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Chapter 1 
 

 

Introduction 
 

 

Nowadays, as gastrointestinal diseases and gastrointestinal cancers have become 

one of the most serious threats to worldwide human health, advanced examinational 

means are regarded very significant and indispensable in clinical diagnosis. Among 

a variety of examinational means, capsule endoscopy, a pill-shaped endoscopy 

technology, has attracted great attention and become broadly utilized during the past 

decade for the reason that it can provide visual and non-invasive examinations of 

the whole small intestine. Such kind of examination was almost impossible before.  

However, capsule endoscopy has its own problem. Unlike the real-time 

examination of gastroscopy and colonoscopy, capsule endoscopy has a journey 

“alone” throughout the gastrointestinal tract, and captures video data including a 

large number of images. And thus, it then absorbs massive time for doctors to 

observe and make diagnosis for all the images. With regard to this issue, a variety 

of diagnosis support technologies covering different functions have been developed. 

Among them, anomaly detection is regarded as one of the most promising means 



2 

 

to remarkably improve the efficiency and quality of diagnosis.  

Anomaly detection is desired to detect all anomalies including lesions and 

foreign matters from capsule endoscopy images. However, according to the 

investigation, in previous studies on anomaly detection for capsule endoscopy 

images, many approaches were put forward to detect only several specified kinds 

of lesions. It was always necessary to establish a classifier in respond to the 

specified target anomaly in advance. Although it is possible to employ a large 

number of training data involving different conditions, anyhow, such kind of 

approaches are available but limited only within the categories of specified lesions. 

Except for lesions, foreign matters, such as residue and bile, should also be filtered 

out because they are somewhat considered as the shelter of lesions in some 

conditions. So far, the detection of foreign matters has not been mentioned in most 

of the approaches. And thus, providing feasible anomaly detection based support 

for practical diagnosis of capsule endoscopy remains quite a difficult task.   

By observation, it is found that normal images, containing only intestinal wall 

and lumen, usually comes out in relatively simple appearance, as compared with a 

variety of anomalies. Therefore, it is considered as a breakthrough to concentrate 

on the normal images instead of the various anomalies. If only the high similarity 

among normal images can be given a proper description, anomalies different from 

normal images are expected to be discovered accordingly. Meanwhile, unconcerned 

foreign matters such as residues could be detected in this way. Nevertheless, 

oversighted anomalies may occur if such kind of anomaly detection is adopted to 

various anomalies. This is for that some of the anomaly images, especially those 

with small or inconspicuous anomaly regions, probably possess quite high 

similarity to the normal images. In respond to this case, it is also necessary to take 

additional measures to decrease the oversights. To meet all the requirements above, 

a single-stage scheme is considered insufficient to settle all of the tasks. 

With regard to these issues, therefore, this dissertation proposes a two-stage 

scheme involving anomaly degree evaluation and lesion oversight prevention, 

directing at the detection for all kinds of lesions and foreign matters, and maximally 

reduce the lesion oversights. First, in the stage of anomaly degree evaluation, 

various lesions and foreign matters are expected to be screened out by evaluating 

the anomaly degree of image data, which indicates the scale of difference distinct 

from the confirmed normal image data. To figure out the characteristics of various 

contents, in feature extraction, the proposed method utilizes Higher-order Local 
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Auto Correlation (HLAC), which is regarded as a qualified instrument and owning 

well suitability to address feature extraction for capsule endoscopy images. 

Furthermore, this dissertation also present techniques involving color space 

conversion and adjustment for feature extraction, aiming at facilitate the efficacy of 

anomaly degree evaluation for capsule endoscopy images. Second, in the following 

stage of lesion oversight prevention, a more specific detection method is developed 

to cope with images with small or inconspicuous lesion regions that are easily 

oversighted in the first stage. A geometric image descriptor, called LCE-HLAC 

features, is developed to make contribute on reinforcing the descriptive capacity for 

local details and realize more effective feature extraction for lesions of various 

appearance. To sum up, according to the unique design of each stage, the proposed 

scheme is considered available to deal with various anomalies without restriction 

of anomaly’s categories, and having potential to maximally restrain oversighted 

lesions at the same time.  

The remainder of this paper is organized as follows. The relevant materials of the 

background of research, starting from the brief introduction of gastrointestinal 

diseases and diagnosis, will be introduced in Chapter 2. Chapter 3 depicts the 

configuration and design of the proposed anomaly system. Chapter 4 and 5 describe 

the two stages of the proposed anomaly system in detail, and the experimental 

materials and discussions for each part. Following in Chapter 6, this dissertation 

also introduces the feasibility validation of the whole proposed anomaly detection 

system, by establishing general training datasets for the two stages of the proposed 

anomaly detection system. Chapter 7 follows at the last and gives the conclusions 

of the dissertation according to all the assumption and experimental validation 

results denoted in the foregoing chapters. After all, anomaly detection based 

diagnosis support is convinced to be very prospective and promotive for the 

practical application and future development of capsule endoscopy technology.  
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Chapter 2 
 

 

Background 
 

 

2.1 Gastrointestinal diseases and diagnosis 

Gastrointestinal diseases, and gastrointestinal cancers in particular, are now 

among the most serious threats to human health. In 2012, gastrointestinal cancer, 

including both colorectal and stomach cancer, was reported as being the most 

frequently diagnosed form of cancer worldwide [1]. Domestic statistics by Japanese 

National Cancer Center [2] figured that, by 2015, incidence of colorectal cancer is 

expected to be the first place, while the stomach cancer will be the third place. In 

the same report, deaths from gastrointestinal cancer will increase beyond lung 

cancer and become the most threatening among all kinds of cancers.  

 Although cancer is deemed as severely dreadful disease because it is usually 

related with the length of life, most gastrointestinal cancer and other kinds of 

gastrointestinal diseases can be cured if appropriate diagnosis and treatment can be 

introduced in time. Another report was issued by Japanese Association of Clinical 

Cancer Centers [3] shown in Fig. 2.1.1. There is a comparison of five-year cancer 
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survival rates among the colorectal cancer, stomach cancer, and the lung cancer. 

Commonly, all of these three kinds of cancers have their staging defined from I to 

IV, that describe the severity of the cancer at the time of the diagnosis, taking into 

account the growth and size of the tumor and whether it has spread to adjacent 

organs [4]. Within Fig.2.1.1, the broken lines reveal that the survival rates of 

colorectal cancer and stomach cancer is obviously higher than lung cancer until 

stage III. More than 68% patients diagnosed before stage III have relatively good 

prognosis. However, for three kinds of cancers, the five-year survival rates decrease 

sharply below 15% if the progress comes to the stage IV. Thus, clearly, it is known 

that the intervention of early diagnosis is very important for gastrointestinal cancer 

and other kinds of gastrointestinal diseases.  

  In terms of examinational means, blood tests, radiography, ultrasound, 

computed tomography (CT), magnetic resonance imaging (MRI) [5] and 

endoscopies are often utilized as important examination means [6]. Actually, in 

clinical application, a series of diagnostic procedures (as illustrated in Fig.2.1.2) are 

usually conducted in sequence before a definite diagnosis can be made. First, the 

laboratory tests, including blood test and stool test, are processed to check if there 

any abnormal sign (bacteria in the blood, hidden blood in the stool, etc.) in patient’s 

blood and stool. The laboratory tests are effective to confirm the bacteria infection 

and the gastrointestinal bleeding. Second, the patient should accept imaging tests, 

such as radiography test upon the barium beefsteak meal (in which patient eats a 

meal containing liquid barium used to coat the inside of organs so that they will 

show up on an X-ray), ultrasound, and CT/MRI scans. Imaging tests can help to 

find the morphological abnormalities in gastrointestinal organs. For example, 

radiography test upon the barium beefsteak meal is powerful for many kinds of 

enteritis [7]. Endoscopic examinations follow after the tests above. Examination 

with gastroscopy or colonoscopy allows the doctor to view the inner wall of 

gastrointestinal tract. It can often help identify tumors, polyps, inflamed mucosa, 

ulcers and bleeding. Since such lesions can hardly observed by other technologies, 

endoscopic examinations are now playing significant and replaceable role in 

digestive diagnosis. 
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Figure 2.1.1. Five-year cancer survival rates (%), issued by  

Japanese Association of Clinical Cancer Centers in 2004. 

 

 

Figure 2.1.2. Digestive diagnostic procedures. 

 

2.2 Capsule endoscopy 

Among endoscopic technologies, gastroscopy and colonoscopy are broadly and 

frequently used. During the examination by either gastroscopy or colonoscopy, it 

involve inserting a long, flexible lightening tube into the gastrointestinal tract. 

However, because small intestine is the longest and winding organ in the right 

middle section of gastrointestinal tract, it is hard for the endoscopic technologies 

above to reach deep into the small intestine and implement the examination overall. 

As the reference goes, the normal adult small intestine is about 400 cm in length, 

and consists of the duodenum (25-30 cm), and the jejunum (160-200 cm), and the 

rest part of ileum [8]. In contrast, gastroscopy and colonoscopy are generally not 

longer than 150cm. Therefore, for both of the endoscopic technologies, it is almost 

impossible to inspect the full length of small intestine [9]. As a solution to address 

this issue, capsule endoscopy, a novel endoscopy technology, has been developed.    

Capsule endoscopy (CE) is a pill-shaped endoscopy technology (Fig.2.2.1) 

which was firstly invented in 2000 [10] and originally marketed in 2001. Since 

capsule endoscopy acquired its first approval by FDA (U.S. Food and Drug 
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Administration) in 2001, more than 2 million capsule endoscopies have been 

ingested worldwide [11]. In Japan, capsule endoscopy examination was firstly 

approved in 2007 [12], and so far, it has been introduced into more than 300 

domestic medical facilities [13].  

Within the capsule sell, there are miniaturized parts including optical lens, 

CMOS image sensors, LED illumination, battery, UHF-band transmitter and 

antenna. When works along the gastrointestinal tract, it is able to capture images at 

2 to 6 frames per second [14], for about 8 hours, and simultaneously transmit the 

images outside to receiver set on the patient’s body (Fig.2.2.2). And then, the 

images can be saved temporarily in the data recorder. Along with the movement of 

capsule endoscopy, the location information in gastrointestinal tract is also 

transmitted and recorded together with the image data, so that potential lesions 

could be located for further treatment.  

 

 

Figure 2.2.1. Capsule endoscopy (PillCam® by Given Imaging Ltd.) 

 

 

Figure 2.2.2. Diagnostic procedure of capsule endoscopy.  
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Due to the unique profile in size and flexibility, capsule endoscopy can go deep 

in through the whole gastrointestinal tract and have many. Specifically, capsule 

endoscopy also has a variety of advantages that could be summarized as below. 

Good for patients:  

(1) Due to the examination conducted by making patients simply swallow 

the capsule endoscopy, less physiological and mental burden are placed 

on patients compared to conventional endoscopy technologies.  

(2) There is no need to stay in the medical facility, so that patients can go 

back to work or go home during the examination. 

(3) As an optical method, there is no risk and worry of the radiation 

exposure during the examination.  

Good for doctors:  

(1) With capsule endoscopy, lesions difficult to be arrived by conventional 

endoscopy technologies can be fully captured and observed. This lead 

to advantages in terms of identifying the causation of bleeding, 

detecting polyps, inflammatory bowel disease, ulcers, and tumors of 

the small intestine. As reports said, capsule endoscopy has also been 

demonstrated particularly effective against some certain diseases, such 

as unexplained gastrointestinal bleeding and Crohn's disease [15, 16, 

17]. 

(2) Examination of small intestine can be carried out completely by capsule 

endoscopy without doctor’s option. Thus, the experience and skill of 

doctor makes no difference to the examination results.   

(3) Unlike the real-time examination by conventional endoscopies, all the 

video data captured by capsule endoscopy are saved, so that it is 

convenient for doctors to confirm the suspicions repeatedly if 

necessary.  

As stated above, it is clear that capsule endoscopy is a patient-friendly tool that 

is not only capable to facilitate the examination of the whole small intestine, but 

also makes painless gastrointestinal examination possible. Actually, as to clinical 

application, capsule endoscopy is usually utilized when intestinal diseases in small 

intestine are suspected after the blood and stool tests, imaging tests and 

conventional endoscopy examinations.  
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2.3 Diagnosis support technologies for CE 

A full-length CE video usually lasts for approximately 8 hours and contains in 

excess of 50,000 consecutive image frames [18], the examples of which are given 

by Fig. 2.3.1. On average, a doctor requires between 45 to 120 min to inspect and 

screen all the image data [19]. Actually, the diagnosis time is largely depending on 

both the doctor’s skill and experience and also on image conditions. Some factors, 

such as the basic tone of mucosa, illumination conditions, and the amount of residue 

(of food or drug remaining in patient’s gastrointestinal tract), all causes great impact 

on the diagnosis efficiency. Moreover, in the case if any part in the small intestinal 

are suspected to be anomalous, examination time tends to become longer, and then 

further adds workload on doctors [20].  

 

 

Figure 2.3.1. Examples of capsule endoscopy image (normal).  

 

In order to release the doctor’s workload and contribute to more exact diagnosis, 

many researches on computer-aided diagnosis (CAD), involving various kinds of 

automatic support technologies for capsule endoscopy diagnosis, have been 

activated in recent years. Among the automatic support technologies, bundled 

software developed by capsule endoscopy manufacturers have been firstly put into 

use to assist clinical diagnosis. For example, for the case of “RAPID®” [21], 

developed by Given Imaging Ltd. (the Israel company pioneered the capsule 

endoscopy technology), several functions are integrated in the software. For 

example, “Flexible spectral Imaging Color Enhancement” provides options of 3 
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types of spectral images, which make the view of elevated mucosa more distinct 

and visible. The “QuickView” mode allows doctor adjust the sampling rate of video, 

so that to reduce the reading time on request [22]. However, some reports have 

claimed that the accuracy levels of diagnosis are still restricted and unsatisfactory, 

and oversights may still occur due to lacking of efficient assistance [23]. Meanwhile, 

the “QuickView” mode are not regarded sufficiently benefiting the diagnosis [22]. 

Besides, some other pre-load softwares, such as “Endocapsule® 10 System” by 

Olympus (a Japanese company) and “MiroCam®” by IntroMedic (a Korean 

company), also provide similar functions mainly restricted within different view 

modes by measuring the scale of change between adjacent frames [24, 25].  

Except for the bundled software developed by capsule endoscopy manufacturers, 

many other researches have also been inspired to provide various kinds of 

diagnostic support. Some of them focused on reducing diagnosis time by optimizing 

the control of video display. For example, Vu Hai et al developed an adaptive 

control of video display, on the basis of analysis of similarity of color feature and 

extraction of motion displacement between adjacent frames [26, 27]. Based on the 

developed techniques, the performances of this approach has also been validated by 

evaluating the required diagnostic time. As the result, it is indicated that the 

technique is of valuable assistance to medical doctors [8, 28]. Efforts put forward 

by Min Kook Choi et al. computed the meaningful motion changes of capsule 

endoscopy frames, and managed to remove the duplicated video frames [29]. 

Except of directly controlling video display or amount of frame data, several other 

studies have been carried on by suggesting significant information to help diagnosis. 

Bashar M. K. et al used local color histogram and Gauss Laguerre Transform (GLT) 

to identify non-bubbled frames and bubbled frames, respectively [30]. Bubbles are 

usually emerging and causing interference to diagnosis. By this means, informative 

frames without bubble in capsule endoscopy image were expected to be 

distinguished. In another work of Vu Hai et al, detection of small intestine 

contractions is achieved based upon the characteristics of geometric patterns [31]. 

Moreover, approach on detecting the landmark of adjacent organs by introducing a 

color model for gastrointestinal tract has been presented in [32].  

These diagnosis support technologies, as denoted above, are all proposed to 

decrease doctor’s workload and improve the efficiency of diagnosis. Nevertheless, 

none of these technologies have direct concern to the possible anomalies in capsule 

endoscopy images. It means that, thus, these diagnosis support technologies are 
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regarded helpful, but too limited to take more important charge and share doctor’s 

workload.  

 

2.4 Anomaly detection for CE images 

2.4.1 Anomaly detection 

Except for the technologies depicted above, anomaly detection technologies are 

particularly concentrated among the diagnosis support technologies. Like the other 

technologies, anomaly detection aims at releasing doctor’s workload and contribute 

to efficient diagnosis. Moreover, anomaly detection is considered quite meaningful 

and able to help doctors identify the lesions so that oversights could be reduced. 

Including but not limited in capsule endoscopy image domain, anomaly detection 

attracts attention of researchers in a variety of medical imaging domains, such as 

CT image [33, 34, 35], positron emission tomography (PET) image [36], 

mammograms image [37], ultrasound image [38, 39, 40], and histopathological 

image [41, 42]. 

Generally, there are two main ways of computer-aided diagnosis to provide 

diagnosis with assistant, screening and double check. Screening has an effect to 

automatically distinguish between the normal (negative) and anomaly (positive) 

before the doctor makes diagnosis [43]. In the case that suspicions of anomaly are 

sensed by the anomaly detection system, the suspected part of image data can be 

preferentially presented for doctor’s observation. By this way, diagnosis time is able 

to be saved considerably. Another way of computer-aided diagnosis is double check, 

or named double reading. Double check aims to confirm if there are anomaly (false 

negative) existing in the data group which has been judged as normal by doctor [44]. 

Since diagnosis time is always limited in practical situation, oversights of anomaly 

can hardly be avoided completely. Thus, automatic double check has become 

desirable to decrease the oversights and improve the precision of diagnosis. 

  Since it has been stated in the section 2.3 that the full-length capsule endoscopy 

video usually contains many consecutive frames in excess of 50000, thus, it is 

reasonable that the diagnosis of capsule endoscopy image can also benefit from 

anomaly detection technique of suspected lesion frames. As illustrated in the 

paragraph above, in practice, the utility of the anomaly detection for capsule 

endoscopy image can make use of both of screening and double check (Fig.2.4.1.1). 
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Figure 2.4.1.1. Prospective utility of anomaly detection for capsule endoscopy.  

 

Certainly, a reliable anomaly detection approach, which plays the most significant 

role in both of the procedures, is required as a preceding condition. 

 

2.4.2 State-of-the-art studies 

A large number of state-of-the-art methods for anomaly detection have been 

presented in recent years. Roughly, these methods can be divided into two broad 

categories, namely predefined-condition-based anomaly detection and geometric-

feature-based anomaly detection.  

As previously reported [20, 45, 46, 47], predefined-condition-based anomaly 

detection methods implement anomaly detection via pixel matching, for either 

single or multiple color components within the RGB, HSV, or CIE L*a*b* color 

spaces according to predefined conditions for specified lesions. One example [20] 

is ruled like this: in RGB color space, if R channel is between 170 and 200, and 

larger than G channel (G>150), meanwhile R-G is smaller than 40 with B larger 

than 100, the inspected pixel is regarded as part of mucosal ulcer. Such kind of 

anomaly detection adopting predefined-condition-based anomaly detection 

methods seems simple to be realized and understand. However, because pixel 

values are directly used to descript the attendance or absence of lesions, and 
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meanwhile, the lesion appearances vary considerably and are mutable, it is almost 

impossible to formulate a generalized definition even for all cases of one kind of 

given anomaly. Therefore, in the case that actual conditions mismatched the 

predefined definitions, lesions can be oversighted, so the accuracy levels of normal 

and anomaly discriminations cannot be guaranteed. 

In contrast, geometric-feature-based anomaly detection methods appear to be a 

more promising direction. Such methods generally adopt specialized geometric 

feature extraction that utilizes color, texture, and shape features [48], and involve 

statistical classification techniques that can make identification for newly added 

normal or anomaly samples without matching with predefined conditions. For 

example, Li et al. [49, 50] adopted the chromaticity moment for the extraction of 

color features, and neural network classifier to realize the recognition. Giritharan et 

al. used dominant color descriptor for bleeding detection [51]. Barbosa et al. [52] 

proposed the extraction of texture features using a co-occurrence matrix combined 

with discrete wavelet transform, and also used a multilayer perceptron neural 

network classifier to conduct the statistical analysis. Similarly, Yeh et al. computed 

color coherence vector (CCV) for texture feature extraction [53]. Another popular 

texture descriptor is the local binary pattern (LBP) feature [54]. On the basis of the 

original LBP feature, the rotation-invariant uniform type of LBP (RIU-LBP) [55] 

was proposed and demonstrated effective in the capsule endoscopy image domain. 

Ulcer and tumor detection utilizing RIU-LBP feature, combined with SCM-based 

classification, has been reported in several issues [56, 57]. Compared to color 

wavelet covariance [58], LBP has been shown to be more effective for tumor 

detection. Besides, shape features have also been considered for anomalies that are 

known to exhibit distinctive figurations (such as polyps). Moreover, segmentation 

methods [59] and edge detection methods [60] have been applied.  

Apart from these specific feature-based approaches, some studies have employed 

more complicated combinations of feature extraction techniques to obtain the 

characteristics of various lesions. For example, one study [61] employed MPEG-7 

visual descriptors, including a variety of color, texture, and shape descriptors, for 

detecting bleeding, ulcers, and polyps. Besides, in the bleeding and ulcer detection 

method proposed by Szczypinski et al. [62], anomaly detection was executed using 

software [63] that calculated various statistics, such as image histograms, gradient 

magnitude, and grey-level co-occurrence matrices. A brief summary of the 

geometric features used in the approaches above is denoted as in Table 2.4.2.1. 
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Table 2.4.2.1. Main geometric features used in CE anomaly detection. 
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Chapter 3 
 

 

Proposed Anomaly Detection System 
 

 

3.1 Issues and challenges  

On one side, it has become clear that capsule endoscopy passes throughout the 

gastrointestinal tract and possesses advantages in terms of identifying the causation 

of bleeding, detecting polyps, inflammatory bowel disease, mucosal ulcers, and 

tumors of the small intestine. However, on the other side, since the movement of 

capsule endoscopy is completely guided by intestine peristalsis, unlike the operable 

conventional endoscopies, the whole journey of capture acts on capsule 

endoscopy’s own attitude angle. And thus, the view of objects revealed in images 

are totally unconstrained and uncontrollable. With this in mind, it can be easily 

supposed that a variety of factors make it hard to draw a judgement by automatic 

anomaly detection.  

First, because that the view of image differs greatly in variable lighting 

conditions, individual differences, seriousness of lesion and the capturing locations, 

in different cases, handling the lesion image or the lesion regions become quite hard  
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Figure 3.1.1. Various bleeding view in different situations. 

 

 

Figure 3.1.2. Gradual change between lesion region and surrounding normal 

region. 

 

task. Two sets of images, Fig.3.1.1 and Fig.3.1.2, give examples for these kinds of 

problems. Fig.3.1.1 shows two examples of bleeding images. From this set of 

images, it is not difficult to find that though both images can be sorted as bleeding, 

the views are totally different. The left case, seems bright and clear, shows many 

small bleeding spots. Comparatively, in the right case, the intestinal tract has been 

filled with flowing dark blood. The status of mucosa of intestinal wall become 

almost impossible to be observed. In Fig.3.1.2, two examples of tumor image 

illustrate that it is hard to appropriately cut the lesion region out of the whole image, 

it is for that lesions do not always own clear contour, and the boundary between the 

lesion and the normal intestinal wall may involve very blurry and gradual change. 

Respecting to the previous anomaly detection approaches, as referred in 2.4.2, 

the three types of features, color, texture, and shape, are generally regarded as tools 

to provide best descriptions for the detection of anomalies. However, the 

requirements of features vary according to the kind of lesion to be examined. For 

example, in order to detect tumor regions that usually have a reddish appearance 

with basically round contours, it is essential to employ suitable description schemes 

for both color and shape features. However, as already noted, most of the techniques 

for feature extraction have focused on only one of the three feature types. For 
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example, LBP and its improved form RIU-LBP are considered suitable for texture 

features, but it has no contribution to the description of the lesion’s color and shape. 

To realize descriptions for more than one type of feature, it is often necessary to use 

a complicated combination of techniques for multiple feature extraction [61, 62]. 

Second, capsule endoscopy images usually contain various kinds of contents not 

limited within normal intestinal lumen region and lesion region. Besides, in 

particular, foreign matters such as residue and bile (Fig. 3.1.3), usually makes 

images hard to understand. In clinical diagnosis, actually, residue sometimes 

appears as the shelter of lesions in the same image simultaneously. For example, in 

Fig. 3.1.3 (b), there are polyps hidden behind some residue, but it becomes much 

difficult to observe the polyps since the interferential residue usually makes the 

whole image confusing. Therefore, according to doctor’s opinion, it is necessary to 

inspect all of these suspicious images to insure no oversight happens. Summing up 

all the issues indicated above, the opinion can be drawn that there are two 

significant problems demanding prompt solution.  

(1) For application to different kinds of lesions, previous researches focused on 

approaches aiming at specific lesions. Even though complicated combination 

of techniques for multiple feature extraction are adopted, it is considered 

incapable to cope with all kinds of lesions.  

(2) In previous approaches, suspicious images including foreign matters, such as 

residue and bile, are not handled appropriately to be part of the anomaly 

detection. With regard to these issues, structuring a feasible anomaly 

detection system for practical diagnosis support remains a difficult task. 

 

 

 (a)                   (b) 

Figure 3.1.3. Example of residues. 

 (a) Residues, (b) Residues with lesion hidden behind.  
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3.2 Objectives and motivation 

Corresponding to these issues, this dissertation takes consideration of the request 

for a qualified anomaly detection system.  

 (1) All the lesions should be detected without establishing a complicated 

combination of feature extraction techniques for multiple lesion categories.  

 (2) Except for lesions, foreign matters such as residue, should also be considered 

appropriately as one of the targets of anomaly detection, so that oversighted 

lesions caused by foreign matters can be decreased in development. 

Moreover, based upon the essential requirements above, an ideal anomaly 

detection method is also expected to possess excellent generalization ability, which 

is deemed indispensable to deal with various image data in variable lighting 

conditions or having different seriousness of lesion in different cases. 

To meet all the requirements above, it is needed to discuss about the fundamental 

configuration of the anomaly detection scheme. Fig 3.2.1 gives a flowchart of the 

geometric-feature-based anomaly detection denoted in Chapter 2. As the principle 

of anomaly detection, it is always necessary to establish a classifier in respond to 

the target anomaly which has been specified in advance. For instance, bleeding 

detection needs a classifier trained by bleeding image data, while ulcer detection 

needs to use ulcer image data to train a particular ulcer classifier. Although it is 

possible to employ a large number of training data involving different conditions, 

such configuration, anyhow, is considered available but limited within only the 

category of specified lesion. To realize an anomaly detection system that can be 

adopted to various lesions and not limited to category of lesion, it is believed that 

the confine of establishment of the classifier for specified lesion should be regulated. 

By observation, compared with a variety of anomalies, it is found that normal 

images, containing only intestinal wall and lumen, usually comes out in relatively 

simple appearance. Therefore, it is considered as a breakthrough to concentrate on 

the normal images instead of the various anomalies. If only the high similarity 

among normal images have a proper description, anomalies different from normal 

images are expected to be discovered accordingly. Meanwhile, unconcerned foreign 

matters such as residues could be detected in this way. 

Nevertheless, a number of oversighted anomalies may occur if such kind of 

anomaly system is adopted to various anomalies. This is for that some of anomaly 

images, especially those with small or inconspicuous anomaly regions, probably    
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Figure 3.2.1. Flowchart of previous geometric-feature-based anomaly detection. 

 

possess quite high similarity to the normal images. In respond to this case, it 

becomes necessary to take additional measures to decrease the oversights. A single-

stage scheme is considered insufficient to settle all of the tasks. 

 

3.3 Proposed anomaly detection system 

Aiming at detecting all the lesions and foreign matters, and decreasing oversights 

of lesions, this dissertation proposes a two-stage scheme involving anomaly degree 

evaluation and lesion oversight prevention (Fig.3.3.1). 

In the first stage of anomaly degree evaluation, it is expected to perform a role to 

distinguish image data with higher anomaly degree from those with lower degree. 

Specifically, lesions and residues that suggest to high anomaly degree are expected 

to be detected. To realize such anomaly degree evaluation, this research sets out 

from the idea by training the classifier with only the normal images. Afterwards, by 

measuring the scale of difference between unknown input image and the trained 

normal images, all suspicious contents, including various kinds of lesions and 

foreign matters are expected to be screen out. In contrast, normal images of 

intestinal lumen and wall, which have higher similarity to the trained normal images, 

are assigned with low anomaly degree.  

The second stage following anomaly degree evaluation is named lesion oversight 

prevention, which is designed to prevent oversighted lesions. Although all kinds of 

lesions and foreign matters are desired to be detected in the first step, some lesion 

images, especially those with small region or inconspicuous appearance, are 

possibly remained in the group of low anomaly degree after anomaly degree 

evaluation, whereas the oversights of such lesions are still very risky. Considering 

that highly  
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Figure 3.3.1. The proposed two-stage anomaly detection system 

 

suspicious images should be filtered out for maximum efficacy. Both the two stages 

are included in the proposed anomaly detection system. Detailed information will 

be illustrated in the following Chapter 4, 5 and 6. 
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Chapter 4 
 

 

Anomaly Degree Evaluation 
 

 

4.1 Anomaly degree evaluation using Higher-order 

Local Auto-Correlation (HLAC) 

4.1.1 Overview 

The fundamental idea of anomaly degree evaluation, the first stage of the 

proposed system, employs training image datasets which contain only clear normal 

intestinal wall and lumen. By observing a large number of capsule endoscopy 

images, it is found that images of normal intestinal wall, even if collected from 

different patients, usually owns relatively simple and similar appearance 

(Fig.4.1.1.1). In contrast, as illustrated in 3.1, impeccable training for various 

anomalies is almost impossible, not only because there are numerical numbers of 

anomaly categories, but also mutable and ever-changing appearance even for same 

category but different state of anomalies. With regard of this fact, aiming at the  
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Figure 4.1.1.1. Clear normal intestinal image collected from different patients. 

 

anomaly detection for all the lesions and foreign matters, the proposed method 

concentrates on describing the similarities among normal intestinal images rather 

than anomalies. And afterwards, anomaly detection could be interpreted that the 

difference between normal images and unknown test images, namely anomaly 

degree, is evaluated. By this means, unknown images containing anomaly contents 

are expected to be filtered out in accordance with the anomaly degree. 

In terms of this idea, specifically speaking, the proposed anomaly degree 

evaluation includes two phases, training phase and testing phase (Fig.4.1.1.2). In 

training phase, images including only clear normal intestinal wall are employed as 

training samples. Since foreign matters involving residue and bile, have been 

considered as the detection target, the use of normal images that contain residue and 

bile should be avoided as much as possible. After pre-processing, Higher-order 

Local Auto-Correlation (HLAC) features [64] are extracted from these normal 

images are used to create a subspace representing the normal class. Details of this 

part will be given in the following section. Likewise, in testing phase, same image 

features are extracted from pre-processed testing images. Finally, anomaly degree 

is calculated in accordance with the scale of distance between the feature vector of 

testing image and the normal vector space.  
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Figure 4.1.1.2. Flowchart of the proposed anomaly degree evaluation. 

 

4.1.2 Higher-order Local Auto-Correlation (HLAC) 

Higher-order Local Auto-Correlation (HLAC), develop by N. Otsu [64], is an 

image descriptor that has been demonstrated effective in many applications 

involving image classification, such as object counting [65], cancer detection from 

pathology images [66, 67], gesture recognition [68] and video surveillance [69].  

The explanation of HLAC starts by the definition. N-th order HLAC is described 

by the following auto-correlations: 

𝑹𝑁(𝒂1,⋯𝒂𝑁) =∑𝐼(𝒓)𝐼(𝒓 + 𝒂1)

𝑟

⋯𝐼(𝒓 + 𝒂𝑁)                            (1) 

where I is an intensity image and 𝒓 is the location vector, so that 𝐼(𝒓) is the 

reference pixel. 𝒂 𝑖(𝑖 = 1,2,⋯𝑵)  corresponds to the displacement vector 

surrounding 𝒓. Changing the order N leads to changes in the numbers of terms in 

𝐼(𝒓)⋯ 𝐼(𝒓 + 𝒂𝑁). To balance efficacy and the computational burden, N is generally 

set as N ∈ {0, 1, 2} [28]. Fig.4.1.2.1 shows the gray-scale mask patterns that 

represent combinations of the reference pixel and surrounding correlative pixels 

when computing the auto-correlations. Specifically, zeroth-order HLAC obtains the 

intensity of the reference pixel, and first-order and second-order HLAC calculate 

auto-correlations between the reference pixel and surrounding correlative pixels, 
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indicating the apparent edge curves and evaluating curvature, respectively. 

Overlapping is also considered, such that squared and cubic auto-correlations of the 

central pixel itself are also calculated. Moreover, mask patterns arranged on the 

same rows can also take into consideration uniformity within various orientations 

(horizontal, vertical, and diagonal) and generate a variety of mask patterns based 

on different N and 𝒂𝑖 values. In the case of gray-scale HLAC, the dimensionality 

is raised up to 35 in accordance with the auto-correlation configurations. Given the 

definition, HLAC benefits from a number of advantages below, which are all 

regarded as suitable for anomaly detection of capsule endoscopy image.  

 (1) Low computational cost. Due that only addition and multiplication 

operations are involved in the calculation, HLAC feature extraction leads to 

very low computational cost. Therefore, it has the potential to deal with high-

speed feature extraction to meet the requirement of the large number of 

capsule endoscopy images.  

(2) Shift invariance. No location information is recorded so that feature extraction 

is independent of object’s location. This property is also appropriate to 

capsule endoscopy image because the location of anomaly objects emerge is 

uncertain, and due to shift invariance, it makes no impact on feature extraction 

and anomaly detection results.  

(3) Robustness to noise. From the definition formula (1), the estimation of auto-

correlation can be derived as below: 

 𝐸(𝑹) = 𝐸[(𝑺1 + 𝒏1)(𝑺2 + 𝒏2)]  = 𝐸(𝑺1𝑺2) + 𝐸(𝒏𝑺) + 𝐸(𝒏1𝒏2) (2) 

     where S is the valid image signal, and n indicates the noise signal. Generally, 

when noise follows the gauss distribution, there is the estimation 

E(n) = 0                      (3) 

Thus,  

𝐸(𝑹) = 𝐸(𝑺1𝑺2) + 𝐸(𝒏1𝒏2) ≈ 𝐸(𝑺1𝑺2)          (4) 

As to capsule endoscopy image, since the image quality captured by capsule 

endoscopy is largely limited by the illumination condition and integrated 

image sensor, noise is widespread in all the images. Under this circumstances, 

the robustness to noise, evidently, can protect the feature extraction from the 

effect of noise signal. 
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Figure 4.1.2.1. Gray-scale HLAC mask patterns. 

 

As to the anomaly detection for capture endoscopy images, HLAC features can 

be extracted within a 3 by 3 local area as indicated above. However, actually, since 

the pixel values change gradually and may have no large obvious difference within 

such a 3 by 3 local area, HLAC is sometimes regarded to have a too detailed view 

to realize the effective measurement of the targeted objects. With such kind of 

concern, it is considered necessary to make adjustments to let the feature extraction 

become more adaptable to capture endoscopy images.  

One of the commonly-used means is to alternate the size of feature extraction 

itself. The displacement interval can be raised so that the mask patterns are extended 

to a larger scale as shown in Fig.4.1.2.2. The displacement interval denotes the 

displacement, or the distance from one pixel to a horizontal or vertical neighboring 

pixel. A larger displacement interval, intuitively, can inspect pixels further depart 

from the others and evaluate greater change but less correlation among these pixels. 

Accompanied with the adjustment of the displacement interval, combination of 

different displacement intervals can be further adopted. In the preliminary 

investigation, displacement intervals 1, 2, 4, 6, 8 are tried, and the combination of 

displacement intervals 1, 4, and 6 has been demonstrated suitable according to the 

comparative results. In this way, HLAC mask patterns in the size of 3×3, 7×7, and 

11×11 are adopted simultaneously, so that a three-time long HLAC feature vector 

are obtained by connecting the HLAC features in three sizes directly. 
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Figure 4.1.2.2. HLAC mask patterns with different displacement intervals. 

 

4.1.3 Invariant transformation for HLAC features 

In the view of capsule endoscopy images, directionality are considered making 

no sense to anomaly detection, because of the inconstant and uncontrollable 

movement and rotation of capsule endoscopy passing throughout the 

gastrointestinal tract. With regard to this fact, the proposed anomaly degree 

evaluation makes use of rotation and inversion invariant transformation of HLAC 

features [70], to eliminate the impact of rotation and inversion.  

Rotation and inversion invariant transformation of HLAC handles mask patterns 

in same shape and different directions equivalently. In the light of this rule, 35-

dimention gray-scale HLAC mask patterns are divided into 8 groups. The results of 

  

 

Figure 4.1.3.1. Rotation and inversion invariance transformation for HLAC. 
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auto-correlation calculation in same group are summated, so that the 35-dimension 

vectors are restructured to 8-dimension vectors (Fig.4.1.3.1). By this means, feature 

extraction is also benefited from rotation and inversion invariance. 

 

4.1.4 Image processing 

4.1.4.1. Brightness filter 

Acting as the first step of image processing, a brightness filter is presented to 

exclude the dark regions and excessive bright regions. During the period capsule 

endoscopy works in small intestine, illumination is powered by LED light. On one 

side, objects far from the LED illumination, such as the lumen regions in the images 

usually have lower brightness than intestinal wall regions. On the opposite side, 

bubbles and intestinal juice near to the LED illumination sometimes appears 

excessive bright when reflection happens. For anomaly detection, these dark 

regions and excessive bright are uninformative. And thus, the brightness filter is 

proposed to discriminate and removing these dark regions and excessive bright 

regions. By analysis upon a large number of images, the brightness filter is 

introduced below as depicted.  

𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵                  (5) 

𝑅 = 𝐺 = 𝐵 =  {
0    (230 ≤ 𝑌 𝑜𝑟 𝑌 ≤ 55)

       𝑁𝑜 𝑐ℎ𝑎𝑛𝑔𝑒          (55 < 𝑌 < 230)
       (6) 

The proposed anomaly detection complies with the principle that if a region of 

pixels are available should be decided by they are visible for human eyes or not. 

Doubt may come out that if the anomalies may occur within the dark region but the 

system fails to sense them when the brightness filter is adopted, and hence, anomaly 

detection losses the potential to provide further assistance to diagnosis. Actually, 

there is no need of worry because capsule endoscopy sequentially proceeds forward 

throughout the intestinal tract, so that objects in dark regions at certain moment can 

be captured when illumination arrives later.  

Fig. 4.1.4.1 gives two sets of examples of the processing by the brightness filter. 

The first set (Fig. 4.1.4.1(a)) shows it conducted exclusion of dark region of 

intestinal lumen, while the other set (Fig. 4.1.4.1(b)) shows how excessive bright 

bubble regions got discriminated after brightness filter introduced. 
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(a) 

 

(b) 

Figure 4.1.4.1. Examples processed by the brightness filter. 

(a) Dark region. (b) Excessive bright region. 

 

 

4.1.4.2. Color space 

The proposed method employs HSV color space. Although the RGB color space 

is the most widely used color space for image analysis, red, green, and blue 

components are highly correlated and are not perceptually uniform for human eyes 

[71, 72]. The HSV color space involves hue, saturation and value, which can be 

obtained from the RBG color space:  

Hue′ =

{
 
 

 
  60° ×

G−B

MAX−MIN
+ 0°, if MAX = R

      60° ×
B−R

MAX−MIN
+ 120°,   if MAX = G

    

      60° ×
R−G

MAX−MIN
+ 240°,   if MAX = B

       0,   if R = G = B

       (7) 

Hue = {
       Hue′, if Hue′ ≥ 0
 360° + Hue′, if Hue′ < 0

                  (8) 

Saturation =
MAX−MIN

MAX
                        (9) 
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Figure 4.1.4.2. (a) HSV color space model. (b) Hue channel. 

 

 Value = MAX                          (10) 

where MAX is the largest value among R, G and B, and MIN is the smallest. Hue 

channel is the description indicating differential between various colors 

corresponding to chroma. Saturation channel refers to intensity of color and it is 

also deemed as the proportion of a solid color mixed with white color. Value 

channel represent the brightness of color. As an indication of color variety, the hue  

channel is independent of brightness, as the plane of the hue channel is always 

orthogonal to the value (brightness) axis (Fig.4.1.4.2.). This property is particularly 

suitable for CE images. For all forms of highlights, shades, and shadows in the 

intestinal lumen, the hue channel is essentially unaffected. 

 

4.1.5 Subspace method 

To verify the performance of the proposed image pre-processing and feature 

extraction. In the part of anomaly degree evaluation, subspace method is introduced 

to calculate the anomaly degree.  

First of all, for the dimensionality reduction and statistical analysis of learning 

images, principal components analysis (PCA) is utilized in the proposed method. 

PCA is one of methods for multivariate statistical analysis. Among a population of 

samples, characteristics of individual are determined by many variables. By PCA, 

a smaller number of representative vectors are obtained to describe the whole 

population. 

In the calculation, suppose there is a set of sample vectors X = {𝐗1, 𝐗2…𝐗𝑅} = 



30 

 

{𝐕1, 𝐕2…𝐕M}T, containing M-dimension vectors of R learning images. As the first 

step, all vectors of X are normalized to 𝐗norm: 

S = {𝐒1, 𝐒2…𝐒M} T = {σ𝐕1, σ𝐕2 …σ𝐕M} T             (11) 

U = {𝐔1, 𝐔2…𝐔M} T = {μ𝐕1, μ𝐕2 …μ𝐕M} T            (12) 

𝐗norm = {
𝐗1−𝐔

𝐒
,
𝐗2−𝐔

𝐒
…
𝐗M−𝐔

𝐒
}                (13) 

where S is a vector consist of all standard deviations of 𝐕1 , 𝐕2…𝐕M , while U 

includes all means of 𝐕1, 𝐕2…𝐕M. 

The autocorrelation matrix 𝐂 of 𝐗norm is obtained as following: 

𝐂 =  
𝐗norm𝐗norm

𝐓

𝑅−1
                      (14) 

The eigenvectors U=[𝐮1, 𝐮2, … , 𝐮M] are calculated by: 

𝐔T𝐂𝐔 = 𝚲                        (15) 

where 𝚲 = diag(𝜆1, 𝜆2, … , 𝜆S) is the eigenvalue matrix. 

The variable order K of the normal subspace is calculated according to the 

contribution rate 𝜂𝐾 described in (12). When 𝜂𝐾 exceeds a certain threshold TH 

(usually set as 0.99, 0.999…) with the smallest K=𝐾1, the order is fixed as 𝐾1. 

  𝑇𝐻 ≤ 𝜂K = 
 ∑ λi
K
i=1

∑ λi
M
i=1

                     (16) 

And next, with the order 𝐾1, normal subspace 𝐔K𝐔K
Tis formed based on the 

eigenvectors 𝐔K = {𝐮1,⋯ , 𝐮k} (𝐮1, ⋯ , 𝐮k are called first principal component to 

kth principal component). The distance 𝑑⊥  between normalized feature vector 

𝐱norm= (
𝐱−𝐔

𝐒
) of test image x and the normal subspace is defined as: 

𝑑⊥ = 𝐱norm
T(𝐈M − 𝐔K𝐔K

T)𝐱norm             (17) 

where 𝐈M − 𝐔K𝐔K
T (𝐈Mis the M-dimension identity matrix) indicates the ortho-

complement subspace of normal subspace. 

As shown in Figure 4.1.5.1, in accordance to each testing image, the deviation 

distance between the feature vector of testing samples and the normal space are  
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Figure 4.1.5.1. Subspace method. 

 

calculated. In term of higher anomaly degree indicated by larger deviation distance, 

images containing anomaly are expected to be detected. 

 

4.1.6 Experiments 

4.1.6.1. Experimental data and procedures 

In this section, capsule endoscopy images (480×480, bitmap, 24bit, RGB) are 

derived from one patient’s video data and all of the images have been tagged in line 

with doctor’s indexing beforehand. In the experiments, images of four types of 

contents are divided into two sets: training set and testing set.  

Since all kinds of lesions and foreign matters (residues) that suggest to high 

anomaly degree are expected to be detected. To realize the anomaly degree 

evaluation, training images contain only clear normal intestinal wall and lumen. In 

term of this view, as depicted in Table 4.1.6.1, 354 images for patient 1, and 166 

images for patient 2, containing only clear normal intestinal wall and lumen are 

selected as the learning images. To evaluate the performances of the proposed 

method, several categories of unused testing images are grouped according to the 

contents. Specifically, for patient 1, three categories contains normal intestinal wall 

and lumen (421 images), residue (120 images), and tumor (458 images). For patient 

2, normal intestinal wall and lumen (100 images), residue (250 images), and tumor 

(310 images), are included in the testing datasets. According to these datasets, 

normal intestinal wall and lumen images are expected to be recognized as normal 

with low anomaly degree, while residue, tumor and bleeding images are expected  
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Table 4.1.6.1. Capsule endoscopy image dataset for 4.1. 

 

 

Figure 4.1.6.1. Examples of training and testing image for 4.1. 

 

to be recognized as anomaly with high anomaly degree. In this part of experiments, 

anomaly degree evaluation is implemented individually for both patients. 

Fig.4.1.6.1 gives examples of all learning and testing sets. 

 

4.1.6.2. Evaluation criteria  

In the experiment, the anomaly degree values of all the training image data are 

calculated. And afterwards, a threshold T determined by the mean 𝜇 and standard 

deviation 𝜎 of the anomaly degrees values of training data themselves, is employed 

to decide if the input testing image data is normal or anomaly.  

In order to measure the efficacy of the proposed method, the directly predicted 

results that encompass the fundamental evaluation criteria sensitivity and 

specificity are obtained. The definitions of sensitivity and specificity are given as 

following formulas: 

Sensitivity   
Number of correct positive predictions

Number of positives
× 100(%) 
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 Specificity   
Number of correct negative predictions

Number of negatives
× 100(%) 

Specificity is an indicator of normal images (negatives), while sensitivity is an 

indicator of anomaly images (positives). Both high sensitivity and high specificity 

correspond to excellent performance for binary classification. 

 

4.1.6.3. Experimental results and discussions  

The detection experimental results are shown in Table 4.1.6.3.1 and Table 

4.1.6.3.2. First of all, as to the anomaly degree evaluation for patient 1, sensitivity 

for anomalies is 76.82%, while the specificity is 97.93%. Specifically, 120 residue 

images are all identified as anomaly. 324 out of 458 tumor images, and 410 out of 

421 normal images are correctly detected. For patient 2, the proposed method only 

missed 5 images of residue and correctly recognized all the normal and bleeding 

image data. The sensitivity and specificity for patient 2 are 99.11% and 100%, 

respectively. Totally, results for both patients are posted into one table (Table 

4.1.6.3.3). By the proposed anomaly degree evaluation method of anomaly degree 

evaluation, 999 out of 1138 anomaly images are detected so that the sensitivity of 

87.79% is derived eventually. Meanwhile, specificity is well controlled at 97.89%. 

Accordingly to the results, it can be inferred that the proposed anomaly degree 

evaluation method based on anomaly degree evaluation is fundamentally valid and 

effective for capsule endoscopy image. 

 

 

Table 4.1.6.3.1. Anomaly degree evaluation results for patient 1. 
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Table 4.1.6.3.2. Anomaly degree evaluation results for patient 2. 

 

 

Table 4.1.6.3.3. Combined anomaly degree evaluation results for both patients. 

 

4.2 Improved anomaly degree evaluation 

4.2.1 Overview 

The proposed anomaly degree evaluation has been demonstrated effective for 

two patients’ data including normal, residue, tumor and bleeding. Especially for 

images of residue and bleeding, high accuracies are achieved and almost none of 

these anomaly data are oversighted. However, with regard to tumor images, only 

70.74% was successfully detected, remaining around 30% images failed to be 

recognized as anomaly. The partition of oversights has surpassed the allowance 

range of a feasible system.  

By observation of the tumor image datasets, it is found that the images belong to 

the one section, within which large tumor regions, as shown in Fig. 4.2.1.1(a), 

appear and occupy most of the image view, all possess high anomaly degree. At the 

same time, it has become clear that these regions present rich redness and differs 

from normal intestinal wall obviously. In contrast, when observe the images failed 

to be detected, it can be learned that these images (Fig. 4.2.1.1(b)) belong to  
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(a)                      (b) 

Figure 4.2.1.1. Examples of successfully detected and failed tumor images. 

 

different section from the above. Within these images, smaller tumor regions take 

the place of large ones, and meanwhile, pixels in the tumor regions have less-

reddish values. 

The dispersion of observations draw the conclusion that the anomaly detection 

method based on anomaly degree evaluation proposed in 4.1 seems powerful to 

tumors with obvious and large regions, but weak in detection of smaller regions 

with low redness. To address this issue, several breakthrough points are figured out 

as illustrated below. 

(1) The representation of the color information suitable to capsule endoscope 

image is highly required, so that the tumor regions can have distinct 

description by image features. 

(2) Feature extraction is requested to respond to anomaly regions with different 

sizes. 

  As the answer of these required specifications, in this section, a novel image 

processing method using non-linear conversion of HSV color space, and HLAC 

feature extraction based on image segmentation, are both introduced into the 

proposed anomaly degree evaluation additionally. 

 

4.2.2 Non-linear conversion of HSV color space 

Based on evaluations of a large number of CE images, Fig. 4.2.2.1(a) shows the 

distribution of their hue components. The overwhelming majority of non-zero 

components span the range of [10, 80], leaving the proportions of components 

within the range of (0, 10) and (80, 360) at less than 7.1×10-4 and 8.3×10-5, 

respectively. Clearly, the narrow range of the hue component distribution leads to 

very limited deviations within the numerical representations along the hue axis, 
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especially for reddish lesion-related components. These constrained deviations are 

then delivered to geometric features when feature extraction is performed on the 

hue channel image, and thus, generate quite limited discriminability. Meanwhile, 

Fig. 4.2.2.1(b) shows that relatively reddish components in lesion regions incline 

toward to 0, having a narrow distribution near to that of the normal components, 

while hue components in most normal regions have a much wider distribution. 

Obviously, the numerical discrimination for the lesion components are severely 

restricted in the ordinary HSV color space.    

In order to balance the unevenly utilized range along the hue axis and to further 

improve discrimination for bleeding and tumor detection, the following non-linear 

conversion is introduced: 

Hueafter = {  

0   ( if  Huebefore = 0 or 80 < Huebefore ≤ 360)

360                     ( if 0 < Huebefore < 10 )

1.0877(80−Huebefore)  (if 10 ≤ Huebefore ≤ 80)

        (20) 

where Huebefore is directly calculated from the RGB color space. To make use 

of the full width along the hue axis, the proposed non-linear conversion involves 

reversal and expansion. First, the components for Huebefore within the range of [10, 

80] are inversed to 80 − Huebefore . Then, the full [0, 360] range is used by 

expanding the inversed components from the [10, 80] section with the exponential 

function 1.0877(80−Huebefore), so that the circular hue channel model can be fully 

utilized. As shown in Fig. 4.2.2.2, the proposed non-linear conversion has been 

proposed to balance the unevenly utilized range along the hue axis, and enhance the 

numerical discrimination for normal and lesion components. 

Fig. 4.2.2.3 give the effect when the proposed non-linear conversion is conducted. 

Firstly, in Fig. 4.2.2.3(a), it reveals that the components within the narrow range 

have been mapped to the entire hue axis, so that the discrimination among the 

components become more explicit. Secondly, in 4.2.2.3(b), it is found that the range 

of normal and lesion components, as a result, have been expanded to the same level 

of width. Clearly, the numerical discrimination for lesion and normal components 

have been reinforced after the non-linear conversion. 
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(a) 

 

(b) 

Figure 4.2.2.1. (a) Ordinary hue components. (b) Ordinary hue components in 

normal and lesion regions. 

 

 

 Figure 4.2.2.2.Non-linear conversion function. 
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(a) 

 

(b) 

Figure 4.2.2.3. (a) Converted hue components. (b) Converted hue components 

in normal and lesion regions 

 

4.2.3 Image segmentation 

In feature extraction, HLAC features are obtained on the coverage of whole 

image so that small local lesion regions make limited contribution to be reflected in 

feature vectors. With this issue concerned, this dissertation additionally adopts 

image segmentation for feature extraction in order to detect anomaly in small local 

regions so that such lesion regions can to be detected by this means. Specifically, 

one image is divided into small equal unit areas, and adjunct n×n unit areas consist 

of a subarea, which is regarded as a new objective region for anomaly degree 

evaluation. Since these subareas share overlapping areas, even though the lesion 

regions get split into small unit areas, it can still be reflected in more than one 

subarea. When conduct anomaly degree evaluation from one image, anomaly 
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degree of all the subareas are calculated. In the case that more than one subarea 

recorded as the representative. And by this means, if either of the subareas is 

affirmed as anomaly, the whole image is identified as anomaly. 

 

4.2.4 Experiments 

4.2.4.1. Individual performance evaluation  

In the first experiment of this part, performance of the improved anomaly degree 

evaluation, including the non-linear conversion of HSV color space and HLAC 

feature extraction based on image segmentation, is implemented on individual 

patients’ data. Proceeding after 4.1, datasets of 2 patients (Table 4.2.4.1.1) are all 

the same as in section 4.1. By using the same datasets, it is possible to make intuitive 

comparison of the improved method and the previous one. 

Sensitivity and specificity are also employed in the results. As illustrated in Table 

4.2.4.1.2, by using the proposed improved anomaly degree evaluation, the detection 

performance for the tumor images with low anomaly degrees are greatly enhanced. 

The sensitivity for tumor images has risen by 21%, from 70.7% to 91.7%. Among 

the tumor images successfully detected this time, many of the images are found 

owning smaller tumor regions with low redness as depicted in 4.2.1. It indicates 

that when the non-linear conversion of HSV color space and HLAC feature 

extraction based on image segmentation adopted, color representation for tumor 

regions become more distinct from the normal, and meanwhile small regions can 

be sensed within the segmented subareas. The sensitivity for residue images 

decreased from 98.6% to 95.7%. The accuracy for bleeding detection maintained 

100% with all of the 310 bleeding images correctly detected. After introduced the 

improved method, specificity fell slightly from 97.9% to 96.4%. From the presented 

results, it has been made clear that in the individual evaluation performed separately 

upon two patients’ data, the proposed improved anomaly degree evaluation show 

more capacity to cope with the tumor images, especially those owing smaller 

regions with low redness. 
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Table 4.2.4.1.1. Capsule endoscopy image dataset for experiments in 4.2.4.1. 

 

 

Table 4.2.4.1.2. Results of evaluation on individual data. 

 

4.2.4.2. Multi-patient performance evaluation  

In 4.1.1, images of normal intestinal wall and lumen collected from different 

patients have shown higher similarity than various anomalies. Nevertheless, 

individual difference is still regarded as a great issue for automatic anomaly 

detection. By observing the normal and anomaly images of a large number of 

patients, it is found that gastrointestinal mucosa tone usually changes does not only 

depend on what kind of lesion exists, but the amount of bile and intestinal juice as 

well. Without doubt, appearance of lesion regions varies much more severely than 

the normal. For example, Fig. 4.2.4.2.1 presents several tumor images collected 

from different patients’ video data. Apparently, color, size and shape of tumor 

regions in each images are quite variable, and meanwhile, the regions of intestinal 

wall show different tone as well. In the right upper image, intestinal wall looks more 

yellowed. It is just for the reason that bile and intestinal juice is more found than in 

other patients’ data. Therefore, actually, to realize a feasible anomaly detection 

system, it is far from sufficient even that the proposed anomaly detection approach 
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Figure 4.2.4.2.1. Example of various tumors image collected from different 

patients. 

 

has been demonstrated well-performed when utilized upon individual patient’s data. 

To meet the practical requirements, for a qualified approach, it is also necessary to 

have good generalization to deal with various image of multi-patient data. 

  Therefore, in the second part, to further confirm the capacity of improved 

anomaly degree evaluation method, experiments are implemented on a larger 

datasets, which are composed of 20 patients’ image data (Table 4.2.4.2.1). 

Specifically speaking, datasets of 6 out of 20 patients only own normal images with 

none of anomaly images included. And this normal dataset, first of all, is reserved 

for training the normal subspace, exclusively in the training phase. Besides, 4 

patients’ data contain both normal and bleeding images, while 3 patients’ data 

contain both normal and tumor images, respectively. At last, images of residue are 

collected from 4-patient dataset, 3-patient dataset, and other patient’s data differing 

from the formers. With consideration of the numbers of images, a training dataset 

is obtained on 1962 normal images, and testing datasets containing 2193 bleeding 

images, 74 tumor images, 1906 residue images, and 2905 normal images.  
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Table 4.2.4.2.1. Datasets utilized in 4.2.4.2. 

 

Moreover, in order to measure the contribution of each technique within 

improved anomaly degree evaluation, experiments are divided into 4 groups by 

adjusting the utilization of the non-linear conversion of HSV color space and the 

image segmentation. Detailed combinations are illustrated in Table 4.2.4.2.2. Group 

1 utilizes neither non-linear conversion of HSV color space nor the image 

segmentation. Group 2 utilizes non-linear conversion of HSV color space but no 

image segmentation. Group 3 is opposite to Group2. The image segmentation is 

adopted but non-linear conversion of HSV color space is exclude. Group 4 takes 

advantage of both the non-linear conversion of HSV color space and the image 

segmentation simultaneously. 

Results are presented in Table 4.2.4.2.3. To make the presentation more 

understandable, accuracies for various kinds of data obtained by using different 

groups of techniques are directly used instead of separated sensitivity and 

specificity. In general, aiming at all categories of anomalies, Group 4 using both the 

non-linear conversion of HSV color space and the image segmentation achieved the 

highest accuracy at 98.17%. 4119 of 4173 anomaly images including bleeding, 

tumor and residue are successfully detected. As to each of the anomaly datasets, 

accuracies for bleeding, tumor and residue are valued as 99.27% (2177/2193), 

87.84% (65/74), and 98.48% (1877/1906), respectively. Within normal dataset, 

81.62% normal images are correctly recognized. Across the four groups, it can be 

found that the most important results, performances on bleeding and tumor datasets, 

both show advances when improved anomaly degree evaluation techniques are 

adopted. For bleeding datasets, although there are no severe changes among 

different groups, the accuracy is enhanced step by step in the case that one or both  
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Table 4.2.4.2.2. Four groups of improved anomaly degree evaluation techniques. 

   

of the techniques are involved. Tendency of the change happens same for the tumor 

datasets. Nevertheless, the enhancement seems much more obvious since the 

accuracy has been raised from 58.11% (43/74) up to 87.84% (65/74). This refers 

that the effectiveness for bleeding and tumor detection has been indeed enhanced 

in contrast of the previous method. As to results for normal dataset, the best 

performance is obtained by Group 3. However, the accuracy fell down from 88.43% 

to 81.62% after the non-linear conversion of HSV color space was added. The 

reason is considered that non-linear conversion made color components along the 

Hue axis more distinct, and because of this, even in normal images, subareas with 

color components slightly close to those in anomaly regions may have larger 

anomaly degree. Therefore, some of the normal images are identified as anomaly 

by mistake.  

 

 

Table 4.2.4.2.3. Results of multi-patient performance evaluation. 
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Furthermore, ROC curves are obtained for all normal and anomaly test samples. 

ROC curves were traced out by changing the threshold for anomaly degree. Without 

a fixed threshold, the relationship between sensitivity and specificity can be 

expressed more objectively. Accordingly, in the results relating to the ROC curves, 

curves with large AUC corresponding to the dynamic combination of high 

sensitivity and specificity are expected.  

The ROC curves shown in Fig. 4.2.4.2.2 work out an agreement with Table 

4.2.4.2.3. It needs to be explained that in ROC curves, legend “cHSV” is short for 

conversion of HSV color space, and “subarea” indicates the image segmentation. 

In Fig. 4.2.4.2.2(a), the improved anomaly degree evaluation, presented by the red 

line, has the largest AUC value of 0.994. This means the improved anomaly degree 

evaluation obtained most remarkable and balanced performance for both the normal 

and bleeding images. Situation of tumor datasets (Fig. 4.2.4.2.2(b)) is same. The 

AUC values have markedly risen from 0.716 to 0.915. With all of normal, bleeding, 

tumor and residue datasets counted, as shown in Fig. 4.2.4.2.2(c), the advantages 

of improved anomaly degree evaluation continues to be proved as AUC value of 

0.989 surpasses all the other groups. In summary, by the experiments implemented 

on multi-patient datasets, not only the capacity of each newly developed techniques 

are demonstrated to be contributory to anomaly detection, but the generalization of 

the improved anomaly degree evaluation method has been confirmed when it is 

used upon anomaly datasets collected from multiple different patients. 

 

 

(a) 
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(b) 

 

(c) 

Figure 4.2.4.2.2. ROC curves for multi-patient performance evaluation.  

(a) Bleeding. (b) Tumor. (c) All anomalies (bleeding, tumor and residue). 
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4.3 Summary 

In this chapter, the first stage of the anomaly detection system, namely anomaly 

degree evaluation, is developed on the basis of the principle that, it is promising to 

detect various anomalies by measuring the scale of difference between unknown 

image and the training images of normal intestinal wall and lumen. In the section 

4.1, the anomaly degree evaluation is proposed by taking advantage of Higher-order 

Local Auto Correlation for feature extraction, and subspace method as the classifier. 

Besides, the proposed method implements image pre-processing procedures to 

fulfill suitable recognition for capsule endoscopy images. In the section 4.2, aiming 

at reducing oversights of anomaly images, moreover, an improved scheme 

involving a non-linear color space conversion of HSV color space and image 

segmentation is introduced. In the experiments, the effectiveness of improved 

anomaly degree evaluation is validated by both of individual and multi-patient 

evaluation.    
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Chapter 5 
 

 

Lesion Oversight Prevention 

 

5.1 Overview 

As the stage of proposed anomaly detection system, lesion oversight prevention 

is presented to prevent oversighted lesions possibly remained after anomaly degree 

evaluation, in particular, for the lesion images with small or inconspicuous lesion 

regions are easily oversighted.  

Previous studies [73, 74] focused on the various anomalies of CE images using 

feature extraction based on higher-order local auto-correlation (HLAC). Analyses 

have revealed that HLAC can encompass the three features of color, texture, and 

shape, and that it has a number of advantages, including low computational cost, 

shift invariance, and robustness to image noise. However, in the case of anomaly 

detection from CE images with small or inconspicuous lesion regions, problems 

appeared that HLAC was less effective and local small-scale lesions can be easily 

overlooked and thus lead to false-negative predictions. 

Regarded as the stage to restrain oversight, the lesion oversight prevention is 

desirable to have a generalizable scheme for more mutable lesion cases. In order to  
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Figure 5.1.1. Processes of proposed lesion oversight prevention. 

 

solve this problem, in this stage, the dissertation will introduce an improved 

geometric descriptor called LCE-HLAC (Local Contrast Enhanced Higher-order 

Local Auto-Correlation), which is considered as a prospective solution to remedy 

the low descriptive capacity for local details by HLAC and realize more effective 

feature extraction for lesions of various appearance.  

The proposed lesion oversight prevention consists of two phases same as 

anomaly degree evaluation, namely training and testing (Fig. 5.1.1), and three main 

processes, namely image pre-processing, geometric feature extraction, and 

classification. During both stages, to cope with imbalances within the selected color 

space, image pre-processing involving a non-linear conversion of the color space is 

executed. Then, the proposed approach for geometric feature extraction is applied 

to obtain image features. The features extracted from the training dataset, which 

include both normal and anomalous images, are used to train the support vector 

machine (SVM) classifier, which then classifies the test dataset, which also consists 

of normal and anomalous images. 

 

5.2 Issues and objectives 

Due to the restriction of available data, same as in Chapter 4, frequently occurring 

lesions including bleeding and tumors, which are usually associated with serious 

lesions in clinical diagnosis are regarded as objects with high necessity to be 

detected, and thus, employed in this section.  

Bleeding images for different patients can sometimes have different appearances 
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due to the conditions of bleeding (blood’s tone and quantity) and individual 

variations. For example, in Figs. 5.2.1(a) and (b) more shed blood can be observed 

than in Figs. 5.2.1(c) and (d). Such distinctions are strongly affected by the 

seriousness of bleeding, and also by the distance between the bleeding and the 

location where the image is captured. Images taken closer to the bleeding spot often 

contain more shed blood.  

Tumors are defined as abnormal masses of tissue attached to the lumen surface, 

which can be either benign or malignant. Bowel polyps, such as those shown in 

Figs. 5.2.1(e), (f), and (g), are benign tumors. Figures 5.2.1(e) and (f) present the 

most common single polyps, which are not as harmful as malignant tumors. Single 

polyps are usually reddish in appearance, and are either partially or completely 

round. Polyps collected from a segment affected with the Cronkhite-Canada 

syndrome (Fig. 5.2.1(g)) are also benign tumors. However, unlike single polyps, 

multiple polyps are widespread. To prevent benign tumors from becoming 

malignant, clinically, early detection for benign tumors is regarded very important. 

The tumor shown in Fig. 5.2.1(h) is another case of a tumor selected from our 

database. It has been diagnosed as duodenum papilla cancer, which is a kind of 

malignant tumor that must be treated soon using clinical procedures. From 

investigating various kinds of tumor, tumor images can vary in appearance even 

more than bleeding images, in terms of tumor area, size, shape, and color across 

cases. 

 

 

(a)            (b)             (c)             (d) 

 

(e)            (f)             (g)             (h) 

Figure 5.2.1. Examples of (a)-(d) bleeding and (e)-(h) tumor images. 
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In contrast to its efficacy for detecting anomalies within large areas, as in Fig. 

5.2.1(g), the HLAC feature is somewhat deficient in coping with some images that 

include smaller local anomalies, as in Figs. 5.2.1(e), (f), and (h). Since HLAC 

calculates a summation of uniformly weighted auto-correlations across the entire 

image and lacks detailed representations for small-scale anomalous regions, 

features extracted from these local anomalous regions tend to be submerged and are 

thus not fully reflected within the feature. Given this concern, it is necessary to 

develop an approach for feature extraction that is more efficient for the local details 

associated with small-scale anomalies, and yet still retains the major advantages of 

HLAC. Local anomalies usually have morbid appearances within small lesion 

regions, with distinct changes from the surrounding normal intestinal wall. As a 

solution, the evaluations of local contrast, which are particularly appropriate for the 

detection of small-scale anomalies, is introduced into the HLAC feature. This 

extension is called LCE-HLAC. By employing LCE-HLAC, it is possible to 

formulate for peculiar pixels or areas that differ from their surroundings. 

 

5.3 Local Contrast Enhanced Higher-order Local 

Correlation (LCE-HLAC) 

5.3.1 Foundation and interception 

To evaluate the local contrast, the auto-correlations are divided according to 

intensity differences between 𝐼(𝒓) and neighboring pixels 𝐼(𝒓 + 𝒂), which are 

measured by a set of functions. When N is restricted as N∈ {0, 1, 2}. In each case, 

the auto-correlations for LCE-HLAC are defined, respectively, as follows: 

𝑹N=0( 𝑓𝑘0) = ∑ 𝐼(𝒓)𝒓∈𝐼  𝑓𝑘0 (𝐼(𝒓), 𝐼(𝒓 + 𝒂)),   𝑘0 ∈ {1, 2, 3}                   (21) 

𝑹𝑁=1(𝒂1, 𝑓𝑘1) = ∑ 𝐼(𝒓)𝐼(𝒓 + 𝒂1)𝒓∈𝐼  𝑓𝑘1(𝐼(𝒓), 𝐼(𝒓 + 𝒂1)),    𝑘1 ∈ {1, 2, 3}   (22) 

𝑹𝑁=2(𝒂1, 𝒂2, 𝑓𝑘1 , 𝑓𝑘2)                                                                                                         

=∑𝐼(𝒓)𝐼(𝒓 + 𝒂1)

𝒓∈𝐼

𝐼(𝒓 + 𝒂2) 𝑓𝑘1(𝐼(𝒓), 𝐼(𝒓 + 𝒂1)) 𝑓𝑘2(𝐼(𝒓), 𝐼(𝒓 + 𝒂2)),  

 𝑘1, 𝑘2 ∈ {1, 2, 3}             (23) 
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where  𝑓𝑘 corresponds to mutually exclusive functions. 

𝑓1(𝐼(𝒓), 𝐼(𝒓 + 𝒂𝑖))  =  {
1  , I(𝒓) − I(𝒓 + 𝒂𝑖) > 𝑇

0  , I(𝒓) − I(𝒓 + 𝒂𝑖) ≤ 𝑇
               (24) 

𝑓2(𝐼(𝒓), 𝐼(𝒓 + 𝒂𝑖)) =  {
1  , I(𝒓) − I(𝒓 + 𝒂𝑖) < −𝑇

0   , I(𝒓) − I(𝒓 + 𝒂𝑖) ≥ −𝑇
              (25) 

𝑓3(𝐼(𝒓), 𝐼(𝒓 + 𝒂𝑖)) = {
1  , |I(𝒓) − I(𝒓 + 𝒂𝑖)| ≤ 𝑇

0   , |I(𝒓) − I(𝒓 + 𝒂𝑖)| > 𝑇
              (26) 

For  𝒂 𝑖 ∈ 𝑹
𝑁 ,  𝑓1 ,   𝑓2 , and 𝑓3  execute the respective comparisons between all 

pairings of neighboring pixels and the reference pixel. Since  𝑓1 ,  𝑓2 , and 𝑓3 

represent mutually exclusive conditions, at any given point, only one of the three 

functions can be activated and conduct the corresponding calculation of auto-

correlations. T is the judgment threshold. Smaller (larger) T values make feature 

extraction more (less) sensitive to local contrasts. Since T is a dominant factor on 

sensitivity to local contrast information, preliminary discussions about determining 

its thresholds are provided in the following section. In the case of N = 0, given that 

only the reference pixel is involved in auto-correlation, this dissertation introduces 

𝐼(𝒓 + 𝒂), which indicates the average intensity of d surrounding pixels, to replace 

𝐼(𝒓 + 𝒂𝑖). 

𝐼(𝒓 + 𝒂) =
1

𝑑
∑ 𝐼(𝒓 + 𝒂𝑗)
𝑑
𝑗=1                                         (27) 

LCE-HLAC can be thought of an extension of HLAC. Fig. 5.3.1.1(a) shows 

examples of mask patterns when N is 0, 1, and 2, respectively. In each situation, the 

mask patterns for auto-correlation are expanded according to the evaluations for 

local contrasts by the judgment functions 𝑓𝑘. In the zeroth-order case (N = 0), apart 

from intensity, the description of sharply fluctuating pixels, possibly associated 

with part of a small anomalous area or discrete anomalous pixels, is clearly 

distinguished from those referring to insignificant changes. First- and second-order 

LCE-HLAC benefit from further enhancements for evaluating edge curves. For 

example, Fig. 5.3.1.1(b) demonstrates that some diagonal second-order LCE-

HLAC pattern masks are capable of obtaining edge information when scanning 

beyond the boundaries of a tumor region. Due to the obvious difference between 

normal and tumor sides, comparisons executed by the judgment functions  𝑓1,  𝑓2, 
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and 𝑓3 sort the auto-correlations of object pixels into different pattern masks. In 

this way, edge characteristics are easily reflected within the feature vector. 

Moreover, because LCE-HLAC comprehensively covers all pixel intensities, co-

occurrence relations within various patterns, and contrastive relations for the 

reference and surrounding pixels, it effectively encompasses all three feature types 

of color, texture, and shape. Similar to HLAC feature extraction, to fit the scale of 

targeting objects in capsule endoscopy, the size of LCE-HLAC mask pattern is 

decided as 19×19 in the same way which was denoted in Chapter 4. 

In terms of computational complexity, considering all the dimensions shown in 

Table 10, the feature vector of LCE-HLAC involves a higher degree of 

dimensionality when extended from the original HLAC. Given that various contrast 

conditions are being considered, the dimensions of the LCE-HLAC feature vectors 

increase from 35 to 225. Actually, little additional computational cost is incurred 

along with the increase of dimensionality, because the mutually exclusive nature of 

the judgment functions means that auto-correlation calculations are executed 

sparsely under exclusive conditions, and no overlapping calculations are involved. 

However, the comparative calculation between central pixel and surrounding or 

neighboring pixels has become the reason of more practical computational cost. 

When working under MATLAB platform (MATLAB 2015a, Windows 7, Intel 

4790K, 32GB), feature extraction by LCE-HLAC needs around 10~12 times the 

computing time of the original HLAC. But in other computational environment 

such as Visual C++ (Microsoft Visual Studio 2013, Windows 7, Intel 4790K, 32GB), 

it seems that the computational cost becomes no longer a problem because LCE-

HLAC feature can be extracted at about 24 fps from the 480×480 images. If more 

optimization can be involved, high-speed processing is considered definitely 

possible to cope with even the real-time capsule endoscopy image data.  

Besides, naturally, LCE-HLAC also inherits the other HLAC advantages of shift 

invariance, additivity, and robustness to noise. The materials below give a 

demonstration for noise robustness of LCE-HLAC.  

Taking the first order as an example, the estimation of LCE-HLAC can be 

described as: 

𝐸(𝑹) = 𝐸[(𝑺1 + 𝒏1)(𝑺2 + 𝒏2) 𝑓𝑘1((𝑺1 + 𝒏1), (𝑺2 + 𝒏2))]    (28) 

  As demonstrated in equation (2), Chapter 4, the formula can be transformed to: 
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𝐸(𝑹) ≈ 𝑬(𝑺1𝑺2)𝑬[ 𝑓𝑘1((𝑺1 + 𝒏1), (𝑺2 + 𝒏2))]         (29) 

  The latter part 𝑬[ 𝑓𝑘1((𝑺1 + 𝒏1), (𝑺2 + 𝒏2))]  is for the estimation of the 

mutually exclusive functions. Since only difference value is evaluated by the 

mutually exclusive functions, it can be referred as below: 

𝑬[ 𝑓𝑘1((𝑺1 + 𝒏1), (𝑺2 + 𝒏2))] = 𝑬[(𝑺1 + 𝒏1) − (𝑺2 + 𝒏2)] = 

𝑬(𝑺1) − 𝑬(𝑺2) + 𝑬(𝒏1) − 𝑬(𝒏2) = 𝑬(𝑺1) − 𝑬(𝑺2) = 𝑬[ 𝑓𝑘1(𝑺1, 𝑺2)] (30) 

Therefore, the estimation of LCE-HLAC 𝐸(𝑹) can be derived as 

𝑬(𝑹) ≈ 𝑬(𝑺1𝑺2)𝑬[ 𝑓𝑘1(𝑺1, 𝑺2)] = 𝑬[𝑺1𝑺2 𝑓𝑘1(𝑺1, 𝑺2)]      (31) 

 

 

(a) 

 

 

(b) 

Figure 5.3.1.1. Example of how LCE-HLAC mask patterns extract edge features. 
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Table 5.3.1.1. Dimensionality of HLAC and LCE-HLAC. 

 

5.3.2 Determining threshold T 

In order to acquire an applicable T, this dissertation utilize a small dataset of CE 

images (480×480, bitmap, 24bit, RGB). As the detection of tumor images is 

generally regarded to be a more difficult task than bleeding detection, this work 

created a dataset including 600 normal and 300 tumor randomly selected images, 

and employed principal component analysis (PCA) to construct a subspace of the 

feature vectors and evaluate the performances of alternative T values. Specifically, 

feature vectors extracted from normal images are firstly used to construct a normal 

feature subspace. Then, the distances between the LCE-HLAC feature vectors for 

the remaining 300 normal images and 300 tumor images and the established 

subspace are calculated and equated as distinction degrees. These distinction 

degrees and then analyzed so that to produce their receiver operating characteristic 

(ROC) curves (Fig. 5.3.2.1(a)). Finally, the area under the curve (AUC) is then 

calculated to determine the best-performing threshold T, which corresponds to the 

largest AUC value. Based on our investigations of various images, T is assigned 

with a set of values ranging from 5 to 50. As shown in Fig. 5.3.2.1(b), T = 10 leads 

to the largest AUC, T values of below 40 lead to no significant differences, and T 

values of over 40 tend to be detrimental to performance. In our experiments, LCE-

HLAC with T = 10 is applied to validate its efficacy and for comparison with other 

approaches. 
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(a) 

 

(b) 

Figure 5.3.2.1. Performance obtained with various threshold T values in 

preliminary PCA validations. (a) ROC curves and (b) comparison of AUC values. 

 

5.4 SVM-based classification 

SVM [75] is one of the most popular state-of-the-art classifiers. The principle 

behind SVM is to construct a hyperplane on which image feature vectors can be 

separated by the maximized margin between classes [76]. Consider a set of data 

samples of the form {(𝑦1, 𝒛1), (𝑦2, 𝒛2),…,(𝑦𝑛, 𝒛𝑛)}. 𝑦𝑖 ∈ {−1,+1} indicates the 

labels of the classes that the feature vectors 𝒛1, 𝒛2, …, 𝒛𝑛 (𝒛𝑖 ∈ 𝑹
𝑁) belong to. In 

this work, for anomaly detection, positive samples are valued +1, while negative 
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samples that correspond to the normal class are valued -1. Then, the hyperplane can 

be written as: 

𝐳 ∈ 𝐹: (ѡ · 𝐳) − b = 0                       (32) 

where ѡ is the weight vector and b is a non-negative parameter. If data samples can 

be separated linearly, then two parallel hyperplanes, 𝑯1: (ѡ · 𝐳) − b = −1 and 

𝑯2 : (ѡ · 𝐳 )  −  b = +1 , should exist. Since the distance between the two 

hyperplanes (margin) is 
2

‖ѡ‖
, to obtain the maximized margin, calculations for 

satisfying the parameters ѡ and b are required. Accordingly, the problem is 

equivalent to minimizing ‖ѡ‖
2
/2 = ѡ𝑡ѡ/2, with constraints on points  𝑦𝑖(ѡ · 𝒛𝑖) 

– b ≥ 1, i =1, 2, …, n. By introducing the Lagrange multiplier 𝛼𝑖 ≥ 0, i =1, 2,…, 

n, the problem is further transformed to one of finding a solution that minimizes the 

following formula: 

𝐿(𝛼) = ∑𝛼𝑖

𝑁

𝑖 =1

–
1

2
∑ 𝛼𝑖

𝑁

𝑖,𝑗 =1

𝛼𝑗𝑦𝑖𝑦𝑗𝒛𝑖
𝑡𝒛𝑗                                    (33) 

As a result, the proper parameter ѡ∗ can be expressed as: 

ѡ∗ =∑𝛼𝑖
∗𝑦𝑖

𝑁

𝑖 =1

𝒛𝑖                                                     (34) 

where 𝛼𝑖
∗ is the solution for Eq. (15). Finally, the resultant 𝑦 on a new sample 

vector 𝒛𝑛+1 is calculated as follows: 

𝑦 = sgn(∑𝛼𝑖
∗𝑦𝑖

𝑁

𝑖 =1

𝒛𝑖
𝑡𝒛𝑛+1 − 𝑏 )                                   (35) 

When the input data are inseparable by a linear SVM as above, a kernel function 

k(𝒛𝑖,𝒛𝑗) = (Φ(𝒛𝑖) ·Φ(𝒛𝑗)) is applied [77]. 𝒛𝑖 and 𝒛𝑗 are n-dimensional inputs. Φ is 

a map from the n-dimension to an m-dimensional space (m > n). Commonly, kernel 

functions include linear functions, polynomial functions, and radial basis functions. 
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5.5 Experiments 

5.5.1 Experimental data 

Capsule endoscopy data were collected from videos for 28 clinical patients. 

Observations and diagnoses were carried out by three experienced doctors. For each 

patient, the expert doctors compiled detailed reports including diagnostic comments 

and recording time ranges for normal/lesion segments. Based on these reports, this 

research first sampled video segments that had been documented as containing 

certain kinds of data, and then, extracted from these segments complete sets of 

images (480×480, bitmap, 24bit, RGB), before excluding any seriously distorted 

images, such as those full of bubbles, strong bile, residues, or taken under extreme 

lighting conditions. The remaining images were subsequently categorized and 

labeled. In this way, a complete dataset of 69 video segments that yielded 5,642 

normal images from 33 segments, 5,476 bleeding images from 22 segments, and 

1,164 tumor images from 14 segments (Table 5.5.1.1) is obtained. Before being 

used, the data for each category were double checked by the doctors to ensure that  

all the image data were consistent with their opinions. Note that all of these 

segments were separated so that the diversity of the dataset could be guaranteed.  

Within an entire capsule endoscopy video, suspected lesions usually occur in 

partial sections, and so, generally speaking, it is much easier to obtain normal data 

than lesion data, which is reflected in the imbalance of normal, bleeding, and tumor  

 

 

Table 5.5.1.1. Categories of experimental data in 5.5. 
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images within our database. However, to eliminate any influences of this imbalance 

that may cause failures for small partitions of the training data, while 

simultaneously fully utilizing all the lesion data, this work created non-overlapping 

training and testing datasets that consisted of the same number of normal images as 

lesion images (Table 5.5.1.1). For each category, the normal/lesion images are first 

separated from each patient into two equal parts. Then one part for each patient is 

assigned to create the training dataset and assigned the other part to create the 

testing dataset. In accordance with the principle of SVM, all normal images and 

lesion images are labeled as -1 and +1, respectively. 

 

5.5.2 Procedures and evaluation criterion  

In order to demonstrate the performance of the proposed color space conversion 

and the feature extraction method, analyses were conducted for experiments on 

bleeding and tumor detection. In evaluating the performance of the proposed 

method, this work also employed the basic HLAC feature and the RIU-LBP feature 

for comparison. For evaluating the proposed color space conversion, feature 

extraction was implemented on both the proposed non-linear conversion of the HSV 

color space (cHSV, the same below) and the ordinary HSV color space. Moreover, 

CIE L*a*b*, another color space that separates color from intensity, was utilized as 

another control group. Given that the V (value) channel of the HSV color space and 

the L channel of the CIE L*a*b* color space both refer to brightness, which is 

strongly related to lighting conditions, this paper excluded these channels and only 

utilized the H-S channels and a*-b* channels, respectively. This dissertation 

concatenated the feature vectors obtained from each channel to create a long feature 

vector in the experiments. 

In order to measure the efficacy of the proposed method and to compare with 

other control methods, the directly predicted results that encompass the 

fundamental evaluation criteria sensitivity and specificity are first obtained. And 

furthermore, the ROC curves for all normal and anomaly test samples are drawn 

accordingly. SVM was employed to estimate positive probability for all test 

samples. ROC curves were traced out by changing the threshold for positive 

probabilities. Accordingly, in the results relating to the ROC curves, curves with 

large AUC corresponding to the dynamic combination of high sensitivity and 

specificity are expected. 
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5.5.3 Results and discussions  

Summaries of results for bleeding and tumor detection are presented in Tables 

5.5.3.1 and 5.5.3.2 respectively. In Table 5.5.3.1, there are no conspicuous 

differences among the different groups of approaches. The best performance in 

terms of total accuracy (98.80%) was obtained by the combination of the original 

HLAC feature and the proposed cHSV color space model. However, the highest 

sensitivity (99.49%), which depicts the best bleeding detection result, was obtained 

by the proposed method using the LCE-HLAC feature and color space conversion. 

For all groups, the average accuracies are larger than 97.48%, with no sensitivity 

and specificity values of less than 96.90% and 96.09%, respectively. Such high 

accuracies clearly indicate that all method groups had considerable efficacies for 

bleeding samples. The ROC curves, as shown in Fig. 5.5.3.1(a), verify this result.  

With respect to the detection of tumors, as presented in Table 5.5.3.2, the results 

yielded by the different methods diverge more widely than those in Table 5.5.3.1. 

The best performance was obtained by the proposed method, with a sensitivity of 

96.74%, a specificity of 88.14%, and a total accuracy of 92.44%. In terms of 

sensitivity, tumor detection based on the combination of the LCE-HLAC feature 

and the proposed cHSV color space was 3.1 percentage points better than the best 

results obtained by the HLAC group. The highest specificity (94.33%) was obtained 

when the LCE-HLAC feature and the original HSV color space were adopted. This 

indicates that although the efficacies in terms of total accuracy and sensitivity 

achieved using the LCE-HLAC feature and cHSV color space surpass those 

obtained upon the other color spaces, false-positive predictions were best controlled 

by using the original HSV color space. 

For the first group of LCE-HLAC, in addition to being the best accuracy 

combination, the method using the ordinary HSV space reached 91.41% for total 

accuracy and 88.49% for sensitivity. However, decreases emerged when the LCE-

HLAC feature extraction was combined with the CIE L*a*b* color space. With the 

CIE L*a*b* color space, only 79.21% of tumor images were detected correctly. 

The situation for the group utilizing the original HLAC feature is similar. The 

HLAC feature yields matched performances adopting both the ordinary HSV color 

space and the cHSV color space, but the sensitivity suffers a severe drop to 74.40% 

when the CIE L*a*b* color space is introduced. For the RIU-LBP feature group, 

however, unlike the groups of LCE-HLAC and HLAC, both the CIEL*a*b* and 
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original HSV color spaces performed similarly for RIU-LBP feature extraction. It 

can also be inferred that the proposed cHSV color space is adaptive for RIU-LBP 

feature, since it obtained a total accuracy of 88.75% and a sensitivity of 90.89%, 

which are slightly higher than those for the other color spaces. Generally speaking, 

the color space did no substantially affect the RIU-LBP group’s performances. 

Fig. 5.5.3.1(b) presents ROC curves for all groups. Consistent with the predicted 

results of accuracy, the proposed method, with both the LCE-HLAC feature and 

color space conversion, had the largest AUC value (0.977, see Table 5.5.3.2). From 

this result, it can be indicated that the consequences of both false-positive 

predictions and false-negative predictions are well restrained by the proposed 

method.  

Moreover, the results for tumor detection vary greatly according to the technique 

adopted. From further analysis, it is identified that the images with multiple tumor 

regions, such as in Fig. 5.5.3.2(a), tend to have concentrations of strong reddish 

components. In contrast to Figs. 5.5.3.2(b), (c), and (d), which show smaller local 

tumors, the histogram of cHue components in Fig. 5.5.3.2(a) shows an obvious 

shifting to the right side. However, the majority of cHue components in Figs. 

5.5.3.2(b), (c), and (d) are similar to those in the normal intestinal image, such as in 

Fig. 5.5.3.2(e). Moreover, pixel values of local tumors are assumed to be depicted 

only within the small region beyond 160. The divergent detection results indicate 

that LCE-HLAC is the most suitable for the detection of local tumors. Compared 

to HLAC, the edge characteristic between tumor region and the adjacent normal 

lumen region are more effectively extracted by LCE-HLAC.  

These results clearly demonstrate that the combination of LCE-HLAC feature 

extraction and non-linear conversion for the HSV color space is efficient for both 

bleeding and tumor detection. Its performance is superior to that for the control 

conditions consisting of various technique combinations for tumor detection. 
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Table 5.5.3.1. Classification results for bleeding detection in terms of accuracies 

and AUC values (areas under ROC curves). 

 

 

Table 5.5.3.2. Classification results for tumor detection in terms of accuracies 

and AUC values (areas under ROC curves). 
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(a) 

 

 

(b) 

Figure 5.5.3.1. ROC curves for (a) bleeding, (b) tumor detection. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5.5.3.2. Histogram analysis. (a) Tumor image with multiple tumor regions, 

(b)-(d) tumor images with local tumor regions, and (e) normal intestinal image. 
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5.6 Summary 

In this chapter, the lesion oversight prevention aiming to restrain oversight, 

especially for the lesion images with small or inconspicuous lesion regions, is 

proposed by introducing an improved geometric descriptor called LCE-HLAC 

(Local Contrast Enhanced Higher-order Local Auto-Correlation). LCE-HLAC is 

developed to inspect the co-occurrence of neighboring (surrounding) pixels with 

different contrasting relationship. By this means, LCE-HLAC is expected to 

enhance the description for local details by HLAC, and realize more effective 

feature extraction for lesions of various size and appearance. Combined with the 

previously proposed techniques such as the non-linear conversion of HSV color 

space, LCE-HLAC has been demonstrated efficient and superior to control 

conditions for both bleeding and tumor detection.  
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Chapter 6 
 

 

Feasibility Validation of the Proposed 

Anomaly Detection System 

 

6.1 Overview 

In Chapter 4 and 5, the two-stage scheme system involving anomaly degree 

evaluation and lesion oversight prevention has been introduced in turn. With regard 

to the feasibility of the proposed system, it is necessary to validate how it performs 

in a practical situation. Therefore, this section will principally present several 

experiments, which are simulative but completely in the same form of the practical 

usage.  

As explained in Chapter 3, the first stage of anomaly degree evaluation is to 

measure the difference between the input image and the normal intestinal image. 

The images owning high anomaly degree and low anomaly degree are then 

classified into two categories. Afterwards, the images with low anomaly degree will 

be rechecked by the second stage, lesion oversight prevention, to eliminate 

oversights of lesion images with small or inconspicuous lesion regions.  
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Figure 6.1.1. Feasibility validation by establishing a general training database. 

 

As the expected usage of the proposed two-stage scheme, images with high 

anomaly degree after the first stage, and all images judged as certain kind of 

anomaly in the second stage, will be suggested to doctor for further observation. In 

the light of the configuration of the proposed system, no matter under either the 

screening mode, or the double check mode, the unused image data collected from 

other patients will be imported into the proposed system and processed throughout 

both stages.  

  With regard to the design of the anomaly detection system, in advance, it is 

necessary to construct a general database as explicated in Fig. 6.1.1, to train the 

normal subspace in the first stage, and the SVM-based lesion recognizer in the 

second stage. By using the training database, the system can be constructed and 

adjusted to conduct self-governed anomaly detection. 

 

6.2 Experiments 

6.2.1 Experimental data 

The feasibility validation experiments employ 28 patients’ data in total as 

expressed in Table 6.2.1.1. According to the source of data, all images (480×480, 

bitmap, 24bit, RGB) are five categories: normal, bleeding, tumor, normal&bleeding, 

and normal&tumor. The categories mean that only one kind of specified content is 

included within one patient’s data, or two kinds of contents are both belong to one 

patient’s data. Since detection for residue images has been sufficiently discussed in 

Chapter 4, relevant validation is not involved in this section. Among the employed  



67 

 

 

Table 6.2.1.1. Datasets utilized feasibility validation in 6.2. 

 

datasets, meanwhile, images in each datasets are further indexed to facilitate the use 

for different purpose. Indexes “A”, “B” and “C” indicate normal images, bleeding 

images and tumor images respectively. In this way, 1962 normal images from 6 

patients are indexed as A1. 2358 bleeding images from 10 patients are indexed as 

B1. 1090 tumor images collected from 5 patients are named C1. Besides, within 4 

patients’ data containing both of normal and bleeding, 910 normal images are 

employed and indexed as A2, while 2193 bleeding images are indexed as B2. 

Similarly, 1995 normal image belong to 3 patients’ data are named A3, remaining 

74 tumor images with the index C2.  

With regard to the training database of the proposed anomaly detection system, 

A1, B1 and C1 are used to establish the experimental database. Specifically for the 

two stages, A1 is not only employed to construct the normal subspace in the first 

stage, but also used to train the SVM classifier in the second stage. Meanwhile, 

since only normal training data is demanded in the first stage, the datasets of B1 

and C1 are just used in the second stage. As to the evaluation, datasets containing 

A2, B2, A3 and C2 are treated as testing input data. 2905 normal images, 2193 

bleeding images and 74 tumor images, collected from 7 patients in all, are included 

in these data. 

 

6.2.2 Settings and evaluation criterion 

Throughout the proposed anomaly detection system, all anomaly images are 

expected to be detected, and at the same time, false positive cases (normal images 
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identified as anomaly) is supposed to be reduced as much as possible. Within the 

anomaly detection, parameters can be adjusted within the training database and the 

classifiers. On this occasion, in the first step, threshold T that divides high anomaly 

degree and low anomaly degree is ruled by anomaly degree values of all the normal 

images themselves in training dataset A1. By setting different threshold T, the 

output data and statistical results of the first stage vary accordingly, and thus, the 

input data of the second stage will also be changed. With consideration of this issue, 

in the first step, threshold T is determined by altering a fixed number P: 

𝑃   
Number of training images(Anomaly degree≤ 𝑇)

Number of training images(All)
 

where P indicates the percentage of training images possessing anomaly degree 

values no larger than the threshold T. For example, when P is set as 0.9, the 

threshold will be precisely equivalent or larger than 90% of the training images’ 

anomaly degrees. In practice, threshold for the first stage is set by adopting P=0.9 

and 0.95, and in this way, accuracies for lesion images (true positive, sensitivity) 

and normal images (true negative, specificity) can be obtained under respective 

conditions.  

In the second stage, bleeding classifier trained by datasets A1 and B1, and tumor 

classifier trained by A1 and C1, are applied to all the low-anomaly-degree output 

images. Parameters in the both classifiers should be optimized upon the 

performance of the training database. After this, the images contain undetected 

bleeding and tumor images, and all normal images identified as “normal” in the first 

stage. As the use of bleeding classifier and tumor classifier are parallel as depicted 

in Figure 3.3.1 (Chapter 3), each classifier can export its own true negative rate for 

normal images, and true positive rate for either bleeding images or tumor images. 

It is noteworthy that bleeding images imported into the tumor classifier are possible 

to be detected as tumor, and conversely, tumors image may be detected as bleeding 

image as well. On the principle that all suspicions are suggested to the doctor, such 

phenomenon is no harmful but beneficial to the effectiveness. At the same time, 

true negative predictions determined by each part are summarized as the final true 

negative output. That means only the normal images recognized as “normal” in all 

parts of the system are finally exported as “normal”. Throughout the whole system, 

at last, total accuracies for every dataset are calculated as the results of feasibility 

validation of the proposed anomaly detection system.   
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Accuracy   
Number of correct predictions

Number of testing images
 

6.2.3 Results and discussions 

Experimental results for P=0.9 and P=0.95 are respectively denoted in Table 

6.2.3.1 and 6.2.3.2. In both tables, accuracies for separated datasets and stages are 

all recorded. Firstly in the case of P=0.9, it is observed that the propose anomaly 

detection system demonstrates performances for bleeding images, tumor images 

and normal images as 99.86%, 94.59% and 72.63%, in accuracy, respectively. 

Viewing from stage 1, 99.27% of bleeding images, 87.84% of tumor images, and 

81.62% of normal images have been corrected recognized. After lesion oversight 

prevention is introduced, accuracies for bleeding and tumor datasets are both 

improved as 81.25% oversighted bleeding images and 55.56% oversighted tumors 

are detected additionally. In particular, it is noticed that within the correctly 

detected bleeding images, apart from the 10 images discovered by bleeding 

classifier, tumor classifier has also contributed to finding more bleeding images, 

though these images are identified as the member of tumor class. The total accuracy 

for normal dataset decreases from 81.62% to 72.63%, this is for the reason that each 

part generates false-positive predictions, and so that, the true-negative percentages 

are finally multiplied to be a smaller value. 

  By reviewing 6.2.3.2, it is found that in the case of P=0.95, accuracies for 

bleeding, tumor and normal datasets are achieved as 99.82%, 93.24% and 80.00%, 

respectively. Similarly, the stage 2 has been demonstrated able to reduce lesion 

oversights, and improve the total accuracies by 1.01 percentage points and 13.51 

percentage points for bleeding and tumor datasets respectively. However, in the 

stage 2, bleeding classifier and tumor classifier have both contributed to the 

crossing detection (one kind of lesion is detected as the other), with 3 bleeding 

images and 2 tumor images successfully filtered out. With regard to the normal 

datasets, accuracy decreases from 91.98% to 80.00% due to the false-positive 

predictions emerge in the stage 2. 

  From the Table 6.2.3.1 and 6.2.3.2, it can be inferred that the setting of P has 

enormous influence on the performances, especially for the normal dataset. In the 

stage 1, a larger P makes smaller allowance for false-positive predictions. In the 

stage 2, more false-positive predictions have been brought into the system when the 

number of input data increases along with P. Therefore, the total accuracy for 
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normal images is indirectly, definitely raised up by a larger P. When P is altered 

from 0.9 to 0.95, the accuracy of stage 1 is increased by 10.36 percentage points, 

and the total accuracy after the stage 2 is increased by 7.37 percentage points. 

  Setting a larger P can lead to higher accuracy for normal datasets, but actually, 

the accuracies for bleeding and tumor detection have shown no apparent difference. 

In the stage 1, although the accuracy for tumor dataset falls down from 87.84% to 

79.73%, it is denoted that the stage 2 is able to make up the difference by detecting 

more tumor images when P is raised up from 0.9 to 0.95. In practical use, the setting 

of P should be taken consideration with the property of training database (e.g. 

similarity of training images) and the doctor’s demand (e.g. the partition of normal 

images expected to be filtered out in advance). 

  Some examples of bleeding images and tumor images, which are failed to be 

detected by the system, are shown in Fig. 6.2.3.1. The reason why the proposed 

anomaly detection system fails to detect the bleeding images seems due that there 

is almost no fresh blood visible within the image as the first image shows, but only 

dark blood spots that may indicate the bleeding has ever happened at earlier time 

before the examination. Such dark blood spots have fade in color and become too 

dark to be figured out by the proposed system. Tumor images are oversighted for 

the reason may be ascribed to that the tumor region is revealed at the center of the 

intestinal lumen, and meanwhile, the view of tumor image is at the time of intestinal 

contraction. Tumor regions is not only partly hidden by intestinal wall, but show 

low brightness and inconspicuous color.  

In future practical use, although a small part of lesion cases could not be detected 

by evaluating the single image, many other methods remain available to make the 

doctor notice the lesion image. The solution could be established, for example, by 

introducing evaluation between a series of consecutive image frames instead of one 

single image. If one out of the series are detected as lesion, neighboring images 

should also be highly concentrated accordingly.     
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Table 6.2.3.1. Accuracies for all separated datasets and stages (P=0.9).  

 

 

Table 6.2.3.2. Accuracies for all separated datasets and stages (P=0.95). 

 

 

(a) 

 

(b) 

Figure 6.2.3.1. Examples of oversighted bleeding and tumor images. (a) Bleeding 

(b) Tumor. 
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6.3 Summary 

The two-stage scheme of proposed anomaly detection system for capsule 

endoscopy images has been presented in Chapter 4 and 5, and validation 

experiments for each part has been implemented to give evidence to support the 

hypothesis. With the goal of providing support for practical diagnosis, in this 

chapter, experiments are introduced to simulate the actual diagnosis situation. To 

make the system qualified to cope with unknown input image data, a training 

database, containing both normal dataset and different kinds of anomaly datasets, 

is constructed in advance. In the experiments, the proposed system has shown 

powerful capable to detect bleeding and tumor images from the unused testing data 

of a number of patients. Meanwhile, false-positive has also been well controlled, so 

that the lightening of diagnosis workload can be remarkably guaranteed.      
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Chapter 7 
 

 

Conclusion 
This dissertation has presented a study on anomaly image detection for capsule 

endoscopy images. To overcome the drawbacks of previous approaches and realize 

a more feasible anomaly detection for diagnosis support, the proposed system was 

developed with a two-stage scheme including anomaly degree evaluation and lesion 

oversight prevention. The first stage of anomaly degree evaluation was proposed to 

perform a role to distinguish image data with higher anomaly degree from those 

with lower degree. Lesions and residues that suggest to high anomaly degree are 

expected to be detected. The second stage of lesion oversight prevention was 

designed to prevent oversighted lesions that are easily oversighted in the first stage. 

The anomaly degree evaluation made use of Higher-order Local Auto Correlation 

(HLAC) feature and focused on image processing methods. Subspace method was 

adopted to measure the anomaly degree and distinct normal images of clear 

intestinal wall and lumen from anomaly images of lesions and foreign matters 

(residue). In addition, the non-linear conversion for HSV color space and image 

segmentation have been further proposed to enhance the description of lesion and 

normal regions. In experiments, individual evaluation conducted on two patients’ 

data reached 95.3% in sensitivity, and 7.5 percentage points improvement in 
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comparison with the initial proposed method. Afterwards, experiments of multi-

patient evaluation, which involved different patients’ data in training phase and 

testing phase, also confirmed the advance when compared to the approach without 

the non-linear conversion and feature extraction upon the image segmentation, 

according to the results denoted by both the numerical accuracies and ROC curves.  

The second stage of lesion oversight prevention introduced a geometric image 

feature called LCE-HLAC (Local Contrast Enhanced Higher-order Local Auto-

Correlation) was proposed for feature extraction. To deal with feature extraction for 

various lesions, especially the lesion images with small or inconspicuous lesion 

regions, LCE-HLAC reinforced extraction for detailed color, texture and shape 

features by enclose local contrast into the ordinary HLAC, so that to present the 

boundary and texture characteristics effectively. To demonstrate the efficacy of 

LCE-HLAC, a dataset of capsule endoscopy images collected from 28 patients’ 

cases were employed. In contrast to methods based on HLAC and RIU-LBP 

features, the experimental results demonstrated that LCE-HLAC feature extraction 

owns superiority for the objective detection tasks. As denoted in statistical results, 

the proposed method had the best performance (98.54% accuracy) for bleeding 

detection and (92.44% accuracy) tumor detection.  

Feasibility validation of the proposed anomaly detection system followed lastly. 

In the experiments throughout the whole system, training database including both 

normal and anomaly datasets were prepared for both stages in advance. Results 

shown that the system was powerful to deal with unused input testing data, in the 

situation similar to the practical diagnosis procedure. By the proposed system, in 

the case of P=0.95 (the true negative rate for training image is 0.95), 99.82% of 

bleeding images and 93.24% of tumor images were successfully detected, while 

80% of normal images were corrected identified. Both the remarkable sensitivity 

for anomaly images and specificity for normal images were regarded as the 

insurance of practical feasibility of the proposed anomaly detection system. 

The proposed anomaly detection system has been demonstrated satisfying the 

essential requirements for detecting various anomalies without defining or 

restraining the objective anomalies within certain categories. Moreover, the system 

has enabled detection for images containing other foreign matters such as residue. 

These measures all compensated for the lack of solution to foreign matters in the 

state-of-the-art researches, and make the system more equipped and feasible for 

practical application.          
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On the basis of the proposed anomaly detection system, many other extensional 

diagnosis support technologies for capsule endoscopy are believed possible to be 

realized and become meaningful means to support the diagnosis. For example, the 

anomaly degree evaluation can be directly used to mark the highly-suspected and 

low-suspected video segments, so that it is able to suggest the priority according to 

which doctor’s examination should be conducted. Since capsule endoscopy 

examination is usually introduced following the examination results of blood test, 

radiology imaging and conventional endoscopies, settings for training database and 

the both classifiers in both stages can be appreciate adjusted in the light of doctor’s 

expectation and demand based on the foregone results. The proposed anomaly 

detection system can be also utilized as a novel measure for automatic video display 

control. Video segments with high anomaly degree can have lower frame rate, while 

those with low anomaly degree can proceed in higher frame rate. Such kind of 

anomaly-detection-based control may provide more reliable and effective 

assistance than that only built on evaluating the change among the successive 

images.  

Anomaly-detection-based control is possible to make contribution in wider 

domain beyond the diagnosis supporting technologies. It may also make 

contribution to the capsule endoscopy hardware. For instance, if real-time 

identification for the contents captured by capsule endoscopy could be realized, it 

can be utilized as the foundation to control the capturing framerate and balance of 

power supply. Moreover, if self-propelled capsule (which is also being researched 

worldwide) is realized, anomaly-detection-based control could even help to adjust 

the capturing angle and distance from the target. 

Last but not the least, as many studies on other applied disciplines, the proposed 

anomaly detection system for capsule endoscopy, anyway, still needs plenty of 

validation to meet full requirements of clinical application. Therefore, it is strongly 

expected that more researchers can be inspired, so that the anomaly detection based 

diagnosis support can be further developed and become an indispensable parts of 

capsule endoscopy technology someday.    
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