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Abstract

Due to the recent advances in cameras, cell phones and camcorders, particularly the resolution

at which they can record an image/video, large amounts of data are generated daily. This

video data is often so large that manually inspecting it for object detection and classification

can be time consuming and error prone, thereby it requires automated analysis to extract use-

ful information and meta-data. The automated analysis from video streams also comes with

numerous challenges such as blur content and variation in illumination conditions and poses.

We investigate an automated video analytics system in this thesis which takes into account the

characteristics from both shallow and deep learning domains. We propose fusion of features

from spatial frequency domain to perform highly accurate blur and illumination invariant object

classification using deep learning networks. We also propose the tuning of hyper-parameters

associated with the deep learning network through a mathematical model. The mathematical

model used to support hyper-parameter tuning improved the performance of the proposed sys-

tem during training. The outcomes of various hyper-parameters on system’s performance are

compared. The parameters that contribute towards the most optimal performance are selected

for the video object classification. The proposed video analytics system has been demonstrated

to process a large number of video streams and the underlying infrastructure is able to scale

based on the number and size of the video stream(s) being processed. The extensive experi-

mentations on publicly available image and video datasets reveal that the proposed system is

significantly more accurate and scalable and can be used as a general purpose video analytics

system.
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Chapter 1

Introduction

1.1 Introduction

This chapter provides an introduction to the problem description, context and details the aim

and objectives of this research study. This include introducing the context of video analytics

systems and the challenges involved in achieving a high performance and accurate video analyt-

ics system. It further presents the major contributions of this research study. The organisation

of the thesis is presented at the end of the chapter.

1.2 Research Context

The increasing availability and deployment of video cameras, sensors and other devices has

resulted in the generation of large amounts of data. A number of cameras installed at various

locations generate large volumes of image and video data. According to a study, there are more

than 6 million video cameras in the UK alone [1]. Video camera based monitoring of events has

increased from just over 300,000 in 1996 to over 2 million in 2004 [2]. This data needs to be

processed to generate useful information such as detection and classification of a marked person

from large amount of video data. Various other types of information can also be extracted from

1
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Figure 1.1: Capturing and Mapping of Marked Person

these video streams, such as recognition and identification of moving objects corresponding to

a specific area of interest.

The term video analytics refers to the optimized processing of these video streams by using

intelligent approaches, so that clusters of information can be automatically extracted from them.

Video analytics systems mainly perform object detection and classification. Often a video may

contain a number of objects. These objects can reside at any location within a frame, requiring

the detection process to investigate different parts of a frame to locate the object of interest.

Object classification, on the other hand, refers to the identification of detected objects. A video

stream and some known labels are provided to the system. It then assigns the correct labels to

the detected objects in a video stream.

Video analytics plays a vital role in analysing videos to detect and track different temporal

and spatial events. Figure 1.1 depicts the phenomenon of processing the video data captured

from different camera sources, in order to locate a person of interest from large amount of

video streams. The mapping of the person is then made with the locations he visited. The

large amount of video data makes it nearly impossible for operators to manually process it and

presents itself as a severe challenge for the object classification process.
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1.3 Problem Description

Most of the existing deep learning based video analytics systems are manual, require human

intervention and are time consuming. The recent increase in the availability of video cameras

has resulted in the generation of large amount of video streams. A conventional way is to

process these video streams manually by human operators. However, humans are prone to

errors and they have cognitive limitations [3]. Therefore, the probability of errors and incorrect

information become higher in the manual systems. Also manual processing of large amount of

video streams consumes considerable amount of time in finding objects of interest [4] [5].

The video analytics systems have to process video streams that contain a number of challenges

such as illumination and blur. The video cameras used by conventional video analytics systems

work under uncontrolled conditions. The video streams generated by these cameras, therefore,

often contain blur frames due to motion, out of focus, or atmospheric turbulence. They are

also prone to various illumination effects [6]. Rotation angle of the objects being monitored is

also another challenge posed by these cameras.

In case of person monitoring and identification, the most common challenges include pose and

illumination variations, facial expressions and ageing conditions. The expression and illumi-

nation challenges when come together can particularly vary the appearance of face images of

individual and mark their impairment. These variations are so intense that it becomes impos-

sible even for humans to recognize them.

The deep learning based video analytics systems are difficult to tune as they involve a number

of hyper-parameters. They proved to be successful on a number of object detection and clas-

sification tasks on large scale data. They also have the generalization capability and can be

trained on large scale input dataset belonging to different classes. However, these systems also

struggle to perform well on the challenging datasets and their accuracy severely drops down

especially for the case of expression and illumination variant datasets.

The deep learning based video analytics systems involve a number of hyper-parameters, includ-

ing learning rate, momentum, activation function, optimization algorithm and weight parameter
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initialization. The tuning of these hyper-parameters is still a very challenging task [7] [8]. A

trial-and-error approach is mostly followed in selecting these parameters, which makes it time

consuming and at times may provide inaccurate results.

The video analytics systems based on both shallow and deep networks are compute intensive and

require higher processing time. The systems based on shallow networks extract features from

small local patches of subsequent video frames and then aggregated to produce global features

for appearance and motion information. This phenomenon tends to produce high dimensional

feature vectors [9], requiring large number of computing resources and processing time which

becomes quite expensive and time consuming for large sets of video data.

The systems based on deep networks require substantial amount of time for training and tun-

ing the hyper-parameters of the system. Deep networks are compute intensive in nature [10]

and perform slowly and in-efficiently on single machine. Especially, if they are operating on

large datasets, these systems need to be scaled and configured on a cloud based distributed

infrastructure for rapid processing of video streams at a reasonable computational cost.

Automatic video object classification case-studies, required for the validation of video analytics

systems are scarce in existing literature. No automated case-studies exist today which could

address all the existing problems at one platform. The automated object classification case-

study should be capable of validating the video analytics systems based on both shallow and

deep networks.

1.4 Research Aims and Objectives

This research work aims to investigate an intelligent video analytics system for automatic

detection and classification of objects from large number of video streams in a cloud based

distributed system. This research aim leads to the following research objectives.

� To propose a video analytics system for the automated detection and classification of

objects from large number of video streams.
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� To improve the accuracy of the system by investigating feature fusion approach in spatial-

frequency domain under uncontrolled conditions.

� To propose a mathematical model for the hyper-parameter tuning of the deep learning to

improve the performance of training and inference for video analytics.

� To scale the proposed system based on the number and size of the video streams by

investigating a distributed video analytics system.

� To validate the proposed system using a video object classification case-study on the data

that has been collected from real life scenarios.

1.5 Major Contributions of this Research Study

1. An intelligent video analytics system is proposed to automate and speed-up the processing

of large number of video streams in a cloud based distributed system. The video streams

are automatically fetched from the cloud storage and then decoded to extract individual

frames. Each individual frame is processed independently for detection and classification.

We have introduced the concept of adaptive frame sampling in which the frames which

do not contain any object in them are discarded. This reduces the amount of video

frames to be processed and only those frames are retained which contain objects in them.

(Published in IEEE SOSE, Oxford, UK, 2015)

2. We have demonstrated that cascaded detection and classification is an efficient way to

automate the video analysis process and to minimize human intervention. The object in

each video frame is first detected to provide a reference for the location of the object

which can be tracked in the subsequent frames. It is cropped and saved as a separate

image, so that the recognition steps have to process a smaller sized image. The object is

then passed on to the subsequent object classification phase. We have proposed an object

matching algorithm in which the target object is compared with the candidate objects

for classification.(Published in Future Generation Computer Systems, ELSEVIER, 2017)
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3. We have demonstrated that higher intrinsic mode functions(IMFs) are adequate to perform

classification with high accuracy rate under challenging conditions. We pioneer the use of

Bi-dimensional empirical mode decomposition(BEMD) to decompose a video frame into

Intrinsic Mode Functions (IMFs) in the spatial frequency domain. BEMD provides several

advantages over spatial domain analysis. Features can be extracted easily according to

the distribution of local phase or energy. Each IMF is analysed independently using Reisz

transform to extract local properties (amplitude, orientation, and phase) of a video frame.

These local properties are further examined to perform object classification. (Published

in IEEE/ACM BDCAT,Shanghai, China, 2016)

4. We have proposed a feature fusion strategy based on the orientation components of the

video frames to achieve high accuracy, recall and precision for blur and illumination in-

variant object classification. We studied the orientation, phase and amplitude properties

derived from each intrinsic mode function and showed their performance in terms of ac-

curacy. It has been observed that the orientation component of the object leads to a

higher accuracy rate. We have shown that feature fusion strategy based on the orien-

tation components can significantly improve the accuracy of the deep learning pipeline.

(Under Review in Transactions on Systems, Man and Cybernatics, IEEE, 2018)

5. We have proposed a deep learning pipeline for cloud-based video analytics and a mathemat-

ical model is formulated to observe the effects of hyper-parameter tuning on the system’s

performance. We identified the parameters that have a major contribution in improving

the performance of the system. We parallelized the training of the deep learning pipeline

by dividing the dataset into small subsets and then passing over these subsets of data

to separate neural network models. The models are trained in parallel and the resultant

parameters for each model are then iteratively averaged and collected at the main driving

node of the compute cluster. This approach helped in speeding up the network training

even on larger datasets.(Published in Transactions on Systems, Man and Cybernatics,

IEEE, 2018)

6. We have shown that the cloud-based parallel distributed training is an efficient way to speed
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up the training process. Multiple nodes of the compute cluster in the cloud have been used

to train partial models on each node. The parameters of the compute cluster including

number of cores and executors, serializers, rate of parameter averaging and number of

mini-batches are finely tuned to achieve maximum utilization of available resources. The

execution time of the system is also improved by changing the block size, replication

factor and varying the number of cloud nodes. This enabled the system to perform rapid

computation and helped to process large amounts of data. (Published in IEEE/ACM

BDCAT, Austin, Texas, USA, 2017)

7. We have proposed a video object classification case-study to validate the proposed system

with the data that has been collected from real life scenarios. The target object which is

to be classified is passed through the trained classifier. The classifier generates a set of

probabilities against the target object. The matching scores greater than an empirically

determined threshold reveal the classification of the target object.(Published in Software,

Practice and Experience, WILEY, 2018)

1.6 Thesis Organisation

This section describes the organization of the thesis as depicted in Figure 1.2. In Chapter

1, the research problem is introduced and the issues involved in it are studied. A research

methodology and its objectives are formalized.

Chapter 2 details the most recent state-of-the-art approaches used for object detection and clas-

sification with the motivation to identify potential research gaps and limitations in the existing

works. It is divided into three main sections: Local features based methods, global features

based methods and neural network based methods. We have also reviewed various classification

algorithms and highlighted the weaknesses of current algorithms. An explanation on how we

are addressing these weaknesses is then presented.

Chapter 3 provides the details of the video analytics workflow for object detection and classi-

fication. All the details of the proposed workflow are explained and the connection between
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Figure 1.2: Thesis Organization

each component is described in this chapter. It is shown that the proposed workflow helps to

minimize human intervention and provides automated object classification from large number

of video streams.

A novel blur and illumination invariant video analytics approach is presented in chapter 4. The

proposed approach aids in classification of objects from video data containing challenges such

as illumination and blurred objects. The use of bi-dimensional empirical mode decomposition

(BEMD) for feature extraction is explained. The details of feature fusion strategy are also

provided. We also discussed the details of the deep learning model which is used for classification

from the fused features.

In chapter 5, the optimization of the deep learning pipeline for cloud based video analytics system
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is presented. The system is represented by a mathematical model and hyper-parameters of deep

convolutional neural network are finely tuned on the basis of proposed mathematical model. A

number of results in the results section are presented to assess the performance of the proposed

model. The details on the distributed training of the system and experimental setup detailing

the deployment of the proposed system on the cloud infrastructure are also provided in this

chapter.

Chapter 6 presents the results of our proposed video analytics system. A number of experi-

ments have been performed to validate the proposed system.The results are discussed in great

detail both graphically and analytically. It is shown that the proposed video analytics system

can perform object classification with high accuracy, precision and scale under uncontrolled

environmental conditions.

Chapter 7 concludes the thesis with a summary of the contributions of this research study.

Conclusions and remarks are made to highlight the research accomplishments, applicability

and limitations of this work. The perspectives on future research directions are also part of

this last chapter.



Chapter 2

Background and Literature Review

2.1 Introduction

Chapter 1 described the aims and objectives of an intelligent video analytics system for auto-

matic detection and classification of objects from large number of video streams. Chapter 2

will survey the state of the art approaches related to the research undertaken in this work. It

will also identify the gaps and critically describe how the work undertaken links to the existing

literature.

A video analytics system consists of two steps. 1) Feature Extraction 2) Classification. Features

are extracted from an object. A feature is a piece of information in the form of numerical

values extracted from the images or video frames. These extracted features are much lower in

dimension than the original image or video frame. The existing feature extraction approaches

can be divided into two categories i.e. local features based approaches and global features based

approaches. These features are fed to a classifier in order to perform classification. Classification

is the process of identifying the class of an unknown object. Both local and global features

have been used in the past to perform object classification.

This chapter provides an overview of the most commonly used feature extraction approaches

and classification algorithms. It also describes the frameworks that have been used in the past

10
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Figure 2.1: Object Classification Taxonomy

for feature extraction and classification. Figure 2.1 depicts the two classification steps needed

to perform object classification. Feature extraction approaches are arranged in the left pan

while classification approaches are arranged in the right hand side pan of the taxonomy.

2.2 Local Features Based Approaches

Local features based approaches work on smaller image areas. Each dimension of the local

feature matrix embodies local areas or regions in the face image. Each dimension of feature
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Figure 2.2: Local Binary Patterns

matrix provides more details of a specific local patch within an image. Local features are

more robust to noise, illumination changes and occlusion as they work on small image areas.

However, it is difficult to determine the importance of features and arbitrary decisions have to

be taken to remove unnecessary features. If the feature set is unable to provide discriminative

ability, no processing can compensate this deficiency.

2.2.1 Local Binary Patterns (LBP)

Local Binary Pattern features [11] are the most well-known local features based methods and

are computed by dividing the examined window into cells. Each cell contains a certain number

of pixels. Then each pixel in the cell is compared to its neighbouring pixels. If the value of

centre pixel is greater than its neighbour pixel, 1 is written, and if it is the other way round

then 0 is written as shown in Figure 2.2. Then the histogram is calculated over the frequency

of each number occurrence. The LBP histogram is defined as;

Hi = ΣI{fi(x, y) = i}, i = 0, ..., n− 1

Normalized histograms give the feature vector of the window. This feature set can then be used

with Support Vector Machine for classification, which is normally used for face recognition. The

advantage of LBP features is that they provide acceptable accuracy rate and handle illumination

very well. However, they are very sensitive to noise.
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Figure 2.3: Local Ternary Patterns

2.2.2 Local Ternary Patterns (LTP)

Based on the ternary threshold, Local Ternary Pattern features [12] as an extension of LBP

were proposed. In LTP, the pixel difference between central pixel and neighbouring pixels is

encoded into a ternary code. This ternary code is further split into positive LBP and negative

LBP to reduce the dimensionality, as shown in Figure 2.3. This encoding of pixel difference

into a separate state makes it more robust to noise.


1 if p ≥ c+k

0 if p ≥ c-k and p ≤ c+k

-1 if p ≤ c-k


A pattern histogram, like in LBP, is then created by using the ternary values of neighbouring

pixels. LTP features are more robust to noise than LBP but loss of information occurs when

splitting into positive and negative LBP. Also, redundant information resides in the histograms

of both LBPs, since they are strongly correlated.

2.2.3 Local Quantized Patterns (LQP)

Further, the idea of LBP and LTP was extended and Local Quantized Pattern features [13] were

proposed. LQP features aims to group the dissimilar codes by employing clustering techniques.
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Figure 2.4: Local Quantized Patterns (LQP)

This helps to project the features into a lower dimension and a set of new features is obtained.

Initially, a table is used which contains all the codes. By using a clustering technique such as

K-Means clustering [14], all the codes are mapped to the nearest cluster centres, as shown in

Figure 2.4. Then, tables are built up consisting of the number of clusters and their associated

codes. The division of codes into clusters results in the formation of a dictionary. The advantage

of LQP features is that they are capable of holding large patterns as compared to LBP and

LTP.

2.2.4 Gabor Wavelets

Gabor wavelets are powerful joint time-frequency based features and are based on Gabor filters

[15]. Gabor wavelets have been used for years in numerous feature extraction algorithms. The

Gabor features can be extracted from an image by using different frequencies and orientations

of Gabor filters. Gabor filters can extract the edges and are mainly used to detect corners and

blobs.

The Gabor function is a complex exponential function similar to sine and cosine used to detect

frequencies in various directions. To perform edge detection, the convolution is performed in

various dilated wavelets. A wavelet, which serves as a second order partial differential operator,

is used for this purpose. The Gabor features provide optimal resolution in time and frequency

domain but have high computational complexity. In extension to Gabor wavelets, another
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Figure 2.5: Scale-invariant Feature Transform (SIFT)

feature extraction approach, similar to local binary pattern, was introduced known as local

XOR pattern and is shown in Figure 2.6. It calculates quadrant bit codes by using the XOR

operator. The calculated values of LXP are then applied on the real and imaginary parts of

the phase components.

2.2.5 Scale-invariant Feature Transform (SIFT)

SIFT [16] is another most commonly used local feature extraction approach. SIFT key-points

are extracted from a set of images present in a database. To recognize an object in a new image,

each feature from the new image is compared individually with the database. The candidate

matching features are found out based on Euclidean distance of their feature vectors. From the

full set of matches, the subsets of key-points that agree on the object and its location, scale,

and orientation in the new image are identified to filter out good matches, as shown in Figure

2.5.

The determination of consistent clusters is performed rapidly by using an efficient hash table

implementation of the generalized Hough transform. Each cluster of 3 or more features that

agree on an object and its pose is then subjected to a further detailed model verification and

subsequently, outliers are discarded. Finally, the probability that a particular set of features

indicates the presence of an object is computed, given the accuracy of fit and number of probable

false matches. Object matches that pass all these tests can then be identified as correct with
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Figure 2.6: LXP

high confidence. SIFT features provide trustworthy recognition but have high computational

cost and they are slow to compute.

2.2.6 Speeded Up Robust Features (SURF)

An extension of SIFT features is SURF, [17] which is based on Hessian matrix. Unlike SIFT, it

computes LOG with a filter box. This approach of filter box really makes it rapid as compared

to SIFT because convolution with filter box can be calculated easily with the help of integral

image and can be computed in parallel for different scales. The determinant of Hessian matrix

can be used for scale and orientation. Feature descriptors are calculated by using wavelet

responses in horizontal and vertical direction. This is also performed with the help of integral

images.

S(x, y) =
x∑
i=0

y∑
j=0

I(i, j)

A circular region is drawn around the detected point of interest to assign unique orientation.

SURF descriptors are constructed by extracting square regions around point of interest. A

neighbourhood of size 20sX20s is taken around the point of interest where s is the size. It is

divided into 4x4 sub-regions. For each sub-region, horizontal and vertical wavelet responses are

taken and a vector is formed which gives SURF feature descriptor. SURF features are faster



17

Figure 2.7: LPQ

to compute as compared to SIFT features.

2.2.7 Local Phase Quantization (LPQ)

Local Phase Quantization (LPQ) had been a major focus by researchers in the recent past. It

was initially employed as a blur invariant descriptor [18] for texture classification. The methods

based on local phase quantization proved to be much more successful as compared to Gabor

based features when applied to the problems of texture classification. They worked really well

especially in case of blurred textures. Inspired from the success of LPQ in texture classification,

it was then later on applied for the face recognition and object classification problems as well.

The LPQ features remained successful for blurred face images as well as for blurred textures.

LPQ utilizes the advantages of short-term fourier transform and is applied on a small window

of size M x M. The real and imaginary components are then extracted from the image which

undergoes to a binary quantization to have the LPQ label, as shown in Figure 2.7. Usually four

real and imaginary components are extracted from the image. After applying the LPQ operator

on the whole image, LPQ quantized image is achieved which is further used for recognition or

classification of objects. LPQ operator was used by [19] on facial images and they also performed

the histogram concatenation procedure on sub-regions of images just as it was performed in

LBP and LTP. The difference was that the resultant feature vector was four times the length
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of LBP feature vector.

2.2.8 Haar Features

The Haar Cascade Classifier algorithm [20] is one of the most widely used algorithms for object

detection. It is based on Haar like features and uses Adaboost [21] for dimension reduction

and classifier training. Each feature is represented by a weak classifier in the cascade. A single

weak classifier is represented as;

h(x, f, p) =

 1 if pf(x) ≤ pθ

0 otherwise


where ’f’ is the feature value, and ’p’ represents the polarity indicating the direction of the

inequality. A combination of all these weak classifiers is used to make a strong classifier which

is further used for detecting objects. The HOG features based person detection [22] works by

dividing an image into multiple cells connected with each other. The algorithm then computes

histograms of oriented gradients for each cell. These gradients describe the appearance of an

object in an image and can be used to train a classifier for detection.

2.2.9 Multi-scale Descriptors

In order to further improve the performance of the above cited feature descriptors, these de-

scriptors are also applied in combination with multiple elementary descriptors. An example of

these is the combination of LBP, LTP and LPR. These descriptors are also applied by chang-

ing their associated parameters such as neighbourhood size, shape of neighbourhood (circular,

elliptical) and varying radii.

Some of the major examples of multi-scale descriptors include multi-scale local phase quanti-

zation (MLPQ), multi-scale local binary pattern (MLPB) and multi-scale local ternary pattern

(MLTP). [23] made the use of kernel discriminant analysis along with multi-scale local phase

quantization to improve the performance of the descriptor. Multi-scale local phase quantization
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(MLPQ) has also been used with linear discriminant analysis to improve the performance. [24]

used multi-scale local phase quantization (MLPQ) with linear regression classifier (LRC) for

recognition purposes.

[25] proposed a variant of Local Phase Quantization called LFD in which they utilized the mag-

nitude information as well as the phase information of the images. The phase and magnitude

information was generated from the short-term Fourier transform. The LBP encoding scheme

was applied on the magnitude information of the image, while binary qualification was applied

on the phase information of the image. The two encoded images in combination created the

LFD feature vector by concatenating the histograms of these images. The proposed method

proved to be a good approach for low resolution images.

All these variations in the elementary descriptors could improve the overall performance to some

extent but there is always a trade-off between performance and computational cost. Sometimes

it may occur that the performance gain might not be worth-while. On the other hand it may

increase the memory and computational requirement to a high extent. These descriptors are

normally referred to as multi-scale descriptors and have been proposed by a number of authors

in the recent past.

Table 2.1 shows the performance measures of local features based approaches. As discussed

above, the local pattern features are obtained from small local patches. In case of video data,

these features are extracted from the subsequent video frames and are then aggregated to

produce combined feature vectors which are then used for appearance and motion information.

This phenomenon tends to produce high dimensional feature vectors which makes it difficult

to use them for large scale video processing. Also, these systems are not very successful with

the video streams captured under uncontrolled environmental conditions and have resulted in

a drop of accuracy and precision.

The local features based approaches which are reviewed in this section work well for small

dataset sizes. These approaches work on smaller image areas and, therefore, provide good

accuracy rate. However, these approaches consider each pixel of the object, which makes them

time consuming. So, there is a trade-off between accuracy, performance and computational
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Table 2.1: Performance measures of local features based approaches

Approaches
Recognition
Rate

Performance
Drawbacks Advantages

Image Size Time
LBP 92.6 % 110 x 150 0.03s Sensitive to noise High accuracy rate

LTP 98.7 % 128 x 128 50ms
Contains redundant
information

Robust to noise

LQP 98.6 % 90 x 150 0.04s
Requires large
lookup tables

Labelled dataset is
not required

Gabor 92.2 % 110 x 150 30s
High computational
complexity

Optimal in time
and frequency

SIFT 95.9 % 256 x 384 0.91ms
High computational
complexity

High recognition
rate

SURF 96.0 % 256 x 384 0.59ms
Prone to illumination
variance

Faster to compute

ORB 72.8 % 640 x 480 15.3ms
Scale invariance is
not tested

Resistant to noise

cost for these approaches. We have made the use of these approaches in our proposed workflow

for object extraction which will be explained in next chapter of this thesis.

2.3 Global Features Based Approaches

Global features based approaches extract features from the entire image and usually represents

the holistic facial information like the contour of a face. The global features matrix contains

all parts of the image and includes each and every pixel of it. This is why no information

in the images is destroyed by global features. Global features are good in representing the

coarse representation of an image. However, since all the information of image is retained in

these features, they are high in dimension. They work on the assumption that all the features

are equally important which is not true in most of the cases. This makes these techniques

computationally intensive.

2.3.1 Principal Component Analysis (PCA)

The first and foremost global features based method called Eigenfaces, [26] shown in Figure 2.8

is based on principal component analysis [27] which is a statistical technique and comes under
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Figure 2.8: EigenFaces Approach

the category of holistic approaches. This technique was initially used to reduce or simplify the

data. It projects the data from a higher dimensional space to a lower dimensional space in such

a way that data with higher variance lies on the first axis. This is usually said to be the first

principal component of data as it contains data having higher variance.

The ’K’ principle components can be given by;

Xk = X −
k−1∑
s=1

Xwsw
T

where ’W’ represents the weight vectors and ’X’ represents the vector of principal component

scores. The second principal component similarly contains the data which have the second

greatest variance. All the remaining components contain the data in order of their variance.

These components can also be treated as features when it comes to the classification task.

Principal components of a face image are usually known as Eigenfaces and can be used for

classification. Facial recognition performed by PCA is insensitive to facial expressions. However,

the performance degrades in extreme lighting conditions.
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2.3.2 Linear Discriminant Analysis (LDA)

Motivated from Eigenfaces, Fisherfaces is another holistic approach and is based on Linear

discriminant analysis [28]. It proved to outperform PCA in face recognition tasks under complex

conditions. The objective of LDA is to clearly distinguish between the samples of the same

class and the samples of a different class. It tends to group the images belonging to same class

and creates a separation from images of different classes.

Linear discriminant analysis ends up with a discriminant function that linearly separates sam-

ples of different classes. This linear transformation function provides a well-defined class sepa-

ration by increasing the ratio between class-variance and within-class variance. LDA provides

a way to overcome the shortcomings of PCA approach but it can face the small sample size

problem.

2.3.3 Independent Component Analysis (ICA)

Independent component analysis [29] is a generalization of principal component analysis. It is

a widely used method for projection of high dimensional data to a low dimensional sub-space.

The objective of ICA is same as PCA but it generates spatially localized features. In contrast

to PCA, the components generated by ICA are statistically independent. No information in

images is destroyed by using this technique. But one also has to compromise on redundant

information present in the images. This also makes this technique computationally expensive.

2.3.4 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [30] which is very similar to the principal component analy-

sis is often used to reduce the linear dimension. Unlike principal component analysis which

retains the data variance while projection, MDS retains the distance between two examples.

Another technique similar to principal component analysis is the non-negative matrix factoriza-

tion (NMF) [31] which represents the facial information as a vector combination. This vector
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combination is linear and does not include the negative vectors. The absence of negative vec-

tors from the projection enables it to reflect the facial representation better than principal

component analysis.

A number of improvements have been proposed in all the three holistic approaches namely

PCA, ICA and LDA. These improvements have been made in order to improve the accuracy

under illumination and pose variations. This was achieved by utilizing probabilistic subspace

framework. Also, direct linear discriminant analysis (D-LDA) and fractional linear discriminant

analysis (F-LDA) are used together by [32] to reduce the number of miss-classifications that

could occur by the closeness of category products.

Principal component analysis and linear discriminant analysis have also been used with shallow

neural networks to perform robust and accurate facial recognition [26]. These two techniques

are used in combination in order to extract features from the face. To perform face alignment,

normalization and face enhancement, Gabor wavelets were utilized. Principal component anal-

ysis and linear discriminant analysis proved to be good in extracting discriminant features from

face which were later classified through neural network using back propagation algorithm for

learning.

The use of principal component analysis has also been made with discrete cosine transform

(DCT) to perform recognition in HMM [33]. Principal component analysis has been used to

perform dimension reduction. The recognition is performed by dividing the object into blocks

and then discrete cosine transform is applied on each block to perform recognition. The use

of hidden markov model (HMM) has also been made with local binary patterns in [34]. They

used the same approach as [33] and divided the face image into blocks for recognition.

The global features based approaches were successful in some of the areas but remained unstable

as compared to local features based approaches. The global features were unable to describe the

underlying subtleties of features and their geometric varieties that were present in the original

image. They were also unable to handle the non-linearity in object classification and remained

limited within their scope. The performance of the global features based methods can get

adverse if their concavities are fulfilled and deformations are smoothed. Table 2.2 shows the
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Table 2.2: Performance measures of global features based approaches

Approaches
Recognition
Rate

Performance
Drawbacks Advantages

Image Size Time

PCA 70 % 85 x 60 0.3s

Performance
degrades
in extreme
conditions

Insensitive to
facial
expressions

LDA 88 % 85 x 60 0.4s
Contains
redundant
information

Resistant to
illumination
conditions

ICA 89 % 60 x 50 0.2s
High
computation
cost

Resistant to
illumination
conditions

performance measures of global features based approaches.

We have made the use of principal component analysis for dimension reduction in this research

work. The use of spatial-frequency domain results in the generation of large number of features.

So we have made the use of principal component analysis in order to reduce the dimension of

features. Feature selection mechanism has also been adopted to get rid of irrelevant features.

This helped to reduce the computation cost of overall system.

2.4 Classification Algorithms

The feature extraction step ends up in the generation of large number of features. These

features are then fed to the classification algorithm to perform classification of objects. The

most commonly used classification algorithms used so far are described below:

2.4.1 Decision Trees

Decision Trees [35] are used to perform instance classification based on trees. The instances are

first sorted depending upon their feature value. These features present in an instance which

are to be classified are then represented as nodes in the decision trees. The value of the feature

or the node is represented by a branch in the decision trees. The classification of instances is
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Figure 2.9: Support Vector Machine and K-Nearest Neighbour

performed by sorting the values starting from the root node.

The root node has the features which are proved to be the best in dividing the training dataset.

Information gain [36] and gini index [37] are the processes which are normally used to identify

the features which can best divide the training dataset. This procedure is repeated on the

remaining datasets and a number of sub-trees are created. One of the major advantages of

decision tress is that it is easy to track the classification of an instance made by the decision

tree.

2.4.2 Support Vector Machine

Support Vector Machine [38] is another well-known classification algorithm that works under

the supervised learning domain. It needs to be trained on a set of given training examples

already marked with predefined classes. SVM can then categorize any incoming new example

into one of the predefined classes. Although it works for linear classification, it can also be used

for non-linear classification by using the kernel trick.

In order to perform the classification, a hyperplane is created by the SVM, as shown in Figure

2.9. A hyperplane having the greatest distance from the training data set points gives the most

accurate classification results. After obtaining features from the feature extraction phase, SVM
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is the most widely used classifier for object detection and recognition.

An extension of SVM is Transductive Support Vector Machine (TSVM) [39]. The objective of

TSVM is to classify data that is partially labelled, such as in the domain of semi-supervised

learning. TSVM uses the technique of regularization to obtain separation between labelled and

unlabelled data. To achieve good results tuning of TSVM is required which also helps to avoid

unstable performance.

2.4.3 Boosting

Boosting [40] has also been used for classification purposes. It is a technique to develop a

strong learner with the help of many weak learners. A weak learner can be said as a classifier

which performs at least better than the random guessing and is a little bit correlated to true

classification. Boosting works in an iterative process. In each iteration, learning of weak

classifier is performed and is added to the ensemble to make a strong classifier. Each weak

learner is weighted according to its accuracy. When all the weak classifiers are added to the

ensemble, the data is again re-weighted and those examples which have been misclassified are

assigned with higher weights and those which are correctly classified are assigned with lower

weights. This helps the future weak learners to concentrate more on misclassified examples.

Instance based learning is another technique which comes under the category of statistical

learning methods. They are also known as the lazy learning methods because the generalization

or induction process is delayed in them till the classification process takes place. The advantage

of instance based learning algorithms is that they require less time for training as compared

to other methods such as neural networks or decision trees. But on the other hand, they also

require more time while performing classification.

2.4.4 K-nearest Neighbour

K-nearest Neighbour, [41] is one of the examples of instance based learning and is a well-

known algorithm used both for classification and regression. As the name suggests, it performs
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classification on the basis of voting by the neighbours of object to be classified. The object

is assigned to the class from which the majority of votes are received as shown in Figure 2.9.

Weights can also be assigned to the votes of the neighbours, so the nearest neighbours will have

higher contribution in the weights than the ones which are far away.

To train the classifier, training examples in the form of vectors, with pre-assigned classes, are

used. Training only consists of the piling up of feature vectors with their class labels. Then in

classification, the point (k) is classified by assigning the label which is most frequent among the

k training samples nearest to that query point. Usually, Euclidean distance is used to calculate

the distance between test and neighbouring points.

2.4.5 Bayesian Networks

Bayesian Networks come under the category of statistical learning algorithms which represents

the relationships between different variables with the help of graphical model. The most com-

mon graphical model is the directed acyclic graph in which the nodes of the graph have a one

to one relationship with the features. The edges of the model represent the influences between

different features. The learning in the Bayesian Network is achieved through two sub-processes.

In first sub-process the structure of the directed acyclic graph is learned and then its parameters

are determined in the second sub-process. A table is generated consisting of the probabilis-

tic parameters in the encoded format. Each variable holds one table in the network and the

multiplication of these tables can result in the joint distribution of the network.

Naive Bayes [42] which is one of the most common Bayesian Network, is another technique

for classification in which we have vectors of feature values which assign labels to unknown

instances. It is mainly used for problems in which the dimensionality of input is high. Naive

Bayes Classifier is based on Bayesian theorem and works on the principle that the value of

any feature is not dependent on the value of any other feature. It uses the concept of prior

probability and likelihood. Prior probabilities are those probabilities which are achieved on the

grounds of some previous experience. Once prior probability is assigned, then the likelihood

is calculated by drawing a circle around the unknown object and to see how many instances
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of both the classes are in the circle. In this way, one class will have smaller likelihood than

the other. By combining this likelihood with the prior probability, final classification can be

achieved.

2.5 Learning Algorithms for Intelligent Analysis

Learning algorithms such as Neural Networks are proven to be good in various image recognition

tasks. They have also been recently tested on video classification problem using convolutional

neural network. They have been used in face analysis such as recognition and expression

recognition. However, the training time of Convolutional Neural Network is quite large. A

large number of training examples are required to tune the parameters of the model.

2.5.1 Artificial Neural Networks (ANNs)

The basic building blocks of Artificial Neural Networks [43] are neurons which are intercon-

nected and send messages to each other, as shown in Figure 2.10. The connections in ANN are

weighted and these weights are updated as the system learns with experience. These changing

of weights enable the system to adapt and learn with the passage of time. A simple Neural

Network normally has three layers; input layer, hidden layer and output layer. The function

of input layer is to take input data and send it to the following layer, i.e. hidden layer, as

synapses. More complex systems can have more than one hidden layer. These synapses have

weights which keep modifying themselves and manipulate the data calculations. The neurons

weighted input is converted to output via an activation function. Back Propagation is the most

commonly used algorithm in ANN for learning.

2.5.2 Radial Basis Function Networks (RBFs)

Radial Basis Function Network [44] is a type of Artificial Neural Network. Radial basis function

is used as an activation function in RBFs. This radial basis function is used in combination
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Figure 2.10: Artificial Neural Network

with the neuron parameters to generate the network output. These networks normally consist

of three layers. The first layer is the typical input layer, the second layer is the hidden layer

which contains RBF activation function. The third layer is the output layer which produces

the output. These networks have fast learning speed and are appropriate for lesser number of

classes.

Artificial Neural Networks have emerged as influential tools for detection and tracking of objects

from video streams. However, these algorithms were proven not to be applicable for the analysis

of large scale data as large number of parameters were needed to be trained requiring abundant

computing resources. With the advent of modern hardware resources including edge and cloud

platform, the limitation of computing resources is solved. This led to the development of more

advance form of learning algorithms known as Deep Learning Algorithms. These algorithms

have the capability to solve practical problems such as pattern classification and recognition

on large scale data but require more computation resources for training.

2.5.3 Convolutional Neural Networks (CNNs)

A Convolutional Neural Network [45] as shown in Figure 2.11 is a kind of multilayer Neural

Network but it has some additional layers including convolutional and pooling or sub-sampling

layers. These additional layers are then followed to fully connected layers as in a standard

multilayer perceptron. The convolutional layers contain a set of convolution kernels. Each
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Figure 2.11: Convolutional Neural Network

kernel is a filter or mask which is convolved with the image to extract features.

There can be many convolution kernels in each layer. This results in the formation of feature

maps. The pooling layer is next to convolution layers. The purpose of this layer is to subsample

a small rectangular box or feature map taken from convolution layer in order to reduce variance.

A single output from each rectangular block is generated. A number of convolution and pooling

layers lead to the fully connected multi-layer perceptron (MLP) layer. An MLP is a standard

Multilayer Neural Network. This layer takes all the neurons from previous layer and connects

it to every single layer within itself.

CNNs are most suitable for images as their architecture is designed in a way as to take full

advantage of 2D structure. In this case, the input to the convolution layer is a 2D image and

the kernels are applied to it. The convolution with the image produces feature maps. Next,

mapping is performed on each feature map. This further leads to fully connected layers i.e.

MLP layers.

2.5.4 Regional Convolutional Neural Networks (R-CNNs)

Szegedy et al. [46] proposed to modify the state-of-the art deep CNNs by replacing the last

layer of the network with a regression layer. This modification resulted in the average precision
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Figure 2.12: Regional Convolutional Neural Network

of 0:305 over 20 classes on Pascal Visual Object Challenge (VOC). As opposed to Szegedys

proposed model, Girshick et al. [47] adopted a bottom-up region based deep model called R-

CNN as shown in Figure 2.12. The proposed model generated two thousand region proposals

and a CNN was used for feature extraction from each region which were then classified by

SVMs. An improvement of 30 percent in accuracy was observed but it was slow as training

was a multi-stage pipeline.

2.5.5 Fast and Faster R-CNNs

Ross Girshick [48] further improved their method and proposed a fast region-based convolutional

network method called Fast R-CNN to detect objects rapidly. This method reported higher

detection accuracy and performed training in a single stage using a multi-task loss. Disk storage

was also not required as in the case of R-CNN.

Shaoqing Ren et al. [49] further improved Girshick’s work and proposed Faster R-CNN and

reduced the computation of region proposal by sharing full image features with the detection

network. They also combined Fast R-CNN and RPN by sharing their convolutional features

into a single network. This method outperformed both R-CNN and Fast R-CNN on publicly

available image datasets.
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Table 2.3: Performance measures of neural network based approaches

Approaches
Recognition
Rate

Drawbacks Advantages

MLP 79 %
Prone to
over-fitting

Multiple
training
algorithms
are available

RBF 98 %
Suitable for
small classes

Fast learning
speed

CNN 97 %
High
computation
cost

Easy to migrate
to parallel
hardware

2.5.6 You Only Look Once (YOLO)

Joseph Redmon et al. [50] presented You Only Look Once (YOLO), which detects objects in

one evaluation of CNN. It resizes the images to 448 x 448 and executes a single pass of CNN

on the image to detect the objects and it outperformed R-CNN. However, all these works have

been proposed to perform detection and classification tasks on still images. It is more likely

that leveraging these methods for videos, oversight some positive illustrations as the objects

being classified might not be in their best position in each video frame. Few recent works have

also investigated video classification for multimedia data using deep networks.

2.5.7 Stacked Auto-encoders

A number of studies in the recent past have employed deep learning networks for object de-

tection and classification purposes. Wang and Yeung [51] suggested to learn deep features for

object tracking by using stacked denoising autoencoder [52]. Stacked auto-encoders were used

to reconstruct the input data at the output by using the hidden nodes. The input data is pro-

jected in to a low dimensional space and the hidden layers were used to learn the representation

from the training examples. It was reported that using the learned deep features outperformed

other 7 state-of-the-art trackers. Table 2.3 shows the performance measures of some of the

neural network based approaches.



33

2.5.8 CNNs for Detection and Classification

2.5.8.1 CNNs for Image Data

Several approaches [53] [54] employed CNNs to learn features from raw pixels primarily for

still images. Most recently Alex Krizhevsky et al. [55] proposed deep CNNs for ImageNet [56]

dataset and achieved high accuracy. Similarly Gil Levi et al. [57] used CNN to perform age

and gender classification.

Dan Ciresan et al. [58] proposed the use of multi-column deep neural networks for image

classification and performed their experimentation on MNIST [59], CIFAR [60] and NORB [61]

datasets. Yaniv Taigman et al. [62] proposed DeepFace to perform face verification from facial

images and reported an accuracy of 97.35 percent on the Labeled Faces in the Wild (LFW)

dataset [63].

Li et al. [52] proposed to learn feature representations for object tracking by using CNNs. They

suggested to use a pool of multiple CNNs to maintain different kernels regarding all possible low-

level cues. These low-level cues helped to distinguish object patches from their surroundings.

In a specific frame, the most prospective convolutional neural network was utilized to predict

the new location of the target object.

Wang et al. [64] suggested to learn deep hierarchical features that should be robust to target

appearance changes. First, the generic features were learned off-line from video data; and then

pre-learned features were modified on-line according to the particular target object class. Con-

sequently, the modified features were able to capture appearance changes of target objects. It

was reported that using the proposed algorithm can significantly improve tracking performance.

The robust detection, tracking and identification of targets among multiple cameras facilitate

scene understanding thus leading to the development of appropriate situation awareness mech-

anisms.

Giang et al. [65] used CNNs to differentiate between pedestrians and non-pedestrians in an

urban environment. They input images are scanned at different scales, and at each scale all
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windows of fixed size are processed by a CNN classifier to determine whether an input window

is pedestrian or not. Feature extraction and classification phases are integrated in one single

fully-adaptive structure. All three layers of CNN i.e. convolution layers, sub-sampling layers,

and output layers are used to perform classification. This work showed that it is possible to

lower training time while maintaining a threshold classification rate.

However, all of these pipelines are used to perform vision tasks in still images. Leveraging these

approaches for videos can oversight some positive illustrations as the objects being classified

might not be in their best poses and conditions in each frame of the video.

2.5.8.2 CNNs for Video Data

Some related work in the recent past investigated video classification for multimedia data using

deep networks. Kai Kang et al. [66] used CNNs to detect objects from video tubelets. They

also proposed a temporal CNN to combine temporal information to regularize the detection

outcomes. Zhongwen Xu et al. [67] proposed discriminative CNN video representation to

perform event detection from video dataset. Andrej Karpathy et al. [68], Joe Yue-Hei Ng

[69] and Shengxin Zha [70] used CNN architectures to perform video classification. They also

retrained the top layers of their systems to study the generalization performance of their models.

Karen Simonyan et al. [71] and liu et al. [72] also used CNNs to perform action recognition

from video streams. However, these approaches do not shed any light on the behaviour of the

system by varying the hyper-parameters of the deep network. The analysis of the system and

its behaviour on how it reflects on the changing values of parameters is scarce in state-of-the art.

It is even rarer for video analytics systems. We analyse these parameters both mathematically

and architecturally and propose the most appropriate tuning parameters for any video analytics

system.

Erhan et al. [73] suggested a saliency-inspired deep CNN for the detection of multiple objects

of interest belonging to any class. However, it was not very successful and produced a small

number of bounding boxes as object candidates. Yuan Yuan et al. [74] proposed a video-based
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Figure 2.13: Siamese Convolutional Neural Network

vehicle detection and tracking system. They proposed tracking by detection framework in which

a sequential detection model is presented to tackle with the problem of occlusions. In order to

track the vehicles, they modelled group behavior to handle complex interactions with overlaps

and ambiguities among vehicles. The model proved to be effective for real surveillance videos

at road junctions.

In another study Qi Wang et al. [75] proposed the use of siamesed fully CNN to perform

road detection. They made the use of RGB-channel images, semantic contours, and location

to segment the road region. The training speed of the proposed model proved to be 30 percent

faster than the original fully connected network because of the guidance of highly structured

contours.

Few recent studies have made the use of deep learning based approaches for video analytics. Li

et al. [76] proposed a filter pairing neural network. They jointly optimized all the components

of the system to handle geometric and photometric transforms and achieved good results on

their self-generated dataset. Similarly Yi et al. [77] proposed a siamese CNN as shown in

Figure 2.13 to learn a similarity metric from pixels in a unified framework.

In another study ahmed et al. [78], a deep convolutional architecture was proposed to simul-

taneously learn features and corresponding similarity metric. However, they input a pair of
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images and tried to find a similarity value to indicate whether the two images belong to same

object or not. They performed more of a verification task than classification of objects.

Most of the existing deep learning based video analytics approaches lack automation and require

human assistance to perform object classification. These approaches do not shed any light on

the behaviour and performance of the system by varying the hyper-parameters of the deep

learning model. The investigation on the behaviour of the system and its analysis on how it

reflects on the varying values of hyper-parameters is scarce in recent literature. This analysis

of the system, specifically for cloud based video analytics is even a less focused area.

Deep learning networks have the capability to perform classification and recognition on large

scale data as compared to shallow networks but require more computational resources for

training. They also pose a number of other challenges on difficult tasks, such as hyper-parameter

tuning of the deep network, increasing training times and scarce availability of labeled data.

Convolutional Neural Network based video analytics systems proved to be successful as com-

pared to shallow networks recently. However, these systems are still in their infancy stage

and pose a number of challenges on difficult tasks. Most of the proposed approaches are still

struggling in coping with the major challenges such as hyper-parameter tuning of the CNN,

increasing training times and scarce availability of labelled data.

2.5.9 Multi-model based Approaches

A number of studies [79] [80] and [81] worked on multi-model features including audio features,

lip motion features and face images to perform person identification. They used Hidden Markov

Models [82] for audio features, guassian density functions [83] were used for lip motion and

different local pattern features and eigen [84] and fisherfaces [85] were used for face images.

Yi et al. [86] used a probabilistic fusion scheme to fuse the features from different modalities and

then performed the identification. Li et al. [87] proposed a rank-level fusion approach to fuse the

features from different modalities. Then a majority voting rule was applied to perform decision.

However, all these approaches need to have a good compromise between computational cost
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and performance as the use of multi-model features produce high dimensional feature vectors

and made them incapable for large scale video processing.

Another study utilized Electrocardiograms (ECG) signals to perform person identification.

Bassiouni et al. [88] made the use of auto-correlation and discrete cosine transform to extract

features from ECG signals. These features were then fed to Artificial Neural Network to perform

classification.

However, the ECG signals are difficult to obtain and cannot be used for general-purpose person

re-identification system. Audio and facial features have also been used in the past [89] to

perform person identification. Mel-frequency cepstral coefficients [90] were extracted from audio

signals and vector quantization was used for classification.

For facial features, eigenfaces [84], fisherfaces [85] and principle component analysis [91] has

been used widely. Smowton et al. [92] performed KNN based classification on these features to

perform classification. They also mixed these features with wavelet transform features extracted

from visual lip reading. HMM [82] based approaches were then used for identification.

Loris et al. [93] proposed an ensemble of different approaches to develop a person re-identification

system. They combined different widely used re-identification systems based on color spaces.

They extracted both the color and texture features from the images and made a comparison of

them on the basis of distance measures. Other studies [94], [95] also exploited the use of color

features but all these approaches built upon the color and texture properties fails in the case

of strong illumination conditions.

Some approaches [96] made the use of local features and generated a set of key-points to produce

the signature of a target person. But the accuracy of these approaches is highly dependent on

the performance of key-point detector. Another study [97] made the use of 3D data from

depth cameras and skeletal tracker [98] was used for identification. This approach provided

good results but its efficiency is dependent on the skeletal tracker. If the tracker fails then the

generated signatures are deemed useless.
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2.6 Object Detection and Classification in Spatial Fre-

quency Domain

Object classification has been the focus of many studies for the last several decades. However,

classifying objects from video streams under uncontrolled conditions poses many challenges and

is now acquiring much attention from the research community.

2.6.1 Gabor Wavelets based Methods

Gabor wavelets have been used recently as a monogenic filter for classification purposes. It

has been used with local binary patterns known as Monogenic Binary Pattern (MBP) [99] and

Monogenic Binary Coding(MBC) [100] . The Gabor wavelet as a monogenic filter can produce

multiple frequency components. These components include amplitude or sometimes known as

magnitude, orientation and phase.

The Monogenic Binary Pattern (MBP) was used along with quadrant bit coding in [100] on the

orientation components. This procedure produced Monogenic Binary Pattern at three scales.

In order to perform the classification, weighted intersection metric was used between the test

and gallery image as a similarity measure. This procedure performed much better as compared

to [101] and [102] in terms of accuracy. [100] applied local binary patterns on the amplitude

property, and LXP on the phase property and achieved good results as compared to other

Gabor wavelets based methods.

Multi-Scale Methods have also been used with monogenic components. Different variants of

Local Binary Patterns including Local Gabor Binary Pattern Histogram (LGBPHS) [101] made

the use of monogenic components with local pattern features as shown in Figure 2.14. LGBPHS

employs a feature fusion scheme. Features are generated by employing local binary patterns on

the amplitude property generated from the Gabor wavelet. Generated feature vector was used

with template matching framework to perform classification.

In another approach piecewise FDA [103] was proposed. Piecewise FDA works on smaller image
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Figure 2.14: Feature Extraction in Spatial-Frequency Domain

patches and each patch is further sub-divided into sub-regions. Gabor wavelets are employed on

each sub-region which in turn generates a feature vector for each sub-region. The classification

is performed by concatenating the feature vectors from all the sub-regions with the help of a

sum rule.

Gabor Phase Pattern based histograms (HGPP) were proposed by Zhang et al. [102] in which

quadrant bit coding scheme was adopted to assign quadrant values to each phase value. After

assigning all the values, local XOR patterns similar to local binary patterns were used to

perform the feature extraction. These fetaures were extracted both the real parts as well as the

imaginary parts of the image which resulted in high accuracy rate. A feature fusion strategy

based on the local binary patterns and Gabor wavelets was proposed by Tan et al. [104].

2.6.2 Color and Wavelet Transform based Methods

A number of authors have used color information to develop blur and illumination robust

descriptors for 2d and 3d object recognition. Two such robust descriptors have been proposed

by Joost et al. [105] and Drost et al. [?]. They used ratios of image derivatives to develop a
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descriptor for color constant ratios that is invariant to blur and illuminant color.

A similar kind of approach based on color information has been proposed by Ballard et al.

[106]. They make use of color histograms to perform recognition of objects. Another approach

based on color histograms is proposed by Funt et al. [107]. They used color constant deriva-

tives to represent an object for recognition. However, these approaches do not perform well

against variations in illuminant color especially with a change in the camera viewpoint or object

orientation and are also dependent on lightening geometry.

Lai et al. [108] proposed the use of Fourier transform and Wavelet transform to extract features

from face in order to perform facial recognition. They have named their method Spectroface

as it extracts features from two domains. They make use of wavelet transform to overcome the

effects of facial expressions present in their face database. The wavelet transform eliminates the

expression variance but also degrades the image resolution. After wavelet transform, Fourier

transform is applied on the low frequency components of the images. Face representations are

divided into two categories: The first order spectroface which extracts the features that are

expression and translation invariant and second order spectroface, which extracts the features

that are rotation and scale invariant and provide good accuracy rate.

The fusion of features from these two approaches produce high dimensional feature vectors.

Principal Component Analysis is employed to reduce the dimension of the features before

feeding them to the classifier for classification. Gabor surface features [109] also makes use of

Local Binary Patterns on the amplitude property of Gabor wavelets. This is employed on the

first and second order derivatives of the Gabor wavelets. In order to reduce the dimensionality

of Gabor surface features EPFDA is used. The classification is performed by using cosine

similarity measure.

2.6.3 Moment Invariants based Methods

The moment invariants have also been used in the past as blur invariant features. Flusser et al.

[110] pioneered the use of moment invariants developed on top of geometric moments. They
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Figure 2.15: Architecture of Distributed Cluster

also used central moments to provide invariance to translation. Moment invariants have also

been the part of various applications such as template matching [111], recognition of defocused

objects and X-ray imaging.

Complex moments are also proposed by Cogdell et al. [112] for blur, rotation and scale invari-

ance. Despite their wide usage in various applications, moment invariants remained sensitive

to noise and background clutter. Invariants based on the phase of frequency spectrum obtained

by Fourier transform are investigated by [18]. These invariants are also insensitive to the shift

of the image. Ville et al. [113] proposed a centrally symmetric blur invariant descriptor based

on phase-only spectrum of an image. The phase-only spectrum was normalized so it became

insensitive to linear brightness changes as well.

A similar kind of approach is adopted by Ville et al. [19] in which the phase information was

calculated within a local window for every image position. The quantization of the phase of

discrete Fourier transform and de-correlation of low frequency components is performed in an

eight dimensional subspace. A histogram of the resulting features is used for classification of

blurred texture images. However, these invariants are limited to image shifts. Also, invariance

to translation has not been considered in phase based frequency spectrum invariants.

Empirical Mode Decomposition (EMD) [114], has been used in the past to perform recognition
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and classification. Ehsan et al. [115] proposed an image fusion and enhancement technique

using EMD to decompose non-stationary signals into IMFs. Linderhed et al. [116] proposed

image empirical mode decomposition (IEMD) to locally separate superposed spatial frequencies

from the image.

Liu et al. [117] presented 2DEMD to extract the local features of the two-dimensional Intrinsic

Mode Function for edge detection. Yaseen et al. [118] pioneered the use of EMD on video

streams in a cloud based parallel system as shown in Figure 2.15. They used first three IMFs

and proposed a stack based hierarchy of features to perform object classification on a challenging

dataset. However, all these works made the use of EMD with shallow networks and did not

exploited the use of EMD for deep networks.

2.7 Object Detection and Classification in Clouds

Modern hardware resources and open source platforms for distributed stream and batch data

processing have become an active research area to improve performance of video processing

algorithms. For example, Apache Kafka [119], is a streaming platform which supports dis-

tributed processing of streams of records. It can store and process streams of records as they

occur in a fault-tolerant way. The various APIs offered by Kafka can be used to publish and

process stream of records effectively and efficiently. Similarly Apache Flink [120], is another

open source platform for distributed stream processing. Flink has a streaming dataflow engine

supported by various APIs to create fault tolerant streaming applications. These platforms can

be executed as a cluster on one or more servers in cloud or edge infrastructures.

Cloud computing [121], offers shared computer processing resources to meet the computational

demands of modern compute intensive algorithms. Cloud computing based analytics are widely

being used today for large scale data processing. The results from existing studies suggest that

such a model will be hugely beneficial for video processing and real time video analytics systems.
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2.7.1 Object Detection and Tracking in Clouds

One of the key capabilities that should be implemented in the cloud for video analysis is the

autonomous detection and tracking of targets across multiple camera feeds. A number of

different approaches have been proposed in the literature for addressing the problem of multi-

camera detection and tracking [122]. These techniques range from: feature matching, camera

calibration and/or 3D environment modelling [123], to motion-trajectory alignment, etc.

In addition, some of these approaches have also been addressed in different application areas

including surveillance [124] and sports etc. The problems of multi-target and multi-camera

tracking can be treated as mutually exclusive and are often complicated due to their individually

characterized challenges [125]. However, the joint problem is typical to most real-world scenarios

such as in video surveillance. In this context, despite real-world constraints, detection and

tracking requires dealing with occlusion; illumination variations, background clutter, calibration

and data association. Recent research has indicated that most existing modelling techniques,

such as motion flow models, appearance models and hybrid models, have all been extended

from conventional multi-target tracking into multi-camera multi-target tracking with specific

data association constraints.

2.7.2 Object Classification in Clouds

When object classification is performed on large scale data, it requires large computational

resources. Leveraging cloud infrastructure using map-reduce framework as shown in Figure

2.16 to fulfil the needs of high computational resources has been a preference in both academic

and industrial sectors. Researchers have also made use of in-memory cluster based on Spark to

perform classifier training in parallel on multiple nodes, as shown in Figure 2.17.

An approach based on SIFT and Gabor descriptors was proposed by Matsuda et al. [126] to

recognize food images. These features were clustered by K-means algorithm [127], to achieve

an acceptable recognition rate. To achieve scalability and performance gains, cloud computing

paradigm was utilized. It was concluded that for small amount of data, cloud computing
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Figure 2.16: Video Analysis on the Cloud

performance was not very promising. This is because of the fact that cloud needs to prepare

job runtime environment before a job is served. However, for large datasets cloud processing

efficiency is far better because clouds are designed to support these kinds of workloads.

A cloud computing based object recognition system using two dimensional principal component

analysis was implemented on a Hadoop based cloud system. However, this approach was less

effective for object images with multi-illumination. The massively parallel cloud computing

based approach [128] was also used to process astronomical images where a parallelised mapper

without applying a parallelised reducer was used. However, there was no improvement in the

image processing routines. Another cloud based system for analyzing large scale videos was

developed using the MapReduce based clusters [129]. A cluster of six computers was created

and video processing algorithms were ported to it. The execution time of algorithms was

reduced as compared to a single system. Since the experiments were executed on a small

dataset, scalability was not addressed. The improvement in accuracy was also not the focus of

this work.

2.7.3 GPUs based Cloud Computing

The use of Graphical Processing Units (GPUs) as a high performance general purpose comput-

ing resource was commenced in 2009. The initial study was based on the implementation of



45

Figure 2.17: Deep Learning Model Training in Cloud

large scale unsupervised machine learning algorithms, Deep Belief Networks [130] and Sparse

Coding [131] on GPU resources. These studies unfolded the power of GPUs to the research

community by achieving a speedup of 5 to 15 times as compared to the CPU implementations.

A parallelised object detection approach achieved a speed-up of 1.91 times on GPUs [132].

A parallelised motion estimation approach using a full search algorithm on GPUs achieved a

speedup up of around 50 times than its CPU implementation [133].

Studies such as [134] proposed a GPU implementation of Haar Cascade Classifier algorithm

and achieved a speedup of 13.8 times than a CPU implementation. Another Haar based face

detection approach on GPUs [135] achieved 2.5 times speedup as compared to its CPU based

implementation. These approaches provide a good overview of previously proposed video pro-

cessing platforms and algorithms. However, most of the above cited approaches lack scalability

and agility. These are also computationally expensive as the dimensionality of features is very

high.

Furthermore, studies such as [136] and [137] have suggested the use of FPGAs as a hardware
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prototype to improve the performance of the deep learning based neural networks. FPGAs have

proved to maintain less power consumption while improving the performance of deep network.

[138] have proposed a scalable accelerator architecture which three pipelined FPGA units to

improve the throughput of the deep network.

2.8 Summary

This chapter provided a survey of most of the state-of-the-art approaches that have been used

for object detection and classification. The surveyed approaches are divided into three main

categories and a taxonomy of these approaches is provided. The approaches related to each

category are then explained with their strengths and weaknesses. A brief survey of the existing

classifiers is also provided. We also considered the approaches which have been used on the

cloud infrastructure in both time and spatial-frequency domains.

Admittedly, the state-of-the-art provides good performance in some situations but on the other

hand they have their own limitations. Most of these approaches address challenges that are

prone to still images and are expensive in terms of time and money. These approaches work in a

serial fashion with a large number of features which are necessary for accurate classification but

this slows down the process. Also, the training of the classifier is a time consuming task because

they require a large number of training examples which must be collected and labelled manually.

These training examples enable the system to capture variations in object appearances but also

burden the training process.

Existing feature extraction and classification approaches often provide false detections and lack

accuracy in complex situations. These approaches also show less resilience to changing illu-

mination conditions, require huge computing resources and consume more time. Furthermore,

these approaches are slow due to limited availability of computing resources and do not scale

well. Additionally, in order to gain detailed insights, complex algorithms such as deep learn-

ing algorithms need to be employed which further give rise to several challenges in terms of

computational power, data storage and hyper-parameter tuning of these networks.
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Survey of the recent literature in this chapter helped to identify the potential research gaps

and challenges. As compared to existing literature, we propose a video analytics system that

addresses most of these challenges and performs object classification under controlled and

uncontrolled environment requiring minimum human interaction. We have proposed a workflow

which automates the object classification process. We have also made the use of spatial-

frequency domain features which helped to improve the accuracy of the classification even

under uncontrolled conditions. We have also proposed a mathematical model for the hyper-

parameter tuning of the model which further improves the accuracy and performance of the

classifier.

The following chapter will explain the proposed video analytics workflow to perform object clas-

sification. A set of components orchestrated in a workflow will be proposed to perform object

classification. Each component is cascaded, resulting in an integrated system which attempts

to minimize human intervention by executing each component of the workflow automatically.



Chapter 3

Video Analytics Workflow

3.1 Outline

Chapter 2 reviewed the state-of-the-art work in the context of video analytics. A number

of approaches focusing on object detection and classification for video streams were reviewed

in detail. The cloud-based frameworks used for the execution of detection and classification

algorithms were also reviewed. Existing approaches relevant to the proposed work were critically

analysed and their weaknesses and shortcomings were highlighted. This critical analysis of the

existing approaches helped to highlight the research gaps where further research could be carried

out.

In chapter 3, we provide an in-depth description of the proposed video analytics workflow. We

propose a set of components orchestrated in a workflow to perform object classification. Each

component is cascaded resulting in an integrated system which could serve as an object detection

and classification pipeline for cloud-based video analytics. The proposed system attempts to

minimize human intervention by executing each component of the workflow automatically,

reduces computation time and enables the processing of large number of video streams.

48
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3.2 Introduction

The workflow of the proposed video analytics system is designed to automate and speed-up the

processing of large number of video streams. The video streams are automatically fetched from

the cloud storage and processed intelligently for object classification. All the components of the

workflow are executed automatically one after the other. There is no manual labour required

for this work. Completion of one task automatically triggers the execution of next task which

reduces human intervention. The following are the main components of the proposed workflow

of our video analytics system, as illustrated in Figure 3.1.

Video Decoding: The video streams are by default in the encoded format with H.264 format

having an fps of 25, data rate and bit rate of 421 kbps and 461 kbps respectively. These

are decoded to generate individual video frames which contain side, front and rear views of

objects. The total number of decoded video frames is directly proportional to the duration of

video stream being analyzed. For a video stream of 120 seconds length, 3000 video frames are

generated.

Object Detection: The proposed workflow of our video analytics systems is built upon object

detection and classification. The object detection refers to the detection of all instances of an

object belonging to a known category such as faces or cars. Usually, a video contains a number

of objects. These objects can reside at any location within a frame. Exploring these locations of

objects comes under the category of object detection. Object classification, on the other hand,

refers to the identification of detected objects. Labels are assigned to the detected objects

during this process. A video stream and some known labels are provided to the system. It then

assigns the correct labels to the detected objects in a video stream.

Object Extraction: The object detection and extraction procedure is performed on all the

frames one by one. The object is first detected in the frame. This provides the exact location

of object in the frame. It is cropped and saved as a separate image, so that the classification

step will have to process a small size image. The cropped or extracted object is then passed to

the subsequent object classification component.
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Figure 3.1: Video Analytics Workflow

Adaptive Frame Sampling: We have introduced the concept of adaptive frame sampling

in which the frames which do not contain any object in them are discarded. This reduces

the amount of video frames to be processed and only those frames are retained which contain

objects in them. Also, the consecutive video frames in a video stream are more likely to contain

the same object with the same pose and lightning conditions. Due to constraints on motion,

no change can occur in such a short interval of time. For consecutive video frames we took 5

frames out of 25 per second as the fps is set to 25. So we have a frame sampling rate of 5. The

frame sampling helps in discarding redundant frames and leads to less data processing time.
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Features Extraction: The extracted objects from the video streams are then processed via

the features extraction component, which generates local pattern features of all the extracted

objects. These local patterns serve as features which can be used for the classification of an

object. These features represent the extracted objects in such a way that they become highly

discriminative to various grey-level changes in the objects. We have proposed the optimization

of both shallow and deep learning features at this stage. The details of the deep learning based

features will be described in chapter 4 of this thesis.

Object Classification: The classification component first analyses the marked input object

which is to be classified. It extracts and stores features from it. This marked object is then

compared with all the other objects present in the video frames. If the same object is identified

in any other frame, its instance is updated and its corresponding time and location is saved. If

the comparison fails, then it means that the marked object is not present in the video stream

which is currently being processed.

The proposed video analytics workflow based on cascaded detection and classification is an

efficient way to automate the video analysis process and to minimize human intervention. The

object detection provides a reference for the location of the object which can be tracked in the

subsequent frames.

It is cropped and saved as a separate image, so that the classification step has to process a

smaller sized image. The object is then passed on to the subsequent object classification phase.

We have proposed an object matching algorithm in which the target object is compared with

the candidate objects for classification. Each component of the workflow is described in more

detail in the next section of this chapter.

3.3 Workflow Components

This section provides a detailed description of the components of the proposed system. The

operations employed to process video streams to support object detection and classification are
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Figure 3.2: Relationship between Object Detection and Classification

also described. The proposed system provides scalable and automated classification of objects

in a large number of video streams.

The proposed video analytics workflow applies multiple algorithms for detection and classifi-

cation. Figure 3.2 shows the relationship between detection and classification algorithms. The

algorithms are employed in a workflow that the results produced by one algorithm are processed

further by the following algorithm. The objects of interest are extracted from the video frames

by detection and are then cropped around the area of detection.

The rest of the frame which contains unwanted information is discarded to save processing

time and resources. This algorithm independently operates on all the frames in a sequence.

This results in the extraction of all the desired objects from all the video frames. The local

patterns of each extracted object are then generated and stored in the associated buffer. Object

matching is then performed on the generated local features. The generated results are then
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stored in the database. In the next subsections we provide more detail on each component of

the workflow.

3.3.1 Video Decoding

Video decoding is the first component of the proposed video analytics workflow. The video

streams are first fetched from the physical storage and then decoded to extract individual video

frames. The recorded video streams are encoded with H.264 encoder [139] to save storage space.

Each video stream is usually recorded at 25 frames per second with a data rate and bit rate of

421 kbps and 461 kbps respectively.

We have used FFmpeg library to decode the video streams. It involves fetching a video stream

and extracting individual frames from it. However, it is an I/O bound process and reading and

writing large number of video frames can be a time consuming process. There are almost 1800

video frames for a video stream of one minute length.

The number of decoded video frames is also dependent upon the length of video streams being

analysed. These frames are then transferred to the processing component for processing. Each

frame is processed individually for object detection and recognition. The machine learning

algorithms are applied on each frame for detection and recognition purposes.

3.3.2 Object Detection

The decoded video frames are then transferred to the object detection component. The object

detection component processes all the frames one by one. The detection of moving object from

the video frame provides the exact location of the object in the video frame. The detection

process is performed on individual video frames and have no dependence on other video frames.

Hence, each frame is processed independent of one another.

We have used the already trained frontal face Haar Cascade Classifier [20] for the detection of

human faces from video streams as it does not require to be trained separately. The already
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Figure 3.3: Original and integral image

trained classifier allows to save the computation cost of training. The computational cost of

the detector is highly dependent on the number of features being evaluated. The small number

of features means low computational cost but the classifier will also be less accurate.

A classifier with more features results in a higher classifier accuracy. It was noted during the

experiments that a frontal face classifier built on 25 feature stages provides a detection rate of

95 percent. The computation time depends on the resolution of the video frame. So there is

a trade-off between the computation cost and accuracy of the classifier. The next subsection

provides brief but concise description of Haar Cascade Classifier.

3.3.2.1 Haar Cascade Classifier

The implementation of the Haar Cascade Detection as shown in Algorithm 1 is based on the

extraction of haar features from the image. Haar features are computed as single values gathered

by computing the sum of pixels under the white rectangle region subtracted by the sum of pixels

under the black rectangle region. These regions are adjacent to each other and possess same

shape and size.

Integral Image: The implementation of the integral images allows the features to be com-

puted very rapidly. The integral image can be computed by adding all the pixels above and

to the left of a specific location. Then by using four array references, the integral image is

calculated. Figure 3.3 shows an original image and its equivalent integral image.

Adaboost: Since the number of features generated by Haar is quite large, it becomes necessary
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Algorithm 1 Haar Cascade Classifier

1: procedure ComputeHaar
2: for i← 1 to number of scales in pyramid of images do
3: Downsample image to create image(i)
4: Compute integral image, image(ii)
5: for j← 1 to number of shift steps of sub-window do
6: for k← 1 to number of stages in cascade classifier do
7: for l← 1 to number of filters of stage k do
8: Filter detection sub-window
9: Accumulate filter outputs

10: if accumulation per stage fails then
11: Reject sub-window as face
12: Break K loop

13: if sub-window passes all stages checks then
14: Accept sub-window as face

to adapt a feature selection approach to reduce the dimension of features. This dimension

reduction can be best achieved by Adaboost [140] which is a learning algorithm and works

in a cyclic process. It starts by keeping a set of weights that are distributed uniformly over

every training example. Then it selects one feature in its first cycle which gives best recognition

performance and defines a weak classifier against it. The subsequent cycles assign higher weights

to the training examples which were misclassified by the first weak classifier. This enables the

newly chosen feature to concentrate more on misclassified examples. This process continues

and ultimately ends upon a strong classifier which is actually a linear combination of all the

weak classifiers selected during each cycle.

To further improve the algorithm, it is cascaded. As most of the image area is non-face region

it groups the features into different stages of classifiers. The region that passes all stages of the

cascaded classifier is an object. When an object is detected the area of the object can be used

by the object recognition algorithms to match the object for identification.

Image Pyramid: In order to make the classifier scale-invariant, the frame pyramid approach

[141] has been used. The pyramid represents the same frame in multiple scales and enables the

detector to be scale invariant. Objects with varying image sizes can easily be detected through

the pyramid approach. An object pyramid can be constructed by using the down-sampling

approach which down-samples the frame by one scale in each iteration. Integral image for each
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Figure 3.4: Extracted faces from video streams

scale in the pyramid is then calculated to speed up the process of pixels sum. Integral image

[142] helps to compute the summation of pixels present in a rectangular region by utilizing

only four pixel corners. This approach of using integral images is highly efficient especially

for the cases in which pixels sum of many rectangular regions of same image are needed to be

computed. Since the detector uses the sliding window approach and pixel sum for each shifted

window is required, this approach highly reduces the complexity.

The sliding window slides pixel by pixel on the whole frame in search of a face. The area under

the sliding window is passed to the cascaded classifier. Since most of the image area is a non-

face region, the features are grouped into different stages of classifiers. The region which passes

all stages of the cascaded classifier is a face. The area under the sliding window is required

to be passed through all stages of the cascade classifier. If at any stage, the input region is

unable to pass the stage by not meeting the required threshold, it is immediately rejected. If

the region passes all the stages successfully, then it is considered to be an object.

3.3.3 Object Extraction

The detected objects from the video frames are then cropped around the area of detection to

extract detected objects as depicted in Algorithm 2. This is an automated process and does

not require any manual labour. The detection of desired object from the whole video frame and

its extraction through cropping is an important step for the proposed video analytics workflow.
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Algorithm 2 Object Extraction

1: procedure ObjectExtraction
2: for i← 1 to number of frames in the video stream do
3: [xmin ymin width height] = ComputeRectangle(i)
4: Coordinates = [xmin ymin width height]
5: CroppedObject = Crop(image(i), Coordinates)

This helps to narrow down the frame processing area for object classification by eradicating

those areas from frames which do not contain objects. Figure 3.4 shows some of the extracted

faces from the video streams.

The extraction of desired objects from the video frames through detection helps to improve

the performance of the system in two ways: 1) since the frame area is reduced, the analysis

algorithm has to now process a smaller sized frame as compared to original one. This reduces

the processing time of individual frames and in turn reduces the overall processing time of the

whole video. Also, it is much easier and appropriate to scale and normalize the small scale

objects and apply transformations (flip, rotate, skew) on it. 2) As the frame has been narrowed

down to only object(s) of interest, by removing the unwanted area of the frame, it now contains

only the desired object. The illumination effects and noise which have the possibility to be

present in the unwanted area will not reflect in the object recognition process.

3.3.4 Adaptive Frame Sampling

The detection of desired objects from video streams helped to perform adaptive frame sampling

in our proposed video analytics workflow. The word sampling is used here in terms of down

sampling the number of frames. The idea is to discard the frames which do not contain any

object in them. In this way we reduce the amount of video frames to be processed and retain

only those frames which contain objects in them.

In a video stream, consecutive video frames are more likely to contain the same object with

same pose and lightning conditions. No change can occur in such a short interval of time.

Or, if there is no object, the consecutive frames will also have no object in them. The frame

filtering/sampling by detection helped to discard the redundant frames as shown in Algorithm
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Algorithm 3 Adaptive Frame Sampling

1: procedure Sample Frame
2: Initialize FrameCounter = 0
3: Initialize FrameConditionCounter = 0
4: for VideoStream ! = NULL do
5: if FrameCounter! = 0 then
6: FrameConditionCounter = 0;

7: if FrameCountermod25 = 0 then
8: FrameConditionCounter = 0;

9: FrameCounter++;
10: FrameConditionCounter++;

3 and leads to less data transfer which in turn reduces the training time.

For consecutive video frames, we took 5 frames out of 25 per second as the fps is set to

25. Therefore, we have a frame sampling rate of 5. The frame sampling helps in discarding

redundant frames and leads to less data processing time. In the next section, we describe the

feature extraction component of the proposed workflow.

3.4 Feature Extraction

The feature extraction component generates features for all the extracted objects. These fea-

tures are used for classification of an object. These features represent the extracted objects in

a way that they become highly discriminative and invariant to various gray-level changes in the

objects. The proposed video analytics workflow fundamentally consists of local binary patterns

and local ternary patterns. This component is further extended with the optimization of deep

learning based features which are explained in chapter 4.

3.4.1 Local Binary Patterns

We have used LBPH algorithm [143] for the generation of local pattern features. The algorithm

makes use of the local binary patterns in order to generate feature vectors. LBP features,

as shown in Algorithm 4, are computed by dividing the examined window into cells. Each
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Algorithm 4 Compute LBP on CPU

1: procedure ComputeLBP
2: FrameHeight← number of rows
3: FrameWidth← number of columns
4: for i++;i<FrameHeight do
5: for j++;j<FrameWidth do
6: CentreP ixel← frameData[i][j]
7: n← TotalNeighbourPixels
8: for npixel← 1 to n do
9: npixel← NeighbourPixels
10: if npixela > CentrePixel then
11: npixel← 1
12: else
13: npixel← 0

14: FrameData[i][j]←
n∑
i=1

NeighbourP ixels[i][j] ∗ 2n

15: Replace frameData

cell contains a sub-block of 3x3 pixels. Then, each pixel in the sub-block is compared to its

neighbouring pixels. If the value of centre pixel is greater than its neighbour pixel, 1 is stored

at the location of that pixel. If the values of centre pixel is less than the neighbouring pixel,

then the gray value of that pixel is replaced with 0.

Binary Patterns: This procedure makes the sub-block a binary block containing 0 and 1

depending upon its pixel values. This is known as the labeling of pixels. These labelled pixels

generate a binary pattern which is converted into a decimal value. The gray value of centre

pixel is then replaced with the decimal value. This procedure is repeated on the whole image

and an LBP image is obtained. Then, the histogram is calculated and normalized over the

frequency of each number occurrence. These normalized histograms give a feature vector of the

window.

In order to perform face recognition, the face image is divided into multiple blocks or regions.

For each block or region, the LBP histogram is computed as explained above. The feature

vector of the whole image is a combination of all the LBP histograms of all regions in an image.

Figure 3.5 shows the original faces and the LBP computed faces from video streams.

Uniform Patterns: We have used the extended version of the local binary pattern operator

which makes use of uniform patterns. These uniform patterns help to decrease the size of
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Figure 3.5: Original and LBP faces

the feature vector. Since we are calculating the local binary patterns of a large dataset, the

use of uniform patterns helps to lower the computation cost. Uniform patterns work on the

phenomenon that some patterns occur more frequently than other patterns.

A pattern is said to be uniform if there are a maximum of two bit-wise transitions from 1 to 0

or vice versa. The patterns 01110000 and 11001111 have two transitions and are, thus, uniform.

These uniform patterns are used during the computation of LBP labels with a separate label

for each uniform pattern. The rest of the non-uniform patterns are labelled with a single label.

Local Ternary Patterns: Local Ternary Pattern feature [144] is an extension of LBP. In

LTP, the pixel difference between central pixel and neighbouring pixels is encoded into a ternary

code. This ternary code is further split into positive LBP and negative LBP to reduce the

dimensionality. This encoding of pixel difference into a separate state makes it more robust

to noise. A pattern histogram, like in LBP, is then created by using the ternary values of

neighbouring pixels. LTP features are more robust to noise than LBP but loss of information

occurs when splitting into positive and negative LBPs. Also, redundant information resides in

the histograms of both LBPs as they are strongly correlated. The next section explains the

object classification process from the extracted features.
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3.5 Object Classification

The video analytics systems consist of a large set of features. This large feature set mostly con-

tains redundant information. This redundant information does not play any role in increasing

the accuracy of the system, but, on the other hand, it increases the processing time. A large

amount of memory is also wasted by these redundant features.

Dimensionality reduction is usually employed after feature extraction which plays an important

role in reducing the processing time and memory usage of any video analytics system. Another

reason of using the dimension reduction method is to remove correlation between features. We

divide this section into two subsections. In the first subsection we describe the dimension reduc-

tion approaches used in this thesis and the second subsection describes the object classification

process.

3.5.1 Dimension Reduction

Dimension reduction approaches help to select features which are highly uncorrelated. The

reduction in dimensionality should be carried out in a proper mathematical way to avoid sig-

nificant loss of useful information. This removal of redundant information is normally termed

as dimension reduction. The goal of dimension reduction methods is to minimize the density

of data and to bring data in a representation which is more understandable while retaining the

same information. After reducing the features dimensions, they should be used for classification.

An illustration of dimension reduction can be seen in Figure 3.6.

Broadly, dimension reduction methods can be divided into two categories. First category

contains methods that project the high dimensional features onto a low dimensional space. The

basis of these methods are techniques from Linear Algebra. However, the projected metrices

obtained from these methods are quite dense as they do not suppress the features which are

unnecessary or irrelevant. Infact, it assigns them lower weights depending upon the contribution

to the final decision. This makes the resultant feature-set quite dense as compared to the

second category which is relevant feature selection. Most commonly used discriminant subspace
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Figure 3.6: Dimension Reduction

projection methods include Principal Component Analysis (PCA) [27], Partial Least Squares

(PLS) [145] and discriminative topic models [146]. Algorithm 5 shows the procedure of Principle

Component Analysis.

In the relevant feature selection category, the objective is to reduce the set of features by

getting rid of unnecessary or irrelevant features without compromising on accuracy. Discarding

irrelevant or unnecessary features helps to achieve speedup in the classification process while

maintaining accuracy. This is because noise is removed and emphasis can be made on the parts

that are helpful for recognition. Most commonly used feature selection methods include L1

regularization [147], greedy selection based on boosting [148] and weight truncation [149].

Method Selection: Both dimension reduction and feature selection methods can be used to

enhance the performance. Both the methods have their own advantages. The feature selection

method has the advantage that it is simple and it can easily be interpreted. In this method,

weights are usually assigned to the features based upon their contribution. All these weights

are assigned to the features individually. Depending upon these weights, good features can be

selected and the remaining features with lower weights can be discarded. This process ends up

with a small number of features as compared to the original ones along with high weights.

However, this method has its own disadvantages. During the feature selection process, the
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Algorithm 5 Principle Component Analysis

1: procedure PCA
2: O ← Obtain the feature matrix
3: Compute mean and subtract the mean from each column of O
4: CV ← Compute the covariance matrix Cov(x)
5: Compute Eigen Vectors (u1, u2, . . . un)
6: Compute Eigen Values (k1, k2, . . . kn)
7: Validate eigen vectors and eigen values
8: PC’s ← Eigen vectors with largest eigen values

Figure 3.7: Object Matching

correlation between the features is not taken into account. This correlation between the features

is of great interest for many classification algorithms. Another disadvantage of this method is

the inability of selection of relevant features. The weights assigned to features which are highly

correlated to each other are almost the same which leads to the fact that most relevant features

are left off.

The dimension reduction on the other hand, does not have such drawbacks and it also provides

a way to escape from the problem of curse of dimensionality [150]. By projecting the high

dimensional data onto the low dimensional space, statistical relationships between the features

can easily be studied. However, interpretability is always an issue in dimension reduction. As

the methods in both the categories complement each other in advantages and disadvantages,

we have employed the methods from both the categories to yield a better overall performance.

Correlation between the features can successfully be figured out by dimension reduction but

it fails to remove irrelevant features. The feature selection on the other hand fails to find

correlation between features but performs well when the features are fully explanatory. So

using both feature selection methods and dimension reductions according to the requirements

of the video analytics system leads to good performance results.
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Algorithm 6 Object Matching

1: procedure Compute Similarity Score
2: Compute LBP Histogram of marked object
3: Compute LBP Histograms of Objects in Video Streams
4: for all objects in video streams do
5: Compute Histogram intersection of Marked Object with Objects in Video Streams
6: if IntersectionResult > 0.9 then
7: Object Found
8: else
9: Object Not Found

3.5.1.1 Object Matching

In order to perform correct classification, a good feature description as well as a good similarity

metric is required. State-of-the-art techniques can learn a dataset-specific metric. By learning

a dataset-specific metric, the system learns the underlying regularities of data which helps to

perform a good classification and improves performance. Different distance-based similarity

measures have been used in the literature. Histogram intersection and Euclidean distance are

the most commonly used distance measures. Many approaches also used Pearson Correlation

Coefficient, Chi-squared and L2 measures as distance measures.

In the proposed video analytics workflow, an object matching algorithm, as shown in Algorithm

6, is applied on the local patterns of detected objects for classification. Object matching is

performed by comparing the detected object features with the features of a marked object.

This comparison of marked object is made with all the objects. Each comparison generates a

similarity score of the marked object and the detected object.

The histogram intersection distance measure has been used to generate the similarity measure,

as shown in Figure 3.7. Depending upon this similarity measure of two object features, classifi-

cation decision is made. The proposed object matching algorithm has proved to be generic and

is not adapted to any dataset. It is capable of identifying objects from the video streams with-

out requiring any complex similarity metric-learning algorithm, any other supervised learning

model or any outside data from other sources. The histogram intersection can be calculated

as:
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Figure 3.8: Visualization of matching process

“D(S,M) =
B∑
b−1

min(Sb,Mb)” (3.1)

where “S” and “M” are a pair of histograms of two video frames containing “B” bins.

3.5.1.2 Matching Scores

Each comparison generates a score of each individual registered in a database, as shown in

Figure 3.8. These scores obtained after performing the histogram intersection determine the

recognition of a marked person which was being searched in the video streams. We have used a

threshold of 90 percent match in our experiments. We obtained over 90 percent accuracy rate

in case of matching individual objects. The matching scores for unmatched individuals is 70

percent or below. The matching scores along with locations and time of presence are stored in

the database.

The performance of any object classification system can be affected by the facial structure

constraints (gender, ethnicity) and the viewing parameters such as illumination and viewpoint.

In addition, a number of perceptual complications can occur due to the movement of objects

in video streams. The facial movements of a person can be classified as rigid or non-rigid. The
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rigid movements include tilting, nodding or shaking around the vertical axis. These movements

can change the angle of a face from a static point. On the other hand, non-rigid movements take

place due to facial expressions and eye-gaze during speech. These movements can distort the

identifying features of the face. A smiling facial expression can strongly differ from a surprised

facial expression.

This difference occurs due to the relative change in position of the eyebrows with respect to

nose, mouth or other features. Converting an image from low resolution to high resolution

by applying a number of pre-processing steps including normalization, histogram equalization

and object scaling tackles these issues. It was observed during the experiments that because of

the discriminative power of the proposed system, it is capable to perform well at low level of

perceptual complications. The proposed system has shown performance for various rigid and

non-rigid movements by providing high accuracy rates.

3.6 Summary

In this chapter, we presented a video analytics workflow for object detection and classification.

Different stages of the proposed workflow are explained in detail and the connection between

each stage is described. We also explained the dimension reduction approaches used in this

work and the matching process which is used for classification. The proposed system requires

minimum human interaction and provides automated object classification from large number

of video streams. The system is also capable of coping with the challenges of increased volume

of data.

In the following chapter of this thesis, we present cloud-based blur and illumination invariant ap-

proach for object classification from image and video data. We explain the use of Bi-dimensional

Empirical Mode Decomposition (BEMD) for feature extraction and provide the details of our

feature fusion strategy. We discuss the theoretical and implementation details of the proposed

approach. We also provide the details of the optimization strategies and techniques for our

deep learning based video analytics system in the next chapter.



Chapter 4

Feature Fusion based Video Analytics

4.1 Outline

Chapter 3 discussed a video analytics workflow for efficient processing of large number of

video streams. The proposed workflow reduced human intervention by automatically executing

cascaded algorithms and enabled the processing of large number of video streams. Different

components of the proposed workflow were explained in detail and the connection between each

component was described.

In chapter 4, a cloud-based blur and illumination invariant approach for object classification

from image and video data is presented. The Bi-dimensional Empirical Mode Decomposition

(BEMD) has been adopted to decompose a video frame into Intrinsic Mode Functions (IMFs).

These IMFs further undergo first order Reisz transform to generate monogenic video frames.

The analysis of each IMF has been carried out by observing its local properties (amplitude,

phase and orientation) generated from each monogenic component. A feature fusion strategy

is then adopted to perform classification.

We further propose an optimal tuning of the deep learning model to classify objects from video

streams. The tuning of the hyper-parameters is optimized through a mathematical model for

efficient analysis of video streams. The system is capable of enhancing its own training data

67
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by performing transformations including rotation, flip and skew on the input dataset making it

more robust and self-adaptive. The use of distributed training mechanism rapidly incorporates

large number of distinguishing features from the training dataset - enabling the system to

perform object classification with least human assistance and external support.

4.2 Introduction

As mentioned in the problem description in Chapter 1, the video analytics systems have to

process data that contain a number of challenges including illumination and blur. These chal-

lenges mostly occur due to motion, out of focus, or atmospheric turbulence. Also, since these

systems operate under uncontrolled lighting conditions, they are also prone to illumination

effects. Rotation angle of the objects being monitored also poses many challenges.

The accuracy of any object classification system is highly dependent on how these challenges

are overcome. A good counter-measure to these challenges can lead to more accurate results.

However, video de-blurring and de-illumination are resource and time consuming tasks and

often bring in new artifacts [18]. It is, therefore, desirable to perform classification with a

procedure that is invariant to blur and illumination.

Various approaches have been proposed in the past to tackle the problems of illumination and

blur. The most prominent among these approaches are built on top of insensitive moments

[151], color constancy [152] and Fourier phase. But these approaches are designed to perform

classification globally and do not take into account the local properties of objects. Various

methods based on the magnitude, phase and spectral information [153] were also designed but

these methods focused on texture analysis whereas blur and illumination invariance was not

considered as a design criterion.

We propose Empirical Mode Decomposition(EMD) based feature fusion strategy to overcome

the challenges of illumination and blur. Figure 4.1 shows the workflow of our proposed system.

We split the input dataset into its Intrinsic Mode Functions (IMFs) by using EMD. Reisz

transform is then applied on the generated IMFs to generate the monogenic images.
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Figure 4.1: Workflow of the Feature Fusion Strategy

The local properties of the monogenic images including phase, orientation and amplitude are

then studied and analyzed to have a high accuracy rate with the CNNs. It has been observed

that the orientation property of face contributes to the higher accuracy rates. Inspired by this

fact, we further propose a feature fusion strategy based on the orientation property of the first

two IMFs which leads to further accuracy improvements.

In this chapter we have shown that only first two or three IMFs are sufficient to perform

classification under challenging conditions with high accuracy rate. This is advantageous in

two ways: i) Reduced feature extraction time as compared to other methods. ii) Illumination

and blur invariance, since only lower IMFs are sensitive to variety effects. Then, we used the

orientation property derived from each IMF using first order Reisz transform and showed that

it provides good results than the phase or amplitude properties.

In order to perform classification from the fused features we have used deep learning based

classifier described in Section 4.4. The optimization of the classifier is inspired by a mathemat-

ical model for efficient analysis of video streams. The mathematical model helps to observe the
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effects of different values of hyper-parameters on the deep learning model’s performance . We

have varied the parameters to different values between suitable ranges and selected the most

optimum values to enhance the accuracy of the proposed system. The next section describes

the feature extraction procedure and fusion strategy for blur and illumination invariant object

classification.

4.3 Feature Extraction in Spatial-Frequency Domain

One of the most successful approaches to address the challenges of illumination and blur is

to perform analysis of image or video frames by shifting them from spatial domain to spatial-

frequency domain. In spatial domain, processing of video frames is performed by directly

using the gray values of pixels. Spatial frequency domain allows the processing of video frames

by projecting them on a set of basis functions which are defined by the method itself. This

phenomenon expands the video frame into frequency components with both high and low

magnitudes. For example, in the case of wavelet transform, the mother wavelet generates the

basis functions.

Mother wavelet is shifted and scaled to produce these basis functions. Similarly, in Fourier

domain, basis functions are complex exponentials. Variety of methods exist for the conversion

of spatial domain signal to spatial frequency domain. These methods includes Fourier Transform

[154], Wavelet Transform [155], Wigner distribution [156] and many others.

Since the basis functions are predefined by the methods itself, this makes them infeasible for

non-linear and non-stationary processes. These methods are also not adaptive, neither are they

data driven. Wu et al. [114] proposed an adaptive and data driven method known as Empirical

Mode Decomposition (EMD) which is much focused for image analysis nowadays.

Empirical Mode Decomposition (EMD) doesn’t decompose the data on a-priori basis but the

basis functions are derived from the data. Hence, this approach is data driven and much more

operative on non-stationary data. Non-stationary data is the data whose statistical properties

change with time. EMD considers data as superposition of fast oscillations on slow ones. These
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oscillations are recognized by EMD and a decomposition by utilizing these modes as expansion

basis is made.

4.3.1 Empirical Mode Decomposition

Empirical Mode Decomposition is a fully unsupervised approach. It defines its basis functions

directly from the data and is not dependent on methods. It has been proved to be successful for

biomedical and seismic signals. EMD expands a signal into its frequency components adaptively.

These frequency components are termed as Intrinsic Mode Functions (IMFs) and are defined

by the signal itself. EMD tries to extract highest frequency components from the original input

signal in each mode. It separates the local highest frequencies and stores them into an IMF.

The rest of the IMFs contain the remaining frequencies in the lowest order which ends up in a

residual part.

Empirical Mode Decomposition allows to visualize spatial-frequency characteristics signal by

expanding the parent signal into IMFs. Hilbert transform is applied on the IMFs afterwards

to obtain instantaneous frequency which helps to study the local properties. These signals

which are obtained after applying Hilbert transform are called analytic signals as they have

no negative frequency components. These analytic signals help to obtain local amplitude and

phase of the 1D signal.

4.3.1.1 Two Dimensional Empirical Mode Decomposition

In order to apply Empirical Mode Decomposition on the images Two Dimensional Empirical

Mode Decomposition (2DEMD) or Bidimensional Empirical Mode Decomposition (BEMD) was

introduced [157]. Since BEMD is data driven, it is much more suitable than Fourier or Wavelet

transform for video frames. In this case, Riesz Transform is used instead of Hilbert transform

[158]. Riesz Transform is the generalization of Hilbert Transform. When it is combined with

the image, it produces a monogenic signal which is a local quantitative and qualitative measure

of the image. Local amplitude, phase and direction can be calculated from the monogenic signal
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of each IMF.

Bi-dimensional Empirical Mode Decomposition provides several advantages over spatial domain

analysis. Image features can be extracted easily according to the distribution of local phase or

energy. Only 1 or 2 IMFs are enough to extract the features as these are the highest frequency

IMFs. The feature extraction time is less than the other methods. The illumination and pose

changes mainly appear in the residual part. Also, lower BMFs are sensitive to variety of effects.

This means variety information is mainly contained in lower BMFs. So we can eliminate lower

BMFs and residual to get rid of the variety effects.

4.3.2 Decomposition of a Video Frame

In this research work, we pioneer the use of Empirical Mode Decomposition for video streams.

The EMD decomposes the video frame into its intrinsic mode functions. The video streams are

first acquired by video capturing sources. These video streams are decoded to extract individual

video frames. These video frames are artificially blurred with varying radius. Noise has also

been added to the objects with different PSNR values. These objects are then classified by blur

and illumination invariant feature descriptor. Figure 4.2 shows the approach of our proposed

system.

The input training dataset in our system is represented by X and is given by;

“Training dataset X = x1, x2, . . . , xn” (4.1)

Here, “x1, x2, . . . xn” represents the individual subjects present in the training database. The

value of “n” goes up to 34 for each subject. Each individual subject in the training database

consists of a number of training samples.

Each training sample “i” from each individual subject “x” undergoes Two Dimensional Em-

pirical Mode Decomposition (2DEMD) to have a decomposition into its frequency components

which are termed as Intrinsic Mode Functions (IMFs). This decomposition of training samples
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Figure 4.2: Proposed Approach

into IMFs is adaptive as EMD defines its basis functions directly from the data itself. EMD

generates these IMFs by the sifting process in which the highest frequency components from

the training sample are extracted in each cycle or mode.

Each mode stores the high frequencies as an IMF. These IMFs are stored in decreasing order of

their frequencies and the lowest IMF contains the remaining lowest frequencies. This process

ends up into the residue which contains the remaining lowest frequencies as shown in Algorithm

7. By combining all the IMFs and the residue, original image or video frame can be obtained.

EMD allows visualizing spatial-frequency characteristics signal by expanding the parent signal

in to IMFs.
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“x1 = i1, i2, . . . , in

x2 = i1, i2, . . . , in

x2 = i1, i2, . . . , in

...
...

x34 = i1, i2, . . . , in”

(4.2)

Where, “i1, i2, . . . , in” represents the individual images of each subject present in the training

dataset. The value of “n” goes up to 40 which are the total number of training samples of each

subject.

Algorithm 7 Empirical Mode Decomposition

Input:
Input Dataset x1, x2, , xn, 192 x 168 image size
Width of each image W
Height of each image H
Number of iterations m
Number of IMFs n

Output:
result: IMFs

while !residue do
Let the proto-IMF be x̂(x,y) = x(w,h)
while IMF ¡= 3 do

while !criteria do
Identify local maxima and minima of (w,h)
Find envelop emin(x, y)
Find envelop emax(x, y)
Mean m(x,y)=(emax(x, y) = emin(x, y) )/2
Extract detail h1 = x̂(x,y) - m(x,y)
x̂(x,y) = h1
end

x̂(x,y) -
∑3

j=1 hj(x, y)
end

end

4.3.2.1 Sifting Process

Sifting process is an algorithm which is used to extract these IMFs from the signal. This

algorithm tries to extract highest frequency components from the original input signal in each
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Figure 4.3: Averaged Extrema Surfaces

mode. It separates the local highest frequencies and stores them into an IMF. The rest of the

IMFs contain the remaining frequencies in the lowest order. This ends up into the residue

which contains the remaining lowest frequencies. By combining all the IMFs and the residue,

the original signal can be obtained. The sifting algorithm is defined as follows:

4.3.2.2 Extrema and Envelop Calculation

The sifting process first determines the extrema points from the training sample “k(i, j)” ,

where “i, j” are the dimensions of training sample. These extrema points are connected to

form upper and lower envelops. An average of the upper and lower envelop is calculated to

produce mean envelop “mean(i, j)” and is given by;

“mean(i, j) = (eupper(i, j) + elower(i, j))/2” (4.3)

The two envelopes i.e. the maxima envelope and the minima envelope, are averaged to generate

the local mean envelope. Figure 4.3 shows the averaged extrema averaged surfaces of various

video frames.
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4.3.2.3 ProtoIMF Generation

The mean envelope “mean(i, j)” is then subtracted from the training sample “k(i, j)” to pro-

duce “T1” and is given by;

“T lk = I(x, y)m(x, y)” (4.4)

The whole process is repeated till “T lk” is a two dimensional IMF. When the mean envelope

“mean(i, j)” reaches close to zero then this process is stopped, otherwise it keeps on reiterating.

The residual is obtained by removing the original training sample “k(i, j)” from “T lk”. If the

residual is represented by “Res(i, j)”, it is given by;

“Res(i, j) = i(i, j)− T lk” (4.5)

In order to obtain the next IMF, the whole procedure is repeated on the residual “Res(i, j)” by

considering it as a training sample. Repetition of this process on all the subsequent residuals

results in a number of IMFs in the decreasing order of their frequencies. All the resultant IMFs

and the residual can be grouped together to obtain the original training sample.

4.3.2.4 First Order Riesz Transform

In case of one dimensional signals, Hilbert Transform is usually applied on the generated IMFs

to obtain instantaneous frequency which helps to study the local properties. These signals

which are obtained after applying Hilbert Transform are called analytic signals as they have

no negative frequency components. These analytic signals help to obtain local amplitude and

phase of the 1D signal.

In case of BEMD, Riesz Transform is used instead of Hilbert transform. Riesz transform is the

generalization of Hilbert Transform as shown in Algorithm 8. When it is combined with the

image, it produces monogenic signal which is a local quantitative and qualitative measure of
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Figure 4.4: Amplitude, Phase and Orientation of first three IMFs

the image. Local amplitude, phase and direction can be calculated from the monogenic signal

of each IMF. Figure 4.4 shows the amplitude, phase and orientation spectrums of first three

IMFs.

The Riesz transform in the frequency domain is given as:

“fR(x) = I × (x/2π)x3 × f(x) = h2(x)× F (x)” (4.6)

The 2D monogenic data which is formed by the original image and its Reisz transform is given

by;

“fm(x) = f(x)(I, j)× fR(x)” (4.7)

Let “Xamp” , “Xpha” , “Xori” be the amplitude, phase and orientation spectrums of all the

training samples present in the database. These can be represented as;
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Algorithm 8 Riesz Transform

1: procedure Riesz Transform
2: Compute the Laplacian matrix L of the surface
3: Compute partial eigenvalue decomposition of L
4: Generate Up and Rp through partial eigenvalue decomposition
5: Compute the inverse of the fractional Laplacian matrix L
6: Generate the gradient to produce Riesz Transform

“X1amp = iamp1, iamp2, . . . , iampn

X1pha = ipha1, ipha2, . . . , iphan

X1ori = iori1, iori2, . . . , iorin

...
...

...

X34amp = iamp1, iamp2, . . . , iampn

X34pha = ipha1, ipha2, . . . , iphan

X34ori = iori1, iori2, . . . , iorin”

(4.8)

Here, “xamp” , “xpha . . .xori” represent the amplitude, phase and orientation spectrums of

individual subjects present in the training database.

We propose a feature fusion strategy of the orientation property to represent the input video

frames as a feature descriptor. The feature fusion strategy is performed on the first two intrinsic

mode functions of the orientation property. The two intrinsic mode functions are fused together

in order to have a composite intrinsic mode function which could hold the properties of both

the two IMFs as shown in Figure 4.5 . The fused IMF is a numeric matrix which represents the

combined orientation property. This represents as a feature vector of the whole video frame

and is used for classification to improve the accuracy rates.

Let “XFusedori” represent the fused orientation spectrum and “*” represent the fusion opera-

tion. The fused orientation spectrum of all the subjects is then given as;

“4XFusedori =
N∑
i=1

(x(i)ori1 ∗ x(i)ori2)” (4.9)
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Figure 4.5: Orientation Fusion

This section described the feature extraction procedure through Empirical Mode Decomposition

and explained the feature fusion strategy for blur and illumination invariant object classification.

In the next section we explain and model the deep learning based Convolutional Neural Network

for object classification.

4.4 Deep Learning Modelling

Convolutional Neural Networks (CNNs) have been used recently to perform visual object recog-

nition on video datasets. CNNs proved to be successful on a number of object detection and

classification tasks on large video datasets. They also have the generalization capability and

can be trained on large scale video datasets belonging to different classes.

A Convolutional Neural Network [159] is a kind of multilayer neural network but it has some

additional layers including convolutional and pooling or sub-sampling layers. These additional

layers are then followed to fully connected layers as in standard multilayer perceptron. The

convolutional layers contain a set of convolution kernels. Each kernel is a filter or mask which

is convolved with the image to extract features.

There can be many convolution kernels in each layer. This results in the formation of feature

maps. The pooling layer is next to convolution layers. The purpose of this layer is to subsample

a small rectangular box or feature map taken from convolution layer in order to reduce variance.

A single output from each rectangular block is generated. A number of convolution and pooling
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Figure 4.6: Schematic Diagram of the Proposed Network

layers lead to the fully connected Multi-layer Perceptron (MLP) layer.

An MLP is a standard multilayer neural network. This layer takes all the neurons from previous

layer and connects it to every single layer within itself. CNNs are most suitable for images as

their architecture is designed in a way to take full advantage of the 2D structure. In this case

the input to the convolution layer is a 2D image and kernels are applied to it. The convolution

with the image produces feature maps. Next, the mapping is performed on each feature map.

This further leads to fully connected layers i.e. MLP layer.

We have proposed the architecture of a Convolutional Neural Network for the classification of

objects from fused orientation features. The schematic diagram of the Proposed Network is

shown in Figure 4.6. The hyper-parameters of the proposed Convolutional Neural Network are

further tuned through a mathematical model for optimized performance in the next chapter of

this thesis.

4.4.1 Data Augmentation

The labeled training data used in our system is scarce and in order to enhance it for optimal

performance, we executed transformations on the input dataset including translation, skew,

rotation flip and different levels of contrast variations. The additional training data by using
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transformations increases the accuracy of the classifier. These transformations are generated

by applying affine displacement fields to video frames.

This is achieved by calculating the new location (x,y) with reference to the original location

for each pixel of the video frame. For example, if x(x,y)=1, and y(x,y)=0, it shows that the

new location of each pixel is shifted to the right by 1. For a displacement field of x(x,y)= αx,

and y(x,y)= αy, the video frame will be shifted by α, from the origin point (x,y)=(0,0), where,

α can be any non-integer value. Let T be the set of transformations applied on the training

dataset. The training dataset with transformations is represented as:

TXN = TxN1, TxN2, . . . TxNn (4.10)

Algorithm 9 Training weight vectors on local properties

Input: Input Dataset x1, x2, , xn, 192 x 168 image size

Output: result: Recognition Labels fco ⇐ FullyConnected
result⇐ Softmax(fco)

while epoch r: 1 → R do
while Training image number x: 1 → X do

Compute J hidden activation matrices z1, z2, ..., zj

� g(xk, l + wk, l +Bk, l)

Downsample matrices z1, z2, ..., zj by a factor of 2

� g(↓2 xk, l + wk, l + bk, l)

Calculate weight and bias deltas

� 4Wt, k = LR
∑F

i=1(xi ∗Dh
i ) +m4W(t−1,k)

� 4Bt, k = LR
∑F

i=1D
h
i +m4B(t−1,k)

Calculate softmax activation vector ’a’

� l(i, xiT ) = M(ei, f(xiT ))

Compute error yx − a Back propagate and update network weights

� Wt+1 = Wt − αδL(θt)

end
end
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4.4.2 Classifier Training

The proposed Convolutional Neural Network has been trained on the fused orientation features

of intrinsic mode function. Algorithm ?? shows the training procedure of the network on fused

features. The network learns the weights and activation matrices during training for each layer

of the Convolutional Neural Network.

The extracted objects from the video frames are stored in a multidimensional data structure

provided by an open-source library named as Nd4j [160]. A n-dimensional array (so called

tensors) is created to store the pixel values of video frames. It consumes minimum memory

and supports fast numerical computing for Java. The loading of data into the memory and

training of the network is handled by two separate processes. This makes the data loading

process simple and is supported by the nd4j library.

A dataset iterator is defined to iterate over the data present in the memory. The iterator has

the capability to iterate over the data which is loaded into the memory. The iterator fetches

the data from memory in a vectorised format. The iterator moves to the dataset objects which

contains training examples along with their labels. Each dataset object contains multiple

examples, depending upon the configuration.

The video frame data is also normalized to have the pixel values between 0 to 1. The normal-

ization of data helps the gradient descent optimization approach to converge properly during

network training. The gradient descent requires more than one example at a time during the

training as more examples will help to create a gradient that encompasses more errors than

a single example. A good gradient, when using gradient descent approach, greatly helps to

improve the training, makes the learning consistent and helps to converge to a usable result.

4.4.2.1 Convolutional and Sub-sampling Layers

The network consists of multiple alternating layers of convolutional and sub-sampling layers.

The convolutional and sub-sampling layers can be given as:
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Convk, l = g(xk, l ∗Wk, l +Bk, l) (4.11)

Similarly the sub-sampling layer is given as;

Subk, l = g(↓ xk, l ∗ wk, l + bk, l) (4.12)

Where g(.) represents the activation function which is ’ReLU’ in our system. W and B are the

weights and biases of the system. The convolution operation between input and the weights

of the network is represented by ’*’. The sub-sampling layer contains all the inputs in the

downsampled form. The activation function of the layers is given as:

h = max(0, a)wherea = Wx+ b (4.13)

4.4.2.2 Weight and Bias Deltas

The weight and bias deltas for the convolutional layers are given as:

4Wt, k = LR
F∑
i=1

(xi ∗Dh
i ) +m4W(t−1,k) (4.14)

for bias;

4Bt, k = LR
F∑
i=1

Dh
i +m4B(t−1,k) (4.15)

The weight and bias deltas for the sub-sampling layers are given as:

4Wt, k = LR

F∑
i=1

(↓ xi ∗Dh
i ) +m4W(t−1,k) (4.16)

and the bias for sub-sampling layer;

4bt, k = LR
F∑
i=1

Dh
i +m4b(t−1,k) (4.17)

The loss function in our case which we try to minimize is given by:

L(x) = LR
∑

xi−>X

∑
xi−>Ti

l(i, xiT ) (4.18)

where l(i,xT) is the loss function that we try to minimize during network training. We employed

stochastic gradient descent which tries to reduce the loss function during training. It is given



84

by:

Wt+1 = Wt − αδL(θt) (4.19)

where w is the weight change with respect to the gradient of the loss function and α is the

learning rate. The gradient of the loss function changes rapidly due to the variance present in

our training examples after each iteration, so we apply momentum term to keep it smooth and

is given by:

Vt+1 = ρvt − αδL(θt) (4.20)

Wt+1 = Wt + Vt+1 (4.21)

The convolutional neural network has the softmax layer as the output layer of the network and

optimizes negative log likelihood. This can be given as:

l(i, xiT ) = M(ei, f(xiT )) (4.22)

where f(x,T) denotes the function to calculate output values and ’e’ is the basis vector.

Algorithm 10 Object Classification

Input:
Input Target Object x, 192 x 168 size
Output Target Label T 1-in-k vectors y1, y2, , yt
Number of Trained Patterns R
Similarity Function f(.)

Output:
result: Classification Labels fco ⇐ FullyConnected

result⇐ Softmax(fco)
while Training vector x: 1 → R do

Load the trained classifier TR(x)
Apply pre-processing steps on target object’s sample
Pass the sample through the trained network
Calculate softmax activation vector ’a’ l(i, xiT ) = M(ei, f(xiT ))

Compute similarity index yx − a
Generate the set of possible probabilities i

end
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4.4.2.3 Object Classification

The trained classifier is then used to perform object classification for our video analytics system.

The number of object classes to be determined by the system are represented as:

Y (i) = 1, 2, . . . K (4.23)

where 1,2, . . . K represents the total number of possible classes. Our hypothesis function for

the classification task is given by:

hθ(x) = 1/(1 + exp(−θTx)) (4.24)

where θ represents the trained model parameters that minimizes the cost function. The hy-

pothesis function estimates the probability P(y = k — x) for each value of K = 1, 2, . . . K. The

system then estimates the probability of the class label and output a vector with ’K’ estimates

probabilities. The hypothesis function takes the form:

hθ(x) =



P (y = 1|x; θ)

P (y = 2|x; θ)

· · ·

P (y = K|x; θ)

(4.25)

A sample of the target object, which is to be classified in the video streams, is passed through

the trained classifier after training. The trained classifier returns the probabilities or matching

scores of the possible labels for the object, as explained in Algorithm 10 . The object with the

highest probability (above an empirically determined threshold) indicates the classification of

the object.

4.5 Conclusion

A blur and illumination invariant video analytics system based on Convolutional Neural Network

has been proposed in this chapter. The proposed system overcomes the challenges of blur and

illumination by employing a feature fusion strategy on orientation properties of intrinsic mode
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functions. It has been observed that the orientation property leads to higher accuracy rates.

We further investigated that the feature fusion strategy of the orientation properties of first

two IMFs further improves the accuracy rates.

We further presented a deep learning model based on fused features to perform object classi-

fication from video streams. The system is based on Convolutional Neural Network whose

parameters are optimally tuned for accurate classification of objects. It can enhance its own

training data by performing various transformations including rotation, flip and skew on the

input dataset. The system learns features from large amounts of input data by performing

training in parallel on a multi-node in-memory cluster.

In the following chapter of this thesis, we present the hyper-parameter tuning of the proposed

system and describe the distributed training procedure in detail. The efficient tuning of the

hyper-parameters of the proposed system through mathematical model makes it highly accurate

and robust to classification errors. We have shown the factors that contributed to achieve

high accuracy such as optimal selection of learning rate, regularization, normalization and

optimization algorithms. The design of multi-layer network, including number of layers and

their parameters, also played a major role in achieving high accuracy in the system. We also

present the experimental setup in the next chapter which is used to execute and evaluate the

proposed system.



Chapter 5

Video Analytics Optimization

5.1 Outline

In Chapter 4, a cloud-based blur and illumination invariant system for object classification

from image and video data was presented. The Bi-dimensional Empirical Mode Decomposition

(BEMD) was adopted to decompose a video frame into Intrinsic Mode Functions (IMFs). The

analysis of each IMF was then carried out by observing its local properties (amplitude, phase

and orientation) generated from each monogenic component. A feature fusion strategy was

adopted to fuse monogenic component features to be fed into the Convolutional Neural Network.

A Convolutional Neural Network was then optimally tuned to perform object classification.

Chapter 5 will provide a detailed description of the hyper-parameter optimization, distributed

training and experimental setup that is used to execute and evaluate the proposed system. The

image and video datasets used in the proposed system for evaluation and validation purposes

are also described. The dataset enhancement techniques are also presented along with the

evaluation methodology.

87
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5.2 Introduction

Deep learning has emerged recently as an influential tool to achieve high accuracy and precision

in computer vision related tasks. They also have the generalization capability and can be trained

on large scale input dataset belonging to different classes. However, in the analysis of video

stream data, deep learning algorithms face major challenges such as availability of large amount

of labelled data, fine tuning of hyper-parameters and training time of the deep network.

Deep learning based video analytics systems can involve many hyper-parameters, including

learning rate, activation function and weight parameter initialization. A trial-and-error ap-

proach is mostly followed in selecting these parameters, which makes it time consuming, and

at times, may provide inaccurate results. They also struggle to perform well on the challenging

datasets and their accuracy severely drops, especially for the case of expression and illumination

variant datasets.

The proposed video analytics system is built upon a deep learning model whose optimization is

inspired by a mathematical function for efficient analysis of video streams. The mathematical

model helps to tune and to observe the effects of different values of hyper-parameters on the

deep learning model’s performance. We have varied the parameters to different values between

suitable ranges and selected the most optimum values to enhance the accuracy of the proposed

system.

After presenting the theory, mathematical model and implementation details of the proposed

video analytics system, we also present the experimental setup used to evaluate the proposed

system. We have used the cloud computing paradigm to perform the training of the proposed

video analytics system. Multiple nodes of the cluster have been used to train partial models

on each node. This reduces the training time as compared to training the whole system on a

single node. The parameters of the underlying cluster are finely tuned to achieve maximum

utilization of available resources. This enables the system to perform rapid computation and

helps to process large amounts of data.

The training process is further enhanced by utilizing iterative map-reduce framework instead of
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Figure 5.1: Convolutional Neural Network Architecture

simple map-reduce. We have shown that distributed training by utilizing iterative map-reduce

is an efficient way to reduce the training time of the system. The partial models have been

trained on each node of the cluster and their results are combined on the master node. The

classifier, after training the network, is used further for performing object classification.

In order to evaluate the proposed system we have performed a number of experiments on

publically available image and self-generated video datasets. The dataset is further enhanced

to increase the number of video frames by applying transformations including rotation, flip and

skew. These transformations help to generate more data from the labelled data without bearing

any further labelling cost. More training data helps to expose the deep network against more

training samples and reduces the chances of over-fitting.

5.3 Configuration Model for the Proposed CNN

We present the architecture of our proposed Convolutional Neural Network model in this sec-

tion. The model architecture is designed on the basis of experimentations. The proposed model

provides higher accuracy rates along with high precision. The architecture of the Convolutional

Neural Network model used in the proposed system is as follows: The first convolutional layer
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Table 5.1: Model Configuration

Layer Info. CNN 1
Input Size 1
Layer Size 50
# Parameters 1300
Weight Init. XAVIER
Updater RMSPROP
Kernel Size [5,5]
Stride [1,1]
Padding [0,0]
Activation relu

of the network receives and filters the training examples with a dimension of 192 x 168 x 1 with

a total of 50 kernels as shown in Figure 5.1.

Each kernel has a size of 5 x 5 x 1 and a stride of 1 x 1. Stride controls how the depth columns

around the spatial dimensions are assigned. The following convolutional layer receives and

filters the input with 100 kernels. Each kernel in this layer has a size of 5 x 5 and a stride of 1

x 1. The model configuration of the model is tabulated in Table 5.1.

The kernels of the subsequent layers are associated to the kernels of the previous layers. Each

of these convolutional layers constitute of nonZeroBias. These convolutional layers are followed

by a max-pooling layer with a size of 2 x 2. All of these layers are followed by a fully connected

layer. The neurons in the fully-connected layer are associated to the neurons of the previous

layer. ReLU non-linearity layer follows all the layers of the network. More detailed specifications

of these layers are listed in Table 5.2.

The convolutional layers and pooling layer are followed by the fully connected layers. The fully

connected layers have a total of 4096 neurons in them. The kernels and neurons of the following

layers are connected to the kernels and neurons of preceding layers. We have also added two

response normalization layers which follow the first two convolution layers. There are three

max pooling layers in total which follow the first two local response normalization layers and

the last convolution layer. ReLU non-linearity layer follows all the layers of the network.
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Table 5.2: Layer Configuration

Layer Info. Dense Layer Output Layer
Input Size 7200 500
Layer Size 500 34
# Parameters 3600500 17034
Weight Init. XAVIER XAVIER
Updater RMSPROP RMSPROP
Activation relu softmax

5.4 Distributed Training Model for CNN

The distributed training model of our proposed video analytics system is presented in this

section. The proposed work is targeted to work on large number of video streams. The main

challenges of large scale video analysis involve storage, computation power and memory require-

ment. Therefore, it is deployed on a cloud-based infrastructure. Deployment on the cloud-based

infrastructure helps to cope with these challenges.

Cloud computing is a good approach to tackle the scalability challenge as well. It is achieved

with large scale data centres which are hosted on remote servers. The storage requirement

for large amount of video data is always high. Cloud storage is helpful to meet the storage

requirement. Cloud computing also enables an on-demand and on-the-fly analysis of video

streams.

Also, the system is compute intensive as it is built upon convolutional neural network which

requires large training times. We have tackled this problem by optimizing the code, tuning the

hyper-parameters properly and by introducing parallelism with multiple nodes. Parallelism is

achieved by distributing the dataset into small subsets, and then, passing over these subsets of

data to separate neural network models as shown in Figure 5.2.

The next subsection provides details of parallel and distributed training on the cloud infras-

tructure. We also discuss the tuning parameters of cloud nodes as well as the deep learning

model in the later sections of this thesis.
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Figure 5.2: Distributed Training Procedure

5.4.1 Training Procedure

To achieve parallelism on cloud nodes, the Hadoop MapReduce framework is used. Hadoop

has its own mechanism for storing files termed as Hadoop File System (HDFS). The video

streams are first required to be transferred into the HDFS. The MapReduce framework is used

to analyze video streams by executing object classification algorithms on them. The analysis

results are then stored in the database.

The Hadoop MapReduce framework has a NameNode responsible for load balancing among the

nodes. The Data/Compute Nodes are used for storing and processing the data. The JobTracker

in each compute node is used to track the tasks, and in case of failure, to reschedule the tasks.

The JobTracker is also aware of the data locality and can, therefore, distribute the jobs to the

data nodes, where the data resides. This improves the performance and ensures data locality

during the analysis task.

Each cloud node is responsible for executing a combination of map and reduce tasks. The object

classification approaches are executed by the map task. The map task is also responsible for
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Table 5.3: Configuration Parameters

Spark Configuration Model Configuration
Parameters Values Parameters Values
spark.worker.cores 1 Number of Layers 15
spark.worker.instances 1 nonZeroBias 1
spark.eventLog.enabled TRUE DropOut 0.5
spark.scheduler.mode FIFO OptimizationAlgo SGD
spark.serializer KRYO Activation RELU
spark.rpc.message.maxSize 250 Regularization L2
spark.locality.wait 0 Momentum 0.9
Averaging Frequency 1 Seed 42
Batchsize per Worker 12 Learning Rate 0.0001

generating analysis results by performing classifications on the video streams. The function of

reduce task in our system is to write analysis results on the output file.

The training process starts by first loading the training dataset into the memory. The master

node is responsible for loading network configuration and the initial parameters into the mem-

ory. The master is termed as driver node as well because it is responsible to drive other nodes

of the cluster by distributing parameters among them. The network configuration holds the

information about the division of data into subsets.

5.4.2 Mini-Batches and Serialization

The dataset is divided into various subsets of data. Each subset is further divided into vari-

ous minibatches depending upon the configuration. Training is performed on each subset by

allocating each minibatch to each worker. Since the dataset is large in size, it was not possible

to load the whole dataset into memory at once. So we have first exported the minibatches of

datasets to disk (HDFS) known as dataset objects. Each dataset is then used by each worker to

perform training. Each worker trains a partial model and the averaged results through iterative

averaging from all the worker nodes are sent back to the master node. The master node holds

the fully trained model capable of performing object classification on the test data.

The datasets are exported in batched and serialized form. We have used kryo serialization

to perform serialization of our dataset. This approach of saving the dataset to disk is much
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Figure 5.3: Spawning of Multiple Executors

more efficient and faster as compared to loading the whole dataset in memory. This approach

consumes less memory and reduces split overhead. The dataset object has a number of examples

based on the size of dataset object. Kryo serialization takes the least amount of time to serialize

objects and improves performance. It can serialize objects much quickly and efficiently and

offers more compact serialization than Java. The serialization framework provided by Java has

high CPU and RAM consumption which makes it inefficient for large scale data objects.

5.4.3 Averaging of Trained Parameters

The separation of training data into subsets and then training the model with these subsets of

data by averaging parameters is a feasible approach for our system because we operate with

limited worker nodes in our cloud and the parameters for estimation are also small. We use

the same model for each worker node but train them on different data shards (mini-batches).

We then obtain the gradient for each split of the mini-batch from each model and compute the

overall average using parameter averaging. This technique works faster for small networks as

in our proposed system and is ideal for scenarios involving matrix computations which happens

quite often in Convolutional Neural Networks.

It is also desirable to control the rate at which the parameters are averaged and redistributed

among the nodes. If the rate of averaging parameters is set to low, this can cause an overhead
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Figure 5.4: Stages of Iterative Reduce

in initialization as well as network communication. Similarly, if the rate is set to be very

high, it can degrade performance as the parameters will deviate extensively. In our case the

optimal performance is achieved with a frequency of 16 minibatches. The minibatches are

loaded asynchronously to avoid the delay in loading into the memory. We have configured its

value to be 16 as a higher value can result in more use of memory.

A number of executors are launched during training as shown in Figure 5.3. The executors

access a RDD object in each iteration. All the nodes in the cluster execute analysis tasks

through iterative map-reduce. The iterative map reduce supports multiple map and reduce

operations in an analysis task. These tasks are executed in multiple stages and their further

mappings in each stage as depicted in Figure 5.4 and 5.5.

5.5 Hyper-Parameter Tuning of CNN

Rate of Parameter Averaging: It is quiet important to set the rate of parameter averaging.

If this is too low, this will create overhead in parameter initialization and will cause delay in

network communication. Similarly, if it is high, it will degrade the performance. In the proposed

video analytics system, good performance is obtained with 16 mini-batches. These mini-batches
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Figure 5.5: Operations inside each Stage

are started in an asynchronous fashion which reduces the delay.

Data Repartitioning: An important parameter which is required to be tuned for the training

process is to select when data is to be repartitioned. In order to utilize all the resources of

the cluster efficiently, it is important to select the number of partitions properly. The values

which each partition will hold also need to be configured carefully. We have chosen a value

of 0.6 based on the experimentations as it ensures the correct number of partitions (balanced

partitions). We have not used the default repartition strategy of Spark as it does not ensure

that each partition is balanced.

Locality Configuration: The locality configuration is also defined as the proposed algorithm

has high demand of computation, so single task per executor is executed. It is, therefore, much

suitable to shift data to executor which is free. The default configuration of Spark waits for a

free executor. This requires the data to be copied across the network.

Another important note is that we have avoided the allocation of memory on JVM heap space

by passing pointers for various numerical tasks. It is not required to load the data from JVM

heap to execute operations on it; neither it requires data transmission (processed results) back

to JVM. This helps to avoid the data transfer time and a decrease in overall execution time of

the system is seen. This also avoids memory overhead required for each task.
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Iterative Mapreduce: The iterative MapReduce framework utilized in this work executes

multiple analysis tasks. These analysis tasks are executed in multiple stages and each stage

performs further mapping operations. The analysis tasks can be rescheduled if a task failure

occurs. The Spark context is utilized to load the video dataset and is then stored into multi-

dimensional arrays.

The multi-dimensional arrays represents the data in the form of tensors which are then passed

through multiple layers of Convolutional Neural Network for training. The proposed system is

based on Convolutional Neural Network and is highly iterative so the single pass of MapReduce

does not perform quite well. It fully exploits the advantages of iterative MapReduce and

performs MapReduce operations in a cascaded way (preceding MapReduce becoming the input

to subsequent MapReduce and so on).

Local Response Normalization: We have adopted the Local Response Normalization to

aid generalization. Local Response Normalization simulates the behavior of actual neurons

and generates a competition amongst neuron outputs for big activities. We have added two

response normalization layers which follow the first two convolution layers. The three max

pooling layers follow the first two local response normalization layers and the last convolution

layer. The local response normalization is given by:

b(x,y) = a(x,y)/(k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(a2(x,y))) (5.1)

where a(x,y) is the convolutional kernel’s output and b(x,y) is the output of local response nor-

malization.

Regularization: L2 regularization has been introduced to tackle the problem of over-fitting

which penalizes the network weights and controls them in becoming too large. L2 regularization

adds

λ2
∑
i

θ2i (5.2)

where network weights are represented by theta and lambda is the lagrange multiplier.
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Rectified Linear Unit(ReLU): Instead of using the standard hyperbolic tangent non-

linearity, we adopted ’ReLU’ as suggested by [161]. ReLU is much more appropriate than tanh

especially in case of bigger datasets as the network trains much faster. Traditional hyperbolic

tangent non-linearity does not allow training the system on bigger datasets.

The ReLU non-linearity is also used in [162] and proved to be successful than traditional

saturating neuron models. The ReLU function has a range of [0,infinity], so it has the capability

to model positive real numbers. The advantage of using ReLU is that it does not vanish as the

value of x increases as compared to sigmodal function. The max function is:

“1 if x > 0; 0 if x < 0” (5.3)

Max Pooling: We have used max pooling in the pooling layer to perform sample based

discretization or downsampling of an input representation (feature maps from convolutional

layer in our case). Max pooling decreases the dimensionality, reduces the number of parameters

to learn and also cuts down the overall computational cost.

Learning Rate: The learning rate is set to be 0.0001. This value has been selected carefully

on the basis of experimentation. It is observed during the experimentations that if the learning

rate is set too high, it can cause divergence of the model away from the minimum error. This

can halt the learning process. On the other hand, if the value of learning rate is set to a small

value, it causes slow convergence on an error minimum.

Number of epochs: The learning rate is set to be 0.0001. This value is chosen very carefully

based on the experimentation. A higher value of learning rate can result in the divergence of

the network model away from the error minimum. This will cause the learning process to stop.

A small value of the learning rate leads to a slow convergence on an error minimum.

The number of epochs and iterations are set to be 5 and 3 respectively. Epoch is the complete

pass through our video dataset during the network training. It ensures that the network has

seen each example present in the dataset once. Iteration, on the other, hand is a single update

of the network parameters. Each epoch during the training phase contains three iterations in

our setup.
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Mini-batches of Data: The high volumes of data makes it infeasible to load the data into

the memory at once. So a number of mini-batches of the dataset have been used in order to

tackle the memory requirement problem. As we are working on a large scale video dataset, the

volume of data is quite high and it is not practically possible to store whole data at once in the

memory.

Also, the mini-batches of dataset help to have more updates on the network in one epoch.

We have used a mini-batch of 12 in our work. The mini-batch is large and capable enough to

represent the input video data and contains all the classes of the objects.

Stochastic Gradient Descent: We employed stochastic gradient descent which tries to

reduce the loss function during training which is given by:

Wt+1 = Wt − αδL(θt) (5.4)

where w is the weight change with respect to the gradient of the loss function and α is the

learning rate.

Momentum: The gradient of the loss function changes rapidly due to the variance present in

our training examples after each iteration, so we apply momentum term to keep it smooth and

is given by:

Vt+1 = ρvt − αδL(θt) (5.5)

Wt+1 = Wt + Vt+1 (5.6)

5.6 Experimental Setup

We presented the training procedure and hyper-parameter tuning of the proposed system in

the previous section. In this section we present the experimental setup used to execute and

evaluate the proposed system as shown in Figure 5.6. The experimental setup mainly consists

of cloud configuration, image and video datasets and evaluation parameters.
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Figure 5.6: Experimental Setup

5.6.1 Model Deployment in Cloud

We have deployed our system on the cloud resources available at the University of Derby for

evaluation. The configuration of the cloud resources are as follows: The cloud instance has

Ubuntu LTS 14.04.1 and is running OpenStack Icehouse. There are six server machines and

each server machine is equipped with 12 cores. Each server is running with 6-core Intel Xeon

Processors at 2.4 Ghz. It has a storage capacity of 2 Terabyte with 32GB RAM. OpenStack

facilitates with a dashboard to manage and control the resources such as storage, network and

pool of computers. It is a Gigabyte Ethernet between the nodes with an average latency of

10ms for packets travelling from one VM to another.

The virtual machines are equipped with multi-core CPU processing capacity in which most of

the video analytics operations are performed. The configuration of each node is as follows: 4

VCPU running at 2.4GHz with 8GB RAM. Each node is configured with a storage capacity of
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100GB. This cluster is used to deploy and evaluate the proposed system. This experimental

setup helps to measure the performance of the system for scalability; reliability; accuracy;

performance and robustness with varying cloud configurations. The results generated by these

experiments can help to deploy the system on a much bigger infrastructure as per requirements

of an application.

5.7 Datasets for Training and Testing the Model

To perform rigorous evaluation of the proposed object classification system, self-generated and

publically available datasets have to be used. Results from multiple datasets help to evaluate the

reliability and steady of the proposed system. The self-generated or publically available datasets

being used in the study should have multiple subjects and should be captured under variant

conditions. The datasets should possess challenges such as illumination, facial expressions, blur

and video surveillance context.

5.7.1 Self-generated Datasets

In this research study, we have used video datasets as well as image datasets to evaluate the

proposed system. We have a self-generated video dataset consisting of videos of human faces

of various individuals as shown in Figure 5.7. The video streams recorded for the experiments

are relatively simple but do have challenges such as pose and illumination variations.

The video streams are by default in the encoded format with H.264 format having an fps of 25,

data rate and bit rate of 421 kbps and 461 kbps respectively. These are decoded to generate

frames which contain side, front and rear views of individuals. Most of the video streams in

the video dataset have time duration of around 120 seconds. This makes a total of 3000 video

frames in each video stream.
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Figure 5.7: Self Generated Dataset

5.7.2 Surveillance Performance Evaluation Initiative Dataset

We have also used Surveillance Performance Evaluation Initiative (SPEVI) dataset which is

another video dataset containing significant statistical data variability, but a limited number

of data items. We have used its single person/face visual detection and tracking dataset. The

dataset is composed of several sequences with different illumination conditions and resolutions.

These sequences are shot with a hand held camera.

5.7.3 BioID Dataset

We have considered two large publically available image databases namely BioID [163] and

Yale [164] to assess the accuracy and stability performance of the proposed system. During the

recording of BioID Face Database, special importance has been given to real world situations.

Therefore, this database contains a diversity of face sizes, background conditions and illumina-

tion effects as shown in Figure 5.8. The database comprises of 1521 gray level images captured

at resolution of 384x286 pixels. For testing purposes, the images are artificially blurred by

using a Gaussian blur mask with various sigma values (0, 0.25 . . . ).
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Figure 5.8: BioID Face Database

5.7.4 Yale Dataset

The Yale Face Database contains images from various subjects with different poses and illu-

mination conditions as shown in Figure 5.9. All the images are manually aligned and cropped

having a resolution of 168x192 pixels. Every subject demonstrates variations in illumination

conditions (left-right, center-right, right-right) and facial expressions (normal, sad, happy, and

sleepy).

5.7.5 DataSet Quality Enhancement Techniques

The pre-processing techniques are employed to enhance the quality of video or image data which

is to be classified. These technique are more often used when the underlying data is captured

under more challenging conditions and contains challenges such as, illumination and blur. The

illumination and blur factors, if present in the data being analysed, can severely degrade the

system’s performance. These factors can completely distort the image or video frame and are

also capable of changing the appearance of the object present in the video stream.

In order to select the most appropriate pre-processing techniques for the proposed system, we

tested many of them on the proposed system. The techniques providing the best results were
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Figure 5.9: Yale Face Database

Algorithm 11 Histogram Equalization

1: procedure Histogram Equalization
2: h ← Compute the histogram of the object
3: CDFh ← Compute the CDF of h
4: Find the transformation which satisfies
5:

T (r) = (L− 1)
r∑

n=0

h(q) = (L− 1)CDFh(r)

6: Apply the transformation to each pixel

then selected for experiments. Histogram equalization is used for shallow networks and to test

the performance of the system on blurred data, artificial guassian blur was used. Normalization

was applied on the video frames, in case of deep networks.

5.7.5.1 Histogram Equalization for Contrast Adjustment

The histogram equalization technique is used for publically available image datasets as well

as for self-generated video dataset. The image datasets especially cropped value has high

variations in illumination effects. In most of the images, very little fine details are available.

Also, some objects after cropping from the self-generated video dataset, are small in size. The

other noise removal techniques distort the edges in them and no improvement in the accuracy
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is observed. Histogram equalization is a simple pre-processing technique but works well for our

proposed system as compared to other existing techniques. It retains most the visual features

during equalization and improves the object’s global contrast.

In histogram equalization, the occurrence of the intensity values of the images are calculated.

These occurrences can be drawn in the form of a histogram. These occurrences of the intensity

values of the images are then distributed in a normalized guassian fashion so that they can occur

equally in the resultant image as depicted in Algorithm 11. This is normally performed with

the help of a two-stage process including histogram normalization and mapping of intensities.

The maximum intensity value of the image from the histogram is first identified and then the

number of pixels in the image having that intensity value are also identified. A probability

function is then defined to estimate the probability of pixel having the highest intensity value.

These probabilities are further used for histogram equalization.

5.7.5.2 Gaussian Blur for Noise Reduction

The BioID Face Database contains images which have variations in pose and expressions. In

order to test the performance of the classifier on more challenging datasets we have further

introduced artificial blur by performing a convolution operation with the Gaussian blur mask.

The Gaussian blur, which is also sometimes called as Gaussian smoothing, occurs when the

image is convolved by a Gaussian function in order to reduce the fine details present in the

image. This can also be used to reduce the noise present in the input data.

In this work, the values of the Gaussian blur mask (known as sigma) is ranged from 0 to 5,

with zero being no blur and 5 being the maximum blur effect. With the help of this additional

processing on the input dataset, it becomes possible to observe the joint effects of pose, ex-

pressions and blur on the performance of the classifier. For testing purposes, the images are

artificially blurred by using a Gaussian blur mask with various sigma values (0, 0.25 . . . ).
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5.7.5.3 Data Normalization for Training

In case of deep learning algorithms, we have scaled and normalized the input video frames at

a size of 150*150 pixels before feeding them into the deep neural network. The normalization

is performed to have the pixel values between the range of 0 to 1 instead of 0 to 255. The

Convolutional Neural Network can perform better with the normalized input data. This is

because of the fact that Convolutional Neural Network used in this work is based on gradient

descent algorithm and uses back propagation for learning. The normalization is performed as

follows:

V = v −minA/maxA −minA(nmaxA − nminA) + nminA (5.7)

where min and max represents the minimum and maximum values of an attribute ’A’.

During back propagation, CNN computes the error vector using the input and output data

and multiplies it with the learning rate and weight matrices for each training example. The

normalization of the data between a specified range helps to keep the distribution of features

similar to each other. The corrections made by the learning rate during training will not differ

from each other. Normalization is usually performed for all gradient-based learning schemes.

5.7.5.4 Data Augmentation to Increase Dataset Size

Deep learning algorithms, including Convolutional Neural Networks usually necessitate the

input training data to be of a larger size. It helps the CNN to train on much more train-

ing examples and increases its generalization capacity. But the labeled training data used in

our system is scarce and in order to enhance it for optimal performance, we executed trans-

formations on the input dataset including translation, skew, rotation flip and different levels

of contrast variations. The additional training data by using transformations increases the

performance of the classifier.

These transformations are generated by applying affine displacement fields to video frames.
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This is achieved by calculating the new location (x,y) with reference to the original location

for each pixel of the video frame. For example, if x(x,y)=1, and y(x,y)=0, it shows that the

new location of each pixel is shifted to the right by 1. For a displacement field of x(x,y)= αx,

and y(x,y)= αy, the video frame will be shifted by α, from the origin point (x,y)=(0,0), where

α can be any non-integer value.

5.8 Evaluation Methodology

We have used evaluation metrics, including efficiency metrics and effectiveness metrics, to verify

the performance of the proposed video analytics system. The efficiency matrix measures the

performance of the system by the following performance characterization: Hyper-parameters

tuning of the system and system’s scalability. The scalability of the system is analysed by

measuring the time to transfer data to cloud, execution time of the system, and overall time

of analysis of data. We discuss the training of the proposed model and visualize its training

parameters during model training.

We have discussed the performance of the system during training and visualize the performance

graphs by tuning the selected parameters. We analyse the results generated by tuning the

hyper-parameters of the deep model to various values and propose the parameters which could

potentially produce best results. The visualization of weight vectors and other parameters

during training help tuning parameters properly.

The trained system on the proposed parameters is then evaluated with the effectiveness metrics.

The effectiveness metrics are adopted to measure the quality of the proposed system in our

experiments, are the commonly used ones including precision, recall and F-measure. The

effectiveness metrics are further explained in the sub-sections below:
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Figure 5.10: Confusion Matrix

5.8.1 Confusion Matrix

The evaluation of the proposed video analytics system and its algorithms is an important step

to understand how good the system is in determining the correct object classification. In order

to evaluate the performance of the proposed system and algorithms, we have used a number

of performance measures. Most importantly, we have used confusion matrix which measures

the performance of the system by counting the number of true positives, false positive, true

negatives and false negatives. The confusion matrix represents the actual value of a class

(labels) and the predicted value of that class by the classifier in a tabular format as shown in

Figure 5.10.

The confusion matrix table suggests how good the classifier is in determining the right classes

at right times. This is performed by counting the number of true positives, false positive, true

negatives and false negatives. Accuracy, recall, precision and F1 score can be calculated by

using these four counts as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN)

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1 = 2TP/(2TP + FP + FN)

(5.8)

The true positives in the confusion matrix are the positive predictions of the object by the

classifier when the actual outcome or label was also positive. False positives are the positive
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predictions of the object by the classifier when the actual outcome or label was negative. True

negatives are the negative predictions of the object by the classifier when the actual outcome

or label was negative. False negatives are the negative predictions of the object by the classifier

when the actual outcome or label was positive.

False positives are also termed as ’type I errors’ and false negatives are also termed as ’type II

errors’. These metrics are also helpful for an in-depth analysis about the performance of the

system. These metrics are further used to calculate various evaluations of the proposed system

including accuracy, recall, precision and F1 score.

5.9 Conclusion

Chapter 5 described the hyper-parameter tuning and learning procedure of the proposed video

analytics system. It also described the experimental setup used to execute and evaluate the

proposed system. We also discussed the video and image datasets used to asses the performance

of the proposed system. We explained the criteria and characteristics of the selected datasets

and highlighted their distinguishing features in terms of blur, illumination, variations in pose

and low resolution. Afterwards, we explained the pre-processing techniques which are used to

enhance the quality and size of the datasets.

In chapter 6, the results of the proposed video analytics system and its algorithms will be pre-

sented. The results are demonstrated both graphically and analytically to explain that the

proposed system can classify objects from large number of video streams with high accuracy. It

also shows the visualization of training parameters during training depicting the optimization

of classifier. The results also describe that the proposed system can also perform better even

under controlled illumination condition and outperforms the existing techniques.



Chapter 6

Results and Discussion

6.1 Outline

Chapter 5 discussed the optimization and experimental setup of our proposed video analytics

system. We provided a detailed description of the tuning of the hyper-parameters of deep

learning network used in this research work. We highlighted the parameters that have a major

contribution in improving the accuracy and performance of the proposed system. A detailed

description of the experimental setup being used in this work was also presented.

In Chapter 6, we present the results of the proposed video analytics system. Section 6.2

describes the approach which is adopted to present the results. Section 6.3 explains the results

obtained by executing the experiments with our proposed video analytics workflow. Section

6.4 shows the performance of the system under uncontrolled illumination conditions in terms of

accuracy, precision, recall and F1 score. Section 6.5 explains the results from the deep learning

pipeline. It shows the deep learning pipeline performance on various parameters from which

best parameters are selected for object classification. Section 6.6 describes the results of our

proposed video object detection and classification system in terms of execution time, training

time, performance and scalability.

110
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6.2 Introduction

The preceding chapters of this thesis presented the theoretical and mathematical details of

proposed system and its algorithms. An in-depth explanation about the implementation details

of the system was also provided. We now detail the results and outcomes of the practical

investigations of the system in this chapter and also provide an analysis of the results which

were obtained through experimentations as follows:

Firstly, we present the results of the proposed video analytics workflow which is used for object

detection and classification. We show the the performance of the workflow in terms of speedup

in processing time, video stream decoding time and execution time required for each frame.

Secondly, we improve the performance of the proposed video analytics system by shifting it from

spatial domain to spatial frequency domain. Spatial frequency domain allows the processing of

video frames by projecting them on a set of basis functions which leads to further performance

improvements. We detail and discuss the performance measures of Amplitude, Phase and

Orientation Properties and compare their accuracies. We further explain the performance of

the proposed system in terms of accuracy, precision, recall and F1 score. The results from

orientation fusion are then provided and compared with state-of-the-art.

Thirdly, we show how we have tuned and improved the hyper-parameters of the proposed video

analytics system with the help of deep learning based algorithms. We discuss the training of the

proposed model and visualize its training parameters during model training. The visualization

of weight vectors and other parameters during training helps for tuning parameters properly.

The performance of the deep learning pipeline on various parameters are analysed and discussed

in detail and the best parameters are selected for object detection and classification system.

Fourthly, we explain in detail the performance related results of the proposed video analytics

system and present our findings in terms of execution time, training time and scalability. The

result explains the scalability and robustness of the whole system by analyzing decoded video

streams and transferring the video data from local storage to cloud nodes. It also measures the

time required to analyze video data on the cloud nodes.
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Figure 6.1: Video Reading and Decoding Time

6.3 Video Analytics Results

This section explains the results obtained by executing the experiments with our proposed video

analytics workflow. We show the speedup achieved by introducing the cropping process in the

proposed workflow. We then show the performance of the workflow for video stream reading

and decoding time and execution time required for each frame.

6.3.1 Video Reading and Decoding Time

This experiment was performed to evaluate the time required to complete the video reading

and decoding time in the proposed workflow. As the video streams are increased from 1 to 10,

we analysed that video reading and decoding time increased with the addition of video streams

as shown in Figure 6.1. It is because a video stream in our workflow is acquired by the video

processing manager from the physical storage. This means that a constant transfer of video

streams from the physical storage to the memory of video processing manager is required.
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Figure 6.2: Cropped Frame Processing Time

6.3.2 Cropped Frame Processing Time

A significant amount of speedup is achieved in the processing time of each frame due to the

object detection approach. Cropping of a video frame around the detected object helps to

reduce the processing area for the LBPH algorithm. The resolution of the overall video frame

is decreased, which in turn reduces the overall processing time of each frame. The processing

time of each individual frame before cropping and after cropping is calculated and is shown in

Figure 6.2.

The decrease in processing time is due to the decrease in resolution because of cropping. The

video used in this experiment had a frame resolution of 640 x 480. However, the detected

object which was extracted from the whole frame and later used by LBPH for comparison had

a resolution of around 160 x 160 in most of the cases. This decrease in resolution improved the

total frame processing time by almost 90 percent.
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Figure 6.3: Processing Time with Varying Resolutions

6.3.3 Processing Time with Varying Resolutions

The processing time of a video frame is highly dependent on the resolution of a video frame.

For a high resolution video frame, more computation time is required as more data is needed

to be processed as shown in Figure 6.3. We have tested different video streams with varying

resolutions on the system and computed the total processing time. This includes the time

required to process the frame as well as the video decoding time.

6.3.4 Video Object Classification

After training the classifier, it is further used to perform classification of objects from the

video streams. The marked or target object which is to be identified from the video streams is

passed through the trained classifier after performing all the preprocessing steps on it to make

it appropriate for the classifier as described in Chapter 5.

The classifier returns the probabilities of the possible labels but not the labels itself. The labels

of all the objects present in all the video streams are already stored in the database beforehand.

The classification process ends up in generating the probabilities of the matched objects. The



115

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1 2 3 4 5 6 7 8 9 10 

Object1 

Object2 

Object3 

Object4 

Object5 

Object6 

Object7 

Object8 

Number of experiments 

P
ro

b
a

b
il
it

ie
s 

Figure 6.4: Classification of Marked Object

object with the highest probability indicates the classification of the desired object which is

being searched from the video streams. Very low probabilities against all the objects indicate

that the target object is not present in all of the video streams in the database.

Figure ?? depicts the probabilities of some of the objects generated by the classifier. The 10

experiments are represented on each index of the x-axis. Different probabilities generated by

each experiment are represented on y-axis of the graph. The marked objects which were fed

into the trained network are listed on the right hand side of the graph.

We have shown results from 8 different objects for this set of experiments. The probabilities

generated by the classifier against each object are shown in different columns of the table. The

probabilities near to 1 depict a closer match of marked object and the probabilities close to 0

depict the unavailability of objects in the video stream database.

In order to track a specific object from a number of video streams, we checked the generated

probabilities or matching scores against each video stream. The trained classifier generates a

high matching score against the marked object if its training instances is present in the database.

We can, therefore, set an empirically determined threshold on the basis of the matching score.

The matching scores greater than or equal to the threshold reveal that the object is present in
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Figure 6.5: Object Characteristics

the specific video stream.

We have also measured the estimated presence time of the object in the video streams and

recorded its location as well. The meta-data about the location of the video stream was stored

in the database along with the video itself. Once an object is searched in a video stream, its

location is also recorded through the meta-data.

Figure 6.5 shows the presence of the object and the trajectory in multiple video streams. The

presence of object in the video stream is represented by 1 while its absence is represented by 0.

It can be seen that the object remained present throughout in video 1 and video 4. However,

in remaining videos it remained there for a fraction of time.

Figure 6.5 also provides a visual representation about the tracking of the object as it has been

mapped on a graphical representation. This graphical representation is actually the summary

of multiple videos in which the specific object has been detected. Each bar in the graph

represents the amount of time that the marked object has spent at a specific location while its

travel movement can be observed by the line graph.
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6.4 Spatial-Frequency based Video Analytics Results

We first present and discuss the results of the proposed system on the basis of Amplitude, Phase

and Orientation Properties. We then present the results of the feature fusion strategy of the

proposed system. After that, we compare it with the two state-of-the-art models and measure

the improvements in terms of Accuracy, Precision, Recall and F1 Score. A discussion on the

performance characterization of the resultant confusion matrix in terms of True Positives, False

Positives, True Negative and False Negative is also provided.

6.4.1 Performance Measures of Amplitude, Phase and Orientation

Properties

We present the results of our proposed system in this sub-section and measure the performance

of the classifier in terms of following performance characterizations: Accuracy, Recall, Precision

and F1 score. We have calculated these performance measures for first three IMFs of ampli-

tude, phase and orientation properties and made a comparison of these to evaluate the best

performing properties. The property which contributes much in improving the accuracy of the

classifier is then further used for fusion.

The number of epochs during the training of the classifier have been varied from 5 to 40. We

have also calculated the training time of classifier for each epoch to have an estimate of the total

training time. A detailed discussion of all the results is presented with the help of a confusion

matrix. To show the efficacy of the proposed classifier, it has been compared with two most

famous state-of-the art CNN models.

Table. 6.1 shows the performance of the classifier on the amplitude property. The Accuracy,

Recall, Precision and F1 scores are tabulated for the first three IMFs. The number of epochs

has been varied from 5 to 40. It can be seen from the table that the amplitude property could

not perform better and remained unable to classify the test patterns. Even with the increasing

number of epochs, it remained unable to improve the accuracy of the classifier significantly.
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Table 6.1: Performance Measures of Amplitude Property

IMF1 Amplitude IMF2 Amplitude IMF3 Amplitude
Epochs Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
5 0.0191 0.0088 0.0191 0.0121 0.0206 0.0117 0.0206 0.0149 0.0162 0.0051 0.0162 0.0878
10 0.0147 0.0087 0.0147 0.0109 0.0235 0.0149 0.0235 0.0183 0.0235 0.0105 0.0235 0.0145
15 0.0162 0.0068 0.0162 0.0096 0.025 0.1108 0.025 0.0408 0.0279 0.0887 0.0279 0.0425
20 0.0294 0.1538 0.0294 0.0494 0.025 0.0119 0.025 0.0161 0.0309 0.057 0.0309 0.0401
25 0.0441 0.2107 0.0441 0.073 0.0279 0.0217 0.0279 0.0244 0.0324 0.0363 0.0324 0.0342
30 0.0588 0.2448 0.0588 0.0949 0.0471 0.152 0.0471 0.0719 0.0324 0.1225 0.0324 0.0512
35 0.075 0.2534 0.075 0.1157 0.0662 0.2121 0.0662 0.1009 0.0324 0.0396 0.0324 0.0356
40 0.0941 0.317 0.0941 0.1451 0.0794 0.1992 0.0794 0.1136 0.0338 0.0393 0.0338 0.0364

Table 6.2: Performance Measures of Phase Property

IMF1 Phase IMF2 Phase IMF3 Phase
Epochs Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
5 0.0485 0.0569 0.0485 0.0524 0.0868 0.279 0.0868 0.1324 0.1191 0.3468 0.1191 0.1773
10 0.0912 0.3333 0.0912 0.1432 0.2441 0.6559 0.2441 0.3558 0.2353 0.4541 0.2353 0.31
15 0.1868 0.6105 0.1868 0.286 0.4721 0.7504 0.4721 0.5796 0.2971 0.4449 0.2971 0.3562
20 0.3309 0.7582 0.3309 0.4607 0.6412 0.7871 0.6412 0.7867 0.3338 0.4481 0.3338 0.3826
25 0.4588 0.7824 0.4588 0.5784 0.725 0.81 0.725 0.7651 0.3559 0.4513 0.3559 0.3979
30 0.5838 0.8142 0.5838 0.68 0.7691 0.8225 0.7691 0.7949 0.3853 0.4785 0.3853 0.4269
35 0.6676 0.8135 0.6676 0.7334 0.8015 0.835 0.8015 0.8179 0.4132 0.5164 0.4132 0.4591
40 0.7235 0.8132 0.7235 0.7658 0.8191 0.8436 0.8191 0.8312 0.4235 0.5307 0.4235 0.4711

Table 6.3: Performance Measures of Orientation Property

IMF1 Orientation IMF2 Orientation IMF3 Orientation
Epochs Acc Precision Recall F1 Acc Precision Recall F1 Acc Precision Recall F1
5 0.1368 0.2477 0.1368 0.1762 0.2397 0.3485 0.2397 0.284 0.1574 0.3061 0.1574 0.2079
10 0.3015 0.6058 0.3015 0.4026 0.5838 0.6945 0.5838 0.6344 0.2956 0.4697 0.2956 0.3628
15 0.5162 0.747 0.5162 0.6105 0.7544 0.8146 0.7544 0.7834 0.4044 0.5224 0.4044 0.4559
20 0.6868 0.8166 0.6868 0.7461 0.8426 0.8668 0.8426 0.8546 0.4529 0.5561 0.4529 0.4992
25 0.7882 0.8542 0.7882 0.8199 0.8786 0.8974 0.8786 0.8838 0.4985 0.5641 0.4985 0.5293
30 0.825 0.8983 0.825 0.8601 0.9015 0.9212 0.9015 0.9112 0.5309 0.5734 0.5309 0.5513
35 0.8426 0.9054 0.8426 0.8729 0.925 0.9377 0.925 0.9313 0.5426 0.5857 0.5426 0.5633
40 0.8441 0.9047 0.8441 0.8734 0.9338 0.9414 0.9338 0.9376 0.5765 0.6116 0.5765 0.5935
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The same trend of performance was observed for Precision, Recall and F1 score for all the

epochs. We believe that the reason for such a poor performance is due to the scarce availability

of the data points in the amplitude property. The amplitude property does not provide signifi-

cant number of data points required to perform an accurate classification. With the reduction

in the noisy components, it also discards the useful data points which could aid in performing

the accurate classification. This results in the drop of the overall accuracy rate of the classifier.

Table. 6.2 shows the performance of the classifier on the phase property. The Accuracy, Recall,

Precision and F1 scores are again calculated for first three IMFs with the number of epochs

varying from 5 to 40. It can be seen from the table that the phase property performed much

better to classify the test patterns as compared to the amplitude property. The increasing num-

ber of epochs improved the accuracy of the classifier. Especially after 20 epochs the accuracy

improved significantly and at epoch number 40, it reached to an accuracy of 0.72 percent.

Improved performance rates were observed for precision, recall and F1 scores as well. One

reason could be the availability of much higher number of data points for phase property as

compared to the amplitude property. Although the phase property for third intrinsic mode

function does not contain enough data points but first two remained enough to have a descent

classification rate.

The performance of the classifier on the orientation property is depicted in Table 6.3. The

same performance measures Accuracy, Precision, Recall and F1 scores are tabulated for the

first three IMFs of orientation property. The number of epochs are again varied from 5 to 40

for these set of experiments as well.

A significant amount of improvement in the overall accuracy rate of the classifier has been

observed as compared to both amplitude and phase properties. Even at epoch number 10 the

classification accuracy started at a reasonable rate of 0.3015 as compared to amplitude and

phase and kept on improving to 0.84 till the 40th epoch.

We figured out that these improvements are due to the maximum availability of data points

and minimum amount of presence of noisy frequencies in the orientation property. The third
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Table 6.4: Orientation Fusion

Orientation Fusion
Epochs Accuracy Precision Recall F1 Score
5 0.1897 0.5317 0.1897 0.2796
10 0.5338 0.7673 0.5338 0.6296
15 0.8044 0.8611 0.8044 0.8318
20 0.9103 0.9272 0.9103 0.9187
25 0.9544 0.9605 0.9544 0.9574
30 0.9676 0.9705 0.9676 0.9691
35 0.9779 0.9791 0.9779 0.9785
40 0.9794 0.9806 0.9794 0.98

intrinsic mode function kept reasonable number of data points which contributed towards the

improvements in higher accuracy rates.

6.4.2 Performance Measures of Orientation Fusion

Inspired by this fact, we have performed a feature fusion strategy on the orientation property

to further improve the accuracy rates. The feature fusion strategy is performed on the first two

intrinsic mode functions of the orientation property. The two intrinsic mode functions are fused

together in order to have a composite intrinsic mode function which could hold the properties of

both the IMFs. The fused IMF is a numeric matrix which represents the combined orientation

property and is used for classification.

Table. 6.4 shows the performance of the classifier on the fused intrinsic mode function. The

number of epochs are varied from 5 to 40 and Accuracy, Precision, Recall and F1 scores are

recorded and tabulated in the table. It can be seen that the overall accuracy rate of the

fused IMF is greater than all the previous accuracies of the amplitude, phase and orientation

properties. From epoch number 10, the classification accuracy was recorded to be 0.53 which

is significantly better than the amplitude and phase and orientation.

The accuracy kept on improving to 0.97 till the 40th epoch. Improvements were observed

for Precision, Recall and F1 scores as well. The Precision was recorded to be 0.9806 at 40th

epoch. Similarly, the Recall and F1 scores were recorded to be 0.97 and 0.98 respectively. We
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believe that these improvements are due to the further addition of data points in the orientation

property and reduction in the presence of noisy frequencies. The fused intrinsic mode function

contains significant information in terms of data points which leads to further improvements in

higher accuracy rates.

It is also to be noted that the dataset used in the experiments to validate the proposed system

is mostly self-generated consisting of videos of human faces (head-and-shoulder) of various

individuals. The video streams recorded for the experiments are relatively simple (captured

under controlled and uncontrolled environmental conditions with faces posing towards a camera)

and does not pose challenges such as occlusion or head pose rotation. The simplicity of the

dataset played a major role in achieving high performance and accuracy rates of 95-98 percent.

However, other factors such the use of spatial-frequency domain features and tuning of hyper-

parameters also played a major role in achieving the reported performance and accuracy rates.

6.4.3 Execution Time and Confusion Matrix

The execution times for different number of epochs varying from 5 to 40 are depicted in Table

6.5. The execution time is directly dependent on the number of epochs. An increase in the

number of epochs increases the execution time as well. It takes between 12 to 15 mins to

complete 5 epochs by the system for each intrinsic mode function. The execution time doubles

by doubling the number of epochs.

For 10 epochs the execution time increases between a range of 24 to 30 minutes for different

intrinsic mode functions. The decision about the total number of epochs for training depends

on the experimentation. There is always a trade-off between the performance and the execution

time of the system. For our proposed system, 40 epochs provided a good accuracy rate in a

reasonable amount of execution time.

Table. 6.6 shows the overall performance of the proposed system with the help of a confusion

matrix in terms of Accuracy, Precision, Recall and F1 score. The overall accuracy of the system

with the fused features is recorded to be 0.9794. The confusion matrix depicted the precision



122

Table 6.5: Execution Time (Mins)

Amplitude Orientation Phase
Epochs IMF 1 IMF 2 IMF 3 IMF 1 IMF 2 IMF 3 IMF 1 IMF 2 IMF 3
5 13 15 13 12 15 13 12 14 12
10 24 30 25 25 29 27 24 28 25
15 37 44 42 43 44 36 36 44 37
20 49 48 52 50 49 49 49 49 48

61 74 60 62 72 62 64 70 61
30 74 82 73 75 88 78 74 72 73
35 89 84 94 86 98 86 86 85 85
40 101 98 99 99 101 98 102 94 99

Table 6.6: Confusion Matrix

Classification Scores
Accuracy: 0.9794
Precision: 0.9806

Recall: 0.9794
F1 Score: 0.98

{0=[0 x 19, 18], 1=[1 x 20], 2=[16, 2 x 18, 26], 3=[3 x 19, 31], 4=[4 x 20], 5=[5 x 19, 13], 6=[6 x 20],
7=[7 x 20], 8=[8 x 19, 30], 9=[9 x 20], 10=[16, 10 x 19], 11=[11 x 19, 27], 12=[12 x 20], 13=[26, 13 x 19],
14=[14 x 20], 15=[15 x 20], 16=[16 x 20], 17=[17 x 20], 18=[18 x 20], 19=[19 x 20], 20=[20 x 20], 21=[20, 21 x 19],
22=[22 x 20], 23=[23 x 20], 24=[24 x 20], 25=[25 x 20], 26=[26 x 20], 27=[27 x 20], 28=[28 x 20], 29=[24, 29 x 19],
30=[30 x 20], 31=[12 x 2, 31 x 18], 32=[32 x 20], 33=[33 x 19, 7]}

{0=1, 1=0, 2=2, 3=1, 4=0, 5=1, 6=0, 7=0, 8=1, 9=0, 10=1,
11=1, 12=0, 13=1, 14=0, 15=0, 16=0, 17=0, 18=0, 19=0, 20=0, 21=1, 22=0, 23=0,
24=0, 25=0, 26=0, 27=0, 28=0, 29=1, 30=0, 31=2, 32=0, 33=1}

{0=0, 1=0, 2=0, 3=0, 4=0, 5=0, 6=0, 7=1, 8=0, 9=0, 10=0,
11=0, 12=2, 13=1, 14=0, 15=0, 16=2, 17=0, 18=1, 19=0, 20=1, 21=0, 22=0, 23=0,
24=1, 25=0, 26=2, 27=1, 28=0, 29=0, 30=1, 31=1, 32=0, 33=0}

{0=19, 1=20, 2=18, 3=19, 4=20, 5=19, 6=20, 7=20, 8=19, 9=20,
10=19, 11=19, 12=20, 13=19, 14=20, 15=20, 16=20, 17=20, 18=20, 19=20, 20=20,
21=19, 22=20, 23=20, 24=20, 25=20, 26=20, 27=20, 28=20, 29=19, 30=20, 31=18,
32=20, 33=19},

{0=660, 1=660, 2=660, 3=660, 4=660, 5=660, 6=660, 7=659,
8=660, 9=660, 10=660, 11=660, 12=658, 13=659, 14=660, 15=660, 16=658, 17=660,
18=659, 19=660, 20=659, 21=660, 22=660, 23=660, 24=659, 25=660, 26=658, 27=659,
28=660, 29=660, 30=659, 31=659, 32=660, 33=660}
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Figure 6.6: Accuracy Figure 6.7: Precision

of the system to be 0.9806 which shows that the proposed system is accurate as well as precise.

The Recall and F1 scores of the system observed to be 0.9794 and 0.98 respectively.

Most of the test samples from all the subjects were classified correctly by the classifier as

depicted in the confusion matrix. There were few samples from some subjects that were miss-

classified. In most of the cases only one sample has been miss-classified. The samples labeled

as yaleB03 are miss-classified two times as yaleB17 and yaleB27. Also the samples labeled as

yaleB32 was miss-classified as yaleB33 two times. We believe that this miss-classification is due

to the severe illumination effect in the test samples.

6.4.4 Comparison with AlexNet and LeNet

We have also compared the performance of the proposed system with the state-of-the-art well

known deep learning models AlexNet [55] and LeNet [165]. Figures 6.6, 6.7, 6.8 and 6.9 demon-

strate and compare the performance improvements of the proposed system with the AlexNet

and LeNet models. As it can be seen from Figure 6.6 that the proposed orientation fusion

approach provides much higher accuracy rates as compared to AlexNet and LeNet.

From the very start, at iteration number 5, the accuracy of the system is recorded to be 0.2

while the accuracy of AlexNet and LeNet was below 0.1. The accuracy kept on improving

with the increasing number of epochs. At epoch number 25, a significant improvement can be
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Figure 6.8: Recall Figure 6.9: F1 Score

observed in the graph as compared to the other two models which kept on improving till the

last epoch.

A similar kind of behavior can be observed in the precision, recall and F1 score graphs in Figures

6.7, 6.8 and 6.9. The precision of the system started from 0.55 from epoch 5 and showed a linear

improvement over increasing number of epochs. Rapid improvements have been observed till

epoch number 25 in the precision curve which kept on improving gradually till the last epoch.

The recall and F1 score curves depict a similar trend in their curves and shows significant

improvements as compared to AlexNet and LeNet. The AlexNet performed a bit better than

the LeNet till epoch number 30 but it could not get above 0.3. A drop in the recall curve for

AlexNet has been observed after 30 epochs. The same trend was observed for F1 score curve.

We have also compared the execution time of the proposed system with the execution times

of existing models. Figure 6.10 shows the execution time of the proposed system and the two

models. It can be seen that the AlexNet model takes much more time for execution as compared

to the proposed system. The reason behind this is the complexity of the AlexNet model which

constitutes of 12 layers. The proposed orientation fusion approach and the LeNet model takes

almost the same amount of time as the architecture of both the models is quite similar.

The proposed orientation fusion approach showed significant improvements over the two models

on a challenging dataset. The images present in the publically available Yale Face Database
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Figure 6.10: Execution Time

has significant variations in expressions, pose and illumination conditions. The illumination

conditions imposes effects from different angles including left-right, center-right and right-right.

We believe that the reason behind these improvements is that the illumination effects mostly

resides in the low frequency components of the spectrum. The empirical mode decomposition

separates the images into individual intrinsic mode functions in the decreasing order. It then

becomes easier to discard the low frequency components from the image and retain only the

high frequency components. The fusion of the two intrinsic mode functions containing the

highest frequencies is sufficient enough to correctly classify most of the training samples with

high accuracy rate and precision.

The large difference with respect to the state-of-the-art in Figures 6.6-6.9 is also due to the fact

that the training data required to train the state-of-the-art deep network is quiet large. This

is due to the number of layer and parameters involved in the architecture of the deep network.

In our experiments we have trained them with fewer data as compared to data on which these

networks were originally trained. The size of the proposed network in this work is small as

compare to the state-of-the-art deep network. The use of the spatial-frequency domain features

enabled the system to achieve high accuracy and less training time even with a small sized deep
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Figure 6.11: Model Scores

network.

6.5 Deep Learning based Video Analytics Results

We present and discuss the results of our deep learning based video analytics system in this

section. We first analyze the results generated by tuning the hyper-parameters of deep model

to various values and propose the parameters which could potentially produce best results.

The trained system on the proposed parameters is then evaluated with different performance

characterization.

6.5.1 Hyper-parameter Tuning

There are a number of parameters which can be tracked during the training of a deep network.

These parameters provide intuitions about the settings of different hyper-parameters and help

to decide that whether the setting should be changed in order to have more efficient learning.

The parameters are tracked and represented in the form of graphs over multiple time stamps
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Figure 6.12: Parameter Ratios

in order to observe the trend in the behavior of the system.

The x-axis of the plot in Figure 6.11 represents iterations and the number of iterations depends

on the settings of batch size. While the loss function value L(x) = LR
∑

xi−>X
∑

xi−>Ti l(i, xiT )

of current mini-batch is depicted on the y-axis of the plot in Figure 6.11. The loss function

value is evaluated during the forward pass of the back-propagation on the individual batches.

The gray line in the graph represents the running average of the loss on each iteration. It gives

a better visualization to analyze the trend in the graph of the loss function.

It can be seen in the first graph of figure that it goes down after each iteration over time,

depicting that the learning rate is properly tuned. The learning rate is tuned on the basis of

experimentations until the score moves towards stability. We varied the value of LR to different

values including 1e-2, 1e-4 and 1e-6. The effects of these values of LR on L(x) are plotted in

Figure 6.11 and it can be seen that 1e-2 proved to be a good learning rate .

The decreasing trend of the graph is also an indication that the training data is normalized

properly. L2 normalization scheme with stochastic gradient descent Wt+1 = Wt − αδL(θt) is

the most appropriate approach for our network training. α is the learning rate which has been

varied on the above mentioned values w is the weight change with respect to the gradient of
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the loss function. The weights are initialized at random for all the experiments. The selected

gradient descent approach does not let the score to increase, which normally happens if the

learning rate is set too high.

The bottom two graphs do not show a proper decreasing trend over multiple iterations. These

graphs were produced with a LR of 1e-4 and 1e-6 respectively. It can be seen clearly that the

graphs follow a stable state over the iterations and do not show a decreasing trend for learning

rate values of 1e-4 and 1e-6. Both the graphs do not fall below 1.0 of the y-axis. The last graph

with a learning rate of 1e-6 does not even fall below of 1.5 on the y-axis and is the depiction of

bad learning rate, normalization and regularization schemes.

Another important parameter which can be used to track in order to have an intuition about

the efficient learning of the system is the ratio of weights (updates). It is not beneficial to track

the raw gradients but the updates of the weights. It can also be helpful to track this ratio for

every set of parameters. Figure 6.12 shows the ratio of mean magnitudes of the parameters

which is the average value of parameters at various iterations is shown along the horizontal

axis.

It is suggested that the ratio of parameters at various time stamps of iterations should be
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Figure 6.14: Model Scores at Various Iterations

around -3 on a log10 chart. This is an indicative of a good LR and appropriate initialization of

other network hyper-parameters. A high divergence of this ratio from the specified value is an

indication of unstable parameter initialization and selection. This means that the parameters

are unable to learn appropriate features from the training dataset.

It can be seen from the first graph of figure that the parameters at various time stamps of

iterations are around -3 on the log10 chart. Some parameters started from -2.5 on the y-axis

but a convergence towards -3.0 can be easily observed from the figure. Especially 0W tends to

converge very rapidly towards -3.0 after some time stamps of iterations.

Figure 6.13 shows the mean magnitudes of the parameter ratios of first Convolutional layer

used in the network. It can be seen from the layer activations graph that the graph stabilizes

after almost 80 iterations which depicts that the network is stable and is not prone to exploding

activations problem. The stability of the layer activation graph also shows that the weights of

the layers have been initialized correctly with proper regularization scheme.

It is observed that the graph stabilizes after few iterations depicting that the model can cope the

problem of vanishing or exploding activations. The stability of the graph after some iterations

also shows that the weights of the layers have been initialized correctly and proper regularization

scheme i.e. λ2
∑

i θ
2
i is adopted. The value of λ is varied from 5 * 1e-2 to 5 * 1e-8 but the value
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of 5 * 1e-4 provided the best results. Please note that this is the ratio for the first Convolution

layer of the network.

It can be seen that the activations at various time stamps of iterations are between the suggested

region. This shows that network is in a good learning state from the very first layer with proper

learning rate and other network hyper-parameters. The convergence of this ratio as seen from

the chart is an indication of stable parameter initialization and selection. On the other hand

the bottom two graphs do not show a stability trend.

6.5.2 Deep Learning Model Training on Tuned parameter values

We have trained the system on the proposed hyper-parameters for our video object classification

pipeline and evaluated the performance. Figure 6.14 shows the value of loss function at various

iterations on the current minibatch. The graph is drawn against training scores of the network

and training iterations. It can be seen that the graph converges which shows that the learning

rate LR = 0.0001 is a well selected learning rate.

The decreasing trend of the graph is also an indication that ”L2 normalization scheme λ2
∑

i θ
2
i ”

with ”SGD Wt+1 = Wt − αδL(θt)” is a good approach for the training of our network. A bit

of a noise in the graph is observed but it is very low variation in a small range and is not an

indicative of poor convergence of learning.

Figure 6.15 shows the ratio of mean magnitudes of the parameters which is the average value

of parameters at various iterations shown along the horizontal axis. It is suggested that the

ratio of parameters at various time stamps of iterations should be between -3.0 and -4.0 on a

log10 chart. This is an indicative of a good LR and appropriate initialization of other network

hyper-parameters.

A high divergence of this ratio from the specified range is an indication of unstable parameter

initialization and selection. This means that the parameters are unable to learn appropriate

features from the training dataset. It can be seen from the figure that the parameters of all

layers at various time stamps of iterations are between the specified range.
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Figure 6.15: Parameter Ratios at Various Iterations

Figure 6.16(a), 6.16(b) and Figure 6.16(c) show the standard deviations of layer activations,

gradients and updates of parameters. A stable trend is observed in these graphs which show

that the system is capable of coping with the problem of vanishing or exploding activations. It

also shows that the weights of the layers have been well selected and regularization scheme is

properly adopted.

The histogram of layer parameters and layer updates are depicted in Figure 6.17 and Figure 6.18

respectively. A normal gaussian distribution is observed in the histograms of layer parameters.

An approximate gaussian distribution in the histogram of weights for different layers show that

the weights have been initialized correctly, updating in each iteration and there is sufficient

regularization in the network.

An approximate gaussian distribution is also observed in the histogram of layer updates. These

updates are the gradients which are generated after applying the regularization, momentum

and learning rate. The momentum is given by Vt+1 = ρvt−αδL(θt) and the value of ρ is varied

to 0.6, 0.8 and 0.9 for the generated results. The value is finally set to 0.9 in the above graph.

Similar to the layer parameters histogram, an approximate gaussian distribution in the layer

updates histogram represents that the network is not prone to exploding gradient problem.

This is mainly because of the usage of gradient normalization which we added in the network.
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ITERATIONS

3000

2500

2000

1500

1000

500

0

-0.02 0.00 0.02 0.04 0.06 0.08 0.10

Figure 6.17: Histogram of Layer Parameters

Sensitivity: Internal
ITERATIONS

7000

6000

5000

4000

3000

2000

1000

0

-0.00045 -0.00040 -0.00035            -0.00030           -0.00025           -0.00020            -0.00015           -0.00010           -0.00005            0.00000
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Figure 6.19 depicts the parameter ratios of first layer. The layer information is also shown

alongside the graph in Figure 6.20 . It can be observed that the convolution layer achieves

almost a stabilized state after 80 iterations. Ratios are shown for both the weights and biases

of the layer. It can be seen that the ratio is between the suggested region i.e. 0.0 to -3.0 on a

log10 chart.

Figure 6.21(a), Figure 6.21(b) and Figure 6.21(c) show the standard deviations of layer activa-

tions, gradients and updates of parameters for the first Convolution layer of the network. The
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memory chart of on heap JVM memory and off-heap memory usage is depicted in Figure 6.22.

The proposed system made use of off-heap memory and most of the memory is not allocated on

the JVM heap but outside of the JVM. This helps to perform the numerical operations faster

as data needs not to be copied to and from the JVM but pointers can be passed around for

numerical computations avoiding data copying issue.

6.6 Video Analytics in Cloud

This section explains the results obtained by executing the experiments with the proposed

video analytics system. The results explain the scalability and robustness of the whole system

by analyzing decoded video streams and transferring the video data from local storage to

cloud nodes. It also measures the time required to analyze video data on the cloud nodes and

gathering the results after the accomplishment of analysis.

The proposed system is executed on the cloud infrastructure as described in the experimental

setup section. The input data is first loaded in the RDDs of spark. Spark launches a number

of executors and the RDD objects are accessed by each executor in an iteration. The cache

manager is responsible to handle the results of the iterations. It maintains a memory pool and
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retains the iteration results in it. In case the data is not applicable anymore, it is not needed

to be retained in the memory and can be saved on the disk. In this way Spark manages the

data and keeps a part of data in memory and the rest of the data is stored on the disk.

We have used the iterative MapReduce framework to perform the analysis of the video streams.

Each node in the cloud can execute one or more than one analysis task on the input dataset. In

iterative reduce, an analysis task comprises of multiple map and reduce tasks. These multiple

map and reduce tasks perform the classification of objects from the input dataset. Spark

executes these task in multiple stages and each stage performs further mapping operations.

The iterative MapReduce framework is also responsible to schedule the map and reduce tasks

and also rescheduling of tasks in case of task failure.

Data Bundle: The video streams are first decoded to extract individual video frames from

the input video. Each video stream is recorded at 25 frames per second. The number of decoded

video frames is dependent upon the length of video stream being analyzed. The total size of

decoded video frames used in the experiments varied from 5GB to 100GB. These large set of

individual frames data is not suitable to be directly fed into the spark cluster with iterative

reduce framework. The individual video frames are small in size and iterative reduce is designed

to work on large data files. Processing of smaller files with iterative reduce only results in the
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loss of overall performance of the system. These small files are bundled into a large file and

then transferred to the cloud nodes for processing.

Data Bundling Time: We have bundled the individual frames by using a batch process

and then transferred it to compute cloud for processing. The time required to bundle the data

varies with the amount of video frames being considered. This time is directly dependent to

the size of the dataset. For a dataset of 10GB to 100GB, the time of batch process varied

from 0.25 hours to 3.8 hours as shown in Figure 6.23. Addition of more video frames in the

dataset increases the time as well. However, this process needs to be executed only once and

the resultant data can be retained in the cloud storage for future analysis.

Data Transfer Time: The data is needed to be transferred to cloud data storage to perform

analysis tasks on it. The transfer time to cloud data storage depends on a number of factors

such as; network bandwidth and cloud data storage block size. This time is also dependent on

the size of the data being transferred. To have an estimate of the transfer time, we measured

the transfer time for various sizes of data and plotted in Figure 6.24. It can be observed from

the figure that the transfer time varied from 0.36 to 2.18 for a dataset size of 20GB to 100GB.

We have also measured this time by changing the cloud storage block size from 128 MB which is

the default size to 256MB. However, very little improvement has been recorded in the transfer
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Figure 6.23: Data Bundling Time

time by varying the block size.

Training Time on Cloud Nodes: We have performed the training on multiple nodes of

cloud and measured the scalability and robustness of the proposed system. To have a good

estimate of the training time we have executed multiple tests on multiple sizes of datasets and

plotted their average execution time in Figure 6.25. The average execution time gives a measure

of how much training time on average is required to train the proposed system on a specific

size of dataset. The dataset sizes have been varied from 20GB to 100GB to measure the time

on various cloud nodes. It has been observed that the execution time increases by increasing

the size of dataset.

The same set of experiments is then repeated by changing the block size. The change in the

block size causes a change in the number of partitions of the dataset. So the experiments were

repeated with different block size to see if there are any improvements in the execution time of
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Figure 6.24: Data Transfer Time

the system. It can be seen from the figure that the execution time varied from 1.45 hours to

7.29 hours for a block size of 128MB. For the block size of 256MB, the execution time showed

a very little improvement from 1.43 hours to 6.8 hours for the same size of dataset. So the

variation in block sizes has a minor impact on the execution time of the system.

Robustness with changing cluster size:

In order to test the scalability of the system and to have an estimate of the execution time taken

by the system on average on cloud infrastructure, we have executed the system and repeated the

experiments by varying the number of cloud nodes. With each experiment we have increased

the number of nodes in the cluster and observed the effects on the overall execution time of

the system. The overall execution time of the system with an increase in the number of nodes

helped to determine the amount of time required to process the total amount of data. It also

gives an estimate that how much each node is contributing in the processing the total amount
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Figure 6.25: Average Time

of data. This provides an estimate on how many nodes should be required to process a specific

amount of data in a given amount of time.

Figure 6.26 shows the amount of time required by multiple nodes to process the data. It can

be seen from the figure that the total amount of time required to process the data decreases

with an addition in the number of nodes of the system. Addition of each node in the cloud

decreases the overall execution time. However, this also increases the network communication

between nodes. More nodes can be added or removed from the system in order to further

increase or decrease the overall processing time. However, it should be noted that having few

nodes will increase the processing cost on each node and having too many nodes will increase

the communication cost between them.
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Figure 6.26: Analysis Time in the Cloud

6.7 Conclusion

In this Chapter, the results of the proposed system and its underlying algorithms are presented.

It was demonstrated that the accuracy of the proposed deep learning based object detection and

classification system can be improved by shifting it from spatial domain to spatial frequency

domain. The challenges of illumination, expression and blur can be tackled by using a feature

fusion strategy based on the orientation property of the intrinsic mode functions of each object

in the dataset. The intrinsic mode functions can be generated by leveraging bi-dimensional

empirical mode decomposition. The orientation fusion approach can significantly improve the

performance of the proposed system when compared with state-of-the-art.

It is also demonstrated that the performance of the proposed basic video object detection and

classification system can be improved by employing deep learning based Convolutional Neural

Networks. We demonstrate the improvements in the results by discussing each component of
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the deep learning pipeline. It is shown that a highly accurate video analytics system can be

obtained by an optimal selection of learning rate, regularization, normalization scheme and the

design of the number of layers and their parameters.

We also showed that a distributed cloud infrastructure is an efficient way to cope with the

challenges of increasing volume of data. The processing time of the video streams can be

reduced by increasing the number of nodes in the cloud. The processing time can further be

improved by optimizing the resource utilization and employing the efficient and optimal data

transfer techniques. However, the processing time is also dependent on the amount of data

being analysed. The increase in the amount of data also increases the processing time of the

video streams.



Chapter 7

Conclusions and Future Directions

7.1 Outline

This chapter presents the conclusions and summarizes the thesis with a focus on the major

contributions of this work. The main conclusions drawn from this research work are presented

in Section 7.2. The advancements made by this thesis in the state-of-the-art are presented in

Section 7.3. Section 7.4 presents the future directions through which the proposed system could

be further extended. We also highlight some potential limitations of the proposed work in this

section. Finally, a closing statement is provided in Section 7.5 which concludes the thesis.

7.2 Conclusions

This thesis presents a video analytics system which performs object detection and classification

to classify objects from images and video data. The system addresses the problem of processing

large-scale video data, that is being generated due to the increasing availability and deployment

of video cameras.

The hypothesis of this research work asserts that:

141



142

”An optimally tuned spatial-frequency based video analytics system can be developed to auto-

matically identify objects from large number of video streams in a cloud data centre.”

In order to support the research hypothesis, a video analytics workflow for automated object

detection and classification has been proposed. The orientation, phase and amplitude properties

derived from IMFs through BEMD has been studied using Reisz transform. A feature fusion

strategy based on the orientation property has been adopted. The proposed system has been

optimally tuned to achieve maximum accuracy and performance. A number of experiments

have been conducted and their results were discussed in detail. This research work helped to

make a good progress in the fulfilment of the research ambition related to research hypothesis.

The main conclusions drawn from this research are the following:

1. It has been demonstrated that machine learning based object detection and classification

can be orchestrated in a workflow to minimize the human intervention during classification

process. It was also demonstrated that adaptive frame sampling (in which the frames

which do not contain any object in them are discarded) can reduce the amount of video

frames to be processed and improves the performance and execution time. This addresses

objective 1 of this thesis, as outlined in Chapter 1 which aims to propose a video analytics

workflow for the automated detection and classification of objects from large number of

video streams.

2. It was also concluded that a feature fusion strategy based on the orientation components

of the video frames can be used to achieve high accuracy, recall and precision for blur

and illumination invariant object classification. The orientation, phase and amplitude

properties derived from each intrinsic mode function were studied and their performance

was shown in terms of accuracy. It has been concluded that the orientation component

of the object leads to a higher accuracy rate. It was shown that feature fusion strategy

based on the orientation components can significantly improve the accuracy of the video

analytics system under uncontrolled conditions. This fulfils the objective 2 of this thesis

which targets to improve the accuracy of the video analytics system using feature fusion

strategy in spatial-frequency domain under uncontrolled conditions.
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3. It was concluded that the tuning of the hyper-parameters associated with the deep learn-

ing algorithm can be modelled mathematically and the effects of hyper-parameter tuning

on the system’s performance can be observed. It was concluded that the hyper-parameters

including learning rate, momentum, number of epochs and mini-batches have a major

contribution in improving the training performance of the system. This validates the

objective 3 of this thesis which asserts that a mathematical model can be designed for

the hyper-parameter tuning of the deep learning pipeline to improve the performance of

training and inference for video analytics.

4. It was concluded that the Cloud-based parallel distributed training and inference is an

efficient way to speed up the training process. It was demonstrated that the training of the

deep learning pipeline can be parallelized by dividing the dataset into small subsets and

then passing over these subsets of data to separate Neural Network models for training.

It was shown that the models can be trained in parallel and the resultant parameters for

each model can be iteratively averaged to form a single trained model. This addresses

objective 4 of this thesis which states that the video analytics system can be scaled using

Cloud infrastructure based on the number and size of the video streams.

5. It was shown that a video object classification case-study can be used to validate the

proposed video analytics system with the data that has been collected from real life

scenarios. It was also shown that the proposed video analytics system can perform object

classification with an accuracy and precision of 97 and 98 percent respectively. This

addresses objective 5 of this thesis which states that the video analytics system can be

validated using a video object classification case-study on the data that has been collected

from real life scenarios.

These conclusions endorse the research aim and objectives of this research work as described

in Chapter 1. The video analytics system proposed in this work tends to resolve a real life

problem of classifying objects from large number of video streams. An operator using this

system can specify an object of interest either for surveillance or monitoring. The operator can

then identify or track the object to perform analytics automatically using the proposed system.
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7.3 Advancements in State-of-the-Art

We advance the state-of-the-art by introducing automation, reducing human intervention, in-

creasing accuracy and by improving training time and performance of large scale video analytics

systems. The use of spatial frequency domain features and their fusion in existing literature

is scarce. They have not been fully exploited for the blur and illumination invariant object

classification which are the most common challenges for object classification. We improved the

accuracy of blur and illumination invariant object classification using orientation based features

fusion.

The deep learning based video analytics systems are difficult to tune as they involve a num-

ber of hyper-parameters. The main parameters include learning rate, momentum, activation

function, optimization algorithm and weight parameter initialization. The tuning of these

hyper-parameters is still a very challenging task in existing literature. We have advanced the

deep learning hyper-parameter research by highlighting the parameters that have a major con-

tribution in improving the performance of the system and formulating a mathematical model

to observe the effects of hyper-parameter tuning on the system’s performance.

The parallelization of the training of deep learning network plays an important role in reducing

the training time of the system. Deep Networks are compute intensive in nature and perform

slowly and inefficiently on a single machine, especially, if they are operating on large datasets.

These systems are scaled and configured on a Cloud-based distributed infrastructure in this

research work for rapid processing of video streams at a reasonable computational cost.

This research work encompasses three major areas of Computer Science. First and foremost

Artificial Intelligence and Machine Learning as we have improved the state-of-the-art algorithms

with the aim of video stream analytics. To the best of our knowledge, this was the first effort

to quantify and demonstrate the shallow and deep learning algorithms for Cloud-based video

analytics. We have proposed improvements in both Machine Learning based shallow networks

and deep networks for efficient classification of objects from video streams. The algorithms have

been applied in a novel setting based on the most optimal parameters for efficient performance
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and high accuracy.

The second area of Computer Science to benefit from this research is the image and signal

processing analysis. We have proposed to improve the accuracy and precision of the proposed

system using image and signal analysis. We have proposed the feature selection mechanism in

the signal processing domain which is scarce in the current literature.

To improve the performance of the proposed system in terms of training and inference time, we

have proposed improvements in the Distributed Computing which is the third beneficiary from

this research work. We have advanced the state-of-the-art in improving the execution time of

Machine Learning algorithms using a novel and optimized allocation of hyper-parameters for

distributed training and inference.

7.4 Future Directions and Potential Limitations

The proposed video analytics system could potentially be improved in a number of ways. There

could be many aspects in the proposed system in which potential improvements can be made to

enhance the capabilities and performance of the system. Mainly two aspects can be the focus

of improvements: (i) Algorithms (ii) Systems

Algorithms: In the proposed object detection and recognition system, the major focus has

been made in recognising the humans by considering them as a general object. Different subjects

are referred to as potential objects for classification. The capabilities of the proposed system

could be further extended by making the system more generic by detecting and classifying

objects from different object classes such as cars, bikes and pedestrians.

The integration of the proposed system with other deep learning based approaches can also

increase the performance and capabilities of the system. Currently, it is only able to perform

analytics on the basis of Convolutional Neural Networks due to the limited availability of

labelled data. The system can also be able to leverage the benefits of Reinforcement Learning

based models to further improve the performance of the system. This will also help to extend
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the functionality of the system by classifying other objects such as vehicles or pedestrians

without necessitating any metric learning stage.

In order to tackle more realistic surveillance scenarios, such as beyond head-and-shoulder

datasets, the work proposed in this thesis can be extended to incorporate more features such as

Fourier features or Wavelet features before performing the classification process. The Fourier

and Wavelet features can be fused with the EMD features which were proposed in this thesis to

further increase the accuracy rates. In order to tackle the challenges on occlusion, more data

containing the samples of occlusion can be added into the training dataset. The inclusion of

more training data into the dataset will expose the classifier to more information and will help

to capture more variations present in the dataset.

To further improve the performance of the proposed system, mechanisms from the transfer

learning domain can be adapted into the classifier. As mentioned earlier, that only Convolu-

tional Neural Network has been used in this work due to the limited availability of training

data. The problem of limited availability of training data can be resolved by using a pre-trained

classifier which was trained on a different but related task. This pre-trained classifier can act

as a starting point and can improve the generalization capability to the object classification

task.

Another improvement which can be made in the proposed system is the development of an

automated mechanism for hyper-parameter optimization of deep learning models. The devel-

opment of a tool-kit which could automate the process of hyper-parameter optimization can

be included as part of the improvements in the system. One way to automate the hyper-

parameter optimization is to use the graph learning-based methods. The nodes and edges of a

graph-based model can be used to represent the hyper-parameters and their associated weights.

Graph pruning can then be performed to select the most optimal values.

A meta-learning model can be developed for Cloud based video analytics which may be able to

improve the hyper-parameter tuning on the basis of input datasets and its characteristics. The

meta-learning model can also take into account the configurations of underlying in-memory

compute cluster and can suggest appropriate tuning parameters for both deep learning model
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and in-memory cluster. The meta-learning model having the ability to acquire new knowledge

versatility can help the systen to focus on the right dataset characteristics for hyper-parameter

tuning.

The capabilities of the proposed video analytics system can be further enhanced by incorporat-

ing other useful features from the frequency domain so that it can cope with other challenges

including rotation and translation variance. It can also help to cope with occlusion and illumi-

nation challenges.

Systems: The execution of the proposed deep learning based video analytics system can

also be performed on multiple nodes of a GPU-based Cloud infrastructure. The GPU-based

cloud infrastructure will help to increase the complexity of the model and will facilitate to

experiment on a much bigger dataset. It can also help to use the proposed system for live

streaming analytics. Mechanisms need to be developed where GPUs can be utilized on the

in-memory processing cluster.

With the utilization of an in-memory cluster coupled with the computation power of GPUs,

we can anticipate a higher performance of the video processing platform for live video streams

analysis. This can also help to overcome the delays which occur due to various I/O operations

and will improve the performance and training time. More innovation can be added on the

infrastructure side by incorporating memory models to enhance the scalability and throughput

of the proposed system.

The deployment of the proposed system on an Edge enhanced Cloud infrastructure can also

play a major role in increasing the performance of the system. The detection and extraction of

the objects can be performed on the Edge devices. This will help to filter out the redundant

and unwanted frames and will reduce the processing cost.

The use of Field-programmable Gate Arrays (FPGAs) [166] at the edge devices can also help

to increase the performance of the system. The FPGAs can be designed to be configured for

the proposed system for object detection and extraction. A Software Defined Network (SDN)

can then be used to route the extracted data efficiently to the Cloud. This can help the system
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to perform real-time video stream analytics.

The proposed system can also be enhanced to be used in many other useful applications related

to different domains such as Smart Cities and Big Data. It can be enhanced to be used in

medical imaging systems, traffic reinforcement systems, satellite imagery systems and many

other application domains. The system can be used to identify unknown patterns or to make

detection and classification from large amount of data.

7.5 Closing Statement

Due to the recent advances in cameras, cell phones, laptops and other digital devices, partic-

ularly the resolution at which they can record an image/video, large amounts of data is being

generated daily. This video data requires automated and intelligent analysis to extract useful

insights and metadata. Existing video analysis systems are time consuming, lack automation

and are unable to harness the power of distributed processing for training and inference.

In this thesis, we presented a Cloud-based, optimally tuned video analytics system to process

large numbers of video streams, where the underlying infrastructure was able to scale based

on the number and size of the stream(s) being considered. The system automated the video

analysis process and reduced manual intervention.

An operator using this system only specifies which object of interest is to be located from the

video streams. The object classification is then performed by comparing the object of interest

with the pre-stored trained patterns, generating a set of matching scores. The matching scores

greater than an empirically-determined threshold reveal the classification of the object. The

proposed system proved to be robust to classification errors and can be used as a general-

purpose video analytics system.
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