5-1-2004

JMASM11: Comparing Two Small Binomial Proportions

James F. Reed III
St. Luke’s Hospital and Health Network, ReedJ@slhn.org

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons

Recommended Citation
DOI: 10.22237/jmasm/1083371220
Available at: http://digitalcommons.wayne.edu/jmasm/vol3/iss1/27

This Algorithms and Code is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.
A large volume of research has focused on comparing the difference between two small binomial proportions. Statisticians recognize that Fisher’s Exact test and Yates chi-square test are excessively conservative. Likewise, many statisticians feel that Pearson’s Chi-square or the likelihood statistic may be inappropriate for small samples. Viable alternatives exist.

Key words: Fisher’s Exact Test, Fisher’s Mid-p, Scaled Chi-square test

Introduction

A large volume of research spanning nearly half a century has focused on comparing the difference between two small binomial proportions. The validity of various testing procedures remains clouded by controversy (Hirji, 1991). Fisher’s exact test (FET) (Fisher, 1958) and Yates continuity corrected chi-square test (Yates, 1934) (X^2_y) have numerous criticisms based on theoretical and empirical considerations. Critiques of FET and X^2_y conclude that they are excessively conservative when used with small to moderate sample sizes leading to an implied loss of power which diminishes their utility (Berkson, 1978; Dupont, 1986; D’Agostino, 1988; Haviland, 1990).

D’Agostino showed that even with small sample sizes Pearson’s chi-square test (X^2) and the Student t-test based on binary data generally provide observed significance levels not far from the postulated levels (D’Agostino, 1988). FET is also extremely sensitive to minor variations in data, even when the minimum expected cell size is fairly large (Dupont, 1986).

Upton (Upton, 1982) and Overall (Overall, 1987) evaluated a wide variety of test procedures for comparing the difference between two small binomial proportions. They concluded that in both ease of computation and the average or median actual significance level, one should use one of three tests - the X^2, Student’s t-test for binomial data (BST), or the scaled chi-square test (X^2_s) for almost all sample sizes. Others have advocated the use of Fisher’s Mid-p (MP) based procedure in connection with FET (Miettinen, 1974; Plackett, 1984). Barnard (Barnard, 1989; Barnard, 1990) recommends reporting both the traditional p-value and the MP p-value when using FET.

Among applied statisticians a casual attitude towards using these tests has emerged. Practice appears to be guided by what has been described as “conventional wisdom” (D’Agostino, 1988). When the two sample sizes are large, applied statisticians generally use the X^2 or the likelihood statistic (G^2) and compare with the χ^2_{k-1} distribution. With small to moderate sample sizes, either FET or X^2_y are favored. This strategy is reinforced and seldom questioned as evidenced by the content of statistics texts used in colleges and universities.

Many statisticians recognize that FET and the X^2_y tests for comparing two independent binomial proportions are excessively conservative but continue their use. Likewise, many feel that X^2 and G^2 are inappropriate for small sample sizes. Viable alternatives to X^2...
include $X^2$, Fisher’s MP (14), or BST. None of these have made an appearance in statistics texts. The objective was to provide the practicing statistician with an executable code that produces these alternatives.

Methodology

The following notation was used to describe the comparison of two independent binomial proportions. Let $A$ and $B$ represent the number of successes in independent samples from two binomial populations ($n_1, \pi_1$) and ($n_2, \pi_2$). Let $n = n_1 + n_2$. Then the joint probability of a particular outcome is:

$$\Pr(A = a, B = b) = \frac{n_1!}{a! (n_1 - a)!} \frac{n_2!}{b! (n_2 - b)!} \pi_1^a (1 - \pi_1)^c \pi_2^b (1 - \pi_2)^d,$$

for $a = 0, 1, \ldots, n_1$ and $b = 0, 1, \ldots, n_2$, $c = n_1 - a$ and $d = n_2 - b$.

Pearson and Scaled chi-square tests ($X^2$ and $X^2_S$)

For an observed pattern of $(a, b)$, Pearson’s chi-square statistic is

$$X^2 = \frac{(ad - bc)^2}{n_1 n_2 (a+b)(c+d)}$$

The scaled chi-square statistic is derived from the mean and variance of the conditional hypergeometric distribution and is defined as

$$X^2_S = X^2(n - 1)/n$$

$X^2$ and $X^2_S$ are compared with a $\chi^2$ statistic with 1 degree of freedom. $X^2$ and $X^2_S$ tests are approximate tests because the distributions of $X^2$ and $X^2_S$ approach $\chi^2$ with 1 degree of freedom only when the sample sizes are large.

Student t-test (BST)

BST uses the means and variances of the two binomial distributions to compute the usual two independent sample t-statistic on a pooled estimate of the variances. BST is then compared with to the Student t distribution with $n_1 + n_2 - 2$ degrees of freedom.

Fisher’s Exact test (FET)

FET is constructed using the conditional distribution of $A$ given $A+B$. FET is defined:

$$f(a, s, \phi) = \Pr (A = a | A+B = s; \phi)$$

$$S(a, s, \phi) = \Pr (A > a | A + B = s; \phi),$$

where $\phi = \pi_1(1 - \pi_2)/\pi_1(1 - \pi_1)$.

For a one-sided $\alpha$-level test, reject $H_0$ if $f(a, s, \phi) + S(a, s, 1) \leq \alpha$.

Mid-P (MP)

MP tests the mean of two probabilities obtained by inclusion and exclusion of the observed point in a discrete distribution. This is equivalent to inclusion of half the probability of the observed point in each tail. MP is found by modifying the above one-sided procedure by the following:

For a one-sided $\alpha$-level test, reject if

$$0.5 f(a, s, 1) + S(a, s, 1) \leq \alpha.$$

Conclusion

A summary of the literature based on intuitive and theoretical grounds argues in favor of the use of a MP test (Barnard, 1989; Lancaster 1961). The computational effort required for the MP test is no more than that needed for FET. Further, the basis for MP is a natural adjustment for discreteness; and the test easily generates to r x c contingency tables and other discrete data problems (Hirji, 1991). It is strongly agreed upon that the Yates-corrected chi-square statistic in analyses of 2 x 2 contingency tables are overly conservative and that the Pearson chi-square generally provides adequate control over type I error probabilities (Haviland, 1990).

The two-tailed FET p-value is highly sensitive to small variations in 2 x 2 contingency tables. This sensitivity raises doubts about the utility of the FET as a measure of the relative strength of evidence provided by different tables (Dupont, 1986). Pearson’s chi-square statistic generally provides adequate control over type I error probabilities without the severe conservative bias produced by Yates’ correction for continuity.
When the analytic problem of comparing two independent binomial proportions the classical FET and the $X^2, \chi$-square tests are too conservative for practical use. A recommend analytical algorithm is: (1) When the two samples are nearly equal, and when the underlying true binomial value is near 0.5, use one of three statistics: \{X^2, X^2_s, BST, MP\} for all sample sizes, and (2) in case of unequal sample sizes, or when the common binomial parameter is near 0 or 1, use MP statistic.

An executable Fortran program that produces the statistics outlined in the previous section and sample data is provided in the appendix. A literature search did not produce any references related to public domain software that produces these statistics. The program as written may not be optimal. Any suggestion for refinements to the program would be gratefully accepted.

References


Appendix

An executable Fortran program that produces the statistics outlined in this article follows:

```fortran
INTEGER O(2,2), ROWS(2), COLS(2)
INTEGER ROW, COL
COMMON A, B, C, D

C
OPEN(8, FILE='PKIN')
READ(8, *) ROW, COL
READ(8, *) ((O(I,J), J=1, COL), I=1, ROW)
CLOSE(8)
A = O(1,1)
B = O(1,2)
C = O(2,1)
D = O(2,2)
ROW1 = A + B
ROW2 = C + D
COL1 = A + C
COL2 = B + D
TOT = A + B + C + D

C
CLOSE(8)
OPEN(8, FILE='PKOUT')
CALL CHISQ
CALL BST
CALL FISH (O)
STOP
END
C===================================================================== SUBROUTINE CHISQ
COMMON A, B, C, D
ROW1 = A + B
ROW2 = C + D
COL1 = A + C
COL2 = B + D
TOT = A + B + C + D
PI1 = A / (A + C)
PI2 = B / (B + D)
CHI = ((A*D-B*C)**2*TOT)/(COL1*COL2*ROW1*ROW2)
WRITE(8,101)
WRITE(8,102) A, B
WRITE(8,103) C, D
WRITE(8,104) PI1, PI2
IDF = 1
CALL CHIP (CHI, IDF, XPROB)
```
IF (CHI .EQ. 0) XPROB = 1.0D0
WRITE(8,105) CHI,XPROB

SCS = CHI*(TOT-1)/(TOT)
CALL CHIP (SCS,IDF,YPROB)
IF (SCS .EQ. 0) YPROB = 1.0D0
WRITE(8,106) SCS,YPROB

101 FORMAT(14X,'TRT A',15X,'TRT B',/)
102 FORMAT(10X,'   a = ',F6.1,7X,'   b = ',F6.1)
103 FORMAT(10X,'   c = ',F6.1,7X,'   d = ',F6.1,/)
104 FORMAT(10X,'ã(1) = ',F6.5,7X,'ã(2) = ',F6.3,/)
105 FORMAT(10X,'Xý   = ',F6.2,' , p-value = ',F7.4)
106 FORMAT(10X,'Xý(S)= ',F6.2,' , p-value = ',F7.4)
RETURN
END

SUBROUTINE BST
COMMON A,B,C,D
INTEGER DF
ROW1=A+B
ROW2=C+D
COL1=A+C
COL2=B+D
TOT =A+B+C+D
P1 = A/COL1
P2 = B/COL2
TN = ABS(P1-P2)
P1 = (A+B)/TOT
D1 = PI*(1-P1)/COL1
D2 = PI*(1-P1)/COL2
TD = SQRT(D1+D2)
T = TN/TF
PT =T*T
DF = TOT-2
CALL FAPPROX (FT,1,DF,QX)
CALL NPROB (QX,TPROB)
WRITE(8,101) T,TPROB
101 FORMAT(/,10X,'BST  = ',F6.2,' , p-value = ',F7.4)
RETURN
END

SUBROUTINE GTEST (O)
INTEGER O(2,2),ROWS(2),COLS(2)
ROWS(1)=A+B
ROWS(2)=C+D
COLS(1)=A+C
COLS(2)=B+D
TOT=A+B+C+D

C
DO 10 I = 1,2
DO 10 J = 1,2
  IF (O(I,J).NE.0) G = G + O(I,J)*LOG(REAL(O(I,J)))
10  CONTINUE
DO 20 I = 1,2
  IF (ROWS(I).NE.0.0) G = G - ROWS(I)*LOG(REAL(ROWS(I)))
20  CONTINUE
DO 30 J = 1,2
  IF (COLS(J).NE.0.0) G = G - COLS(J)*LOG(REAL(COLS(J)))
30  CONTINUE
G = G + TOT*LOG(TOT)
C
IF (G.LT.0.0) G = 0.0
IF (G.GE.0.0) G = 2.0 * G
IDF = 1
CALL CHIP(G,IDF,PROB)
IF (G.EQ.0.0D0) PROB = 1.0
C
WRITE(8,100)G,PROB
100 FORMAT(/,10X,'G    = ',F6.2,' , p-value = ',F7.4)
RETURN
END

C=====================================================================C
FISHER'S EXACT TEST
C
1) One-tail computations
C
2) Two-tail computations
C
SUBROUTINE FISH (O)
INTEGER O(2,2)
INTEGER A,B,C,D,S
REAL    P(9),T(20),MFPROB1,MFPROB2
C
K = 0
A=O(1,1)
B=O(1,2)
C=O(2,1)
D=O(2,2)

1 K = K+1
XL = 0.0D0
CALL EPROB (A,PR)
P(2)=PR
CALL EPROB (B,PR)
P(3) = PR
CALL EPROB (C,PR)
P(4) = PR
CALL EPROB (D,PR)
P(5) = PR
S = A+B
CALL EPROB (S,PR)
P(6) = PR
S = C+D
CALL EPROB (S,PR)
P(7) = PR
S = B+D
CALL EPROB (S,PR)
P(8) = PR
S = A+C
CALL EPROB (S,PR)
P(9) = PR
S = A+B+C+D
CALL EPROB (S,PR)
P(1) = PR
DO 20 J = 6,9
20    XL = XL + P(J)
DO 30 J = 1,5
30    XL = XL - P(J)
T(K) = EXP(XL)
C
IF((A.EQ.0).OR.(B.EQ.0).OR.(C.EQ.0).OR.(D.EQ.0))THEN
C
C        CONDITIONAL PROBABILITY
C
FPROB1  = 0.0D0
DO 40 I = 1,K
40      FPROB1  = FPROB1  + T(I)
C
FISHERS EXACT TEST PROBABILITY (Two-Tail)
PROB2  = 1 - FPROB1 + T(1)
FPROB2  = 2*MIN(FPROB1,PROB2)
IF (FPROB2 .GE. 1) FPROB2=1
C
FISHER MID-P
T(1)    = 0.5D0*T(1)
MFPROB1 = 0.0D0
DO 50 I = 1,K
50      MFPROB1 = MFPROB1 + T(I)
MFPROB2 = 2*MFPROB1
IF(MFPROB2 .GE. 1) MFPROB2=1
IF (A.LT.C) MFPROB = 1.0D0 - MFPROB
WRITE(8,100) FPROB1
C
WRITE(8,101) FPROB2
WRITE(8,102) MFPROB1
C
WRITE(8,103) MFPROB2
100    FORMAT(/,10X,'FET (One-tail), p-value = ',F7.4)
C
101    FORMAT(/,10X,'FET (Two-tail), p-value = ',F7.4)
102    FORMAT(/,10X,'MP (ONE-tail), p-value = ',F7.4)
C
103    FORMAT(/,10X,'MP (TWO-tail), p-value = ',F7.4)

RETURN
ENDIF
C
IF (A*B - B*C .LT. 0) THEN
A = A-1
D = D-1
B = B+1
C = C+1
ELSE
ENDIF
A = A+1
D = D+1
B = B-1
C = C-1
ENDIF

C
GO TO 1

RETURN
END

SUBROUTINE EPROB (S,PR)
INTEGER S
REAL PR
PR = 0
DO 10 I = 1,S
10     PR = PR + LOG(REAL(I))
RETURN
END

SUBROUTINE FAPPROX (F,N1,N2,QX)
REAL F,V1,V2,XNUM,XDEN,QX
V1 = REAL(N1)
V2 = REAL(N2)
XNUM = F**((1.0/3.0)*(1.0-2.0/(9.0*V2))-(1.0-2.0/(9.0*V1)))
XDEN = 2.0/(9.0*V1)+F**((2.0/3.0)*(2.0/(9.0*V2))
QX = XNUM/SQRT(XDEN)
RETURN
END

SUBROUTINE NPROB (X,PROB)
REAL D,PROB,X
DATA D1,0.0498673470/,D2,0.0211410061/,D3,0.0032776263/,
DATA D4,0.0000380036/,D5,0.0000488906/,D6,0.0000053830/
PROB = 1.0/(2.0*(1.0+D1*X+D2*X*X+D3*X*X*X
& +D4*X*X*X*X+D5*X*X*X*X*X+D6*X*X*X*X*X*X)**16)
IF (PROB .GE. 1.0) PROB = 1.0
RETURN
END

SUBROUTINE CHIP (STAT,IDF,P)
C
DATA D1,0.0498673470/,D2,0.0211410061/,D3,0.0032776263/,
$   D4,0.0000380036/,D5,0.0000488906/,D6,0.0000053830/
C
CUBE ROOT APPROXIMATION
C
DF = REAL(IDF)
X  = ((STAT/DF)**((1.0D0/3.0D0)-(1.0D0-(2.0D0/(9.0D0*DF)))))/
$   (SQRT(2.0D0/(9.0D0*DF)))
IMPROVED CUBE ROOT APPROXIMATION

IF ((X.GE.-3.5).AND.(X.LE.-3.0))
\$ X=X+0.6060606*(-0.0067+0.0102*(-3.0-X))
IF ((X.GT.-3.0).AND.(X.LE.-2.5))
\$ X=X+0.6060606*(-0.0033+0.0068*(-2.5-X))
IF ((X.GT.-2.5).AND.(X.LE.-2.0))
\$ X=X+0.6060606*(-0.0010+0.046*(-2.0-X))
IF ((X.GT.-2.0).AND.(X.LE.-1.5))
\$ X=X+0.6060606*(0.0001+0.0022*(-1.5-X))
IF ((X.GT.-1.5).AND.(X.LE.-1.0))
\$ X=X+0.6060606*(0.0006+0.0005*(-1.0-X))
IF ((X.GT.-1.0).AND.(X.LE.-0.5))
\$ X=X+0.6060606*(-0.0006)
IF ((X.GT.-0.5).AND.(X.LE.0.0))
\$ X=X+0.6060606*(-0.0002+0.0008*X)
IF ((X.GT.0.0).AND.(X.LE.0.5))
\$ X=X+0.6060606*(-0.0003-0.001*0.5-X)
IF ((X.GT.0.5).AND.(X.LE.1.0))
\$ X=X+0.6060606*(-0.0006-0.006*(1.0-X))
IF ((X.GT.1.0).AND.(X.LE.1.5))
\$ X=X+0.6060606*(-0.0005+0.0002*(1.5-X))
IF ((X.GT.1.5).AND.(X.LE.2.0))
\$ X=X+0.6060606*(0.0002+0.0014*(2.0-X))
IF ((X.GT.2.0).AND.(X.LE.2.5))
\$ X=X+0.6060606*(0.0017+0.003*(2.5-X))
IF ((X.GT.2.5).AND.(X.LE.3.0))
\$ X=X+0.6060606*(0.0043+0.0052*(3.0-X))
IF ((X.GT.3.0).AND.(X.LE.3.5))
\$ X=X+0.6060606*(0.0082+0.0078*(3.5-X))

X2 = X*X
X3 = X2*X
X4 = X3*X
X5 = X4*X
X6 = X5*X
P  = 0.5*(1.0+D1*X+D2*X2+D3*X3+D4*X4+D5*X5+D6*X6)**(-16.0)

ERROR CHECKS

IF (P.GT.1.0) P=0.999
IF (P.LT.0.0) P=0.001
RETURN
END