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Abstract 

Automated sleep disorder detection is challenging because physiological symptoms can vary widely. 
These variations make it difficult to create effective sleep disorder detection models which support hu- 
man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific 
papers have taken up the challenge of automating sleep disorder detection. This paper provides an 
expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) 
can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery 
phase. We compared the performance of proposed sleep disorder detection methods, involving differ- 
ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and 
insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical 
signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), 
Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and 
distinctiveness. Common to all reviewed papers was that AI models were trained and tested with 
labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used 
for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine 
Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used 
for sleep disorder detection. The strong emergence of DL algorithms has considerable implications 
for future detection systems because these algorithms demand significantly more data for training 
and testing when compared with ML. Based on our review results, we suggest that both type and 
amount of labelled data is crucial for the design of future sleep disorder detection systems because 
this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding 
principle, more labelled data will help to represent the variations in symptoms. DL algorithms can 
extract information from these larger data quantities more effectively, therefore; we predict that the 
role of these algorithms will continue to expand. 

Keywords: Sleep disorders; Automated detection; Deep learning; Machine learning; Sleep apnea; 
Insomnia: Artificial Intelligence, Biomedical signals processing, Sleep disorder detection; 
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1. Introduction 

Sleep is a biological activity initiated and controlled by the human brain [1]. Sleeping maintains 
the physical and mental health of an individual. The human body heals and rebuilds itself during 
sleep, removing metabolic waste that has built up during wakefulness [2]. Sleep also reorganises 
memory and supports long-term memory formation [3]. Considering the immense benefits of sleep 
for human beings, it is essential that everyone gets enough sleep. Insufficient or poor-quality sleep 
disrupts the body’s circadian rhythm, increasing the risk of developing health problems, including 
serious diseases like cardiovascular disease, cognitive impairment, and memory deterioration. This 
negatively impacts daily activities, such as study or work, and may lead to decreased appetite, re- 
duced work productivity, and an increased accident probability [4–7]. Sleep deprivation also disrupts 
the body’s circadian rhythm, the changes in life activities within 24 hours [8], increasing the risk of 
developing health problems, including serious diseases like cardiovascular disease, cognitive impair - 
ment, and memory deterioration. Figure 1 depicts the sequence of physiological processes within 24 
hours [9]. 

 

Figure 1: Circadian rhythm. 

 

Sleep stage classification plays a vital role in the assessment of sleep quality. Most often the 
classification processes follows the American Academy of Sleep Medicine (AASM) standard [10], 
which is a modification of the classification rules originally developed by Rechtschaffen and Kales’s 
(R&K) [11]. The AASM rules define characteristic features for five distinct sleep stages: 

• W (Wakefulness): stage W is characterised by alpha (8-12 Hz) and beta (16–30 Hz) waves; 

• N1 (NREM 1): stage N1 is scored when theta (4-8 Hz) waves are evident, and vertex sharp 
waves may be present; 

• N2 (NREM 2): stage N2 is scored when high voltage biphasic waves (K-complexes) and sleep 
spindles (12-16 Hz) are noted, and theta waves are present; 

• N3 (NREM 3): stage N3 is characterised by high amplitude (>75 µV) delta (0.5–4 Hz) waves; 

• REM: stage Rapid Eye Movement (REM) is scored when theta and sawtooth (2-6 Hz) waves 
are evident, and alpha waves may be present. 
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Current studies illustrate that sleep disorders constitute a health burden for all societies [12]. Sleep 
disorders, such as Periodic Limb Movement Disorder (PLMD), Rapid eye movement Behavioural 
Disorder (RBD), bruxism, obstructive sleep apnea, and insomnia [13–15] affect a wide range of 
people daily due to their detrimental physiological effects and high prevalence [16, 17]. Between 
10% and 30% of people have insomnia, which means they have trouble initiating and/or maintaining 
sleep [18]. Bruxism is tooth grinding [19] and it is the second most common sleep disorder with a 
prevalence of 8% to 10%. The main symptom of PLMD, the third most prevalent sleep disorder, is 
repetitive limb movement during sleep. Sleep apnea and hypopnea are sleep breathing disorders, and 
they have a prevalence of 3% to 7% and 2% to 4%, respectively. In sleep apnea, breathing stops and 
starts repeatedly during sleep due to a blockage in the airway or a problem with breathing control 
[20–22]. The disorder can occur at all ages, leading to cognitive dysfunction due to a disruption of the 
brain’s normal processes during sleep. It is also proven to be a risk factor for cardiovascular diseases. 
Therefore, adequate treatment can reduce the comorbidity rate [23]. REM behaviour disorder (RBD) 
is characterised by the patient acting out their dreams. During this activity, patients may hurt 
themselves or their partners. Narcolepsy and Nocturnal Frontal Lobe Epilepsy (NFLE) are less 
common sleep disorders with a prevalence of 0.025% to 0.05% and 0.018% to 0.019%, respectively. 
People who are diagnosed with narcolepsy have difficulty staying awake, with excessive daytime 
sleepiness and other features including hallucinations, sleep paralysis, and cataplexy. NFLE is a 
form of epilepsy that affects patients during sleep. 

Sleep disorders are diverse and require disease-specific treatment [24, 25]. Furthermore, sleep 
is personal, and the impacts of sleep disturbance are individual for each human being. Hence, 
objective disease detection is required for an individual diagnosis. Early detection may lead to better 
management and treatment of sleep disorders [26, 27]. Traditional diagnosis processes need highly 
trained sleep physicians and clinical scientists to manually analyse and interpret the results. This 
manual evaluation might suffer from inter- and intra-observer variability and is resource-intensive 
[28]. Based on automated sleep disorder detection, diagnosis support systems can improve cost 
efficiency and reduce inter-and intra-operator variability. However, disorder diagnosis support is a 
challenging problem due to the individuality and variability of symptoms. 

This review investigates whether digital technology and Artificial Intelligence (AI) allow us to 
automate sleep disorder diagnosis support. We have reviewed the state-of-the-art scientific litera- 
ture on AI for sleep disorder detection giving us the necessary overview and background to discuss 
approaches for automated sleep disorder diagnosis and treatment support. The following list details 
the contributions of our work: 

• We provide an expert review of 114 scientific studies from 95 articles. 

• The review delivers a comprehensive overview of application areas and technology used. 

• We discuss the difference between Machine Learning (ML) and Deep Learning (DL) in detail. 

• We also attempt to look into the future by discussing the individualisation of sleep disorder 
detection. 

• The attempt to look into the future is informed by establishing the limitations of the reviewed 
articles. 

The remainder of this paper is organised as follows. The next section provides some medical 
background on sleep disorders. Section 3 describes the article search methods. The discovered articles 
were reviewed, and Section 4 presents the review results. Section 5 provides our interpretation of 
these results focusing on limitations and potential future work. Finally, concluding remarks are 
presented in Section 6. 
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Figure 2: Information flow diagram. 

 
2. Background 

In recent years, problems concerning real-time diagnosis and treatment monitoring of sleep dis- 
orders have attracted the attention of many researchers [29]. This section provides some background 
on the medical need for sleep disorder detection, and we discuss some technology that can be used 
for automated sleep disorder detection. 

 
2.1. Automated detection 

In a medical setting, physiological signals are often used to provide objective evidence that leads 
to a sleep disorder diagnosis. Polysomnography (PSG) analysis is the gold standard for sleep disorder 
detection [30, 31]. However, PSG recordings require many wires and electrodes, making the mea- 
surement setup time-consuming, and uncomfortable for the patient [32]. Further, PSGs are recorded 
in sleep laboratories, which can cause disruption of sleep due to changes in the environment, known 
as the first-night effect, potentially leading to inaccurate diagnostic information. Portable PSG- 
based methods, which can be used in the home environment, might be a solution to the problem 
caused by the first-night effect [33]. Furthermore, manual analysis processes are resource-intensive 
and prone to inter-and intra-operator variability [34]. Automated sleep disorder detection aims to 
address these drawbacks by incorporating objective decision-making into remote monitoring ecosys- 
tems. For patients, this has the added benefit that the data acquisition can be accomplished in the 
home environment, which is usually more comfortable for the patient. 

Automated sleep disorder detection requires AI models that assign meaning to data [35]. The data 
comes in the form of physiological signal measurements or medical imaging. This data is processed 
in one of three ways, and each way opens a distinct information channel from the patient to the 
sleep physician [36, 37]. The first channel is established through feature extraction [38]. Linear or 
nonlinear algorithms are used to extract one or multiple parameters from the measurement data. 
The extracted features are 100% explainable, given that the algorithm code is available. However, it 
is difficult to track these parameters; therefore, they are rarely used for scientific publications. One 
way to address this problem is to use ML algorithms that take features as input and produce a class 
label as output. This class label can be used for sleep disorder detection. The explainability of ML- 
based systems is lower when compared to features alone because labelling depends on weights and 
other parameters that are established during a training phase. DL represents a direct information 
extraction channel without incorporating feature extraction [39]. DL is the least explainable detection 
method because feature extraction and labelling are automated. Figure 2 shows the three distinct 
information pathways from patient to sleep physician. 

ML is still the dominant problem-solving AI technique. ML algorithms are characterised by 
learning patterns with adjusting parameters to improve results. Most ML models require supervised 
learning based on labelled data. In contrast, unsupervised learning discovers data clusters and 
automatically assigns labels to them [40–42]. Thus, the algorithms can create powerful tools for 
understanding relationships in normal datasets [43]. Over the years, a wide range of ML algorithms 
has been proposed, including Artificial Neural Network (ANN), Kernel Extreme Learning Machine 
(KELM), Naive Bayes (NB), Hidden Markov Models (HMM), Linear Discriminant Analysis (LDA), 
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K-Nearest Neighbour (KNN), Logic learning machine (LLM), Feedforward Neural Network (FNN), 
and Logistic Regression (LR). In general, designing decision support systems with these algorithms is 
time-consuming, and their performance depends on the features extracted. Also, model performance 
may decrease as the data volume increases [44]. 

DL is currently gaining a lot of attention because of its ability to extract knowledge from 
large datasets, which is an advantage when compared to ML algorithms [45]. DL models, such 
as Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) can be used to 
improve classification performance using Electroencephalogram (EEG), Electrocardiogram (ECG), 
Electrooculogram (EOG), and Electromyogram (EMG) signals for identifying sleep disorders, such 
as sleep apnea, insomnia, bruxism, narcolepsy, and nocturnal frontal lobe epilepsy [17, 46]. 

 
2.2. Material 

Medical practitioners initiate the sleep apnea diagnosis process by conducting a primary inves- 
tigation, such as pulse oximetry or cardiorespiratory polygraphy. Physicians may recommend a 
sleep study to provide objective evidence for a clinical diagnosis when the primary investigation 
is inconclusive due to the presence of other sleep disorders, either behavioural or pharmacological 
[30, 47]. To conduct a sleep study, the subject will be sent to a sleep laboratory where whole 
night PSG recordings are captured. A PSG recording contains multi-modal and multi-channel sig- 
nals, including EEG, ECG, EMG, EOG, Cardiorespiratory Polygraph (CPR), Nasal Airflow (NA), 
Photoplethysmogram (PPG), Oxygen Saturation (SpO2), Partial pressure of oxygen (PaO2), and 
Partial Pressure of Carbon Dioxide (PaCO2). EEG signals are most often used for scientific research 
on sleep disorder detection because they record electrical brain activity from which sleep staging is  
derived. ECG signals measure the electrical heart activity, EOG signals monitor eye movements, 
and EMG signals monitor muscle tone. 

A range of physiological signals and medical images have been used as input to AI models for sleep 
disorder detection [48]. Automated detection sleep apnea as been successfully evaluated using gas 
exchange data by Vimala et al. [49]. Deviaene et al. [50], Vaquerizo-Villar et al. [51], and Gutiérrez- 
Tobal et al. [52] used pulse oximetry to establish sleep disorder detection systems. Some experiments 
use single lead signals, like ECG [53]. A wide range of time- and frequency-domain features can be 
extracted during the design of an ML model. The result tends to be more efficient and low-cost. 
Many researchers conducted their experiments with the MIT PhysioNet Apnea-ECG database [54– 
58]. The MIT PhysioNet dataset, from Phillipps University, is popular for ECG based sleep apnea 
detection [59]. It contains 70 apnea, and 35 non-apnea ECG recordings in each training and testing 
set. Its signal was segmented 100 samples per second, nominally 200 A/D units per millivolt. The St. 
Vincent’s University Hospital / University College Dublin Sleep Apnea Database (UCDDB) contains 
25 full overnight PSGs from patients referred to the Sleep Disorders Clinic at St Vincent’s University 
Hospital, Dublin, for sleep apnea and snoring detection. Table 1 provides a summary of benchmark 
datasets for sleep disorder detection. Some other public datasets are involved in those papers, such 
as the Shiga University of Medical Science hospital (SUMS), the Rio Hortega University Hospital 
dataset (RHUH), from universities or hospitals. 

 
2.3. Related reviews 

During the preparation of our review, we discovered four reviews related to sleep status and 
sleep disorder detection. Figure 3 provides a graphical representation of the distinctness between 
the individual studies. In their review, Abdel et al. [65] focused on sleep apnea diagnosis support 
based on Internet of Intelligent Things (IoIT) technology. IoIT establishes a distributed measurement 
environment that channels physiological signals to a central server for analysis. In most cases, this 
analysis will involve some kind of AI model which automates sleep apnea detection. Buongio et 
al. [66] reviewed sleep stage classification based on ECG signals. A comprehensive review from 
Heyat et al. [67] documents progress on insomnia detection. Campabadal et al. [68] reviewed sleep 
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Table 1: Benchmark datasets. 
 

Database Data Origin Properties 

MIT 
physioNet [60] 

70 ECG 
recordings 

Phillipps University 100 Hz sampling frequency, 
nominally 200 A/D units 

per mV. 

Cyclic 
Alternating 
Pattern 
(CAP) [61] 

108 standard 
PSG recordings 

Sleep Disorders 
Center of the 

Ospedale Maggiore of 
Parma 

Multi-channel EEG, ECG, 
EMG, EOG, SpO2 and 

respiratory signals, 
including Respiratory 

Event Index (REI), 
Accelerometry Derived 

Respiration Index (ADR). 
UCDDB [62] 25 standard 

PSG recordings 
University College 

Dublin dataset Apnea/Hypopnea 
Index (AHI) values in a 
range of 1.7–90.9. 128 Hz 

sampling frequency. 

Sleep Heart 
Health 
Study (SHHS) 
[63] 

standard PSG 
from 6441 
subjects 

American National 
Heart Lung & Blood 

Institute 

C3/A2 and C4/A1 EEGs, 
125 Hz sampling frequency. 

The 
Wisconsin 
Sleep Cohort 
[64] 

standard PSG 
from 2570 
subjects 

National Sleep 
Research Resource 

Multi-channel EEG 
(O1-M2 and C3-M2 have 
been collected in most of 
the subjects), ECG, EMG, 

EOG, SpO2, and 
respiratory signals. 100 and 
200 Hz sampling frequency 
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Figure 3: Comparison with other published review articles related to sleep disorders. 

 
behaviour disorder classification methods. All reviewed studies were based on Magnetic Resonance 
Imaging (MRI) image data. In contrast to these established reviews, our approach focused on 
automated sleep disorder detection with AI models. We did not restrict the type of data used to 
provide objective information during the detection process. Neither did we place any restrictions 
on the type of AI. Therefore, we established a comprehensive review of automated sleep disorder 
detection. 

 
2.4. Sleep disorders 
2.4.1. Sleep apnea 

Obstructive Sleep Apnea (OSA) is the cessation of breathing caused by a blocked airway during 
sleep. It is estimated that around 11% of middle-aged people suffer from OSA [69, 70]. The symptoms 
range from loud snoring and erratic breathing to gasping when sleeping. These events may cause 
neurological and cardiovascular complications, including poor memory or hypertension, heart failure, 
and even death [5, 71]. OSA is more frequent in men [72]. In addition, several factors increase the 
risk of developing OSA, such as obesity, craniofacial abnormalities, smoking, or family history [73]. 

 
2.4.2. Hypopnea 

Hypopnea is a less severe form of sleep breathing disorders and is defined as a reduction in 
airflow, associated with a drop in oxygen saturation or arousal from sleep [74]. Although airflow 
is compromised in both sleep apnea and hypopnea, the airway is completely blocked during sleep 
apnea events and only partially blocked during hypopnea events [46]. Hence, a limited amount of air 
can still pass through the airway during a hypopnea event. The symptoms include snoring, gasping, 
choking, and breathing difficulty during sleep, resulting in tiredness due to repeated sleep disruptions. 
The AHI is the number of sleep apnea or hypopnea events divided by the monitoring period. 

 
2.4.3. Insomnia 

Insomnia is defined as an individual’s inability to fall asleep and/or stay asleep and is the most 
prevalent sleep disorder in human beings. Ethnological studies established the prevalence of insomnia 
at nearly 30% [75, 76]. 

Insomnia can cause secondary co-morbidity, such as depression, stroke, seizures, weak immune 
system, obesity, diabetes mellitus, hypertension, heart disease, and anxiety [76]. It may also increase 
accident risk, degrade performance at work, reduce sex drive, and cause memory loss. Insomnia can 
be short-term (acute), or long-term (chronic) and can be categorised as primary or secondary, the 



8  

former being sleep difficulty with no underlying health conditions, whereas the latter is related to a 
medical disease [6]. 

Symptoms of insomnia may include drowsiness during the day, tiredness, irritability, concentration 
or memory problems, and, most importantly, difficulty falling asleep [77, 78]. 

 
2.4.4. REM sleep behaviour disorder 

RBD was first described in 1986 and is characterised by extreme behaviours during REM sleep 
[79] and causes the loss of normal skeletal muscle atonia during REM sleep and generates prominent 
motor activity accompanying dreaming [80]. The behavioural content is usually a dynamic or violent 
dream in which a person is attacked or flees a situation. The behaviours seen in RBD typically 
occur more than 90 minutes after a person enters sleep [79]. Physical behaviour, such as running, 
punching, hitting, jumping out of bed, and kicking, can be frustrating and dangerous to the bed 
partner. Several studies have shown a strong relationship between RBD and neurodegenerative 
disease, especially Parkinson’s disease, multiple system atrophy, and dementia [81, 82]. 

 
2.4.5. Narcolepsy 

Narcolepsy is a rare sleep disorder that causes a person to fall asleep uncontrollably and at 
inappropriate times [83]. The central nervous system is deficient in the neurotransmitter hypocretin, 
which controls sleep and wakefulness. Patients with narcolepsy may experience hallucinations and 
sleep paralysis due to REM intrusion into wakefulness or a sudden loss of muscle tone in response to 
emotional triggers known as cataplexy [30, 77]. The main symptoms are excessive daytime sleepiness, 
sleep attacks, cataplexy, sleep paralysis, and excessive dreaming during the night. There is no cure 
for this disorder, but improving sleeping habits and taking medications to control symptoms are 
recommended to decrease the disease burden [84]. Narcolepsy is a life-long, debilitating condition in 
which patients are likely to experience difficulty in engaging with daily activities, such as study or 
work, and maintaining or establishing relationships. 

 
2.4.6. Periodic limbs movement disorder 

The symptoms of PLMD are repetitive, stereotypical movements of the limbs, most commonly 
the lower limbs. Unfortunately, the cause of PLMD is still unknown, although reduced dopamine 
in the basal ganglia is implicated, and genes have been identified, suggesting genetic inheritance 
[85, 86]. 

 
2.4.7. Nocturnal Frontal lobe epilepsy 

Frontal lobe epilepsy is a rare neurological disorder. It is characterised by brief, recurrent seizures 
that originate in the brain’s frontal lobe. It mainly occurs during sleep [87], and most patients are 
diagnosed before 20 years of age. The brain’s frontal lobe performs various functions related to 
memory, alertness, personality, awareness, and anxiety. As a result, individuals with frontal lobe 
epilepsy exhibit various symptoms resembling psychosis or sleep disturbances. 

Seizures usually last no more than 30 seconds and can include features such as repetitive move- 
ments, explosive vocalisations, urinary incontinence, unusual behaviours, abnormal postures, and 
head and eye deviation [88]. 

Genetic, lesional, and cryptogenetic nocturnal frontal lobe epilepsy types have been described.  It 
can be a benign clinical entity, although some severe, drug-resistant forms have been described [89]. 

 
2.4.8. Bruxism 

Bruxism is a term that encompasses different jaw muscle movement phenomena, including teeth 
rubbing, clenching, and tightening or pushing of the jawbone [90]. It may occur during the daytime 
but also during sleep. 

Bruxism can lead to worn or cracked teeth, broken dental restorations, failed dental implants, 
muscle hypertrophy, jaw muscle pain and fatigue, headaches, toothaches, interference with bedmates’ 
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Table 2: Databases and Boolean search strings used to select the papers. 
 

Database Boolean string [Title/Abstract] No. of Studies 
Pubmed “Apnea”/“Insomnia”/“Hypopnea”/“RLS”/ 

“Parasomnia”/ “excessive”/“Sleep breathing disorder”/ 
“Deep learning”/“Machine learning”/ 
“Periodic limb movement disorder”/“Automated detection”/ 
“Sleep awake disorder”/“Sleep disorder” 

517 
IEEE 370 

Direct Science 759 
Google Scholar 451 

 
sleep, and reduced overall quality of life. The cause of bruxism is still uncertain; however, genetic 
factors and stress are likely to play a role in the disease formation [90]. Many people are unaware 
of sleep bruxism, so it is difficult to estimate the prevalence. Furthermore, there are no gender 
differences, but it is more frequent in younger people [91]. 

 
3. Search Methods 

The search methodology for our review follows the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) 2021 guidelines. We have used the following databases to 
source papers. We have used the following core databases to source papers: IEEE Xplore Digital 
Library, Pubmed, NCBI, Science Direct, and Google Scholar [92]. Most search results were relevant 
to AI techniques for automated sleep disorder detection. Table 2 provides the Boolean strings 
that were used to achieve the search results from the selected databases. Figure 4 depicts the 
complete 2021 PRISMA workflow that consists of individual searchers and filtering activities. We 
have structured the paper selection process into three different phases (identification, selection, and 
inclusion) according to the PRISMA guidelines. During the identification stage, we discovered 2309 
papers related to sleep disorder detection. In the selection phase, we removed 2214 papers according 
to the criteria outlined in Figure 4. In the inclusion phase, we conducted an expert review of 95 
papers. Some papers included more than one study, i.e., the authors detected different sleep disorders 
with their AI model [69, 93, 94], so a total of 112 studies were used for analysis. Two authors carried 
out the different tasks outlined in the PRISMA phases cooperatively. The filter results were discussed 
with all eight authors. 

 
4. Results 

Figure 5 illustrates our categorisation of the sleep disorder studies that were reviewed for this 
study. The subsequent sections cover sleep apnea, insomnia, and RBD. 

 
4.1. Sleep apnea 

The pie chart in Figure 5 shows that most sleep disorder studies focus on sleep apnea. Sleep 
apnea was detected based on ECG, EEG, and PSG signals, and some studies used more than one 
signal. Snoring sounds were also considered for sleep apnea detection [95–98]. 

Figure 6d provides an overview of the algorithms used for sleep apnea detection. More than 
half of the studies adopted ML, followed by DL. Few studies used a hybrid approach by combining 
ML and DL algorithms. Figure 6a presents the distribution of ML classifiers. We found that 18 
studies used Support Vector Machine (SVM), which takes up the biggest share, followed by Extreme 
Learning Machine (ELM). Furthermore, Figure 6c shows that there are 14 DL studies, with CNN 
being the most popular DL algorithm, followed by Long Short-Term Memory (LSTM). 

Figure 7 shows the classifier performance for sleep apnea detection. The figure allows us to 
compare the average Accuracy (ACC) results of each classifier, and this might indicate which of them 
performs best. Gated Recurrent Units (GRU), a DL algorithm, achieved the highest ACC of 99.00% 
for sleep apnea detection. In contrast, with an ACC of just 71.00%, the NB algorithm reported the 
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Figure 4: PRISMA flow diagram. 

 

 

 

 

 

 

 

 

Figure 5: Distribution of sleep disorders. 
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(a) Distribution of ML algorithms for sleep apnea detection. (b) Distribution of signals used for sleep apnea detection. 

 

 

(c) DL and Hybrid classifier distribution in sleep apnea detection 
solutions. 

(d) Distribution of AI algorithms used for sleep apnea detection. 

 

 
 

(e) DL and Hybrid classifier distribution in sleep apnea detection 
solutions. 

 

Figure 6: Sleep apnea-related distribution diagrams. 
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Figure 7: Average classification ACC for sleep apnea detection obtained with different classifiers. 

 
lowest classification performance for all reviewed sleep apnea detection models. Listing the model 
performance in Figure 7 reveals another important characteristic: the three least performing models 
belong to ML [99]. 

Table 3 summarises seven studies with the best ACC for sleep apnea detection among all the 
reviewed sleep apnea papers. Erdenebayar et al. [46] conducted experiments to detect sleep apnea 
on their own ECG dataset. They applied a LSTM classifier to extract features, which enhanced 
the ACC significantly [46]. During our review, we encountered papers using less frequently used 
signals, including REI, Pulse Transition Time (PTT), ECG-Derived Respiration (EDR), Electrical 
Impedance Tomography (EIT), Airflow (AF). Bricout et al. [30] automated sleep apnea detection 
with a small dataset of 28 subjects and achieved 100% Specificity (SPE). Table A.11 summarises of 
all the reviewed studies on automated sleep apnea detection. 

It is known that the dataset dimension influences the model performance. For this reason, Table 
3 also shows the dimension of the training set as a percentage of the total dataset and the number 
of folds when the cross-validation technique was used. 

 
4.2. Insomnia 

The second most often studied sleep disorder is insomnia. Figure 8b shows that EEG was the most 
commonly used signal to detect insomnia. Only two DL models were used for insomnia detection. 
The first of these models was CNN, and the second model was a combination of CNN and LSTM. 
The pie chart in Figure 8a illustrates that SVM and Random Forest (RF) were the two most common 
classifiers for insomnia detection. The average ACC is lower than for the DL classifier CNN+LSTM 
or the ML classifier Ensemble Bagged Trees Classifier (EBTC). Figure 9 summarises the ACC 
values obtained using various AI algorithms for automated insomnia detection. EBTC and multiple 
classifiers have the highest ACC. Table 4 summarises all studies the reviewed insomnia detection 
studies. Sharma et al. [103, 104] achieved the highest ACCs with the EBTC classifier for the CAP 
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Table 3: Details of studies with top ACCs. RIP represents the respiratory inductance plethysmography, and SpO2 is 
the oxygen saturation. 

 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

No. 
Folds 

Dimension 
training 
set % 

Type Algo. 

Erdenebayar et 
al., 2019 [46] 

ECG DL RNN 99.00 Own 82 apnea 
patients 

- 80 

Bricout et al., 
2021 [69] 

Standard 
PSG 

recordings 
(thoracic 

and 
abdomen 
RIP, Nasal 

airflow, 
SpO2, 
ECG ) 

ML Tree 
model 

89.00 UCDDB 28 subjects 
Leave 
one out 
Cross 
valida- 
tion 
(LOOCV) 

96 

Romero et al., 
2019 [98] 

Sound DL 
Deep 

Neural 
Net- 
work 

(DNN) 

95.29 Own 31 male 
and 13 
female 
partici- 
pants 

- 66 

Jafari et al., 
2013 [100] 

ECG ML SVM 94.80 Own 164 
subjects 

- 66 

Almuhammadi 
et al., 2015 
[101] 

EEG ML SVM 97.14 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

- 80 

Erdenebayar et 
al., 2019 [46] 

ECG DL CNN 98.50 Own 86 patients - 80 

Faust et al., 
2021 [102] 

ECG DL RNN 99.80 MIT 
PhysioNet 
Apnea 

35 records 10 90 
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dataset. 
In 2021, Li et al. [105] proposed optimal bi-orthogonal wavelet-based features to identify insomnia. 

Their study discriminated between healthy and insomnia cases from the CAP sleep dataset [106]. 
The highest classification ACC of 95.60% and a Kappa value of 0.97 were achieved using the N3 
deep sleep stage. They proposed that deep sleep can be used instead of the entire overnight sleep 
recordings if sleep scoring is performed; otherwise, all EEG epochs, irrespective of their sleep scores, 
need to be combined and used to identify insomnia [107]. 

An optimal antisymmetric biorthogonal wavelet filter bank has been used by Sharma et al.  [77] to 
minimise the joint duration-bandwidth localisation of underlying filters during insomnia detection. 
The -norm feature was computed from various wavelet sub-bands coefficients that were extracted 
from ECG signals. The norm features were fed to supervised ML classifiers to train and test models 
for automated insomnia detection. This work used ECG recordings of seven insomnia patients and 
six normal subjects from the publicly available CAP sleep database. 

Authors created ten different subsets of ECG signals based on annotations of sleep stages, namely 
wake (W), S1, S2, S3, S4, REM, Light Sleep Stage (LSS), Slow-Wave Sleep (SWS), non-REM, and 
W+S1+S2+S3+S4+REM for the automated identification of insomnia [108]. Their ECG-based 
REM sleep stage detection system showed the best performance with an ACC of 97.87%, F1-score 
of 97.39%, and Cohens kappa value of 0.9559 for KNN with the ten-fold cross-validation strategy. 
SVM yielded the highest value of 0.99 for the area under the curve with the ten-fold cross-validation 
corresponding to the REM sleep stage [77]. 

 
 
 

 

(a) Number of articles published using AI techniques for automated 
insomnia detection. 

(b) Number of published articles using physiological signals for au- 
tomated insomnia detection. 

 

Figure 8: Insomnia-related distribution diagrams. 

 

4.3. REM behaviour disorder 
Based on our article search strategy outlined in Section 3, we discovered only four automated 

RBD detection studies. The bar chart in Figure 10 provides an overview of the detection performance 
reported in these four papers. Sharma et al. [109] used EEG and EOG+EMG to detect RBD with 
an ML algorithm, the latter achieved a better result. Cooray et al. [79] were the only authors to 
use DL and reported outstanding ACC, SPE, and Sensitivity (SEN), of 96.00%, 98.00%, and 83.00% 
respectively. Table 5 summarises all the studies discovered on REM sleep disorder detection. 

4.4. Hypopnea 
Table 6 provides a summary of all studies for automated hypopnea detection. All the discovered 

studies used DL algorithms. Erdenebayar et al. [46] took two ECG experiments targeting on hypop- 
nea with different classifiers, namely GRU and CNN. These classifiers were trained and tested on 
the same dataset. GRU achieved slightly better results with ACC, SPE, and SEN 97.00%, 97.00%, 
and 97.00%, respectively, than the same index of CNN at 96.40%, 96.00%, and 96.00%. 
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Figure 9: ACC (%) obtained using various AI algorithms for automated insomnia detection. 

 
 

Table 4: Summary of the studies conducted on the topic of automated insomnia detection. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Sharma et al., 
2022 [77] 

EOG 
+EMG 

ML EBTC 99.70 CAP 108 PSG 
recordings 

Sharma et al., 
2021 [109] 

ECG ML SVM 99.00 CAP 108 PSG 
recordings 

Wei et al., 2018 
[76] 

EEG DL CNN+ 
RNN 

90.90 Own 44 Subjects 

Atianashie et 
al., 2021 [6] 

EEG DL CNN 89.00 MIBIH PSG 
and CAP 

108 PSG 
recordings 

Sharma et al., 
2021 [109] 

ECG ML ELM 76.00 CAP 108 PSG 
recordings 

Hamida et al., 
2015 [78] 

ECG ML K 
means 

– Own 18 patients 

Angelova et al., 
2020 [103] 

Standard 
PSG (ac- 
celerome- 
ter data) 

ML RF 84.00 Own 21 patients, 24 
normal 

Kusmakar et al, 
2021 [104] 

Actigraphy ML RF 80.00 Own 80 patients 

Lee et al., 2021 
[110] 

MRI ML SVM 80.00 Own 19 patients, 21 
normal 

Shahin et al., 
2018 [111] 

EEG ML SVM – Own 54 patients,61 
normal 
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Figure 10: REM behaviour disorder detection performance. 

 

 

 

Table 5: Details of automated RBD detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 

Cooray et al., 
2019 [79] 

PSG 
(EEG - 
EOG - 
EMG) 

DL CNN 96.00 Own 53 patients, 53 
normal 

Sharma et al., 
2021 [77] 

EEG ML ELM 72.00 CAP 108 PSG 
recordings 

Sharma et al., 
2021 [109] 

EOG 
+EMG 

ML EBTC 98.30 CAP 108 PSG 
recordings 

Cesari et al., 
2021 [112] 

EOG 
+EEG 

ML RF 81.48 Own 158 PD patients 

 

 

 

Table 6: Details of automated Hypopnea detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Erdenebayar et 
al., 2019 [46] 

ECG DL CNN 96.40 Own 86 hypopnea 
patients 

Erdenebayar et 
al., 2019 [46] 

ECG DL RNN 97.00 Own 86 hypopnea 
patients 

Drzazga et al., 
2021 [93] 

REI DL RNN 80.66 Physionet sleep 
database 

1000 PSG 
recordings 
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Table 7: Details of automated Narcolepsy detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Sharma et al., 
2021 [109] 

EEG ML ELM 78.00 CAP 108 PSG 
recordings 

Sharma et al., 
2022 [77] 

EOG 
+EMG 

ML EBTC 96.70 CAP 108 PSG 
recordings 

Christensen et 
al., 2015 [113] 

EEG ML HMM 89.20 Own 13 subjects 

 

Table 8: Details of automated PLMD detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Sharma et al., 
2021 [109] 

EEG ML ELM 84.00 CAP 108 PSG 
recordings 

Sharma et al., 
2022 [77] 

EOG 
+EMG 

ML EBTC 97.50 CAP 108 PSG 
recordings 

Kye et al., 2017 
[114] 

PSG (ac- 
celerome- 
ter data) 

ML KNN 96.62 Own 13 patients 

 
4.5. Narcolepsy 

Sharma et al. [77] contributed two papers that propose AI models to classify narcolepsy. One of 
their studies analysed EEG signals with an ELM classifier. This combination achieved a low ACC 
of 78%. After the initial study results, they combined EMG and EOG. This signal combination 
was analysed with an EBTC classifier. Ultimately, this increased the ACC to 96.70%. A study by 
Christensen et al. [113] achieved an ACC of 89.20% based on EEG signals. Table 7 provides a 
summary of all selected narcolepsy studies. 

 
4.6. Periodic limb movement disorder 

Only two research groups studied PLMD detection. Sharma et al. [77] achieved the highest 
reported ACC of 97.50% for PLMD classification with a multi-signal approach using EOG and EMG 
from the CAP dataset together with an EBTC classifier. Kye et al. [114] achieved 96.62% ACC with 
PSG as input signals. Table 8 provides a summary of the three studies focused on PLMD detection. 

 
 
4.7. Nocturnal frontal lobe epilepsy 

Sharma et al. [77, 109] conducted two studies to detect NFLE with ML classifiers based on signals 
from the CAP database. Their results indicate that ML approaches can achieve NFLE detection with 
high ACC. Given that a combination of EOG and EMG resulted in higher classification ACC when 
compared to EEG alone, it seems that multiple signals can improve the classification performance. 
Table 9 provides a summary of the two studies on automated NFLE detection. 

 
4.8. Bruxism 

Heyat et al. [115, 116] conducted two studies for bruxism classification. In the first, they devel- 
oped a Decision Tree (DT) to classify bruxism with the ECG signals, obtaining 81% ACC [115]. In 
the second study, they designed an automated method to detect bruxism with ECG signals using 
a Hybrid Machine Learning (HML) classifier [116]. In their study, they combined more than ten 
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Table 9: Details of automated NFLE detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Sharma et 
al., 2022 [77] 

EOG 
+EMG 

ML EBTC 97.50 CAP 108 PSG 
recordings 

Sharma et 
al., 2021 [109] 

EEG ML Ensem- 
ble 

84.00 CAP 108 PSG 
recordings 

 

Table 10: Details of automated Bruxism detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 
Heyat et al., 
2019 [115] 

EEG ML DT 81.25 CAP 224 EEG 
segments 

Heyat et al., 
2020 [116] 

ECG ML HML 94.00 CAP 936 ECG 
segments 

Lai et al., 2019 
[117] 

EEG 
+ECG 
+EMG 

ML DT 97.21 CAP 244 EEG 
segments 

 
classifiers with complicated parameters. Their method has an effective performance of 94.00% ACC, 
and they claimed the proposed model is suitable for home monitoring devices. Table 10 provides a 
summary of the single bruxism study. Lai et al. [117] achieved the highest bruxism detection ACC 
of 97.21% with a DT model that analysed EEG, ECG, and EMG signals. 

 
5. Discussion 

In our study, we have presented an overview of all sleep disorder detection approaches reported in 
95 scientific papers. During the review, we found eight types of sleep disorders for which automated 
detection systems have been established during the last 11 years (from 2010 to 2022). Sleep apnea 
and insomnia were the most studied fields, and all other sleep disorder topics attracted fewer than 4 
papers. 

We have analysed conventional ML and DL techniques for sleep disorder detection. Figure 11 
shows the number of sleep disorder studies published within one year, from 2010 to 2022. The graph 
shows that more articles have been published in recent years. This indicates that the topic has gained 
increasing relevance. Colour coding was used to present the frequency of DL, ML, and Hybrid algo- 
rithms. It is noted that ML dominated the field of automated sleep disorder detection until 2018. DL 
became popular from 2018 onward [118]. As such, DL is much more process-centric when compared 
with ML approaches, which depend on skilful human interaction during feature generation and se- 
lection. Being process-centric has another implication, namely the interchangeability of algorithms. 
The performance of ML methods depend on the combination of features and classification algorithm. 
Hence, there is always an element of uncertainty, and many investigators adopt a trial-and-error 
approach where they test a range of different classification algorithms. The process-centric nature of 
DL results in the fact that most frameworks, which facilitate the creation of DL models, are much 
more plug-and-play rather than trial and error. The plug-and-play nature of the frameworks enables 
a skilled designer to create hybrid models by combining two or more DL algorithms or even ML and 
DL algorithms. Indeed, such hybrid models are a new trend for automated sleep disorder detection. 

 
Sharma et al. [109] conducted a 6-class sleep disorder study using multiple signals from the CAP 

dataset. They aimed at general sleep disorders, such as bruxism and NFLE, with only one or two 
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Figure 11: Year-wise distribution of AI methods used for automated sleep disorder detection. 

 
studies in the recent decade. The CAP dataset consists of 108 PSG recordings and was used in many 
similar studies. Sharma et al. combined two signals and built a model, all targeted sleep disorders 
achieving high ACC. 

It can be noted from this review that automated sleep apnea and insomnia detection attracted 
the most research work within the area of automated sleep disorder detection. Sleep apnea can be 
life-threatening and lead to debilitating co-morbidities. Hence, more research has focused on this 
disorder. Also, it can be diagnosed using a wide range of physiological signals, such as ECG, PPG, 
Heart Rate Variability (HRV), snore sound, and SpO2. The fact that medical imaging was not used 
for sleep apnea detection is hardly surprising because time-domain signals allow us to observe and 
analyse how sleep apnea events unfold. According to the pie chart in Figure 6b, 32 studies automated 
sleep apnea detection studies were based on ECG signals. Many ECG benchmark datasets are 
available because these signals are routinely captured as part of overnight PSGs. Furthermore, the 
autonomic nervous system links ECG signal morphology to the breathing pattern. More specifically, 
sleep apnea events alter the beat-to-beat interval of the human heart. These changes can be detected 
with AI models for sleep apnea diagnosis support. Another important vital of ECG signals is that 
they can be measured in the home environment. Unfortunately, it is difficult to measure EEG in 
the home environment because the instrumentation effort is significantly higher when compared to 
ECG. The high instrumentation effort is necessary to control and if possible, reduce noise. This 
makes EEG signal analysis less practical for sleep apnea detection in the home environment. Nine 
studies indicated that EEG morphology analysis can be used for sleep apnea detection, however 
EEG is more difficult to measure in the home environment when compared to ECG because the 
instrumentation effort is significantly higher Nine studies focused on that signal type indicate that 
EEG morphology analysis can be used for sleep apnea detection. PSG measurements involving 
multiple channels are even less practical for sleep apnea detection in the home environment than 
EEG signals alone. The 15 studies that used the complete range of PSG signals aim to automate 
diagnostic pathways in sleep clinics. 

Figure 6e indicates that DL and hybrid models, such as CNN, LSTM, and a combination of both, 
have been proposed for automated sleep apnea detection. Faust et al. [102] have used LSTM models 
to obtain high accuracy for sleep apnea detection based on HRV signals. This result is significant 
because it shows that considering the beat-to-beat intervals is sufficient to detect sleep apnea reliably. 
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This will reduce bandwidth and processing requirements, bringing down the cost of wearable devices 
for sleep apnea detection at home. The pie chart in Figure 6a indicates that studies, which relied on 
ML techniques for sleep apnea detection, achieved the best results with SVM algorithms. Therefore, 
this technique has become a benchmark method for ML-based sleep apnea detection models. ELM 
algorithms were reported as the best classification methods by six studies. 

For insomnia detection, 5 out of 10 studies have used EEG signals, see Figure 8b, from which, 
we can derive that the EEG signal morphology reflects insomnia. Having only one study based on 
ECG signals indicates that the link between insomnia and ECG morphology is much weaker when 
compared to EEG. fMRI images were also used for insomnia detection. With their study, Lee et al. 
[110] established that fMRI can be used to discriminate between normal and insomnia subjects. 

Eight studies incorporated ML for automated insomnia detection, one used a hybrid model, and 
only one relied on a DL model, as indicated in Figure 8a. Three research studies achieved the best 
insomnia detection performance with SVM classifiers. Therefore, these classifiers should be used as 
reference standards for ML-based insomnia detection. Two studies report their base results with the 
RF classifier. 

There are several differences between the ML and DL models, which can explain their different 
performances. First, ML models require expert-led feature engineering to generate results, which 
DL models do not need. The most important among these is the features extraction stage, which 
generates the input data. Furthermore, to train the ML models, a trial-and-error phase is required, 
in which the operator finds the data structure that generates the best results. Instead, the DL models 
generate the features that enhance the achievement of the task, such as the detection or classification. 
Furthermore, DL systems require ‘nore data to achieve good performance, which certainly extends 
the computational cost and training time. Indeed, ML models can be trained on Central Process 
Units (CPUs), while DL models benefit from using Graphics Processing Units (GPUs). 

In the analysed AI models, there are some data-related limitations. Indeed, there is a delicate 
interplay between the available data and the processing methods that can be used to extract relevant 
knowledge from the data. DL methods handle significant data volumes better than traditional ML 
techniques [39]. However, there are four distinct limitations of DL: 1) the computational complexity 
of DL algorithms is higher when compared to traditional ML. 2) This effect is magnified by the 
fact that there is more data. Specifically, a measure of computational complexity is the number of 
complex multiplications for an atomic data quantity, say an image or a signal block. More images 
for training and testing linearly increase the computation requirement. 3) DL models are considered 
black boxes. It means that the model generates the output without explaining how the individual 
neurons work together to arrive at the result. For this reason, the DL results should be considered 
independent opinions that might help with clinical tasks and processes. 4) DL algorithms require 
hyperparameter tuning. Despite attempts to automate this process by either predicting or evaluating 
the values, hyperparameter setting is usually done with trial-and-error. Unfortunately, the trial-and- 
error approach involves training the network for some epochs. Repeating this training multiple times 
for different settings requires significant processing time that needs to be spent in addition to the 
final training time. On the upside, DL algorithms scale well, i.e., more processing resources result in 
a speedup. Hence, it is possible to control the processing time. However, there is a trade-off between 
resource and time investment. Looking towards the extremes, big data and computationally complex 
algorithms might not be affordable for some research groups because the hardware is expensive for 
DL training and testing. A potential solution might be cloud-based processing, which can train and 
test the AI model more effectively. 

Another data-related issue is that sleep disorder symptoms are not always present. Sleep apnea, 
NFLE, and RBD detection might produce heavily skewed data. More specifically, the non-disorder 
class has more data than the disorder class. The problem arises when AI models are trained and 
tested with such data. The problem is best illustrated with an example. Let’s assume a sleep apnea 
detection scenario where only 20% of the data was measured during sleep apnea. A particularly 
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lazy AI model could identify all samples as normal and thereby achieve an ACC of 80%. Such a 
system would be completely insensitive, and therefore it would be useless in a practical scenario. 
That indicates the need for a balanced dataset to generate unbiased AI models. Data augmentation 
is a way of increasing the amount of data for the smaller classes, usually the disordered class is 
the smaller one. Doing so might correct the problems introduced by skewed data. However, using 
augmented data means the model is trained and tested with synthetic data. This synthetic data 
has similar properties as measurement data, and it was created with some algorithm. AI models 
might learn properties introduced by the augmentation algorithm and thereby identify augmented 
data that belongs 100% to the disorder class. This is a particular problem for deep networks with 
the ability to learn the most subtle relationships. 

Sleep analysis and sleep disorders detection have attracted great interest over the years. Indeed, 
several review articles have been presented to discuss sleep disorders, the system for the diagnosis , 
the automatic classification or detection models. Vivien Abad et al. [119] presented an overview of 
the principal sleep disorders, such as insomnia, circadian cycle disorders, and excessive somnolence 
disorders, analysing any pharmacological and non-pharmacological therapies. In their review, Abdel 
et al. [65] focused on sleep apnea diagnosis support based on IoIT technology. A comprehensive 
review from Heyat et al. [67] focuses on insomnia detection, and another group published a review 
on bruxism detection [120]. Campabadal et al. [68] reviewed sleep behaviour disorder classification 
methods based on MRI image data. Buongio et al. [66] presented an overview of the sleep stage 
classification based on ECG signals. Also, Faust et al. [121] reviewed automated sleep stage scoring, 
presenting all physiological signals that give clinical information for the classification of sleep stages. 
In contrast to these established reviews, our approach focused on automated sleep disorder detection 
with AI models. Instead, our work amplified the previous reviews, including a description of eight 
sleep disorders without any restriction about the type of AI or the data used to provide clinical 
information. 

 
5.1. Limitations 

We face challenges comparing the performance of proposed sleep disorder detection methods 
because the study setup might have involved different signals or different datasets [122]. However, 
in our work, there are some limitations. First, a data-related limitation arises from the selection 
process, leading to training and testing data for AI algorithms. Especially some personal datasets 
of small size have few subjects, and their data collection method is dissimilar from common public 
datasets [123, 124]. https://www.overleaf.com/project/6227e97500547e32b96126e5 

Furthermore, we have compared the performance of models which were trained with a different 
ratio between the training and test set. Indeed, the dimension of the training and test set is known to 
influence the accuracy value and the model performance. For this reason, the performance could also 
be influenced by this division and the type of model used. Moreover, the pre-processing techniques 
play an important role in influencing both the signals and the model performance. Although this 
knowledge, in our work, we have focused on the ML and DL models, their limitations and differences, 
and not on the pre-processing techniques. 

 
5.2. Future work 

Future work should eliminate the burdens of current learning systems and AI techniques. We 
believe that collecting physiological signals of sleep disorders can benefit a wide range of patients 
worldwide [125]. Some physiological signals, such as HRV, PPG, and ECG, can be extracted with 
portable devices that are low-cost and real-time [126, 127]. And there is a limited number of studies 
on the automated detection of bruxism, NFLE, and narcolepsy. Further steps can involve more 
relative studies and experiments to detect these diseases [128]. On the other hand, AI has been 
highlighted as a potential decision-making tool due to the low measurement complexity and can 
reflex medical practitioners’ decisions. Furthermore, we can exploit AI algorithms while doctors can 

http://www.overleaf.com/project/6227e97500547e32b96126e5
http://www.overleaf.com/project/6227e97500547e32b96126e5
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label data in the newly added datasets [107]. It is even feasible to conduct data mining from data 
itself and get knowledge to remove the current defects [129]. 

Furthermore, future work could investigate explainable AI techniques which may be used. This 
approach could be useful for establishing hybrid diagnosis processes where human experts and AI 
models work cooperatively on clinical tasks. 

In the future, it might be possible to substitute ECG measurements with HRV [36] and PPG 
[130] to detect sleep apnea. As such, the substitute measurements capture only the beating activity 
of the heart. This results in a significantly lower data rate when compared to ECG. Therefore, 
these signals are easier to communicate and process. This has the potential to reduce costs for the 
healthcare provider. The fact that HRV and PPG signals require only moderate instrumentation 
effort makes the sensors more convenient for patients when compared to ECGs. This might help 
with patient compliance. 

The field of sleep disorder detection should move towards disease prediction and prevention. A 
first step towards that goal is to detect mild or early-stage disorders. We have already seen the 
first attempts in this direction with hypopnea detection. Hypopnea detection is essential because 
this disorder might lead to sleep apnea [30]. Hence, automated hypopnea detection might lead to 
adequate treatment of this sleep disorder, preventing patients from developing sleep apnea. 

Competition is an important driver of scientific studies on sleep disorder detection. Good publi- 
cations strike a delicate balance between uniqueness and competition. Combining both requirements 
can result in novel processing methods that outperform standard methods. These studies should be 
based on publicly available databases to establish an undisputed claim for novelty and performance. 
Not only does this foster competition, but it will also help to validate proposed models. Therefore, 
we expect to see more and more extensive databases in the future. It might even be possible to have 
a database indicating the best results for a particular dataset. 

From an abstract or philosophical perspective, we understand that more public databases are 
needed to increase extractable knowledge, which might lead to better AI models for medical decision 
support. These databases should also be geographical, ethnically, and temporally diverse to reduce 
potential bias. Furthermore, a wide range of experts should be employed to establish the ground 
truth. 

Measurement methods and the resulting data are also important factors for the practicality of 
proposed sleep disorder detection systems. A lower data rate and a straightforward measurement 
setup improve practicality. In the future, it might be possible to find systems that offer practical 
solutions for sleep disorder detection in the home environment. Moving away from the sleep lab and 
into the home environment would allow us to do significantly more measurements in the comfort 
of a patient’s home. Another significant aspect is that the environmental impact of sleep disorder 
monitoring at home is lower when compared to sleep lab-based approaches [131]. Such a scenario 
becomes practical when the patient or a carer can initiate the measurement, and the resulting 
data is automatically analysed with an AI model. Sleep disorder detection in a home environment 
imposes firm restrictions on the technologies used for measuring, communicating, and processing 
signal data. The measurement setup should aid patient-led data acquisition. The measurement 
system should be capable of monitoring one night (12 h) without user intervention, and the data 
should be communicated in real-time to a central server for processing. Such a real-time uplink 
reduces the need for internal buffering, thereby extending the monitoring duration. In other words, 
an internal sensor buffer fills up, and if that happens, the device needs to travel to a central facility 
for data readout and processing. ECG and HRV signals are possible solutions that meet the firm 
requirements of sleep disorder detection in the home environment. 

Furthermore, future works could investigate the preprocessing stage and how it affects the final 
model performance. 
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6. Conclusion 

The world is facing sleeplessness. Automated detection of sleep disorders might be a way of ad- 
dressing this problem. This paper documents our efforts to establish the extent of current knowledge 
on automated sleep disorder detection. The review focused on eight common sleep disorders for which 
automated detection methods were proposed. We found 95 relevant papers published in the past 11 
years, which were reviewed to establish methods, signals, and performance. For methods used, we 
detected a shift from ML to DL. The signals used to show the automated detection models depend 
on the sleep disorder. We have analysed this aspect deeper for the two most prevalent problems 
of sleep apnea and insomnia. ECG signals are predominately used for sleep apnea detection, and 
EEG signals are used for insomnia detection. Another important trend became apparent during the 
focused review. A significantly higher proportion of DL systems were used for sleep apnea detection 
compared to insomnia detection. 

Stepping back from the technical details of signals and systems, our findings support the idea 
that sleep is an individual process. 24 distinct algorithms were used to analyse 20 different signals or 
indeed signal combinations. This diversity of methods and signals clearly documents the challenge 
faced by practitioners in the area of automated sleep disorder detection. It seems that we are far 
from proposing that one method works best, even for individual sleep disorders. This calls for 
further research. This research should be conducted on large publicly available databases to foster 
competition amongst research groups and method validation. The research should focus on signals 
that can be measured easily in the home environment, such as ECG and HRV. Establishing signal 
acquisition in the home environment will enable us to investigate disease progression and sharpen 
AI-based detection methods. This might lead to disease prediction and automated intervention in the 
form of lifestyle change suggestions. We need to work harder on automated sleep disorder detection 
so the world can sleep well. 

 
7. Acronyms 

LR Linear Regression 
AASM American Academy of Sleep Medicine 
ACC Accuracy 
REI Respiratory Event Index 
AF Airflow 
SpO2 Oxygen Saturation 
ANN Artificial Neural Network 
AHI Apnea/Hypopnea Index 
AI Artificial Intelligence 
CAP Cyclic Alternating Pattern 
CNN Convolutional Neural Network 
CPR Cardiorespiratory Polygraph 
CPU Central Process Unit 
DL Deep Learning 
DNN Deep Neural Network 
DT Decision Tree 
EBTC Ensemble Bagged Trees Classifier 
ECG Electrocardiogram 
EDR ECG-Derived Respiration 
EEG Electroencephalogram 
EIT Electrical Impedance Tomography 
ELM Extreme Learning Machine 
EMG Electromyogram 
EOG Electrooculogram 
FNN Feedforward Neural Network 
GPU Graphics Processing Unit 
GRU Gated Recurrent Units 
HML Hybrid Machine Learning 
HMM Hidden Markov Models 
HRV Heart Rate Variability 
IoIT Internet of Intelligent Things 
KELM Kernel Extreme Learning Machine 
KNN K-Nearest Neighbour 
LDA Linear Discriminant Analysis 
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LLM Logic learning machine 
LOOCV Leave one out Cross validation 
LSS Light Sleep Stage 
LSTM Long Short-Term Memory 
LR Logistic Regression 
ML Machine Learning 
MRI Magnetic Resonance Imaging 
NA Nasal Airflow 
NB Naive Bayes 
NFLE Nocturnal Frontal Lobe Epilepsy 
OSA Obstructive Sleep Apnea 
PLMD Periodic Limb Movement Disorder 
PPG Photoplethysmogram 
PTT Pulse Transition Time 
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
PSG Polysomnography 
RBD Rapid eye movement Behavioural Disorder 
REM Rapid Eye Movement 
RF Random Forest 
RNN Recurrent Neural Network 
SEN Sensitivity 
SHHS Sleep Heart Health Study 
SPE Specificity 
SWS Slow-Wave Sleep 
SVM Support Vector Machine 
UCDDB St. Vincent’s University Hospital / University College Dublin Sleep Apnea Database 
SUMS Shiga University of Medical Science hospital 
RHUH Rio Hortega University Hospital dataset 
PaO2 Partial pressure of oxygen 
PaCO2 Partial Pressure of Carbon Dioxide 
ADR Accelerometry Derived Respiration Index 
SaO2 Arterial Oxygen Saturation 
NR Not Reported 

 
References 

[1] N. Vahabi, R. Yerworth, M. Miedema, A. van Kaam, R. Bayford, A. Demosthenous, Deep 
analysis of eit dataset to classify apnea and non-apnea cases in neonatal patients, IEEE Access 
9 (2021) 25131–25139. 

[2] E. Mignot, Why we sleep: the temporal organization of recovery, PLoS biology 6 (2008) e106. 

[3] S. J. Aton, J. Seibt, M. G. Frank, Sleep and memory, eLS (2009). 
 

[4] N. Darchia, N. Oniani, I. Sakhelashvili, M. Supatashvili, T. Basishvili, M. Eliozishvili, 
L. Maisuradze, K. Cervena, Relationship between sleep disorders and health related qual- 
ity of life—results from the georgia somnus study, International Journal of Environmental 
Research and Public Health 15 (2018). URL: https://www.mdpi.com/1660-4601/15/8/1588. 
doi:10.3390/ijerph15081588. 

[5] H. Qin, G. Liu, A dual-model deep learning method for sleep apnea detection based on 
representation learning and temporal dependence, Neurocomputing 473 (2022) 24–36. 

[6] A. Atianashie Miracle, E. D. Armah, N. Mohammed, A portable gui based sleep disorder 
system classification based on convolution neural networks (cnn) in raspberry pi, Journal of 
Engineering, Applied Science and Humanities 6 (2021) 13–23. 

[7] M. H. Vitaterna, J. S. Takahashi, F. W. Turek, Overview of circadian rhythms, Alcohol 
Research & Health 25 (2001) 85. 

[8] D. F. Kripke, D. J. Mullaney, M. Atkinson, S. Wolf, Circadian rhythm disorders in manic- 
depressives., Biological psychiatry (1978). 

[9] P. C. Zee, M. V. Vitiello, Circadian rhythm sleep disorder: irregular sleep wake rhythm, Sleep 

https://www.mdpi.com/1660-4601/15/8/1588
http://dx.doi.org/10.3390/ijerph15081588


25  

medicine clinics 4 (2009) 213–218. 

[10] R. S. Rosenberg, B. Steven Van Hout, The american academy of sleep medicine inter-scorer 
reliability program: sleep stage scoring, Journal of Clinical Sleep Medicine 9 (2013) 81–87. 

[11] T. Hori, Y. Sugita, E. Koga, S. Shirakawa, K. Inoue, S. Uchida, H. Kuwahara, T. K. 
M. Kousaka, Y. Tsuji, M. Terashima, K. Fukuda, N. Fukuda, Proposed supplements and 
amendments to “a manual of standardized terminology, techniques and scoring system for 
sleep stages of human subjects”, the rechtschaffen & kales (1968) standard, Psychiatry and 
Clinical Neurosciences 55 (2001) 305–310. 

[12] M. A. Reimer, W. W. Flemons, Quality of life in sleep disorders, Sleep medicine reviews 7 
(2003) 335–349. 

[13] C. Gaig, A. Iranzo, M. Pujol, H. Perez, J. Santamaria, Periodic limb movements during sleep 
mimicking rem sleep behavior disorder: a new form of periodic limb movement disorder, Sleep 
40 (2017). 

[14] A. Iranzo, J. L. Molinuevo, J. Santamar´ıa, M. Serradell, M. J. Mart´ı, F. Valldeoriola, E. Tolosa, 
Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative dis- 
order: a descriptive study, The Lancet Neurology 5 (2006) 572–577. 

[15] S. Miano, R. Peraita-Adrados, Nocturnal frontal lobe epilepsy is often misdiagnosed as sleep 
disorders in children: a case series, Rev Neurol 56 (2013) 257–267. 

[16] A. M. Eldaraa, H. Baali, A. Bouzerdoum, S. B. Belhaouari, T. Alam, A. S. A. Rahman, 
Classification of sleep arousal using compact cnn, in: 2020 IEEE International Conference on 
Informatics, IoT, and Enabling Technologies (ICIoT), IEEE, 2020, pp. 247–253. 

[17] D. Alvarez, R. Hornero, J. V. Marcos, F. del Campo, Multivariate analysis of blood oxygen 
saturation recordings in obstructive sleep apnea diagnosis, IEEE Transactions on Biomedical 
Engineering 57 (2010) 2816–2824. 

[18] D. Cunnington, M. F. Junge, A. T. Fernando, Insomnia: prevalence, consequences and effective 
treatment, Medical Journal of Australia 199 (2013) S36–S40. 

[19] G. Lavigne, J. Montplaisir, Restless legs syndrome and sleep bruxism: prevalence and associ- 
ation among canadians, Sleep 17 (1994) 739–743. 

[20] E. Urtnasan, E. Y. Joo, K. H. Lee, Ai-enabled algorithm for automatic classification of sleep 
disorders based on single-lead electrocardiogram, Diagnostics 11 (2021) 2054. 
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Table A.11: Details of apnea detection studies. 
 

Author, 
Year 

Signal 
Classifier ACC 

% 
Dataset Size 

Type Algo. 

Tapia et al., 
2020 [132] 

EEG DL RNN 80.90 Own EEG extracted 
from 19 PSG 
recordings 

Qin et al., 2021 
[5] 

ECG DL CNN 91.10 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Chang et al., 
2020 [22] 

ECG DL CNN 87.90 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Urtnasan et al., 
2021 [20] 

ECG DL CNN 94.33 CAP 108 PSG 
recordings 

Erdenebayar et 
al., 2019 [46] 

ECG DL CNN 98.50 OWN 86 patients with 
SA 

Yueet al., 2021 
[28] 

PSG DL ResNet 91.20 Own 405 PSG 
recordings 

Erdenebayar et 
al., 2019 [46] 

ECG DL GRU 99.00 Own 86 patients 

Steenkiste et al., 
2018 [133] 

PSG DL LSTM 75.00 SHHS 6441 individuals 

Vanet et al., 
2020 [124] 

PSG DL LSTM 72.80 Own 25 subjects 

Drzazga et al., 
2021 [93] 

REI DL LSTM 82.40 SHHS + MIT 
PhysioNet 
Apnea 

5804 recordings 
+ 25 recordings 

Drzazga et al., 
2021 [93] 

REI DL LSTM 78.32 SHHS + MIT 
PhysioNet 
Apnea 

5804 recordings 
+ 26 recordings 

Wang et al., 
2019 [94] 

ECG DL CNN 87.60 MIT 
PhysioNet 
Apnea + 
UCDDB 

70 ECG 
recordings +25 
PSG recordings 

Vanet et al., 
2020 [124] 

ECG DL LSTM 72.80 Own 25 patients 

Faust et al., 
2021 [102] 

ECG DL LSTM 99.80 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Panindre et al., 
2021 [125] 

ECG DL LSTM 82.24 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Eldaraa et al., 
2020 [16] 

ECG + 
EOG + 
EMG + 

AF 

DL CNN 69.49 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 
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Atianashie et 
al., 2021 [6] 

EEG DL CNN 92.00 MIT 
PhysioNet 
Apnea + CAP 

70 ECG 
recordings + 
108 PSG 
recordings 

Shahid et al., 
2021 [107] 

MRI DL CNN 85.20 Own 50 head MRI 
datasets 

Wu et al., 2021 
[134] 

NA DL CNN 91.23 Own night-time PSG 
recordings of 
500 subjects 

Tuncer et al., 
2019 [34] 

PSG DL CNN 92.76 Own 100 subjects 

Thorey et al., 
2019 [128] 

PSG DL CNN 91.00 Own 52 PSG 
recordings 

Vaquerizoet et 
al., 2020 [51] 

SpO2 DL CNN 95.10 Own 46 preprocessed 
SpO2 signals 

Wang et al., 
2019 [135] 

EDR DL ResNet 94.40 Own 30 overnight 
recordings are 
used for training 
and 5 for testing 

Almutairiet al., 
2021 [136] 

ECG DL CNN + 
LSTM 

90.92 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Zarei et al., 
2022 [43] 

ECG DL CNN + 
LSTM 

97.21 MIT 
PhysioNet 
Apnea 
+UCDDB 

70 ECG 
recordings + 25 
PSG recordings 

Iwasaki et al., 
2021 [122] 

ECG DL CNN + 
LSTM Not 

Re- 
ported 
(NR) 

SUMS 57 subejects 

Banluesombatkul 
et al., 2018 [137] 

ECG DL CNN + 
LSTM 

79.45 Own 545 subjects 

Bernardini et 
al., 2021 [138] 

ECG + 
SpO2 

DL CNN + 
LSTM 

81.50 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Li et al., 2018 
[139] 

ECG DL DNN 85.00 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Romero et al., 
2019 [98] 

Snore 
sound 

DL DNN 95.29 Own 31 male and 13 
female 
participants 

Cheng et al., 
2022 [95] 

Snore 
sound 

DL LSTM 95.30 Own 33 patients and 
10 normal 
people 
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Srinivasulu et 
al., 2021[58] 

ECG ML EBTC 89.60 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Hassan et al., 
2015 [123] 

ECG ML ELM 83.77 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Sard et al., 2019 
[140] 

ECG ML ELM 86.50 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Sard et al., 2016 
[57] 

ECG ML LDA 87.00 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Sadr et al., 2014 
[106] 

ECG ML ELM 87.70 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Sharma et al., 
2021 [109] 

EEG ML Ensem- 
ble 

81.00 CAP 108 PSG 
recordings 

Sadr et al., 2015 
[141] 

SpO2 ML ELM 79.40 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Pant et al., 2022 
[55] 

ECG ML Ensem- 
ble 

94.52 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Li et al., 2021 
[105] 

ECG 
+SpO2 

ML FNN 97.80 Own 148 apnea 
patients, 33 
healthy 

Feng et al., 2021 
[142] 

ECG ML HMM 85.10 MIT 
PhysioNet 
Apnea 

70.00 ECG 
recordings 

Tripathy et al., 
2018 [118] 

EDR ML KELM 76.14 MIT 
PhysioNet 
Apnea 

70.00 ECG 
recordings 

Piorecky et al., 
2021 [37] 

ECG ML KNN 85.32 MIT 
PhysioNet 
Apnea+ 
UCDDB 

134 patients,24 
healthy 

Piorecky et al., 
2021 [37] 

PSG ML KNN 83.00 Own 477 PSG 
recordings 

Sadr et al., 2016 
[143] 

PSG ML LDA 78.40 MIT 
PhysioNet 
Apnea 

70.00 ECG 
recordings 

Skotko et al., 
2016 [44] 

PSG ML LLM 90.00 Own 130 patients 

Ferre et al., 
2019 [144] 

PSG ML LR 76.00 Own 90 patients 
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Alvarez et al., 
2010 [17] Arterial 

Oxygen 
Saturation 

(SaO2) 

ML LR 89.70 Own 148 consecutive 
patients(115 
males and 33 
females) 

Akhter et al., 
2018 [97] 

Snore 
sound 

ML LR 83.00 Own 91 patients 
108,228 Snore 
episodes 

Gutierrez et al., 
2019 [52] 

SpO2 ML LSBoost 96.58 SHHS+RHUH non at-home 
PSG recordings 
of 5,804 
individuals+at 
home PSG 
recordings322 
patients 

Cai et al., 2019 
[99] 

ECG ML NB 71.00 Own 60000 signal 
samples 

Pepin et al., 
2020 [70] 

PSG ML Ensem- 
ble 

95.00 Own 376 consecutive 
adults with 
suspected apnea 

Nakayama et 
al., 2019 [56] 

PSG ML RF NR MIT 
PhysioNet 
Apnea+SUMS 

70 ECG 
recordings +57 
patients 

Ramachandran 
et al., 2021 [145] 

PSG ML RF 88.90 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Deviaene et 
al.,2019[50] 

SpO2 ML RF 77.70 Own 975 patients 

Sharma et al., 
2021 [77] 

ECG ML SVM 90.87 Physionet’s 
CinC 
challenge-2000 
database 

35 subjects 

Prabha et al., 
2017 [25] 

ECG ML SVM 80.00 Own 15 patients and 
17 healthy 

Jafari et al., 
2013 [100] 

ECG ML SVM 94.80 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Ramesh et al., 
2021 [127] 

ECG ML SVM 68.60 Wisconsin 
Sleep Cohort 
(WSC) dataset 

1500 subjects 

Memis etal. et 
al., 2017 [31] 

ECG+ 
SpO2 

ML SVM 96.64 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Wang et al., 
2020 [146] 

EEG ML SVM 94.33 Own 30 apnea 
patients 

Vimala et al., 
2019 [49] 

EEG ML SVM 99.00 MIT-BIH 
Polysomno- 
graphic 
Database 

14 subjects 

Thacha et al., 
2021 [26] 

EEG ML SVM 92.18 CAP 108 PSG 
recordings 
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Belloet al.,2021 
[24] 

EEG ML SVM 82.69 UCDDB 25 PSG 
recordings 

Almuhammadi 
et al., 2015 [101] 

EEG ML SVM 97.14 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Onargan et al., 
2021 [40] 

EEG ML SVM 76.00 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Vahabi et al., 
2021 [1] 

EIT ML SVM 97.00 ImageNet 
dataset 

15 subjects 

Mencar et al., 
2019 [129] 

PaO2 + 
PaCO2 

ML SVM NR Own 313 patients 

Behar et al., 
2013 [126] 

PPG ML SVM 92.30 Own 856 recordings 

Selvaraj et al., 
2014 [27] 

PSG ML SVM 89.40 Own 53 healthy and 
untreated 
patients 

Balci et al., 
2022 [41] 

PSG ML SVM 76.30 Own 19 subjects 

Alvarez et al., 
2020 [147] 

SpO2+AF ML SVM 94.80 Own 239 patients 

Bricout et al., 
2021 [69] 

ADR ML Tree 
model 

89.00 Own dataset 28 subjects 

Sharma et al., 
2021 [77] 

SpO2 ML Tree 
model 

95.70 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Liu et al., 2020 
[48] 

PSG ML XGBoost 91.28 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Pinho et al., 
2019 [54] 

ECG ML ANN 82.12 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Acharya et al., 
2011 [30] 

ECG ML ANN 90.00 Own 450 sets of 
apnea ECG 
data 

Mitilineos et al., 
2021 [96] 

Snore 
sound 

ML ANN 97.30 Own 2500 sound 
excerpts 

Tuncer et al., 
2019 [34] 

PTT Hybrid SVM + 
CNN 

92.78 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

Tuncer et al., 
2019 [34] 

PTT Hybrid KNN + 
CNN 

91.72 MIT 
PhysioNet 
Apnea 

70 ECG 
recordings 

 


