterion by using the q-spherical fuzzy rough averaging mean operator. For calculating the q-spherical 
fuzzy rough weights, the weighted arithmetic mean is the preferred approach. 

q െ SFRAM௪൫𝐴௤ିௌிோௌଵ, 𝐴௤ିௌிோௌଶ, 𝐴௤ିௌிோௌଷ, … , 𝐴௤ିௌிோௌ௡൯
ൌ 𝑤ଵ𝐴௤ିௌிோௌଵ ⊕ 𝑤ଶ𝐴௤ିௌிோௌଶ ⊕ 𝑤ଷ𝐴௤ିௌிோௌଷ ⊕, … ,⊕ 𝑤௡𝐴௤ିௌிோௌ௡ 

ൌ ൽ൤1 െ ∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ ൨

భ
೜

, ∏ ቀ𝜇ᇱ
஺೜షೄಷೃೄ೔

ቁ
௪೔௡

௜ୀଵ , ൤∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ

∏ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ೔

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ ൨

భ
೜

, ൤1 െ ∏ ቀ1 െ௡
௜ୀଵ

ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

൨

భ
೜

, ∏ ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ೔

ቁ
௪೔௡

௜ୀଵ , ൤∏ ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

௡
௜ୀଵ െ ∏ ቀ1 െ௡

௜ୀଵ

ቀ𝜇ା
஺̅೜షೄಷೃೄ೔

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ೔

ቁ
௤

ቁ
௪೔

൨

భ
೜
ඁ. 

Where 𝑤 ൌ ଵ

௡
. 

Step 5: To obtain the global weights, first establish the hierarchy layer sequencing. While trying to 
estimate the final ranking orders for the alternatives, it is necessary to integrate the spherical fuzzy 
weights at each level. This calculation is performed in reverse order, beginning with the lowest level 
(alternatives) and working its way up to the top level (goal). 

At this point, 2 separate action options could be taken. The first one is to defuzzify the criterion 
weights by making use of the score function 𝑆൫𝑤௝ ൯ given in Eq (7) and normalize them by making 
use of Eq (8), and then use q-spherical fuzzy rough multiplication in Eqs (9) and (10). 

𝑆ሺ𝑤௝ሻ ൌ ଵ

ଷ
ሺ2 ൅ 𝜇௤ ൅ 𝜇௤ െ 𝜈௤ െ 𝜈௤ െ 𝜋௤ െ 𝜋௤ሻ, q൒ 1.     (7) 

Normalize the criteria weights by using Eq (8) 

𝒘෥ 𝒋 ൌ
ௌሺ௪ೕሻ

∑ ௌሺ௪ೕሻ೙
ೕసభ

          (8) 

𝐴𝑺𝒊𝒋
ൌ 𝒘෥ 𝒋𝐴𝑺𝒊

ൌ ൾቆ1 െ ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቁ
𝒘෥ 𝒋

ቇ

భ
೜

, ቀ𝜇ᇱ
஺೜షೄಷೃೄ

ቁ
𝒘෥ 𝒋

, ቈቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

ቁ
𝒘෥ 𝒋

െ

ቀ1 െ ቀ𝜇ା
஺೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺೜షೄಷೃೄ

ቁ
୯

ቁ
𝒘෥ 𝒋

቉

భ
೜

ං.      (9) 
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𝐴̅𝑺𝒊𝒋
ൌ 𝒘෥ 𝒋𝐴̅𝑺𝒊

ൌ ൾቆ1 െ ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
𝒘෥ 𝒋

ቇ

భ
೜

, ቀ𝜇ᇱ
஺̅೜షೄಷೃೄ

ቁ
𝒘෥ 𝒋

, ቈቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

ቁ
𝒘෥ 𝒋

െ

ቀ1 െ ቀ𝜇ା
஺̅೜షೄಷೃೄ

ቁ
௤

െ ቀ𝜇ି
஺̅೜షೄಷೃೄ

ቁ
୯

ቁ
𝒘෥ 𝒋

቉

భ
೜

ං.      (10) 

The final q-spherical fuzzy rough AHP score (F) for each alternative 𝐴௜ can be derived by performing the 
q-spherical fuzzy arithmetic addition over each global preference weight as outlined in Eqs (11) and (12). 

𝐹 ൌ ൫𝐹, 𝐹൯ ൌ ቌ෍ 𝐴𝑺𝒊𝒋

𝒏

𝒋ୀ𝟏

, ෍ 𝐴̅𝑺𝒊𝒋

𝒏

𝒋ୀ𝟏

ቍ ൌ ൫𝐴𝑺𝒊𝟏
⨁𝐴𝑺𝒊𝟐

⨁ … ⨁𝐴𝑺𝒊𝒏
, 𝐴̅𝑺𝒊𝟏

⨁𝐴̅𝑺𝒊𝟐
⨁ … ⨁𝐴̅𝑺𝒊𝒏

∀ 𝑖൯ 

that is 

𝐴𝑺𝒊𝟏
⨁𝐴𝑺𝒊𝟐

ൌ ൽቀቀ𝜇ᇱ
஺𝑺𝒊𝟏

ቁ
௤

൅ ቀ𝜇ᇱ
஺𝑺𝒊𝟐

ቁ
௤

െ ቀ𝜇ᇱ
஺𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ᇱ
஺𝑺𝒊𝟐

ቁ
௤

ቁ
భ
೜

, ቀ𝜇ା
஺𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ା
஺𝑺𝒊𝟐

ቁ
௤

,  ቆቆቀ1 െ

ቀ𝜇ᇱ
஺𝑺𝒊𝟐

ቁ
௤

ቁ ቀ𝜇ି
஺𝑺𝒊𝟏

ቁ
௤

൅ ቀ1 െ ቀ𝜇ᇱ
஺𝑺𝒊𝟏

ቁ
௤

ቁ ቀ𝜇ି
஺𝑺𝒊𝟐

ቁ
௤

ቇ െ ቀ𝜇ି
஺𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ି
஺𝑺𝒊𝟐

ቁ
௤

ቇ

భ
೜

ං.  (11) 

𝐴̅𝑺𝒊𝟏
⨁𝐴̅𝑺𝒊𝟐

ൌ ൽቀቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

൅ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

െ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

ቁ
భ
೜

, ቀ𝜇ା
஺̅𝑺𝒊𝟏

ቁ

௤

ቀ𝜇ା
஺̅𝑺𝒊𝟐

ቁ
௤

, ቆቆቀ1 െ

ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

ቁ ቀ𝜇ି
஺̅𝑺𝒊𝟏

ቁ
௤

൅ ቀ1 െ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

ቁ ቀ𝜇ି
஺̅𝑺𝒊𝟐

ቁ
௤

ቇ െ ቀ𝜇ି
஺̅𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ି
஺̅𝑺𝒊𝟐

ቁ
௤

ቇ

భ
೜

ං.  (12) 

The second method to proceed is to carry on without utilizing any form of defuzzification. In this case, the 
q-spherical fuzzy rough global preference weights are generated with the help of the Eqs (13) and (14). 
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೜
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𝐴̅𝑺𝒊𝟏
⊗ 𝐴̅𝑺𝒊𝟐

ൌ ൽቀ𝜇ା
஺̅𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ା
஺̅𝑺𝒊𝟐

ቁ
௤

, ቀቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

൅ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

െ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

ቁ
భ
೜

, ቆቆቀ1 െ

ቀ𝜇ᇱ
஺̅𝑺𝒊𝟐

ቁ
௤

ቁ ቀ𝜇ି
஺̅𝑺𝒊𝟏

ቁ
௤

൅ ቀ1 െ ቀ𝜇ᇱ
஺̅𝑺𝒊𝟏

ቁ
௤

ቁ ቀ𝜇ି
஺̅𝑺𝒊𝟐

ቁ
௤

ቇ െ ቀ𝜇ି
஺̅𝑺𝒊𝟏

ቁ
௤

ቀ𝜇ି
஺̅𝑺𝒊𝟐

ቁ
௤

ቇ

భ
೜

ං.  (14) 

The final score (F) is calculated by using Eqs (11) and (12). 
Step 6: Defuzzify the final score for each workable alternative by utilizing the scoring function that is 
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provided in Eq (7). 
Step 7: Rank the alternative in order according to the scores once they have been defuzzified. The 
alternative with the highest value is the best one. 

5. Project prioritization using q spherical fuzzy rough AHP 

The textile manufacturing company serves as the primary subject of the real-world case study. 
The business is working on a variety of initiatives that fall under the umbrella of Industry 4.0, and it 
must establish a hierarchy for these projects. The projects are described in the following way. A cloud-
based (ERP) system gives users access to software programmers as well as shared computing resources 
including processor power, memory, and disc storage space. These resources can be accessed via the 
Internet. These computer resources are held in reserve in off-site data centers and can be used by a 
wide variety of applications running on a variety of platforms. It is possible to work from anywhere, 
at any time, with customers, to collaborate data, and to generate reports in real-time and without 
interruption if you use a cloud-based ERP system. With real-time manufacturing tracking, in addition 
to being linked to the identity and position of an object, information about the surrounding environment 
is also included. Manufacturing information needs to be gathered and analyzed, and choices need to 
be taken as a direct result of the analysis for the company to improve its productivity and the 
effectiveness of its machines. For businesses to make quick and reliable decisions, they want 
immediate access to production data. The collection of real-time data from the shop floor allows for 
the tracking of jobs and processes, which is essential for meeting delivery deadlines. The ability to 
adapt to varied working situations is a feature shared by robotic warehouse systems, advanced sensor 
structures, and virtual vision capabilities. At the storage facility, automated guided vehicles, which are 
a crucial component of these systems, can provide motion and position control using powerful 
algorithms with a high level of precision. After conducting interviews with various experts and doing 
a review of the relevant literature, a set of criteria is developed to prioritize the project. 

The following are its criteria: Cost (𝐶ଵ): It provides an estimate of the overall financial commitment 
required to set up the system. The level of risk (𝐶ଶ ): This indicates that connected factories may be 
susceptible to shutdowns or other forms of attack. (𝐶ଷ): Even apart from the fact that the implementation 
of the Industry 4.0 paradigm in manufacturing has remarkable potential. Location (𝐶ସ): General area where 
the project work is performed. Impact on the benefit to the customer (𝐶ହ): As a result of the increased 
connection and use of analytical capabilities in all processes, the constructed business model will change 
towards being more data-centric, customer-focused, and practically applicable. 

6. Real-world application 

A company has it in its plans to invest in initiatives related to Industry 4.0. After identifying the 
four most important projects, the organization now concentrates on determining the order in which the 
projects will be completed. To accomplish this goal, the preceding section specified the four primary 
criteria that must be met. After completing the preceding steps of the q-spherical fuzzy rough AHP, the 
first step is to calculate the pairwise comparison matrix, which is given in Table 3. 
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Table 3. The linguistic evaluation of the criteria. 

 C1 C2 C3 C4 C5

C1 SMI HI LI SMI EI

C2 EI HI HI HI EI

C3 HI SMI SMI SMI LI

C4 SMI VHI LI VHI LI

C5 VHI VHI HI LI SMI
 

At later stages, the linguistic terms are converted into q-spherical fuzzy rough numbers, which are 
shown in Table 4. 

Table 4. q-Spherical Fuzzy Rough Evaluations. 

1 2 3 4 5

1

2

(0.80, 0.70, 0.70), (0.85, 0.65, 0.65), (0.65, 0.85, 0.65), (0.80, 0.70, 0.70), (0.75, 0.75, 0.75),

(0.76, 0.66, 0.66) (0.81, 0.61, 0.61) (0.61, 0.81, 0.61) (0.76, 0.66, 0.66) (0.71, 0.71, 0.71)

(

C C C C C

C

C

3

0.75, 0.75, 0.75), (0.85, 0.65, 0.65), (0.85, 0.65, 0.65), (0.85, 0.65, 0.65), (0.75, 0.75, 0.75),

(0.71, 0.71, 0.71) (0.81, 0.61, 0.61) (0.81, 0.61, 0.61) (0.81, 0.61, 0.61) (0.71, 0.71, 0.71)

(0.85, 0.65, 0
C

4

.65), (0.80, 0.70, 0.70), (0.80, 0.70, 0.70), (0.80, 0.70, 0.70), (0.65, 0.85, 0.65),

(0.81, 0.61, 0.61) (0.76, 0.66, 0.66) (0.76, 0.66, 0.66) (0.76, 0.66, 0.66) (0.61, 0.81, 0.61)

(0.80, 0.70, 0.70),

(0.76, 0
C

5

(0.90, 0.60, 0.60), (0.65, 0.85, 0.65), (0.90, 0.60, 0.60), (0.65, 0.85, 0.65),

.66, 0.66) (0.86, 0.56, 0.56) (0.61, 0.81, 0.61) (0.86, 0.56, 0.56) (0.61, 0.81, 0.61)

(0.90, 0.60, 0.60), (0.

(0.86, 0.56, 0.56)
C

90, 0.60, 0.60), (0.85, 0.65, 0.65), (0.65, 0.85, 0.65), (0.80, 0.70, 0.70),

(0.86, 0.56, 0.56) (0.81, 0.61, 0.61) (0.61, 0.81, 0.61) (0.76, 0.66, 0.66)

 

The q-spherical fuzzy rough arithmetic mean operator will be used in the next phase to do the 
calculation of the aggregated values. After that, the values that have been defuzzified are computed, 
and then, after that, they are normalized, and finally, the weights of the criterion are obtained, which 
is given in Table 5. 

Table 5. Aggregated values, defuzzified values, and normalized weights. 

q-SFRAM Defuzzified Values Normalized Weights

(0.7822,0.7270,0.7022),
0.5157 0.1743

(0.7412, 0.6868,0.6574)

(0.8175, 0.6883, 0.6884),
0.6055 0.2047

(0.7767, 0.6482, 0.6493)

(0.7916, 0.7170, 0.6921),

(0.7507, 0.6768,0.646
0.5461 0.1846

8)

(0.8183, 0.7113, 0.6673),
0.6090 0.2051

(0.7740, 0.6708, 0.6089)

( 0.8442,0.6741,0.6552)
0.6842 0.2313

(0.8014, 0.6338,0.6050)
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When this stage of the process has been performed to pairwise comparison matrices of the alternatives 
regarding each criterion, normalized weights of the alternatives will have been obtained. In the end, 
the weight of each alternative is computed in conjunction with the criteria that are linked with it to 
determine the global weight of each alternative about each criterion. In the last step, the total global 
weights of an alternative are added together to get the alternative's overall weight (see Table 6).  

Table 6. Global weights of the alternatives. 

1 2 3 4 5

1

2

3

4

0.1380 0.2370 0.3640 0.3470 0.2910 1.3770

0.7690 0.8740 0.9640 0.1340 0.2230 2.9640

0.6040 0.5130 0.4920 0.3370 0.2130 2.1590

0.3760 0.4620 0.6940 0.7240 0.9850 3.2410

C C C C C Total

A

A

A

A



 

The graphical representation of the global weights of the alternatives is shown in Figure 1. 

 

Figure 1. Graphical representation of the global weights of the alternatives. 

According to the findings, the project 𝐴ସ is the most beneficial, followed by projects 𝐴ଶ, 𝐴ଷ and 𝐴ଵ. 

7. Managerial implications 

The managerial implication of the developed novel q-spherical fuzzy rough AHP model is that it 
can provide support to managers and decision-makers for making strategic decisions and bring out 
robust and reliable results. This framework can be used by managers of different industries, in different 
applications like supplier selection, maintenance strategy selection, evaluation of robots under 
industrial conditions, material handling equipment selection, and many other decision-making 
processes. However, the decision-making processes involved in this framework will depend on experts’ 
preferences and the individuals involved in the decision-making process. To check the relevance and 
robustness of the result, a comparative analysis and sensitivity analysis is also performed. 
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7.1 Comparative analysis 

The comparison of rank obtained from q-spherical fuzzy rough AHP and different MCDM 
techniques is shown in Table 7. Four methods are used for comparative analysis. The combinatorial 
mathematics-based decision-making method applied by Rao and Parnichkun [50] finds the relative 
importance between criteria and calculates the permanent function to obtain the final score of alternatives. 
The preference selection index method applied by Maniya and Bhatt [51] calculates the preference value 
between each alternative and its variation is used to calculate the final preference score of the alternative. 
MACBETH, implemented by Karande and Chakraborty [52] is based on an additive value model. The 
interval-valued MCDM method encompasses interval-valued TOPSIS, interval-valued EDAS, and 
interval-valued CODAS, which was proposed by Mathew and Thomas [53]. In summary, the 
comparative analysis has helped in understanding the variation in ranks obtained from different 
MCDM methods. In the present example, the ranks obtained from different MCDM methods are 
different from the rank obtained from spherical fuzzy rough AHP, so it is competitive with other 
conventional MCDM methods. The methods applied by previous researchers are less computationally 
expensive (as a single numeric value is assigned to linguistic terms) but cannot capture uncertainty in 
decision-making. Although an 11-point scale is used for more accurate results in the preference 
selection index method [51] but assigning a crisp numeric value to the linguistic terms leads to a less 
reliable result. Other methodologies such as the combinatorial mathematics-based decision-making 
method [50] and MACBETH [52] have also used crisp numeric values to solve the problem. Interval-
valued MCDM methods [53] assign a range of values rather than a single numeric value but do not 
consider the vagueness and uncertainty aspect of decision-makers while solving the problem. 

Table 7. Comparison of ranking using different methods. 

1

2

3

4

Combinatorial Preference
Interval-valued q-spherical fuzzy

mathematics-based selection index MACBETH
MCDM method rough AHP 

decision-making method [52]
[53] [This paper]

 method [50] [51]

2 2 2 2 4

1 1 1 1 2

3 3 4 4 3

4 4 3 3

A

A

A

A 1

 

The graphical representation of ranking using different methods is shown in Figure 2. 
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Figure 2. Graphical representation of ranking using different methods. 

7.2 Sensitivity analysis 

The robustness of the solutions and ranking of alternatives is checked through a sensitivity 
analysis that is performed by changing the weights of criteria to check the variation in the ranking of 
alternatives. The sets of weights used for sensitivity analysis are shown in Table 8. On defuzzifying 
the criteria weights, it is found that  ( 0.8442,0.6741,0.6552), (0.8014,0.6338,0.6050) has the highest 

weight value. Also, it can be seen in Table 8 that the value 
 ( 0.8442,0.6741,0.6552), (0.8014,0.6338,0.6050)  is allotted to criteria 1C  , 2C  , 3C  , 4C   and 5C   in 

Set 1, Set 2, Set 3, Set 4, and Set 5 respectively (i.e., arranged in a diagonal array). Set 1 is the criteria 
weights obtained from the q-spherical fuzzy rough AHP. The result of the sensitivity analysis is 
represented in Figure 3. It can be observed in Figure 3 that 4A   is the best alternative for all five 

different sets of weights, proving that the novel q-spherical fuzzy rough AHP gives a robust result. 

Table 8. Weights for sensitivity analysis. 

1 2 3 4 5

(0.7822,0.7270,0.7022), (0.8175,0.6883,0.6884), (0.7916,0.7170,0.6921), (0.8183,0.7113,0.6673), ( 0.84
1

(0.7412,0.6868,0.6574) (0.7767,0.6482,0.6493) (0.7507,0.6768,0.6468) (0.7740,0.6708,0.6089)

C C C C C

Set
42,0.6741,0.6552)

(0.8014,0.6338,0.6050)

(0.8175,0.6883,0.6884), (0.7822,0.7270,0.7022), (0.8175,0.6883,0.6884), (0.8175,0.6883,0.6884)
2

(0.7767,0.6482,0.6493) (0.7412,0.6868,0.6574) (0.7767,0.6482,0.6493)
Set

, (0.7822,0.7270,0.7022),

(0.7767,0.6482,0.6493) (0.7412,0.6868,0.6574)

(0.8175,0.6883,0.6884), (0.7916,0.7170,0.6921), (0.7822,0.7270,0.7022),
3

(0.7767,0.6482,0.6493) (0.7507,0.6768,0.6468) (0.7412,0.6868,
Set

(0.8175,0.6883,0.6884), (0.7822,0.7270,0.7022),

0.6574) (0.7767,0.6482,0.6493) (0.7412,0.6868,0.6574)

(0.8175,0.6883,0.6884), (0.8175,0.6883,0.6884), (0.8175,0
4

(0.7767,0.6482,0.6493) (0.7767,0.6482,0.6493)
Set

.6883,0.6884), (0.7822,0.7270,0.7022), (0.7822,0.7270,0.7022),

(0.7767,0.6482,0.6493) (0.7412,0.6868,0.6574) (0.7412,0.6868,0.6574)

(0.8175,0.6883,0.6884), (0.7916,0.7170,0.6921),
5

(0.7767,0.6482,0.6493) (0
Set

(0.8175,0.6883,0.6884), (0.8183,0.7113,0.6673), (0.7822,0.7270,0.7022),

.7507,0.6768,0.6468) (0.7767,0.6482,0.6493) (0.7740,0.6708,0.6089) (0.7412,0.6868,0.6574)

 

The graphical representation of the results of the sensitivity analysis of the alternatives is exhibited in 
Figure 3. 
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Figure 3. Result of sensitivity analysis. 

8. Conclusions and recommendations for further work 

This article illustrates a novel q-spherical fuzzy rough AHP which has been proven to be successful 
in handling imprecision in the decision-making process. The newly developed three-dimensional 
extension of fuzzy rough sets (i.e., q-spherical fuzzy rough sets are incorporated into different MCDM 
techniques). In the paper, q-spherical fuzzy rough AHP is used to calculate the weights of criteria. A new 
q-spherical fuzzy rough arithmetic mean formula is proposed for calculating the aggregated values. For 
quantification of judgment, the q-spherical fuzzy rough AHP approach was used to rank the importance 
of several Industry 4.0 projects. The framework is applied in Industries 4.0 projects prioritization 
selection problem and is found that ranks obtained from q-spherical fuzzy AHP are different when the 
results are compared with other multi-attribute decision-making approaches. In this paper vagueness 
and uncertainty of decision-makers are taken into consideration and the methodology also describes 
the procedure to be followed in the case of multiple experts, which was not covered by previous 
researchers. A sensitivity analysis (by changing weights) was performed to check the robustness of the 
proposed method and it is found that the best alternative remains the same for variations in the set of 
weights. Future research can combine different MCDM techniques with a q-spherical fuzzy rough set 
to obtain new hybrid MCDM techniques. The novel q-spherical fuzzy rough AHP can also be applied 
in a range of engineering applications. In the future, researchers can also bring out two arithmetic 
operations i.e., subtraction and division for the q-spherical fuzzy rough sets. 
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