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Zusammenfassung 

Der Winterraps, Brassica napus L., hat sich in Europa zu einem festen Bestandteil der 

maßgeblich von Getreide dominierten Fruchtfolgen entwickelt. Winterraps wird von einer 

Vielzahl an Schädlingen befallen welche in der Praxis fast ausschließlich durch den Einsatz 

von chemischen Insektiziden (maßgeblich Pyrethroide) bekämpft werden. Verglichen mit 

anderen Großkulturen ist der Insektizideinsatz im Rapsanbau relativ hoch. Der seit mehr als 

20 Jahren wiederkehrende Einsatz von Pyrethroiden zur Kontrolle von Rapsschädlingen in 

Europa resultierte in einem enormen Selektionsdruck. Vor diesem Hintergrund ist es nicht 

verwunderlich, dass drei Schädlinge der Ordnung Coleoptera gegenwärtig eine Resistenz 

gegen Pyrethroide aufweisen. Bei den drei coleopteren Vertretern handelt es sich um den 

Rapsglanzkäfer, Meligethes aeneus F., den Rapserdfloh, Psylliodes chrysocephala L. und den 

Kohlschotenrüssler, Ceutorhynchus assimilis PAYK.. 

Mittels einem auf insektizidbeschichteten Glasröhrchen beruhenden Biotestsystem 

(„adult vial tests“) wurde die Ausprägung (Stärke und Kreuzresistenzmuster) sowie die 

geographische Verteilung der Pyrethroidresistenz bei Rapsglanzkäfern und Rapserdflöhen 

untersucht. Unter Verwendung des identischen Testsystems wurde die „Baseline 

Susceptibility“ (Ausgangsempfindlichkeit) von Kohlschotenrüsseler gegen lambda-Cyhalothrin, 

ein in der Praxis sehr häufig eingesetztes Pyrethroid, erfasst. Resistente Rapserdflöhe 

reagierten im Test mit verschiedenen Pyrethroiden gleichermaßen unempfindlich und zeigen 

eine absolute Kreuzresistenz gegen die Wirkstoffklasse der Pyrethroide, wohingegen beim 

Rapsglanzkäfer zwei resistente Phänotypen gefunden wurden. Der am häufigsten auftretende 

Phänotyp weist eine moderate Kreuzresistenz innerhalb der Wirkstoffgruppe auf während ein 

weiterer Phänotyp ähnlich wie beim Rapserdfloh eine absolute Kreuzresistenz aufweist. Unter 

Verwendung von Thiacloprid, ein Wirkstoff der chemischen Klasse der Neonikotinoide, im 

Glasröhrchen Testsystem wurde die Baseline Susceptibility vom Rapsglanzkäfer und 

Kohlschotenrüssler erfasst. Für den Rapsglanzkäfer wurden von 2009-2012 Daten erfasst und 

dadurch eine kontinuierliche Überwachung der Sensibilität über die Jahre gewährleistet, für 

den Kohlschotenrüssler wurden Daten im Jahr 2012 erfasst die eine hohe Empfindlichkeit 

gegenüber dem Wirkstoff Thiacloprid nachweisen.  

In Synergismus-Experimenten mit Rapsglanzkäferpopulationen die hauptsächlich in 

Mitteleuropa gesammelt wurden, steigerte Piperonyl-Butoxid (PBO) ein Synergist der 

Cytochrom P450-abhänigen Monooxygenasen, die Toxizität von lambda-Cyhalothrin in 

resistenten Populationen in vivo erheblich. Im Folgeexperiment zum Metabolismus von 

Deltamethrin in Inkubationen mit nativen mikrosomalen Membranpräparationen bestätigte sich 

der Befund, dass die Resistenz durch Cytochrom P450-abhänigen Monooxygenasen 

vermittelt wurde, durch den Nachweis von 4-Hydroxy-Deltamethrin. Die Metabolismusrate von 
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Deltamethrin zu 4-OH-Deltamethrin  in vitro war mit der erfassten Pyrethroidresistenz in vivo 

positiv korreliert und konnte mit PBO inhibiert werden. Darüber hinaus ließ sich die 

Hydroxylierung von Deltamethrin durch Zugabe von tau-Fluvalinat bzw. lambda-Cyhalothrin 

kompetitiv inhibieren, dieser Befund deckt sich somit mit der in vivo erfassten Kreuzresistenz. 

Mit einer PCR Strategie basierend auf degenerierten Oligonukleotiden wurden Genfragmente 

der P450 Genfamilie aus Rapsglanzkäfern isoliert und deren Expression mittels qRT-PCR 

(quantitative Real-Time PCR) in Populationen mit verschiedenen Resistenzausprägungen 

quantifiziert. Ein P450 Gen, welches CYP6BQ23 kodiert, war in resistenten Populationen 

signifikant hochreguliert (bis zu 900-fach). Die Überexpression war signifikant korreliert mit der 

Resistenzausprägung in vivo und der Umsetzung von Deltamethrin in vitro. Mittels RACE-

PCR (Rapid Amplification of cDNA Ends) wurde die komplette mRNA/cDNA isoliert welche ein 

Leseraster kodierend für 522 Aminosäuren enthält. CYP6BQ23 wurde anschließend in einer 

Insektenzellkultur rekombinant funktionell exprimiert und der CYP6BQ23 abhängige 

Deltamethrinmetabolismus bewiesen. Darüber hinaus wurde gezeigt, dass CYP6BQ23 auch 

tau-Fluvalinat umsetzt, allerdings mit einer geringeren Effizienz im Vergleich zu Deltamethrin. 

Die Metabolismusrate von beiden Wirkstoffen deckt sich mit dem Resistenzmuster vom 

moderat Kreuzresistenten Phänotyp. Mithilfe eines Computermodels von CYP6BQ23 wurde 

die Substratbindung simuliert und eine bessere Bindung für Deltamethrin im Vergleich zu tau-

Fluvalinat prognostiziert.  

Der Einfluss von wirkortspezifischer Resistenz (target-site resistance) wurde ebenfalls 

untersucht. Vom para-locus, welcher den spannungsabhängigen Natriumkanal (Voltage Gated 

Sodium Channel, VGSC) im zentralen Nervensystem der Insekten kodiert, wurde ein 

Genfragment (Domäne IIS4-6) PCR-amplifiziert, sequenziert und auf Einzelnukleotidpoli-

morphismen (SNPs, Single Nucleotide Polymorphisms) untersucht. Ein SNP wurde 

identifiziert der in einem Aminosäureaustausch von Leucin zu Phenylalanin an Positon 1014 

(Musca domestica L. Nummerierung) resultiert. Diese Mutation ist in einer Vielzahl von 

Insekten als knock down resistance (kdr) beschrieben und vermittelt eine Kreuzresistenz 

gegenüber Pyrethroiden und DDT. Im Rapsglanzkäfer wurde diese Resistenzmutation fast 

ausschließlich in skandinavischen Populationen gefunden wo eine absolute Kreuzresistenz im 

Feld beobachtet wurde, wohingegen in Mitteleuropa der moderat kreuzresistente Phänotyp 

vorherrscht. Im Rapserdfloh wurde die gleiche Region im orthologen Locus untersucht mit 

dem identischen Befund. Die L1014F kdr Mutation im Rapserdfloh ist korreliert mit 

Bekämpfungsproblemen von Rapserdflöhen beim Einsatz von Pyrethroiden und mit dem in 

vitro erfassten Kreuzresistenzmuster. 

In den meisten Studien zur Aufklärung von Resistenzmechnismen wurde der Fokus 

auf eine spezielle Enzym-/Genfamilie gelegt. Um einen holistischeren Weg zu gehen wurde 

eine Transkriptomstudie beim Rapsglanzkäfer durchgeführt. Ziel war das Assemblieren des 
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de novo Transkriptoms, die Isolierung von Genen die insektizide Wirkorte kodieren und deren 

Analyse auf SNPs sowie eine komparative Analyse der Genregulierung zwischen pyrethroid–

resistenten und –sensitiven Populationen. Die putativ komplette mRNA des VGSC’s konnte 

assembliert werden. Eine SNP Analyse mittels „Illumina-read mapping“ bestätigte die L1014F 

Mutation in einer schwedischen Population, brachte aber keine zusätzlichen bzw. neuen 

Mutationen hervor. Die Analyse der Genexpression zwischen resistenten und sensitiven 

Populationen untermauert den Beitrag von CYP6BQ23 in der Pyrethroidresistenz in allen 

resistenten Populationen, darüber hinaus wurden noch weitere Kandidatengene, wie z.B. 

Glutathione S-transferasen und Carboxylesterasen, identifiziert. 

Die Konsequenzen der Ergebnisse für ein nachhaltiges Resistenzmanagement in 

coleopteren Schädlingen in Winterraps and die Möglichkeiten für weiterführende Studien 

werden in der vorliegenden Arbeit diskutiert.  
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Abstract 

Winter oilseed rape, Brassica napus L., has become a vital part of cereal-based crop 

rotations in Europe. It is attacked by numerous insect pests and their control relies on the 

intensive use of insecticides (compared to other broad acre crops). The exclusive and 

continuous use of pyrethroid insecticides for almost twenty years led to an enormous selection 

pressure and facilitated the development of resistance in oilseed rape pests in Europe. 

Unsurprising three out of the five major pests of the order Coleoptera are reported to be 

pyrethroid resistant at present: the pollen beetle, Meligethes aeneus F.; the cabbage stem flea 

beetle, Psylliodes chrysocephala L. and the cabbage seed weevil, Ceutorhynchus assimilis 

PAYK.. 

An adult vial bioassay, which is based on insecticide coated glass vials, was used to 

monitor the spread and strength of pyrethroid resistance and to determine cross-resistance 

pattern in pollen beetle and cabbage stem flea beetle. Furthermore, baseline susceptibility 

towards lambda-cyhalothrin (a widely used pyrethroid) was also established for the cabbage 

seed weevil. Whereas the resistant phenotype of the cabbage stem flea beetle expresses an 

absolute cross-resistance, the cross-resistance pattern observed in pollen beetle was of two 

main phenotypes one characterized by moderate cross-resistance and one by absolute cross-

resistance. The vial bioassay methodology was adapted to thiacloprid, a neonicotinoid 

insecticide, to determine baseline susceptibility and to provide a methodology to allow long-

term susceptibility monitoring of pollen beetle and cabbage seed weevil. Thiacloprid 

monitoring revealed that pollen beetle and cabbage seed weevil populations collected across 

Europe in 2009-2012 and 2012 respectively were highly susceptible to this insecticide class. 

Synergism experiments on pollen beetle populations collected mainly in central Europe 

revealed a high synergistic potential for piperonyl butoxide (PBO) in vivo suggesting the 

involvement of enhanced metabolism by cytochrome P450 monooxygenases. Metabolism 

studies using native microsomal preparations as the enzyme source and deltamethrin as 

substrate revealed metabolism of deltamethrin with 4-OH-deltamethrin being the major 

metabolite. Metabolite formation in vitro was correlated with the observed pyrethroid 

resistance level in vivo and was suppressible by PBO. Furthermore tau-fluvalinate and 

lambda-cyhalothrin competitively inhibited deltamethrin hydroxylation suggesting the 

involvement of the same P450(s) in the cross-resistance observed in vivo. A degenerate PCR 

approach was used to identify partial P450 gene sequences from pollen beetle. qRT-PCR 

screening covering a range of pollen beetle populations differing in levels of pyrethroid 

resistance identified a single P450, CYP6BQ23, as significantly and highly overexpressed (up 

to ~900-fold) in resistant strains compared to susceptible strains. The expression of 

CYP6BQ23 was significantly correlated with both the level of resistance and with the rate of 
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deltamethrin metabolism in microsomal preparations of these populations. The full length open 

reading frame of CYP6BQ23 encoding 522 amino acids was isolated using RACE-PCR. 

Recombinant expression of this P450 in an insect cell line demonstrated that it is capable of 

hydroxylating deltamethrin and tau-fluvalinate, albeit the latter at lower efficiency. The turnover 

of these pyrethroids by CYP6BQ23 is in line with the observed moderate cross-resistant 

phenotype. Molecular modeling suggested a better fit of deltamethrin into the active site of 

CYP6BQ23 compared to tau-fluvalinate also supporting the biochemical results.  

The occurrence of target-site resistance was investigated by single nucleotide 

polymorphism (SNP) analysis of the para-locus encoding the voltage-gated sodium channel 

(VGSC) in insects. To achieve this goal a partial fragment (domain IIS4-6) encoding an 

important region of the pyrethroid binding site was PCR amplified and screened for non-

synonymous SNPs. One SNP was identified causing a leucine to phenylalanine substitution at 

amino acid residue number 1014 (Musca domestica L. numbering), well known as knock down 

resistance (kdr) conferring an absolute cross-resistance to pyrethroids and DDT in various 

insect species. Interestingly this target site mutation was found almost exclusively in samples 

obtained from Scandinavia where absolute cross-resistant pollen beetles may be found in the 

field, but not in central Europe where the moderate cross-resistant phenotype dominates. 

Sequencing of the very same gene region in the cabbage stem flea beetle also revealed the 

presence of the L1014F kdr mutation in pyrethroid resistant flea beetle populations, thus 

explaining the strong cross-resistance pattern observed in vitro.  

Most mechanistic studies of resistance have focused on elucidating the contribution of 

particular genes/gene families to pyrethroid resistance. To generate a comprehensive 

sequence resource and to elucidate global changes in gene regulation related to insecticide 

resistance in pollen beetle a de novo transcriptome was assembled from sequence pools 

generated by next-generation sequencing. RNA-sequencing of three pyrethroid resistant and 

one highly susceptible reference population allowed a global gene expression analysis by 

short read mapping against the generated transcriptome, as well as a SNP analysis. The 

putative full length mRNA of the VGSC was represented in the de novo transcriptome, a SNP 

analysis confirmed the presence of the kdr resistance in a Swedish population but did not 

provide novel findings in regards to target-site resistance. The gene expression analysis 

underpinned the massive overexpression of CYP6BQ23 in all resistant samples and identified 

additional candidate resistance genes belonging to detoxification related gene families such 

as P450s, glutathione S-transferases and carboxylesterases.  

The implications of these results for resistance management in coleopteran pests in 

winter oilseed rape and opportunities for future work are discussed. 
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Chapter 1  

 

Introduction 

The problem of insecticide resistance represents an important man-made example of 

natural selection and is one of the major threats of sustainable agriculture in our time. The loss 

of insecticide effectiveness results in crop losses and products of poor quality, it invariably 

leads to increased application frequencies and dosages thus increasing the environmental 

footprint of agriculture. Insecticide resistance is not limited to the agricultural sector but affects 

the control of vector-borne diseases and veterinary applications. The economic and human 

costs of resistance are significant but can be hard to precisely quantify. 

The history of insecticide resistance dates back to the late 19th century. In 1897 two 

reports in “Garden Forest” complain about the efficacy of control measures taken to control 

codling moth, Cydia pomonella L., and San Jose scale, Quadraspidiotus perniciosus 

COMSTOCK in apple orchards [1,2] cited in [3]. In 1914, A.L. MELANDER published the first 

scientific study on insecticide resistance covering the field failures of sulfur-lime to control the 

San Jose Scale, dating back to 1908 [4]. The “epidemic outbreak” of insecticide resistance 

occurred in the 1950s due to the broad availability and large scale usage of synthetic 

insecticides, i.e. organophosphates and DDT [3]. The challenge to combat insects became a 

challenge focused on combating resistance by maintaining the finite resource “susceptibility”, 

a strategy known as “resistance management” [5]. One century after the finding of A.L. 

MELANDER more than 10,357 cases of resistance in 574 arthropod species have been 

recorded [6,7] thus underpinning the challenge of resistance management on a global scale 

(Fig. 1). 

The finite resource “insecticide susceptibility” was not treated with the appropriate 

respect in many cropping systems; unfortunately, the winter oilseed rape, Brassica napus L., 

cropping system in Europe has been no exception. At present we are facing resistance 

problems in three major pests of oilseed rape. The development of resistance is a result of 

natural selection, the massive increase in the cropping area of winter oilseed rape in Europe in 

the past 50 years (Fig. 2) and the reliance on only one chemical class of synthetic 

insecticides, i.e. pyrethroids, in the more recent past (see section 1.2) providing optimal 

conditions for the emergence of insecticide resistance. 

In the following sections of the introductory chapter an overview of important 

coleopteran pests of oilseed rape is given followed by a review of insecticide use in oilseed 
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rape in Europe. The nature of insecticide resistance is then reviewed and the objectives of the 

presented thesis are outlined.  

 

WHALON et al. (2013) [7] 

Fig. 1 Evolution of arthropod insecticide resistance from 1908 to 2012 (species (A), total 

number of cases (B) and compounds (C)). 

 

 

Source: Data obtained from FAO 2013 [8] 

Fig. 2 The development of winter oilseed rape cropping in the main oilseed rape cropping 

countries in Europe from 1961-2011. 
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1.1 Insect pests of oilseed rape 

Oilseed rape is attacked by a number of insect pests including coleopteran, dipteran 

and hemipteran species. ALFORD et al. [9] highlighted six species to be major pests of oilseed 

rape crops in Europe (Fig. 3), one dipteran species i.e. Dasineura brassicae WINN., and five 

coleopteran species which are described in more detail below. 

 

 

Source: modified from IRAC 2011 [10] 

Fig. 3 Seasonal abundance (grey) of the major winter oilseed rape insect pests and crop 

stage where chemical control measures may be required (orange).  

 

1.1.1 Coleopteran insect pests of oilseed rape 

1.1.1.1 Pollen beetles (Brassicogethes spp. syn. Meligethes spp.) 

Pollen beetles, widely known under the genus Meligethes STEPHENS 1830 were 

recently re-examined and re-named Brassicogethes AUDISIO & CLINE, gen. nov. [11]. Within 

this thesis the older genus term Meligethes is used. Throughout Europe pollen beetles can 

regularly be found at high levels on winter and spring oilseed rape [12]. The dominant species 

and the most important insect pest of oilseed rape is Meligethes aeneus F. (Fig. 4) [12–17]. 

Out of several other Meligethes spp. that may appear in oilseed rape M. viridescens F. is, after 

M. aeneus, the second most abundant pollen beetle [13,15,16]. M. viridescens depends on 

higher temperatures for emerging thus it is more abundant in spring oilseed rape [9,12,13,15]. 

Hereafter the term pollen beetle(s) refers to M. aeneus only. 
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Source: Pictures kindly provided by the Visual Communicaion Unit of Rothamsted Research 

Fig. 4 Adult pollen beetle, M. aeneus, feeding on pollen in an oilseed rape flower (left) and 

larval instars in an oilseed rape flower (right). 

 

Pollen beetles overwinter as the adult stage in the soil, they emerge in spring once the 

temperatures exceed 9 °C [14,18] and start infesting oilseed rape fields once temperatures 

reach 12-15 °C [15,18]. Emergence depends mainly on temperature, but CO2 concentration 

and humidity at the hibernation site are influencing factors [15]. Newly emerged females are 

reproductively immature and feed either on pollen of various plants close to the hibernation 

sites or directly on oilseed rape if temperatures remain above 12 °C for a week or two 

[15,16,18,19]. Pollen beetles arrive in oilseed rape fields for mating and oviposition when the 

crop reaches the early bud stage (Fig. 5) [15,20]. They are able to locate oilseed rape at this 

stage by olfactory stimuli [21]. Females prefer buds 2-3 mm in length for oviposition [16] and 

lay their eggs through a hole chewed at the base of the bud [22,23]. Each female produces 

100-300 eggs [15,16,22], and usually lays 2-3 eggs per bud [16]. The eggs hatch after about 4 

days at 21 °C [15,16] or 1510 accumulated degree hours above 4 °C [24]. Pollen beetles have 

two larval instars [16,25,26]. The first instar develops in closed buds [27] and the second 

instar feeds on pollen in buds and open flowers before it drops to the ground to pupate in the 

soil [15,28]. In 22-30 days [16,22] or 2770 accumulated degree hours above 4 °C [24] the 

development progresses from first instar to pupae. The pupal diapause lasts 10-18 days [15], 

the new generation emerges early in summer and feeds on pollen of various plants [28]. The 

adult beetles seek their hibernation sites off the fields in perennial vegetation, leaf litter of 

woodlands and hedgerows from August [14–16,20]. 
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Source: modified from PAUL (2003) [29]      

Fig. 5 Lifecycle of the pollen beetle, M. aeneus. 

 

The pollen beetle, M. aeneus is the major oilseed rape pest throughout Europe [30]. 

Pollen beetle damage the crop through feeding activity on immature flower parts in the early 

bud stage of the crop often destroying the ovary [15,31]. As the plants develop the impact of 

pollen beetle attacks on crop yield losses reduce [14,28,31–34]. In the light of this economic 

thresholds are adapted to crop stages in many countries ranging from one beetle/plant in 

France and Poland to 3-4 beetles/plant in Germany in BBCH 50-51 (BBCH code see [35]) and 

2-3 beetles/plant in France to 7-8 beetles/plant in Germany in BBCH ≥52 [9]. The actual 

damage potential of pollen beetle in winter oilseed rape is controversial. In some years the 

crop compensation capacity can overcome even relatively heavy attacks [13,34,36]. 

Unfortunately the factors influencing crop compensation are not fully understood and therefore 

deciding when control is required is not an exact science. Whereas the condition of the crop 

e.g. plant density per square meter can be assessed at a certain time point the future weather 

conditions cannot be controlled. The latter is relevant as water supply is known to be a crucial 

factor determining compensation capacity [14,36]. Despite the ability of the crop to 

compensate for pollen beetle damage yield losses ranging from 20 to 100 % on acreage of 

Spring 
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200,000 ha winter oilseed rape in Germany in 2006 due to the limited control of pyrethroid 

resistant pollen beetles clearly demonstrate the enormous damage potential of this particular 

pest [37]. 

1.1.1.2 Stem and pod weevlis (Ceutorhynchus spp.) 

Stem and pod weevils attacking oilseed rape belong to the genus Ceutorhynchus and 

are univoltine [9,38–40]. Three weevils are considered to be major pests of oilseed rape [9] 

and may cause significant yield reduction: C. napi GYLL. (rape stem weevil) and C. 

pallidactylus MARSH. (cabbage stem weevil) and C. assimilis PAYK. syn. C. obstrictus MARSH. 

(cabbage seed weevil) (Fig. 6). C. napi is of particular importance in continental Europe, 

especially in Germany, France, Switzerland, Austria and Poland but is not a pest in northern 

Europe or the UK, whereas C. pallidactylus and C. assimilis are major rape crop pests 

throughout Europe [9,12]. 

 

Source: Pictures kindly provided by the Visual Communicaion Unit of Rothamsted Research 

Fig. 6 Adult Ceutorhynchus spp. on oilseed rape, from left to right: C. napi, C. pallidactylus 

and C. assimilis. 

 

The lifecycle of C. napi and C. pallidactylus is broadly similar, adults migrate into winter 

oilseed rape fields in early spring to feed and oviposit into stems (C. napi) [39,41,42] or 

petioles as well as mid-ribs of leaves (C. pallidactylus) [9,38,42] of the oilseed rape plants. 

Eggs hatch in 1-2 weeks [12,43]. Larvae of C. napi and C. pallidactylus feed within the pith for 

about 5 weeks [9,39] and in the petioles, stem and lateral shoots for 3-6 weeks [12,40], 

respectively. On maturity larvae exit the plant, drop to the ground and pupate in the soil [38–

40]. 3-4 weeks later adult stages are reached, adults of C. pallidactylus emerge and feed on 

various cruciferous plants prior to entering hibernation outside the crop in compost, plant 

debris or bushes [38] whereas adult C. napi remain in situ to emerge the following spring 

[9,39].  
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The damage caused by stem weevils is various. Larval feeding weakens the plants 

and generates entry paths for plant diseases i.e. fungal and bacterial diseases, through 

feeding and oviposition activities [9,41,43–46]. Substantial damage to the plant itself is caused 

by the oviposition activity of rape stem weevil. Secretions by the egg-laying female lead to 

reductions in stem growth with swelling, longitudinal splitting and twisting [9,14,41,43]. 

 The third member of Ceutorhynchus genus that causes considerable damage is C. 

assimilis, unlike the other two species this species is abundant in the crop from early flowering 

until ripening of the seeds. The females are reproductively immature while they migrate into 

crops in the early bud stage [47,48], after two weeks feeding on different parts of cruciferous 

plants the females start to oviposit into young seedpods [9]. Usually the eggs are laid singly in 

pods through a hole bored with the mouthparts [28,49]. A pheromone is released by the 

female subsequently after oviposition to defer further oviposition in the same pod [50,51]. The 

eggs hatch 1-2 weeks later and during larval development which covers three instars about 

five seeds are destroyed per larvae [9,49]. Mature third instar larvae chew a hole in the pod 

wall and drop to the ground to pupate for up to 23 days [49]. The adults emerge during July 

and feed on a range of cruciferous plants before seeking overwintering sites in leaf litter of 

perennial vegetation [9,28].  

The main damage caused by C. assimilis is due to larval feeding [9,30,49]. 

Furthermore, the damaged pods of the crop serve another insect pest the brassica pod midge, 

D. brassicae, as oviposition sites and are an entry path for fungal diseases [9,12,52]. 

1.1.1.3 Flea beetles  

Flea beetles of the genus Phyllotreta and Psylliodes feed on cruciferous plants [12]. 

Adults of both genus’ mainly damage the emerging oilseed rape plants due to feeding on 

cotyledons and the first true leaves. Whereas Psylliodes chrysocephala L. is only present in 

winter oilseed rape Phyllotreta spp. are more important pests of spring oilseed rape and 

brassicaceous vegetables [9,12,53,54]. In North America and Scandinavian countries 

Phyllotreta spp. dominate whereas the cabbage stem flea beetle, P. chrysocephala (Fig. 7), is 

the most prevalent flea beetle in countries of central and northern Europe with a maritime 

climate and the most economically important flea beetle species [12,55].  
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Source: Pictures kindly provided by the Visual Communicaion Unit of Rothamsted Research 

Fig. 7 Adult flea beetle, P. chrysocephala on oilseed rape. 

 

P. chrysocephala is a univoltine species [9], after arrival in the crop their flight muscles 

atrophy [40]. After about two weeks of feeding activity on the crop the ovaries of the females 

become mature and the beetles start mating [56]. Eggs are preferably laid on the stem of 

newly emerged plants or close to rape plants in the soil [14,57]. The accepted temperature 

conditions for egg-laying are 4-16 ºC [57], thus oviposition takes place mainly in autumn but 

may continue throughout mild winters [58]. 240 accumulated day degrees above 3.2 ºC are 

required for eggs to hatch and larvae can be found in the field from September onwards [58]. 

Larvae bore into the petioles of leaves and proceed towards the stem where they feed until 

they reach the third and final larval stage [59,60]. Mature larvae leave the oilseed rape plant to 

pupate in the soil, and after a pupal diapause of about three month the new generation 

emerges in the late spring [56]. The new generation feeds on various tissues of oilseed rape 

and other cruciferous plants [12,56].  

The damage caused by cabbage stem flea beetle is mostly caused by larval feeding 

activity and it is usually not necessary to take control measures to prevent the feeding of 

adults [12]. Larvae may damage the plants (1) directly especially when plant density is low 

and the number of larvae per plant increases resulting in insufficient food source for the larvae 

and, (2) indirectly as the boring and tunneling of the larval feeding activity makes plants more 

susceptible to frost damage and provides a portal of entry for plant pathogens such as Phoma 

lingam [44,53]. 
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1.2 Insecticides used to control oilseed rape insect pests in the present 

and the past 

Historically a variety of chemicals were used on rape crops to control insect pests. 

WEIß [61] reviewed several studies carried out in the early 1920s regarding the efficacy of 

arsenic compounds such as copper arsenite and lead arsenite. However, most studies on 

such compounds revealed unsatisfactory results because of low efficacy and undesirable 

phytotoxic effects [62,63]. Pyrethrum powders were reported to be frequently used for control 

[61,62] and were even used in some areas prior to the First World War [61]. Although aqueous 

tobacco leaf extracts water mixtures did not show efficacy in the field satisfactory results were 

achieved using nicotine-extracts in the laboratory [61]. In contrast BLUNCK & MEYER [64] 

presented good results using nicotine-dust and rotenone-dust for pollen beetle control in the 

field. FREY [65] showed a high efficacy of rotenone based products but high costs of the 

product [64] and the limited availability of the natural resource after the Second World War 

limited their widespread use in the field [14].  

After decades of use of inorganic chemistry and natural extracts the era of synthetic 

insecticides dawned. Dichlorodiphenyltrichloroethane (DDT) was introduced in the 1940s and 

was the most frequently used insecticide in cruciferous crops in the early 1950s [14]. As the 

efficacy of DDT against weevils was not sufficient parathion, an organophosphate, was often 

used instead or applied in mixtures with DDT [14,40,66]. With toxaphene, an organochlorine, 

the first compound that was non-toxic to bees became available, and was thus suitable for use 

in the flowering stage of crops [40,67]. For flea beetle and stem weevil control seed treatments 

with gamma-hexachlorocyclohexane (gamma-HCH), also known as lindane, were used 

[38,40]. Spray application of gamma-HCH and dieldrin were found to be effective on weevils 

as well [40]. With compounds such as DDT, gamma-HCH, dieldrin, toxaphen, chlordane, 

endosulfan, diazinon, parathion and pyrenone (6 % pyrethrin, 60 % piperonylbutoxide) a broad 

range of insecticides was available from the 1960s [40]. Unintentionally at this time a basis for 

resistance management was provided by the available chemistry which acted on different 

target sites in the insect i.e. DDT and pyrethrin act on the voltage-gated sodium channel 

(VGSC) [68–71], gamma-HCH, dieldrin, toxaphen, chlordane and endosulfan target the 

gamma-aminobutyric acid receptor (GABA)-gated chloride channels [72], and diazinon and 

parathrion bind irreversibly to the acetylcholinesterase (AChE) [73].  

Even though the level of control of insect pests reached an efficacy never known 

previously, with CASIDA & QUISTAD calling it the first victory over insects [74], the massive use 

of synthetic insecticides also had very significant negative side effects. Most early synthetic 

compounds were relatively persistent and displayed minimal selectivity with sometimes highly 
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toxicity to mammals and non-target arthropods. In the late 1970s synthetic pyrethroids were 

introduced [69,75] and displayed a combination of exceptional activity with a superior 

toxicological profile [69,75–79]. With the introduction and widespread adoption of the 

pyrethroids many of the older insecticides were withdrawn due to concerns relating to human 

health and environmental impact [80,81]. As a result in the more recent past, i.e. before 2007, 

just a single chemical class, the pyrethroids, was relied on as a mainstay for the control of 

various insect pests in oilseed rape in most European countries [80–83]. These circumstances 

led to exceptional selection pressure on this particular chemical class of insecticides and to 

the eventual development of pyrethroid resistance in at least two different oilseed rape pest 

species (see Chapter 2, Chapter 7 and Chapter 8). The development of pyrethroid resistance 

in pollen beetle (see Chapter 2) led to the registration of alternative chemistry thus today a 

variety of chemistry with distinct modes of action is available throughout Europe to be used in 

oilseed rape crops. Currently compounds belonging to four different chemical classes i.e. 

pyrethroids, the neonicotinoids thiacloprid and acetamiprid, indoxacarb (an oxadiazine) and 

pymetrozine (a pyridine azomethine) are registered in Germany [84], France [85], Poland [86], 

and the UK [87]. Among oder chemistry organophosphates are still registered in France and 

Poland. Switzerland has registered spinosad as well as all other insecticides mentioned above 

except for indoxacarb [88]. However, the situation becomes more difficult at the species level. 

The main driver for the new and re-registration of alternative compounds was the development 

of pyrethroid resistance in pollen beetle which spread rapidly throughout Europe [89], thus 

many compounds such as indoxacarb, pymetrozine and chlorpyrifos are only registered for 

pollen beetle control [84,85]. Hence, most newly and re-registered chemistry is limited to 

pollen beetle control and the options for controlling pests other than pollen beetle are currently 

restricted to two chemical classes i.e. pyrethroids and neonicotinoids.  

Insecticide classes currently registered to control invertebrate oilseed rape arthropod 

pests in Europe, their target sites and modes of action are described in more detail hereafter 

with an emphasis on the pyrethroid insecticides as the most widely used class.  

1.2.1 Insecticides targeting voltage-gated sodium channels 

The voltage-gated sodium channel (VGSC) (Fig. 8) is a protein targeted by natural as 

well as synthetic insecticides in the present and the past [69,90]. The VGSC as an insecticide 

target is addressed by pyrethroids and indoxacarb, even though these chemistries share the 

same target site they have distinct modes of action (see below for details) and are therefore 

classified in individual IRAC classes (Table 1). Historically the VGSC is one the oldest and 

well established target sites as it has already been addressed more than 100 years ago by 

botanical pyrethrins and later on by DDT, one of the first synthetic insecticides [91] (Fig. 8 and 

Fig. 11). 
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Table 1 Mode of action and IRAC classification of insecticide classes currently available for 

control of certain oilseed rape pests. 

Chemical class Mode of action IRAC classification 

Pyrethroids Sodium channel modulator 3A 

Indoxacarb (oxadiazines) VGSC channel blocker 22 

Neonicotinoids nAChR agonists 4A 

Spinosyns nAChR allosteric activators 5 

Organophosphates AChE inhibitors 1B 

Pymetrozine (pyridine azomethine) Chordotonal organ modulator* 9B 

* see section 1.2.4     Source: http://www.irac-online.org/eClassification/ 

 

 

 

Source: modified from DAVID et al. (2013) [92] 

Fig. 8 Target sites of insecticides in the central nervous system of arthropods. Red ellipses 

indicating target sites currently addressed by insecticides used in oilseed rape; ACh, 

acetylcholine; AchT, ACh transporter; AcOH, acetic acid; ChT, choline transporter; 

ChAT, choline acetyltransferase; Vg-Na+ channel, voltage-gated sodium channel; Vg-

Ca+ channel, voltage-gated calcium channel; nACh receptor, nicotinic 

acetylcholinereceptor; AChE, acetylcholinesterase. 
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1.2.1.1 Synthetic pyrethroids 

Pyrethroids are synthetic analogues of the naturally occurring pyrethrins [69,78,79]. 

Pyrethrins are natural insecticides occurring in flowering parts of the pyrethrum daisy 

(Tanacetum cinerariaefolium (TREVIR.) SCH. BIP.; syns. Chrysanthemum cinerariaefolium and 

Pyrethrum cinerariaefolium) [69]. Pyrethrum extract contains six insecticidal esters i.e. 

pyrethrin I, II; jasmonine I, II and cinerin I, II, they share a common structure and differ only in 

the terminal substitutions (Fig. 9) [69]. The I and II series contain a chrysanthemic acid and 

pyrethric acid, respectively [93]. Although pyrethrum extract is highly active against a broad 

spectrum of arthropods the photo-instability of the insecticidal compounds prevented their 

successful large-scale use [79,94]. The photo-instability of the natural compounds was a 

driving factor for discovering alternatives, and the lead structure leading to development of 

successful synthetic pyrethroids was pyrethrin I [78,94]. However two of the initial promising 

compounds resmethrin and bioresmethrin which displayed more than 50-fold higher efficacy 

against houseflies compared to pyrethrin I were also not suitable for large-scale use in 

agriculture due to rapid photolysis [78,79]. This hurdle was finally overcome with the synthesis 

of permethrin in 1973 [79,95], the first synthetic pyrethroid to be used on a broader scale 

within agriculture [91,96]. Permethrin contains the chrysanthemum acid moiety, a central ester 

bond and the 3-phenoxybenzyl alcohol moiety and became the lead structure for many 

following compounds of commercial value (Fig. 9) [97]. Finally, the insecticidal activity of 

pyrethroids was further enhanced by the introduction of an α-cyano group e.g. cypermethrin 

and deltamethrin (Fig. 9) [69,79,93]. Deltamethrin is 1400-fold more active against houseflies 

and ~8-fold less toxic to mammals compared to pyrethrin I and displayed a level of activity 

against insects that had never been seen before [93]. Typically ester pyrethroids have three 

chiral centres resulting in a possibility of eight isomeres. Only two of them (1R cis and trans, 

with αS configuration) are active [78]. Deltamethrin represents a single isomer pyrethroid (1R 

cis) [75], whereas cypermethrin is a mixture of all eight possible isomeres and the optimized 

alpha-cypermethrin contains only two isomeres (1R cis, αS and 1R cis, αR) [93].  

In respect to the currently registered pyrethroids for the control of insect pests in 

oilseed rape three further compounds should be highlighted i.e. bifenthrin, etofenprox and tau-

fluvalinate. Most of the pyrethroids which have frequently been used in oilseed rape have a 

permethrin-like structure in common (see above) e.g. lambda-cyhalothrin, deltamethrin, 

cypermethrin and cyfluthrin [82]. The three compounds named above are structurally different: 

bifenthrin containing a biphenyl moiety instead of the common 3-phenoxybenzyl alcohol 

moiety; etofenprox a non-ester pyrethroid and tau-fluvalinate where the chrysanthemum acid 

moiety is substituted by an aromatic amino acid moiety (see Fig. 25, Chapter 3).  
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Source: KHAMBAY (2005) [78] 

Fig. 9 Chemical structures of natural occuring pyrethrins, the early synthetic analog 

bioresmethrin and some important commercialized synthetic pyrethroids. 

 

Synthetic pyrethroids, natural pyrethrins and DDT act on insect VGSCs located in the 

central nervous system [90,98,99]. VGSCs generate action potentials and are critical for 

electrical signaling in most excitable cells [100]. In response to changes in the membrane 

potential the channels open and then close [101]. The open conformation of the channel is the 

active stage where sodium ions are allowed to flow into the cell resulting in depolarization of 

the membrane potential, this stage usually only lasts a few milliseconds before the channel 

pore is occluded [100]. VGSCs in insects are encoded by a single gene named para after the 

temperature-sensitive paralytic phenotype of Drosophila melanogaster MEIGEN [102]. In 

contrast, in mammals several sodium channel α-subunits are expressed by at least 10 genes 

[103]. Prior to the identification of para the dsc1 locus was thought to be the VGSC encoding 

locus in D. melanogaster [104,105]. However, as recently shown the dsc1 locus encodes a 

distinct calcium channel [106]. Orthologs of para were reported in more than 15 arthropod 

species [105]. The single polypeptide chain encoded by para is a pore-forming α-subunit with 

four internally homologous transmembrane domains (I-IV), each containing six 

transmembrane helices (S1-S6) (Fig. 10) [99,105]. However, one gene does not necessarily 

mean only one gene product, due to splice variants and RNA editing one gene can express 
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several pharmacologically distinct channels [100,107]. Detailed pharmacological analysis of 

interactions between pyrethroids and sodium channels are rather limited due to the 

hydrophobic nature of pyrethroids and the complexity of the target site [108], but mutations 

may facilitate a deeper understanding of these interactions. O’REILLY et al. [99] published a 

model of the M. domestica sodium channel pore region derived from a crystal structure of the 

homologous voltage-gated potassium channel. Based on this model they predicted a single 

“putative” binding site for pyrethroids within the pore in a region where several amino acid 

residues have been implicated in pyrethroid resistance i.e. the domain IIS4-S5 linker and 

domain IIIS6 (see section 1.3.1.2 for more details). DU et al. [109] predicted a second putative 

binding site based on electrophysiological experiments on Xenopus oocyte-based functional 

expression of the Aedes aegypti L. AaNav1-1 sodium channel.  

 

Source: SODERLUND (2005) [105] 

Fig. 10 A schematic illustration of a voltage-gated sodium channel. The alpha-subunit 

forming the pore consists of a single polypeptide chain comprising four internally 

homologous domains (I-IV), each containing six hydrophobic transmembrane helices 

S1-S6. Multiple positively charged residues (+) in the four S4 helices constitute the 

voltage sensor, the “DEKA amino acid motif” constituting the selectivity filter. 

 

Pyrethroids can be grouped into type I and type II compounds based on their chemical 

structures, distinct poisoning symptoms and effects on nerve preparations [96,110–114]. 

Based on the poisoning symptoms of cockroaches and rats two syndromes were 

characterized, the type I poisoning syndrome in the cockroach is restlessness, incoordination, 

prostration and paralysis [98,115] and a whole body tremor followed by prostration in the rat, 
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the latter syndromes were named T syndrome [116]. Type II symptoms were convulsion, rapid 

paralysis and incoordination in the cockroach [110] and coarse tremors, burrowing behavior, 

clonic seizures, sinuous writhing and profuse salivation without lacrimation in rats [116]. The 

type II symptoms in rats were referred to as CS (choreoathetosis/salvation) syndrome 

[98,116]. Chemically both types can be distinguished by the absence (type I) or presence 

(type II) of the α-cyano group [98,100,113]. Neurophysiological differences in the modification 

of the action of VGSC can be determined in voltage-clamp experiments. Repetitive discharges 

(also known as repetitive firing), and membrane depolarization accompanied by a suppression 

of the action potential are caused by type I, and type II pyrethroids, respectively (Fig. 11) [96]. 

The classification based on the α-cyano group holds true for most compounds, but exceptions 

have been reported. CASIDA et al. [98] described the symptomology of fenpropathrin, a 

pyrethroid containing an α-cyano group, as a mixture between type I and II effects. Roughly 

25 years later fenpropathrin and esfenvalerate have been described as intermediates between 

type I and II in a study considering both symptomology and neurophysiology [112].  

 

Source: CASIDA & DURKIN (2013) [90] 

Fig. 11 Target site of insecticides acting on the VGSC (presynaptic nerve terminal) and 

neuroactive action of pyrethroids. 

 

A recognized efficacy feature of pyrethroids is their rapid knock-down action on insects 

[117]. However, pyrethroids often do not kill insects as rapidly as they knock them down and 

they may recover fully under controlled conditions within a few days [78]. However, long-term 

recovery under field conditions may not actually reduce control as death may occur by 

secondary processes such as predation and desiccation [78]. 

The continued research on pyrethroid structures led to the development of more than 

30 compounds [78]. Pyrethroids show a high selectivity for insects over mammals with the 

VGSCs of insects at least 1000-fold more sensitive to pyrethroids than their mammalian 

counterparts [118]. They are potent broad-spectrum insecticides and extremely lipophilic (logP 

Pyrethrins, Pyrethroids,  
Indoxacarb and DDT 
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4-9 [119]), thus they show excellent contact activity and no systemic activity [79]. Due to their 

favorable selectivity combined with a broad insecticidal spectrum they are widely used not 

only in agriculture but also to combat vector borne disease and in human and veterinary 

health medications [117]. Introduced in the late 1970s, the adoption of pyrethroids grew 

rapidly reaching peak sales in 1985 with a market share of more than 20 % [75]. The fact that 

the market share has remained around 20 % for many years and 30 years after their 

introduction was still at 18 % in 2010 [90] reflects both their importance as a insecticides class 

and the lack of alternatives.  

 

1.2.1.2 Indoxacarb 

Indoxacarb belongs to the chemical class of oxadiazines and is the first commerialized 

pyrazoline-type insecticide [120,121]. Pyrazoline-type insecticides were known since the early 

1970s but were not of commercial relevance because of their unfavorable environmental 

properties and toxicological profiles [122,123]. The active metabolite of indoxacarb i.e. DCJW 

(Fig. 12) is a potent sodium channel blocker of both vertebrate and invertebrate sodium 

channels [120,124,125]. Indoxacarb is a pro-insecticide, after metabolic activation by an insect 

hydrolase, putatively an esterase or amidase-type of enzyme, its N-decarbomethoxylated form 

(DCJW) is a potent sodium channel blocker [121,125,126]. Like pyrethroids and DDT the 

molecular target site is the VGSC, but with a different mode of action [100,121]. The blocking 

of the VGSC is stage dependent, DCJW acts on the inactivated state of the sodium channel 

by shifting the voltage dependence of inactivation to more hyperpolarized potentials [127,128]. 

Indoxacarb itself shows a high selectivity for insects over mammals due to its pro-insecticide 

mode of action [121]. Whereas insects convert indoxacarb into DCJW it is converted into non-

toxic metabolites in higher organisms such as mammals via different metabolic pathways 

[100,121,122].  
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   Source: VON STEIN et al. (2013) [129] 

Fig. 12 Chemical structure of the pro-insecticide indoxacarb and its active metabolite DCJW. 

 

Pyrazoline-type insecticides cause pseudo-paralysis symptoms, and insects are 

immobilized but show violent convulsions when disturbed [121]. Oral toxicity of indoxacarb is 

about 9-times higher compared to its contact activity [121]. The pest spectrum of indoxacarb 

covers mainly lepidopteran, hemipteran and homopteran species and to some extent 

coleopterans [121]. The high efficacy of indoxacarb against Lepidoptera is related to the rate 

of indoxacarb bio-activation [125,126,130]. Indoxacarb was firstly used in pollen beetle control 

in 2010 in Germany on a restricted area with an emergency registration while applying for a 

full registration [131]. It is now available in different European countries for the control of 

pyrethroid resistant pollen beetles (see section 1.2).  

 

1.2.2 Insecticides targeting nicotinic acetylcholine receptors 

1.2.2.1 Neonicotinoids 

The first commercialized compound of the neonicotinoid insecticides was imidacloprid; 

it was launched in 1991 and has become the best-selling insecticide worldwide [132,133]. The 

term neonicotinoid was proposed to differentiate the newer insecticides acting on the nicotinic 

acetylcholine receptor (nAChR) from the older naturally occurring (S)-nicotine sharing the 

same mode of action [134]. The first compound considered to be the lead structure of 

neonicotinoids was synthesized in the early 1970s by Shell, named nithiazine [134,135]. Even 

though nithiazine showed good initial results in the laboratory the field efficacy of the 
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compound was rather limited due to rapid degradation under both photolytic and hydrolytic 

conditions [136]. Today seven neonicotinoids are commercially well-established and they can 

be classified based on structural motifs such as cyclic and noncyclic structures (Fig. 13), the 

cyclic structures can be further divided in five-membered-ring (imidacloprid, thiacloprid) and 

six-membered-ring (thiamethoxam) systems [132,137,138]. Noncyclic compounds such as 

acetamiprid have a similar insecticidal activity compared to their cyclic counterparts by forming 

a so-called quasi-cyclic conformation while interacting with their molecular target site [134]. 

Neonicotinoids can also be classified by their pharmacophore system in nitroenamines, N-

nitro-guanidines and N-cyano-amidines, noteworthy is the fact that the two N-cyano-amidines, 

thiacloprid and acetamiprid are nearly non-toxic to bees in contrast to other neonicotinoids 

[134].  

 

Source: JESCHKE et al. (2013) [132] 

Fig. 13 Chemical structure of seven commerical well-established neonicotinoids with ring 

systems and noncyclic structures. 
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All neonicotinoids act selectively as agonists on the insect post-synaptic nAChRs (Fig. 

8 & Fig. 14) in the central nervous system [90,133,139–144]. The excitatory neurotransmitter 

acetylcholine (ACh) is the natural endogenous ligand of the cholinergic nervous system; it 

interacts with the extracellular binding site. ACh binding triggers conformational changes of 

the receptor/ion channel complex (Fig. 15) leading to channel opening and ion flux, thus 

disrupting the equilibrium state of the membrane potential (Fig. 14) [145,146]. [3H]-

imidacloprid displacement experiments revealed the neonicotinoid-binding site is the same or 

closely linked to the binding site of ACh in invertebrates [146]. All neonicotinoids are highly 

selective insecticides sharing a favorable toxicological profile in contrast to nicotine [147]. The 

low mammalian toxicity of neonicotinoids is based on target-site selectivity due to differences 

in the architecture of mammalian nAChRs compared to insects [90,132,146,148]. TOMIZAWA & 

CASIDA [146] indicated that cationic amino acid residues(s) in insect nAChR are responsible 

for successful neonicotinoid binding whereas the anionic environment in mammalian nAChR 

prohibits an interaction. A recently discovered a target-site mutation in the Myzus persicae 

SULZER ß1 subunit confirmed the importance of a positively charged amino acid at a 

corresponding position in ligand binding [149]. 

Neonicotinoid insecticides are widely used in agriculture and veterinary medicine [134]. 

They are potent systemic insecticides acting through both contact and feeding used foliarly, by 

soil applicationa and as seed [134,147,150]. A wide range of insect species belonging to the 

orders of Hemiptera, Homoptera, Coleoptera, Diptera and Lepidoptera are controlled by 

neonicotinoids [151,152].  Since the introduction of imidacloprid in 1991 the market share of 

neonicotinoid insecticides grew steadily reaching almost 30 % in 2010 mainly due to replacing 

older, environmentally begnin insecticides such as organophosphates [90,152]. The two 

compounds registered for foliar spray in oilseed rape in Europe are thiacloprid and 

acetamiprid (see section 1.2). In addition seed treatment with neonicotinoids such as 

thiamethoxam and clothianidin have been used to control P. chrysocephala and aphid species 

in oilseed rape, however the recent two year suspension of neonicotinoids for seed treatment 

in oilseed rape will limit the insecticide portfolio for flea beetle control [153].  
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Source: CASIDA & DURKIN (2013) [90] 

Fig. 14 Neuroactive action of AChE inhibitors and nAChR agonists. Left, presynaptic nerve 

terminal and postsynaptic membrane; right, cartoon of nAChR integrated in lipid 

membrane. ACh, acetylcholine; AChE, acetylcholinesterase; nAChR, nicotinic 

acetylcholinreceptor; NNI, neonicotinoid.  

 

Source: JESCHKE et al. (2013) [132] 

Fig. 15 nAChR 3D Structure of Torpedo marmorata RISSO; side view (left) and along the 

channel direction (right); AD, agonist binding domain; TM, transmembrane domain; 

CD, cytoplasmatic domain. 
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1.2.2.2 Spinosyns 

Spinosyns are a class of macrocyclic lactones with insecticidal activity derived from 

fermentation broth of two species of Saccharopolyspora spinosa [154]. The naturally occurring 

bio-insecticide spinosad is a mixture of spinosyns A and D (Fig. 16) [155]. The molecular 

target site of spinosyns is the nAChR (Fig. 14 & Fig. 15) but they act at a unique site different 

from neonicotinoids and are therefore classified in a indivudual IRAC class (Table 1) [154]. 

Spinosad is available in oilseed rape only in Switzerland for the control of pollen beetle [88]. 

Due to its limited contribution to the overall situation of insect control in oilseed rape in Europe 

this group is not described further in this thesis, however the spinosyns insecticide family is 

thoroughly reviewed in [154]. 

 

Source: KIRST (2010) [154]   

Fig. 16 Structure of spinosyn A and spinosyn D. 

 

1.2.3 Insecticides targeting acetylcholinesterases 

Principally two chemical classes are known to act on acetylcholinesterase, i.e. 

carbamates and organophosphates. However particularly for pollen beetle control only 

organophosphates are still used in European winter oilseed rape. Organophosphate 

insecticides were first introduced in 1944, and some very early compounds e.g. tetraethyl 

phosphate were soon abandoned due to their high mammalian toxicity [156]. 

Organophosphates show a wide range of structural diversity, they are either amide derivates 

of phosphoric acid or a natural ester that contain a phosphoryl or thio-phosphoryl group [157]. 

Some organophosphates, such as chlorpyrifos are phosphorothionate ester pro-insecticides 

and are activated to their respective P=O derivatives (Fig. 17) [158]. The mode of action of 

organophosphates is though inhibition of acetylcholinesterase (AChE) [73,90,157–162]. AChE 

is located at synaptic regions of cholinergic nerves and is responsible for the hydrolysis of the 
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excitatory neurotransmitter acetylcholine (ACh) (Fig. 8) [156,159,163]. Organophosphates are 

irreversible inhibitors of AChE and act as competitive inhibitors (Fig. 14) [158]. The hydrolysis 

of organophosphate insecticides by AChE results in a very stable phosphorylated AChE 

complex [164]. In contrast, AChE is naturally acetylated after the degradation of ACh and 

rapidly regenerates though the formation of acetic acid (Fig. 8) [164]. Organophosphates 

cause ACh to accumulate which results in hyper-excitation of cholinergic receptors leading to 

tremors, paralysis, exhaustion and death of poisoned insects [73,90,165].   

  

Source: modiefied from National Pesticide Information Center (http://npic.orst.edu/mcapro/opbiomarkers.html) 

Fig. 17 General structure of organophosphate insecticides and chemical structure of 

chlorpyrifos and its P450 catalyzed activation; *leaving group is specific to individual 

compounds and can either be aliphatic or based on benzene. 

 

More than 100 organophosphates were developed, most of which have an unfavorable 

toxicological profile due to the fact they are acting on a fairly conserved target site [73,163–

165]. Due to their structural diversity they may have different physicochemical properties [166] 

with logP-values rangeing from 1 - 5.5 [119], but only a minority of organophosphates are 

systemic [73] e.g. dimethoate [156]. They control a broad range of insect pests such as 

Lepidoptera, Coleoptera, Diptera, Hemiptera and Homoptera [73]. Organophosphate 

insecticides replaced the organochlorines in many applications after resistance issues had 
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reduced their effectiveness by the mid-1960s [73]. They soon dominated the market and by 

1990 had a market share of 43 % [152]. As a consequence of the development of new 

chemistry with novel modes of action the use of organophosphates dropped continuously 

since then to a market share of 23 % in 2004 [167] and below 15 % in 2010 [90]. 

Organophosphates were used to control oilseed rape pests in the past (see section 1.2) and 

particular to control pollen beetles in the recent past, mostly in eastern European countries 

[82]. Since the development of pyrethroid resistance in pollen beetles chlorpyrifos was used 

on a restricted area with an emergency registration in Germany in 2007 [168] and are still 

available in some European countries for the control of pyrethroid resistant pollen beetles (see 

section 1.2).  

1.2.4 Other insecticides (pymetrozine) 

Another insecticide recently introduced to control pyrethroid resistant pollen beetles is 

pymetrozine (Fig. 18). It is a neuroactive pyridine azomethine and is known as a selective 

homopteran feeding blocker modulationg chordotonal organs by binding to an unknown 

molecular target site [169–172]. However, it was proven effective in field trials in controlling 

pyrethroid resistant pollen beetles [173,174]. A reasonable explanation for the high efficacy 

against pollen beetle in the field is still outstanding, a report on the side effects of pymetrozine 

in aphid field trials described a decrease in the abundance of Colorado potato beetle, 

Leptinotarsa decemlineata SAY in the field and may describes an identical phenomena [175]. 

Pymetrozine was first approved for pollen beetle control in the United Kingdom (UK) in 2011 

and has since became approved in many European countries including the big three oilseed 

rape producers France, Germany and Poland [173] (see section 1.2). 

.  

  Source: www.chemicalbook.com  

Fig. 18 Chemical structure of pymetrozine. 
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1.3 Insecticide resistance 

“Can insects become resistant to sprays?” headlined the first scientific paper which 

discussed the declined efficacy of the inorganic insecticide sulfur-lime published in 1914 by 

A.L. MELANDER [4]. In this publication MELANDER mentioned some uncertainties about the field 

efficacy of sulfur-lime to control the San Jose scale, Quadraspidiotus perniciosus in 1908 and 

explained later experiments where a 10-fold dose of the normal application rate of sulfur-lime 

failed to kill San Jose scale. 

While reviewing the literature several definitions for the term resistance may be found, 

and three frequently cited definitions are:  

Resistance is… 

 “…the development of an ability in a strain of insects to tolerate doses of toxicants 

which would prove lethal to the majority of individuals in a normal population of the same 

species” [176]; 

“…the microevolutionary process whereby genetic adaptation through pesticide 

selection results in populations of arthropods which present unique and often more difficult 

management challenges” [177]; 

“…a heritable change in the sensitivity of a pest population that is reflected in the 

repeated failure of a product to achieve the expected level of control when used according to 

the label recommendation for that pest species” [178].  

Whereas the older WHO definition [176] focuses more on the population level, later 

definitions for example by IRAC [178] consider them from an applied perspective resulting 

from selection pressure by repeated applications. Resistance development is the result of 

natural selection and DOBZHANSKY [179] cited the emergence of insecticide resistant 

populations as “probably the best proof of the effectiveness of natural selection yet obtained”. 

Resistant insects outnumber susceptible ones in the presence of permanent selection 

pressure [74,178,180]. The speed of resistance development depends on several factors/risks 

and these can be divided into: (1) the agronomic risk such as the number, the rate, and the 

timing of applications in the lifetime of one generation as well as the specificity of the crop 

protection product, and (2) the inherent risk including the migration and host range of the pest, 

its reproduction capacity and speed and the availability of nearby susceptible populations 

[178,181].  
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The genetic background of insecticide resistance may be of monogenic or polygenic 

nature [182,183], in fact most of the cases are caused by a single resistance allele [183–187]. 

Changes at the genetic level are diverse and include: single nucleotide polymorphisms (SNPs) 

[70], gene amplification [188] crossing over events [189], DNA methylation [190], regulatory 

tandem repeats [191], transposable elements [192], alternative and/or mis-splicing [193,194] 

and RNA editing [195]. The changes to DNA/RNA result in complex downstream physiological 

changes within arthropod species and can be further classified into four main resistance 

mechanisms as outlined in the section below. 

1.3.1 Mechanisms of resistance 

The principal mechanisms involved in insecticide resistance are (1) metabolic 

detoxification, e.g. the enhanced expression of metabolism enzymes, (2) target-site alteration 

e.g. single amino acid changes at the binding site affects the interaction of insecticide with its 

target, (3) penetration resistance e.g. changes in the architecture of the cuticle may change 

the penetration rate of an insecticide, and (4) behavioral resistance e.g. insects avoid 

exposure by avoiding the treated plant parts. Of these the most important/common 

mechanisms are target-site and metabolic resistance [165,178,183,185,186,188,196–198]. 

1.3.1.1 Metabolic resistance 

In general metabolism can be divided into two phases: Phase I metabolism includes 

the initial biotransformation of a xenobiotic mainly by oxidative, hydrolytic and reductive 

processes, whereas Phase II metabolism refers to the bioconjugation of the Phase I 

metabolites or the parent compound with naturally occurring compounds such as sugars, 

sugar acids, amino acids or glutathione to produce polar compounds to facilitate excretion 

[78,186]. Metabolic resistance is one of the most common types of resistance in insects [198]. 

Enzymes commonly involved in metabolic resistance are the cytochrome P450-dependent 

monooxygenases (P450s), the carboxylesterases (CCEs) and the glutathione S-transferases 

(GSTs). The Phase I metabolism enzymes are not only known for their contribution to 

resistance but also for activation of pro-insecticides [121,158]. The enzyme classes most 

frequently involved in pyrethroid resistance are the P450s [78,186,198,199], followed by CCEs 

[200] and GSTs [201].  

Many examples of P450-mediated pyrethroid resistance may be found in the literature 

covering several insect species including the housefly, Musca domestica L. [202], the fruit fly 

D. melanogaster [203] several mosquito species [92,204–206], the red flour beetle, Tribolium 

castaneum HERBST [207] and many more [199]. In addition to their role in detoxification of 

xenobiotics such as pesticides and plant secondary metabolites P450s have crucial roles in 
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many biosynthetic and developmental processes [198,208].  In regards to insecticide 

toxicology P450s can also play a role in the species specificity of insecticides, e.g. the use of 

tau-fluvalinate in beehives for the control of the varroa mite, Varroa destructor ANDERSON & 

TRUEMAN [209].  

The mechanisms leading to P450-mediated insecticide resistance can be complex at 

both the genetic and biochemical level. A common pattern observed in metabolic-mediated 

resistance is the constitutive overexpression of a particular enzyme, thus increasing the 

abundance of the enzyme and the metabolism of the compound it degrades [210]. 

Overexpression might be age and/ or tissue specific [198,211]. The reasons causing 

overexpression are diverse, mechanisms such as regulatory cis- and trans-elements and gene 

amplification have been described [188,191,212,213]. Good examples where overexpression 

of a P450 correlates with resistance to insecticides are CYP6CM1 a P450 causing 

imidacloprid and pymetrozine resistance in Bemisia tabaci GENNADIUS [214–216] and 

CYP6BQ9 a P450 conferring pyrethroid resistance in T. castaneum [207]. Interestingly, the 

simple overexpression of a P450 can result in remarkably resistant phenotypes. For example, 

laboratory selection of the housefly strain “Learn Pyrethroid Resistance” (LPR) with the 

pyrethroid permethrin resulted in a resistance level of > 5000-fold against pyrethroids 

containing a phenoxybenzyl moiety [202,217] which is correlated with a ~10-fold and ~8-fold, 

increase in expression and protein level, respectively, of CYP6D1 which was shown to cause 

the resistance in this strain [213,217–223]. P450s may also confer resistance through 

qualitative rather than quantitative changes in the underlying P450 gene(s). A well-

characterized example of change in function in P450s related to resistance against DDT is 

CYP6A2 from D. melanogaster. While the expression level of CYP6A2 remains similar 

between susceptible and a resistant strain, three amino-acid substitutions were observed. 

Functional expression of both the wild-type and the mutated allele revealed a substrate shift to 

DDT boosting the formation of the non-insecticidal dicofol [224]. A recent example of P450 

evolution regarding pyrethroid resistance is the emergence of a chimeric P450, CYP337B3, 

caused by a crossing over event in Helicoverpa armigera HÜBNER [189]. Several more cases 

are known and their description is beyond the scope of my thesis, theirfore I would like to refer 

to some comprehensive reviews for further reading [199,208,223,225].  

Carboxylesterases hydrolyze a broad spectrum of endogenous and exogenous 

compounds containing an ester linkage [200]. Compounds such as pyrethroids, 

organophosphates and carbamates (cumulative market share > 40 % in 2010 and > 60 % in 

2000 [90]) are esters and vulnerable to hydrolysis. The hydrolysis of the ester group results in 

a significant decrease or even the total loss of insecticidal activity [186]. The pyrethroid 

chemical structure influences the rate of hydrolysis; type II pyrethroid esters containing an α-
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cyano group adjacent to the ester are less efficiently metabolized by CCEs compared to 

pyrethroids lacking this motif [226]. Hydrolysis of pyrethroid esters in insects is mostly 

mediated by soluble non-specific B-type CCEs [78]. CCEs are thought to play a more minor 

role in pyrethroid resistance and are often described as a secondary resistance mechanism 

[78,227]. Resistance is not only conferred by hydrolysis but may also occur due to 

sequestration. A case that is particularly well described in the literature is the carboxylesterase 

E4/FE4 mediated resistance affecting organophosphates through sequestering and to a lesser 

extent pyrethroids in M. persicae [228,229]. In this case the E4 gene or its paralog FE4 is 

amplified (up to ~80 copies) resulting in CCE-protein of up to 1 % of the total body weight of 

the aphid [228,230]. In the absence of selection pressure the E4 gene may be silenced by 

des-methylation [190]. The E4 CCE-mediated mechanism provides the aphids with an efficient 

resistance mechanism against organophosphates but not against pyrethroids where the FE4 

background confers a modest ~4-fold resistance factor. However, the combination of amplified 

esterase gene with target site resistance boosts the resistance level to pyrethroids up to 150-

540-fold [229]. 

Glutathione S-transferases are mainly involved in the detoxification of organophos-

phorous insecticides [201], abamectin [231,232] and to a lesser extent in DDT and pyrethroid 

resistance [78,233]. The molecular mechanisms of GSTs in pyrethroid resistance are not well 

understood, sequestration has been reported [234] and tissue protection from pyrethroid-

induced lipid peroxidation products was hypothesized [235].  

Very recently ATP binding cassette transporter (ABC transporter) have been 

implicated in pyrethroid resistance in H. armigera [236], Ae. aegypti [237], Cimex lectularius L. 

[238] and Rhipicephalus microplus CANESTRINI [239]. ABC transporters are responsible for 

ATP-dependent translocation of substances across membranes and represent one of the 

largest gene families of transporters covering a variety subrates such as ions, amino acids, 

sugars, peptides, hormones, polysachharides, lipids, sugars and xenobiotics [240,241].  

1.3.1.2 Target-site resistance 

Target-site resistance (also known as altered target-site resistance, target-site 

modification or mutation) usually refers to qualitative changes in the target protein. Target-site 

resistance is thought to be the most important resistance mechanism affecting pyrethroids 

[78]. The majority of target-site resistance cases involves the substitution of a single amino 

acid and has been described for several insects and a broad range of older chemistries 

including the pyrethroids [70,242], cyclodienes [243], organophosphates (and carbamates) 

[160], and some newer classes such as the neonicotinoids [149], diamides [244] and 

spinosyns [245]. Focusing on pyrethroid resistance cases, mutations underlying the 
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knockdown resistance (kdr) trait(s) have now been described in a remarkable number of 

insect species [246]. Kdr confers resistance to DDT, pyrethrins and pyrethroids, and its 

phenotypic description in M. domestica in 1951 predates the discovery of the pyrethroids 

[247]. In 1988 direct evidence for the kdr trait was provided by reduced neuronal sensitivity in 

electrophysiological assays with various nerve preparations from kdr insects [248]. After the 

linkage of the kdr trait to the para-orthologous gene in M. domestica [68] the (Vssc1) gene 

was cloned and the resistance associated mutation causing a leucine to phenylalanine 

substitution at amino acid position 1014 (L1014F) was identified (Fig. 19) [70,242]. Functional 

evidence was provided by expressing functional sodium channels (Vssc1 from M. domestica 

and paraCSMA from Blatella germanica L.) carrying the L1014F mutation in Xenopus oocyte 

revealing a 10-fold less sensitive response compared to wild type channels [249,250]. A trait 

conferring an even stronger resistance to pyrethroids termed super-kdr (s-kdr) was 

characterized in 1978, again in M. domestica [251]. The s-kdr trait maps to the same allele 

and causes a methionine to threonine substitution at amino acid position 918 (M918T) (Fig. 

19). Whereas kdr results in ~10-fold resistance to pyrethroids [249] the s-kdr trait confers 

resistance levels of > 500-fold [108,252]. Based on a model of the M. domestica sodium 

channel pore region derived from a crystal structure of the homologous voltage-gated 

potassium channel the putative ligand binding site was modeled (Fig. 20) [99]. This work has 

suggested that the huge differences in the resistance levels obtained for the M918T and 

L1014F mutations may be explained by the direct involvement of amino acid 918 in the 

pyrethroid interaction, which is in contrast to the amino acid 1014 located in the primary 

binding site (Fig. 20). The L1014F mutation modifies presumably the action of channel 

opening [99,246]. The model is in line with biological data showing that the M918T mutation 

affects only pyrethroids but not DDT due to direct interaction between this residue and 

pyrethroids but not DDT, whereas the L1014F mutation affects both chemistries [91,252,253].  

Different variants of the kdr trait i.e. L1014F, L1014H and L1014S were subsequently 

discovered and it has been hypothesized that individual variants arose due to specific 

selection pressure with either DDT or pyrethroids [254–256]. The kdr trait is in many species a 

result of a SNP resulting in an amino acid substitution at the corresponding position [105]. 

However, as shown in M. domestica and B. germanica the genomic DNA is not necessarily 

the only source of kdr sodium channels. The fly strain “ALHF” and the cockroach strain “Apyr-

R” were shown to express kdr sodium channels by RNA editing [195]. Another case involves a 

combination of genetic changes and epigenetic regulation. In diamondback moth, Plutella 

xylostella L. alternative splicing of the VGSC was described resulting in the expression of 

native sodium channels and sodium channels containing a T929I mutation [193], which is 

known to confer strong resistance to pyrethroids [193,257,258]. Kdr resistance has been 
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reported in at least 20 insect species [246]. Many more amino acid substitutions in the 

predicted pore region of the VGSC have been reported (Fig. 19), and are comprehensively 

reviewed in [108,246,259].  

 

 

 

 

Source: RINKEVICH et al. (2013) [246] 

Fig. 19 Location of sodium channel mutations associated with pyrethroid resistance that are 

detected in more than one species (top) and that are detected in only one species 

(bottom). Solid circles represent mutations which have been confirmed to reduce 

insect sodium channel sensitivity to pyrethroid insecticides when functionally 

expressed in Xenopus oocytes. Mutations indicated by open circles have not been 

examinded yet.  
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Source: O’REILLY et al. (2006) [99] and DAVIES et al. (2008) [260] 

Fig. 20 Model showing the activated-state of Musca domestica VGSC (left), voltage sensor 

domains shown in surface representation (red); S4-S5 linkers (yellow), pore helices 

(brown) and helices of S5 (cyan) and S6 (blue) are shown in cartoon; Residues 

implicated in pyrethroid resistance in various pest species (M918, L925, T929 and 

L932) are shown in space fill (green). Predicted docking of deltamethrin with the 

VGSC (right).  

 

Despite the kdr-like resistance mechanisms affecting pyrethroids and often DDT a 

recent case of target site resistance affecting the fairly new spinosyn class provides a good 

example of another target-site resistance mechanism. Spinosyns, share their target the 

nAChR with other chemical classes such as neonicotinoids, sulfoximines and butenolids but 

act at a distinct site at the nAChR [132]. Resistance to this particular insecticide class is 

frequently conferred by loss of the target site i.e. the alpha6 subunit of nAChR [194,261,262]. 

Alternatively, an amino acid substitution (G275E) in the alpha6 subunit was recently shown to 

confer resistance against spinosyns [245]. 

1.3.1.3 Penetration resistance 

Penetration resistance is characterized by “a much slower entry of an insecticide into 

the resistant insect than that into a comparable susceptible insect” [178]. Examples are the 

reduced penetration of S-fenvalerate in resistant strains of P. xylostella [263], trans-

cypermethrin in a resistant strain of H. armigera [264] and imidacloprid in a resistant clonal 

culture of M. persicae [265]. Penetration resistance is often not an efficient mechanism on its 

own and normally just contributing to other resistance mechanisms [264].  
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1.3.1.4 Behavioral resistance 

Behavioral resistance occurs when arthropods minimize contact with or completely 

avoid the insecticide [178]. This type of resistance is difficult to detect, a well-described case is 

the “bait avoidance” of B. germanica [266–270]. Two examples related to pyrethroid 

insecticides are the tobacco budworm, Heliothes virescens F. and the horn fly, Haemotobio 

irritans L. [271]. 

1.3.2 Insecticide resistance in oilseed rape insect pests 

This thesis is cumulative and includes chapters made of papers published (and 

submitted) on insecticide resistance monitoring, mechanisms and management in several 

coleopteran pests of oilseed rape. Due to the fact that each individual chapter includes its own 

introduction to insecticide resistance history and issues in specific oilseed rape pests no 

further introduction is given here. Please refer to Chapter 2 (Chapter 3, Chapter 4, Chapter 5 

and Chapter 6) for pollen beetle; to Chapter 7 and Chapter 8 for cabbage seed weevil and 

cabbage flea beetle, respectively.  

1.4 Objectives 

The recent development of pyrethroid resistance in pollen beetle and other coleopteran 

oilseed rape pests highlights the importance of resistance management strategies. In order to 

implement strategically sustainable resistance management strategies it is of utmost 

importance to describe the geographical extent of the resistance problems, to understand the 

molecular mechanisms of resistance involved, and to assess alternative chemical control 

options not yet affected by insecticide resistance in order to avoid control tactics compromised 

by cross-resistance issues. Therefore the thesis covers the following aspects in a number of 

individual chapters: 

Chapter 2 aimed to assess the level of pyrethroid resistance in individual pollen beetle 

populations collected in Europe and to provide an overview of its geographical distribution. 

Furthermore the baseline susceptibility against thiacloprid, a European wide registered 

compound belonging to the chemical class of neonicotinoids, was determined to allow the 

early detection of resistance development against this compound in the future. 

The aim of Chapter 3 was to determine the cross-resistance pattern in pollen beetle 

and the identification of the enzyme family involved in pyrethroid resistance. 

The objective of Chapter 4 was the identification of resistance alleles confering kdr-like 

target-site resistance in pollen beetle and their distribution in populations collected across 

Europe. 
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Chapter 5 aimed to identify the cytochrome P450 monooxygenase encoding gene(s) 

involved in pyrethroid resistance in pollen beetle and to clarify its contribution to cross-

resistance patterns observed in bioassays. 

In Chapter 6, next generation sequencing was used to generate a comprehensive 

sequence resource and allowing the de novo assembly of the first pollen beetle transcriptome. 

This dataset was used to identify genes encoding insecticide target sites and detoxification 

enzymes and the global gene expression profiling of three resistant and one susceptible strain 

allowed the identification of genes putatively involved in pyrethroid resistance. 

The aim of Chapter 7 was the monitoring of thiacloprid susceptibility in pollen beetle 

and cabbage seed weevil populations collected across Europe; furthermore the susceptibility 

of cabbage seed weevil against lambda-cyhalothrin was assessed. The practicality of 

supplying external testing sites with thiacloprid test kits was examined.   

Chapter 8 aimed to identify the molecular mechanism causing field failures of 

pyrethroids in cabbage flea beetle control in Germany and to derive implications for future 

resistance management.  
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 14 

Abstract 15 

BACKGROUND: Pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae) are a 16 

major pest in European winter oilseed rape. Recently control failures with pyrethroid 17 

insecticides commonly used to control this pest were reported in many European countries. 18 

For resistance management purposes the neonicotinoid insecticide thiacloprid was widely 19 

introduced as a new mode of action for pollen beetle control. 20 

RESULTS: A number of pollen beetle populations collected in Germany, France, 21 

Austria, Great Britain, Sweden, Denmark, Finland, Poland, Czech Republic and Ukraine were 22 

tested for pyrethroid resistance using lambda-cyhalothrin-coated glass vials (adult vial test). 23 

Most of the populations tested exhibited substantial levels of resistance to lambda-cyhalothrin, 24 

and resistance ratios ranged from < 10 to > 2000. A similar resistance monitoring bioassay for 25 

the neonicotinoid insecticide thiacloprid was developed and validated by assessing baseline 26 

susceptibility data for 88 European pollen beetle populations. A variation of less than 5-fold in 27 

response to thiacloprid was detected. The thiacloprid adult vial bioassay is based on glass 28 

vials coated with an oil-dispersion based formulation of thiacloprid, resulting in a much better 29 

http://www.onlinelibrary.wiley.com/doi/10.1002/ps.2137/pdf
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bioavailability compared with technical material. Analytical measurements revealed a > 56d 30 

and 28d stability of thiacloprid and lambda-cyhalothrin in coated glass vials at room 31 

temperature, respectively. No cross-resistance between thiacloprid and lambda-cyhalothrin 32 

based on log-dose probit-mortality data was detected.  33 

CONCLUSION: Pyrethroid resistance in many European populations of M. aeneus 34 

was confirmed, whereas all populations are susceptible to thiacloprid when tested in a newly 35 

designed and validated monitoring bioassay based on oil dispersion formulated thiacloprid- 36 

coated glass vials. Based on the homogenous results it is concluded that thiacloprid could be 37 

an important chemical tool for pollen beetle resistance management strategies in European 38 

winter oilseed rape. 39 

2.1 Introduction 40 

Winter oilseed rape is one of the most important crops in several European countries. 41 

The four main oilseed rape growing countries in Europe are France (1.58 mio ha in 2009), 42 

Germany (1.55 mio ha), Poland (0.8 mio ha) and the United Kingdom (0,68 mio ha) [1]. The 43 

pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae), is one of the major pests in 44 

European oilseed rape and known to be quite destructive once infestation thresholds are 45 

exceeded and no chemical control measures taken [2]. After emerging from overwintering 46 

sites adults start to infest oilseed rape plants in mid-March until May, and can damage the 47 

flowering parts by feeding and oviposition, and particularly feeding larvae cause bud 48 

abscission. The consequence of these infestations are pod-less stalks and dramatically 49 

reduced yields, so the farmers need to control pollen beetles to keep numbers low and to 50 

avoid economic damage. All over Europe, pyrethroid insecticides have a long history in pollen 51 

beetle control [3]. In many countries the common practice is more than one insecticide 52 

application against pollen beetle per season [4]. The requirement for control and limited 53 

availability of compounds from other chemical classes have conspired, resulting in intense 54 

selection pressures being imposed by pyrethroid insecticides [5]. In 2005 almost a 100 % of all 55 

insecticide applications in oilseed rape in Germany accounted to pyrethroid insecticides [3,6]. 56 

The first case of reduced susceptibility of pollen beetle to pyrethroids was reported in 57 

1999 in the Champagne region in North-Eastern France [7,8]. Confirmed cases of pyrethroid 58 

resistance in Germany were documented in 2002, and in 2006 more than 50 % of the winter 59 

oilseed rape acreage in Germany was affected [3]. First cases of pyrethroid resistance in 60 

Denmark were described in 2000 and 2001 and confirmed in a larger study in 2003 [7,8]. 61 

Since then pyrethroid resistance data from several other countries in Europe such as 62 

Switzerland, France and Poland have been published [9-11]. UK is one of the major oilseed 63 

rape growing countries in the EU, which seemed to be less affected by pyrethroid resistance 64 
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until recently, only in 2007 were the first resistant populations discovered [12]. Pollen beetle 65 

pyrethroid resistance monitoring carried out by the Insecticide Resistance Action Committee 66 

(IRAC) in 2008 confirmed that pyrethroid resistance is widespread in Europe, particularly in 67 

France, Germany and Poland [13,14]. Resistance to pyrethroids in pollen beetle is not limited 68 

to individual compounds, but affected the whole chemical class of pyrethroid insecticides, 69 

although some of them seem to show higher activity at recommended field rates than others 70 

[3]. The problem of pollen beetle resistance to pyrethroids in European winter oilseed rape 71 

was also covered in a recent workshop organized by the European and Mediterranean Plant 72 

Protection Organisation (EPPO) [15]. 73 

In 2007 the first resistance management strategy for pollen beetle in winter oilseed 74 

rape was recommended in Germany and is mainly based on alternations with thiacloprid, 75 

belonging to the chemical class of neonicotinoids, known to target insect nicotinic 76 

acetylcholine receptors [16]. Thiacloprid has been fully registered for pollen beetle control 77 

since 2007, and since its introduction also insecticides with different modes of action have 78 

been investigated for their potential on pollen beetle, in order to increase diversity for 79 

resistance management purposes [17,18]. The pollen beetle resistance management strategy 80 

implemented in Germany includes a well-defined application scheme based on the occurrence 81 

of pollen beetle before and during flowering, and additionally taking into account other oilseed 82 

rape pests such as weevils [19-21]. The strategy also considers as an emergency exemption 83 

the use of organophosphate insecticides such as chlorpyrifos-methyl at high infestation levels 84 

before flowering. 85 

The objectives of the current study was to develop a robust, reliable, rapid and 86 

validated method to effectively assess pollen beetle susceptibility to thiacloprid and to 87 

establish baseline data with populations collected in several European countries, which can be 88 

used in future monitoring campaigns to detect early shifts in susceptibility. Furthermore the 89 

pyrethoid resistance status of all collected populations was tested in parallel to check for 90 

cross-resistance issues. 91 

2.2 Material and Methods 92 

2.2.1 Insects 93 

In April/May 2009 and 2010 pollen beetle populations were collected in winter oilseed 94 

rape fields from different European countries, including the most important oilseed rape 95 

producing countries France, Germany, Poland and Great Britain (Fig. 21). The adult insects 96 

were packed in plastic bags with some rape buds and foliage and shipped to Bayer 97 

CropScience in Monheim, Germany. After arrival in the laboratory, beetles were stored for 98 
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24 h at 4 °C. Two hours before bioassay the insects were removed from the refrigerator and 99 

equilibrated to room temperature (20 ± 2° C). Those beetles of lower fitness remain on the 100 

bottom of the bag and are not used for the bioassays.  101 

 102 

Fig. 21 Pollen beetle sampling sites in Europe (white and black numbers mark collection 103 

sites in 2009 and 2010, respectively). 104 

2.2.2 Pyrethroid resistance monitoring bioassay 105 

All pyrethroid resistance monitoring bioassays were conducted according to 106 

instructions outlined in IRAC´s Susceptibility Method No. 11 “Pollen Beetle Susceptibility 107 

Monitoring Bioassay – Synthetic Pyrethroids” [22].  The method is based on glass vials 108 

(Zinsser Analytics, Germany) coated with defined concentrations of lambda-cyhalothrin. 109 

Beetles confined to glass vials were assessed for mortality after 24 h. The IRAC method was 110 

slightly modified in two points: (1) The assessment was done by directly scoring affected 111 

beetles in the vials rather than using the recommended filter disc assessment arena; (2) 112 

Instead of the two pyrethroid concentrations, five concentrations were used to generate dose- 113 

response curves, i.e. 0.375 µg AI cm-2 inner glass surface (500 % of common field application 114 

rate of 7.5 g ha-1), 0.075 µg cm-2 (100 %), 0.015 µg cm-2 (20 %), 0.003 µg cm-2 (4 %) and 115 

0.0006 µg cm-2 (0.8 %). For one highly sensitive population obtained from Ukraine (strain 70- 116 



Chapter 2   

    

[50] 

10) two more concentrations were added, i.e. 0.00012 and 0.000024 µg cm-2. Two of the 117 

tested concentrations (100 % and 20 % of the field rate) were used to classify the degree of 118 

pyrethroid resistance in tested populations by using an IRAC recommended rating scheme 119 

(Table 2) [22]. 120 

Table 2 IRAC pyrethroid resistance classification scheme for pollen beetles. 121 

Concentration  

(% of label rate) 
Affected beetles Classification Code 

100 % 

20 % 

100 % 

100 % 
Highly susceptible 1 

100 % 

20 % 

100 % 

< 100 % 
Susceptible 2 

100 % < 100 % to ≥ 90 % Moderately resistant 3 

100 % < 90 % to ≥ 50 % Resistant 4 

100 % < 50 % Highly Resistant 5 

 122 

2.3 Thiacloprid adult vial bioassay 123 

In order to check pollen beetle populations for thiacloprid baseline susceptibility the 124 

above-mentioned adult vial bioassay method for pyrethroids was slightly modified. Vials were 125 

coated using the commercially available formulation “Biscaya® 240OD” (240 g thiacloprid L-1 in 126 

oil dispersion), since preliminary trials revealed that technical material is not appropriate, even 127 

when applied with adjuvants (results not shown). Stock solutions were prepared by dissolving 128 

140.4 mg OD 240 formulation (containing 32.4 mg a.i. thiacloprid) in 2 mL distilled water, 129 

subsequently adjusted to 100 mL with acetone. All further dilutions were made in acetone. For 130 

coating purposes glass vials (20 ml volume, 45 cm2 internal surface) were filled with 500 µL of 131 

solution. For all bioassays five concentrations were used: 1.44 µg cm-2 internal surface area 132 

(corresponds to 200 % of the field-recommeded rate of 72 g ha-1), 0.72 µg cm-2 (100 %), 133 

0.144 µg cm-2 (20 %), 0.0288 µg cm-2 (4 %) and 0.00576 µg cm-2 (0.8 %). The vials have to 134 

rotate for a minimum of 2 h and subjection to a further evaporation phase without rotation for a 135 

minimum of 2 h (or overnight) is obligatory before capping and storing the vials. The prepared 136 

vials can be stored at room temperature (dark) for a minimum of 4 weeks without a significant 137 

loss of thiacloprid (see section 2.4.1 and 2.5.2).  138 

Some trials using an identical procedure as described above were done with blank 139 

formulation in order to check for mortality possibly caused by exceeding a maximum level of 140 

oil formulation in coated vials.  141 
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For testing purposes ten pollen beetles were placed in each vial, using three replicates 142 

per concentration and population (plus an acetone control). Capped vials are then stored 143 

upright at 20 ± 2 °C for 24 h. Prior to assessment vials are briefly shaken to differentiate alive 144 

and affected beetles more easily.  145 

2.3.1 Storage stability tests and analytics 146 

In order to investigate the storage stability of lambda-cyhalothrin and thiacloprid in 147 

coated glass vials, three replicates per concentration were analyzed for active ingredient after 148 

0, 14, 28 and 56 days. Coated glass vials were stored in the dark at both 4 °C and 20 °C to 149 

check for temperature effects. Stored vials were washed two times with 500 µL acetonitrile, 150 

and combined volumes and subjected to quantitative HPLC-MS/MS measurements. The 151 

samples were measured on an Applied Biosystems API4000 QTrap MS/MS system running in 152 

positive electrospray MRM mode with a capillary voltage of 4kV and Turbo V gas temperature 153 

of 500 °C. The HPLC-system was a Waters Acquity UPLC consisting of Binary Solvent 154 

Manager, Column Manager and Sample Manager. The samples were run on a Waters Acquity 155 

HSS T3 1.8 µm column (size: 50 x 2.1 mm) running in reverse phase gradient mode. For the 156 

determination of thiacloprid acetonitrile/water/0.1 % formic acid was used as eluent, whereas 157 

for the determination of lambda-cyhalothrin methanol/2mM NH4OAc/1 % acetic acid was used. 158 

For the quantitation the MRM transitions 253.1 > 126.0 (thiacloprid) and 467.1 > 225.1 159 

(lambda-Cyhalothrin) were monitored. The peak integrals were calibrated externally against a 160 

standard calibration curve with a correlation coefficient of r > 0.99. The limits of quantitation 161 

(S/N > 10) are 10 pg mL-1 for thiacloprid and 100 pg mL-1 for lambda-cyhalothrin. 162 

2.3.2 Data analysis 163 

The lethal concentration-values (LCs) were calculated by probit analysis using Polo 164 

Plus Software Version 1 (LeOra Software, California). All mortality figures were corrected for 165 

control mortality by using ABBOTT´S formula [23]. Further statistical analyses were performed 166 

with Graphpad Prism 5 software (GraphPad Software Inc., California). Analysis of variance 167 

(ANOVA) procedures, student t-tests and appropriate post-tests (e.g. Tukey Kramer) were 168 

performed to test for significant diffrences between strains, resistance classes, treatments and 169 

insecticides.  170 

 171 
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2.4 Results  172 

2.4.1 Validation of the adult vial test based on thiacloprid OD240 formulation 173 

The trials with oil dispersion blank formulation in glass vials revealed an upper limit of 174 

200 % of the field-recommended rate based on thiacloprid content (absent in blank 175 

formulation) not affecting pollen beetle after 24 h (Fig. 22). The high percentage of affected 176 

beetles at rates above 200 % is probably a consequence of the oil film on the internal surface 177 

area of the vials. In all cases the observed mortality is linked to pollen beetles which sticked to 178 

the internal glass vial surface, rather than symptoms of poisoning as observed with thiacloprid.  179 

 180 

Fig. 22 Effect of blank oil dispersion formulation of “Biscaya” on pollen beetles in an adult vial 181 

test after 5 h and 24 h. Data are mean values ± SEM (n=4), and different letters 182 

indicate significant differences (p < 0.05, t-test). 183 

2.4.2 Stability of insecticides in coated vials 184 

The concentration of thiacloprid in glass vials coated for resistance monitoring 185 

purposes remains stable at both 4 °C and 20 °C, and even after a storage period of 56 days 186 

no significant differences compared with directly analysed samples (0 days) were observed 187 

(p > 0.05) (Fig. 23). Although the analytical results revealed a stable and unchanged 188 

concentration of thiacloprid over a period of 56 days, we observed a somewhat lower efficacy 189 

against pollen beetle in such vials (data not shown), therefore it is suggested to store vials no 190 

longer than 28 days. 191 

The concentration of lamda-cyhalothrin also did not change significantly up to 4 weeks 192 

after storage at both 4 °C and 21 °C. However, after 8 weeks of storage at 20 °C a slight, but 193 

significant decrease in the concentration of lambda-cyhalothrin was observed (p < 0.05) (Fig. 194 

23). 195 
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 196 

Fig. 23 Stability of active ingredients in coated glass vials stored at different temperatures 197 

and analyzed after different elapsed time intervals. Data are mean values ± SD (n=3).  198 

2.4.3 Pyrethroid resistance monitoring 199 

Susceptibility to lambda-cyhalothrin of 25 European pollen beetle populations collected 200 

in each 2009 and 2010 was tested, and calculated LC50-values range from as low as 201 

0.0001 µg cm-2 (0.1 % of field rate) to 0.051 µg cm-2 (67 % of field rate), leading to resistance 202 

ratios of up-to 500-fold (Table 3). However based on extrapolated LC95-values, resistance 203 

factors even exceeded 1000-fold in some populations collected in Germany (5) and France 204 

(2). Several populations show less than 95 % mortality at 5-fold of the recommended field rate 205 

(Table 3). The samples collected in 2010 included one highly susceptible population (LC95 206 

0.00042 µg cm-2) collected in the central Ukraine, which was taken as the reference to 207 

calculate all resistance ratios given in Table 2. All dose-response bioassays performed 208 

included both concentrations (i.e. 100 % and 20 % of field dose) recommended by IRAC for 209 

resistance class determination, and all classes from 1 to 5 are present in the European 210 

populations collected, at least in 2010 (Table 3). Fifteen out of 50 tested populations (i.e. 211 

30 %) could be classified as pyrethroid susceptible. All IRAC resistance classes determined 212 

and based on two concentrations per population could be well separated by their dose- 213 

response relationship when including all tested concentrations, thus supporting the IRAC 214 

proposed classification (indicated by arrows and dotted lines given in Fig. 24). However dose- 215 

response relationships for populations assigned to classes 3 to 5 (moderately to highly 216 

resistant) are not as well separated as those belonging to classes 1 to 3 (highly susceptible to 217 

moderately resistant) (Fig. 24).  218 
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 219 

 220 

Error bars = standard error mean; F = France, D = Germany, PL = Poland, UK = United Kingdom, UA = Ukraine, 221 
CZ = Czechia, DK = Denmark, S = Sweden, FIN = Finland, A = Austria) 222 

Fig. 24 (A) Response of pollen beetle populations collected in 2010 to different 223 

concentrations of lambda-cyhalothrin and their classification to different pyrethroid 224 

resistance groups as proposed by IRAC [22]. The arrows and dotted lines mark the 225 

IRAC recommended discriminating rates. (B) Baseline susceptibility to thiacloprid of 226 

pollen beetle populations collected in 2009 and 2010. Dose response curves 227 

represent mean values of combined data ± SEM. The arrows mark our proposed 228 

discriminating rates for future monitoring initiatives. 229 
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2.4.4 Baseline susceptibility of thiacloprid 230 

Baseline susceptibility to thiacloprid was determined based on log-dose probit-mortality 231 

results of 33 and 55 field populations of pollen beetle collected in 2009 and 2010, respectively. 232 

The calculated LC50-values ranged from 0.038 µg cm-2 to 0.122 µg cm-2 and from 0.04 µg cm-2 233 

to 0.196 µg cm-2 in 2009 and 2010, respectively (Table 4). So the LC50-values for both years 234 

show a maximum variation of 5-fold between all 88 populations tested, compared to approx. 235 

500-fold determined for the pyrethroid lambda-cyhalothrin. The LC95-values ranged from 236 

0.47 µg cm-2 to 1.48 µg cm-2 and from 0.3 µg cm-2 to 2.22 µg cm-2 in 2009 and 2010, 237 

respectively (Table 4). Again the variation in response is quite low, so the method is 238 

considered to provide reliable data in future resistance monitoring campaigns. Combining all 239 

data from 2009 and 2010 revealed non-significantly differing composite LC95-values based on 240 

field rates of 134 % to 146 %, respectively (Table 4).   241 

The very low variation in pollen beetle response to thiacloprid in both years 2009 and 242 

2010 resulted in overlapping dose-response-curves indicating no shift in susceptibility from 243 

one year to the other (Fig. 24). Based on the obtained results it is suggested to use 200 %, 244 

100% and 20% of the field rate as discriminating doses in adult vial tests for future monitoring 245 

purposes (see arrows Fig. 24). The mean mortality obtained in adult vial tests for the rates 246 

200 %, 100 % and 20 % is 98.5 ± 2.9 %, 95.7 ± 7.2 % and 54.8 ± 12 %, respectively. 247 

2.4.5 Cross-resistance investigations 248 

In all populations tested in both 2009 and 2010 no trends of cross-resistance is 249 

observed between lambda-cyhalothrin and thiacloprid. With regard to the IRAC pyrethroid 250 

resistance classification, which clearly and significantly separates populations based on their 251 

allocation to different resistance classes, it is demonstrated that thiacloprid does not follow the 252 

same trend (Table 3 and Table 4). Even those populations classified as highly resistant to 253 

pyrethroids are not showing any lower susceptibility to thiacloprid, suggesting the complete 254 

lack of cross-resistance. This is also statistically validated by regression analysis revealing no 255 

correlation between LC50- and LC95-values for both compounds (p > 0.05).  256 

 257 

Table 3 Log-dose probit-mortality data for lambda-cyhalothrin against pollen beetle 258 

populations collected in 2009 and 2010 (adult vial test). 259 

 Please refer to the following two pages.  260 

 261 
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Strain Country P-RC
a
 

LC50 µg cm
-2

  

(Field rate %) 

95 % CL   

µg cm
-2

 

LC95 µg cm
-2

  

(Field rate %) 

95 % CL   

µg cm
-2

 
Slope (±SE) RR LC50 RR LC95 

67-09 Austria 1 0.001 (1.4) 0.0008-0.0014 0.005 (7.2) 0.004-0.011 2.27 (±0.2) 10 13 

84-09 Austria 1 0.0008 (1.1) 0.0006-0.0012 0.004 (5.6) 0.003-0.009 2.36 (±0.21) 8 10 

109-09 Germany 1 0.0008 (1) 0.0006-0.0009 0.003 (4.3) 0.003-0.005 1.53 (±0.1) 8 8 

102-09 Germany 2 0.0011 (1.5) 0.0004-0.0028 0.013 (17.4) 0.004-0.105 1.46 (±0.11) 11 33 

68-09
b
 Austria 2 0.003 (3.9) 0.0015-0.0057 0.02 (26.3) 0.009-0.140 1.99 (±0.16) 30 50 

87-09 Austria 2 0.0008 (1.1) 0.0004-0.0018 0.006 (8.1) 0.003-0.06 1.93 (±0.16) 8 15 

90-09 France 2 0.0011 (1.5) 0.0007-0.0017 0.007 (9.1) 0.004-0.018 2.10 (±0.17) 11 18 

108-09 G.  Britain 2 0.0013 (1.7) 0.0009-0.0017 0.009 (12) 0.006-0.018 1.94 (±0.16) 13 23 

56-09 Germany 3 0.005 (6.7) 0.0017-0.0141 0.177 (236) 0.046-4.109 1.03 (±0.07) 50 443 

61-09 Germany 3 0.009 (12.1) 0.0058-0.0147 0.186 (248.5) 0.089-0.580 1.25 (±0.09) 90 465 

66-09 Austria 3 0.0048 (6.4) 0.0053-0.0078 0.192 (256) 0.011-0.066 2.72 (±0.24) 48 480 

69-09
b
 Austria 3 0.0067 (8.9) 0.0053-0.0084 0.075 (99.9) 0.052-0.119 1.57 (±0.11) 67 188 

70-09
b
 Austria 3 0.0061 (8.1) 0.0048-0.0078 0.104 (138.5) 0.069-0.173 1.33 (±0.09) 61 260 

73-09 Austria 3 0.0053 (7.1) 0.0031-0.0093 0.108 (144.7) 0.048-0.409 1.26 (±0.09) 53 270 

86-09 Austria 3 0.0037 (4.9) 0.0023-0.0059 0.074 (98.3) 0.037-0.215 1.09 (±0.08) 37 185 

88-09 Germany 3 0.0084 (11.2) 0.0047-0.0153 0.189 (251.9) 0.079-0.794 1.22 (±0.08) 84 473 

107-09 Germany 3 0.0087 (11.6) 0.0032-0.0251 0.147 (196.2) 0.043-3.365 1.34 (±0.09) 87 368 

120-09 Germany 3 0.0056 (7.5) 0.0027-0.0114 0.144 (191.9) 0.053-0.903 1.17 (±0.08) 56 360 

35-09 Germany 4 0.0088 (11.7) 0.002-0.0419 0.559 (745.2) 0.086-176.01 0.92 (±0.06) 88 1398 

30-09 France 4 0.0149 (19.8) 0.0056-0.0441 0.254 (338.7) 0.073-6.15 1.34 (±0.09) 149 635 

60-09 Germany 4 0.0104 (13.8) 0.0022-0.0566 0.355 (473.4) 0.063-181.13 1.07 (±0.07) 104 888 

62-09 Germany 4 0.0123 (16.4) 0.0058-0.0274 0.29 (387.3) 0.097-2.43 1.2 (±0.081) 123 725 

85-09 Germany 4 0.0167 (22.3) 0.0057-0.0586 0.562 (749.4) 0.125-28.46 1.08 (±0.08) 167 1405 

100-09 Germany 4 0.0181 (24.1) 0.0144-0.0229 0.227 (302.6) 0.16-0.367 1.5 (±0.10) 181 568 

121-09 Germany 4 0.0173 (23) 0.0077-0.042 0.454 (604.9) 0.138-5.482 1.16 (±0.08) 173 1135 

70-10 Ukraine 1 0.0001 (0.1) 0.0001-0.0001 0.0004 (0.5) 0.0003-0.0008 2.93 (±0.29) 1 1 



 

[57] 

2-10 France 2 0.0035 (4.7) 0.0017-0.0073 0.062 (83.3) 0.024-0.393 1.31 (±0.09) 35 155 

4-10 France 2 0.0053 (7.1) 0.002-0.0139 0.092 (122.5) 0.029-1.193 1.34 (±0.09) 53 230 

3-10 France 2 0.0034 (4.5) 0.0023-0.0051 0.032 (42.4) 0.018-0.079 1.69 (±0.13) 34 80 

125-10 Finland 2 0.0012 (1.6) 0.0004-0.0028 0.019 (24.9) 0.006-0.253 1.36 (±0.12) 12 48 

128-10 Finland 2 0.0012 (1.6) 0.0004-0.0028 0.02 (26.1) 0.007-0.237 1.36 (±0.1) 12 50 

127-10 Finland 2 0.0008 (1.1) 0.0004-0.0014 0.006 (7.6) 0.003-0.024 1.92 (±0.16) 8 15 

5-10 France 3 0.0047 (6.2) 0.0032-0.0066 0.064 (85.4) 0.037-0.139 1.4 (±0.1) 47 160 

109-10 Denmark 3 0.017 (22.7) 0.0095-0.0294 0.135 (180.3) 0.068-0.458 1.83 (±0.12) 170 338 

119-10 Sweden 3 0.016 (21.3) 0.0104-0.0246 0.114 (151.5) 0.064-0.297 1.9 (±0.14) 160 285 

107-10 Czechia 3 0.0037 (5) 0.0023-0.0061 0.053 (70.5) 0.026-0.158 1.43 (±0.1) 37 133 

118-10 Sweden 3 0.0281 (37.5) 0.0195-0.0401 0.265 (353.2) 0.161-0.539 1.69 (±0.11) 281 663 

120-10 Sweden 3 0.0162 (21.6) 0.0119-0.0219 0.121 (161.7) 0.078-0.226 1.88 (±0.14) 162 303 

7-10 France 4 0.0177 (23.6) 0.0073-0.0407 0.517 (689.6) 0.169-4.487 1.12 (±0.07) 177 1293 

32-10 Germany 4 0.0284 (37.8) 0.0125-0.063 0.58 (773) 0.204-4.489 1.26 (±0.11) 284 1450 

96-10 Poland 4 0.0231 (30.8) 0.0088-0.0575 0.237 (316) 0.086-2.491 1.63 (±0.13) 231 593 

98-10 Poland 4 0.021 (28.1) 0.0104-0.0414 0.214 (285) 0.093-1.055 1.63 (±0.11) 210 535 

8-10 France 4 0.0155 (20.6) 0.0049-0.045 0.896 (1194.2) 0.204-248.2 0.93 (±0.06) 155 2240 

39-10 Germany 4 0.0046 (6.1) 0.0007-0.0209 0.1 (133.3) 0.022-1.842 1.23 (±0.08) 46 250 

85-10 Poland 4 0.0299 (39.9) 0.0251-0.0355 0.123 (164) 0.091-0.173 1.96 (±0.09) 299 308 

97-10 Poland 4 0.0212 (28.2) 0.0064-0.0669 0.152 (203.2) 0.053-5.225 1.91 (±0.13) 212 380 

100-10 Poland 4 0.0148 (19.8) 0.0072-0.0292 0.245 (326.8) 0.1-1.261 1.35 (±0.09) 148 613 

106-10 Czechia 4 0.0369 (49.2) 0.0188-0.0694 0.232 (309.3) 0.111-1.059 2.04 (±0.14) 369 580 

68-10 Germany 5 0.0383 (51.1) 0.0131-0.1088 0.578 (770) 0.18-12.086 1.3 (±0.16) 383 1445 

82-10 Germany 5 0.0506 (67.4) 0.0255-0.0938 0.315 (420) 0.152-1.493 1.99 (±0.16) 506 788 

Composite 2009   0.0045 (6) 0.0026-0.0075 0.113 (150.1) 0.053-0.356 1.17 (±0.075)   

Composite 2010    0.0098 (13.1) 0.0063-0.0153 0.237 (315.8) 0.119-0.639 1.19 (±0.08)   
a 

P-RC = pyrethroid resistance index after IRAC susceptibility method No. 11; 
b 

RR = resistance ratio based on strain 70-10; 
c 
Including ≥ 20 % M. viridescens, in all others ≤ 5 % 
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Table 4 Log-dose probit-mortality data for thiacloprid against pollen beetle populations collected in 2009 and 2010 (adult vial test). 

Strain Country P-RC
a
 

LC50 µg cm
-2

  

(Field rate %) 

95 % CL      

µg cm
-2

 

LC95-µg cm
-2 

(Field rate %) 

95 % CL  

µg/cm
-2

 
Slope (±SE) RR LC50 RR LC95 

67-09 Austria 1 0.05 (7) 0.02-0.1 0.92 (127.8) 0.38-4.39 1.3 (±0.08) 1 2 

84-09 Austria 1 0.05 (6.9) 0.03-0.09 0.73 (101.5) 0.34-1.91 1.41 (±0.09) 1 2 

5-09 France 2 0.07 (9.2) 0.05-0.09 0.59 (81.5) 0.36-1.17 1.74 (±0.13) 2 1 

102-09 Germany 2 0.09 (12) 0.04-0.17 0.83 (115.5) 0.36-4.28 1.67 (±0.11) 2 2 

68-09
b
 Austria 2 0.04 (5.5) 0.02-0.07 0.51 (70.9) 0.24-1.81 1.48 (±0.1) 1 1 

87-09 Austria 2 0.07 (10.3) 0.04-0.14 0.88 (122.5) 0.4-3.57 1.53 (±0.1) 2 2 

98-09 Germany 2 0.09 (12.3) 0.03-0.25 1.19 (165.3) 0.38-20.65 1.46 (±0.9) 2 3 

89-09 France 2 0.04 (5.6) 0.02-0.07 0.51 (70.1) 0.26-1.73 1.7 (±0.13) 1 1 

108-09 G. Britain 3 0.1 (13.8) 0.05-0.19 1.1 (152.5) 0.49-4.72 1.58 (±0.1) 3 3 

13-09 Germany 3 0.04 (5.3) 0.02-0.07 0.47 (65.8) 0.22-1.66 1.51 (±0.1) 1 1 

56-09 Germany 3 0.08 (11.1) 0.04-0.14 0.66 (91.6) 0.32-2.46 1.79 (±0.12) 2 2 

61-09 Austria 3 0.06 (8.3) 0.04-0.1 0.71 (99.2) 0.36-2.12 1.53 (±0.1) 2 2 

66-09 Austria 3 0.06 (7.6) 0.03-0.1 0.87 (121.2) 0.4-3.68 1.37 (±0.08) 2 2 

69-09
b
 Austria 3 0.06 (8.7) 0.03-0.13 0.86 (118.9) 0.34-4.99 1.45 (±0.09) 2 2 

70-09
b
 Austria 3 0.04 (6) 0.02-0.09 0.67 (92.5) 0.25-4.51 1.38 (±0.09) 1 2 

73-09 France 3 0.05 (7.1) 0.02-0.11 1.01 (140.1) 0.37-6.74 1.27 (±0.08) 1 2 

75-09 Austria 3 0.09 (11.9) 0.05-0.13 0.87 (120.8) 0.47-2.27 1.63 (±0.11) 2 2 

86-09 Germany 3 0.09 (12.7) 0.05-0.16 0.68 (93.7) 0.34-2.3 1.9 (±0.13) 2 2 

88-09 Germany 3 0.08 (11.3) 0.02-0.22 1.23 (170.8) 0.4-17.17 1.39 (±0.09) 2 3 

92-09 Germany 3 0.07 (10.2) 0.04-0.12 0.98 (135.5) 0.48-3.05 1.46 (±0.09) 2 2 

93-09 Germany 3 0.05 (6.9) 0.03-0.09 0.76 (105.9) 0.33-3.16 1.39 (±0.09) 1 2 

107-09 Germany 3 0.10 (14.5) 0.06-0.17 0.85 (117.8) 0.44-2.62 1.81 (±0.12) 3 2 

120-09 France 4 0.1 (13.9) 0.04-0.23 1.26 (175.6) 0.47-10.47 1.49 (±0.09) 3 3 

3-09 France 4 0.10 (14.2) 0.06-0.18 1.1 (152.2) 0.53-3.78 1.59 (±0.1) 3 3 



 

[59] 

4-09 France 4 0.08 (12.1) 0.04-0.17 1.01 (140.9) 0.43-5.14 1.54 (±0.1) 2 2 

9-09 Germany 4 0.07 (10) 0.02-0.19 1.22 (169.1) 0.38-18.11 1.34 (±0.08) 2 3 

11-09 Germany 4 0.12 (16.9) 0.05-0.3 1.01 (139.6) 0.39-10.51 1.62 (±0.1) 3 2 

12-09 France 4 0.05 (7.3) 0.03-0.1 0.68 (95) 0.28-3.61 1.47 (±0.09) 1 2 

30-09 Germany 4 0.07 (9.3) 0.04-0.12 0.84 (116.5) 0.39-3.05 1.5 (±0.1) 2 2 

35-09 Germany 4 0.12 (16.1) 0.05-0.25 1.49 (206.1) 0.59-9.44 1.49 (±0.09) 3 3 

62-09 Germany 4 0.05 (6.4) 0.02-0.09 0.76 (105.7) 0.31-3.98 1.35 (±0.08) 1 2 

85-09 Germany 4 0.08 (11.1) 0.06-0.11 0.58 (74.7) 0.35-0.99 1.98 (±0.01) 2 1 

100-09 Germany 4 0.11 (15.3) 0.05-0.24 1.02 (141.2) 0.41-7.32 1.71 (±0.11) 3 2 

70-10 Ukraine 1 0.12 (16.4) 0.1-0.14 1.17 (162.8) 0.86-1.7 1.65 (±0.11) 3 3 

127-10 Finland 2 0.04 (6) 0.04-0.05 0.57 (79) 0.42-0.71 1.7 (±0.13) 1 1 

125-10 Finland 2 0.07 (10.1) 0.04-0.12 0.71 (98.7) 0.41-1.43 1.56 (±0.09) 2 2 

128-10 Finland 2 0.11 (14.8) 0.06-0.15 1.28 (178) 0.7-3.26 1.78 (±0.14) 3 3 

2-10 France 2 0.11 (15.5) 0.07-0.18 1.61 (223.3) 0.87-4.05 1.42 (±0.09) 3 4 

4-10 France 2 0.05 (7.3) 0.03-0.1 0.45 (62.5) 0.2-2.31 1.77 (±0.12) 1 1 

25-10 France 2 0.06 (8.6) 0.04-0.1 1 (138.6) 0.48-3.08 1.36 (±0.08) 2 2 

3-10 France 2 0.11 (15) 0.05-0.22 1.04 (144.2) 0.45-5.27 1.67 (±0.11) 3 2 

15-10 France 2 0.06 (8.8) 0.04-0.11 0.65 (90.5) 0.31-2.41 1.63 (±0.11) 2 2 

24-10 France 2 0.06 (8.6) 0.05-0.08 0.76 (105.1) 0.49-1.34 1.51 (±0.1) 2 2 

26-10 France 2 0.12 (16.2) 0.08-0.16 1 (138.7) 0.62-1.94 1.76 (±0.12) 3 2 

107-10 Czechia 3 0.13 (17.3) 0.07-0.2 1.74 (242.1) 0.9-4.83 1.43 (±0.09) 3 4 

109-10 Denmark 3 0.06 (7.9) 0.05-0.07 0.59 (81.3) 0.42-0.87 1.62 (±0.11) 2 1 

12-10 France 3 0.06 (8.4) 0.03-0.13 0.95 (131.5) 0.36-6 1.38 (±0.09) 2 2 

14-10 France 3 0.09 (12.9) 0.04-0.2 1.02 (142.1) 0.41-6.71 1.58 (±0.1) 2 2 

5-10 France 3 0.04 (5.3) 0.02-0.07 0.43 (60.1) 0.23-1.8 1.48 (±0.1) 1 1 

13-10 France 3 0.10 (14.4) 0.07-0.15 0.97 (134) 0.56-2.2 1.7 (±0.11) 3 2 

19-10 France 3 0.05 (6.3) 0.04-0.06 0.45 (62.3) 0.26-0.55 1.82 (±0.13) 1 1 

          



 

 

[60] 

Table 4 continued 

Strain Country P-RC
a
 

LC50-µg cm
-2

  

(Field rate %) 

95 % CL      

µg cm
-2

 

LC95-µg cm
-2 

(Field rate %) 

95 % CL  

µg cm
-2

 
Slope (±SE) RR LC50 RR LC95 

23-10 Germany 3 0.10 (14.2) 0.05-0.2 1.29 (178.8) 0.54-6.54 1.5 (±0.09) 3 3 

38-10 Germany 3 0.08 (10.5) 0.04-0.15 0.68 (93.9) 0.29-3.8 1.73 (±0.12) 2 2 

40-10 France 3 0.07 (9.4) 0.05-0.09 0.47 (65.8) 0.3-0.92 1.95 (±0.14) 2 1 

46-10 Germany 3 0.12 (16) 0.07-0.18 1.67 (231.3) 0.87-4.48 1.42 (±0.09) 3 4 

123-10 Germany 3 0.05 (6.8) 0.04-0.06 0.52 (72) 0.35-0.73 1.8 (±0.14) 1 1 

119-10 Sweden 3 0.09 (12.4) 0.06-0.13 0.65 (90.7) 0.38-1.54 1.9 (±0.14) 2 2 

118-10 Sweden 3 0.07 (10.3) 0.03-0.16 0.82 (114) 0.32-5.86 1.57 (±0.1) 2 2 

120-10 Sweden 3 0.09 (12.7) 0.05-0.16 0.68 (93.7) 0.34-2.3 1.89 (±0.13) 2 2 

106-10 Czechia 4 0.14 (19.3) 0.09-0.21 1.29 (179) 0.73-3.12 1.7 (±0.11) 4 3 

8-10 France 4 0.05 (7.5) 0.02-0.12 1.77 (245.7) 0.61-12.14 1.09 (±0.07) 1 4 

10-10 France 4 0.09 (12.5) 0.06-0.13 1.45 (200.9) 0.85-2.97 1.37 (±0.08) 2 3 

16-10 France 4 0.09 (12.7) 0.05-0.16 1.11 (154) 0.52-4.06 1.52 (±0.1) 2 3 

18-10 France 4 0.07 (10.1) 0.04-0.12 0.93 (128.9) 0.49-2.47 1.49 (±0.09) 2 2 

20-10 France 4 0.10 (13.7) 0.06-0.15 1.06 (147.6) 0.58-2.65 1.59 (±0.01) 3 2 

7-10 France 4 0.07 (9.8) 0.04-0.12 0.95 (132.2) 0.46-3.14 1.46 (±0.09) 2 2 

9-10 France 4 0.08 (11.1) 0.04-0.15 1.49 (206.8) 0.65-5.91 1.29 (±0.08) 2 3 

11-10 France 4 0.05 (6.7) 0.02-0.09 1.11 (154.5) 0.46-4.79 1.21 (±0.07) 1 3 

17-10 France 4 0.08 (10.8) 0.04-0.14 0.67 (93.5) 0.33-2.45 1.75 (±0.12) 2 2 

21-10 France 4 0.12 (16.7) 0.07-0.2 0.96 (133.3) 0.49-3.02 0.12 (±0.1) 3 2 

6-10 Germany 4 0.10 (14.4) 0.06-0.16 1.27 (176.5) 0.69-3.19 1.51 (±0.1) 3 3 

32-10 Germany 4 0.18 (24.9) 0.12-0.27 2.22 (308.6) 1.26-5.12 1.55 (±0.1) 5 5 

39-10 Germany 4 0.08 (10.9) 0.05-0.12 0.60 (83.7) 0.33-1.69 1.86 (±0.13) 2 1 

45-10 Germany 4 0.06 (8.5) 0.03-0.14 0.94 (130.9) 0.36-6.32 1.39 (±0.09) 2 2 

50-10 Germany 4 0.2 (27.3) 0.16-0.24 1.35 (186.9) 1.03-1.87 1.97 (±0.14) 5 3 
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53-10 Germany 4 0.17 (23.7) 0.14-0.21 1.16 (161.2) 0.89-1.61 1.98 (±0.14) 4 3 

83-10 Poland 4 0.11 (15.2) 0.06-0.21 0.94 (130) 0.43-4.33 1.77 (±0.12) 3 2 

49-10 Germany 4 0.12 (17) 0.06-0.24 1.27 (176) 0.55-6.2 1.62 (±0.1) 3 3 

51-10 Germany 4 0.13 (17.6) 0.07-0.22 1.84 (255.8) 0.79-5.32 1.49 (±0.1) 3 4 

65-10 G. Britain 4 0.18 (24.3) 0.13-0.23 0.86 (119.7) 0.6-1.43 2.38 (±0.18) 5 2 

57-10 G. Britain 4 0.15 (20.8) 0.12-0.19 2.04 (283.4) 1.47-3.05 1.45 (±0.09) 4 5 

96-10 Poland 4 0.09 (11.8) 0.07-0.1 0.63 (87.4) 0.47-0.91 1.89 (±0.13) 2 1 

98-10 Poland 4 0.09 (12.8) 0.08-0.11 0.52 (72) 0.39-0.74 2.2 (±0.17) 2 1 

85-10 Poland 4 0.10 (14.5) 0.05-0.21 0.89 (124.1) 0.39-4.58 1.76 (±0.12) 3 2 

97-10 Poland 4 0.11 (15.3) 0.07-0.16 1.28 (178) 0.74-2.86 1.55 (±0.1) 3 3 

100-10 Poland 4 0.08 (11.2) 0.03-0.18 1.14 (157.7) 0.43-8.55 1.43 (±0.09) 2 3 

68-10 Germany 5 0.07 (9.4) 0.05-0.1 0.66 (91.2) 0.39-1.38 1.67 (±0.12) 2 2 

82-10 Germany 5 0.11 (15.2) 0.06-0.21 0.94 (130) 0.43-4.33 1.77 (±0.12) 3 2 

Composite 2009  0.07 (9.8) 0.04-0.13 0.96 (133.7) 0.44-3.71 1.45 (±0.09)   

Composite 2010  0.09 (12.3) 0.06-0.12 1.05 (145.6) 0.67-1.91 1.53 (±0.1)   
a 

P-RC = pyrethroid resistance index after IRAC susceptibility method No. 11; 
b 

RR = resistance ratio based on strain 5-10; 
c 
Including ≥ 20 % M. viridescens, in all others ≤ 5 %  

 

Table 5 Relationships between field-recommended rates and log-dose probit-mortality data for different insecticides against pyrethroid 

susceptible pollen beetles (strain 84-09; adult vial test).  

Compound 
100 % Field rate  

(g AI ha
-1

) 

LC50 – g AI ha
-1

  

(Field rate %) 
95 % CL

a
  

Quotient 

100% Field rate  

/LC50 

LC95 – g AI ha
-1

  

(Field rate %) 
95 % CL 

Quotient 

100% Field rate  

/ LC95 

 

Thiacloprid 72 4.9 (6.8) 2.98-9.03 15 73.1 (101.5) 34.1-191.1 0.98  

lambda-cyhalothrin 7.5 0.08 (1.1) 0.06-0.12 94 0.41 (5.5) 0.26-0.92 18  

Chlorpyrifos-methyl
b
 337.5 0.41 (0.1) 0.18-0.92 823 6.26 (1.9) 2.23-58.78 54  

a  
95% Confidence limits;

 b
 Data obtained by conducting an adult vial bioassay according to IRAC method No.11 
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2.5 Discussion 

2.5.1 Pyrethroid resistance monitoring 

Our study confirmed earlier data of widespread pyrethroid resistance in pollen beetles 

collected in winter oilseed rape in many European countries in 2009 and 2010. The data 

collected are based on an IRAC recommended adult vial bioassay employing lambda-

cyhalothrin as a reference pyrethroid [22]. The vials are usually coated with lambda-

cyhalothrin and either stored in the laboratory until use, or shipped to other laboratories or field 

stations, and as our studies have shown they are stable for at least 8 weeks when stored at 

4°C in the dark, suggesting a single production cycle before the season is sufficient. The use 

of a standard pyrethroid as suggested by IRAC [22] was shown to be justified since pollen 

beetle populations collected all-over Europe (n = 42) were shown to be cross-resistant to other 

pyrethroids such as deltamethrin, alpha-cypermethrin, bifenthrin and etofenprox in an earlier 

study [3]. However the extent of cross-resistance seems to differ between pyrethroids, with a 

tendency of some compounds being less, but still significantly affected, e.g. bifenthrin [3].  The 

high resistance factors reported resulted from a reference population taken from Ukraine 

(strain 70-10, Table 3), and displaying the highest susceptibility to pyrethroids detected in 

2009 and 2010. The population turned out to be 5-8 fold more susceptible than those usually 

assigned to IRAC pyrethroid susceptibility class 1, therefore we subjected a number of 

individuals to a more detailed morphometric species determination based on leg morphology. 

The population indeed consisted to 100 % of M. aeneus and additionally it shows no higher 

susceptibility to thiacloprid when compared to the other populations (Table 4). The majority of 

the tested populations, i.e. 70 % turned out to be moderately to highly resistant to pyrethroids 

according to the IRAC rating scheme. Close to 90 % of the randomly collected German 

populations (n = 17) exhibited pyrethroid resistance, and similar values have been reported 

earlier [3]. Reliable control of pollen beetle by pyrethroids is only possible in those regions 

where resistance monitoring data before application confirm susceptibility, i.e. LC95-values not 

greater than approx. 10 % of the recommended field rate as shown in our investigations 

(Table 3). 

Apart from the lack of any resistance management considerations in oilseed rape, 

there are three main reasons among others which most likely contribute to the rapid spread of 

pollen beetle pyrethroid resistance in many European countries: (1) The dramatic expansion 

of winter oilseed rape cultivation in many countries, e.g. in Germany the cultivated winter 

oilseed rape acreage was doubled within the last 15 years and thus providing unlimited 

breeding sites and food sources for pollen beetles [24]. (2) Low treatment thresholds result in 

an increased number of applications in some countries (the compensation ability of winter 
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oilseed rape is often neglected), e.g. the threshold in Poland is reported to be 1-3 beetles per 

plant (BBCH 50-52) compared to 15 beetles per plant in the UK [4]; (3) A politically and 

environmentally driven ban of older classes of insecticides addressing other biochemical 

modes of action such as organophosphates, without having available appropriate alternatives 

other than pyrethroids [3,6,17]. 

The evolution of insecticide resistance in pollen beetles is likely to be a rather old story 

considering reports which date back to 1921, and claim disappointing performance of 

chemicals in pollen beetle control in Germany [25]. These early reports triggered the re-

invention of other methods to control pollen beetle mainly based on mechanical trapping 

devices [26]. However such methods also provided no means of control when high infestation 

levels were monitored, thus resulting in repeated spraying and dusting of natural insecticides 

such as nicotine, rotenone and also pyrethrum, the forerunner of the synthetic pyrethroids 

[27]. Later on DDT and organophosphates were introduced and provided good control of 

pollen beetles [28]. DDT resistance development was first reported in Polish pollen beetle 

populations in 1967, and confirmed in trials in 1969 [28]. DDT as well as pyrethroids acts on 

voltage-gated sodium channels and it would have been interesting to know whether it selected 

for kdr (knock-down resistance, a well-known target site mutation) [30] in pollen beetles these 

days, since resistance ratios reported were quite high, i.e. exceeding factors of 1000-fold [29]. 

2.5.2 Thiacloprid method validation and baseline-susceptibility 

With the introduction of the neonicotinoid insecticide thiacloprid in 2006 the first new 

mode of action since decades was introduced for pollen beetle control in Germany. In the first 

year of its introduction thiacloprid just received an emergency registration in Germany and the 

use was limited to 100,000 ha, but since 2007 it has a full registration also in other European 

countries. The compound is well known and considered to be safe to honey bees, so it can be 

applied during flowering [31-32]. 

The adult vial test we developed is based on glass vials coated with the commercial 

oil-dispersion formulation of thiacloprid, Biscaya® OD240. The bioassay system required 

considerable fine-tuning and lots of experiments until validation due to the fact an OD 

formulation is used for coating. The highest possible rate which could be applied to the inner 

glass vial surface equals 200 % of the field recommended rate (1.44 µg cm-2). Higher 

concentrations resulted in physical trapping of beetles on the oily surface and unpractically 

long evaporation times. The shortest estimated evaporation time producing reliable and 

repeatable results is at least 4 hours (incl. 2 hours rotation time). Shorter intervals result in 

high beetle mortality as a consequence of combination of physical and biological action, even 

at rather low doses definitely representing unrealisitic exposure scenarios. The mean 
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thiacloprid concentration resulting in 50 % pollen beetle mortality is around 0.080 µg cm-2 

when combining composite data of 2009 and 2010 (Table 4). This is in strong contrast to very 

low LC50-values of approx. 0.0001 µg cm-2 recently published for thiacloprid using a similar 

methodology [33]. Such a low value is difficult to explain considering thiacloprids much lower 

intrinsic toxicity compared to a pyrethroid insecticide (c. 60-fold), therefore we think its likely 

that evaporation times were too short (no checks with blank formulation were included), 

although the method itself is considered very practical and similar to ours. Furthermore the 

analytical results presented here suggest a good stability of the active ingredient in coated 

glass-vials, so their production in advance of a resistance monitoring campaign is not being 

considered problematic. 

The very homogenous efficacy results we obtained with thiacloprid against pollen 

beetle populations collected in 2009 and 2010 revealed no shifting yet, and importantly no 

cross-resistance to pyrethroids. However, possibly not surprising considering the fact that so 

far in none of the neonicotinoid-targeted agricultural pest insects has cross-resistance to 

pyrethroids been described [31]. Neonicotinoid insecticides such as thiacloprid and 

acetamiprid are intrinsically less active than lambda-cyhalothrin and chlorpyrifos-methyl, which 

is reflected by the fact that recommended rates are not consistently providing a 100 % 

mortality of pollen beetles. The variation in response to thiacloprid we detected in pollen 

beetles is less than 5-fold, and comparable to baseline studies conducted on other 

invertebrate pest species such as aphids and whiteflies [31,32]. Resistance monitoring studies 

with acetamiprid in 2004 in three pollen beetle populations collected in Poland suggested low 

resistance to neonicotinoid insecticides, and were based on the fact that mortality figures at 

recommended field rates were below 100 % [34]. With reference to the lower intrinsic activity 

mentioned above and the lack of any presented baseline data, it is rather unlikely that the 

investigated Polish populations indeed show resistance. This is confirmed by another study by 

the same authors showing only slight variation in LC50-values with mostly overlapping 95 % 

fiducial limits for acetamiprid in pollen beetle populations, again collected in Poland, but in 

2005-2007 [11]. However we definitely support the view of WEGOREK et al. [11] to continue to 

monitor for the development of resistance against different classes of insecticides in pollen 

beetles, particularly neonicotinoids. Neonicotinoids such as thiacloprid and acetamiprid show 

a much lower intrinsic activity and are used at relatively low rates when compared to the 

organophosphate chlorpyrifos-methyl (Table 5). Once resistance occurs these facts are likely 

to affect their field performance much faster than pyrethroids or organophosphates, i.e. based 

on LC95-values even resistance ratios as low as 5- to 10-fold are suggested to convert into 

neonicotinoid field failure against pollen beetle, whereas such low resistance ratios would 

never affect the efficacy of lambda-cyhalothrin at recommended rates. Considering the data 
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presented in this study we presume that a 10-fold and 50-fold resistance to a pyrethroid such 

as lambda-cyhalothrin and an organophosphate such as chlorpyrifos-methyl, respectively is 

unlikely to be of practical significance at recommended rates under field conditions (Table 5). 

Therefore it is strongly suggested to use thiacloprid in alternation with other pollen beetle 

insecticides of different modes of action in order to sustain its efficacy as a valuable tool in 

resistance management strategies. The fragile use-rate/efficacy relationship suggests to 

rather annually than bi-annually monitoring for neonicotinoid susceptibility in pollen beetle 

populations, particularly in those regions where this class of chemistry is heavily used due to 

the lack of appropriate alternative chemical means. 

2.6 Conclusion 

Pyrethroid resistance in Meligethes ssp. is at moderate to high levels in many 

European countries, therefore resistance management strategies based on mode-of-action 

rotation need to be implemented and have already been recommended [19-21,35]. In order to 

implement such a strategy several chemical options not affected by resistance or representing 

new modes of action are necessary. Taken together, and summarizing all results presented, it 

can be concluded that thiacloprid among other new chemical classes of insecticides is a 

valuable option for future pollen beetle control without any signs of resistance yet detected. 

Thiacloprid belongs to the chemical class of neonicotinoid insecticides, which are only 

systematically used for pollen beetle control since a few years. Neonicotinoid insecticides 

such as thiacloprid form an essential part in resistance management strategies [21,35]. 

Therefore their performance should be carefully monitored in the future in order to detect early 

shifts in pollen beetle susceptibility. For this purpose the adult vial bioassay based on a 

thiacloprid OD240 formulation (Biscaya®) was developed and validated using pollen beetle 

populations collected in several European countries in 2009 and 2010. The variation in 

response to thiacloprid of all populations tested is less than 5-fold, and not related to 

pyrethroid resistance, suggesting full thiacloprid baseline susceptibility of all populations 

tested by the proposed monitoring method. The method was also considered by IRAC for 

inclusion in their methods list [36]. For future neonicotinoid resistance monitoring initiatives 

with thiacloprid we are suggesting to employ 200 % (1.44 µg cm-2), 100 % (0.72 µg cm-2) and 

20 % (0.144 µg cm-2) of the field-recommended rate as diagnostic doses providing a mean 

mortality of 98.5 ± 2.9 %, 95.7 ± 7.2 % and 54.8 ± 12 %, respectively. It has been taken into 

account that thiacloprid is intrinsically less active than pyrethroids and organophosphates, so 

the mean mortalities mentioned above indeed represent the real baseline activity, even though 

they are not consistently providing 100 % mortality.  
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Abstract 

Pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae) is a major pest on several 

million hectares in European winter oilseed rape cultivation. Synthetic pyrethroids have been 

successfully used for many years to keep them under economic damage thresholds. Recently 

wide-spread resistance development to pyrethroids in pollen beetle populations was described 

in many European countries, including Germany, France, Poland, Denmark and others. 

Resistance monitoring is conducted by incubating beetles for 24 h in glass vials coated with 

different concentrations of lambda-cyhalothrin. Using such an assay format we were able to 

show cross-resistance to other pyrethroids, such as deltamethrin, cypermethrin, and to a 

somewhat lower extent bifenthrin, etofenprox and tau-fluvalinate. Here we also investigated in 

more detail in 27 different populations the biochemical mechanism of pyrethroid resistance. 

Synergism experiments revealed a high synergistic potential for piperonyl butoxide in vivo, 

whereas other compounds such as S,S,S-tributylphosphorotrithioate and diethylmaleimide 

failed to suppress pyrethroid resistance. Incubating microsomal fractions of pollen beetle with 

deltamethrin and subsequent LC-MS/MS analysis revealed 4-OH-deltamethrin as the major 

metabolite. Metabolite formation in vitro and pyrethroid resistance in vivo is correlated and 

inhibition trials with piperonyl butoxide, tebuconazole and aminobenzotriazole suggest the 

http://www.sciencedirect.com/science/article/pii/S0048357511000757
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involvement of cytochrome P450s. Furthermore we were able to show cross-resistance to tau-

fluvalinate which is supported by the competitive inhibition of 4-OH-deltamethrin formation by 

increasing concentrations of tau-fluvalinate in microsomal hydroxylation assays. Although we 

provided clear experimental evidence for an oxidative mechanism of resistance in numerous 

populations, other mechanisms might be involved based on the data discussed. 

3.1 Introduction 

The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is one of the major 

pests in European oilseed rape and known to be quite destructive once infestation thresholds 

are exceeded and no chemical control measures are taken [1]. In the past, the control of 

pollen beetles in Europe was mainly based on pyrethroid insecticides [2]. As a consequence 

of the limited availability of insecticides of other chemical classes with different modes of 

action, the selection pressure on pyrethroid insecticides was enormous [2-5]. 

Pyrethroid resistance in pollen beetles was first reported in 1999 in the Champagne 

region in North-Eastern France [4]. Based on the evidence of reduced pyrethroid susceptibility 

in pollen beetles in France, resistance monitoring activities were initiated in many other 

European countries. Resistance to pyrethroids was discovered in 2000 in Switzerland [6] and 

in Sweden [7], in 2001 and 2003 in Denmark [3,8], in 2002 in Germany [2,4,5], in 2003 in 

Finland [9] and in 2006 in Poland as well [10]. A few countries in Europe seemed to be less 

affected by pyrethroid resistance development until recently, however in 2007 the first 

resistant populations were also discovered in the United Kingdom and Austria [11]. A pollen 

beetle pyrethroid resistance monitoring carried out by the Insecticide Resistance Action 

Committee (IRAC) confirmed that pyrethroid resistance is widespread in Europe, particularly in 

France, Germany and Poland [12]. The first coordinated resistance monitoring project was 

organized by IRAC and carried out in 2007. Based on the monitoring results of 2007, and 

those obtained in subsequent years the IRAC Pollen Beetle Working Group concluded an 

ongoing shifting to high pyrethroid resistance in central Europe and a spread of resistance to 

Eastern Europe [12]. 

In 2007 thiacloprid, belonging to the chemical class of neonicotinoid insecticides, and 

known to target insect nicotinic acetylcholine receptors [13], was the first fully registered 

chemical tool with a different mode of action for pollen beetle control in Germany, 

subsequently registered in other European contries [14]. Since its introduction also other 

modes of action were investigated for their potential to control pollen beetles, in order to 

increase chemical diversity for resistance management purposes [15-17]. Resistance to 

pyrethroids in pollen beetle affects the whole chemical class of pyrethroids and is not limited to 

individual compounds [2], however some pyrethroids such as tau-fluvalinate and etofenprox 
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seem to be less affected by cross-resistance and are still used in many countries. Cross-

resistance to tau-fluvalinate in pollen beetles is documented at a moderate level for Denmark 

[8] and Sweden [18], and HEIMBACH et al. [19] showed a decrease in susceptibility of pollen 

beetles in Germany to etofenprox over a period of 5 years. 

It must be assumed that the resistance mechanism is mainly based on an oxidative 

degradation of pyrethroids by cytochrome P450-dependent monooxygenases (P450), 

because a highly synergistic effect of the potent monooxygenase inhibitor piperonyl butoxide 

on several populations/locations in Europe has recently been described [10,16,20,21]. Apart 

from metabolic resistance also target-site resistance (kdr) in the voltage-gated sodium channel 

was discovered in 2008 in some populations sampled in Denmark, but not in populations 

collected in central Europe at this time [22].  

The aim of this study was to investigate more detailed the biochemical mechanism of 

pyrethroid resistance in pollen beetle populations collected in several European countries. 

 

3.2 Material and methods 

3.2.1 Insects 

In April/May 2006 and 2010 pollen beetle populations were collected in winter oilseed 

rape fields from different European countries, including the most important oilseed rape 

producing countries. In 2006 beetles were sampled in Germany, France, Belgium, Austria, 

Great Britain and Poland; 2010 in Germany, France, Great Britain, Poland, Czechia, Sweden, 

Finland and Ukraine. The adult insects were packed in plastic bags with some rape buds and 

foliage and shipped to Bayer CropScience in Monheim, Germany. After arrival in the 

laboratory, beetles were stored for 24 h at 4 °C. Two hours before bioassay the insects were 

removed from the refrigerator and equilibrated to room temperature (20 ± 2° C). Those beetles 

of lower fitness remain on the bottom of the bag and were not used for the bioassays.  

3.2.2 Insecticides and synergists 

The insecticides and synergists used were of technical grade. Lambda-cyhalothrin, 

deltamethrin, cypermethrin, bifenthrin, etofenprox and tau-fluvalinate were obtained from 

Fluka Chemicals (Buchs, Switzerland). Piperonyl butoxide (PBO) and diethyl maleate (DEM) 

were purchased from Arcos organics (Geel, Belgium), (DEF) was obtained from Chem Service 

(West Chester, PA, USA). 
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3.2.3 Bioassays 

All bioassays were conducted according to instructions outlined in IRAC´s 

Susceptibility Method No. 11 “Pollen Beetle Susceptibility Monitoring Bioassay – Synthetic 

Pyrethroids” [23]. In brief: The method is based on glass vials (Zinsser Analytics, Germany) 

coated with defined concentrations of lambda-cyhalothrin. Other compunds of the pyrethroid 

class of chemistry were used similarly. Beetles confined to glass vials were assessed for 

mortality after 24h. The IRAC method was slightly modified, i.e. the assessment was done by 

directly scoring affected beetles in the vials rather than using the recommended filter disc 

assessment arena. Pyrethroid concentrations used were equivalent to 20 % and 100 % of the 

typical field application rate, i.e. lambda-cyhalothrin and deltamethrin both at 75 and 

15 ng AI cm-2 inner glass surface, bifenthrin at 100 and 20 ng cm-2, etofenprox at 575 and 

115 ng cm-2 , and tau-fluvalinate at 480 and 96 ng cm-2. 

For testing purposes ten pollen beetles were placed in each vial, using three replicates 

per concentration and population (plus an acetone control). Capped vials are then stored in 

up-right position at 20 ± 2°C for 24 h. Prior assessment vials are briefly shaken to differentiate 

alive and affected beetles more easily. Populations are considered resistant to pyrethroids if 

100 % of the field-rate is not resulting in 100 % affected beetles [12]. An efficacy index can be 

calculated by adding the mortality figures obtained at both concentrations tested. 

3.2.4 Synergist Studies 

Three synergists were used to detect possible metabolic resistance mechanisms in 

vivo: the cytochrome P450-dependent monooxygenase-inhibitor PBO, the esterase-inhibitor 

DEF, and the glutathione depleter DEM. Several concentrations of each synergist were tested 

against some strains to be sure that the concentration chosen was below toxic levels.  

The synergists were dissolved in acetone (PBO and DEM 4 g L-1, DEF 1 g L-1) and 

500 µL were transferred to a vial and coated while horizontally rotating. Ten beetles were 

incubated in synergist-coated vials 1 h prior to transferring them into lambda-cyhalothrin 

coated vials. The concentration of lambda-cyhalothrin used to detect synergistic effects was 

3 ng AI cm-2 inner glass surface except for the highly susceptible population obtained from 

Ukraine (strain 70-10) [14], a concentration of 0.024 ng cm-2 was applied. 

3.2.5 Deltamethrin metabolism 

Deltamethrin metabolism was assayed by incubation of native microsome preparations 

from 27 pollen beetle populations including highly resistant and susceptible strains. For this 

purpose 300 – 400 adult pollen beetles were homogenized in ice-cold sodium phosphate 

buffer (0.1 M, pH 7.6, 1 mM EDTA, 1 mM DTT, and 200 mM sucrose). The homogenate was 
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centrifuged at 5,000 g for 5 min and 4 °C. The supernatant was transferred to another 

centrifugation vial and the remaining pellet was resuspended and centrifuged again. The 

combined supernatants were centrifuged at 15,000 g for 15 min and 4 °C. The resulting 

supernatant was then centrifuged at 100,000 g for 1 h at 4 °C. The last centrifugation step was 

repeated once again and the microsomal pellet resuspended in sodium phosphate buffer 

(0.1 M, pH 7.6, and 5 % glycerol). The protein content was determined according to Bradford 

[24]. The enzyme source was diluted to a protein content of 400 µg mL-1 and stored at -80 °C 

until use. The microsomes were incubated with deltamethrin in 0.1 M sodium phosphate buffer 

pH 7.6 containing a NADPH-regenerating system (Promega, 1.3 mM NADP+, 3.3 mM glucose-

6-phosphate, 3.3 mM MgCl2, and 0.4 U mL-1 glucose-6-phosphate dehydrogenase) for 1 h at 

22 °C. Microsomes without NADPH served as a control. The total assay volume of 200 µL 

contained 30 µg microsomal protein and the reaction was stopped by the addition of 800 µL 

acetonitrile. After centrifugation at 3,000 g for 10 min, 250 µL of the supernatant were 

analyzed by HPLC-MS/MS for quantification of 4-OH-deltamethrin (m/z 539.2) as described in 

ZHU et al. [25]. Recovery rates of deltamethrin from microsomal incubations without NADPH 

were usually close to 100 %. Other hydroxylated deltamethrin metabolites than 4-OH-

deltamethrin were not detected. 

3.2.6 Inhibition of deltamethrin metabolism 

Inhibition experiments were conducted with well known inhibitors of microsomal 

monooxygenases, i.e. PBO, 1-amonibenzotriazole (ABT) and tebuconazole (TCZ) [26-28]. 

PBO, ABT and TCZ were used in equimolar concentrations of deltamethrin (10 µM) and 

incubated and analysed as described above (2.5). Furthermore the effect on the velocity of 

deltamethrin hydroxylation of different concentrations of two pyrethroids, lambda-cyhalothrin 

and tau-fluvalinate was measured in microsomal preparations by Michaelis-Menten kinetics. 

Results were expressed by double-reciprocal plots in order to investigate the inhibition mode.  

3.2.7 7-ethoxycoumarin O-deethylation assay 

The 7-ethoxycoumarin fluorescence assay was conducted in 96 well plates as 

described in STUMPF & NAUEN [46]. The enzyme source was purified as described above and 

incubated with 50 µM 7-ethoxycoumarin  in 0.1 M sodium phosphate buffer pH 7.6 containing 

1 mM NADPH for 30 min at 30 °C while shaking (400 rpm) in a thermomixer (Eppendorf). The 

total assay volume of 200 µL contained 20 µg of microsomal protein. The reaction was 

stopped, and the excessive NADPH was degraded to the non-fluorescent NADP+ by the 

addition of 100 µL oxidation/stopp-solution containing 5mM oxidized L-glutathione, 160 U 

glutathione reductase in DMSO:TRIZMA-base buffer 50 % vol:vol, 0.05 M, pH 10. The 



  Chapter 3 

   

[73] 

microplate was then incubated for 15 min at 20-22 °C before the fluorescence was measured 

on a SpectraMax M2 (Molecular Devices) (λex = 390  nm, λem = 465 nm). 

3.2.8 Data analysis 

All mortality figures were corrected for control mortality by using ABBOTT´S formula 

[29]. Results of bioassays were compared using the efficacy index. The efficacy index is the 

sum of the ABBOTT corrected values of the assessment of both concentrations tested. 

Analyses of enzyme kinetics (nonlinear fitting and Lineweaver-Burk transformation) and 

further statistical analyses were performed with Graphpad Prism 5 software (GraphPad 

Software Inc., California). 

3.3 Results 

3.3.1 Cross-resistance of pyrethroid insecticides 

The data obtained from bioassays using 6 different pyrethroid insecticides (Fig. 25) 

showed a significant cross-resistance between the reference compound lambda-cyhalothrin 

and all other compounds used (Table 6). The correlation coefficient indicated a strong cross-

resistance between lambda-cyhalothrin and deltamethrin (r > 0.8), as well as cypermethrin 

(r > 0.8). A moderate level of cross-resistance is seen between lambda-cyhalothrin and 

etofenprox (r = 0.52), tau-fluvalinate (r = 0.51) and bifenthrin (r = 0.66). All strains (n = 27) 

tested in 2010 were used to study the biochemical mechanisms of pyrethroid resistance. 

       

Fig. 25  Chemical structures of pyrethroids used in bioassays. 

 

Table 6 Analysis of cross-resistance between lambda-cyhalothrin vs. deltamethrin, 

cypermethrin, etofenprox, and bifenthrin (data obtained from bioassays conducted 

O
O

Br

Br

CNO

O
O

CF
3

Cl

CNO

O
O

Cl

Cl

O CN

deltamethrin

lambda-cyhalothrin

cypermethrin

O
O

CNO

N
H

Cl

F

F

F

O
CF

3

Cl

O

O
O

O

taufluvalinate

bifenthrin

etofenprox



Chapter 3   

   

[74] 

in 2006), and lambda-cyhalothrin vs. tau-fluvalinate (data obtained from bioassays 

conducted in 2010). 

 2006  2010 

1 Deltamethrin Cypermethrin Etofenprox Bifenthrin  τ-Fluvalinate 

Number of XY Pairs 42 42 42 42  27 

Pearson r 0.842 0.836 0.519 0.658  0.509 

95 % confidence interval 0.722 - 0.912 0.713 - 0.909 0.255 - 0.711 0.442 - 0.805  0.159 - 0.745 

P value (two-tailed) 

 

< 0.0001 < 0.0001 0.0004 < 0.0001  0.0068 

P value summary *** *** *** ***  ** 

Is the correlation significant? 

significant?  

Yes Yes Yes Yes  Yes 

R squared 0.710 0.700 0.270 0.433  0.259 

 

3.3.2 Synergism bioassays 

Three common synergists were chosen to investigate possible metabolic resistance 

towards lambda-cyhalothrin in 27 pollen beetle populations. The pre-treatment of pollen 

beetles with DEF or DEM did not influence the efficacy of lambda-cyhalothrin, whereas PBO 

reduced the pyrethroid-resistance dramatically in resistant strains, but showed no synergistic 

effect in the highly susceptible strain 70-10 collected in Ukraine (Fig. 26). These results 

suggest the primary involvement of monooxygenases in pyrethroid resistance in pollen 

beetles. 

  

Fig. 26 Synergistic effect of PBO, DEF and DEM on several M. aeneus populations 

expressing different levels of pyrethroid-resistance (open circles) and a highly 

susceptible population from Ukraine (strain 70-10; closed circles) tested with lambda-

cyhalothrin concentrations of 3 ng cm-2 and 0.03 ng cm-2, respectively. 
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3.3.3 Deltamethrin metabolism 

Experiments were conducted to show the potential of microsomal preparations of 

resistant pollen beetles to metabolise deltamethrin. Pilot tests on 5 pollen beelte populations 

including highly resistant and susceptible strains indicated an increased formation of 4-OH-

deltamethrin in resistant populations as shown by HPLC-MS/MS analysis. The mass spectrum 

clearly revealed the formation of a metabolite matching the m/z value of 539.2 for 

hydroxylated deltamethrin (Fig. 27). The metabolite shows a much lower activity against pollen 

beetles in an adult vial test (LC50 > 500 % of field rate of deltamethrin) (Fig. 28). The highest 

amount of metabolite was formed by strain 80-10 (3.6 ng h-1, Vmax
app 17.84 nmol min-1 mg-1 

protein) whereas strain 70-10 from Ukraine showed the lowest rate of metabolite formation 

(Table 7). The velocity of metabolite formation is strongly correlated to pyrethroid resistance. 

As shown in Fig. 29 efficacy indices of both lambda-cyhalothrin and tau-fluvalinate are 

significantly correlated with the rate of deltamethrin-hydroxylation.  

 

 

Fig. 27 Mass spectrum of 4-OH-deltamethrin. No other metabolites were detected in 

microsomal fractions of pollen beetle incubated with deltamethrin. 
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Fig. 28 Mean response of three resistant pollen beetle populations collected in 2010 to 

different concentrations of deltamethrin and its metabolite 4-OH-deltamethrin in adult 

vial tests. 

 

 

A B  

 

Fig. 29 Pearson correlation of maximal apparent velocity (Vmax) of deltamethrin hydroxylation 

in microsomal fractions in vitro vs. pyrethroid efficacy indices obtained from adult vial 

tests in vivo of (A) lambda-cyhalothrin and (B) tau-fluvalinate. 
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3.3.4 Inhibitors of deltamethrin metabolism 

The influence on deltamethrin metabolism of known cytochrome P450 inhibitors, i.e. 

PBO, ABT and TCZ was investigated in microsomal fractions. Heat inactiviation of 

microsomes resulted in complete inhibition of deltamethrin metabolism, indicating the lack of 

any non-enzymatic reactions triggering hydroxylation. PBO and TCZ turned out very efficient 

in inhibiting the microsomal oxidation of deltamethrin since metabolite formation decreased by 

more than 80 % (Fig. 30). In contrast the incubation of microsomes with ABT resulted in a 

rather weak inhibition of deltamethrin oxidation.  

 

Fig. 30 Inhibition of 4-OH-deltamethrin-formation by heat treatment of microsomes (5 min for 

95° C) and by equimolar concentrations of different monooxygenase inhibitors (PBO, 

piperonyl butoxide; TCZ, tebuconazole; ABT, aminobenzotriazole (10µM each)). Data 

are mean values ± SD (n=5). 

 

In a second set of experiments the influence on deltamethrin hydroxylation of other 

pyrethroids was analysed using a classical Michaelis-Menten kinetics approach. For this 

purpose different concentrations of lambda-cyhalothrin and tau-fluvalinate were chosen and 

revealed a competitive inhibition pattern shown by an unchanged Vmax-value for 4-OH-

deltamethrin formation when graphically analyzed by double-reciprocal Lineweaver-Burk plots 

(Fig. 31 and Fig. 32).  In the presence of 100 µM lambda-cyhalothrin the apparent Km values 

in microsomal preparations of both strains 57-10 and 96-10 changed considerably (Fig. 32). A 

similar trend was seen when co-incubating deltamethrin with microsomes in the presence of 

different concentrations of tau-fluvalinate (Fig. 31).  
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Fig. 31 Lineweaver-Burk plots showing competitive inhibition of deltamethrin hydroxylation by 

different concentrations of tau-fluvalinate in microsomal preparations of two 

pyrethroid resistant pollen beetle strains. [s] = deltamethrin. 
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Fig. 32 Lineweaver-Burk plots showing competitive inhibition of deltamethrin hydroxylation by 

lambda-cyhalothrin in microsomal preparations of two pyrethroid resistant pollen 

beetle strains. [s] = deltamethrin. 
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3.3.5 Artificial substrate testing 

When incubating microsomal preparations of all pollen beetle strains tested in the vial 

assay as well as in the microsomal deltamethrin hydroxylation assay with the well-known 

artificial model substrate 7-ethoxycoumarin, we were not able to find any correlation with 

pyrethroid resistance levels (Fig. 33). Hence such an assay cannot displace the more 

laborious microsomal hydroxylation asssay coupled with subsequent LC-MS/MS analysis. 

 

Fig. 33 Pyrethroid resistance and 7-ethoxycoumarin O-deethylase activity in pollen beetles is 

not correlated. Each dot represents a single population. 
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Table 7 Efficacy indices of lambda-cyhalothrin (EI LCT) and tau-fluvalinate (EI TFV) as well 

as kinetic properties of microsomes with regard to 4-OH-deltamethrin formation of 

different European pollen beetle populations sampled in 2010. 
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70-10* Ukraine 200 200 0.25 - - 0.814 

127-10 Finland 196.97 193.94 0.45 2.19 1.62 - 3.4 0.951 

39-10 Germany 163.64 183.94 0.6 2.39 1.98 - 3 0.971 

38-10 Germany 162.73 165.45 0.65 4.74 3.99 - 6.02 0.969 

107-10 Czechia 178.89 192.96 0.8 4.88 3.42 - 8.47 0.99 

120-10 Sweden 130 192.96 0.8 3.97 2.24 - 16.95 0.958 

9-10 France 153.64 178.79 0.85 4.05 3.59 - 4.63 0.999 

13-10 France 180 159.39 1.25 7.69 5.52 - 12.66 0.995 

25-10 France 190.91 200 1.25 6.13 4 - 12.99 0.995 

6-10 Germany 156.97 187.27 1.3 7.3 5.97 - 9.43 0.997 

8-10 France 100.3 190.91 1.4 6.21 4.55 - 9.62 0.973 

3-10 France 187.27 186.97 1.5 7.33 6.52 - 8.5 0.971 

66-10 Germany 74.24 150 1.6 8.13 6.56 - 10.75 0.988 

82-10 Germany 63.64 154.55 1.75 7.94 5.8 - 12.5 0.975 

63-10 Germany 151.52 151.52 1.8 7.75 5.74 - 11.9 0.973 

83-10 Poland 107.5 185.83 1.85 9.35 5.08 - 58.82 0.936 

32-10 Germany 90.91 177.88 2 11.11 6.05 - 66.67 0.97 

51-10 Germany 109.09 127.88 2.1 10.99 9.47 - 12.99 0.999 

57-10 UK 113.1 168.38 2.25 10.99 7.92 - 17.86 0.988 

96-10 Poland 103.64 134.55 2.3 11.26 10.05 - 13.01 0.988 

68-10 Germany 66.67 169.7 2.4 10.64 8.34 - 14.71 0.992 

62-10 Germany 121.21 175.76 2.4 11.24 9.75 - 13.16 0.997 

7-10 France 106.06 157.58 2.55 12.5 10.11 - 16.13 0.995 

97-10 Poland 118.18 160.61 2.55 14.44 12.16 - 18.1 0.994 

106-10 Czechia 126.06 160 2.8 13.33 8.38 - 33.33 0.954 

80-10 Germany 76.67 164.24 3.2 13.89 11.57 - 16.95 0.997 

79-10 Germany 99.33 160 3.6 17.84 16.34 - 19.8 1 

*Strain 70-10 does not fit the assumptions of analysis 
EI = efficacy index, LCT = lambda-cyhalothrin, TFV = tau-fluvalinate, CL = confidence limits  
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3.4 Discussion 

Failure in pollen beetle control can result in high economic damage and sometimes to 

complete yield loss as recently happened in Germany due to pollen beetle feeding on the 

reproductive organs of oilseed rape [2]. One of the major classes of insecticides used for 

pollen beetle control are the pyrethroids, and after 20 years control failures were shown to be 

the result of resistance development in many European countries [12, 14]. Our study 

confirmed the presence of high levels of pyrethroid resistant pollen beetles in 2010 in many 

European countries based on results of bioassays, and for the first time with a clear 

correlation to an identified biochemical marker. Only one sample collected in Ukraine (strain 

70-10) was fully susceptible and showed no synergistic effect upon pre-exposure with PBO, 

DEM or DEF in adult vial bioassays. All other populations responded strongly to deltamethrin 

after incubation with PBO, but not to DEM and DEF.  Although it is known that PBO could also 

inhibit esterases [30], we focused our work on the biochemical validation of a cytochrome 

P450-driven metabolic oxidation of pyrethroids. A very recent study conducted on a smaller 

number of populations also suggested the involvement of oxidative metabolism based on 

synergist bioassays conducted in vivo and in vitro (with the model substrate 7-

ethoxycoumarin) [31]. However as the authors pointed out there was no obvious correlation of 

their in vitro results with the observed levels of pyrethroid resistance [31]. A similar 

observation was made in this study, since we also failed to correlate 7-ethoxycoumarin O-

deethylase activity in microsomes of 27 populations tested with pyrethroid resistance levels. It 

would be interesting in future studies to seek for artificial substrates which can be used in a 

fluorescent assay as a molecular tool to screen large numbers of individuals and populations, 

because the microsomal hydroxylation assay described in this study is quite laborious. 

The mortality of strains 80-10 and 79-10 increased after PBO pre-treatment to over 

90 %. These two strains were the most active ones in the microsomal hydroxylation assay of 

deltamethrin, indicating that the observed synergism is linked to monooxygenase inhibition. 

However our screening of all 27 populations for their ability of forming the lesser toxic 

metabolite 4-OH-deltamethrin confirmed biochemically the presence of a cytochrome P450-

based resistance mechanism in all populations obtained from several European countries, 

excluding the reference strain 70-10. Until 2007 no serious cases of resistance in pollen beetle 

were observed in the UK [11], but recently two larger resistance monitoring projects reported 

that resistance is on the move [12, 14]. Strain 57-10 sampled in the UK in 2010 showed low 

mortality figures in adult vial assays for both lambda-cyhalothrin and tau-fluvalinate, and 

additionally a high hydroxylation activity on deltamethrin in the metabolism assay, indicating 

the presence of the same detoxification mechanism observed in continental populations. In 

contrast some resistant strains from Germany (38-10, 39-10, 68-10), France (9-10, 13-10) and 
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one of Sweden (120-10) showed a lower activity in the metabolism assay as expected based 

on the results of bioassays, suggesting the presence of additional mechanisms of resistance.  

Michaelis-Menten kinetics on deltamethrin hydroxylation velocity in microsomal preparations 

revealed a strong and significant correlation between Vmax-values and resistance levels to 

lambda-cyhalothrin. Similar to lambda-cyhalothrin the resistance levels to tau-fluvalinate albeit 

structurally somewhat different also correlate significantly with deltamethrin hydrxylation. This 

result confirmed the cross-resistance pattern of a range of pyrethroids observed in adult vial 

bioassays. However the bioassay data of those pyrethroids which are structurally very similar 

show a high correlation coefficient (e.g. Pearson r = 0.84; efficacy of lambda-cyhalothrin vs. 

deltamethrin). Whereas the correlation between results of tau-fluvalinate and lambda-

cyhalothrin is less pronounced (r = 0.5).  Lineweaver-Burk plots revealed a competitive 

inhibition of deltamethrin hydroxylation by tau-fluvalinate, so it is fairly likely that both 

compounds are competing for the same binding site in monooxygenase(s) involved in 

pyrethroid resistance. Co-incubation of deltamethrin with increasing concentrations of tau-

fluvalinate does not change the Vmax-value of the hydroxylation reaction, but increases Km-

values as known for competive inhibitors. Metabolic experiments with tau-fluvalinate as well as 

lambda-cyhalothrin haven´t yet been conducted in pollen beetle microsomal preparations due 

to the lack of reference metabolites for LC-MS quantification. Similar to tau-fluvalinate, 

lambda-cyhalothrin also competitively inhibits deltamethrin metabolism.  

The hydroxylation of the 3-phenoxybenzyl-alcohol moiety in para-position is one of the 

most prominent detoxification pathways for pyrethroids [27,32-36], but also the 3-

phenylbenzyl-alcohol moiety in bifenthrin is known to be hydroxylated in that position [37].  

Although the microsomal oxidation of pyrethroids via cytochrome P450-mediated 

hydroxylations is the most common detoxification route, specific data for tau-fluvalinate is not 

available. For tau-fluvalinate the metabolism in mammals is mainly based on esterases (as 

also described for other pyrethroids) and the major metabolite is anilinic acid. Nonetheless, at 

least two studies also reported the 4-hydroxylation of the phenoxybenzyl ring system in 

fluvalinate [38, 39]. From studies with Apis mellifera it is known, that honeybee safety of tau-

fluvalinate is based on oxidative degradation mediated by monooygenases [40]; three different 

cytochrome P450s were described yet to degrade tau-fluvalinate [41].  

In coincidence with the observed synergist effects on adult beetles in vivo the 

hydroxylation reaction in microsomal preparations was also strongly inhibited by PBO and two 

other monooxygenase inhibitors, i.e. tebuconazole and 1-aminobenzotriazole (ABT). The 

inhibition rates were equal between the strains for the different synergists use, but not the 

extent of the inhibition. The blockage was lowest when ABT is used as an inhibitor. Scott [42] 

reported for CYP6D1 isolated from pyrethroid resistant Musca domestica (LPR-Strain) also a 
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low inhibitory potency of ABT.  Further experiments are necessary to describe the resistance 

mechanism to pyrethroids in pollen beetle in more detail, in particular the molecular 

identification of the cytochrome P450(s) involved. 

3.5 Conclusions 

Due to the fact that cross-resistance to pyrethroid insecticides in pollen beetle is 

spread all-over Europe these days and as shown here quite likely being confered by the same 

oxidative mechanism, the importance of the implementation of adequate resistance 

management strategies - based on mode of action rotation – has been highlighted recently 

[12, 43]. Pyrethroids are still an important group of insecticides for controlling insect pests in 

oilseed rape, i.e. stem and pod weevils, but applications against resistant pollen beetles 

should be avoided in order reduce the selection pressure, and the expression of additional 

resistance mechanisms such as target-site resistance. Even though some pyrethroids such as 

tau-fluvalinate and bifenthrin seemed to perform somewhat better against pollen beetle under 

field-conditions, it is strategically questionable to use them in areas known for pyrethroid 

resistance [8, 18]. It has been shown in other pest species that also with structurally different 

pyrethroids such as tau-fluvalinate resistance levels could be > 100,000-fold due to oxidative 

mechanisms covering the entire class of chemistry [44]. With the acreage of winter oilseed 

rape still growing in some European countries, it has also been shown that the number of 

pollen beetles continuously increased [45], in other words the frequency of new resistance 

genes is also likely to increase. Therefore it is important to learn from the past and introduce 

new modes of action to control pollen beetles in the future and to guarantee sustainable 

yields. 

Acknowledgements  

We thank all colleagues involved in the collection of pollen beetles for their invaluable 

help to get the number of beetles necessary for the studies conducted.  We gratefully 

acknowledge Dr. Katharina Woithe (Bayer CropScience) for fruitful discussions on parts of the 

project. We also thank Dr. Martin Kaussmann, Dr. Astrid Ratzinger and Heidrun Thalheim 

(Bayer CropScience) for analytical support. 

References 

[1]  I.H. WILLIAMS, Advances in insect pest management of oilseed rape in Europe. In: I. ISHAAYA, R. HOROWITZ 

(Eds.),. Insect Pest Management, Springer-Verlag, Berlin/Heidelberg/New York, 2004. pp. 181-208.  

[2]  R. NAUEN. Pyrethroid resistance and its management in European populations of pollen beetles, Meligethes 
aeneus in winter oilseed rape. Proc of the XVI International Plant Protection Congress 7B-3: 2007.  

[3]  L.M. HANSEN, Insecticide-resistant pollen beetles (Meligethes aeneus F) found in Danish oilseed rape 
(Brassica napus L) fields. Pest Manag. Sci. 59 (2003) 1057-1059.  



  Chapter 3 

   

[85] 

[4]  R. NAUEN. Insecticide resistance in European agriculure: Research instead of rumours. Proc BCPC 
International Congress - Crop Science & Technology 3A-1: 2005.  

[5]  U. HEIMBACH, A. MÜLLER, T. THIEME, First steps to analyse pyrethroid resistance of different oil seed rape 
pests in Germany. Nachrichtenbl. Deut. Pflanzenschutzd. 58 (2006) 1-5.  

[6]  J. DERRON. Current situation and recommendations on controlling pollen beetle on oilseed rape in 
Switzerland. Ad hoc EPPO Workshop on insecticide resistance of Meligethes spp. (pollen beetle) on oilseed 
rape; Berlin 2007.  

[7]  A. DJURBERG AND G. GUSTAFSSON. Pyrethroid resistant pollen beetles in Sweden. Ad hoc EPPO Workshop 
on insecticide resistance of Meligethes spp. (pollen beetle) on oilseed rape; Berlin 2007.  

[8]  L.M. HANSEN, Occurrence of insecticide resistant pollen beetles (Meligethes aeneus F.) in Danish oilseed 
rape (Brassica napus L.) crops. OEPP/EPPO Bulletin 38 (2008) 95-98.  

[9]  T.M. TIILIKAINEN, H.M.T HOKKANEN, Pyrethroid resistance in Finnish pollen beetle (Meligethes aeneus) 
populations - is it around the corner? OEPP/EPPO Bulletin 38 (2008) 99-103.  

[10]  P. WEGOREK, A. OBREPALSKA-STEPLOWSKA, J. ZAMOYSKA, K. NOWACZYK, Resistance of pollen beetle 
(Meligethes aeneus F.) in Poland. Res. Pest Manag. Newsl. 16 (2006) 28-29.  

[11]  D. M. RICHARDSON, Pollen beetle in the UK; the start of a resistance problem? OEPP/EPPO Bulletin 38 
(2008) 73-74.  

[12]  R. SLATER, S. ELLIS, J.P. GENAY, U. HEIMBACH, G. HUART, M. SARAZIN, C. LONGHURST, A. MÜLLER, R. NAUEN, 
J.L. RISON, F. ROBIN, Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes 
spp.): a coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest Manag. 
Sci. 67 (2011) 633-638. 

[13]  P. JESCHKE, R. NAUEN, Neonicotinoids - From zero to hero in insecticide chemistry. Pest Manag. Sci. 64 
(2008) 1084-1098.  

[14]  C.T. ZIMMER, R. NAUEN, Pyrethroid resistance and thiacloprid baseline susceptibility of European populations 
of Meligethes aeneus (Coleoptera: Nitidulidae) collected in winter oilseed rape. Pest Manag. Sci. 67 (2011) 
599-608. 

[15]  C. LONGHURST, M. MILES, J. FRASER, V. JACQUET AND A. ZOTZ. New uses for old chemistry - chlorpyrifos-
methyl for the control of pyrethroid resistant Meligethes (pollen beetle) in pollen beetle in oilseed rape. Proc 
of the XVI International Plant Protection Congress 1: 2007.  

[16]  G. SCHRÖDER, B. PÖLITZ, C. WOLFF, B. KRÜGER, Möglichkeiten der gezielten Bekämpfung von Pyrethroid-
resistenten Rapsglanzkäferpopulationen - Ergebnisse von Ringversuchen mehrerer Bundesländer. 
Gesunde Pflanze 61 (2009) 19-30.  

[17]  T. THIEME, U. HEIMBACH, A. MÜLLER, Chemical Control of Insect Pests and Insecticide Resistance in oilseed 
rape. In: I.H. WILLIAMS (Ed), Biocontrol-Based Integrated Management of Oilseed Rape Pests, Springer 
Netherlands, 2010 pp. 313-335.  

[18]  P. KUDSK, NORBARAG (NORdic BAltic Resistance Action Group) –a new resistance action group covering 
Denmark, Estonia, Finland, Latvia, Lithuania, Norway and Sweden. Outl. Pest Manag. 22 (2010) 1-2.  

[19]  U. HEIMBACH, A. MÜLLER AND T. THIEME. Monitoring of pollen beetle pyrethroid resistance 2005 to 2010. 57. 
Julius Kühn Archiv 428, 2010, p. 502. .  

[20]  R. NAUEN. Insecticide mode of action, incidence and mechanisms of resistance. Ad hoc EPPO Workshop on 
insecticide resistance of Meligethes spp. (pollen beetle) on oilseed rape; Berlin 2007.  

[21]  S. W. SKILLMAN. Use of the synergist piperonyl butoxide in combination with a pyrethroid insecticide lambda-
cyhalothrin against metabolically resistant pollen beetle, Meligethes aeneus. Ad hoc EPPO Workshop on 
insecticide resistance of Meligethes spp. (pollen beetle) on oilseed rape; Berlin 2007.  

[22]  R. NAUEN, Rapsglanzkäfer: Neue Dimension in der Insektizidresistenz. RAPS 2 (2009) 70.  

[23]  IRAC. IRAC Susceptibility Test Method Series - Method No. 11 Version 2.0 (02/2009) - Pollen Beetle 
Susceptibility Monitoring Bioassay - Synthetic Pyrethroids. (2009); Available at: http://www.irac-
online.org/wp-content/uploads/2009/09/Method_011_v3_june09.pdf  (accessed 03/2009).  

[24]  M.M. BRADFORD, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing 
the principle of protein dye binding. Anal. Biochem. 72 (1976) 248-254.  

http://www.irac-online.org/wp-content/uploads/2009/09/Method_011_v3_june09.pdf
http://www.irac-online.org/wp-content/uploads/2009/09/Method_011_v3_june09.pdf


Chapter 3   

   

[86] 

[25]  F. ZHU, R. PARTHASARATHY, H. BAI, K. WOITHE, M. KAUSSMANN, R. NAUEN, A brain-specific cytochrome P450 
responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc. 
Natl. Acad. Sci. U. S. A. 107 (2010) 8557-8562.  

[26]  B. TESTA, P. JENNER, Inhibitors of cytochrome P-450s and their mechanism of action. Drug Metab. Rev. 12 
(1981) 1-117.  

[27]  R. FEYEREISEN, Insect Cytochrome P450. In: I. KOSTAS, G. LAWRENCE, S. GILL (Eds), Comprehensive 
Molecular Insect Science, 1st ed,  Elsevier, 2005, p. 1-77.  

[28]  L.M. PODUST, T.L. POULOS, M.R. WATERMAN, Crystal structure of cytochrome P450 14α-sterol demethylase 
(CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. U. S. A. 
98 (2001) 3068-3073.  

[29]  W.S. ABBOTT, A method of computing the effectiveness of an insecticide. J. Am. Mosq. Control Assoc. 3 
(1925) 302-303.  

[30]  A.C. KHOT, G. BINGHAM, L.M. FIELD AND G.D. MOORES, A novel assay reveals the blockade of esterases by 
piperonyl butoxide. Pest Manag. Sci. 64 (2008) 1139-1142. 

[31]  D. PHILIPOU, L.M. FIELD, P. WEGOREK, J. ZAMOJSKA, M. ANDREWS, R. SLATER, G.D MOORES, Characterising 
metabolic resistance in pyrethroid-insensitive pollen beetle (Meligethes aeneus F.) from Poland and 
Switzerland. Pest Manag. Sci. 67 (2011) 239-243.  

[32]  T. SHONO, K. OHSAWA, J.E. CASIDA, Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, 
and decamethrin by microsomal enzymes. J. Agric. Food Chem. 27 (1979) 316-325.  

[33]  J.E. CASIDA, L.O. RUZO, Metabolic chemistry of pyrethroid insecticides. Pestic. Sci. 11 (1980) 257-269.  

[34]  J.G. SCOTT, Cytochrome P450 Monooxygenases and Insecticide Resistance: Lessons from CYP6D1. In: 
ISHAAYA I (Ed), Biochemical Sites of Insecticide Action and Resistance, 1st ed., Springer Verlag, 
Berlin/Heidelberg/New York, 2001. p.p. 255-263.  

[35]  B.P.S. KHAMBAY, P.J. JEWESS, Pyrethroids. In: I. KOSTAS, G. LAWRENCE, G. SARJEET (Eds), Comprehensive 
Molecular Insect Science, 1st ed, Elsevier, 2005 pp. 1-29.  

[36]  L.O. RUZO, T. UNAI, J.E. CASIDA, Decamethrin metabolism in rats. J. Agric. Food Chem. 26 (1978) 918-925.  

[37]  L.O. RUZO, E. COHEN, S. CAPUA, Comparative metabolism of the pyrethroids bifenthrin and deltamethrin in 
the bulb mite Rhizoglyphus robini. J.  Agric. Food Chem. 36 (1988) 1040-1043.  

[38]  G.B. QUISTAD, L.E. STAIGER, G.C. JAMIESON, D.A. SCHOOLEY, Metabolism of fluvalinate by a lactating dairy 
cow. J. Agric. Food Chem. 30 (1982) 895-901.  

[39]  G.B. QUISTAD, L.E. STAIGER, G.C. JAMIESON, D.A. SCHOOLEY, Fluvalinate metabolism by rats. J. Agric. Food 
Chem. 31 (1983) 589-596.  

[40]  R.M. JOHNSON, Z. WEN , M.A. SCHULER, M.R. BERENBAUM, Mediation of pyrethroid insecticide toxicity to honey 
bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol. 99 (2006) 1046-
1050.  

[41]  M.R. BERENBAUM. Toxicogenomics of Apis mellifera. (2010); Available at: http://www.reeis.usda.gov/web/ 
crisprojectpages/213266.html (accessed 10/2010).  

[42]  J.G. SCOTT, Inhibitors of CYP6D1 in house fly microsomes. Insect Biochem. Mol. Biol. 26 (1996) 645-649.  

[43]  IRAC. IRAC European Oilseed Rape Resistance Managment Guidelines v0.4. (2010); Available at: 
http://www.irac-online.org/wp-content/uploads/2009/09/europe_osr_irmguidelines_web_v0.4_Sep10.pdf 
(accessed 10/2010).  

[44]  J. TAN, A.R. MCCAFFERY, Efficacy of various pyrethroid structures against a highly metabolically resistant 
isogenic strain of Helicoverpa armigera (Lepidoptera: Noctuidae) from China. Pest Manage. Sci. 63 (2007) 
960-968.  

[45]  H.M.T. HOKKANEN, The making of a pest: recruitment of Meligethes aeneus onto oilseed brassicas. Entomol. 
Exp. Appl. 95 (2000) 141-149.  

[46]  N. STUMPF, R. NAUEN, Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport 
inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). J. Econ. Entomol. 94 (2001) 
1577-1583. 

  

http://www.irac-online.org/wp-content/uploads/2009/09/europe_osr_irmguidelines_web_v0.4_Sep10.pdf


  Chapter 4 

   

[87] 

Chapter 4  

 

Molecular and functional characterization of CYP6BQ23, a 

cytochrome P450 conferring resistance to pyrethroids in 

European populations of pollen beetle, Meligethes aeneus 

 

CHRISTOPH T. ZIMMER
A,B, CHRIS BASS

C, MARTIN S. WILLIAMSON
C, MARTIN KAUSSMANN

B, 

KATHARINA WÖLFEL
B, OLIVER GUTBROD

B
 & RALF NAUEN

B 

a
University of Hohenheim, Institute of Phytomedicine, 70593 Stuttgart, Germany 

b
Bayer CropScience AG, Small Molecules Research, 40789 Monheim, Germany 

c
Rothamsted Research, Biological Chemistry and Crop Protection Dept., Harpenden, AL5 2JQ, UK 

 

The content of this chapter was submitted in 2013 to the journal “Insect Biochemistry and 

Molecular Biology” (Elsevier). It was published in 2014, DOI: 10.1016/j.ibmb.2013.11.008 

http://www.sciencedirect.com/science/article/pii/S0965174813002099 

 

Abstract 

The pollen beetle (Meligethes aeneus) is widespread throughout much of Europe 

where it is a major coleopteran pest of oilseed rape (Brassica napus). The reliance on 

synthetic insecticides for control, particularly the pyrethroid class, has led to the development 

of populations with high levels of resistance. Resistance to pyrethroids is now widespread 

throughout Europe and is thought to be mediated by enhanced detoxification by cytochrome 

P450s and/or mutation of the pyrethroid target-site, the voltage-gated sodium channel. 

However, in the case of cytochrome P450 mediated detoxification, the specific enzyme(s) 

involved has (have) not yet been identified. In this study a degenerate PCR approach was 

used to identify ten partial P450 gene sequences from pollen beetle. Quantitative PCR was 

then used to examine the level of expression of these genes in a range of pollen beetle 

populations that showed differing levels of resistance to pyrethroids in bioassays. The study 

revealed a single P450 gene, CYP6BQ23, which is significantly and highly overexpressed (up 
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to ~900-fold) in adults and larvae of pyrethroid resistant strains but not in susceptible strains. 

CYP6BQ23 overexpression is significantly correlated with both the level of resistance and with 

the rate of deltamethrin metabolism in microsomal preparations of these populations. 

Functional recombinant expression of full length CYP6BQ23 along with cytochrome P450 

reductase in an insect (Sf9) cell line showed that it is able to efficiently metabolise 

deltamethrin to 4-hydroxy deltamethrin. Furthermore we demonstrated by detection of 4-

hydroxy tau-fluvalinate using ESI-TOF MS/MS that functionally expressed CYP6BQ23 also 

metabolizes tau-fluvalinate. A protein model was generated and subsequent docking 

simulations revealed the predicted substrate-binding mode of both deltamethrin and tau-

fluvalinate in CYP6BQ23 protein. Taken together these results strongly suggest that the 

overexpression of CYP6BQ23 is the primary mechanism conferring pyrethroid resistance in 

pollen beetle populations throughout much of Europe. 

4.1 Introduction 

Oilseed rape (Brassica napus) is a crop of global economic importance and particularly 

winter oilseed rape, is grown on several million hectares in Europe and indispensable in many 

crop rotations. The main winter oilseed rape growing countries in Europe are France, 

Germany, Poland and UK with a total cropping area exceeding 4 mio ha [1]. Oilseed rape is 

attacked by a number of invertebrate pests of the order Coleoptera, such as flea beetles 

(Psylliodes ssp., Phyllotreta ssp.), stem weevils and seed pod weevils (Ceutorhynchus ssp.) 

and pollen beetle (Meligethes ssp.) [2]. Although the genus Meligethes STEPHENS, 1830 

(Coleoptera: Nitidulidae, Meligethinae) comprises globally more than 600 pollen eating 

species [3], Meligethes aeneus is by far the most destructive species attacking oilseed rape 

crops throughout Europe [2]. Adult beetles emerging from overwintering sites feed almost 

exclusively on pollen and cause damage during the early (green to yellow) stages, whereas 

feeding larvae cause bud abscission resulting in podless stalks. Pollen beetle infestations 

exceeding economic damage thresholds can for example result in yield reductions as high as 

70% in spring oilseed rape [4,5].  

The main method of crop protection against pollen beetle infestations is the large scale 

application of chemical insecticides, and a recent survey revealed that in many European 

countries 100 % of the crop area received treatments against pollen beetle [1]. Over the last 

two decades pollen beetle control has mainly relied on the pyrethroid class of insecticides, e.g. 

alpha-cypermethrin, bifenthrin, cypermethrin, deltamethrin, lambda-cyhalothrin, tau-fluvalinate 

and zeta-cypermethrin [6]. Pyrethroid insecticides are neurotoxic and bind to voltage-gated 

sodium channels in the insect central nervous system providing a fast knock-down of pests at 

low application rates [7]. This intensive use of pyrethroids has led to the development of 
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resistance in pollen beetle, which was first reported in 1999 in North Eastern France [4,8,9]. 

Concerted large scale pollen beetle pyrethroid resistance monitoring campaigns between 

2007 and 2011 revealed that resistance has become widespread and is at high levels in 

several European countries including France, Germany, UK, Poland, Czech Republic, 

Denmark and Sweden [9,10].  

Insecticide resistance most commonly evolves by two main mechanisms, i.e. 

increased levels of detoxification enzymes resulting in metabolic resistance, and target-site 

mutations resulting in lower binding affinity of the respective insecticides [11–13]. Pyrethroid 

resistance can be conferred by both mechanisms, but target-site insensitivity caused by 

mutations in the voltage-gated sodium, known as knock-down resistance (kdr), is a common 

mechanism in many pests [7,14–16]. Target-site resistance to pyrethroids was first described 

in Musca domestica and linked to two mutations in the housefly voltage-gated sodium channel 

gene (Vssc1) leading to amino acid changes at positions L1014F (kdr) and M918T (s-kdr) in 

domain II of the channel protein [14]. Subsequently, many more mutations in voltage-gated 

sodium channels conferring pyrethroid target-site resistance have been described, but L1014F 

remains the most common mutation described in almost 20 different pest species [16], 

including in pollen beetle [17]. However the lack of kdr in a large number of highly resistant 

pollen beetle populations collected in European countries other than Denmark and Sweden 

suggests enhanced metabolic detoxification of pyrethroids may be the main driver of 

resistance [17]. A recent study has provided several lines of evidence that support this 

assumption [18]. Firstly, the authors were able to show that the efficacy of pyrethroids can be 

synergized by the cytochrome P450 (P450) inhibitor piperonyl butoxide (PBO), but not S,S,S-

tributyl phosphorotrithioate (DEF, an esterase inhibitor) and diethyl maleate (DEM, a 

glutathione depleter affecting glutathione S-transferases). The synergistic effect of PBO 

against resistant pollen beetle populations was also shown by other authors to be primarily 

correlated with oxidative metabolism [19]. Furthermore, microsomal preparations from 

resistant strains showed a significantly increased rate of deltamethrin degradation in the 

presence of NADPH, which was inhibited by PBO and other well-known P450-inhibitors such 

as tebuconazole and 1-aminobenzotriazole [18]. Finally, LC-MS/MS analyses of 4-hydroxy 

deltamethrin formation in microsomes from several pollen beetle strains correlated with the 

level of pyrethroid resistance. Some pyrethroids such as bifenthrin and tau-fluvalinate were 

shown to be less affected by resistance, but shown to competitively inhibit the formation of 4-

hydroxy deltamethrin, which correlates to some extent with the cross-resistance profile 

observed in resistant strains [10,20]. Although all these findings strongly suggest that 

pyrethroid (cross-) resistance in pollen beetle is based on oxidative degradation by P450s, the 

specific enzyme(s) involved has (have) not been identified. Individual members of the 
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arthropod cytochrome P450 gene superfamily are well known for their involvement in the 

detoxification of synthetic insecticides as well as toxic secondary plant metabolites [13,21,22]. 

Recent progress in genome and transcriptome sequencing facilitated the discovery and 

functional characterization of several insect P450s involved in pyrethroid resistance [23–28]. 

However, in Coleoptera only a single P450 from the red flour beetle, Tribolium castaneum, 

has been identified and functionally characterized for its involvement in pyrethroid resistance 

[24]. In this study the authors exploited microarray technology and reverse genetic 

approaches to demonstrate that a single brain-specific P450, CYP6BQ9, is overexpressed 

200-fold in a deltamethrin resistant strain of T. castaneum and confers high levels of 

deltamethrin resistance. CYP6BQ9 was shown to metabolize deltamethrin to its 4-hydroxy 

derivative in vitro, similar to CYP6M2 of Anopheles gambiae and members of the CYP9J 

subfamily of Aedes aegypti [25,29].  

The formation of 4-hydroxy deltamethrin by microsomal preparations has recently also 

been described to be correlated with pyrethroid resistance in pollen beetle [18]. Therefore the 

aim of this study was to identify the P450(s) involved in pyrethroid resistance in pollen beetle 

populations sampled across Europe. Due to the lack of available genomic and transcriptomic 

data on pollen beetle P450 genes, a PCR approach employing degenerate primers based on 

conserved helix I and heme binding regions was used to identify P450 genes involved in 

pyrethroid resistance. We isolated a full-length cDNA clone of a single P450, CYP6BQ23 

which is several hundred fold overexpressed in pyrethroid resistant pollen beetle adults and 

larvae.  qRT-PCR data shows that its overexpression is significantly correlated with pyrethroid 

resistance. We characterized the substrate profile of recombinant CYP6BQ23 expressed in 

insect Sf9 cells as well as its ability to hydroxylate deltamethrin and tau-fluvalinate. Finally a 

protein homology model of CYP6BQ23 was generated and subsequent docking simulations 

used to provide insights into the possible orientation of pyrethroid substrates in its active site. 

 

4.2 Material and Methods 

4.2.1 Insect populations and bioassays 

European pollen beetle (Meligethes aeneus F.) populations were collected in oilseed 

rape fields between April and June in 2009 and 2010, except adults of strain 91-11 from 

Ukraine collected in 2011. All beetles were shipped to the authors´ laboratory and maintained 

at 4 °C until testing for pyrethroid resistance (within 24h after arrival). Each sample was 

subjected to morphometric analysis to check for M. aeneus based on markers described by 

SCHERNEY [30], FRITZSCHE [31] & FREUDE et al. [32]. No other Meligethes ssp. was found in 
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those samples used in this study. In May 2011 pollen beetle 2nd instar larvae were collected in 

winter oilseed rape fields from three different regions in Germany. Larvae can easily be 

collected in the late flowering stage of winter oilseed rape (BBCH 67-69) by tapping the plants 

into a close-meshed insect net. Larvae were also stored at 4 °C until testing (within 24 h after 

sampling). From each adult and larval strain collected, a sample was flash frozen in liquid 

nitrogen and stored at -80 °C for subsequent molecular analysis. Pyrethroid resistance levels 

in adults were recently assayed using lambda-cyhalothrin as a reference pyrethroid insecticide 

in an adult vial test [10]. Briefly: Ten beetles each were incubated at room temperature in 

30 ml glass vials coated on the inner surface with 5-6 different concentrations of lambda-

cyhalothrin dissolved in acetone (concentration range between 0.6 ng cm-2 and 375 ng cm-2). 

Beetles were scored for mortality after 24 h and each concentration was replicated thrice as 

recently described [10]. Second instar larvae of pollen beetle strains 40-11, 59-11 and 72-11 

were recently tested and shown to be resistant to pyrethroids [33].  

4.2.2 Chemicals 

All chemicals and solvents used in this study were of analytical grade unless otherwise 

stated. Technical lambda-cyhalothrin and NAPDH were obtained from Sigma Aldrich. 

Deltamethrin was a Bayer CropScience internal analytical standard (purity > 99%). 

Fluorescent artificial P450 substrates such as BFC, 7-benzyloxy-4-trifluoromethyl coumarin; 

MFC, 7-methoxy-4-trifluoromethyl coumarin; EFC, 7-ethoxy-4-trifluoromethyl coumarin; 

BOMFC, 7-benzyloxymethoxy-4-trifluoromethyl coumarin; BOMCC, 7-benzyloxymethoxy-3-

cyano coumarin; PC, 7-n-pentoxy coumarin; EC, 7-ethoxy coumarin; BOMR, 7-

benzyloxymethoxy resorufin; ER, 7-ethoxyresorufin; BR, 7-benzyloxyresorufin; MR, 7-

methoxyresorufin; PR, 7-n-pentoxyresorufin, and all consumables for recombinant expression 

were purchased from Life Technologies. 

4.2.3 DNA/RNA extraction and cDNA synthesis 

Adults and 2nd instar larvae of individual pollen beetle samples were flash frozen in 

liquid nitrogen and kept at -80 °C prior to nucleic acids extraction. Nucleic acids were 

extracted from 15 to 20 pooled insects using either Agencourt DNAdvance kit (Beckman 

Coulter, USA) for DNA extraction or TRIzol reagent (Invitrogen, CA, USA) followed by 

Agencourt RNAdvance Tissue kit (Beckman Coulter, USA) for RNA extraction. Pools of 

insects were placed into pre-cooled (-80 °C) 1.5 ml Eppendorf vials including two 3 mm 

tungsten beads (Qiagen, Germany). Tubes containing samples and beads were deep frozen 

in liquid nitrogen and afterwards subjected to a Retsch TissueLyser (Qiagen) for 1 min at a 

frequency of 18 Hz for sample disruption. For total RNA extraction tubes were briefly 

centrifuged to collect the resulted powdery content at the bottom and 0.5 ml TRIzol reagent 
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was added. Subsequently the tubes containing TRIzol, sample and beads were subjected 

again to Retsch TissueLyser and homogenized for 1 min at a frequency of 20 Hz and 

subsequently briefly centrifuged to collect the sediment. After 3 min incubation at room 

temperature 0.1 ml chloroform was added to each sample and mixed on a Vortex for 15 sec. 

After 5 min incubation at room temperature the samples were centrifuged at 4 °C and 

12,000 g for 15 min. The aqueous phase was transferred to a 96 deep well plate and 

processed on a Biomek NXp liquid handling platform (Beckman Coulter) according to 

Agencourt RNAdvance Tissue kit protocol. DNase I (Ambion, TX, USA) digestion to remove 

any genomic DNA was included in the purification process on the liquid handling platform. The 

quality and quantity of RNA was determined by spectrophotometry (NanoQuant Infinite 200, 

Tecan, Switzerland) and by running 1 µg RNA per sample on a 1.5 % agarose gel using a 

denaturing RNA loading dye (Thermo-Fermentas, MS, USA). Intact RNA is indicated by a 

single bright band without any smear because of a specific 28S RNA as known from other 

insect species [34]. The RNA content of all samples was normalized to 500 ng µL-1 on a 

Biomek 3000 liquid handling platform (Beckman Coulter) and 2.5 µg total RNA was used in 

20 µL reactions for cDNA synthesis using Superscript III (Invitrogen) and random hexameres 

equally mixed (v/v) with oligo dT primers (Invitrogen) according to manufacturer’s instructions. 

For DNA extractions, the powdery content of the tubes was suspended in lysis buffer 

provided with Agencourt DNAdvance kit and processed on a Biomek NXp liquid handling 

platform according to Agencourt DNAdvance kit protocol. After purification the samples were 

treated with RNase A (Ambion) in Tris-HCl buffer pH 8.0, and re-purified using Agencourt 

AMPure reagent (Beckman Coulter). The DNA was quantified by spectrophotometry; quality 

was assessed by running an aliquot on a 1.5 % agarose gel and samples were diluted to 

2.5 ng µL-1. 

 

4.2.4 Isolation of P450 and reference genes 

A degenerate primer PCR strategy was used to amplify CYP4 and CYP6 family 

specific regions of P450 genes as well as coding sequence regions of α-tubulin and actin. For 

this approach the same CYP specific primer pairs and PCR cycling conditions were used 

which recently resulted in the identification of eleven P450 genes including CYP6CM1 in the 

cotton whitefly, Bemisia tabaci [35]. For α-tubulin and actin degenerate primer pairs 

(supplemantary file1) were designed based on highly conserved regions among insect species 

determined by multiple alignment of several amino acid sequences (GenBank accession 

numbers for tubulin: AAF54067, AAF54433, EEZ99348, NP_001036884, XP_001120096, 

XP_001870369; and for actin: AAA28318, BAA74592, NP_001165844, XP_966960, 
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XP_976003). Degenerate PCR was conducted in 25 µL reaction mixtures containing 1 µL 

cDNA (20 ng), 10 µM of each degenerate primer and 12.5 µL DreamTaq PCR Master Mix 

(Thermo-Fermentas) containing Taq polymerase, 2x PCR buffer and 4 mM MgCl2 (2 mM final 

concentration). For actin and tubulin a nested PCR strategy was used, repeating the PCR with 

an inner primer pair using 0.5 µL of the primary PCR as a template. Samples were separated 

on a 1.2 % (w/v) Agarose/TAE gel and PCR products of the expected size (440bp and 390 bp 

for CYP4 and CYP6 sequences, and ~600bp and ~890 bp for actin and tubulin, respectively) 

were extracted from the gel. The nucleic acid was isolated from the gel slices by Wizard SV 

Gel kit (Promega, WI, USA) and cloned into pSC-A-amp/kan vector using Strataclone PCR 

cloning kit (Agilent Technologies, CA, USA). Resulting plasmids were purified from Minipreps 

using GeneJET plasmid kit (Thermo-Fermentas), and sequenced with an automated DNA 

sequencer ABI model 3700 using the ABI BigDye Terminator Cycle Sequencing kit and M13 

primers. Degenerate PCR was carried out on cDNA extracted from both pyrethroid resistant 

and susceptible pollen beetle populations. Amino acid sequence alignments were done by 

using Geneious v5.5 (www.geneious.com). 

4.2.5 Real time qRT-PCR and determination of P450 gene copy number 

Real time qRT-PCR was performed on a CFX-96 real time cycler (Bio-Rad 

Laboratories, CA, USA). Primer pairs were designed using Primer3 program [36] to amplify a 

fragment of 90-150 bp in size for each gene (supplemantary file2). Reaction mixtures (20 µL) 

contained 4 µL cDNA (5 ng), 10 µL of iQ SYBR Green Supermix (Bio-Rad Laboratories) and 

0.25 µM of each primer. Thermocycling conditions were 3 min at 95 °C followed by 40 cycles 

of 95 °C for 15 s, 57 °C for 15 s and 72 °C for 20 s. A final melt-curve step was included post-

PCR (ramping from 65°C-95°C by 0.5 °C every 5 s) to check for nonspecific amplification. 

Data analysis was performed with Bio-Rad CFX Manager 3.0 built in gene expression analysis 

module. Two reference genes, i.e. α-tubulin (GenBank KC840056.1) and actin (GenBank 

KC840045.1), were used for normalization according to ΔΔCt method [37]. Both reference 

genes were stably expressed in all strains as they had acceptable M-values and a low 

covariance, α-tubulin (0.671; CV 0.2409) and actin (0.614; CV 0.2236). For each primer pair 

used, a standard curve was made using triplicate dilutions covering a 1000 fold range (20-

0.02 ng), only primer pairs were used with a R2 ≥ 0.99 and a PCR efficiency > 90 % (see 

Table S2). PCR efficiency of individual targets was taken into account for gene expression 

analysis. Four independent biological replicates containing 15-20 beetles each were run in 

triplicate in each qRT-PCR experiment. A similar experimental design with gDNA as a 

template (10 ng per reaction) was used to determine the gene copy number of CYP6BQ23 in 

different pollen beetle strains. 
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4.2.6 Rapid amplification of cDNA ends (RACE) 

Five and three prime RACE was carried out using Invitrogen’s 5’RACE and 3’RACE 

System for Rapid Amplification of cDNA Ends and RLM-RACE kit (Ambion) following 

manufacturer’s protocols. For RACE purposes a cDNA pool of both pyrethroid resistant and 

susceptible strains was used. The details of the gene-specific primers used for RACE are 

listed in supplemantary file1. Single PCR products were extracted from the gel, purified, 

cloned and sequenced as described above. In order to prove the assembly the full length 

coding sequence of CYP6BQ23 was amplified by nested PCR using primers CYP6BQ23 F1, 

R1 and R2, respectively (Table S1). PCR reactions (20 µL) contained 1 µL cDNA (20 ng), 

0.5 µM of each primer and 10 µl Phusion Flash High-Fidelity PCR Master Mix (New England 

Biolabs, MA, USA) were subjected to cycling conditions of: 15 s at 98 °C followed by 30 cycles 

of 98 °C for 10 s, 62 °C for 15 s and 72 °C for 30 s and a final extension step at 72 °C for 1 

min. PCR products were purified using Agencourt AMPure reagent (Beckman Coulter) and 

directly sequenced using primers as detailed in supplemantary file1. 

4.2.7 Functional expression of CYP6BQ23 in Sf9 cells 

Meligethes aeneus full length CYP6BQ23 coding sequence of strain 79-10 (GenBank 

KC840055.1) and Musca domestica NADPH cytochrome P450 reductase (CPR) coding 

sequence (GenBank Q07994) were obtained by gene synthesis (Geneart, CA, USA). 

CYP6BQ23 and CPR sequence was inserted in pDEST8 expression vector (Invitrogen). 

PFastbac1 vector containing no foreign DNA was used to produce a control virus. The 

recombinant baculovirus DNA was constructed and transfected to Sf9 insect cells (Gibco) 

using Bac-to-Bac baculovirus expression system (Invitrogen) according to manufacturer’s 

instructions. The titer of the recombinant viruses was determined following standard protocols 

of the supplier. Sf9 cells were maintained in suspension culture under serum-free conditions 

(SF-900 II SFM, Gibco) at 27 °C containing 25 µg mL-1 gentamycin (Gibco). Insect cells grown 

to a density of 2 x 106 cells mL-1 were co-infected with recombinant baculoviruses containing 

CYP6BQ23 and CPR with various MOI (multiplicity of infection) ratios to check out best 

conditions. Control cells were co-infected with the baculovirus containing vector with no insert 

(ctrl-virus) and the recombinant baculovirus only expressing CPR using the same MOI ratios 

as described above. Ferric citrate and δ-aminolevulinic acid hydrochloride was added to a final 

concentration of 0.1 mM at the time of infection and 24 h after infection to compensate the low 

levels of endogenous heme in the insect cells. After 60 h cells were harvested and washed 

with PBS, and the microsomes of the membrane fraction were prepared according to standard 

procedures and stored at −80 °C [38]. CYP6BQ23 expression and functionality was estimated 

by measuring CO-difference spectra in reduced samples [39].  
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4.2.8 Enzyme activity determination 

CYP6BQ23 enzymatic activity was confirmed by its O-dealkylation and O-dearylation 

activity on a range of fluorescence model substrates (50 µM, 0.1 M Na-phosphate buffer 

pH 7.6, 0.1 % DMSO) using CYP6BQ23 microsomes in a 96-well plate with the prepared 

microsomes of CYP6BQ23/NADPH CPR (10 µg in 50 µL assay volume, containing 1 mM 

NADPH; 30 min incubation at 27 °C while shaking at 800 rpm). After adding 100 µl 

DMSO:TRIZMA-base buffer 50 % (v/v), 0.05 M, pH 10 into the wells the fluorescence was 

measured with a Spectra Max M2 reader (Molecular Devices) at the appropriate 

excitation/emission wavelength settings according to manufacturer instructions (Invitrogen). 

The activity of CYP6BQ23 microsomes was compared to control microsomes obtained from 

Sf9 cells infected with recombinant baculovirus containing only CPR. Protein content of 

samples was determined according to BRADFORD [40] using bovine serum albumin as a 

reference. 

4.2.9 Pyrethroid metabolism and UPLC MS/MS analysis 

Deltamethrin metabolism was assayed by incubation of the recombinant 

CYP6BQ23/CPR (2 pmol P450 per assay) or ctrl-virus/CPR microsomes in 0.1 M potassium 

phosphate buffer with an NADPH-regenerating system (Promega; 1.3 mM NADP+, 3.3 mM 

glucose-6-phosphate, 3.3 mM MgCl2, 0.4 U mL-1 glucose-6-phosphate dehydrogenase) and 

12.5 µM deltamethrin (0.8 – 25 µM for Michaelis-Menten kinetics) at 27 °C for 1 h. The 

metabolism auf tau-fluvalinate was measured under the same conditions but incubated at 

27 °C for 240 min due to its slower degradation. The total assay volume was 200 µL using 

three replicates for each data point. Initial experiments were repeated twice with different 

batches of recombinant CYP6BQ23/CPR microsomes. Microsomes incubated without NADPH 

served as a control. The assay was quenched by the addition of ice-cold acetonitrile (to 80 % 

final concentration), centrifuged for 10 min at 3000 g and the supernatant subsequently 

analyzed by tandem mass spectrometry as recently described in ZHU [24]. Recovery rates of 

deltamethrin using microsomal fractions without NADPH were normally close to 100 %. 

Deltamethrin turnover from two independent reactions were plotted vs. controls. Michaelis-

Menten kinetic was analyzed using GraphPad Prism version 5 (GraphPad Software, CA, 

USA).  

4.2.10 P450 modelling and substrate docking 

The molecular model of CYP6BQ23 was created using the Orchestrar Suite module 

within the molecular modelling software SYBYLx2.0 (Certara, L.P., St. Louis, USA) based on 

the crystal structure of human CYP3A4 (Yano et al., 2004; PDB-ID:1TQN). This template 

structure was chosen because of its close homology to the CYP6BQ23 sequence. The 
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resulting raw model was subjected to an energy minimization using the AMBER force field 

2002 within SYBYLx2.0, to remove distortions and unallowed van der Waals contacts resulting 

from the molecular modeling process. The docking of the pyrethroids deltamethrin and tau-

fluvalinate into the active site of CYP6BQ23 was realized by using the software LeadIt 

Release 2.1.3 from BioSolveIT (St. Augustin, Germany). A pharmacophoric constraint was 

applied which allowed only positions, where any heavy atom of the ligands is within a 3.5Å 

radius distance of the CYP6BQ23 heme iron centre. Thus, for deltamethrin in total 191 

possible orientations were obtained, whereas for tau-fluvalinate 112 orientations were 

calculated.  All obtained orientations were additionally assessed with the HYDE post-scoring 

function as recently described [41]. These results allowed to predict the most likely ligand 

orientations of both deltamethrin and tau-fluvalinate for 4-hydroxylation in the active site of 

CYP6BQ23.  

4.3 Results 

4.3.1 Identification of pollen beetle P450 and reference genes 

The degenerate CYP4 and CYP6 primer PCR approach resulted in ten gene 

fragments of approximately 440bp and 390bp in length, respectively. Subsequent cloning in 

sequencing revealed that all fragments are assumed to represent real P450 sequences as 

they all contain the conserved EXXR helix K-motif and the PXRF motif in the deduced amino 

acid sequence. The amino acid identity between the obtained three CYP6-like sequences 

ranged from 49.6 to 52.8 % (60.6 to 64.1 % nucleotide identity). The amino acid identity 

between the seven CYP4-like sequences ranged from 42.3 to 68.5 % (26.6 to 68.8 % 

nucleotide identity). This clearly indicates that all isolated sequences represent unique gene 

fragments, rather than allelic variants. The BLASTp alignment received for all sequences 

revealed P450s of three different coleopteran species as best hits. Most of the hits returned 

for P450s from Tribolium castaneum (red flour beetle), followed by Dendroctonus ponderosae 

(mountain pine beetle) and Brontispa longissima (coconut leaf beetle). All CYP6-like 

sequences seemed to be related to only one subfamily, CYP6B, whereas the CYP4-like 

sequences are related to three subfamilies, i.e. CYP4B, CYP4H and CYP4Q. The best 

sequence identity scores based on deduced amino acid sequences were obtained for P450s 

from T. castaneum (Table 8). PCR products of the degenerate PCR strategy for actin- and 

tubulin-like sequences were 509 bp and 602 bp in length, respectively. After cloning and 

sequencing the most similar BLASTp hits for the isolated M. aeneus actin- and tubulin 

fragments were partial sequences of beta-actin of Nasutitermes takasagoensis (Isoptera: 

Termitidae) with 98.8 % amino acid identity (GenBank BAI22849) and alpha-tubulin of 

Teleopsis dalmanni (Diptera: Diopsidae) showing 100 % amino acid identity (GenBank 
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AFM80094) respectively. The partial sequences for M. aeneus actin (GenBank KC840045.1) 

and M. aeneus tubulin (GenBank KC840056.1) were submitted to GenBank. 

Table 8 Sequence identity calculated from BLASTp alignments of M. aeneus partial (helix I 

to heme binding region) CYP4, CYP6 and CYP6BQ23 deduced amino acid 

sequences to their most similar cytochrome P450 in T. castaneum. 

P450 
family

a
 

Most similar P450 in T. castaneum  

(GenBank accession no.) 
E-value 

% Pairwise 

AA Identity 

Assigned M. aeneus name 
(GenBank accession no.) 

CYP6 

CYP6BQ10 (NP_001164249) 1e -166 53.0 CYP6BQ23
 
(KC840055.1) 

CYP6BK5 (EFA12633) 1.91e -50 59.2 CYP6-like 1 (KC840047.1) 

CYP6BQ13 (EEZ99338) 8.75e -51 63.1 CYP6-like 2 (KC840046.1) 

     

CYP4 

CYP4BN1 (NP_001123993) 1.52e -51 59.3 CYP4-like 1 (KC840051.1) 

CYP4H10 (NP_001107836) 3.07e -53 56.5 CYP4-like 2 (KC840054.1) 

CYP4Q6 (XP_970404) 4.04e -50 57.1 CYP4-like 3 (KC840048.1) 

CYP4Q9( NP_001107850) 2.59e -62 64.4 CYP4-like 4 (KC840053.1) 

CYP4BN1 (NP_001123993) 2.19e -53 59.4 CYP4-like 5 (KC840049.1) 

CYP4BN1 (NP_001123993) 4.04e -54 62.8 CYP4-like 6 (KC840052.1) 

CYP4Q2 (NP_001107846) 4.12e -57 61.3 CYP4-like 7 (KC840050.1) 

a 
CYP family was assigned based on BLASTp hits (except for CYP6BQ23) 

 

4.3.2 Expression of P450 genes in different strains of M. aeneus 

The gene expression level of each P450 gene was checked by qRT-PCR on mRNA isolated 

from a number of pollen beetle strains collected from different regions in Europe. Two of the 

strains were completely susceptible (s) to pyrethroids (70-10 and 127-10) and all others were 

recently described as highly resistant (r) to pyrethroids showing resistance ratios >100-fold 

[10]. Only a single P450, CYP6BQ23 was significantly overexpressed in all pyrethroid 

resistant strains, but not in the two susceptible strains (Table 9). In strain 127-10 (s) some 

P450 genes are significantly down-regulated, but no difference in CYP6BQ23 expression 

compared to the original pyrethroid susceptible reference strain 70-10. A more detailed 

secondary screening was carried out to correlate the extent of pyrethroid resistance (based on 

in vivo bioassay results) and the expression level of CYP6BQ23 mRNA in the same strains 

(Table 10). In total 13 pollen beetle strains from 8 different European countries were re-

analyzed and we obtained a significant correlation between the recently calculated resistance 

ratio based on LC50-values for lambda-cyhalothrin and fold change in expression level (ΔΔCq) 

for CYP6BQ23 (r = 0.79, F = 18.7, p-value = 0.0012). The remarkably high expression level of 

CYP6BQ23 in pyrethroid resistant strains of M. aeneus was confirmed using a second primer 

set (Table S2). In conclusion our results suggest a significant link between overexpression of 
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CYP6BQ23 and pyrethroid resistance level irrespective of the geographic origin of the strain. 

In a subsequent analysis we also correlated the expression level of CYP6BQ23 in a different 

set of strains recently analyzed for pyrethroid resistance based on adult vial tests and 

formation of 4-hydroxy deltamethrin in their microsomal preparations [18]. Once again we 

obtained a clear correlation between in vivo bioassays, in vitro deltamethrin metabolism and 

fold change in CYP6BQ23 expression (Fig. 34). Finally we investigated the expression level of 

CYP6BQ23 in pollen beetle adults and larvae of individual strains collected in Germany and 

known to be resistant to pyrethroids [33]. Again CYP6BQ23 expression was significantly 

elevated in all three strains in both adults (ΔΔCq 174.99-365.47) and 2nd instar larvae (ΔΔCq 

130.66-251.27) (Fig. 35).  

 

Fig. 34 Pearson correlation between CYP6BQ23 fold change in expression level and 

pyrethroid resistance in different pollen beetle populations (A) in vivo based on LC50-

values for lambda-cyhalothrin obtained in an adult vial test (24 h), and (B) in vitro 

based on 4-OH-deltamethrin formation in microsomal preparations. The level of 

CYP6BQ23 transcripts was determined in this study in pollen beetle populations 

frozen at -80 °C and recently characterized for pyrethroid resistance in another study 

(see Chapter 2). 
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Table 9 Fold change in expression of ten P450 genes in pyrethroid resistant (r) and susceptible (s) strains of Meligethes aeneus. 

Strain 

 

 

 

 

 

ΔΔCq (fold) 

 ± SEM 

CYP6BQ23 CYP6-like 1 CYP6-like 2 CYP4-like 1 CYP4-like 2 CYP4-like 3 CYP4-like 4 CYP4-like 5 CYP4-like 6 CYP4-like 7 

70-10
a
 s 1 ± 0.501 1 ± 0.122 1 ± 0,218 1 ± 0.362 1 ± 0.119 1 ± 0.272 1 ± 0.163 1 ± 0.249 1 ± 0.229 1 ± 0.163 

127-10 s 1.45 ± 0.224 0.382 ± 0.08 0.159 ± 0.029* 0.455 ± 0.2 0.204 ± 0.013* 0.469 ± 0.166 0.102 ± 0.016** 2.26 ± 0.583* 0.52 ± 0.063 0.185 ± 0,004** 

8-10 r 491 ± 169*** 1.44 ± 0.173 0.503 ± 0.04 1.07 ± 0.669 0.687 ± 0.181 0.625 ± 0.073 0.495 ± 0.06 1.67 ± 0.403 1.02 ± 0.023 0.678 ± 0.042 

57-10 r 548 ± 82.0*** 0.874 ± 0.052 0.632 ± 0.039 1.18 ± 0.526 1.10 ± 0.247 0.705 ± 0.096 0.503 ± 0.04 2.42 ± 0.682 1.22 ± 0.122 0.743 ± 0.045 

68-10 r 337 ± 87.0*** 0.513 ± 0.105 0.725 ± 0.253 0.307 ± 0.042 1.10 ± 0.302 0.69 ± 0.133 1.19 ± 0.064 1.80 ± 0.288 1.08 ± 0.205 0.501 ± 0.171 

79-10 r 938 ± 62.6*** 1.33 ± 0.22 0.911 ± 0.127 2.29 ± 1.33 0.81 ± 0.119 1.30 ± 0.104 1.49 ± 0.341 1.51 ± 0.476 0.669 ± 0.079 0.711 ± 0.051 

96-10 r 493 ± 81.5*** 1.58 ± 0.559 0.433 ± 0.124 4.39 ± 1.72 0.979 ± 0.115 0.834 ± 0.05 0.862 ± 0.105 3.23 ± 1.63 1.59 ± 0.5 1.06 ± 0.22 

106-10 r 549 ± 117*** 0.878 ± 0.288 0.584 ± 0.111 2.57 ± 1.24 0.861 ± 0.095 1.21 ± 0.382 0.682 ± 0.07 126 ± 0.325 0.742 ± 0.03 0.807 ± 0.155 

120-10 r 269 ± 85.2*** 2.15 ± 0.943 0.627 ± 0.187 2.33 ± 0.995 0.63 ± 0.193 1.74 ± 0.26 1.03 ± 0.064 1.19 ± 0.492 1.04 ± 0.125 1.02 ± 0.192 

 a
 Reference strain 70-10 (Ukraine, susceptible);  

Significance: *** P value < 0.001; ** P value < 0.01; *P value < 0.05 (all other changes in gene expression are not significantly different from reference strain 70-10) 
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Table 10 Relation between CYP6BQ23 expression and pyrethroid resistance in Meligethes aeneus. 

Strain Country 
LC50, ng cm

-2
 

(field rate %)
b
 

95% FL
c
   RR

d
  MCqE

e
 ΔΔCq

f
  

Expression 
SEM 

P-value 

70-10
a
 Ukraine 0.1 (0.1) 0.1-0.1 1 27.52 1 0.164 N/A 

91-11 Ukraine Not tested - - 27.32 1.085 0.192 > 0.05 

127-10 Finland 0.8 (1.1) 0.4-1.4 8 26.76 1.630 3.869 > 0.05 

84-09 Austria 0.8 (1.1) 0.6-1.2 8 25.18 4.541 0.677 < 0.001 

67-09 Austria 1.0 (1.4) 0.8-1.4 10 24.39 15.633 5.153 < 0.01 

128-10 Finland 1.2 (1.6) 0.4-2.8 12 25.51 10.482 0.190 < 0.01 

107-10 Czechia 3.7 (5) 2.3-6.1 37 21.89 107.172 7.207 < 0.0001 

8-10 France 15.5 (20.6) 4.9-45 155 18.59 633.539 107.105 < 0.0001 

120-10 Sweden 16.2 (21.6) 11.9-21.9 162 19.66 490.672 37.573 < 0.0001 

96-10 Poland 23.1 (30.8) 8.8-57.5 231 18.17 750.482 8.741 < 0.0001 

106-10 Czechia 36.9 (49.2) 18.8-69.4 369 18.49 803.836 54.880 < 0.0001 

68-10 Germany 38.3 (51.1) 13.1-108.8 383 19.75 325.105 14.796 < 0.0001 

82-10 Germany 50.6 (67.4) 25.5-93.8 506 18.68 613.662 37.549 < 0.0001 

a
 Susceptible reference strain 

b 
Rounded LC50 values for lambda-cyhalothrin in an adult vial test (data taken from [10]); the manufacturer recommended field rate for lambda-cyhalothrin is 7.5 g ha

-1
  

c
 95% fiducial limits  

d
 resistance ratio (LC50 value of strain x divided by LC50 value of strain 70-10)  

e
 MCqE = Mean Efficiency Corrected Cq  

f
 ΔΔCq = fold change in expression. 
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Fig. 35 CYP6BQ23 fold change expression in adults and larvae of pyrethroid resistant pollen 

beetle (collected in Germany in 2011) compared to a highly susceptible strain 70-10 

(Ukraine, data not shown). Data are mean values ± SEM (n=4). 

4.3.3 Gene copy number 

Quantitative PCR was used to compare CYP6BQ23 gene copy number in six pollen 

beetle strains, i.e. 70-10 (s), 25-10 (r), 79-10 (r), 106-10 (r), 120-10 (r) and 127-10 (s) using 

genomic DNA as a template. Data were normalized using two genes: M. aeneus actin and 

tubulin as described above. Even though the exact copy number for these reference genes is 

not known they have been used due to the lack of other sequence information, because the 

method is based on relative (s vs. r) rather than absolute quantification. No significant 

difference between pyrethroid susceptible and resistant strains was observed (fold change in 

copy number range from 0.985 to 1.461 for tubulin, and 0.956 to 1.522 for actin), indicating 

that the CYP6BQ23 gene is most likely not amplified or duplicated. 

4.3.4 CYP6BQ23 cDNA characterization 

The partial sequence of ~390bp of CYP6BQ23 obtained by degenerate PCR and 

represented by 10 clones of the resistant strain 79-10 was subjected to 3' and 5' RACE to 

obtain the complete cDNA sequence. The resulting CYP6BQ23 cDNA sequence (GenBank 

KC840055.1) contains an open reading frame of 1566 bp open reading frame (ORF) encoding 

a putative protein containing 522 amino acid residues (Fig. 36). Its calculated molecular 

weight is 59,460 Da and the predicted isoelectric point is 8.2. A BLASTp search indicated that 

CYP6BQ23 shows highest pairwise amino acid similarity with T. castaneum CYP6BQ10 

(GenBank NP_001164249), i.e. 53 % identity. The amino acid alignment revealed that the 

encoded protein contains a hydrophobic N- terminal domain that likely acts as a 

transmembrane anchor typical for microsomal monooxygenases. Furthermore the deduced 

amino acid sequence contains a number of conserved domains characteristic for P450 
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proteins such as the WxxxR motif (helix C), the oxygen binding motif of helix I 

(A/GGxE/DTT/S), the helix K motif (ExLR), the PxRF motif located after helix K and the heme-

binding ‘‘signature’’ motif (PFxxGxxxCxG), as well as 6 predicted substrate recognition sites 

(SRS). Variation in the sequence of CYP6BQ23 in several pollen beetle strains was examined 

by both direct sequencing and by cloning and sequencing a ~2040 bp fragment containing the 

full length ORF encoding for CYP6BQ23 and most of the 5’ and 3’UTR. The obtained 

fragments showed a 98.7 % and 99.6 % pairwise identity at nucleotide and amino acid level, 

respectively. In total seven non-synonymous SNP´s were detected resulting in amino acid 

changes at positions 96, 156, 160, 174, 251, 420 and 443, but no obvious link to pyrethroid 

resistant or susceptible phenotypes could be found (Fig. 36; supplemantary file 3).  

 

Fig. 36 Deduced amino acid sequence of Meligethes aeneus CYP6BQ23. Amino acid 

substitutions are indicated by a grey box below the sequence. The predicted 

transmembrane region is indicated by an arrow (position 12). Conserved domains 

common to cytochrome P450s such as the helix C motif (position 135), the helix I 

motif (position 324), the helix K motif (position 382), the PXRF motif (position 438) 

and the heme binding motif (position 456) as well as proposed substrate recognition 

sites (SRS) are indicated. Boxed amino acid residues constitute the binding site of 

the CYP6BQ23 protein model, and are defined by a distance of ≤3.5Å from any atom 

of both deltamethrin and tau-fluvalinate substrates docked to the active site. 
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4.3.5 Functional expression of CYP6BQ23 and metabolism studies 

CYP6BQ23 was recombinantly co-expressed with cytochrome P450 reductase (CPR) 

of M. domestica in Sf9 cells using a baculovirus expression system. The reduced CO-

difference spectrum of CYP6BQ23 microsomes showed a distinct peak at 450.3nm. The 

prepared microsomes contained a P450 concentration of 193 nmol mg-1 protein (data not 

shown). The functional activity of CYP6BQ23 was tested with a broad range of fluorescent 

model substrates and revealed that the recombinantly expressed protein is catalytically active 

(Fig. 37). The specific activity of CYP6BQ23 was highest with the artificial substrate BOMFC, 

i.e. 50.5 ± 0.13 pmol min-1 mg-1 protein (equal to 0.52 ± pmol min-1 pmol-1 P450 ± 0.0231). The 

results seem to suggest a preference of CYP6BQ23 for bulkier molecules such as BOMFC, 

BFC and BOMR, whereas well-known standard substrates such as 7-ethoxycoumarin were 

practically not metabolized (Fig. 37).  

 

Fig. 37 Metabolism (O-dealkylation/dearylation) of different artificial coumarin and resorufin 

substrates by functionally expressed CYP6BQ23. Data are mean values ± SD (n=4). 

Abbreviations: BFC, 7-benzyloxy-4-trifluoromethyl coumarin; MFC, 7-methoxy-4-

trifluoromethyl coumarin; EFC, 7-ethoxy-4-trifluoromethyl coumarin; BOMFC, 7-

benzyloxymethoxy-4-trifluoromethyl coumarin; BOMCC, 7-benzyloxymethoxy-3-

cyano coumarin; PC, 7-n-pentoxy coumarin; EC, 7-ethoxy coumarin; BOMR, 7-

benzyloxymethoxy resorufin; ER, 7-ethoxyresorufin; BR, 7-benzyloxyresorufin; MR, 

7-methoxyresorufin; PR, 7-n-pentoxyresorufin. 
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The metabolism of deltamethrin was measured by LC-MS/MS detection and 

quantification of its metabolite 4-hydroxy deltamethrin. The detection limit under the analytical 

conditions chosen for both deltamethrin and its 4-hydroxy metabolite was 0.1 ng ml-1, so even 

very low metabolic rates could be detected. CYP6BQ23 microsomes incubated with 

deltamethrin in the absence of NADPH (even for prolonged times) did not show any metabolic 

activity as no 4-hydroxy deltamethrin was detected (Fig. 38), whereas incubations in the 

presence of NADPH resulted in the formation of 4-hydroxy deltamethrin (0.494 ± 0.039 pmol 

min-1 pmol-1 P450). Based on protein content Sf9 microsomes containing CYP6B23/CPR 

metabolized deltamethrin at a rate of approx. 60 pmol min-1 mg-1, whereas virus-control 

(+CPR) Sf9 microsomes show a fairly low turnover of 2.05 ± 0.14 pmol min-1 mg-1 protein, i.e. 

30-fold lower efficiency. This result confirms the metabolism of deltamethrin by recombinantly 

expressed CYP6BQ23.  

 

 

Fig. 38 UPLC-MS analysis of deltamethrin and its 4-hydroxy metabolite after incubation with 

microsomes isolated from Sf9-cells recombinantly expressing CYP6BQ23: Incubation 

of 2.5 nmol deltamethrin for 60min in the presence of NADPH (top); incubation of 

2.5 nmol deltamethrin for 240 min in the absence of NADPH (bottom).  
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The rate of deltamethrin hydroxylation by recombinantly expressed CYP6BQ23 is time-

dependent and followed Michaelis–Menten kinetics in response to deltamethrin concentration 

resulting in a Km value of 9.51 ± 1.35 µM and a catalytic activity Kcat of 0.917 ± 0.057 pmol min-

1 pmol-1 P450 (Fig. 39). In a second set of experiments utilizing Michaelis–Menten kinetics we 

were able to show that both tau-fluvalinate and lambda-cyhalothrin competitively inhibit the 

formation of 4-hydroxy deltamethrin when co-incubated with different concentrations of 

deltamethrin, and as a result Km-values change dramatically (Fig. 40). The finding that tau-

fluvalinate is likely to compete with deltamethrin binding to the catalytic site of recombinantly 

expressed CYP6BQ23 is supported by the fact that we were able to detect 4-hydroxy tau-

fluvalinate, when incubating CYP6BQ23 microsomes with tau-fluvalinate. Analysis of samples 

subjected to ESI-TOF high resolution MS/MS clearly revealed the presence of 4-hydroxy tau-

fluvalinate and several characteristic fragments (Fig. 41), providing confirmation that 

CYP6BQ23 is capable of metabolizing both deltamethrin and tau-fluvalinate by 4-

hydroxylation of the pyrethroid alcohol moiety. 

 

  

 

Fig. 39 Michaelis-Menten kinetics of deltamethrin hydroxylation by recombinantly expressed 

CYP6BQ23 analyzed by non-linear regression. Data points are mean values ± SEM 

(n=3). 
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Fig. 40 Lineweaver–Burk plot showing the competitive inhibition of CYP6BQ23-catalyzed 

deltamethrin hydroxylation by different concentrations of tau-fluvalinate and lambda-

cyhalothrin (1h incubation at 27°C). [s] = µM deltamethrin. 

 

 

Fig. 41 ESI-TOF high resolution MS/MS-spectrum of 4-hydroxy tau-fluvalinate resulting from 

incubations of tau-fluvalinate with recombinantly expressed CYP6BQ23. The 

molecular ion [M+H]+ is detected at m/z 519.13. ∆m is the mass difference in milli-

Dalton of the detected fragment vs. its theoretical molecular mass. 
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4.3.6 CYP6BQ23 modelling and substrate docking 

The results obtained from microsomal incubations containing recombinantly expressed 

CYP6BQ23 are supported by molecular modelling studies. A protein model of CYP6BQ23 

based on the crystal structure of CYP3A4 was generated and in silico docking studies with 

both deltamethrin and tau-fluvalinate helped to rationalize the experimental findings with 

regard to their hydroxylation of the phenoxybenzyl 4´ site (Fig. 42). The predicted binding site 

of CYP6BQ23 easily accommodates both pyrethroids and Arg112 and Phe128 of SRS1 are 

supposed to be most important in relation to the correct orientation of both substrates. 

However docking simulations support 4-hydroxylation as a major mechanism of deltamethrin 

as well as tau-fluvalinate metabolism, albeit the catalytic reactivity is potentially greater with 

deltamethrin as it docks closer to the oxygen coordinated heme center of the active site of 

CYP6BQ23 (Fig. 42B). 

 

A       B  

 

Fig. 42 (A) Binding site model showing the predicted substrate-binding mode of deltamethrin 

in Meligethes aeneus CYP6BQ23 protein. The predicted structure of CYP6BQ23 is 

based on the crystal structure of human CYP3A4 (PDB-ID: 1TQN). Amino acid 

residues shown constitute the binding site defined by a distance of ≤3.5Å from any 

atom of deltamethrin shown in light blue elemental stick format on the ribbon 

backbone. Amino acids predicted to be most critical for the observed substrate 

orientation and docking are R112/F128 (SRS1), F224 (SRS2) and V320 (SRS3). (B) 

Docking models of CYP6BQ23 with both deltamethrin and tau-fluvalinate in light blue 

and yellow elemental stick format, respectively. For the sake of clarity the amino acid 

residues forming the active site within a distance of ≤3.5Å from any atom of both 

substrates are not shown, but the predicted binding mode and best-ranked docking 

for 4-hydroxylation with the distance to O coordinated to Fe indicated. 
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4.4 Discussion 

The main aim of this study was to identify the molecular mechanism(s) driving 

metabolic resistance to pyrethroid insecticides in M. aeneus, a destructive coleopteran pest of 

European oilseed rape production. As a consequence of increased resistance problems with 

pyrethroids, insecticides with different modes of action were tested [42], and subsequently 

introduced such as the neonicotinoid thiacloprid, acting agonistically on insect nicotinic 

acetylcholine receptors [43]. 

Several resistance monitoring projects revealed the spread of pyrethroid resistance in 

pollen beetle all over Europe [9,10]. However, it was only recently that elevated levels of 

microsomal monooxygenase activity coupled with increased deltamethrin metabolism was 

described as a mechanism of resistance which significantly correlates with pyrethroid 

resistance in pollen beetle collected from a wide geographic range [18]. Pyrethroid resistance 

in pollen beetle often easily exceeds resistance ratios of 500-fold based on pyrethroid contact 

bioassays [10], so the metabolic mechanism expressed by pollen beetles seems well able to 

confer strong levels of resistance. Similar cases of P450-mediated resistance have recently 

been described in other insect pests including B. tabaci [35,44,45], Myzus persicae [46], 

Nilaparvata lugens [47], T. castaneum [24], M. domestica [48] and Trialeurodes vaporariorum 

[49]. In these cases a single P450 of the CYP6 family was shown to be associated with 

resistance to insecticides belonging to different chemical classes, and in some cases 

functional evidence was provided that the candidate gene identified encodes a P450 protein 

which metabolizes the insecticide of interest, e.g. CYP6CM1 of B. tabaci was shown to 

metabolize imidacloprid and CYP6BQ9 of T. castaneum detoxifies deltamethrin [24,44].  

Out of the ten P450 partial gene sequences identified in this study only one, 

CYP6BQ23 could be correlated with high levels of pyrethroid resistance in M. aeneus. Despite 

this finding we cannot exclude the possibility that other CYP6BQ enzymes are overexpressed 

in resistant strains in addition to CYP6BQ23 but were not identified by the degenerate primers 

used in our PCR approach. Due to the lack of transcriptomic data for M. aeneus we resorted 

to an approach recently used to successfully identify CYP6CM1 as the major P450 conferring 

neonicotinoid resistance in B. tabaci [35]. However, based on pairwise amino acid similarity 

CYP6BQ10 of T. castaneum shows the highest identity to CYP6BQ23, followed by CYP6BQ9 

recently described as a brain-specific P450 conferring deltamethrin resistance [24]. Similar to 

recombinantly expressed CYP6BQ23, CYP6BQ9 was shown to metabolize deltamethrin to 4-

hydroxy deltamethrin. Considering deltamethrin metabolism in insects, the phenoxybenzyl 4´ 

site is also described in other studies to be the major site of hydroxylation in deltamethrin 
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metabolism, for example CYP6M2 catalyzes 4-hydroxylation as a main route of deltamethrin 

detoxification in the malaria vector Anopheles gambiae, whereas hydroxymethyl deltamethrin 

was described as a minor metabolite [25]. The CYP6M2 Km and Kcat values of 2.0 µM and 

1.2 min-1 reported for deltamethrin are similar to those values obtained for CYP6BQ23. 

CYP6P9 of Anopheles funestus was also shown to metabolize deltamethrin as well as other 

pyrethroids such as permethrin and bifenthrin as measured by substrate depletion [28]. 

However no primary metabolites were included as standards or elucidated by structural 

analysis, so it remains unclear whether the observed substrate depletion of highly hydrophobic 

pyrethroids provided by CYP6P9 is due to sequestration or indeed metabolism. Furthermore a 

series of CYP9J P450s of Aedes aegypti were also shown to metabolize pyrethroids with 

CYP9J32 showing the strongest detoxification of deltamethrin and again kinetic parameters 

were in a similar range to those we described in this paper for CYP6BQ23 [29]. CYP6BQ23 

was shown to hydroxylate the phenoxybenzyl 4´ site of deltamethrin and it would be 

interesting in future studies to examine its capability to sequentially metabolize deltamethrin 

and other pyrethroids as recently shown for CYP6M2 [25]. Other P450s such as CYP6Z8 of A. 

aegypti was recently shown to play a pivotal role in processing deltamethrin metabolites 

resulting from esterase mediated metabolism, i.e. phenoxybenzyl-alcohol and –aldehyde [50]. 

Apart from CYP6BQ23 there is only one more P450 from an agricultural pest, which was 

shown to metabolize pyrethroids when functionally expressed: CYP337B3 in Australian 

Helicoverpa armigera which resulted from an equal crossing-over of two parental P450s and 

was recently shown to 4-hydroxylate fenvalerate when functionally expressed in Ha2302 cells 

[27].  

Only a few P450s were yet shown to metabolize tau-fluvalinate, a pyrethroid not used 

for vector control due to its lower overall efficacy and limited knockdown properties compared 

to other pyrethroids [7]. Our study presents the first description of 4-hydroxylation of tau-

fluvalinate by a functionally expressed P450 derived from a major agricultural pest. However 

4-hydroxylation was recently described by CYP9Qs from Apis mellifera in order to investigate 

the selectivity of tau-fluvalinate as it is particularly used for Varroa mite control in bee hives 

without affecting honeybees [51]. The metabolic fate of tau-fluvalinate is well understood in 

vertebrates such as rats and P450 mediated formation of 4-hydroxy tau-fluvalinate is an 

important initial step in its degradation [52]. It is interesting that our CYP6BQ23 modelling 

coupled with substrate docking simulations for both deltamethrin and tau-fluvalinate suggests 

to some extent a lower catalytic activity towards the latter due to the higher distance of the 

phenoxybenzyl 4´site to the heme iron. It has been shown that tau-fluvalinate is less affected 

by microsomal oxidation in pollen beetles expressing high resistance to lambda-cyhalothrin, 

however, cross-resistance between these insecticides has been described, albeit at a 
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somewhat lower level than between deltamethrin and tau-fluvalinate [18]. It would be 

interesting therefore to look for additional P450s in M. aeneus being more specific for tau-

fluvalinate, as increasing resistance to this pyrethroid was recently reported in some German 

populations [20]. In relation to this it has been recently shown that Danish and Swedish M. 

aeneus populations compromise field efficacy of tau-fluvalinate against pollen beetle by 

expressing kdr-like target-site resistance in combination with elevated levels of oxidative 

detoxification [17].  

The metabolism profile of fluorescent model substrates by CYP6BQ23 suggests a 

preference for bulkier substrates being O-dearylated rather than smaller ones being O-

dealkylated. CYP6BQ23 shows the highest activity with BOMFC, followed by BFC and BOMR. 

However it is not clear yet if these substrates could serve as non-pyrethroid probes to monitor 

for the presence of elevated P450 activity conferring pyrethroid resistance. BOMR was 

recently also shown an excellent substrate for functionally expressed CYP6BQ9 metabolizing 

deltamethrin in T. castaneum [24]. STEVENSON et al. [29] also investigated the metabolism of a 

number of fluorescent substrates by A. aegypti and A. gambiae P450s and concluded that 

non-pyrethroid metabolizing CYP6Z2 showed a marked preference for smaller probe 

substrates which was in contrast to pyrethroid-metabolizing CYP6P3 and CYP6M2 which 

preferred bulkier substrates. Recently BFC was also demonstrated to be a preferred substrate 

for CYP6Z8 of A. aegypti [50]. 

CYP6BQ23 is several hundred folds overexpressed suggesting a fairly high 

concentration in pollen beetle microsomes resistant to pyrethroids. This may be a mechanism 

of compensation for the somewhat lower catalytic rate of deltamethrin detoxification of this 

P450 compared to other insect P450s especially those from mosquitoes.. The molecular 

mechanisms explaining the evolutionary origin of CYP6BQ23 and those driving the 

constitutive overexpression of CYP6BQ23 in resistant M. aeneus are not known, but we show 

that overexpression does not result from gene amplification, a mechanism shown to drive 

overexpression of CYP6CY3 in neonicotinoid resistant M. persicae [46]. Similarly tandemly 

duplicated CYP6P9 P450s in A. funestus were shown to drive pyrethroid resistance [30]. An 

interesting case of gene duplication and parallel evolution of cis-acting genomic changes by 

insertion of the retrotransposon accord resulting in the upregulation of Drosophila 

melanogaster Cyp6g1 expression, which confers resistance to DDT, has recently been 

reviewed [53]. Another cis-regulatory motif was recently described that enhances the 

expression of CYP9M10 in larvae of Culex quinquefasciatus and is associated with pyrethroid 

resistance. In this case the regulatory element was only present upstream of CYP9M10 in 

resistant strains where it was shown to drive 10-times higher expression of a fluorescent 

reporter gene [54].  
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It is possible that the CYP6BQ23 mediated resistance mechanism in M.aeneus 

evolved independently in different geographic areas since the dispersal rate of M. aeneus is 

limited as they normally overwinter close to the sites where they feed during spring/summer 

time [2]. To examine this possibility and to check for overexpression of P450 genes other than 

CYP6BQ23 it would be useful to carry out a transcriptomic analysis of pollen beetle 

populations from different areas. Such an analysis may also disclose other P450s that 

together with CYP6BQ23 contribute to the sequential detoxification of pyrethroids in pollen 

beetle populations throughout Europe. In combination with the present work such studies will 

provide a better understanding of how to manage insecticide resistance in M. aeneus and so 

contribute to sustainable oilseed production in Europe.  

 

Supplementary files 

The supplementary files mentioned in this chapter can be found in appendix A.  
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Abstract 

Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest 

of oilseed rape in many European countries. Winter oilseed rape is cultivated on several 

million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen 

beetle populations has resulted in high selection pressure and subsequent development of 

resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels 

of resistance are often sufficient to result in field control failures at recommended application 

rates. Recently, metabolic resistance mediated by cytochrome P450 monooxygenases was 

implicated in the resistance of several pollen beetle populations from different European 

regions. Here, we have also investigated the possible occurrence of a target-site mechanism 

http://www.sciencedirect.com/science/article/pii/S0048357512000612
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caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We 

detected a single nucleotide change that results in an amino acid substitution (L1014F) within 

the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has 

been found in several other insect pests and is known to confer moderate levels of resistance 

to pyrethroids. We developed a pyrosequencing-based diagnostic assay that can detect the 

L1014F mutation in individual beetles and tested more than 350 populations collected 

between 2006 and 2010 in 13 European countries. In the majority of populations tested the 

mutation was absent, and only samples from two countries, Denmark and Sweden, contained 

pollen beetles heterozygous or homozygous for the L1014F mutation. The mutation was first 

detected in a sample from Denmark collected in 2007 after reports of field failure using tau-

fluvalinate, and has since been detected in 7 out of 11 samples from Denmark and 25 of 33 

samples from Sweden. No super-kdr mutations (e.g. M918T) known to cause resistance to 

pyrethroids were detected. The implications of these results for resistance management 

strategies of pollen beetle populations in oilseed rape crops are discussed. 

5.1 Introduction 

Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is one of the major pests 

in European oilseed rape and can cause significant economic damage without chemical 

control measures [1]. For almost two decades, pollen beetle populations in Europe have been 

effectively controlled by synthetic pyrethroid insecticides that act on voltage-gated sodium 

channels in the insect central nervous system [2,3]. However, the lack of other available 

insecticide classes with different modes of action and overlapping pyrethroid treatment 

windows for stem weevil control has resulted in strong pressure for the selection of resistance. 

As a result, pyrethroid resistance is now widespread among European pollen beetle 

populations [3-8]. Resistance monitoring initiatives based on adult-vial bioassays using the 

reference pyrethroid lambda-cyhalothrin that were carried out between 2007 and 2010 

revealed the presence of pyrethroid resistant populations in almost all European countries 

sampled, including Germany, France, Poland, UK, Denmark, Sweden and others [7,8]. 

Fortunately, resistance has not yet been reported for the newer insecticides with different 

modes of action such as thiacloprid, a recently introduced neonicotinoid insecticide for pollen 

beetle control in winter/spring oilseed rape, or pymetrozine and indoxacarb, known to act as 

antifeedant and sodium channel blockers, respectively [9]. 

Resistance to pyrethroids in pollen beetles is relatively broad spectrum across the 

whole chemical class, however some pyrethroids such as tau-fluvalinate and etofenprox were 

recently shown to be less affected by cross-resistance issues and have therefore become first 

choice for control in some countries [10]. Bioassays have also shown moderate levels of 
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cross-resistance to tau-fluvalinate in pollen beetle populations from Denmark and Sweden 

[10,11], while HEIMBACH et al. [12] showed a decrease in the susceptibility of German 

populations to the non-ester pyrethoid etofenprox over a period of 5 years. 

The intense use of pyrethroids against chewing and sucking pest species in many 

agricultural cropping systems, as well as their use to control disease vectors and urban pests, 

has resulted in numerous cases of resistance over the past 30 years. Two main types of 

mechanism are known to be responsible for resistance; one based on modification of the 

pyrethroid target site and the other caused by enhanced metabolic detoxification from 

elevated levels of esterases and cytochrome P450 monooxygenases [13]. 

The biochemical mechanisms underlying pyrethroid resistance in pollen beetles have 

recently been investigated. The synergistic action of piperonyl butoxide (PBO, a metabolic 

enzyme inhibitor) in combination with pyrethroids provided initial evidence for the involvement 

of cytochrome P450 monooxygenases [14,15]. Despite the lack of a correlation between 

pyrethroid resistance level and elevated cytochrome P450 activity based on biochemical 

assays with the artificial substrate 7-ethoxycoumarin [14,15], the involvement of 

monooxygenases in pyrethroid resistance has been clearly demonstrated by the hydroxylation 

of deltamethrin by pollen beetle microsomes [15]. In this study, the maximum rate of 

deltamethrin hydroxylation by pollen beetle microsomes correlated well with the level of 

pyrethroid resistance and was inhibited by both PBO and tebuconazole. Furthermore it was 

demonstrated that tau-fluvalinate and lambda-cyhalothrin competitively inhibited the formation 

of 4-hydroxy deltamethrin, thus confirming pyrethroid cross-resistance based on microsomal 

oxidation [15].  

Target site resistance to pyrethroids is caused by point mutations in the gene for the 

voltage-gated sodium channel, leading to amino acid substitutions within the channel protein 

that affect the binding of pyrethroids [16-18].  Two mutations, L1014F and M918T, were 

originally described in pyrethroid resistant Musca domestica and linked to strains 

phenotypically classified as knock-down resistant (kdr) and super-kdr (s-kdr), respectively [17]. 

Since then, the L1014F mutation (or variants such as L1014S) has been identified in a range 

of different pest species and typically confers moderate (10-20-fold) levels of resistance to all 

pyrethroids. M918T and other super-kdr like mutations (eg T929I) have also been discovered 

in a range of pests, and these confer much higher levels of resistance (several 100-fold) 

[17,18]. These mutations are located in the domain II S4-S5 linker and S5, S6 transmembrane 

regions of the channel protein and are thought to form part of a hydrophobic binding site for 

the pyrethroids [18].  
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The possible role of target site modification in pyrethroid resistance has not yet been 

investigated in pollen beetles. The objective of this study was to investigate the presence and 

distribution of kdr and s-kdr mutations in pyrethroid resistant pollen beetle populations from 

Europe. To achieve this, a partial sequence of the para-type sodium channel of M. aeneus 

spanning the domain II region containing the kdr and s-kdr mutation sites was PCR amplified 

and sequenced. We identified the same nucleotide mutation that causes the kdr L1014F 

substitution in a resistant strain from Denmark and used this to develop a diagnostic assay for 

the mutation based on SNP-genotyping by pyrosequencing technology. Individuals of several 

hundred pyrethroid-resistant populations surviving a pyrethroid diagnostic dose (according to 

[7,8]) in an adult-vial bioassay were subjected to pyrosequencing analysis for kdr and the 

results geographically mapped. The consequence for regional resistance management 

strategies where target-site resistance was found is discussed. 

5.2 Materials and methods 

5.2.1 Insect populations 

More than 350 European pollen beetle populations were collected in oilseed rape fields 

between April and June of 2006-2010 and bioassayed for pyrethroid resistance using a 

recently described adult vial test [7,8]. The test is based on two concentrations of the 

reference pyrethroid lambda-cyhalothrin, 75 ng cm-2 and 15 ng cm-2 coated onto the inner 

glass surface and representing 100 % and 20 % of the recommended field rate, respectively 

(for a detailed description of the method refer to [8]). Many of the populations investigated 

here were also included in two recently published studies on the status of pyrethroid 

resistance in pollen beetle in Europe [7,8]. At least 30 populations sampled in 2009 and 2010 

from Sweden were also tested with tau-fluvalinate due to an increased number of reports of 

reduced field efficacy with this pyrethroid [11]. Resistance to tau-fluvalinate was checked by 

using the same adult vial test design, based on 100 % and 20 % of the recommended field 

rates 480 ng cm-2 and 96 ng cm-2, respectively. Beetles that survived the bioassay after 24 h 

at 100 % of the field-recommended rate of either lambda-cyhalothrin or tau-fluvalinate were 

stored at -80 °C for subsequent molecular diagnostics. Populations that did not survive the 

100 % field-rate of either pyrethroid were discarded.  

5.2.2 Amplification and sequencing of M. aeneus para-type sodium channel gene 

fragment and kdr-genotyping using Sanger sequencing 

Individual adult pollen beetles were ground in liquid nitrogen and genomic DNA 

(approx. 1 μg per adult) was extracted using DNAzol purification reagent (Invitrogen) 

according to the supplier’s recommended protocol. Domain II sodium channel gene fragments 
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were PCR amplified from 100 ng aliquots of gDNA using primers designed against a partial 

sequence of the pollen beetle para gene deposited in GenBank (sequence accession 

AF354457, see primer sequences PB1-4 in Table 11). Two rounds of PCR were carried out 

using various combinations of primers PB1-4 (0.5 μM) in 25 μL reactions containing 1 x Taq 

enzyme reaction mix (Promega, UK) with standard cycling conditions of 94 °C for 2 min, 

followed by 30 cycles of 94 °C for 45 s, 50 °C for 45 s and 72 °C for 1 min. The ~510 bp 

sodium channel gene fragments generated in these PCR reactions were ethanol precipitated 

to remove excess primer and directly sequenced with internal primers (PB5 and PB6) using 

ABI big-dye terminator reaction kits on a 310 genetic analyser (Applied Biosystems). This was 

done for a number of individual beetles collected in Denmark in 2007 in order to double-check 

the (SS/SR/RR) kdr results obtained by pyrosequencing. Sequences were analysed using the 

VectorNTI software package (Invitrogen). Sequence alignment graphics were done by using 

Geneious v5.5 (www.geneious.com). 

Table 11 Details and sequences of primers used to analyse for kdr (s-kdr) mutation. 

Name Sequence 5’ - 3’ 

Py-KDR-Seq1 CACTGTGGTTATCGGTAAT 

Py-KDR-Seq2 GCCACTGTGGTTATCGGT 

Py-KDR-F ATGTGTCCTGTATTCCCTTC 

Py-KDR-R [btn]GCTGGATGATCCAAAATTG 

Py-s-kdr-Seq TCTAAATTTACTTATATCCA 

Py-s-kdr-F GGCCGACTCTAAATTTACTTATAT 

Py-s-kdr-R [btn]TCCTTACCCGTATAATTTTTGCC 

PB1 TGGCCGACTCTAAATTTACTT 

PB2 CTCTAAATTTACTTATATCCAT 

PB3 TTGGTGCTGATAAGCTGGATG 

PB4 CTGGATGATCCAAAATTGCTC 

PB5 GACCACGATCTACCTCGTTG 

PB6 ACCAACATACAGTCCCACATC 

 

5.2.3 Pyrosequencing kdr/s-kdr diagnostic assay 

Pyrosequencing is a DNA sequencing-by-synthesis technique enabling real-time 

detection of nucleotides forming base pairs in an amplified DNA template strand using an 

enzyme-cascade finally resulting in bioluminescence signals [19,20]. Individual adult pollen 

beetles were ground in liquid nitrogen and genomic DNA (approx. 1 μg per adult) was 

extracted using DNeasy plant kit (Qiagen) or DNAdvance Tissue Kit (Agencourt) according to 

the supplier’s recommended protocol. The domain II sodium channel gene fragment was 

amplified by PCR from 50 ng aliquots of gDNA using two primers (Table 11, kdr: Py-KDR-F & 

http://www.geneious.com/
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PyKDR-R; s-kdr: Py-s-kdr-F & Py-s-kdr-R) designed with “Assay Design Software” (PSQ-

Biotage AB, now Qiagen) by utilizing the partial sequence of the pollen beetle para gene 

detailed above (see primer sequences in Table 11). The pyrosequencing protocol comprised 

45 PCR cycles with 0.5 μM forward and biotinylated reverse primer in 50 μL reaction mixture 

containing 1 x Taq enzyme reaction mix (HotstarTaq Master Mix, Qiagen) and cycling 

conditions of 95 oC for 10 min, followed by 45 cycles of 95 oC for 45 s, 49 oC for 45 s and 

72 oC for 1 min, and a final incubation at 72 °C for 5 min. The single strand DNA preparation 

required for pyrosequencing was carried out using the Vacuum Prep Tool (Biotage AB) in 

combination with streptavidin coated beads (Streptavidin Sepharose) to separate the 

biotinylated reverse strand of the PCR products. The pyrosequencing reactions were carried 

out according to the manufacturer’s instructions using one of two different sequence-primers 

for either kdr or s-kdr genotyping (Table 11) and the PSQ 96 Gold Reagent Kit (Biotage AB). 

The genotypes were analysed using the supplied SNP Software (Biotage AB). 

5.3 Results 

5.3.1 Detection of mutations in para-type sodium channel fragments 

A 514 bp fragment of the M. aeneus para-type sodium channel gene was PCR 

amplified from genomic DNA extracted from individual pollen beetles collected in Denmark in 

2007 (Fig. 43). This fragment encodes the domain IIS4-IIS6 region of the sodium channel 

alpha subunit which contains five of the putative mutation sites previously associated with 

kdr/s-kdr-type pyrethroid resistance in a range of insect species, i.e. M918, L925, T929, L932 

and L1014 [16]. This fragment also contains two short intron sequences (64 bp and 62 bp), 

the positions of which are also conserved across species [18]. The amino acid sequence of 

this fragment of the para-type sodium channel of M. aeneus shows close homology to that of 

other insects, with over 90 % direct amino acid identity in this region of the protein (Fig. 44). 

Based on the comparison of the aligned coleopteran sequences including those from 

Leptinotarsa decemlineata and Tribolium castaneum the amino acid identity in this region of 

the protein is close to 100 %. 
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Fig. 43 Partial nucleotide sequence of a 514 bp genomic fragment of the para-type sodium 

channel gene of Meligethes aeneus, spanning the region which includes the kdr- and 

s-kdr mutation sites. The s-kdr (M918, ATG) and kdr (L1014, CTT) mutation sites are 

marked below the sequence, as well as three silent mutation sites and one 7 bp indel 

(TACTTGC) in the intron downstream of the kdr site. 

 

 

Fig. 44 Multiple sequence alignment of para-type sodium channel region DII S4-6 sequences 

from different insect species. Conserved identical amino acid residues are marked in 

black boxes. The sequence obtained from M. aeneus R (bottom) shows the L1014F 

mutation known to confer knock-down resistance to pyrethroids. 

 

A total of 14 adult beetles from the obtained Danish sample were sequenced. Those 

beetles were part of a population which shows only 50 % mortality at 100 % of the field-

recommended rate of tau-fluvalinate (47.5 g ha-1). The sequencing revealed two distinct 
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alleles of the sodium channel in the M. aeneus population that had been sampled; one 

corresponding to the 514 bp sequence shown in Fig. 43, and a second allele with a 7 bp indel 

downstream of the kdr-site in the second intron (the deleted bases are shown by an arrow in 

Fig. 43). Both alleles also carry up to 3 silent nucleotide polymorphisms in the coding 

sequence 54 bp upstream of the second intron (also marked in Fig. 43). Of the 14 adults 

tested, 8 were homozygous for the sequence with the 7 bp insertion (allele A), 4 were 

homozygous for the second allele with the 7 bp deletion (allele B), and the other 2 beetles 

were heterozygotes carrying both allele types. 

Five of the 14 beetles tested were homozygous for the kdr mutation (F1014; Fig. 44), 8 

were homozygous wild-type (L1014), and the remaining individual was a heterozygote 

(L/F1014). None of the beetles sequenced contained any of the other mutations (s-kdr) 

mentioned above and known to confer resistance to pyrethroids. Interestingly, the kdr 

mutation was not confined to one of the two allele types described above (A & B), but instead 

was found in both types. Of the 8 allele A homozygotes, 5 were also homozygous for L1014 

(susceptible), 2 were homozygous for the F1014 mutation (kdr), and 1 was a heterozygote.  

Similarly, of the 4 allele B homozygotes, 2 were L1014 homozygotes and 2 were F1014 

homozygotes. This result was suprising as it suggests that the kdr-like mutation has arisen 

independently in two different allele types. 

5.3.2 Validation of target-site resistance diagnostics by pyrosequencing 

The pyrosequencing diagnostic assay identifies all three kdr genotypes in individual 

beetles, designated SS (homozygous L1014), SR (heterozygous L/F1014) and RR 

(homozygous F1014). The PCR reaction carried out to amplify the template DNA for kdr-

pyrosequencing produced a ~160 bp fragment of the M. aeneus para-type sodium channel 

(from genomic DNA). For SNP analysis 10 nucleotides starting upstream the putative kdr-like 

polymorphism site (codon CTT at position 1014) were pyrosequenced using the gene specific 

sequence-primer Py-KDR-Seq1.  

Similar to the Sanger sequencing approach described above (5.3.1), pollen beetles of 

the same Danish sample collected in 2007 were used to validate the pyrosequencing method. 

In total 16 adult beetles were individually analysed. Four of the 16 beetles tested were 

homozygous for the kdr mutation (F1014; Fig. 45), 7 were homozygous wild-type (L1014), and 

the remaining 5 individuals were heterozygotes (L/F1014). As shown in the pyrograms in Fig. 

45 the assay successfully detects the polymorphism (C/T) at the first coding position of the 

triplet in position 1014. The nucleotide sequences experimentally obtained for SS, SR, and RR 

are 5´-CTTGTGGTAA-3´, C/TTTGTGGTAA-3´ and TTTGTGGTAA-3´, respectively, thus 

based on the sequential reaction of the nucleotides with the template DNA in the order of 
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which the individual nucleotides were dispensed (Fig. 45). Taking the results of both 

sequencing approaches together, the Danish sample collected in 2007 contained 15 (50 %), 6 

(20 %) and 9 (30 %) individuals of the genotypes SS, SR and RR, respectively.  

The primers designed to detect mutations at the M918T s-kdr site were used for 

parallel sequencing with each individual tested, but no mutation was observed at this site. 

 

 

Fig. 45 Pyrograms displaying homozygous SS, RR, as well as heterozygous SR genotypes 

of the mutation L1014F found in a Danish population of Meligethes aeneus resistant 

to tau-fluvalinate (ca. 50 % mortality at recommended field rate) and collected in 

2007. 

5.3.3 Monitoring for target-site resistance and geographical distribution of the L1014F 

mutation in Europe 

In total, more than 350 populations of M. aeneus were SNP-genotyped for 

polymorphisms at both the kdr- and s-kdr sites by pyrosequencing and mapped according to 

their geographic location (Fig. 46).  We analyzed individuals of 45, 37, 83, 86 and 99 

pyrethroid-resistant populations collected in 2006, 2007, 2008, 2009 and 2010, respectively. 

The populations were collected from oilseed rape in 13 countries and interestingly only 

samples from two Scandinavian countries, Denmark and Sweden, were found to contain the 

kdr (L1014F) mutation that confers target-site resistance. None of the pyrethroid-resistant 

samples collected between 2006 and 2010 in Austria, Belgium, Czech Republic, Finland, 

Lithuania, Latvia, Poland, Ukraine and UK contained this mutation (Table 12). Only one 
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population collected in 2010 out of 141 sampled in Germany between 2006 and 2010 

contained a single heterozygote (SR) individual; all other beetles tested were SS genotypes 

(Table 12). In 2007 we detected kdr for the first time in 3 field-collected samples from 

Denmark and subsequently in 4 samples collected in 2010, confirming the spread of the 

mutation in Danish populations. In 2009, numerous populations from different regions of 

Sweden were collected that showed high levels of resistance in bioassays with lambda-

cyhalothrin and tau-fluvalinate, particularly those from the south of Sweden (Malmö) (Fig. 

47a). A lower proportion of resistant individuals were found in the populations collected in the 

middle of Sweden (Uppsala). All samples from the southern part of Sweden showed a high 

frequency of the kdr allele, but in many cases also contained susceptible genotypes. In 

contrast, we never found the kdr allele in the more northern populations, including those that 

were resistant to pyrethroids and able to survive 100 % of the recommended field-rate (Fig. 

47b). 

 

Fig. 46 Geographical 

mapping of kdr-based target-

site resistance in European 

populations of pollen beetles. 

In total 400 collected 

populations were screened 

between 2006 and 2010 

(Table 12). Individual flags 

displaying the presence of 

kdr genotypes may include 

several positively tested 

populations. Abbreviations: 

(n) refers to the number of 

populations tested per spot. 
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A                B 

 

 

Fig. 47 (A) Stacked-bar chart showing the proportion of 2009 collections of Swedish pollen 

beetle populations resistant (black), moderately resistant (grey) and susceptible 

(white) to lambda-cyhalothrin and tau-fluvalinate in discriminating dose bioassays. 

Surviving beetles were genotyped for knock-down resistance (kdr) and the proportion 

homozygous or heterozygous for the L1014F mutation is given in %. (B) 

Geographical mapping of the populations tested reveals a strong presence of the kdr 

resistance allele in populations sampled in southern regions. 
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Table 12 Number of pyrethroid-resistant populations genotyped for kdr resistance (L1014F) 

and collected in different European countries between 2006 and 2010. Only those 

beetles which survived 100 % of the field-recommended rate of either lambda-

cyhalothrin or tau-fluvalinate were genotyped. Those populations listed to include 

SR and RR genotypes always also contained SS individuals, except one from 

Sweden. 

Genotype A B CZ DK F FIN G LT LV PL SE UA UK 

SS 24 6 2 7 97 3 141 9 5 16 33 2 24 

SR 0 0 0 6 0 0 1 0 0 0 12 0 0 

RR 0 0 0 7 0 0 0 0 0 0 9 0 0 

Total 24 6 2 7 97 3 141 9 5 16 34 2 24 

A=Austria, B=Belgium, CZ=Czech Republic, DK=Denmark, F=France, FIN=Finland, 
G=Germany, LT=Lithuania, LV=Latvia, PL=Poland, SE=Sweden, UA=Ukraine, UK=United Kingdom 

 

5.4 Discussion 

In this study, we demonstrate for the first time the presence of a target-site mutation 

(L1014F), commonly known as kdr, in voltage-gated sodium channels of pyrethroid-resistant 

pollen beetle collected in oilseed rape in Europe. This mutation has been shown to confer 

resistance to pyrethroids in a range of insect pests and its effect on the insect sodium channel 

has been functionally demonstrated [13,16,18]. However, to our knowledge M. aeneus is only 

the second coleopteran species in which this mutation has been detected, following earlier 

reports in populations of the Colorado potato beetle, L. decemlineata [21,22]. An alternative s-

kdr-like mutation (T929I) has also been described recently in maize weevils, Sitophilus 

zeamais [23]. None of the pyrethroid-resistant pollen beetle populations analyzed in this study 

carried any of the s-kdr mutations at positions M918, L925, T929 and L932 that have been 

described in other insect pests [16]. Interestingly, we found in some of the amplified fragments 

a 7 bp deletion (TACTTGC) in the intron downstream of the kdr-site, which was not correlated 

with the presence of the kdr mutation. A similar indel (but 5 bp, TCACA) in the intron 

downstream the kdr mutation was recently also described in sodium channel fragments 

amplified from Culex quinquefasciatus [24]. The authors were also unable to link the indel to 

the presence of the mutation in pyrethroid-resistant mosquitoes. 

The pyrosequencing assay developed in this study allows at least 200 beetles to be 

genotyped per day and is therefore a high-throughput resistance screening methodology for 

monitoring the spread of kdr-like resistance in pollen beetle. Recently a similar approach was 

described for dieldrin resistance monitoring in the malaria vector Anopheles funestus [25]. 
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During the course of the present study we genotyped thousands of individuals but were only 

successful in detecting the L1014F mutation in populations collected in Denmark and Sweden, 

with the exception of a single heterozygote beetle from the 141 populations tested from 

northern Germany. Due to high levels of resistance to pyrethroids such as lambda-cyhalothrin, 

many Danish oilseed rape farmers recently switched to another pyrethroid, tau-fluvalinate [10]. 

The decision was based on the fact that tau-fluvalinate seemed to retain better efficacy under 

field conditions, partly because it is used at 6-7 times higher rates than lambda-cyhalothrin 

and also because it was shown to be less affected by the metabolic resistance mechanism of 

resistance selected by compounds such as deltamethrin, lambda-cyhalothrin and 

cypermethrin and caused by elevated levels of cytochrome P450 that is already widespread in 

European pollen beetle populations [15]. However, the continued application of this compound 

several times per season as described by Hansen [10] may have contributed to the selection 

for target-site resistance in these populations. The situation in Sweden is even more 

interesting, because resistant kdr genotypes were only detected in the very south, whereas 

kdr was not observed in samples from middle Sweden despite the fact that several 

populations survived 100 % of the field rate of tau-fluvalinate. Why target-site resistance has 

only evolved in Scandinavian populations remains unclear, but is perhaps related to low 

economic infestation thresholds (as low as 0.5 beetles per plant [6]) in these areas, triggering 

more pyrethroid applications and creating high selection pressure in years when high numbers 

of beetles migrate into winter and spring oilseed rape fields. Another contributing factor is the 

fact that between 1985 and 2001, i.e. for 15 years exclusively pyrethroids were used for pollen 

beetle control without any rotation with other compounds. 

Although no target site mutations were found in the other European countries, 

including France, Germany and Poland, high levels of pyrethroid resistance, with ratios 

between 500-1000-fold, were nevertheless described in hundreds of samples collected from 

these countries between 2007 and 2010 [7,8]. Many of the samples collected in these 

countries were shown to have elevated levels of monooxygenases resulting in an enhanced 

metabolic detoxification of pyrethroids as demonstrated by the formation of 4-OH deltamethrin 

[15]. It has also been shown in other species that very high resistance ratios to pyrethroids 

can be explained just by metabolic mechanisms based on the overexpression of cytochrome 

P450s [13]. Examples include the overexpression of CYP6BQ9 in deltamethrin resistant 

Tribolium castaneum in which confers resistance ratios of up to 4000-fold to deltamethrin [26], 

and cytochrome P450-based pyrethroid cross-resistance in an isogenic line of Helicoverpa 

armigera confering resistance ratios of > 10,000-fold to certain pyrethroids [27]. Such 

examples demonstrate the effectiveness of metabolic resistance mechanisms, which 

expressed at high levels would suffice to render maximum application rates of a pyrethroid 
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completely useless for control purposes. In such cases any further selection for other 

mechanisms such as target-site resistance seems unlikely, unless individuals with such a 

mechanism exhibit strong fitness advantages sufficient to out-compete less fit individuals. 

However, this additional target-site mechanism would be advantageous since it affects the 

entire class of pyrethroid chemistry even in the absence of metabolic mechanisms of 

resistance. For resistance management purposes it may not be advisable to replace 

pyrethroids that are most affected by metabolic resistance with others that are less affected, 

as this may provide stronger selection pressure for rare genotypes carrying mutations in the 

voltage-gated sodium channel, as seen in pollen beetle populations from Denmark and 

Sweden. Therefore it is strongly recommended to seek for alternative modes of action for 

pollen beetle control and to follow the resistance management recommendations given by 

local experts or published annually by the Insecticide Resistance Action Committee (IRAC) 

[28]. 
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Abstract 

Pollen beetle, Meligethes aeneus is the most important coleopteran pest in European 

oilseed rape cultivation, annually infesting millions of hectares and responsible for substantial 

yield losses if not kept under economic damage thresholds. This species is primarily controlled 

with insecticides but has recently developed high levels of resistance to the pyrethroid class. 

The aim of this study was to provide a transcriptomic resource to investigate mechanisms of 

resistance. cDNA was sequenced on both Roche and Illumina platforms, resulting in a total of 

~53 m reads which assembled into 43,396 ESTs. Manual annotation revealed good coverage 

of genes encoding insecticide target-sites and detoxification enzymes. 77 non-redundant 

cytochrome P450 genes were identified. Mapping of Illumina RNAseq sequences (from 

susceptible and pyrethroid resistant strains) against the reference transcriptome identified a 

cytochrome P450 (CYP6BQ23) as highly overexpressed in pyrethroid resistance strains. SNP 
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analysis confirmed the presence of a target-site resistance mutation (L1014F) in the voltage 

gated-sodium channel of one resistant strain. Our results provide new insights into the 

important genes associated with pyrethroid resistance in M. aeneus. Furthermore a 

comprehensive EST resource is provided for future studies on insecticide modes of action and 

resistance mechanisms in pollen beetle. 

6.1 Introduction 

The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is the major 

arthropod pest of oilseed rape in Europe [1]. Infestation levels regularly exceed economic 

damage thresholds and chemical control measures are frequently required to prevent yield 

losses [2]. The excessive use of pyrethroid insecticides for pollen beetle control throughout 

Europe for more than 20 years led to wide-scale control failures due to the development of 

resistance and resulted in serious crop yield losses e.g. in Germany in 2006 [3]. Pyrethroid 

resistance in pollen beetle was first documented in France in 1999 and has since spread 

throughout Europe [4,5].  

To date, two main resistance mechanisms have been identified in pyrethroid resistant 

pollen beetle populations: enhanced expression of a cytochrome P450 (CYP6BQ23) [6,7] and 

an amino acid substitution (L1014F) in the voltage gated sodium channel protein (pyrethroid 

target-site) leading to knockdown resistance (kdr) [8]. Besides these two mechanisms a 

further study revealed esterases may make a limited contribution to pyrethroid resistance in 

some pollen beetle populations [9]. Pyrethroid resistance in pollen beetle is not limited to 

individual members of this insecticide group, but rather affects the whole chemical class [6]. 

Nevertheless cross-resistance is higher between compounds that are more structurally related 

e.g. lambda-cyhalothrin and deltamethrin, compared to compounds with distinct structural 

motifs such as bifenthrin, etofenprox and tau-fluvalinate [6].  

Pollen beetle is a univoltine species and cannot be reared continuously under 

controlled conditions [10]. For this reason the number of molecular studies on this species is 

rather limited and available sequence resources are scarce. The state of the sequence 

information available for this species stands in contrast to the economic importance of this 

pest. Next-generation sequencing allows high-throughput production of sequence data at a 

single-nucleotide resolution allowing genome-wide expression analyses [11], and facilitating 

detailed molecular study of non-model organisms such as the pollen beetle. 

The aim of this study was to use next-generation sequencing to produce a de novo 

transcriptome for the pollen beetle as a resource for current and future study of this pest 

species. This resource was then used as a reference to provide an insight into resistance 
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related changes in gene expression in pyrethroid resistant pollen beetle populations from 

different origins in Europe and to identify genes encoding the target-sites of insecticides 

currently in use for pollen beetle control.  

6.2 Results and Discussion  

6.2.1 Bioassays 

The susceptibility of four pollen beetle populations collected from different locations in 

Europe towards two different pyrethroid insecticides was assessed using an adult vial test. 

Lambda-cyhalothrin was chosen because it has been routinely used for pollen beetle control 

for many years and it is the reference pyrethroid for resistance monitoring purposes 

recommended by the Insecticide Resistance Action Committee (IRAC) [12]. Etofenprox was 

used because it represents a non-ester pyrethroid. The Ukrainian sample (UA) was used as a 

reference as the susceptibility of this population to lambda-cyhalothrin is comparable to that of 

susceptible populations tested in 2009 and 2010 [4] (Table 13). The other three pollen beetle 

populations collected in Germany (D), Poland (PL) and Sweden (SE) were resistant to 

pyrethroids with resistance ratios for lambda-cyhalothrin ranging from ~600 to ~870 based on 

LC50 values and from ~800 to ~2670 based on LC95 values. The resistant populations show 

cross-resistance up-to 140-fold against etofenprox and thus confirm recent findings on 

pyrethroid cross-resistance patterns in M. aeneus [6,8]. The lower resistant ratios of 

etofenprox are to some extent based on its > 10-fold lower intrinsic activity against pollen 

beetle which is also reflected by its ~10-times higher field application rate (86 g AI ha-1) 

compared with lambda-cyhalothrin (7.5 g AI ha-1). 

6.2.2 High throughput sequencing, assembly and annotation 

To develop a transcriptomic resource and gain an insight into genetic adaptions 

underlying pyrethroid resistance in M. aeneus high-throughput RNA/cDNA sequencing was 

performed by 454 and Illumina sequencing technology at LGC Genomics (Berlin, Germany). 

Illumina RNA-sequencing of non-normalized libraries of four pollen beetle populations: UA 

(susceptible), PL, D and SE (all resistant), was performed to obtain insight into gene 

expression changes and to allow SNP analysis between pyrethroid susceptible and resistant 

populations. 454 sequencing was carried out on sample PL and only used for de novo 

assembly of the reference transcriptome. 454 sequencing of the normalized cDNA library of 

sample PL resulted in a total of 595,732 reads with an average length of 505 bp. The 

assembly of 454 reads by Newbler Assembler 2.6 resulted in 18,307 contigs (9,780 >500 bp, 

N50 = 1,278 bp) (Table 14). After annotation the dataset was screened for genes of interest 

(GOI) i.e. P450s and insecticide target sites. The coverage of selected GOI was very low, e.g. 
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no hit was retrieved for VGSC and only one contig matches to a single alpha subunit of the 

nAChR.  

Table 13 Log-dose probit-mortality data for two pyrethroid insecticides tested against adult 

beetles of four strains of M. aeneus in an adult vial test (24h). 

Compound Strain 
LC50-value 

ng cm
-2

 
95% FL

a 
RR

b LC95-value 

 ng cm
-2

 
95% FL

a 
RR

b 
Slope (± SD) 

Lambda-
cyhalothrin 

UA 0.2 0.2-0.2 1 1.8 1.5-2.1 1 2.843±0.21 

D 135.8 116.5-158.3 679 2723 1769-4192 1513 1.585±0.10 

 

PL 174.8 151.3-202 874 4807 3196-7240 2671 1.558±0.09 

SE 120.2 99.1-145.7 601 1465 850.4-2522 814 1.716±0.11 

Etofenprox UA 3.3 2.4-4.5 1 71 28.6-176.6 1 1.834±0.15 

 
D 158.8 135.9-185.5 48 2979 192.2-4617 42 1.412±0.09 

 
PL 468.6 380.9-576.6 142 4515 2478-8226 64 1.857±0.14 

 
SE 127.9 109.7-149 39 4327 2796-6697 61 1.314±0.08 

a
 95% Fiducial limits 

b 
RR = resistance ratio obtained by dividing LC-value of strain D, PL or SE by the LC-value of strain UA 

c
 Strain abbreviations: UA = Ukraine, D = Germany, PL = Poland, SE = Sweden 

 

Using 454 reads and Illumina reads from sample Poland contigs were assembled with 

velvetg, clustered with Oases and merged into a combined assembly (Table 14 and additional 

file 1). Coverages of the contigs ranged from 1 to 928 with a mean coverage of 7.34. CAP3 

assembly of Oases loci with more than one assigned transcript resulted in a total of 43,396 

sequences (ESTs) representing the final hybrid assembly (N50 = 2,832 bp) (additional file 2). 

The ESTs were annotated with the descriptions of BLAST hits in Uniprot (72%), SwissProt 

(56%) and Tribolium castaneum entries from UniProt (71%). Additionally, potential protein 

domains were assigned to 62% of ESTs by screening Pfam-A (E-value cutoff <1).(Table 15). 

Blast similarity searches between M. aeneus ESTs and protein sequences of T. castaneum 

(Order Coleoptera), D. ponderosae (Coleoptera), D. melanogaster (Diptera) and A. pisum 

(Homoptera) revealed that 86 % (37,409/43,396) of the M.aeneus ESTs have significant hits 

in all five species compared (Fig. 48). This assembly not only improved the numeric indices 

detailed above but also greatly improved the abundance of GOI. The VGSC was represented 

in the improved assembly by two contigs encoding 99 % of the coding sequence and nAChR 

subunits alpha1-8 and beta1 were represented by 13 contigs including two full length contigs 

(see section 6.2.4). Cytochrome P450s, carboxylesterases and glutathione S-transferases 

were represented as 190, 75 and 66 sequences respectively (Table 16).  As P450s are of 

primary relevance to pyrethroid resistance in M. aeneus they are described in detail in the 
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following section, the detailed sequences are provided in additional file 3. The sequence lists 

of carboxylesterases and glutathione S-transferases are provided in additional files 4 and 5, 

respectively. 

Table 14 Summary statistics of the transcriptome assemblies of M. aeneus. 

Newbler assembly (454 only) 

  Fully assembled reads 419,215       

Partial assembled reads 54,234 

   Singletons 82,200 

   Repeats 2,161 

   Contigs 18,307 

   Contigs >500 bp 9,780 

    

Hybrid assembly (454 and Illumina) 

    K61 K71 K81 K71* 

Contigs 341,977 227,156 149,740 145,323 

N50 121 141 180 263 

Loci 25,908 25,023 23,057 26,733 

transcripts 81,655 71,644 60,022 130,323 

     Coverage of the merging assembly 

    Minimum 1 

     1stQuartile 2 

     Median 4 

     Mean 7.34 

     3rdQuartile 10 

     Maximum 928 

   

     No. of transcripts in oases loci (after CAP3) 

   single transcript loci 16,134 

     contigs from complex loci 19,305 

     singlets from complex loci 7,957 

     Sum 43,396       

*Merged assembly 



  Chapter 6 

   

[135] 

 

Fig. 48 Comparison of the assembled sequences of Meligethes aeneus (MELAS) with 

protein sequences of Tribolium castaneum (TRICA), Dendroctonus ponderosae 

(DENPO), Acyrthosiphon pisum (ACYPI) and Drosophila melanogaster (DROME). 

Values shown in the Venn diagram are the number of MELAS sequences with 

BLAST hits (E-value ≤1e-3) in the species outlined. For 2768 sequences no BLAST hit 

for any of the above species was obtained. 

 

Table 15 Number and percentage of annotated contigs (hybrid assembly) 

Database No. of sequences % 

SwissProt 1/5 24,460 56 

1st UniProt hit 31,073 72 

TRICA EST 30,693 71 

Pfam 26,941 62 

bioproc 25,463 59 

molfunc 25,881 60 

cellcomp 25,171 58 

Total 43,396 100 

 

Table 16 Number of annotated sequences of genes known to be related to metabolic 

insecticide resistance. 

Function 
Number of annotated 
sequences 

Mean coverage Mean length 

P450 190 495 1445 bp 

CCE 75 1477 1786 bp 

GST 66 6298 1310 bp 
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6.2.3 Cytochrome P450s 

P450s are an important enzyme class found in virtually all aerobic organisms that are 

involved in the metabolism of endogenous substances such as hormones, fatty acids and 

steroids as well as of xenobiotics such as drugs, pesticides and plant secondary metabolites 

[13]. The P450 CYP6BQ23 was recently shown to be the main factor causing pyrethroid 

resistance in M. aeneus across Europe through its capability to hydroxylate the alcohol moiety 

of pyrethroids to a less toxic hydroxy-metabolite [6,7]. Prior to the study described here only 

this P450 and seven partial P450 sequences have been identified in M. aeneus, and as a 

result very little is known of the size and diversity of the P450 gene family in this species. After 

manual curation of 190 annotated P450s in the transcriptome of M. aeneus we identified 77 

non-redundant P450s (including CYP6BQ23) of which 55 contain putative full-length ORFs. 

The initial P450 count of 190 sequences reduced as many ESTs represented either allelic 

variants or different fragments of the same P450. All putative full-length P450s contain a 

transmembrane region (TMHMM predicted, [14]) as well as the I-helix motif A(A,G)X(E,D)T. 

The identified P450s can be assigned to one of four CYP clans: CYP2 (5 sequences), CYP3 

(39 sequences), CYP4 (25 sequences) and the mitochondrial (mito) clan (8 sequences). Out 

of 77 P450s identified in M. aeneus only nine P450s have orthologous genes known in other 

insect species. One belongs to the CYP4 clan the remaining eight orthologs belong to CYP2 

and to the mitochondrial clan. Of these several are thought to be involved in conserved 

endogenous metabolic pathways [15]. P450s related to ecdysteroid metabolism are: 

CYP306A1, CYP307A1, CYP18A1, CYP302A1, CYP314A1, CYP315A1 and CYP4AA1 [16–

19]. One orthologous gene, CYP303A1, is known to be required for the structure and function 

of sensory organs in D. melanogaster [20]. CYP301A1 is a P450 that can be found in all insect 

genomes sequence to date and was recently described to be involved in cuticle formation [15]. 

The small number of P450 genes in pollen beetle showing orthology to other insects 

fits the known pattern of this gene superfamily within and across taxa [21]. As recently 

described for the mountain pine beetle, D. ponderosae [22], lineage-specific expansions, so 

called ‘blooms’ in relation to the phylogenetic tree [21], can be found for pollen beetle P450s 

within the CYP3 and CYP4 clades (Fig. 1). Those blooms reveal gene family-specific 

expansions, which may have occurred due to species specific adaptation to the environment 

[22]. Similar to D. ponderosae, the greatest expansions can be found within the CYP6 family 

of the CYP3 clade but the ‘bloomed’ families in M. aeneus are distinct from other Coleopteran 

species i.e. T. castaneum and D. ponderosae.  
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Fig. 49 Neighbour-joining phylogenetic analysis of cytochrome P450s of Meligethes aeneus 

(Ma, red) along with P450s identified from genome sequences of the red flour beetle 

(Tribolium castaneum) (Ta, orange), western honey bee (Apis mellifera) (Am, blue) 

and silkworm (Bombyx mori) (Bm, green), rooted with human CYP3A4 (black). 

Bootstrap support (%) (1,000 replicates) are shown for important branches only 

separating CYP clans as indicated by the small embedded tree. 
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6.2.4 ESTs encoding insecticide targets used for pollen beetle control  

One of the major goals of this study was the identification of ESTs encoding insecticide 

target sites currently addressed in pollen beetle control throughout Europe. These targets 

sites are: the voltage gated sodium channel (VGSC) as the target site for pyrethroid 

insecticides and indoxacarb, the nicotinic acetylcholine receptor (nAChR) as the target of 

neonicotinoids and acetylcholine esterase (AChE) as the target of organophosphates. Of 

additional interest was the RDL (resistance to dieldrin) locus due to the historical use of 

organochlorine insecticides, e.g. dieldrin and endosulfan for the control of pollen beetle [23].  

The VGSC was represented by two contigs in the transcriptome of M. aeneus covering 

99 % of the coding sequence; the deduced AA sequence revealed 88.2 % pairwise sequence 

identity to the VGSC (paralytic A) of T. castaneum (Table 17). Using the contigs representing 

the VGSC as a template for mapping Illumina reads conducted by Geneious’ “map to 

reference” function (described below in detail) we were able to close the gap between the two 

contigs and to obtain the putative full length coding sequence of 6213 bp in a final contig of 

8086 bp. This final contig was then used as a template for aligning the Illumina datasets of 

individual samples to identify polymorphisms. The SNP analysis identified 13, 23, 26 and 31 

SNPs (synonymous and non- synonymous polymorphisms) in samples UA, PL, SE and D, 

respectively, resulting in a polymorphism rate ranging from 0.19 % to 0.42 % (Table 18). Most 

SNPs identified were synonymous, with only two SNPs leading to amino acid changes one of 

which caused the L1014F knock down resistance mutation (kdr) (Fig. 50) already described 

for M. aeneus [8]. As shown recently the kdr mutation was only detected in a Scandinavian 

population, the other non-synonymous point mutation refers to the AA position 693 in Musca 

Vssc1 and causes a tyrosine to histidine (Y/H) change. As M. domestica and T. castaneum 

VGSC AA sequences both contain a histidine at the corresponding position we assume this 

mutation is not linked to pyrethroid resistance. The frequency of the kdr mutation in the 

Swedish sample was 41.3 % (coverage 109), this finding is noteworthy as it shows that kdr 

was not vital to survive the pre-selection with lambda-cyhalothrin conducted in this study.  

The nAChR was represented in the transcriptome by 13 contigs covering the subunits 

α1-8 and the β1 subunit. The BLAST search revealed either T. castaneum or L. decemlineata 

as the best hit (Table 17). Only contigs of two subunits, i.e. α6 and α8 were found to represent 

putative full length ORFs. After manual curation of the contigs by short read mapping all other 

ORFs could be extended but putative full length ORFs were only obtained for α subunits 1-3 

and the β1 subunit. SNPs were identified for subunits with a sufficient coverage for all 

samples (Table 18). The deduced AA sequences of M. aeneus nAChR subunits was 

compared to subunits of insects with known target site resistance affecting neonicotinoid 

insecticides, i.e. Y151S in N. lugens [24] and R81T in M. persicae [25]. SNPs causing 
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variation in deduced AA sequences of nAChR subunits in M. aeneus were observed but the 

mutations reported previously in M. persicae and N. lugens were not identified in any 

population (Fig. 51). However, since the first neonicotinoid insecticide to be used in foliar 

application in oilseed rape in Europe was thiacloprid in 2006 in Germany [4] and to the present 

day no control failure has been reported [26], we did not expect to find resistance-associated 

mutations within the nAChR. 
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Table 17 BLASTx results for genes of interest coding for insecticide target sites in M. aeneus. 

 Gene Locus transcript Species Description Accession No % AA Identity E value 

VGSC 
10330_Contig1 

10221_Transcript_1/1 
T. castaneum paralytic A NP_001159380 88.2 0 

ACE 3760_Contig1 A. diaperinus acetylcholinesterase ABX44668 84 0 

nAChR α1 

10403_Transcript_1/1 

10879_Contig1 

6844_Contig1 

L. decemlineata nAChR alpha1 ACJ64923 86.5 0 

nAChR α2 8750_Transcript_1/2 T. castaneum nAChR alpha2 ACM09847 93.1 0 

nAChR α3 13114_Transcript_1/1 T. castaneum nAChR alpha3 (truncated) ACM09850 94.4 0 

nAChR α4 15332_Transcript_1/1 T. castaneum nAChR alpha4 (truncated) ACM09853 98.7 0 

nAChR α5 11795_Contig1 T. castaneum nAChR alpha5 ACM09845 89.2 0 

nAChR α6 4346_Contig2 T. castaneum nAChR alpha6 isoform I ACM09859 94.6 0 

nAChR α7 
10293_Transcript_1/1  

15247_Transcript_1/1 
T. castaneum nAChR alpha7 ABV72697 87.3 0 

nAChR α8 13563_Contig1 L. decemlineata nAChR alpha8 ACJ64922 90.8 0 

nAChR β1 
7172_Contig1 

19666_Contig1 
T. castaneum nAChR beta1 NP_001156000 96.4 0 

RDL 6171_contig1 D. melanogaster resistant to dieldrin, isoform E NP_001261615 93.3 0 

 



 

   

[141] 

 

Fig. 50 SNP distributions in the 8,086nt VGSC sequence of Meligethes aeneus. The coding sequence is indicated by a yellow arrow above the 

sequence; black boxes indicate subunits 1-6 of the individual transmembrane domains (I-IV); orange ellipses below the sequence indicate 

the position of SNPs for each strain (boxed ellipses indicate the position of non-synonymous SNPs including L1014F (known as kdr). 
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Table 18 Sequence characteristics of manually curated contigs for genes encoding insecticide target sites in for different strains of M. aeneus. 

      Coverage*       
% SNPs (synonymous and non-
synonymous) 

 

No. of non-
synonymous SNPs 

 Gene 

Sequence  

length (bp) 

ORF  

length (bp) UA PL D S   UA PL D S   UA PL D S 

VGSC 8,086 6,213 21.6 31.3 36.4 45.7 

 

0.16 0.31 0.38 0.32 

 

0 1 0 2 

ACE 3,285 1,974 37.2 67.4 67.6 79.4 

 

0.91 1.10 1.25 1.22 

 

5 7 8 6 

nAChR α1 2,076 1,632 21.8 30.8 32.1 47 

 

0.92 1.35 1.83 1.97 

 

0 2 0 0 

nAChR α2 1,738 1,647 18 26.1 26.3 43.9 

 

0.35 0.69 0.58 0.86 

 

1 1 1 1 

nAChR α3 2,000 1,686 9.4 10 12.1 19.1 

 

n.c. n.c. n.c. n.c. 

 

n.c. n.c. n.c. n.c. 

nAChR α4 1,283 1,283 7.9 11.7 10.3 13.2 

 

n.c. n.c. n.c. n.c. 

 

n.c. n.c. n.c. n.c. 

nAChR α5 1,554 1,418 13.4 20.2 17.1 28.3 

 

n.c. n.c. n.c. n.c. 

 

n.c. n.c. n.c. n.c. 

nAChR α6 3,367 1,500 52.6 65.1 72 118.8 

 

1.25 0.95 1.19 1.04 

 

1 1 1 1 

nAChR α7 2,101 1,581 8.6 12.8 12.3 15.8 

 

n.c. n.c. n.c. n.c. 

 

n.c. n.c. n.c. n.c. 

nAChR α8 2,162 1,611 13.8 21.1 23.1 36.4 

 

0.42 0.09 0.32 0.74 

 

0 0 0 1 

nAChR β1 2,413 1,581 70.8 79.7 89.4 198.1 

 

1.04 1.08 1.08 1.04 

 

1 2 2 2 

RDL 1,515 1,419 91.5 120.3 121.5 188.2   6.60 5.94 5.61 5.68   2 2 2 2 

*Coverage based on mapping Illumina reads against manually curated contigs 

n.c. = not calculated due to insufficient coverage among individual samples 
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Fig. 51 Amino acid sequence alignment of M. aeneus nAChR subunits (Ma α1-8, β1). Also 

shown are the sequences of the Nilaparvata lugens α1 (Np α1, AAQ75737) and 

Myzus persicae β1 subunit (Mp β1, CAB87995). The predicted signal peptide and 

transmembrane domains are indicated by an arrow and tubes, respectively. The 

location of loop domains (loops A-F) involved in ligand binding are indicated by grey 

bars above the sequence, and the di-cysteine motif characteristic for α subunits is 

boxed blue. Y151S and R81T mutations known to confer target-site resistance to 

neonicotinoid insecticides in N. lugens and M. persicae, respectively, are boxed red. 

Amino acid changes due to SNPs and deletions identified in M. aeneus are: Ma α1 

E/D 381 (alignment numbering), D/E 444, Ma α2 L/V 26, Ma α6 G/N 146, Ma α8 G/C 

16, Ma β1 R/T 9, deletion-RNDF 405. 
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The putative ORF of ACE (encoding the AChE) was represented in full length by one 

contig. The top BLAST hit was from the lesser meal worm, Alphitobius diaperinus (AA identity 

84 %) and the deduced amino acid sequence shows a high sequence identity with other 

Coleopteran species such as T. castaneum and L. decemlineata (Fig. 52). Out of the entire 

target sites analyzed in this study the ACE gene contains the most non-synonymous SNPs 

(Table 18), but no polymorphism was observed causing an amino acid change at a position 

previously associated with resistance to organophosphates in other insect species. The ACE 

sequence was aligned with other insect species and Pacific electric ray, Torpedo californica as 

a reference for numbering (Fig. 52). Pollen beetle’s putative ACE ORF was screened for the 

presence of conserved amino acids known to be involved in organophosphate resistance; a 

valine and leucine were conserved in the pollen beetle sequence at position 129 (T. californica 

1EA5 numbering) and 150, respectively. Val129 is linked to resistance to organophosphates in 

D. melanogaster [27] whereas Leu150 is associated with resistance in M. domestica [28]. 

However, in both these cases both mutations are known to confer only low levels of resistance 

on their own but significantly enhance resistance levels when present with other mutations in 

the ACE gene [27–29]. Despite this, to date, the combination of Val129 and Leu150 has not 

been reported in any study and the impact on the efficacy of organophosphates is unknown. 

However, the SNP causing a phenylalanine to valine change at position 129 (T. californica 

1EA5 numbering) should be investigated in further studies as amino acid changes at position 

119 (oxyanion hole) are known to confer resistance in Culex pipiens, Anopheles gambiae [30] 

and Tetranychus urticae [31].  

The RDL locus was represented by one contig containing a partial ORF. After manual 

curation we obtained a contig of 1993bp in length containing a putative ORF of 1416bp. The 

top BLAST hit was the RDL isoform E of D. melanogaster. Illumina read mapping to the final 

contig revealed a high SNP rate above 5.5 % for all samples but only 2 non-synonymous 

SNPs were found and none of them was at or close to the A302S mutation site known to 

cause cyclodiene resistance in D. melanogaster and a range of other insect species [32,33].  
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Fig. 52 Amino acid alignment of M. aeneus acetylcholinesterase. Also shown are the 

sequences of the Torpedo californica acetylcholinesterase (1EA5) (reference 

sequence), Drosophila melanogaster ACE-1 (Dm, 1QO9), Tribolium castaneum ACE-

1 (Tc, 662258) and Leptinotarsa decemlineata ACE-1 (Ld, JF343436). Characteristic 

motifs are indicated as follows (after HAREL et al., 2000 [54]): the intra-molecular 

disulfide bridges by linked yellow rectangles, the catalytic triad by blue rectangles 

(S,E,H), the choline binding site by a brown rectangle (W), the acyl pocket residues 

by red rectangles (L,F,F) and the oxyanion hole residues by purple rectangles 

(GG,A). Polymorphic sites in M. aeneus ACE are highlighted below the alignment.  
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6.2.5 Screening of differentially expressed ESTs, gene ontology analysis and 

validation by qRT-PCR 

Illumina RNA-sequencing of non-normalized libraries of four pollen beetle populations 

i.e. UA (susceptible), PL, D and SE (all resistant) was performed to obtain a global insight into 

gene expression changes between pyrethroid susceptible and resistant populations. Individual 

Illumina datasets were mapped against the above mentioned de novo assembled 

transcriptome of sample PL using bowtie (0.12.9). Approximately 78 % of the Illumina 

sequences of individual datasets were successfully aligned to the reference transcriptome 

(additional file 6). Based on FPKM values differentially expressed ESTs were identified among 

samples. The current study was limited to a single Illumina run covering four individual 

samples rather than biological replicates as we were interested in identifying common patterns 

in gene expression among resistant populations collected from different geographies to 

identify putative resistance genes to be investigated and validated in future studies. For 

validation of fold-changes calculated based on FPKM values, six of the most interesting 

candidate genes were analyzed using qRT-PCR. Results of the qRT-PCR runs were 

correlated with results obtained by RNA-seq (Table 19 & Table 20). Using a cut-off of a 2-fold 

change in EST expression between all resistant populations and the susceptible population in 

order to identify putative candidate resistance genes 1,252 and 338 ESTs were up-regulated 

and down-regulated, respectively (Fig. 53). The complete list of these ESTs along with 

annotations and calculated fold-change values is provided in additional file 7 and 8. Since all 

resistant populations but not the susceptible population were pre-treated with lambda-

cyhalothrin (see material and methods, insect material and bioassays), low expression 

changes as a result of a common stress response, rather than of a fundamental difference 

between susceptible and resistant populations, might be anticipated. Focusing on higher 

expression changes such as ≥ 10-fold, the number of ESTs similarly regulated in resistant 

samples dropped to 103. The Gene Ontology biological process, cellular component and 

molecular function categories of ≥ 10-fold over-expressed ESTs were analyzed with Fisher’s 

Exact Test allowing a maximal p-value of 0.01. This analysis revealed a clear pattern of 

differentially expressed ESTs related to detoxification of xenobiotics as overexpressed in 

resistant populations. In contrast the differentially expressed ESTs identified in individual 

resistant populations are not so clearly related to a detoxification category (Table 21, for 

sequence details refer to additional files 9-12). Only 16 out of 37 commonly over-expressed 

ESTs (> 10-fold) have annotations from SwissProt. Of these ten out of 16 represent P450s 

whereas the remaining six ESTs are unrelated to detoxification processes. Nine of the ten 

P450 ESTs represent CYP6BQ23, the fold-change in expression of these sequences ranged 

from ~130 to more than 1,800-fold and probably reflects the allelic variation present in the 

individual populations used in this study (Table 8). This result is consistent with the level of 
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expression of this P450 in resistant pollen beetle populations reported recently where the role 

of this P450 in pyrethroid resistance was clearly demonstrated by qPCR screening and 

functional expression [7]. The fact this former study revealed this particular P450 costitutively 

overexpressed at a similar level in resistant populations (including in a premature 

developmental stage) makes induction of expression by the pretreatment with lambda-

cyhalothrin rather unlikely. Another EST, Locus_15186_Contig1 is more than 15-fold 

overexpressed among the three resistant strains (Table 19) and represents a partial sequence 

encoding another P450 (1350nt ORF) that is closely related to CYP6BQ23 (86.1 % amino acid 

identity) and named CYP6BQ25. This P450 might also contribute to the pyrethroid resistant 

phenotype as it is overexpressed in all three resistant strains, and based on the high level of 

amino acid similarity with CYP6BQ23 may also be capable of metabolizing pyrethroid 

insecticides or their primary metabolites. 

Despite the fact the GO analysis revealed a clear pattern of common gene expression 

among resistant populations other detoxification related ESTs were identified that were not 

expressed at the same level in all the resistant samples, i.e. another cytochrome P450, some 

CCEs and GSTs (Table 19). For example, the two ESTs Locus_23909_Transcript_1/1 and 

Locus_6363_Contig1 represent allelic variants of CYP4Q22 which was > 25-fold, > 5-fold and 

> 8-fold over-expressed in D, PL and SE, respectively. When compared to the levels of 

expression of CYP6BQ23 these are fairly modest changes in expression. However it is 

feasible that this P450 may play a minor role in pyrethroid metabolism. Finally several CCEs 

and three GSTs were identified. The three GST sequences were commonly over-expressed in 

all resistant samples ranging from fold changes of 2 to 2.6, 1.3 to 2.3 and 1.1 to 1.9 in D, PL 

and SE, respectively. Most of the sequences representing differentially expressed CCEs 

are 2-fold overexpressed in sample D and PL but not in SE except for Locus_6623_Contig1 

where the expression pattern is the opposite. Given the low levels of expression of GSTs and 

CCEs in the resistant population it is likely they play only a minor role in resistance and this is 

consistent with previous work [9]. Furthermore the cross resistance between etofenprox and 

lambda-cyhalothrin suggests a minor contribution of esterases as the non-ester pyrethroid is 

affected in the same way in all resistant populations. qRT-PCR on six genes of interest 

including the highly overexpressed CYP6BQ23, CYP6BQ25, CYP4Q22, a GST and two CCEs 

confirmed the expression changes of all chosen candidate genes (Table 19 & Table 20). The 

qRT-PCR carried out with primers based on conserved regions for all contigs of CYP6BQ23 

confirmed the massive overexpression of this P450 in all resistant populations ranging from 

> 400 fold in the Polish sample to ~700 fold in the German and Swedish sample, respectively. 
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Table 19 Selected genes coding for detoxification enzymes and differentially expressed between pyrethroid resistant pollen beetle strains (D, PL, 

SE) and the susceptible reference strain (UA)  

Locus Transcript 
SwissProt  

Acc OA 
Gene* Pfam (score, E-value) D/UA PL/UA SE/UA 

16579_Transcript_1/1 Q9V4U7 CYP6BQ23 P450 (89.1, 2.2e-25) 780.37 384.56 747.14 

17629_Transcript_1/1 Q27698 CYP6BQ23 P450 (26.8, 1.7e-06) 960.2 268.64 668.28 

22383_Transcript_1/1 O61387 CYP6BQ23 P450 (43.9, 1.1e-11) 1,025.73 440.39 1,827.7 

23236_Transcript_1/1 Q964Q7 CYP6BQ23 - 613.77 307.14 455.25 

23831_Transcript_1/1 Q9VFP1 CYP6BQ23 P450 (50.6, 1e-13) 474.03 132.58 776.37 

24713_Transcript_1/1 Q964Q7 CYP6BQ23 P450 (40.3, 1.3e-10) 494.29 202.82 354.78 

1499_Transcript_2/220 Q964Q7 CYP6BQ23 - 622.93 281.82 505.9 

1499_Transcript_3/220 Q964Q7 CYP6BQ23 - 312.88 140.02 267.25 

1499_Transcript_145/220 O61387 CYP6BQ23 P450 (47.9, 6.6e-13) 596.48 295.12 496.14 

15186_Contig1 Q9V4U7 CYP6BQ25 P450 (238.0, 1.5e-70) 16.57 28.3 17.36 

23909_Transcript_1/1 Q27589 CYP4Q22 P450 (29.2, 3.2e-07) 34.75 7.33 13.61 

6363_Contig1 P29981 CYP4Q22 P450 (394.2, 6.4e-118) 28.24 5.91 8.18 

16932_Transcript_1/1 O18598 GST sigma class GST, C-terminal domain (30.7, 2.3e-
07) 

2.07 1.3 1.92 

7583_Contig1 P46430 GST epsilon class GST, C-terminal domain (39.6, 3.6e-
10) 

2.69 2.39 1.1 

9478_Transcript_14/14 Q93112 GST theta class GST, N-terminal domain (46.3, 3.6e-
12) 

2.37 2.14 1.65 

12804_Contig1 B2D0J5 CCE clade A CCE family (314.7, 1.2e-93) 2.28 2.59 0.6 

12804_Contig2 B2D0J5 CCE clade A CCE family (326.1, 4.1e-97) 2.37 2.72 0.59 

12804_Transcript_4/6 B2D0J5 CCE clade A CCE family (270.3, 3.1e-80) 2.34 2.71 0.61 

19749_Transcript_1/1 P35502 CCE clade D CCE family (407.3, 1e-121) 2.43 0.91 1.17 

5247_Contig1 B2D0J5 CCE clade E CCE family (36.8, 1.8e-09) 2.52 2.53 1.93 

5247_Contig2 B2D0J5 CCE clade E CCE family (310.9, 1.6e-92) 2.22 2.16 1.46 

6623_Contig1 P35502 CCE clade A CCE family (363.2, 2.3e-108) 0.66 0.75 3.1 

7411_Contig5 P25727 CCE clade A CCE family (254.9, 1.5e-75) 2.49 2 1.27 

7411_Transcript_10/21 P25726 CCE clade A CCE family (131.9, 2.8e-38) 2.37 1.77 1.15 



 

 

[149] 

Locus Transcript 
SwissProt  

Acc OA 
Gene* Pfam (score, E-value) D/UA PL/UA SE/UA 

7411_Transcript_14/21 P25727 CCE clade A CCE family (132.5, 1.9e-38) 2.21 1.59 0.79 

7411_Transcript_17/21 O16170 CCE clade A CCE family (253.2, 5.1e-75) 2.2 1.67 1.22 

7411_Transcript_19/21 P25726 CCE clade A CCE family (349.1, 4.4e-104) 2.05 1.95 1.18 

7411_Transcript_8/21 P25726 CCE clade A CCE family (183.2, 7.8e-54) 2.27 1.75 1.15 

 

<1.5 ≥1.5-5 >5-10 >10-100 >100-1000 >1000 

*P450 names assigned by P450 nomenclature committee, CCE and GST classes assigned by BLAST search 

 

 

Table 20  qRT-PCR validation of candidate-genes. 

Locus Gene name (gene family) D 95% FL* PL 95% FL SE 95% FL 

- CYP6BQ23 (P450) 690.35 80.93 413.38 44.58 741.78 48.89 

15186_Contig1 CYP6BQ25 (P450) 11.82 4.78 23.86 5.23 13.36 5.08 

6363_Contig1 CYP4Q22 (P450) 24.63 3.36 7.13 2.18 10.87 3.58 

16932_Transcript_1/1 - (GST) 2.24 0.25 1.46 0.53 2.71 1.01 

5247_Contig1 - (CCE) 2.98 0.56 1.82 0.53 1.75 0.54 

6623_Contig1 - (CCE) -0.22 0.08 -0.09 0.54 3.45 1.12 

*FL = Fiducial limits 
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Table 21 GeneOntology categories of at least 10-fold differentially expressed genes.  

Gene Ontology 
Common response resistant* 
versus susceptible strain  

SE versus PL**  D versus SE** D versus PL**  

Biological process 

Transcription & gene expression 
Xenobiotic stimulus & metabolic 
response 
Response to 
substances/insecticides/… 

Proteolysis 
Aerobic respiration 
Viral reproduction 
GTPase mediated signal 
Transduction 
Regulation of cell division 

Response to stress 
GTPase mediated signal 
Regulation of cell division 
Aerobic respiration 

Response to stress 

Cellular component 
Mictochondria 
Endoplasmatic reticulum 
Microtubuli 

Mitochondria 
Beta galactosidase complex 
Spindle midzone 
cytoplasma 

Mitochondria 
Chorion 
Spindle midzone 
beta galactosidase complex 

  

Molecular function 

Monooxygenase 
Activity/oxidoreductase activity 
Aminopeptidase activity 
Transition metal binding 
Electron carrier binding 

Cytochrome oxidase activity 
Endopeptidase activity 
Oxidoreductase activity 

Cytochrome oxidase activity 
Oxidoreductase activity 
Hem and tetrapyrrole binding 
Antioxidant activity 
Electron carrier binding 

  

No. of sequences 103 86 102 35 

No of annotated seq. 84 40 59 24 

No. of seq. with GO term 40 33 45 12 

* Includes genes similarly expressed in all resistant samples (D, PL and S) and different from strain UA 

** SE vs. PL, D vs. SE and S vs. PL includes genes at least 10 fold differentially expressed between the named two samples. 
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Fig. 53 Venn diagram of 2-fold over-expressed (left) and 2-fold under-expressed (right) 

sequences comparing the three resistant samples. 

 

6.2.6 Conclusions 

Despite the economic importance of pollen beetles for European agriculture the lack of 

genomic/transcriptomic information for this species has hampered molecular research. The 

overall aim of this study was to provide the first comprehensive transcriptome resource for M. 

aeneus and to use this to investigate the molecular mechanisms underlying pyrethroid 

resistance in European pollen beetle populations. The transcriptome data obtained in this 

study has identified two major mechanisms associated with pyrethroid resistance in resistant 

populations, (1) modification of the target-site in strain SE and (2) enhanced detoxification by 

one or more cytochrome P450s in strains SE, PL and D. Our findings reported here are 

consistent with results from previous studies [6–8]. Combinations of target-site and metabolic 

mechanisms have been described in several other insect species including bed bugs [34,35], 

houseflies [36] and mosquitos [37] to name just a few. Multiple mechanisms typically often 

result in significantly higher levels of resistance than individual mechanisms [34,37]. However, 

in our study the Swedish population SE shows both target-site resistance (kdr) and 

CYP6BQ23 overexpression, but displayed an equally resistant phenotype as the German 

population D and was significantly more susceptible than the Polish population based on LC50 

values (the difference was not significant based on LC95 values). SCOTT AND GEORGHIOU [38] 

described a minor contribution of the kdr allele for the LPR strain of M. domestica in a 

phenotype showing 5000-fold resistance to permethrin due to overexpression of CYP6D1. 

However, since only a single pollen beetle strain carried the kdr allele at moderate frequency, 
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the relative contributions of target-site and metabolic mechanisms to pyrethroid resistance 

remains to be determined and requires more detailed characterization, but it seems highly 

likely that CYP6BQ23 is the major player in conferring pyrethroid resistance, at least to 

lambda-cyhalothrin. A novel finding of this study was the discovery of a second P450, 

CYP6BQ25, which is overexpressed in all resistant strains and shows high similarity to 

CYP6BQ23. Although CYP6BQ25 is expressed at significantly lower levels than CYP6BQ23, 

it is an interesting candidate for further research as it is linked to pyrethroid resistance in M. 

aeneus.  

Unfortunately, pyrethroid resistance is now widespread in pollen beetle populations 

throughout much of Europe and as a result alternative insecticide classes such as 

neonicotinoids (e.g. thiacloprid) have been recently introduced as chemical control measures. 

To facilitate future research efforts on resistance in this species we have characterized 

numerous genes and gene families encoding the target proteins of the major chemical classes 

of insecticides. Furthermore the transcriptome offers the possibility to extract genes coding for 

target-sites not yet addressed for pollen beetle control. Beyond resistance and target-site 

research this transcriptomic resource will also facilitate molecular studies on fundamental 

questions such as host plant adaption mechanisms, pollen beetle development and its 

endocrine regulation for example by transcription factors or neuropeptides. 

6.3 Methods 

6.3.1 Insect material and bioassays 

Adult pollen beetles were collected in winter oilseed rape fields at the pre-flowering 

stage in Germany (sample D), Poland (sample PL), Ukraine (sample UA) and Sweden 

(sample SE) in spring 2012. The susceptibility of the collected pollen beetle populations 

towards two pyrethroid insecticides, i.e. lambda-cyhalothrin and the non-ester pyrethroid 

etofenprox, was assessed by using an adult vial test as described recently [6]. Populations 

resistant to pyrethroids were further selected with lambda-cyhalothrin using a similar bioassay, 

but at a sub-lethal dose representing 20 % of the field rate (15 ng cm-2) in order to kill 

remaining susceptible individuals to limit the genetic diversity within the populations in terms of 

pyrethroid resistance. Survivors of a dose of 15 ng cm-2 lambda-cyhalothrin were then 

subsequently transferred to oilseed rape plants in a climate chamber running at 18 °C, 16h:8h 

day/night and  allowed to remain on the plants for one week before they were flash-frozen in 

liquid nitrogen and transferred to -80 °C. The highly susceptible Ukrainian sample was not 

pretreated with lambda-cyhalothrin as it cannot survive even 100-fold lower doses of 

pyrethroid insecticides. The Ukrainian population was allowed to feed for one week on oilseed 
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rape in the climate chamber before it was flash-frozen. All insect samples were shipped on dry 

ice to LGC Genomics (Berlin, Germany) for further processing.  

6.3.2 cDNA library construction, 454 and Illumina sequencing 

Sample preparation and sequencing was performed at LGC Genomics (Berlin, 

Germany). Total RNA was extracted from pools of mature beetles each containing 120 insects 

using Trizol-GTI-LiCl method [39]. Sample PL (Poland) was sequenced on a 454 FLX 

Titanium Sequencing platform (Roche) on a half plate single run using cDNA which was 

normalized using the Trimmer kit (Evrogen). Illumina’s TruSeq RNA preparation kit was used 

to enrich for poly-A RNA and to construct the sequencing libraries for samples PL, SE, UA and 

D. Poly-A RNA was captured using oligo-T magnetic beads, fragmented chemically and used 

as template for first strand cDNA synthesis. After the second strand synthesis fragment ends 

were blunted, an A-overlap was generated and Illumina adapters were annealed. Finally, 

adapter-ligated library fragments were enriched by PCR. The theoretical insert lengths were 

between 160 and 260 bp. Sequencing was performed on an Illumina HiSeq2000. 

6.3.3 De novo assembly 

Two assemblies of the M. aeneus transcriptome were carried out. (1) 454 reads were 

assembled by LGC using Newbler Assembler 2.6 (Roche Software) and the following 

parameters: Seed step 12, seed length 16, min. overlap length 40, minimum overlap identity 

90, alignment identity score 2, alignment difference score -3; (2) Illumina reads from the same 

sample (Poland) were used to improve the 454-assembly: Identical short reads were 

collapsed keeping the read with the highest quality score sum as the representative of a 

redundant group. Since the insert lengths of the sequencing library (160-260 bp) led to many 

overlapping short reads, the collapsed Illumina reads were merged into extended‚ single-end 

reads keeping the remaining paired-end reads using Flash 1.2.5 [40] with default settings. 

This resulted in 3,978,798 extended fragments and 13,023,392 uncombined pairs.  

A new assembly was performed using velvet 1.2.08 [41] and oases [42]. K-mer hashes 

were prepared for k = 61, 71, and 81 with velveth using 454 reads as long fasta, extended 

Illumina reads as short fastq and uncombined Illumina reads as Short Paired fastq. Contigs 

were assembled with velvetg for each k-mer size and subsequently clustered with oases. The 

transcripts of the three sets were then merged into a combined assembly using kmerge = 71. 

Finally, oases loci with more than one assigned transcript were assembled with cap3 [43] and 

default settings.  
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6.3.4 Annotation of predicted proteins 

The sequences resulting from the assembly were annotated using SwissProt [44], 

UniProt [45], Tribolium castaneum ESTs from GenBank [46], PFAM [47] and GeneOntology 

(GO) [48] databases. Sequences were searched via BLASTx against SwissProt, UniProt and 

Tribolium castaneum ESTs. Instead of accepting the best BLAST hit in queries versus 

SwissProt, the descriptions of the first 5 hits were analysed. Each hit was associated with a 

score calculated from the E-value, the best HSP score and in accordance to the number of 

informative and non-informative keywords in the descriptions. The description of the highest 

scoring hit was accepted. Hmmscan against PfamA was run for the longest translated ORF 

from the assembly sequences. The GeneOntology annotation includes the complete, non-

redundant path through the GeneOntology graph for each top blast hit in the collection of GO 

representative sequences (seq table of the MySQL incarnation of GO). The GO term 

annotation was carried out using an in-house script. 

 

6.3.5 Manual curation of genes of interest, phylogenetic analysis and SNP 

identification 

Sequences containing annotations referring to genes of interest (GOI) in particular 

cytochrome P450s (P450s) and genes encoding insecticide target sites currently addressed in 

pollen beetle control were manually curated in order to maximize the sequence information 

using Geneious 6.1 (Biomatters Ltd, Auckland, New Zealand). The largest contigs referring to 

individual GOI were used as a template for paired short read (Illumina) mapping using up to 5 

iterations allowing 2 % mismatches, 10 % gaps, minimum overlap of 25, word length 18 and 

an index word length of 13. The mapping process was repeated up to three times after manual 

trimming to conserved regions.  

Non-redundant deduced amino acid sequences encoding putative P450s were aligned 

to available P450 sequences of Tribolium castaneum, Apis mellifera and Bombyx mori using 

MUSCLE alignment. A neighbor-joining phylogenetic tree was created with Geneious tree 

builder using Jukes-Cantor genetics distance model, resampled 1,000 times (Bootstrap, 

random ssed) and human CYP3A4 as an out-group. 

The final set of GOI referring to insecticide target sites were used as a template for 

single nucleotide polymorphism (SNP) analysis. To identify SNPs short reads of individual 

populations were mapped against the curated consensus sequences of voltage gated sodium 

channel (VGSC), acetylcholine esterase (ACE), gamma-amino butyric acid receptor (GABA, 

rdl) and nicotinic acetylcholine receptor subunits (nAChR) allowing 5 % gaps, 10 % 
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mismatches per read, word length 14 and an index word length of 12. SNPs were called at a 

minimum coverage of 20, minimum variant frequency of 0.1 and a minimum variant P-value of 

10-6 while ignoring reads that align at multiple locations.  

6.3.6 Mapping of short reads, calculation of expression values and qRT-PCR 

validation 

The Illumina reads from all four samples were mapped separately, i.e. like single end 

reads, against the PL reference transcriptome using bowtie [49] thus creating a set of 

technical replicates for each sample. Two mismatches were allowed in a seed of 30 bp and 

the overall mismatch quality sum threshold was set at 160. No Maq [50] quality score rounding 

was used. The best 10 alignments were reported excluding reads that aligned more than 20 

times (bowtie –n 2 –I 30 –e 160 –nomaground –phred33-quals –k10 –m 20 –best –S 

MELAS_BCS *input_file*).  

Expression values for the reference sequences were calculated using the FPKM 

algorithm [51] as implemented in Genedata’s RefinerGenome [http://www.genedata.com]. 

Normalization based on length of the contigs and on total count of compatible reads was 

included. Differentially expressed genes were identified by calculating the arithmetic means of 

the FPKM values of the two separately mapped reads per paired-end pair and relating them to 

the averages of the UA sample thus creating fold-change values. 

qRT-PCR was performed on a 7900ht real time cycler (Applied Biosystems, CA, USA). 

Primer pairs were designed using Primer3 [52] to amplify a fragment of 90-150 bp in size for 

each gene and are listed in additional file 13. Reaction mixtures (15 µl) contained 4 µL cDNA 

(5 ng), 7.5 µL of SYBR green JumpStart Taq ReadyMix (Sigma Aldrich, MS, USA) and 

0.25 µM of each primer. Thermocycling conditions were 2 min at 95°C followed by 40 cycles 

at 95°C for 10 s, 57°C for 15 s and 72°C for 20 s. A final melt-curve step was included post-

PCR (ramping from 65°C-95°C by 0.5°C every 5 s) to check for nonspecific amplification. The 

efficiency for each primer pair was assessed using a serial dilution of 100 ng to 0.01 ng of 

cDNA. Only primer pairs were used with a R2 ≥ 0.99 and a PCR efficiency > 90 % and 

< 110 %. Three independent biological replicates containing 15-20 beetles each were run in 

triplicate in each qRT-PCR experiment. Two reference genes, i.e. α-tubulin (GenBank 

KC840056.1) and actin (GenBank KC840045.1), were used for normalization according to 

ΔΔCq method [53].  

6.3.7 Database submission 

Sequence data generated in this study have been deposited to NCBI as follows: 
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BioProject (accession no PRJNA223353), project description 

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA223353; 

BioSample (accession no SAMN02378901), details to the reference sample PL 

http://www.ncbi.nlm.nih.gov/biosample/2378901; 

Run (accession no SRR1015472), raw data collection 

http://www.ncbi.nlm.nih.gov/sra/?term=SRR1015472; 

This TSA (Transcriptome Shotgun Assembly) project has been deposited at 

DDBJ/EMBL/GenBank under the accession GAPE00000000. The version described in this 

paper is the first version, GAPE01000000. 

All ESTs generated in this study incl. the list of P450s genes and genes encoding insecticide 

target sites are provided in additional file 14. 
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Abstract 

Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) and cabbage seed 

weevil, Ceutorhynchus assimilis PAYK. (Coleoptera: Curculionidae) are important pests in the 

production of European Winter oilseed rape, Brassica napus L. (Brassicaeae), which is grown 

on several million hectares in Europe. Insecticide treatments are common to control both 

pests once they exceed economic damage thresholds, however not many chemical classes 

are available for their control in European oilseed rape. Particularly pollen beetle recently 

developed high levels of pyrethroid resistance impairing field control at recommended rates in 

many countries, whereas no resistance is yet reported to another important insecticide, 

thiacloprid. The major objective of our study was to check the spatio-temporal susceptibility 

status of pollen beetle against the recently introduced insecticide thiacloprid. From 2009 to 

2012 more than 630 populations of pollen beetle collected in 13 different countries were 

monitored for resistance to thiacloprid by using an adult vial test. No shifting to lower 

susceptibility of pollen beetle to thiacloprid has been observed between 2009 and 2012. 

Furthermore we were able to show that pollen beetle larvae are extremely susceptible to 

thiacloprid whereas larvae of the same strains are significantly more resistant than adults to 
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pyrethroids such as lambda-cyhalothrin. Dose-response data for thiacloprid against cabbage 

seed weevil populations collected in 2011 in Germany, Sweden and Ukraine showed a ten-

fold higher intrinsic sensitivity compared to pollen beetle, and showed only a low variation in 

response. In addition we also tested 17 cabbage seed weevil populations collected in 5 

different countries against lambda-cyhalothrin with low variation in response (3-fold), 

suggesting full baseline susceptibility and no resistance to pyrethroids. The implications of the 

data presented for resistance management in coleopteran pests in winter oilseed rape will be 

discussed. 

7.1 Introduction 

Winter oilseed rape is an economically important crop which is grown on several 

million hectares and indispensable in many crop rotations in Europe. Its production is 

threatened by the attack of numerous coleopteran pests such as Ceutorhynchus spp. (stem 

and seed weevils), Meligethes spp. (pollen beetles), Psylliodes chrysocephala L. and 

Phyllotreta spp. (flea beetles) [1]. Three weevil species are of particular importance as pests in 

oilseed rape, i.e. rape stem weevil, Ceutorhynchus napi GYLL., cabbage stem weevil, 

Ceutorhynchus pallidactylus MARSH., and cabbage seed weevil, Ceutorhynchus assimilis 

PAYK. syn. C. obstrictus MARSH.. The latter species is abundant in the crop from early 

flowering until ripening of the seeds, whereas C. napi (similar to C. pallidactylus) is abundant 

in early spring well before flowering. The main damage is caused by C. assimilis larval feeding 

as each developing larvae consumes about five seeds [1]. The damaged pods of the crop 

then serve as oviposition sites for brassica pod midge, Dasineura brassicae WINN. (Diptera: 

Cecidomyiidae).  However, by far the major pest of oilseed rape in Europe is pollen beetle, 

Meligethes aeneus F., which considerably increased in numbers during the last two decades 

and it was shown that this is linked to expanding oilseed rape acreage in some countries [1,2]. 

M. aeneus destroys the flowering parts through bud feeding resulting in enormous yield losses 

[1]. Pollen beetle as well as weevil control measures include regular insecticide sprays in most 

if not all European countries, and depending on country up to five insecticide applications per 

season are necessary to protect the crop from pollen beetle invasions [3]. After the ban of 

organophosphates the major insecticide class for pollen beetle and weevil control until 2006 

was the pyrethroids [4–6]. Selection pressure by pyrethroids on pollen beetle populations was 

enormous, so that widespread resistance to this chemical class of insecticides nowadays is a 

major problem [4,7–12]. Large-scale pyrethroid resistance monitoring campaigns in pollen 

beetle in as many as 20 countries between 2007 and 2011 revealed high resistance to 

pyrethroids resulting in limited control and field failure [13,14], whereas resistance in weevils 

such as cabbage seed weevil, C. assimilis is still either absent or limited to just a few regions 

in Germany [5,15]. In Germany yield losses due to pest pressure and pyrethroid resistance 
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reached a peak level in 2006 when farmers were unable to fully control pollen beetle 

infestations on approx. 200,000 ha [16]. The molecular mechanisms involved in pollen beetle 

resistance to pyrethroids were recently investigated and include cytochrome P450 driven 

oxidative degradation as well as a target-site mutation leading to a single amino acid change 

in the voltage-gated sodium channel [17,18]. Since 2007 a few new active ingredients with 

different modes of action were registered for use in oilseed rape, including thiacloprid, which 

agonistically binds to insect nicotinic acetylcholine receptors [19]. Other insecticides recently 

registered for pollen beetle control in some European countries include acetamiprid, 

indoxacarb, pymetrozine and spinosad [20]. However in Germany by far the most important 

insecticide after pyrethroids is thiacloprid, which is active against pollen beetle and weevils as 

well [13]. However, all oilseed rape insect pests share a long history concerning pyrethroid 

treatments and particularly for pollen beetle, recently introduced resistance management 

strategies need to be followed to release selection pressure from the pyrethroids which still 

form a chemical class of utmost importance for the control of other oilseed rape pests 

[5,13,14]. HEIMBACH & MÜLLER [15] recently reported significant levels of pyrethroid cross-

resistance in at least two German populations of C. assimilis, however in most regions 

pyrethroids still work well for cabbage seed weevil as well as stem weevil control.  

The objectives of this study were (1) to check the susceptibility status to thiacloprid of 

M. aeneus populations collected all-over Europe in 2011 and 2012, and to compare the 

obtained data with recently published baseline data [13]; (2) to measure the systemic efficacy 

of thiacloprid against M. aeneus adults, as well as the contact activity to 2nd instar larvae in 

comparison to lambda-cyhalothrin; and (3) to generate baseline susceptibility data for 

thiacloprid against C. assimilis and to compare them with the variation in response to lambda-

cyhalothrin for populations collected in different European countries to possibly detect 

susceptibility shifts leading to poor control using manufacturers field recommended rates.  

7.2 Materials and methods 

7.2.1 Insects 

In total 633 M. aeneus populations were collected in winter oilseed rape fields from 13 

different European countries between 2009 and 2012, including the most important oilseed 

rape cropping countries France, Germany, Poland and Great Britain (Table 22). A few 

hundred adult beetles per sample were placed in perforated plastic bags including some 

oilseed rape buds as food source for shipment. The samples were either shipped to Bayer 

CropScience, Monheim, Germany or directly tested at the respective collection site by external 

collaborators. Beetles tested at the authors´ laboratory were stored for 24 h at 4-6 °C upon 
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arrival in the laboratory. Two hours prior to bioassay the insects were removed from the 

refrigerator and equilibrated to room temperature (20 ± 2 °C). Those beetles of lower viability 

and remaining on the bottom of the bag and were not used for the bioassays. Seventeen 

cabbage seed weevil, C. assimilis populations were collected in five European countries in 

flowering winter oilseed rape fields in 2011 and handled as described above. The sampling 

sites for cabbage seed weevil populations are shown in Fig. 54.  

 

Table 22 Number of conducted thiacloprid resistance monitoring tests with Meligethes 

aeneus sorted by year of sampling, testing site and country. 

Year Site A CZ D DK F FIN LT LV N PL S UA UK Sum 

2009
3
 BCS

1
 9 

 

19 

 

8 

       

2 33 

2010
3
 BCS 

  

32 

 

29 

    

7 

 

2 2 55 

2011 BCS 15 

 

32 6 33 2 

  

3 8 7 2 2 110 

 

External
2
 20 8 117 7 

  

14 18 

 

10 15 

 

3 212 

2012 BCS 3 3 7 4 12 

    

23 

   

52 

  External 

 

8 112 

 

29 10 

   

8 4 

  

171 

Total BCS 27 3 90 10 82 2 0 0 3 38 7 4 6 250 

Total External 20 16 229 7 29 10 14 18 0 18 19 0 3 383 

Total   47 11 319 17 111 2 14 18 3 56 22 4 9 633 

A, Austria; CZ, Czech Republic; D, Germany; DK, Denmark; F, France; FIN, Finland; LT, Lithuania; LV, Latvia;  

N, Norway; PL, Poland; S, Sweden; UA, Ukraine; UK, United Kingdom 
1
Tested at the authors´ laboratory 

2
Tested externally with coated glass vials provided by the authors 

3
The list includes 33 and 55 populations recently taken for thiacloprid baseline susceptibility monitoring and  

collected in 2009 and 2010, respectively [13] (see Chapter 2) 

 

M. aeneus 2nd instar larvae were collected in May 2011 in winter oilseed rape fields 

from different regions in Germany. The larvae can be easily collected in the late flowering 

stage of oilseed rape (BBCH 67-69) by tapping the plants into a close-meshed insect net. The 

collected larvae were placed with some flowering parts of oilseed rape into a perforated plastic 

bag and stored for 24 h at 4-6 °C. Two hours before bioassay the larvae were removed from 

the refrigerator, equilibrated to room temperature (20 ± 2 °C) and separated from flower 

material by using a sieve (3 mm mesh size). 
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Fig. 54 Sampling sites for populations of cabbage seed weevil, Ceutorhynchus assimilis in 

Europe. 

7.2.2 Thiacloprid resistance monitoring bioassay – M. aeneus 

Thiacloprid resistance monitoring was carried out using an adult vial test as recently 

described [13]. The method is also available as IRAC (Insecticide Resistance Action 

Committee) susceptibility method No. 21 “Pollen beetle susceptibility monitoring bioassay – 

neonicotinoids” [21]. Briefly: Formulated thiacloprid (Biscaya® OD240, Bayer CropScience) 

was used in three discriminating concentrations coated on the inner glass surface at 

1.44 µg cm-2, 0.72 µg cm-2 and 0.144 µg cm-2 corresponding to 200 % (144 g ha-1), 100 % 

(72 g ha-1) and 20 % (14.4 g ha-1) of the manufacturers field recommended rate, respectively. 

Coated vials were dried and kept in the dark at room temperature and used within 4 weeks 

after preparation [13]. For bioassay purposes 10 M. aeneus adults were transferred into each 

vial using 2-3 replicates per concentration and sample. Beetles in acetone-treated vials served 

as control. After lidding vials were stored in upright position at 20 ± 2°C for 24 h. Afterwards 

vials were briefly shaken and assessed for affected beetles. External collaborators conducted 

the bioassays with material provided by the authors´ laboratory (i.e. coated vials and 

instructions). Whereas all tests (n = 250) at the authors´ laboratory were conducted by only 
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two persons between 2009 and 2012, the number of external collaborators doing bioassays (n 

= 383) exceeded 100 persons (refer to supporting information) that’s likely to result in a 

somewhat higher variation. 

7.2.3 Pyrethroid resistance monitoring bioassay – M. aeneus 

Pyrethroid resistance monitoring bioassays (as described below) were only carried out 

comparatively with larval bioassays on a few populations of adults collected in 2011 using an 

adult vial test as recently described [13]. Briefly: Technical grade lambda-cyhalothrin was used 

as a reference pyrethroid at two discriminating concentrations coated on the inner glass 

surface at 75 ng cm-2 and 15 ng cm-2 representing 100 % (7.5 g ha-1) and 20 % (1.5 g ha-1) of 

the manufacturers field recommended rate, respectively. A full description and validation of 

the methodology for pollen beetle pyrethroid resistance monitoring is given elsewhere [14].  

7.2.4 Systemic bioassay  

The potential of systemic action of thiacloprid to control M. aeneus was examined in a 

laboratory test system. Inflorescences of untreated oilseed rape plants in the early bud stage 

(BBCH 51 - 53) were cut and its stems were placed into insecticide solution containing 

different concentrations of the commercially available 240 g thiacloprid L-1 OD formulation 

(Biscaya® OD 240, Bayer CropScience). Five concentrations were used: 100 % (240 mg AI L-1 

water, which is equal to manufactures instructions for field application 72 g AI ha-1 dissolved in 

300 L-1), 20 % (48 mg L-1), 4 % (9.6 mg L-1), 0.8 % (1.92 mg L-1) and 0.16 % (0.38 mg L-1). The 

inflorescences were placed into insecticide solution 24 h prior to infestation with pollen 

beetles. Each inflorescence was then infested with 15 M. aeneus adults using three replicates 

per concentration. The mortality was assessed 24 h after infestation with pollen beetles. It is 

well known that many pyrethroids including lambda-cyhalothrin lack any systemic activity due 

their physicochemical properties [22], however for reasons of completeness we confirmed this 

lack of systemicity with a similar set-up as described above. 

7.2.5 Larval dip bioassay 

The susceptibility of M. aeneus larvae to lambda-cyhalothrin collected in 2011 was 

compared to thiacloprid using a larval dip bioassay. The larvae were collected in three 

different regions of Germany with a known presence of pyrethroid resistance in adult pollen 

beetle. Ten larvae were dipped for 5 s into aqueous insecticide solutions prepared by using 

the commercially available 100 g lambda-cyhalothrin L-1 CS formulation (Karate Zeon®, 

Syngenta) and the commercial available 240 g thiacloprid L-1 OD formulation (Biscaya® OD 

240, Bayer CropScience) respectively. Five concentrations were tested for each insecticide; 

for lambda-cyhalothrin: 3125 mg AI L-1, 625 mg L-1, 125 mg L-1, 25 mg L-1 (field-recommended 

rate) and 5 mg L-1; and for thiacloprid: 1200 mg AI L-1, 240 mg L-1 (field-recommended rate), 
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48 mg L-1, 9.6 mg L-1 and 1.92 mg L-1. For each concentration three replicates were tested. 

Right after dipping the larvae were placed in a small petri dish (94 mm in diameter) containing 

a filter disc and ten freshly cut oilseed rape flowers (untreated). Every 8-12 h ten new flowers 

were placed into each petri dish. Mortality was scored 36 h after dipping using a binocular. 

Larvae not moving after prodding and showing signs of intoxication were scored as dead.  

7.2.6 C. assimilis adult vial tests 

In order to check for possible variation in C. assimilis baseline susceptibility against 

thiacloprid and lambda-cyhalothrin, the adult vial test for M. aeneus as described above was 

used. Dose-response experiments were carried out by using five insecticide concentrations 

coated on the inner surface of the glass vial and based on the recommended field rate; (1) 

thiacloprid: 144 ng cm-2 (corresponds to 20 % of the field-recommended rate of 72 g ha-1), 

28.8 ng cm-2 (4 %), 5.76 ng cm-2 (0.8 %), 1.5 ng cm-2 (0.16 %) and 0.23 ng cm-2 (0.03 %) and 

(2) lambda-cyhalothrin: 15 ng cm-2 (corresponds to 20 % of the field-recommended rate of 

7.5 g ha-1), 3 ng cm-2 (4 %), 0.6 ng cm-2 (0.8 %), 0.12 ng cm-2 (0.16 %) and 0.024 ng cm-2 

(0.03 %). Mortality was scored after 24 h. 

7.2.7 Data analysis 

All mortality figures were corrected for control mortality using ABBOTT’S formula [23]. 

Tests exceeding a control mortality of 20 % were excluded from the analysis. One way 

Analysis of Variance (ANOVA) with Bonferroni post hoc test was used to determine significant 

differences of M. aeneus thiacloprid susceptibility in 2011/12 compared with the baseline data 

obtained in 2009/2010 [13]. The data of larval bioassays were compared to those from adult 

bioassays using ANOVA and mean mortality was compared by Tukey test. According to 

thiacloprid baseline studies conducted in 2009/10, the expected results for M. aeneus 

mortality in adult vial tests are 98.5 % ± 2.9 at 1,44 µg cm-2 (200 % field rate), 95.7 % ± 7.2 at 

0.72 µg cm-2 (100 %) and 54.8 % ± 12 at 0.144 µg cm-2 (20 %) respectively. Lethal 

concentration (LC) values were calculated by probit regression analysis using Polo Plus 

software (LeOra Software, Berkeley, CA, USA). The geographical mapping based on 

pyrethroid resistance monitoring results obtained in the authors´ laboratory between 2004 and 

2012 was done with EasyMap Software v10.0 SP17 (Lutum+Tappert, Germany) and is based 

on postal codes.  
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7.3 Results  

7.3.1 Thiacloprid resistance monitoring in M. aeneus populations 

The susceptibility of 633 European M. aeneus populations against thiacloprid was 

tested in the years 2009-2012 using an adult vial test (Table 22). The response of those 

populations collected in 2009 and 2010 served to define the baseline susceptibility of pollen 

beetle adults to thiacloprid as shown in Fig. 55, where the mean mortality of all European M. 

aeneus populations collected in 2011 and 2012 is plotted in combination with the variation in 

response obtained in 2009/10 at the chosen discriminating dosages of 200 %, 100 % and 

20 % of the recommended field rate (72 g AI ha-1). No statistically significant differences 

(based on p < 0.05) were found between combined data on mean mortality figures for 

populations tested by external collaborators and in our laboratory, both in 2011 and 2012. 

Likewise there is no statistical difference in mean mortality at the chosen thiacloprid rates 

between the years 2011 and 2012 and the baseline shown in Fig. 55, suggesting no shifting 

towards thiacloprid resistant populations, at least when data of all countries are combined. 

The externally obtained mean mortality data at 200 % and 100 % of the field rate tend to be 

slightly lower than the data obtained in our laboratory, albeit the trend is statistically not 

significant. The comparison of the efficacy of thiacloprid against M. aeneus samples collected 

in individual countries included in the survey also revealed no significant differences between 

countries and years of sampling (Fig. 56). Thus again suggesting no shifting in thiacloprid 

susceptibility in M. aeneus populations between 2011 and 2012. 

Fig. 55 Mean 

mortality ± SD of all 

Meligethes aeneus 

populations collected 

in winter oilseed rape 

in 2011 and 2012 and 

tested at three field 

application rates of 

thiacloprid in an adult 

vial test (100 % = 72g 

AI ha-1) (24h). The 

data obtained in the 

years 2011 and 2012 

are separately plotted 

for samples tested in 

the authors´ laboratory (Lab) and tested externally (External) using vials coated in the 

authors´ laboratory. The grey boxes shown at each rate tested marks the standard 

deviation of the baseline susceptibility response of pollen beetle populations tested in 

2009 and 2010 [13] (see Chapter 2.) 
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Fig. 56 Mean % mortality ± SD of Meligethes aeneus populations collected in a number of 

European countries in 2011/12 and tested at 200 % of the field rate of thiacloprid in 

an adult vial test. Please refer to Table 22 for the number of samples combined for 

each individual country in the respective years. In 2012 no samples from Latvia, 

Lithuania, Norway, Ukraine and United Kingdom were tested. The bars named 

“Composite” refer to the combination of all data sets obtained in 2011 (n = 322) and 

2012 (n = 223). 

 

7.3.2 Systemic action of thiacloprid against M. aeneus 

This experiment was conducted in order to demonstrate the potential of thiacloprid to 

control M. aeneus by means of its systemic action. Adults feeding on oilseed rape 

inflorescences immersed with their petioles in thiacloprid solutions show symptoms of 

poisoning within a few hours and drop off, whereas lambda-cyhalothrin in a similar set-up is 

completely inactive and not systemically transported (data not shown). The systemic bioassay 

with thiacloprid provided a clear dose response relationship resulting in an LC50-value of 

11.3 mg AI L-1 (CL95 %: 9.38-13.2 mg L-1) and an LC95-value of 41 mg AI L-1 (CL95 %: 21.8-

75.0 mg L-1) corresponding to 4.7 % and 17.1 % of the field recommended application rate of 

thiacloprid (100 %: 72 g AI ha-1 and 300 L), respectively (Fig. 57).  
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Fig. 57 Dose response relationship for systemically applied thiacloprid against adults of 

Meligethes aeneus feeding on oilseed rape inflorescences. Data are mean values ± 

SD (n = 3). Grid lines indicate LC50- and LC95-values (100 % field application rate 

corresponding to 72 g AI ha-1 applied in 300 L water).  

 

7.3.3 Efficacy of insecticides against M. aeneus larvae 

Larval dip bioassays revealed a surprisingly low efficacy of lambda-cyhalothrin against 

2nd instar larvae of M. aeneus, when compared to adults collected in the same spot (Table 23). 

The results obtained at concentrations as high as 100 % of the field-recommended rate 

(7.5 g ha-1) are significantly different between larvae completely immersed for 5 s in spray 

liquid and beetles just treated via tarsal contact in adult vial tests. This confirms a significantly 

lower susceptibility of M. aeneus larvae against the pyrethroid lambda-cyhalothrin irrespective 

of the resistance expressed in adult beetles. Extending the dose response relationship by 

immersing larvae in even higher pyrethroid concentrations such as 25-times the 

recommended field rate also resulted in mortality figures of just 80 % (Fig. 58). The mean 

LC50-value for lambda-cyhalothrin for three different strains was calculated at 28 mg AI L-1 

(113 % of the field-recommended rate). In contrast the calculated LC50-value for thiacloprid 

was 3.1 mg AI L-1 against strain M072, i.e. less than 1.5 % of its field-recommended rate. The 

result indicates high susceptibility of pyrethroid resistant M. aeneus larvae against thiacloprid.  
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Table 23 Contact efficacy (24 h) of lambda-cyhalothrin against adults and 2nd instar larvae of 

Meligethes aeneus at 100 % and 20 % of its recommended field rate, i.e. 7.5 g ha-1 

and 1.5 g ha-1 per 300 L, respectively (Data are mean values ± SD (n=3)). Strain 

91-11 collected in Ukraine is pyrethroid susceptible, whereas all others are resistant 

to pyrethroids. 

Strain Country 
Dose [g ha

-1
] 

(Field rate, %) 

Adults 

% Mort ± SD 

Larvae 

% Mort ± SD 

40-11 Germany 7.5 (100) 93 ± 12a 50 ± 8.4b 

  1.5 (20) 48 ± 7.4a 19 ± 1.0b 

59-11 Germany 7.5 (100) 69 ± 13a 43 ± 11b 

  1.5 (20) 41 ± 12a 20 ± 8.9b 

72-11 Germany 7.5 (100) 79 ± 5.2a 41 ± 16b 

  1.5 (20) 15 ± 5.2a 14 ± 12a 

91-11 Ukraine 7.5 (100) 100a nd 

Means followed by different letters within a row are significantly different (Tukey test: p < 0.05). 

 

 

Fig. 58 Response of larvae of Meligethes aeneus collected in 2011 and exposed to different 

concentrations of commercial formulations of lambda-cyhalothrin (Karate Zeon®) 

(black dots, cumulative for 3 populations) and thiacloprid (Biscaya®) (grey triangles, 1 

population) in a larval dip test. Data are mean values ± SD (n = 3). 

 

7.3.4 Efficacy of insecticides against C. assimilis populations  

C. assimilis populations were collected in five different countries and eight out of 

seventeen populations were tested with thiacloprid and all populations showed a high 

susceptibility to thiacloprid exhibiting less than 3-fold variation based on both LC50 and LC95 

values (Table 24). C. assimils populations show a high baseline susceptibility to thiacloprid as 
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indicated by an LC95-value of 35.3 ng cm-2, corresponding to only 4.9 % of the recommended 

field rate.  

All seventeen populations were tested in lambda-cyhalothrin bioassays and all 

populations were highly susceptible with a calculated composite LC95-value of 0.74 ng cm-2, 

which correspond to approx. 1 % of the recommended field rate (Table 25). The variation in 

response of cabbage seed weevil populations to lambda-cyhalothrin was similar to thiacloprid, 

i.e. around 3-fold based on LC50 and LC95 values.  

 

Table 24 Log-dose probit-mortality data for thiacloprid obtained from an adult vial test (24 h) 

against Ceutorhynchus assimilis collected in European winter oilseed rape in 2011. 

Strain Country 
LC50-ng cm

-2 

 (field rate %) 

95 % CL
1
      

ng cm
-2

 

LC95-ng cm
-2 

 (field rate %) 

95 % CL      

ng cm
-2

 
Slope ± SE 

60-11 Germany 3.56 (0.5) 2.81-4.47 47.4 (6.6) 32.4-76.3 1.46 ± 0.10 

89-11 Germany 2.23 (0.3) 1.46-3.42 31.2 (4.3) 16.4-82.5 1.43 ± 0.10 

102-11 Germany 1.96 (0.3) 1.02-3.76 56.1 (7.8) 21.5-290 1.13 ± 0.08 

110-11 Germany 2.57 (0.4) 2.06-3.20 26.7 (3.7) 18.8-41.6 1.62 ± 0.11 

106-11 Sweden 3.98 (0.6) 2.85-5.53 31.7 (4.4) 19.6-64.3 1.83 ± 0.14 

107-11 Sweden 1.76 (0.2) 0.80-3.82 46.3 (6.4) 16.0-351 1.16 ± 0.08 

91-11 Ukraine 1.74 (0.2) 1.06-2.87 39.5 (5.5) 18.5-127 1.21 ± 0.08 

95-11 Ukraine 4.06 (0.6) 2.72-6.11 75.9 (11) 40.0-190 1.29 ± 0.09 

Composite 1.728 (0.2) 1.16-2.58 35.3 (4.9) 18.9-85.4 1.26 ± 0.08 

1
Confidence Limits, 95% 
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Table 25 Log-dose probit-mortality data for lambda-cyhalothrin obtained from an adult vial 

test (24h) against Ceutorhynchus assimilis collected in European winter oilseed 

rape in 2011. 

Strain Country 
LC50-ng cm

-2
  

(field rate %) 

95% CL
1
        

ng cm
-2

 

LC95-ng cm
-2

  

(field rate %) 

95% CL      

ng cm
-2

 
Slope ± SE 

60-11 Germany 0.155 (0.2) 0.10-0.24 0.709 (0.9) 0.40-2.10 2.49 ± 0.21 

77-11 Germany 0.129 (0.2) 0.10-0.17 0.438 (0.6) 0.31-0.81 3.10 ± 0.32 

86-11 Germany 0.072 (0.1) 0.05-0.11 0.422 (0.6) 0.24-1.21 2.14 ± 0.17 

89-11 Germany 0.223 (0.3) 0.19-0.26 0.852 (1.1) 0.49-3.30 2.46 ± 0.20 

102-11 Germany 0.145 (0.2) 0.08-0.28 0.619 (0.8) 0.31-3.90 2.61 ± 0.23 

110-11 Germany 0.167 (0.2) 0.11-0.27 1.120 (1.5) 0.59-3.50 2.00 ± 0.15 

106-11 Sweden 0.103 (0.1) 0.06-0.18 0.575 (0.8) 0.29-2.40 2.20 ± 0.18 

107-11 Sweden 0.158 (0.2) 0.13-0.19 0.644 (0.9) 0.49-0.93 2.70 ± 0.25 

108-11 Sweden 0.110 (0.1) 0.07-0.18 0.767 (1.0) 0.40-2.50 1.95 ± 0.15 

91-11 Ukraine 0.239 (0.3) 0.13-0.45 0.962 (1.3) 0.49-5.60 2.71 ± 0.24 

95-11 Ukraine 0.238 (0.3) 0.18-0.32 1.200 (1.6) 0.80-2.20 2.34 ± 0.20 

117-11 Poland 0.160 (0.2) 0.10-0.26 0.725 (1.0) 0.40-2.54 2.50 ± 0.21 

118-11 Poland 0.134 (0.2) 0.10-0.18 0.653 (0.9) 0.42-1.29 2.39 ± 0.20 

119-11 Poland 0.135 (0.2) 0.09-0.21 0.713 (1.0) 0.40-2.00 2.28 ± 0.19 

120-11 Poland 0.174 (0.2) 0.12-0.26 0.648 (0.9) 0.40-1.73 2.89 ± 0.27 

121-11 Poland 0.148 (0.2) 0.07-0.37 0.872 (1.2) 0.38-7.94 2.14 ± 0.17 

137-11 Austria 0.125 (0.2) 0.08-0.20 0.734 (1.0) 0.39-2.37 2.14 ± 0.17 

Composite 
 

0.140 (0.2) 0.10-0.19 0.740 (1.0) 0.47-1.50 2.28 ± 0.19 

1
Confidence Limits, 95% 

 

7.4 Discussion 

The data presented on European populations of M. aeneus collected in 2011 and 2012 

indicated no shifting in thiacloprid susceptibility when compared with recently published 

baseline data obtained with populations collected in 2009 and 2010 [13]. In total 162 and 383 

samples of different origin were tested by the authors´ laboratory or externally by numerous 

collaborators (listed in the supplementary section), respectively. So the complete survey is 

based on 545 M. aeneus populations checked for their susceptibility against thiacloprid in 

2011 and 2012. Out of 110 pollen beetle populations tested for thiacloprid baseline 

susceptibility in 2009/10, 51 and 37 populations were only sampled in Germany and France, 

respectively [13]. However, even though these two countries accounted for more than 50 % of 

the total oilseed rape acreage in the European Union in 2009 [24], it is good to expand the 

database by including samples collected in countries not part of the earlier baseline survey. 

Since 2011 the IRAC susceptibility method No. 21 (www.irac-online.org) is available for 

thiacloprid resistance monitoring and based on the recently published method by Zimmer and 

http://www.irac-online.org/
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Nauen [13] (see section 2.3). In order to spatially expand the thiacloprid resistance monitoring 

efforts, Bayer CropScience (Monheim, Germany) offered in 2011 and 2012 test-kits with 

Biscaya®-coated glass vials for all stakeholders interested in participating in a European-wide 

thiacloprid susceptibility monitoring. The supply of test-kits to external stakeholders increased 

the number of participating countries from six in 2009/10 to thirteen in 2011/12. A comparison 

of individual data sets obtained externally revealed a slightly higher variation at all 

discriminating rates tested, most likely due to the fact that more than 100 different persons 

conducted the bioassays (Fig. 55). The tests conducted in the authors´ laboratory showed less 

variation most likely due to the fact that all samples received were tested by only two persons 

(CTZ and HK). Another reason for the observed higher variation in externally conducted tests 

is possibly linked to declining test kit quality over time as it was recently shown that the 

formulation used to coat the vials is aging over time when not stored at -20 °C [13]. However 

in summary the results support the conclusion that thiacloprid susceptibility of European M. 

aeneus populations remained stable in 2011 and 2012. A recent study only covering German 

M. aeneus populations came to a similar conclusion, i.e. stable efficacy of thiacloprid between 

2008 and 2011 [15]. 

This is in contrast to a steady decline in M. aeneus pyrethroid susceptibility in many 

European countries recently reported [14]. Pyrethroids are the most widely used chemical 

class for the control of a number of coleopteran pests in winter oilseed rape. An example for 

the spatio-temporal development of pyrethroid resistance is illustrated in Fig. 59, showing that 

almost all pollen beetle samples collected in 2012 expressed pyrethroid resistance, whereas 

the problem was less wide-spread when starting the monitoring activities 10 years ago (based 

on published and unpublished data obtained in the authors´ laboratory [13]). However some 

European countries such as Lithuania only recently reported a lower susceptibility of M. 

aeneus populations to pyrethroids [25]. The pyrethroid resistance mechanisms yet described 

include oxidative degradation of pyrethroids by elevated levels of cytochrome P450 

monooxygenases and target-site resistance due to an L1014F mutation in the voltage-gated 

sodium channel [17,18]. Both mechanisms do not affect thiacloprid efficacy as shown by the 

lack of cross-resistance [13]. However the rapid spread of pyrethroid resistance resulted in the 

introduction of new insecticide modes of action in order to establish sustainable resistance 

management strategies to safeguard the use of pyrethroids as important components in such 

strategies for coleopteran pests other than M. aeneus [13,14,26]. Apart from thiacloprid, 

compounds such as acetamiprid, indoxacarb and pymetrozine were recently tested and 

introduced as pyrethroid alternatives for M. aeneus control in some European countries [20].  
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Fig. 59 Spatio-temporal development (mapped by postal codes) of pyrethroid resistance in 

Meligethes aeneus populations in Germany from 2004 to 2012 based on adult vial 

tests (24 h). White areas represent regions with either no resistance detected (before 

2008) or a lack of test results (2010 and 2012), and grey areas show the presence of 

pyrethroid resistance in pollen beetles collected. 

 

An interesting and possibly yet underestimated fact we have shown in this study is the 

virtual insensitivity of pollen beetle larvae to pyrethroids such as lambda-cyhalothrin. Although 

we were only able to test larvae of a few M. aeneus populations a very clear result was 

obtained by showing that larvae collected in the same fields as adults responded consistently 

less susceptible, suggesting even stronger selection pressure as pyrethroid-resistant larvae 

survive field-recommended rates by 50-60 % when directly exposed (Table 23). However, we 

were not able to test the sensitivity of larvae of pyrethroid susceptible M. aeneus populations, 

so we are not able to draw any conclusion in terms of absolute resistance ratios. In contrast 

M. aeneus larvae are highly sensitive to the neonicotinoid insecticide thiacloprid, suggesting a 

higher intrinsic efficacy against larvae by providing 100% control at dosages lower than the 

recommended field rate of 72 g AI ha-1. Such a larvicidal activity is extremely beneficial for 

population suppression as a whole once thiacloprid is taken up systemically and translocated 

within the plant as demonstrated for the oil-dispersion formulation, which indeed facilitates the 

uptake and distribution in planta and thus the systemic insecticidal efficacy in several plant 

species [27]. Furthermore we also confirmed the systemic activity of thiacloprid against adult 

beetles feeding on winter oilseed rape plants with petioles immersed in thiacloprid solution, 

whereas expectedly no systemic activity was observed for the pyrethroid lambda-cyhalothrin. 

So it is the combination of effects which best explains the field efficacy of thiacloprid against 

pollen beetle, i.e. contact and systemic activity against both larvae as well as adults. Whereas 

the lack of systemicity and larvicidal efficacy of pyrethroids are likely to result in a higher 

number of survivors and subsequently increased selection pressure and as a consequence a 

more rapid spread of resistance once the frequency of resistant genotypes is high enough and 
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alternative modes of action are either not available or not used consequently to eradicate such 

genotypes. 

As mentioned above pyrethroids are also important insecticides for the control of 

cabbage seed weevil, C. assimilis, another important coleopteran late season pest of winter 

oilseed rape [28]. However, C. assimilis resistance to pyrethroids was only recently reported in 

Germany in a few samples of C. assimilis collected in a single spot in northern Germany in 

2010 and 2011, whereas the vast majority of the collected strains responded susceptible to 

lambda-cyhalothrin [15]. However the reported LC90-value of 0.76 ng cm-2 obtained for a 

susceptible population of C. assimilis is about 1 % of the field-recommended rate, and 

comparable to the composite baseline LC95-value of 0.74 ng cm-2 calculated from seventeen 

C. assimilis populations from 5 European countries analyzed in this study.  

The difference in response based on calculated LC95-values for all seventeen C. 

assimilis strains tested is only 3-fold, and considered as natural variation. The fact that 

HEIMBACH & MÜLLER [15] scored for mortality already after 5 h rather than 24 h explains the 

somewhat lower lethal concentration values reported in our study. It is worth to mention that 

all C. assimilis populations tested in this study were collected as a by-catch in the same fields 

where we sampled M. aeneus highly resistant to pyrethroids (with the exception of those M. 

aeneus samples collected in the Ukraine). Eight out of seventeen C. assimilis populations 

were also tested for baseline susceptibility towards thiacloprid, and again a very homogenous 

response was obtained with a natural variation in LC95-values of less than 3-fold. Compared to 

M. aeneus, C. assimilis are much more sensitive to thiacloprid as shown by the calculated 

composite baseline LC95-value of 35.3 ng cm-2 (less than 5 % of the recommended field-rate), 

thus rendering thiacloprid a valuable tool for the control of C. assimilis in resistance 

management strategies in alternation with pyrethroids.  

In conclusion, our results demonstrate no general shifting of thiacloprid susceptibility in 

European M. aeneus populations collected in 2011 and 2012, thus suggesting no resistance 

in those samples analyzed. Furthermore we have shown the systemic action of thiacloprid 

against pollen beetle adults as well as excellent efficacy against larvae virtually not affected by 

pyrethroid concentrations well above field recommended rates. All C. assimilis populations 

collected were susceptible to both pyrethroids and thiacloprid, and our composite baseline 

data form a valuable basis for future resistance monitoring campaigns using discriminating 

rates of both lambda-cyhalothrin and thiacloprid. Resistance management strategies for 

sustainable control of M. aeneus as well as C. assimilis populations in winter oilseed rape 

should imply the rotation of insecticides of different mode of action classes. However 

particularly thiacloprid - not yet affected by resistance in both M. aeneus and C. assimilis – 
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with its added benefits for sustainable pest control such as systemicity and high larvicidal 

activity is an important tool in future insecticide resistance management tactics in winter 

oilseed rape cultivation. 
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ANDRZEJ ŻMIJEWSKI (Poland, 2011 - 2012), SŁĄWOMIR KASZUBOWSKI (Poland, 2011), PIOTR 

CHOROSZWESKI (Poland, 2011 - 2012), TADEUSZ BORECKI (Poland, 2012), ARKADIUSZ 

STANISLAWSKI (Poland, 2012), GRZEGORZ RATAJCZYK (Poland, 2011), BARBARA EKBOM 

(Sweden, 2011 - 2012), OLUF JUHL / Agrolab (Sweden, 2011), LINNEA ARONSSON (Sweden, 
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Kingdom, 2011).  
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Abstract 

Cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is 

a major pest of winter oilseed rape in several European countries particularly attacking young 

emerging plants in autumn. Over the last several decades, pyrethroid insecticides have been 

foliarly applied to control flea beetle outbreaks. Recent control failures in northern Germany 

suggested pyrethroid resistance development in cabbage stem flea beetles, which were 

confirmed by resistance monitoring bioassays using lambda-cyhalothrin in an adult vial test. 

The purpose of this study was to investigate the presence of polymorphisms in the para-type 

voltage-gated sodium channel gene of P. chrysocephala known to be involved in knock-down 

resistance (kdr). By using a degenerate primer approach we PCR amplified part of the para-

type sodium channel gene and identified in resistant flea beetles a single nucleotide 

polymorphism resulting in a L1014F (kdr) mutation within domain IIS6 of the channel protein, 

known as one of the chief pyrethroid target-site resistance mechanisms in several other pest 

insects. Twenty populations including four archived museum samples collected between 1945 

and 1958 were analysed using a newly developed pyrosequencing diagnostic assay. The 
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assay revealed a kdr allele frequency of 90-100 % in those flea beetle populations expressing 

high-level cross-resistance in discriminating dose bioassays against different pyrethroids such 

as lambda-cyhalothrin, tau-fluvalinate, etofenprox and bifenthrin. The presence of target-site 

resistance to pyrethroids in cabbage stem flea beetle is extremely worrying considering the 

lack of effective alternative modes of action to control this pest in Germany and other 

European countries, and is likely to result in major control problems once it expands to other 

geographies. The striking fact that cabbage stem flea beetle is next to pollen beetle, 

Meligethes aeneus the second coleopteran pest in European winter oilseed rape resisting 

pyrethroid treatments by expressing a target-site mutation, underpins the importance of 

diversity in available chemistry for resistance management tactics based on mode of action 

rotation in order to guarantee sustainable winter oilseed rape cultivation in Europe. 

8.1 Introduction 

Cabbage stem flea beetle, Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae) is 

a univoltine insect species feeding on cruciferous plants, and it is one of the major pest 

species in winter oilseed rape (Brassica napus L.) in central and northern Europe [1,2]. Adults 

mainly damage the emerging oilseed rape plants in autumn due to feeding on cotyledons, 

stems and the first true leaves [3]. After a short feeding period females preferably lay eggs on 

the stem of newly emerged plants or close to oilseed rape plants in the soil [4–6]. After 

hatching larvae bore into the petioles and later they move into the main stem where they feed 

until they reach the final larval instar and pupate in the soil [3,7]. Larval feeding on apical 

meristems in autumn could result in complete seedling damage as it lost its ability to mount a 

compensatory response [2]. Flea beetle larvae also cause indirect damage to the plants by 

making them more susceptible to frost damage and plant pathogens such as Phoma lingam 

[8,9].  

Chemical control of cabbage flea beetle infestations these days mainly relies on seed 

treatments with systemic insecticides such as neonicotinoids to protect the young seedling, 

and foliar sprays using pyrethroids usually applied later in the autumn season if neonicotinoid 

seed dressings can no longer protect the plant. Neonicotinoid insecticides act as agonists on 

insect nicotinic acetylcholine receptors whereas pyrethroids have a different mode of action by 

modulating voltage-gated sodium channels in the insect central nervous system [10,11]. 

ALFORD et al. [12] recently reported no significant oilseed rape crop damage by P. 

chrysocephala infestations since the use of pyrethroid insecticides in Great Britain. However, 

the continuous pyrethroid selection pressure due to a lack of alternatives for foliar application 

created a favorable environment for the emergence of insecticide resistance. This is 

exaggerated by the fact that pyrethroids are also the major class of insecticides for the control 
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of other oilseed rape pests throughout the growing season, e.g. pollen beetle (Meligethes 

aeneus), stem and pod weevils (Ceutorhynchus ssp.) [13]. First field failures of pyrethroid 

insecticides in cabbage stem flea beetle control were observed in 2008 in northern Germany 

and a resistance monitoring initiative confirmed a significant decrease in cabbage flea beetle 

susceptibility to lambda-cyhalothrin tested with discriminating doses in an adult vial bioassay 

[13]. Resistance to pyrethroids in pest insects is either conferred by elevated levels of 

detoxification enzymes such as microsomal monooxygenases (cytochrome P450s) or by 

mutations in the voltage-gated sodium channel protein leading to target-site (knock-down) 

resistance (kdr) [10]. Target-site resistance to pyrethroids was first described in Musca 

domestica and linked to two mutations in the housefly voltage-gated sodium channel gene 

(Vssc1) leading to amino acid changes at positions L1014F (kdr) and M918T (s-kdr) in domain 

II of the channel protein [14]. Meanwhile many more mutations in voltage-gated sodium 

channels conferring pyrethroid target-site resistance have been described, but L1014F 

remains the most common one described in almost 20 different pest species [15]. These 

include pollen beetle as another major coleopteran pest in oilseed rape additionally showing a 

high level of metabolic resistance [16,17]. The emergence and geographic spread of 

pyrethroid resistance in cabbage flea beetle populations is likely to have a significant impact 

on the oilseed rape production in Europe, since it is in many regions the only recommended 

insecticide class for its control [13]. Nothing is yet known on the mechanisms of pyrethroid 

resistance in cabbage flea beetle however the presence of target-site resistance would be 

extremely worrying as it is likely to affect the efficacy of the entire chemical class of 

pyrethroids. 

In this study, the possible role of an altered-target site in pyrethroid resistant cabbage 

flea beetle was investigated. Therefore a fragment of the para-type sodium channel gene of P. 

chrysocephala was isolated using a degenerate primer approach and a pyrosequencing based 

diagnostic was developed allowing the genotyping of kdr and super kdr (s-kdr) mutations 

located in the transmembrane spanning domain II. The L1014F kdr mutation was identified 

and the analysis of several samples collected in northern Germany revealed a high allele-

frequency of kdr. The developed pyrosequencing diagnostic can be used as a tool to monitor 

the spread of target-site resistance in cabbage flea beetle populations collected in European 

oilseed rape. 
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8.2 Materials and Methods 

8.2.1 Insects 

Adult cabbage stem flea beetles were collected in different parts of Germany between 

2009 and 2013 either from freshly harvested winter oilseed rape fields in summer or from 

oilseed rape fields during emergence of oilseed rape plants in autumn. The sampling was 

mostly done by using insect nets and exhausters. A simple and efficient way of collecting flea 

beetles was collecting them directly after crop harvest in stockrooms. Insects were collected in 

perforated plastic bags with some oilseed rape plant material and tissue paper, transferred to 

the laboratory and kept at 4°C overnight. Afterwards insects were allowed to equilibrate to 

room temperature two hours prior to bioassay. Those beetles of lower fitness remaining at the 

bottom of the bag were excluded from bioassays as well as those obviously affected by 

transport. Larvae of cabbage stem flea beetles were dissected from infested plants in autumn 

or early spring and stored in RNAlater (Ambion®, USA). Historic (museum) samples collected 

between 1945 and 1958 and taken from the insect archive at the Julius-Kühn-Institute 

(Braunschweig, Germany) have either been stored in alcohol or formalin. 

8.2.2 Bioassay procedure 

The test methodology used in this study is based on glass vials coated on the inner 

surface with different concentrations of pyrethroids dissolved in acetone as recently described 

for pollen beetle adult vial bioassays [18,19]. Pyrethroids used in bioassays were technical 

grade and include lambda-cyhalothrin, etofenprox, tau-fluvalinate and bifenthrin, all obtained 

from Fluka Chemicals (Buchs, Switzerland). Three doses equivalent to 4 %, 20 % and 100 % 

of the recommended field application rate of the individual compounds were used (3-5 

replicates per concentration, 10 beetles each). The recommended field rates for the tested 

pyrethroids are given in Table 26. Glass vials treated with acetone only were used as a 

control. After 24 h, the number of flea beetles severely affected (dead and moribund) were 

scored and results expressed in percentage mortality. Subsequently the beetles were 

preserved in RNAlater (Ambion, USA) for molecular studies. The number of pyrethroids tested 

per population was dependent on the number of collected beetles per sampling site. However, 

if the number of beetles was insufficient to test all pyrethroids only lambda-cyhalothrin was 

tested.  

8.2.3 Amplification and sequencing of a para-type sodium channel fragment of P. 

chrysocephala 

To identify polymorphisms in the orthologous para-type gene of cabbage flea beetle 

we used a degenerate primer approach to amplify a DNA fragment encoding domain II of the 
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voltage-gated sodium channel (VGSC) protein. Nucleic acids were extracted from 15-20 adult 

beetles according to manufacturer’s instructions using Agencourt DNAdvance kit (Beckman 

Coulter) and TRIzol reagent (Invitrogen, CA, USA) followed by Agencourt RNAdvance Tissue 

kit (Beckman Coulter) for DNA and RNA extraction, respectively. Degenerate primers were 

designed based on a multiple alignment of para-type VGSC amino acid sequences of 

Anopheles gambiae (GenBank accession no. CAM12801), Drosophila melanogaster 

(AAB59195.1), Heliothis virescens (AAC26517), Leptinotarsa decemlineata (AAD22957), 

Musca domestica (AAB47605.1), Plutella xylostella (BAF37093) and Tribolium castaneum 

(NP_001159380).  

Table 26 Pyrethroid insecticides and their concentrations used in an adult vial test to 

bioassay cabbage stem flea beetle susceptibility. 

Pyrethroid ng/cm
2 

(g/ha) Field rate, % 

Lambda-cyhalothrin
a 

3 (0.3) 4 

 

15 (1.5) 20 

75 (7.5)
a
 100 

  

Etofenprox
a 

24 (2.4) 4 

 

120 (12) 20 

600 (60)
a
 100 

  

Tau-fluvalinate
a 

19.2 (1.92) 4 

 

96 (9.6) 20 

480 (48)
a
 100 

  

Bifenthrin
b
 4 (0.4) 4 

  

20 (2.0) 20 

100 (10)
a
 100 

  
a 

Recommended field rate 
b
 Currently not registered in Germany 

 

The forward primer was designed on the deduced aa motif NDIIEQ upstream of 

domain IIS1 (M. domestica position 738-743), and the reverse primers were designed to 

include the deduced aa motifs EMLIKW and MDRIFT located at subunit IIIS2 (M. domestica 

positions 1337-1342 and 1326-1331, respectively). PCR reactions contained 1x RedTaq 

Readymix (Sigma, USA), 0.5 µM of each primer and 100 ng of cDNA in a total volume of 25 

µL. The PCR conditions were 95 °C for 2 min followed by 25 cycles of 95 °C for 30 s, 48 °C for 
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30 s, 72 °C for 2 min and a final elongation step of 5 min at 72 °C. After a primary PCR using 

primers “degen F1” and “degen R1” (Table 27), 0.5 µL of this reaction mixture was transferred 

into new tubes as a template for secondary PCR using primers “degen F1” and “degen R2” 

with identical PCR conditions. The PCR-amplified fragment was separated with a 1.2 % TAE 

gel electrophoresis at 120 V for 60 min. The fragment of the expected size of ~1.8 kb was cut 

out of the gel, purified using Wizard SV gel kit (Promega, USA) and cloned into pBluescript 

vector using StrataClone PCR cloning kit (Agilent, USA). Minipreps of overnight cultures were 

purified using GeneJET plasmid kit (Thermo-Fermentas, USA) and Sanger-sequenced using 

T7 and T3 standard primers. Specific primers were designed based on the obtained sequence 

to amplify region DIIS1-S6 (VGSC F1 and R1; Table 2). PCR reactions contained 1x RedTaq 

Readymix (Sigma, USA), 0.5 µM of each primer and 100 ng of cDNA in a total volume of 

25 µL. The PCR conditions were 95 °C for 2 min followed by 35 cycles of 95 °C for 30 s, 57°C 

for 30 s, 72 °C for 2 min and a final elongation step of 5 min at 72 °C. The PCR products were 

purified using AMPure Reagent (Beckman, USA) and Sanger-sequenced using VGSC F1, F2 

and R1 primers (Table 2). The obtained sequences were assembled and analyzed using 

Geneious R6.1 (Biomatters Ltd., New Zealand).  

8.2.4 Pyrosequencing diagnostic assay for kdr/s-kdr 

Pyrosequencing is a method of DNA sequencing-by-synthesis allowing real-time 

detection of nucleotides forming base pairs in an amplified DNA template strand using an 

enzyme-cascade finally resulting in bioluminescence signals [20]. Genomic DNA (approx. 1 µg 

per adult) was extracted from individual beetles using DNAdvance Tissue Kit (Beckman, USA) 

according to the supplier’ recommended protocol; cDNA was prepared as described above. 

Sodium channel gene fragments were amplified by PCR from 50 ng aliquots of gDNA using 

two primers per target sequence (Table 27; kdr: KDR-F & KDR-R; s-kdr: sKDR-F & sKDR-R) 

designed with ‘Assay Design Software’ (PSQ-Biotage AB, now Qiagen) by utilizing the partial 

sequence of the cabbage stem flea beetle para gene detailed above (see primer sequences in 

(Table 27). The pyrosequencing protocol comprised of 45 PCR cycles with 0.5 μM forward 

and reverse primer (one biotinylated, see Fig. 60) in 50 μL reaction mixture containing 1 x 

RedTaq Readymix (Sigma, USA) and cycling conditions of 95 °C for 2 min, followed by 45 

cycles of 95 °C for 45 s, 57 °C for 45 s and 72 °C for 1 min, and a final incubation at 72 °C for 

5 min. The single strand DNA preparation required for pyrosequencing was carried out using 

the Vacuum Prep Tool (Biotage AB) in combination with streptavidin coated beads 

(Streptavidin Sepharose) to separate the biotinylated strand of the PCR products. The 

pyrosequencing reactions were carried out according to the manufacturer’s instructions 

utilizing the PSQ 96 Gold Reagent Kit (Biotage AB) and using the primers “KDR seq” for kdr 

(L1014) genotyping, “sKDR seq1” and “sKDR seq2” for M918, L925, T929, L932 genotyping, 
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respectively (Table 27). The genotypes were analyzed using the supplied SNP Software 

(Biotage AB).  

 

Table 27 Primer sequences used in this study. 

Name Sequence 5’ to 3’ 

Degen F1 AAYGAYATHATHGARCARGC 

Degen R1 CCAYTTDATNARCATYTC 

Degen R2 ACNGTRAADATNCKRTCCAT 

VGSC F1 TAGAGCAAGTGAGCACGGAG 

VGSC F2 TGCGTATGGGATTGTTGTGC 

VGSC R1 TCAGGGAAACAATCTGCCGA 

KDR F GGACTGTATGCTAGTCGGTGATGT 

KDR R [btn]GCTTCGGCTATTTTGTTTGTGTC 

KDR seq CCACTGTTGTCATTGGT 

sKDR F [btn]CTTTTCGATTGCTAAGAGTGTTCA 

sKDR R CCAAATAACTGCATACCCATAACA 

sKDR seq1 TAAAGCACCCATAGTTCTA 

sKDR seq2 CAAATATAAATATTATAATG 

 

 

 

Fig. 60  Partial nucleotide sequence of a cDNA fragment of the para-type sodium channel of 

the cabbage flea beetle, Psylliodes chrysocephala, spanning the region DII S4-S6. 

The s-kdr (M918, ATG), kdr (L1014, CTT) and other potential mutation sites (L925, 

T929 and L932) known to confer resistance to pyrethroids are marked below the 

sequence. Primers used for pyrosequencing diagnostics are indicated by black 

arrows below the sequence. 
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8.3 Results 

8.3.1 Identification of mutations in para-type sodium channel fragments 

To identify polymorphisms in the gene sequence encoding domain II of the para-type 

sodium channel of P. chrysocephala a PCR approach with degenerate primers successfully 

resulted in a ~1.8 kb PCR product with the highest similarity to a para-type sequence fragment 

of L. decemlineata (87.8 % pairwise identity, E-value = 0), another chrysomelid beetle 

species. This partial sequence covered the gene region encoding transmembrane domain II 

which comprises the IIS4-IIS6 region of the voltage-gated sodium channel protein containing 

five putative kdr/s-kdr mutation sites (M918, L925, T929, L932 and L1014) known to be 

associated with pyrethroid resistance in several insect species (Fig. 60). The amino acid 

sequence similarity of this particular region of P. chrysocephala to other insect species is 

greater than 90 % and the homology to coleopteran species is close to 100 % (Fig. 60). Based 

on the cloned para-like sequence of P. chrysocephala, species-specific PCR/sequencing 

primers were designed and used for sequencing of several individuals of a number of 

populations. Analysis of the obtained sequences revealed only a single non-synonymous SNP 

causing a leucine to phenylalanine substitution at position 1014 (numbering of the M. 

domestica channel protein) (Fig. 60). The beetles containing the L1014F kdr mutation were 

obtained from a region in Mecklenburg-Western Pomerania in Germany with reported 

pyrethroid field failures. All beetles analyzed by Sanger-sequencing were either homozygous 

for the wild-type allele L1014 or for the kdr allele F1014. No other mutations were found. 

 

 

Fig. 61 Multiple sequence alignment of para-type sodium channel region DII S4/S5-S6 from 

different insect species (numbering is according to Musca domestica Vssc1 sodium 

channel protein). Conserved identical amino acid residues are marked in black 

boxes. The sequence obtained from Psylliodes chrysocephala R (bottom) shows the 

L1014F mutation known to confer target-site mediated knock-down resistance to 

pyrethroids. GenBank Accession numbers of the aligned sequences: Anopheles 

gambiae (CAM12801), Culex pipiens pallens (KC977455.1), Drosophila 

melanogaster (AAB59195.1), Heliothis virescens (AAC26517), Leptinotarsa 

decemlineata (AAD22957), Musca domestica (AAB47605.1), Plutella xylostella 

(BAF37093), Tribolium castaneum (NP_001159380) and Meligethes aeneus 

(AF354457). 
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8.3.2 Target-site resistance diagnostics by pyrosequencing 

For setting up a high-throughput diagnostic system, pyrosequencing assays were 

developed for kdr/s-kdr genotyping. Assays were designed to process both cDNA and gDNA. 

The s-kdr assay covers the region M918 to L932 using two different sequencing primers (Fig. 

60). The s-kdr assay was limited to the use of reverse sequence primers due to sequence 

characteristics, whereas the kdr assay is limited to use forward sequencing because the assay 

is designed to suit both cDNA and gDNA. On cDNA it was possible to amplify a region 

spanning from IIS4 to IIS6 suitable to use for pyrosequencing s-kdr and kdr region. However 

the kdr sequencing reaction on gDNA failed using the identical setup (data not shown), but re-

designing the assay by amplifying two individual PCR products and using a forward 

sequencing primer for kdr (Table 27), the kdr diagnostic pyrosequencing assay also worked 

with gDNA (and cDNA as well).  

The pyrosequencing diagnostic assay identifies all three kdr genotypes in individual 

insects, i.e. both larvae and adults: SS (homozygous L1014), SR (heterozygous L/F1014) and 

RR (homozygous F1014). Insect samples of populations showing significantly decreased 

susceptibility to pyrethroids and a susceptible reference (showing 100 % mortality at 4 % of 

the field-recommended rate of lambda-cyhalothrin in a vial bioassay) were used to validate the 

pyrosequencing assay. As shown in Fig. 62 the assay successfully detects the expected 

nucleotide polymorphism C/T of the first base of the codon translating position 1014. The 

nucleotide sequences experimentally obtained for SS, SR, and RR are 5’-AATCTTGTGGT-3’, 

5’-AAC/TTTGTGGT-3’ and 5’-AATTTTGTGGT-3’, respectively (Fig. 62). The s-kdr assay to 

detect mutations at M918, L925, T929 and L932 was used for parallel sequencing with each 

individual tested, but no nucleotide polymorphism was observed at the corresponding sites.  

In total twenty populations collected primarily in northern Germany were analyzed 

using pyrosequencing diagnostic. Four of them were taken from a long-standing archive of 

museum samples and collected between 1945 and 1958, whereas all other samples 

represented more recent collections with the vast majority collected in 2010 (Table 28). 

Twenty individuals of each sample collected between 2009 and 2013 in regions of reported 

field failure were genotyped. Only two populations turned out to be pure wildtype L1014 

homozygotes (strains G2 and 41), and another susceptible population (strain 136) contained 

two beetles heterozygous for the L1014F mutation. The kdr-allele was present in most of the 

samples analyzed and ten populations collected in Mecklenburg-Western Pomerania and 

Schleswig-Holstein contained only beetles being homozygous for the kdr-allele, whereas one 

sample included 16 homozygotes and 4 heterozygotes (strain 121). One sample collected in 
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Hesse (PC-05) showed a kdr-allele frequency of 0.4 (Table 28). The museum samples 

collected between 1945 and 1958 were more difficult to analyse and the quality and quantity 

of gDNA per sample varied widely. However surprisingly the preserved sample collected in 

1957 was homozygous for the L1014F mutation, whereas all individuals (larvae and adults) of 

the three remaining samples from 1945 and 1958 were homozygous for the wild type allele.  

 

Fig. 62 Pyrograms displaying homozygous SS, RR as well as heterozygous SR genotypes of 

the L1014F mutation found in German populations of Psylliodes chrysocephala 

resistant to pyrethroid insecticides and collected in 2010. 

 

Homozygous C (genotype SS) 
Allele 1: AATCTTGTGGT 
Allele 2: AATCTTGTGGT 

 
E      S       G     A     T    C     T    C     G     T    G     T 

Homozygous T (genotype RR) 
Allele 1: AATTTTGTGGT 
Allele 2: AATTTTGTGGT 

 E      S       G     A     T    C     T    C     G     T    G     T 

Heterozygous C/T (genotype SR) 
Allele 1: AATCTTGTGGT 
Allele 2: AATTTTGTGGT 

 E      S       G     A     T    C     T    C     G     T    G     T 
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8.3.3 Resistance phenotype conferred by the presence of the L1014F mutation 

Depending on the number of beetles collected per sampling site we tested their 

susceptibility status against up to four different pyrethroid insecticides in adult vial tests (Fig. 

4). Based on the pyrosequencing diagnostics reported above we were able to split the 

obtained bioassay results into populations susceptible and resistant to pyrethroids based on 

the absence and presence of the L1014F mutation, respectively. The results obtained were 

similar for all four pyrethroids highlighting the cross-resistance conferred by the detected 

target-site mutation in those samples showing lower susceptibility. Although the number of 

data sets for tau-fluvalinate, etofenprox and bifenthrin is a little lower compared with the 

cumulated results obtained for lambda-cyhalothrin a clear correlation between the presence of 

the kdr-genotype and pyrethroid cross-resistance is seen (Fig. 63).  
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Table 28 Origin and collection year of German cabbage stem flea beetle samples genotyped for kdr resistance (L1014F mutation). All samples were 

either preserved in alcohol (before 2009) or RNAlater (2009-2013) until pyrosequencing analysis. The dots on the map show the 2010/11 

sampling sites with kdr resistance (scale bar = 100 km). 

Sample Year Nearest city Federal State KDR allele frequency 

JKI-archive 1945 Lehmkuhlen Schleswig-Holstein 0 

JKI-archive 1957 Kiel-Kitzeberg Schleswig-Holstein 1 

JKI-archive
a
 1958 Kiel Kitzeberg Schleswig-Holstein 0 

JKI-archive
a
 1958 Kiel Schleswig-Holstein 0 

G1
a
 2002 Göttingen Lower Saxony 0 

101 2009 Gadebusch Mecklenburg-Western Pomerania 1 

121 2010 Eldena Mecklenburg-Western Pomerania 0.9 

123 2010 Grombow Mecklenburg-Western Pomerania 1 

119 2010 Lübz Mecklenburg-Western Pomerania 1 

139 2010 Parum Mecklenburg-Western Pomerania 1 

125 2010 Gadebusch Mecklenburg-Western Pomerania 1 

122 2010 Wittenburg Mecklenburg-Western Pomerania 1 

124 2010 Gadebusch Mecklenburg-Western Pomerania 1 

137 2010 Perdöhl Mecklenburg-Western Pomerania 1 

114 2010 Crivitz Mecklenburg-Western Pomerania 1 

PC-02 2010 Hohenhorn Schleswig-Holstein 1 

PC-05 2011 Kassel Hesse 0.4 

136 2011 Neu Eichenberg Hesse 0.05 

G2
a
 2012 Göttingen Lower Saxony 0 

41 2013 Wendhausen Lower Saxony 0 
a 

Larvae only 
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Fig. 63 Composite percentage mortality figures for susceptible (dark grey; no kdr) and resistant (light grey; kdr L1014F) cabbage stem flea beetle 

populations after 24 h exposure in an adult vial test to different concentrations of (A) lambda-cyhalothrin,(B) Etofenprox, (C) tau-fluvalinate 

and (D) bifenthrin. Test concentrations are given as percentage of the recommended field rate (Table 26); Data are mean values ± SD. 
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8.4 Discussion 

In this study, we PCR-amplified and sequenced a fragment of the para-type voltage-

gated sodium channel gene encoding transmembrane domain II from cabbage stem flea 

beetle, P. chrysocephala. We identified a target-site mutation (L1014F) in pyrethroid resistant 

samples, commonly known as kdr and functionally shown to decrease the sensitivity of 

sodium channels to pyrethroids [21]. This particular mutation is known to confer pyrethroid 

cross-resistance in at least 20 other pest insects [15], but yet including only two other 

coleopteran pests, i.e. M. aeneus (pollen beetle) and Leptinotarsa decemlineata (Colorado 

potato beetle) [16, 22]. A third coleopteran, the stored product pest Sitophilus zeamais was 

shown to express a s-kdr-like T929I mutation in the absence of kdr L1014 and weevils 

surviving pyrethroid treatment were all T929I homozygotes [23]. Recently the same T929I 

mutation was also found in Bulgarian samples of L. decemlineata both in the presence and 

absence of L1014F, whereas a newly reported T929N mutation in the same study was only 

found in combination with L1014F [22].  Here we did not find any s-kdr-like mutations in 

several pyrethroid-resistant cabbage flea beetle samples sequenced throughout the study, 

similar to a recent investigation on pollen beetle, another important pest of oilseed rape, which 

also failed to find mutations other than L1014F [16]. However, it has been shown by 

electrophysiological recordings that functionally expressed insect voltage-gated sodium 

channels (Vssc1 of M. domestica) carrying the L1014F mutation are significantly less sensitive 

to pyrethroids, which is sufficient to explain the observed kdr phenotype [24]. Having said this 

there is no doubt that the identified target-site mutation in cabbage flea beetle populations 

collected in German winter oilseed rape contributes to the observed field resistance to 

pyrethroids (as well as organochlorine insecticides such as DDT which are no longer used) to 

a similar extent as described in similar studies for other pest species [16,22–24].  

We established and validated a pyrosequencing diagnostic method which allows the 

genotyping of at least 200 cabbage flea beetles per day and is therefore considered to be a 

high-throughput resistance screening methodology for future monitoring purposes. A similar 

pyrosequencing method for kdr and s-kdr diagnostic has recently been described for M. 

aeneus and the disease vector Culex quinquefasciatus [16, 25]. The pyrosequencing 

diagnostic was developed for use of gDNA as well as cDNA and initial difficulties with the 

reverse kdr assay on gDNA is likely due to an intron sequence resulting in a loss of the 

priming site, as this site was also reported to contain an intron in other insect species [22,25]. 

The problem was solved by designing a different set of primers (Fig. 1, Table 2). The 

pyrosequencing s-kdr assay additionally spans the region M918 to L932, which is known to 

contain other mutations such as M918T or T929I [15, 22, 23]. Although we have not detected 

any s-kdr mutation in P. chrysocephala pyrosequencing campaigns throughout this study, we 
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have developed the diagnostics to cover possible additional mutation sites right from the 

beginning in future monitoring initiatives. 

This study on P. chrysocephala reveals after M. aeneus the second case of a L1014F 

target-site mutation present in a major coleopteran pest of European winter oilseed rape, and 

our bioassay findings clearly confirm a high degree of pyrethroid cross-resistance in cabbage 

flea beetles homozygous for the kdr resistance allele. All populations tested and carrying the 

resistance allele were sampled from recently reported resistance hot spots in Germany [13]. 

Further evidence for the validity of our conclusions regarding the link between the L1014F 

mutation and pyrethroid resistance is provided by the fact that structurally diverse pyrethroids 

such lambda-cyhalothrin, tau-fluvalinate, etofenprox and bifenthrin (Table 26) are similarly 

affected in adult vial tests using a range of concentrations up to recommended field rates. In 

other studies, it has been shown that the presence of metabolic resistance mechanisms 

sometimes can result in less obvious cross-resistance issues, e.g. in pyrethroid-resistant 

pollen beetle [17]. However in Swedish populations of pollen beetle, the occurrence of target-

site resistance in addition to metabolic resistance resulted in high-levels of pyrethroid cross-

resistance completely compromising field efficacy [16]. Many of the cabbage flea beetle 

samples analyzed in this study revealed a high kdr-allele frequency and most of them show a 

complete lack of wild-type alleles, suggesting a low number of susceptible genotypes due to 

pyrethroid selection pressure present in those regions sampled.  

Interestingly we also detected the L1014F mutation in an archived museum sample of 

P. chrysocephala collected in Northern Germany in 1957 not far away from the current kdr 

hotspot which has a long tradition of winter oilseed rape cultivation in Germany. This may be 

explained by resistance selection well back in the 20 century by the use of both natural 

pyrethrins and DDT, which were quite common to control cabbage flea beetle as well as other 

oilseed rape pests 70 years ago. Natural pyrethrins were used to control oil seed rape pests 

even before 1920 and DDT was massively used in the 1950s [6, 26]. So there is evidence that 

in the history of cabbage stem flea beetle control by insecticides this pest was selected twice 

for the L1014F target-site mutation, i.e. well before the introduction of synthetic pyrethroids by 

either pyrethrins or DDT or both, and after their introduction. However, for many years other 

insecticides such as gamma-HCH (lindane) and organophosphates were used particularly 

between 1960 and 1990 [8, 27]. Since no field failures of synthetic pyrethroids in the control of 

cabbage stem flea beetle were noticed until 2008 [13, 28], it is rather unlikely that the kdr-

allele detected in the population collected in 1957 was recently present as a conserved 

mechanism of resistance at high frequency. Otherwise one would have expected a faster 

emergence of resistance by re-selection of a conserved allelic genotype. Therefore this allele 



  Chapter 8 

   

[195] 

presumably disappeared over time, as fitness costs may have had an impact in the absence 

of selection pressure by insecticides targeting voltage-gated sodium channels.  

Our results strongly suggest further studies to investigate the spread of pyrethroid 

resistance in cabbage stem flea beetle, because the emergence of a target-site mutation 

conferring cross-resistance among pyrethroids is likely to have a strong impact on flea beetle 

control in Europe in the future. In Germany and many other European countries, only 

pyrethroids remain available for the control of cabbage stem flea beetles in oil seed rape, 

because of a recent decision of the EU Commission to suspend neonicotinoid seed treatments 

in certain crops including oilseed rape [29]. Neonicotinoid seed treatments provide a second 

mode of action for resistance management purposes and are commonly thought to be 

indispensable in terms of early season protection of young seedlings from flea beetle attack, 

so their ban will have strong implications for oilseed rape production and without any doubt 

increasing pyrethroid selection pressure considering the fact that 67 % of the total area of 

oilseed rape in the UK is affected by cabbage stem flea beetle [30]. Furthermore the selection 

pressure on other flea beetle species such as Phyllotreta spp. more common in other regions 

in Europe will increase due to additional (pyrethroid) treatments. Such additional treatments 

are likely to select for pyrethroid resistance in the absence of another mode of action as it was 

provided by neonicotinoid seed treatment [31, 32].  

For sustainable oilseed rape production and consistent control of flea beetles, it is of 

utmost importance to follow resistance management principles and to implement alternative 

modes of action. The recent emergence of pyrethroid resistance in pollen beetle as well as 

flea beetle is a warning sign that limited mode of action diversity drives rapid resistance 

development in intensive cropping systems under continuous pest attack such as oilseed rape 

in Europe. If future flea beetle control measures in oilseed rape have to rely on pyrethroids 

only due to restricted regulations underestimating the value and urgency of resistance 

management strategies on mode of action rotation, there is a strong risk of considerable 

decline in acreage and yield. 
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Chapter 9  

 

Concluding discussion 

Insecticide resistance in oilseed rape pests is not only a recent phenomenon, as 

resistance to DDT in pollen beetle was reported in at least two countries, i.e. Poland and in the 

Czech Republic in the late 1960s and early 1970s [1,2]. However, with the ban of DDT in 

Europe also resistance slowly decreased over time. Pyrethroid resistance in pollen beetle was 

first discovered in 1999 [3,4], and is still spreading in Europe [5]. In addition to the pollen 

beetle resistance problem two more oilseed rape pests, the cabbage stem flea beetle P. 

chrysocephala and the cabbage seed weevil C. assimilis, were found to be resistant to 

pyrethroid insecticides in a region with a very high frequency of oilseed rape cropping in 

northern Germany [6].  

Great efforts were made to monitor the spread of pyrethroid resistance in pollen beetle 

by authorities such as the Julius-Kühn-Institute in Germany [7], by industry [3] and as a 

combined approach under the umbrella of IRAC [4]. However, in contrast to the many 

institutions focusing on resistance monitoring, very little studies have been carried out to 

elucidate the molecular mechanisms underlying pyrethroid resistance. Therefore this thesis 

was a combination of bioassays to determine the level of resistance in individual populations 

of several coleopteran oilseed rape pests followed by biochemical and molecular experiments 

to elucidate the mechanisms conferring resistance. Understanding the mechanisms of 

resistance is an important first step in developing resistance management strategies leading 

to recommendations for the future control of insect pests in oilseed rape. 

9.1 Monitoring 

The early detection of insecticide resistance development is a prerequisite for 

resistance management; it starts sometimes with monitoring on the farm level where a farmer 

may evaluate the efficacy of the control measures taken [8]. In case field performance of 

insecticides is compromised factors other than resistance also have to be considered such as 

incorrect application rates, formulation issues or poor application coverage. If these factors 

can be ruled out laboratory based/manufactured test systems are required to detect significant 

changes in the susceptibility of a pest towards individual compounds [9,10]. Moreover for the 

registration of new compounds and the re-registration of established insecticides the EPPO 

guideline PP 1/213(3) on Resistance Risk Assessment demands baseline susceptibility 

studies [11]. Establishing baseline susceptibility allows the detection of resistant 
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populations/strains in monitoring initiatives by calculating the ratio in shift of susceptibility 

(resistance ratio) based on the benchmark established in a baseline study. 

The resistance monitoring of coleopteran oilseed rape pests is based on a simple, 

robust and reliable adult vial test system which was initially optimized for pyrethroid resistance 

monitoring in pollen beetle by Bayer CropScience, Syngenta and the Julius-Kühn-Institute 

(Germany) [4]. The method became part of IRAC’s Susceptibility Test Method Series, and is 

listed as Method No. 011 [12]. It is described in detail in Chapter 2 section 2.2.2 [13]. Although 

this method is recommended by IRAC for the monitoring of pyrethroid resistance in pollen 

beetle it can also be used for bioassaying other coleopteran oilseed rape pests as shown in 

studies of HEIMBACH et al. [6,7,14] and in this study (Chapter 7 & Chapter 8 [15,16]). Since all 

the major coleopteran pests of oilseed rape are univoltine (see section 1.1) and thus 

preventing mass rearing in the laboratory, the use of a simple, medium throughput system 

such as the adult vial test is convenient. Test systems involving plants as described by THIEME 

et al. [17] are not commonly used as they are too complicated and don’t provide any extra 

benefits. The adult vial test was therefore adapted for use of several insecticides belonging to 

different chemical classes. Adult vial tests were subsequently introduced for the neonicotinoid 

thiacloprid (Chapter 2 [13]), the organophosphate chlorpyrifos and the oxadiazine indoxacarb 

and can be found in IRAC’s Susceptibility Test Method Series under method 021, method 025 

and method 027, respectively. The simplicity of the adult vial test allows vials to be prepared in 

advance to be used directly on site or in the field, and particularly Bayer CropScience provided 

test kits to numerous testing sites in Europe led for example to > 500 tests in 2012 on pollen 

beetle populations across Europe [5]. 

The ongoing monitoring of pyrethroid resistance in pollen beetle allows a detailed 

insight into the spread of pyrethroid resistance throughout Europe. In 2007 and 2008 

resistance mainly affected central Europe i.e. France, Germany, Belgium, the Netherlands, 

Poland and the Czech Republic [18,19]. Since then it spread rapidly, thus today most if not all 

European countries may be considered as affected by pyrethroid resistance in pollen beetle 

except from very eastern countries e.g. the Ukraine [4,5,13,15,20–22].  

Although, the simple bioassay system allows high numbers of samples to be tested, 

the supply of test kits to numerous testing sites involves numerous experimenters, thus care 

must be taken when interpreting results. In the case of pyrethroids it might not make a big 

difference if a population is called resistant or highly resistant, both results would lead to a 

recommendation to use a different chemical class in the field. In contrast for new or re-

registered insecticides the situation is more delicate, therefore tests with new insecticides 

must be carefully assessed in order to detect subtle changes as early as possible to expand 

their life-span. Today four adult vial test systems are available for monitoring purposes (see 
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above), covering four distinct modes of action with individual compounds that differ in their 

physicochemical properties and intrinsic activity, resulting in differences in the expression in 

symptoms of poisoning. For reliable susceptibility monitoring of new/re-registered compounds 

test kits should be supplied with detailed information on how to assess the tests and what the 

result means in terms of susceptibility shifting. Furthermore, each possible shift in 

susceptibility observed (in laboratory or field) should be confirmed by another laboratory using 

a full dose-response bioassay, and ideally a re-collected sample from the same field should 

result in a similar finding.  

The massive number of bioassays of pollen beetles conducted throughout Europe was 

possible because the bioassay is very easy to handle and pollen beetle is fairly easy to collect. 

The beetle regularly infests oilseed rape in high numbers [23,24] and may be collected using 

an insect net or by simply shaking the plants into a bucket. Hundreds of beetles can usually be 

collected in this way in just a few minutes. Compared to pollen beetle other oilseed rape pests 

are often less abundant in numbers. Thus resistance (baseline) monitoring is more difficult to 

carry out and therefore a comparable overview regarding the situation is not available. 

However, the continuous monitoring activities by German authorities even on a smaller 

number of samples indicated the regionally restricted presence of pyrethroid resistant 

cabbage stem flea beetles and cabbage seed weevils particularly in Mecklenburg-Western 

Pomerania [6]. This observation is quite worrying as pyrethroids are also the major chemical 

class used to control these coleopteran pests and monitoring resources to focus on such 

problems concerning future pest management in oilseed rape are quite restricted these days. 

Nevertheless, the efficacy monitoring especially for newly registered chemistry in pollen beetle 

should be continued to ensure early signs of susceptibility shifts will not be overlooked. 

9.2 Mechanisms 

To date pyrethroid resistance is present in three different coleopteran species known 

to be major pests of oilseed rape in Europe [4,6]. Mechanisms commonly involved in 

pyrethroid resistance are kdr-like target site resistance [25,26] and P450-mediated metabolic 

resistance [27]. Target site resistance is known to confer strong cross-resistance to 

compounds sharing the same binding site e.g. the L1014F kdr-mutation has been shown to 

confer resistance to pyrethroid insecticides and DDT [25,26,28,29] and point mutations in 

AChE or nAChR confer resistance to organophosphates/carbamates and neonicotinoids, 

respectively [30,31]. However the cross-resistance pattern for cytochrome P450 mediated 

detoxification is less predictable [32]. For instance CYP6P9 from A. funestus confers 

resistance to a broad range of pyrethroids including those containing common structural motifs 

(Fig. 25, Chapter 3) such as deltamethrin and lambda-cyhalothrin but also bifenthrin, which 

contains a 3-phenylbenzyl instead of a 3-phenyloxybenzyl-alcohol moiety. In contrast CYP6D1 
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from M. domestica confers high levels of resistance (> 5000-fold) to pyrethroids containing a 

3-phenyloxybenzyl-alcohol moiety but only low levels to those pyrethroids lacking this moiety 

[33,34]. P450s may have a broad substrate spectrum [32,35] therefore it is not surprising that 

they may confer cross-resistance across chemical classes as has been reported several times 

[36–40]. A very interesting case is CYP6CM1 conferring resistance to many neonicotinoids 

and the chemically unrelated insecticide pymetrozine in B. tabaci [40]. CYP6CM1 is 

overexpressed in resistant whiteflies up to ~150-fold [41] and resistance ratios ranging from 

~400 to > 5000 for neonicotinoids and > 1000 for pymetrozine have been reported [42]. Even 

though this particular P450 protects the whitefly effectively from pymetrozine and most 

neonicotinoids [41,42], the neonicotinoid acetamiprid remains unaffected in vitro [43]. 

However, a recently identified P450 in B. tabaci named CYP6CX4 was shown to “close the 

gap” and confers resistance to imidacloprid, thiacloprid and acetamiprid [44]. The complex 

nature of P450-mediated resistance is not surprising considering the number of P450 genes in 

several sequenced insect genomes, which is usually around 100, but extremes ranging from 

36 genes in Pediculus humanus L. up to 180 genes in Culex pipiens L. [32,45].  

In this study a range of established tools in resistance mechanism research such as 

synergist trials, biochemical assays, qRT-RCR, pyrosequencing, PCR approaches with 

degenerate primers and next generation sequencing techniques were combined to elucidate 

the molecular mechanisms conferring pyrethroid resistance in coleopteran oilseed rape pests 

with special reference to M. aeneus. 

9.2.1 Resistance mechanisms in M. aeneus 

A few studies revealed elevated P450 activity being one major mechanism of 

pyrethroid resistance in pollen beetle, but all of them failed to functionally link the resistance to 

P450s [46–48]. Pyrethroid mixtures with PBO suppressing P450 activity in pollen beetle were 

shown to moderately enhance pyrethroid efficacy under field conditions [49,50]. However a 

control strategy based on the suppression of metabolic resistance is likely to select for other 

mechanisms such as kdr. Such a tactic is especially risky considering the fact that kdr 

genotypes are already present in some countries such as Denmark and Sweden [51]. 

In this project, for the first time bioassays on synergist pre-treated pollen beetles from 

populations collected across Europe confirmed the presence of a P450-based mechanism in 

all pyrethroid resistant populations (Chapter 3). Native microsomal membrane preparations of 

resistant pollen beetles incubated with deltamethrin in the presence of NADPH resulted in the 

formation of the less toxic 4’-OH-metabolite underpinning the involvement of P450s. A single 

P450, named CYP6BQ23, was identified using a PCR approach with degenerate primers and 

shown to be highly and significantly overexpressed (up to ~900 fold) in resistant pollen beetle 
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populations when compared to susceptible populations sampled in Ukraine and Finland. The 

overexpression of CYP6BQ23 was clearly correlated with the resistant phenotype and the 

hydroxylation rate of deltamethrin in native microsomal preparations. Recombinant expression 

of CYP6BQ23 in conjunction with cytochrome P450 reductase in Sf9 insect cells revealed 

functional evidence of its involvement in pyrethroid resistance, as CYP6BQ23 transfected cells 

readily detoxified deltamethrin to its 4-OH-derivative [51]. The observed pyrethroid cross-

resistance pattern in pollen beetle is comparable to the pattern described by SCOTT & 

GEORGHIOU [33] for the CYP6D1 mediated pyrethroid resistance in housefly where mainly 

pyrethroids containing a 3-phenyloxybenzyl-alcohol moiety were affected. The higher efficacy 

of bifenthrin, etofenprox and tau-fluvalinate against pollen beetles observed in laboratory 

bioassays [6,47,52,53] is also reflected in their slightly better field performance [49,54–56]. 

Recombinantly expressed CYP6BQ23 was also shown to hydroxylate tau-fluvalinate but at a 

significantly lower level than deltamethrin, thus to some extent explaining the lower cross-

resistance observed in both laboratory biossays and field trials. Whereas CYP6BQ23 is shown 

to provide a high resistance to compounds such as lambda-cyhalothrin and deltamethrin, 

which have been widely used over many years, it is less effective against tau-fluvalinate. 

MOORES et al. [57] showed the synergistic action of PBO in combination with tau-fluvalinate in 

pollen beetle populations collected in Poland in 2010, however, the resistance factors based 

on LC50-values reported were only about 10-fold compared to > 200-fold for lambda-

cyhalothrin (Chapter 2 [13]). However a combination of tau-fluvalinate (and bee-safe 

neonicotinoids i.e. thiacloprid and acetamiprid) and PBO was shown to result in high 

honeybee toxicity [58–60], therefore such a mixture has great ecotoxicological disadvantages, 

particularly in bee attractive crops such as oilseed rape. The nature of the somewhat better 

field efficacy against pollen beetle of tau-fluvalinate is probably a combination of rather limited 

detoxification rates by CYP6BQ23 and its approx. 7-fold higher application rates. 

Tau-fluvalinate which was rarely used in the past [61] was promoted as a resistance 

management tool to combat resistant pollen beetles based on its better performance in field 

trials [62]. HANSEN [52] reported an increased usage of tau-fluvalinate in Denmark to replace 

the less effective lambda-cyhalothrin and KUDSK [63] later on reported widespread resistance 

affecting both lambda-cyhalothrin and tau-fluvalinate in Sweden. Sequencing a fragment of 

the pollen beetle para-type sodium channel gene of tau-fluvalinate-resistant populations 

revealed a target site mutation resulting in a L1014F amino acid substitution, also known as 

kdr. Using a high-throughput pyrosequencing assay beetles of > 400 populations collected 

throughout Europe were genotyped but kdr beetles were interestingly only found in northern 

Europe. Surprisingly no kdr was found in populations obtained from eastern Europe where 

DDT resistance was reported in the past [1,2] and pollen beetle were under strong pyrethroid 

selection pressure [64]. Sequence analysis revealed the presence of kdr in two allelic variants 
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with and without a deletion mutation 8 base pairs downstream of the kdr mutation located in 

an intron. This is therefore likely to be an example of a parallel evolution within one species as 

recently shown in L. decemlineata [65], but in a geographical restricted area. The presence of 

two independent target site alleles in addition to CYP6BQ23 overexpression in Scandinavia is 

in contrast to the situation in central Europe where only the overexpression of CYP6BQ23 was 

found. The reasons underlying this phenomena are not well understood, however, factors 

such as the relatively high cropping area of spring oilseed rape compared to central Europe 

and the intense use of tau-fluvalinate for pollen beetle control may have driven the selection 

pressure to another level. A close proximity of winter oilseed rape and spring oilseed rape 

crops provides a prolonged reproduction resource for pollen beetle [66]. Due to its phenology 

the spring oilseed rape has a lower ability to mount compensation response and is more 

susceptible to pollen beetle attack compared to winter oilseed rape. As a consequence the 

economic thresholds are extremely low (0.5-1 beetle/plant in BBCH 51 in Sweden), thus 

resulting in a higher treatment frequency [61]. Even though it is known pollen beetles may 

disperse several kilometers a day [67,68] studies on the genetic diversity in pollen beetle 

populations collected across Europe revealed a high genetic diversity within a population but 

suggested little long range dispersal [69,70], thus supporting a possibly independent locally 

restricted resistance development. 

In addition to the two major mechanisms i.e. CYP6BQ23 overexpression and kdr 

target-site resistance, carboxylesterases could also play a more minor role in pyrethroid 

resistance in individual pollen beetle populations [48]. Such a speculation is supported by the 

transcriptome study carried out in 2012, but no functional evidence for the involvement of 

esterases in resistance is provided (see Chapter 6 [71]). The global analysis of gene 

expression in three pyrethroid resistant pollen beetle populations collected in Germany, 

Poland and Sweden compared to a susceptible reference strain obtained from Ukraine 

confirmed the presence of kdr in Scandinavia and the massive overexpression of CYP6BQ23 

in all resistant samples. Interestingly a closely related P450 to CYP6BQ23 named CYP6BQ25 

was found to be overexpressed in all resistant samples by approx. 20-fold whereas 

CYP6BQ23 was overexpressed > 400-fold in all resistant samples analyzed. However, 

transcript levels do not necessarily precisely correspond to protein levels [72] and are to a 

greater or lesser extent an indirect measure in terms of ressitance level. Other studies of 

pyrethroid resistance demonstrated that a P450 does not necessarily has to to be 

overexpressed beyond 200-fold to be linked to resistance, e.g. CYP6D1 is approx.10-fold [73] 

and CYP6P3 is approx. 3-fold [74] overexpressed in M. domestica and A. gambiae, 

respectively. The high similarity of CYP6BQ25 to CYP6BQ23 and its constitutive 

overexpression suggests a role in metabolically mediated pyrethroid resistance, perhaps by 

detoxifying primary metabolites such as 4-OH-deltamethrin, which is principally toxic to pollen 
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beetles, albeit at a rate 25-fold lower than deltamethrin. However when pharmacokinetically 

cumulated in concentrations high enough, 4-OH-deltamethrin could principally evoke 

intoxication symptoms, so its further degradation is toxicodynamically definitely an advantage 

under constant pyrethroid selection pressure as present in European oilseed rape. Apart from 

CYP6BQ25 the transcriptomic analysis revealed a third P450 gene, CYP4Q22 also 

overexpressed in all three resistant populations included in the transcriptome analysis. The 

role of this P450 also remains to be elucidated. However this is an interesting approach for 

any future investigations on pollen beetle resistance to pyrethroids. Finally the transcriptomic 

approach revealed more candidate genes belonging to CCEs and GSTs with fold-changes 

around 2-fold (see Chapter 6 [71]), which might also be investigated in future projects. 

9.2.2 Resistance mechanisms in P. chrysocephala 

The first case of pyrethroid resistance in the cabbage stem flea beetle was described 

in 2009 [6]. The resistance was first discovered in Mecklenburg-Western Pomerania, 

Germany, in an area with a traditionally high cropping frequency of oilseed rape (pyrethroid 

resistance in pollen beetle was first reported in the same area) [3,6]. Resistance factors based 

on LC50-values for lambda-cyhalothrin where as high as 80-fold among 38 populations tested 

[6]. The cross-resistance pattern tested with lambda-cyhalothrin, tau-fluvalinate, bifenthrin and 

etofenprox revealed that all compounds are similarly affected, although they differ to some 

extent in their chemical structure. The clear cross-resistance suggested a target-site mutation 

as the primary resistance mechanism rather than overexpression of detoxification enzymes. A 

PCR approach with degenerate primers was used to amplify a fragment of the para-type 

sodium channel gene from susceptible and resistant beetles. Subsequent sequencing of the 

fragments revealed that all resistant beetles contained the L1014F kdr mutation. Based on the 

obtained sequence a high-throughput pyrosequencing assay was designed. The genotyping 

of resistant and susceptible populations revealed a clear link between the resistance 

phenotype and the kdr trait (see Chapter 8 [16]). A few archived museum samples collected 

prior to introduction of pyrethroids and obtained from the Julius-Kühn Institute were also 

analysed, and one sample collected in 1957 also contained the kdr-allele. Since the 1950s 

DDT was massively used in oilseed rape in Germany [75], so the result is not completely 

unexpected considering the fact that DDT and pyrethroids share the same mode of action by 

addressing the same binding site in VGSC. As the pyrosequencing diagnostic is only based 

on a few sequenced base pairs nothing is known about sequence identities (phylogeny) of the 

1957s kdr allele and those collected more recently. However, based on the fact that no field 

failures of pyrethroids were reported until 2008 [76] and recent field failures can be correlated 

with the presence of kdr (Chapter 8 [16]) it seems to be unlikely that the allele present already 

in the 1950s is the origin for today´s problems to control cabbage stem flea beetle in 
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Germany. The recent discovery of L1014F kdr mutations in both cabbage stem flea beetle and 

pollen beetle is an excellent example of parallel evolution of insecticide resistance in oilseed 

rape pests, i.e. the presence of kdr in a population is likely to be a clear advantage under 

pyrethroid selection pressure, but fitness costs may affect survival of such genotypes in the 

absence of pyrethroids. Parallel evolution is a common phenomenon for target-site resistance 

and reflects the limited options of changes at the target-site level in insects without adversely 

affecting the natural functionality of the target [30].   

9.2.3 Pyrethroid resistance in C. assimilis  

C. assimilis is the third coleopteran species to be found resistant to pyrethroid 

insecticides very recently. The resistance arose in the same region in Germany where 

resistant cabbage stem flea beetles and pollen beetles were first discovered [6]. So far no 

molecular study has been conducted to elucidate the resistance mechanism(s) in this species. 

However, likewise P. chrysocephala the cross-resistance between lambda-cyhalothrin, tau-

fluvalinate and etofenprox and the similar range of resistance ratios towards lambda-

cyhalothrin [6] suggests the involvement of a target-site resistance.  

9.3 Management 

Ideally the development and implementation of insecticide resistance management 

strategies commence prior to the development of resistance in order to avoid or delay its 

appearance [77]. Ironically, the starting situation for oilseed rape pest control was favorable for 

sustainable resistance management, because the inherent resistance risk of all major oilseed 

rape pests is relatively low compared to pests such as M. persicae or Tetranychus urticae 

KOCH, based on their life cycle and host preference for oilseed crops such as Brassica napus 

L., Brassica rapa L. and Sinapis alba L.. Of course, pollen beetle is also a pest of other 

Brassicas such as Brassica oleracea L., but compared to oilseed crops this is of limited 

importance and a recent study did not find a host preference of the filial generation to 

brassicaceous vegetables [78]. However, the recent emergence of probably two independent 

kdr alleles in pollen beetle as well as in cabbage stem flea beetle and a strong metabolic 

resistance mechanism based on the overexpression of CYP6BQ23 in pollen beetle reflects a 

serious genetic resistance risk in these pests. The rapid spread of CYP6BQ23 overexpression 

across Europe prompts questions on the dispersion dynamics of pollen beetles. Pollen beetles 

may disperse several kilometers a day [67,68], however studies on the genetic diversity in 

pollen beetle populations collected across Europe suggested little long range dispersal 

[69,70]. In the past no resistance management strategies were followed prior to the 

development of pyrethroid resistance in pollen beetle. However, once the extent of the 

problem became obvious the agrochemical industry started to successfully seek for alternative 
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modes of action and meanwhile most countries approved registrations of new chemical 

classes such as neonicotinoids, indoxacarb or pymetrozine, but also older classes such as 

organophosphates (see Chapter 1). Furthermore some established pyrethroids such as tau-

fluvalinate became available again because of their higher field efficacy compared to other 

widely used pyrethroids, e.g. lambda-cyhalothrin and deltamethrin (see section 9.2.1).  

However, most compounds with an alternative mode of action are registered for pollen 

beetle control only such as pymetrozine, indoxacarb and organophosphates, so a rotation by 

mode of action as one of the most effective resistance management strategies at least for 

pollen beetle control seems possible [79–81]. In addition only two neonicotinoid insecticides 

(thiacloprid and acetamiprid), are considered to be non-toxic to bees and are allowed to be 

used in oilseed rape during flowering, all others except some pyrethroids are restricted to pre-

flowering use. Although MOORES et al. [57] showed the potential of a PBO/tau-fluvalinate 

mixture as a bee-safe control option others reported strong synergism of bee toxicity for such 

a mixture [58,59]. Furthermore the presence of kdr resistance prohibits such a control strategy 

in order to avoid further selection of target-site resistance.  

The early occurrence of pollen beetle in winter oilseed rape is often overlapping with 

Ceutorhynchus spp. [54,61]. Control measures taken against stem weevils currently rely 

heavily on pyrethroids, thus every spray in the presence of pollen beetle increases the 

selection pressure. Currently the only way to reduce selection pressure in case co-abundance 

of stem weevils and pollen beetle is the use of insecticide mixtures. Insecticide mixtures have 

been shown to be very effective due to synergistic action in various insect species [82–84]. In 

France a mixture of deltamethrin and thiacloprid (Proteus® OD110) is registered to be used in 

oilseed rape [85]. However, since thiacloprid is one of the most intensively used non-

pyrethroid insecticides in oilseed rape in Europe such a mixture increases the selection 

pressure on neonicotinoids which provide reliable pollen control as straight products. However 

in the absence of registered premixed insecticides it is legally possible to use tank mixtures for 

pest management purposes, e.g. a tank mixture of pymetrozine and pyrethroids as recently 

recommended by the ECPR-I in Germany [86]. Bee toxicity has to be taken into account while 

using mixtures of insecticides, since stem weevils emerge early in the spring this pre-flowering 

application window does not overlap with the presence of bees in oilseed rape. 

It is not just pollen beetle adults overlapping with cabbage stem weevils but also pollen 

beetle larvae overlapping with cabbage seed weevil, which is also controlled by pyrethroid 

applications, so the selection pressure is also present on the subsequent summer generation 

of pollen beetle. As demonstrated in Chapter 7 section 7.3.2 [15] pollen beetle 2nd instar larvae 

are highly resistant to pyrethroids but very susceptible to thiacloprid. Since HEIMBACH & 

MÜLLER [6] reported C. assimilis populations are resistant to a range of pyrethroids, future 
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control measures should be best based on neonicotinoids which reduces the selection 

pressure on pyrethroids in both species. However switching from pyrethroids to neonicotinoids 

for the control of C. assimilis is not a sustainable long-term solution, and more bee-safe 

alternatives of different mode of action classes need to be developed to avoid selection by 

neonicotinoid insecticides.  

The recently discovered kdr resistance in the cabbage stem flea beetle is another 

problem that has to be managed. Presently only a limited number of populations collected in 

Germany were tested for the presence of this target-site mechanism, and a European wide 

monitoring will be necessary to check whether the problem is regionally restricted or has 

already spread. In the case of pyrethroid resistance in pollen beetle only one year after the 

first evidence of pyrethroid resistance in 1999 in northeastern France it was also reported 

independently in Denmark and Sweden [52,87,88] and subsequently in many other countries 

across Europe, such as Germany, Switzerland and Poland [7,89,90]. In contrast to M. aeneus, 

which exceeds economic thresholds almost annually the occurrence of P. chrysocephala is 

irregular. ALFORD et al. [91] reported peaks of abundance in a 7-year cycle in central parts of 

northern Europe. JOHNEN [92] described autumn temperatures as a key factor determining the 

population dynamics, i.e. in 1989 and 2000 he correlated unusually warm temperatures during 

autumn month in both years with peak infestations. P. chrysocephala is generally highly 

susceptible to pyrethroid treatments once economic thresholds are exceeded due to 

decreasing efficacy of seed treatments with neonicotinoids  particularly protecting young 

seedlings [54,91,93,94]. ALFORD et al. [91] reported that the importance of P. chrysocephala 

has declined in Great Britain through the foliar use of pyrethroids. A recent decision by the 

European Union [95] prohibiting the use of neonicotinoid insecticides for seed treatment in 

several crops including oilseed rape cuts down the control options to pyrethroids only. 

Considering the resistance development against pyrethroids in P. chrysocephala an urgent 

need for further action is given, i.e. development/registration of alternatives and the avoidance 

of unnecessary pyrethroid applications by taking into account the economic threshold and 

phenological models as described by JOHNEN et al. [93,96]. 

It seems naive to try to overcome current problems of insecticide resistance by simply 

using different insecticides and of course more is needed than just alternating insecticides. 

Therefore application schemes are developed and provided by industry, authorities and 

consultants. Examples concerning oilseed rape are management strategies provided by the 

“Expert Committee on Pesticide Resistance – Insecticides” [86] in Germany and by IRAC [97]. 

However such strategies can only succeed if enough diversity, i.e. compounds with distinct 

modes of action are available. As discussed above in theory 4-5 different modes of action are 

now available in many countries for use in oilseed rape, but in practice the situation is 
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completely different. The ongoing spread of pyrethroid resistance in oilseed rape pests 

underlines the requirement for further action. HOKKANEN [23] correlated the increasing 

problems with M. aeneus with the steadily increased acreage of oilseed rape crops. However, 

oilseed rape has become an indispensable crop in many crop rotations since crop rotations 

are mainly based on cereals in Europe [24] and sustainable pest management strategies are 

therefore indispensable, too.  

Integrated pest management is the preferred approach for sustainable crop production 

[98]. The knowledge of naturally-occurring agents of biological control has improved 

considerably over the past 15 years mainly due to two EU programs (acronyms: BORIS and 

MASTER [99]). The results of BORIS and MASTER as well as a significant contribution of 

research not covered by those programs are published in two excellent books about naturally-

occurring agents (parasitoids, predators and pathogens) for bio-control of oilseed rape pests 

[24,100]. Even though the efficacy of natural enemies/pathogens may be good e.g. a 

parasitism rate of 50 % on pollen beetle larvae [101], so far no basic strategy has been 

developed to use this potential sufficiently. The use of efficient entomopathogens such as 

nematodes is too expensive [102,103] and the integration of natural enemies in pest 

management programmes in oilseed rape is difficult. The complex interaction in a multi-trophic 

system in different landscapes and unequal cropping practices do not favour integrated pest 

management approaches [104]. Changes on the landscape level are unlikely to happen in a 

short period of time; however, the cropping practice may be adapted sooner. As most 

parasitoids of oilseed rape pests overwinter in the soil a reduced tillage or direct drill of the 

following crop after the harvest of oilseed rape has a positive impact on the survival rate of 

parasitoids [105]. The relatively low migration capability of parasitoids suggests positive 

effects of high cropping frequency within a region for the conservation of parasitoid 

populations [102]. The impact of pyrethroid insecticides on populations of parasitoids is 

considered to be serious [106]. The number and the timing of applications as well as the 

applied dose rates may determine the impact caused by pyrethroid treatments [106]. Studies 

on other insecticide classes are very limited. However, studies on parasitoids of stem weevils 

and pollen beetle compared thiacloprid and pyrethroids with similar findings i.e. a reduced 

parasitism rate after insecticide treatment [107]. The fact that oilseed rape is subsequently 

attacked by six major pests i.e. P. chrysocephala, C. napi, C. pallidactylus, M. aeneus, C. 

assimilis and D. brassicae from emergence in early autumn until seed formation in the early 

summer (Fig. 2, Chapter 1) means there is almost no chance for parasitoids to act in an 

insecticide free environment. Farmers are taking several control measures i.e. insecticide 

treatments to protect their crop during the season [61]. Therefore they need to control 

particularly adult stages, even though the larval stages of some pests have a significant 

impact on the plants (see section 1.1.1), but systemically acting insecticides to control larvae 
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are mostly not available. Parasitoids in combination with insecticides may reduce the number 

of offspring thus lowering the number of adults for the following season. At the end of the day 

the decision on insecticide treatment in an ideal world should be largely based on economic 

thresholds rather than protective, thus compromising the potential benefits of natural enemies. 

This reduces the insecticide selection pressure on insect pests and supports integrated pest 

management. Furthermore state of the art computer models considering pest and parasitoid 

phenology should be used to optimize the timing of insecticide treatments [96]. An interesting 

approach was described by EKBOM [66], since the major pest of oilseed rape are univoltine 

species an abandonment of oilseed rape cropping (spring and winter crop) on a landscape 

level for one year should have a massive impact on the reproduction success. However, such 

a radical approach is unlikely to be followed by farmers.  

Another interesting approach regarding sustainable oilseed rape production is to 

exploit more intensively available options for host plant resistance. Oilseed rape has been 

genetically modified (GM) to achieve host plant resistance with several traits i.e. protease 

inhibitors, plant lectins, Bacillus thuringiensis (Bt) toxins, chitinases and scorpion toxins [108–

113]. Bt toxins are widely used to confer host plant resistance in a broad range of plants to a 

variety of insect pests [114]; however, so far no Bt toxin was found to be effective against the 

major oilseed rape pests [24]. No field-tests are published today and the only trait studied for 

its ability to suppress pollen beetle is pea lectin. Transgenic oilseed rape expressing pea lectin 

in anthers up to ~0.6 % of total soluble protein was shown to reduce the development of 

pollen beetle larvae to adulthood by 50 % compared to non-modified control plants [108]. 

Considering that the mortality occurs during development of the offspring this trait would not 

protect the plant from damage of the parental generation and probably only cropping on a 

large scale (geographical region) would have a significant impact on the outbreak of the pest 

in the following year. A fairly new approach would be the use of RNAi to combat pests in 

oilseed rape as it was shown to be effective against a coleopteran pest of corn, i.e. Diabrotica 

virgifera virgifera LECONTE [115] and other coleopteran pest species such as Tribolium 

castaneum [116] and L. decemlineata [117]. The global acreage of GM crops (mostly cotton 

and soybean) was 134 million ha in 2009, in contrast only ~100,000 ha were cropped within 

the EU [118], which is mainly due to regulatory restrictions and limited public acceptance of 

GM crops in Europe. Even though GM crops are presently not well-established in Europe, it is 

an option to be considered for future pest management in oilseed rape, particularly if it is for 

biofuel production rather than human consumption. Thus the food-crop itself has not 

necessarily to be modified to achieve a long-term effect resulting in a decline in pest 

populations. LEHRMAN et al. [108] hypothesize a long-term impact of the lower fecundity of 

pollen beetle on GM oilseed rape. Therefore a GM trap crop would be a compromise allowing 

the use of the technology and keeping the food chain free of GM oilseed rape. The use of 



Chapter 9          

   

[210] 

turnip rape (Brassica rapa) as a trap crop was shown to be effective in many studies and not 

just for pollen beetles [119–122]. Host plant resistance must not necessarily involve transgenic 

events, but could also be facilitated by hybrids obtained in conventional breeding programs. 

An obvious target to work on brassicaceous crops would be the glucosinolate content and/or 

their profile [24]. Even after implementing host-plant resistance in combination with trap-crops 

in a push-pull strategy involving natural enemies or traits as described above, insecticide 

treatments are likely to be indispensable as a control measure in case of outbreaks and for 

pests not covered by the alternative approach.  

Genetic engineering is not limited to crops to achieve pest control; in fact several 

strategies to manage pests are achievable using insect transgenesis. Techniques such as the 

sterile insect technique or the RIDL approach where insects carry a dominant lethal allele 

[123] are implausible due to the univoltine nature of the major oilseed rape pests, 

exacerbating the transgenesis and mass rearing. A smart approach seems to be the 

development of insecticide resistant natural enemies, allowing the natural enemies to survive 

insecticide treatments, thus stabilizing the population and increasing their numbers/efficiency 

[124]. However, the most efficient natural enemies of oilseed rape pests are univoltine 

parasitoids [125], thus the practicability of such an approach is rather limited based on the 

lifecycle without taking into account any political or public concerns about the release of 

transgenic insects in Europe.  

WILLIAMS [24] describes the integrated pest management approach in oilseed rape as 

“in its infancy” as the the control of oilseed rape pests mostly relies on insecticides [24,61]. 

The insecticides used in oilseed rape act all as neurotoxicants, they act rapidly thus 

preventing crop damage. Spring as well as winter oilseed rape is treated up to 5 times with 

insecticides to protect the crops mainly from coleopteran pests [61] and a negative footprint on 

natural enemies was shown in several studies, albeit with old chemistry not showing IPM 

fitness due to modern insecticide standards [106,107]. The complex insect community on 

oilseed rape including a diversity of beneficial and pest insects prohibits a simple solution and 

demands a holistic approach rather than simple one-shot solutions [24]. The management of 

oilseed rape pests using an integrated approach manages insecticide resistance at the same 

time, as it would reduce the number of applications and therefore the selection pressure on 

key pests. Computer based decision support considering climate, the phenology of the pest its 

natural enemies and of the crop in combination with the economic threshold allows an 

optimized use of insecticides. Ongoing research to develop biocontrol strategies such as 

push-pull, screening for biocontrol agents such as entomopathogens, screening for more 

selective insecticides, conventional plant breeding as well as genetic engineering on crops, 
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insects and pathogens offers potential to overcome existing problems in the management of 

oilseed rape pests. 

9.4 Future work 

The current study supported monitoring activities on coleopteran pests of oilseed rape 

and focused on the molecular mechanisms of pyrethroid resistance in order to draw 

conclusions promoting the future management of insecticide resistance as part of integrated 

management of oilseed rape pests.  

M. aeneus 

In the present work in Chapter 3 [126] the cross-resistance pattern in pyrethroid 

resistant pollen beetle populations was examined. Synergist studies suggested a P450-based 

metabolic resistance mechanism that was confirmed by biochemical assays revealing the 

hydroxylation of deltamethrin by native microsomal preparations in the presence of NADPH. In 

the following study (Chapter 4 [127]) CYP6BQ23 was identified, recombinantly expressed and 

shown to be the major mechanism of pyrethroid resistance in pollen beetle populations 

collected across Europe. However, except for qRT-PCR no molecular diagnostic tool has 

been developed. Furthermore the mechanism causing the extreme overexpression of 

CYP6BQ23 has been elusive yet. It is not based on gene duplication and it should be 

investigated more deeply in a future study. Understanding the regulation of CYP6BQ23 

expression would likely allow the development of molecular diagnostic tools and therefore 

support studies on the distribution of this mechanism. Another simple pyrethroid resistance 

diagnostic could be based on antibodies to be used in ELISA detecting the amount of 

CYP6BQ23 protein in pollen beetle. Today the epidemic outbreak of pyrethroid resistance in 

pollen beetle is not well understood. Whether the CYP6BQ23-based resistance mechanism 

evolved once and spread over Europe or the overexpression arose independently in distinct 

populations across Europe is unclear. The rapid spread of pyrethroid resistance on the 

mainland of Europe (within two years pyrethroid resistance was reported in north-western 

France and Scandinavia [52,87,88]) stands in contrast to resistance expansion in the UK. In 

2006 and 2007 resistance remained rare in the UK and geographically restricted to costal 

districts in the south and the east of the country [122], however, from then on resistance 

spread successively, and in 2012 > 80 % of the populations tested were pyrethroid resistant 

[5].  

The next generation sequencing project in Chapter 6 [71] revealed two more P450s i.e. 

CYP6BQ25 and CYP4Q22, which are commonly over-expressed in pyrethroid resistant 

populations of M. aeneus. Furthermore candidate genes belonging to carboxylesterases and 
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glutathione S-transferases were identified. The expression pattern of those genes should be 

investigated using a bigger sample size. Furthermore functional expression may help to clarify 

the contribution of individual candidate genes to pyrethroid resistance. 

The kdr L1014F target-site resistance was shown to be geographically restricted to 

northern Europe in M. aeneus (Chapter 5 [128]). Future studies may investigate the genotype 

supporting the conservation of the kdr. Today it is unclear why kdr is geographically restricted 

whereas metabolic resistance, i.e. the constitutively overexpression of CYP6BQ23, may be 

found everywhere.  

The baseline susceptibility of M. aeneus for thiacloprid was established in Chapter 2 [13] and 

susceptibility monitoring was carried out in the following years (Chapter 7 [15]). Since the 

neonicotinoids thiacloprid and acetamiprid are the only insecticides other than some 

pyrethroids that are non-toxic to bees their preservation is very important for future pest 

management in oilseed rape and therefore susceptibility monitoring should be carried out in 

future to detect early shifts, which would allow an early response. 

Ceutorhynchus spp. 

In this study in Chapter 7 [15] the baseline susceptibility of C. assimilis was established 

for lambda-cyhalothrin and thiacloprid as reference substances for pyrethroids and 

neonicotinoids, respectively. Future studies are necessary to establish baselines for C. napi 

and C. pallidactylus, the overall goal should be an European wide monitoring of 

Ceutorhynchus spp. since pyrethroid resistance was already reported for C. assimilis in 

Germany (see section 9.2.3) and a high variation in the susceptibility to pyrethroids of the 

other two weevil species was reported [6,7]. Further studies are required to elucidate the 

molecular mechanisms conferring pyrethroid resistance in C. assimilis as well as the field 

performance of control agents other than the pyrethroids e.g. synthetic insecticides and 

entomopathogens, since the only option presently available other than pyrethroids are 

neonicotinoids and their preservation is thus of key importance for a sustainable pest control 

in oilseed rape.  

P. chrysocephala 

In Chapter 8 [16] the molecular mechanism, i.e. the L1014F kdr mutation, conferring 

cross-resistance to pyrethroid insecticides was identified in the para-type sodium channel of 

the cabbage stem flea beetle. Future monitoring is necessary to allow the geographical 

mapping of resistance and to take the appropriate action to manage this resistance. The 

developed pyrosequencing assay allows the simple genotyping of larvae and adults on gDNA 

extractions of single insects and is therefore ideal for future monitoring. Field trials are 
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necessary to investigate the efficacy of alternative control agents e.g. synthetic insecticides 

and entomopathogens, since today control relies exclusively on pyrethroid insecticides.  
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Appendix A 

Table A1 Supplementary file 1. Primer list. 

 

Primer name Purpose Sequence 

5' RACE outer 5' RACE CATCCTTTTCGATGATCACGTC 

5 'RACE inner 5' RACE ATTCAAAGCCAACTCGTACA 

3' RACE outer 3' RACE AAGGATATGACCTACATGGAGCA 

3' RACE inner 3' RACE AAAACTTACCCTGTACCTGGAACC 

CYP6BQ23 F1 CDS verifiying (PCR) GAATATGCATTGAGCAATGGTGC 

CYP6BQ23 R1 CDS verifiying (PCR) AGTGTCTTATTATGTTTTTCCCTG 

CYP6BQ23 R2 CDS verifiying (PCR) GGCTTAGTCAGTTGAAATCCTC 

CYP6BQ23 seq1 Sequencing ACAATGGCGAGCTAAGTTATGAAGCC 

CYP6BQ23 seq2 Sequencing AACCATGTCATCCTTTTCGAT 

CYP6BQ23 seq3 Sequencing GGAATGTATGTGAATGAGAAGGCGG 

CYP6BQ23 seq4 Sequencing GGCTCAACTTTGCCCTCAAACTCTTCC 

Actin F1 Isolation of actin sequences GGNTWYGCNSRNGANGAYRC 

Actin F2 Isolation of actin sequences ARATHATGTTYGARAMNTWYAA 

Actin R1 Isolation of actin sequences ATCCACATYTGYTGRAANGT 

Actin R2 Isolation of actin sequences CNKKNCKDATRTCNACRTCRCA 

Tubulin F1 Isolation of tubulin sequences TGYTGGGARYTNTAYTGYYTNGARC 

Tubulin F2 Isolation of tubulin sequences GARCAYGGNATHCARCCNGAYGG 

Tubulin R1 Isolation of tubulin sequences ACYTCYTCRTARTCYTTYTC 

Tubulin R2 Isolation of tubulin sequences GGRCACCARTCNACRAAYTGDAT 
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Table A2 Supplementary file 2. qRT-PCR primer list. 

 

Primer name Sequence r
2
* 

PCR 
efficiency 

Slope Y-intercept Melt °C 

CYP6BQ23 qF2 GGAATGTATGTGAATGAGAAGGCGG 
0.997 91.1 -3.556 24.703 80.5 

CYP6BQ23 qR2 TTCCAAACGATACAGAACCT 

CYP6BQ23 qF1 CAAAACACAATGGCGAGCTA 
0.998 92.5 -3.516 25.986 79 

CYP6BQ23 qR1 TCTGAGCAGAATCGGAACTG 

CYP6-like 1 qF CACCGACGACGTCATAGAAA 
0.999 92.7 -3.511 27.046 82 

CYP6-like 1 qR TACGCGCATGGATGTATGTT 

CYP6-like 2 qF ATGACGTACGAGGCCATGAT 
1.000 97.3 -3.389 27.714 80 

CYP6-like 2 qR ACGTCGGTTCCAGGTACATT 

CYP4-like 1 qF AGTGCCGTTTTATGGCAGAG 
0.998 99.4 -3.336 24.393 78 

CYP4-like 1 qR CACGTTGGGTTCAGGAAAAT 

CYP4-like 2 qF CAAAGTTTATGAGGAACTTGTTGAAA 
0.993 92.6 -3.514 33.334 78 

CYP4-like 2 qR TCGCATAGCTTCTTTGATCACT 

CYP4-like 3 qF GGAACGATGCATCAAGGAGT 
0.998 99.1 -3.346 24.813 83.5 

CYP4-like 3 qR CCGGAATGCGTTTGTATTTC 

CYP4-like 4 qF GACTGTATCCTAGCGTTCCCTT 
0.999 91.5 -3.544 22.39 80 

CYP4-like 4 qR TGTAAAGGTTTATGTCGCAACC 

CYP4-like 5 qF AGCAAATAGTTGGCGACGA 
0.994 96.8 -3.399 26.884 78 

CYP4-like 5 qR CATTCTTAATCCTTCTTTGATGACA 

CYP4-like 6 qF CCACAGCTTCTGCCATTTC 
0.999 90.8 -3.563 28.743 79 

CYP4-like 6 qR TCCTGAAGATCTCTATGTCCTG 

CYP4-like 7 qF CCCCGATGTGTTTAATCCTG 
0.998 96.7 -3.402 28.999 80 

CYP4-like 7 qR CAATTTCTGGGTCCTGCACT 

Actin qF CACCACCACCGCTGAAAGGGA 
0.999 97.4 -3.386 20.993 82.5 

Actin qR GGGAAGTAGAGGCGGCAGCG 

Tubulin qF ACCACGAACAACTATCCGTTGCCG 
0.998 92.5 -3.515 25.626 82.5 

Tubulin qR ATTTGCCGTGACGGGGGTCG 

*Model fit of standard curve 
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Table A3 Supplementary file 3. Amino acid variation of CYP6BQ23 

Strain 

 

Resistance Country Amino acid residue 

 

ratio (RR)
1
   96 156 160 174 251 420 443 

70-10 1 Ukraine E N E K/R V C T 

8-10 (1) 140 France E N E R V S T 

8-10 (2) 140 France E N E R V C A 

57-10 (1)  UK E N E R V C/S A 

57-10 (2)  UK E N E R V C/S A 

82-10 459 Germany E N E R V C A 

67-09 10 Austria E N E K/R V C A 

68-10 383 Germany E N E K/R V C A 

79-10  Germany E N E K/R V C A 

96-10 231 Poland E N E K/R V C A 

102-09 (1)  Germany E N E K/R V C A 

102-09 (2)  Germany E N E K/R V C A 

106-10 (1) 369 Czech Republik D N E K V/F C A 

106-10 (2) 369 Czech Republik D N E K/R V/F C A 

107-10 37 Czech Republik E N E K/R V C A 

120-10 162 Sweden D N/K E/D K/R V C A 

127-10 8 Finland E N E K/R V C A 
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Appendix B 

Fig. A1 Additional file 1. Histogram of the coverage of the merging assembly 

 

 
 

Fig. A2 Additional file 2. Boxplot of the contig lengths and N50 of the improved assembly 

 

 
 

Table A1 Additional file 3: P450s nucleotide sequences (see CD ROM) 

Table A2 Additional file4: CCEs nucleotide sequences (see CD ROM) 

Table A3 Additional file 5: GSTs nucleotide sequences (see CD ROM) 
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Table A4 Additional file 6. Bowtie results of the alignment of short reads vs. the 

generated hybrid transcriptome 

 

sample total reads Min. 1 alignment failed suppressed reported 

UA_1 41,809,924 32,472,457 (77.67%) 9,197,170 (22.00%) 140,297 (0.34%) 131,656,331 

UA_2 418,09,924 31,804,070 (76.07%) 9,859,197 (23.58%) 146,657 (0.35%) 129,031,357 

SE_1 95,574,799 75,642,802 (79.15%) 19,624,919 (20.53%) 307,078 (0.32%) 306,825,269 

SE_2 95,574,799 75,146,539 (78.63%) 20,116,038 (21.05%) 312,222 (0.33%) 305,423,672 

D_1 56,000,069 44,383,805 (79.26%) 11,403,380 (20.36%) 212,884 (0.38%) 184,308,254 

D_2 56,000,069 43,438,758 (77.57%) 12,339,364 (22.03%) 221,947 (0.40%) 180,501,901 

PL_1 52,433,974 41,914,949 (79.94%) 10,321,529 (19.68%) 197,496 (0.38%) 173,146,825 

PL_2 52,433,974 40,982,590 (78.16%) 11,243,366 (21.44%) 208,018 (0.40%) 169,525,415 

_1 and _2 represents technical replicates 

 

http://onlinelibrary.wiley.com/doi/10.1111/imb.12099/suppinfo 

 

Table A5 Additional file 7: 2-fold up-regulated ESTs between all resistant populations 

and the susceptible population (see http://onlinelibrary.wiley.com/doi/10.1111/ 

imb.12099/suppinfo ) 

Table A6 Additional file 8: 2-fold down-regulated ESTs between all resistant 

populations and the susceptible population (see http://onlinelibrary.wiley.com/doi 

/10.1111/ imb.12099/suppinfo ) 

Table A7 Additional file 9: Nucleotide sequences and annotations of >10-fold up-

regulated ESTs between all resistant populations and the susceptible population (see 

http://onlinelibrary.wiley.com/doi/10.1111/ imb.12099/suppinfo ) 

Table A8 Additional file 10: Nucleotide sequences and annotations of >10-fold up-

regulated ESTs sample SE vs PL (see http://onlinelibrary.wiley.com/doi/10.1111/ 

imb.12099/suppinfo ) 

Table A9 Additional file 11: Nucleotide sequences and annotations of >10-fold up-

regulated ESTs sample D vs SE (see http://onlinelibrary.wiley.com/doi/10.1111/ 

imb.12099/suppinfo ) 

Table A10 Additional file 12: Nucleotide sequences and annotations of >10-fold up-

regulated ESTs sample D vs PL (see http://onlinelibrary.wiley.com/doi/10.1111/ 

imb.12099/suppinfo ) 
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Table A11 Additional file 13. Primer used for RT qPCR validation 

 

Primer name primer sequence 5' to 3' 

CYP6BQ23 F GGAATGTATGTGAATGAGAAGGCGG 

CYP6BQ23 R TTCCAAACGATACAGAACCT 

CYP6BQ25 F GCCCTCAAATTCTTCCACTTTCT 

CYP6BQ25 R AAGGGGTTAAAGCACGGAGG 

CYP4Q22 F ATCGCCAACAACAAAGACGC 

CYP4Q22 R ATTCCCCGATCTGATGTGCC 

5247_Contig1 F ATATGTGCCCAGAGAGCAGC 

5247_Contig1 R ACTGTGCGAAACTCCACGAT 

6623_Contig1 F TCCTCCTCGGAATTTTCGCC 

6623_Contig1 R TGACTTTATTGGGGTCGCCC 

16932_Transcript_1/1 F TCTACGGCGACTTGGATTGG 

16932_Transcript_1/1 R CCCATTCGTTTTCGCCAGTG 

Tubulin F TCGGAGTGTTCTAAGGTGGTGTGA 

Tubulin R TCCGTGGATTACGGTAAGAAGTCGAA 

Actin F CACCACCACCGCTGAAAGGGA 

Actin R GGGAAGTAGAGGCGGCAGCG 

 

Table A12 Additional file 14: Nucleotide sequences and annotations of ESTs and genes 

(P450s and insecticide target sites) identified in this study (see http://onlinelibrary 

.wiley.com/doi/10.1111/ imb.12099/suppinfo ). 
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