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Abstract

We present wind-tunnel experimental measurements of drag coefficients for non-spinning Jabulani and Brazuca balls. We

find that the Brazuca ball’s critical speed is smaller than that of the Jabulani ball, and the Brazuca ball’s super-critical drag

coefficient is larger than that of the Jabulani ball. We also find that compared to the Jabulani ball, the Brazuca ball suffers

less instability due to knuckle-ball effects. Using our drag data, we create numerically-determined ball trajectories and

postulate that though power shots are too similar to notice flight differences, goal keepers are likely to notice differences

between Jabulani and Brazuca ball trajectories for intermediate-speed ranges. This latter result may appear in the 2014

World Cup for goal keepers used to the flight of the ball used inthe 2010 World Cup.
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1. Introduction

Much of the world is riveted by FIFA World Cup action, which takes place every four years. Since 1970, Adidas has provided

the ball used at the World Cup. The 2002 World Cup in Japan and South Korean used the Fevernova ball, the last World

Cup ball with the more traditional 32-panel design consisting of 20 hexagonal panels and 12 pentagonal panels (similar to

a truncated icosahedron). The 2006 World Cup in Germany useda thermally-bonded 14-panel ball called the Teamgeist.

Adidas created the Jabulani ball for the 2010 World Cup in South Africa, a ball that experienced some controversy.1 Having

just eight thermally-bonded panels, Adidas had to texture the surface to make up for a reduced number of seams. As balls

get smoother, they experience more air drag at certain speeds.2 By continually reducing panel number, Adidas had to add

panel roughness if balls were to follow similar trajectories that previous balls followed. For the 2014 World Cup in Brazil,

Adidas created the Brazuca ball, which has just six thermally-bonded panels. Because of so few panels, the ball, like the
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Jabulani ball, has been textured to increase surface roughness. Despite fewer panels, the Brazuca ball has nearly 68% longer

total seam length

We report in this paper results of wind-tunnel experiments on balls used at the two most recent World Cup events. We

use our wind-tunnel results to create model trajectories that will show how differences in aerodynamic properties leadto

differences in flight trajectories. Soccer, perhaps more than any other sport due to its global popularity, has been studied

extensively by scientists and engineers for a few decades now. Our work here adds to that large body of work. To keep

this introductory section concise, we refer readers to a recent review article3 on sport aerodynamics. That article contains

a section on soccer with copious references to aerodynamicsresearch performed mostly in the current century. Since

that review article was accepted, more research has been published4,5,6,7 that has furthered our understanding of soccer

aerodynamics.

This paper is organized as follows. We describe our wind-tunnel experiment in Section 2, and then discuss the results

of that experiment in Section 3. The numerical trajectorieswe created based on our wind-tunnel results are presented in

Section 4, followed by some concluding remarks in Section 5.

2. Wind-Tunnel Experiment

We measured the aerodynamic forces acting on different types of balls in a low-speed wind tunnel at the University of

Tsukuba that has a1.5 m× 1.5 m rectangular cross section with a turbulence level less than 0.1%. Two full-sized official

FIFA soccer balls were tested: the Adidas Jabulani (0.22-m diameter and 0.438-kg mass), used in South Africa for the 2010

FIFA World Cup, and the Adidas Brazuca (0.22-m diameter and 0.433-kg mass), used in Brazil for the 2014 FIFA World

Cup.

Each soccer ball was attached to a stainless steel rod. Figure 1 shows the Brazuca ball on the rod just before testing

began. The position of the support rod relative to the bluff body is important in a wind-tunnel experiment, which means

that we had to select an appropriate support orientation. For our experiments we chose to support from the rear,8 a location

we considered to have a comparatively smaller effect on the peeling off of the boundary layer from the ball’s surface. Data

were acquired over a period of 8.192 s using a six-component sting-type balance (LMC-6522; Nissho Electric Works Co.,

Ltd.), and they were recorded on a personal computer using anA/D converter board with a sampling rate of 1000 Hz. Each

ball was set to be geometrically symmetrical; the ball panels were therefore asymmetrical in the vertical direction.

The aerodynamic forces were measured at wind speeds in the range7 m/s≤ v ≤ 35 m/s (15.7 mph≤ v ≤ 78.3 mph).

That speed range corresponds to a range in Reynolds number ofroughly100, 000 < Re < 500, 000. The force acting in

the direction opposite to that of the wind was is the measuredforce we connect to the drag force. Because the ball feels

no net force, the force from the rod on the ball matches the drag force,FD, the ball feels from the oncoming air. The drag

coefficient,CD, is then extracted from the following equation:

FD =
1

2
ρACD v2 , (1)

whereA = 0.038 m2 is the cross-sectional area of the ball andρ = 1.2 kg/m3 is the air’s mass density.

We also studied effects that lead to knuckle-ball9 phenomenon whereby a ball with little to no spin experiencesforces

perpendicular to its velocity that are due to an asymmetric shedding of the boundary layer from the back of the ball.

Asymmetries arise because air on one part of the ball may moveover a rougher part compared to air moving over a part of

the ball directly opposite. The knuckle-ball effect is named after baseballs thrown with little to no spin for which air moving

over a rougher part of the ball (stitches) separates fartherto back of the ball compared to air moving over a smoother part

of the ball.10 Figure 2 shows the two orientations, labeled A and B, that we studied for the knuckle-ball effect. For each

orientation, we measured the air’s force on the ball at two speeds, 20 m/s (44.7 mph) and 30 m/s (67.1 mph). We split the
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component of the air’s force that is perpendicular to the air’s velocity into two components: a horizontal component that

we call the side force, and a vertical component that we call the lift force.

3. Wind-Tunnel Results and Discussion

Figure 3 shows wind-tunnel experimental drag coefficient results for the Jabulani and Brazuca balls. The most striking

feature of the wind-tunnel results is that the Brazuca ball’s critical speed, i.e. the speed where there is a precipitousdrop

in CD, is smaller than that of the Jabulani ball. This result may seem counterintuitive given that the Brazuca ball has two

fewer panels compared to the Jabulani ball, but recall that the overall seam length on the Brazuca ball is nearly 68% longer

than on the Jabulani ball. The Brazuca ball’s drag coefficient curve is more similar to that of the 32-panel Adidas Tango 12

ball,11 used in the 2012 UEFA European Championship, than it is to theJabulani ball’sCD curve.

We also see in Figure 3 that the Brazuca ball’s drag coefficient for large speeds, i.e. in the super-critical region, is larger

than the Jabulani ball’s drag coefficient. At the largest speed we tested, i.e.v = 35 m/s,CD = 0.16 for the Brazuca ball

andCD = 0.20 for the Jabulani ball.

The drag coefficient data suggest possibly noticeable differences between ball aerodynamics in the 2010 World Cup

compared to the 2014 World Cup. Compared to the Jabulani ball, the Brazuca ball will have less drag on it for intermediate

speeds, i.e.10 m/s ≤ v ≤ 20 m/s (22.4 mph≤ v ≤ 44.7 mph). We postulate that intermediate-speed-range shots inthe

2014 World Cup will appear to goal keepers to be faster than what they saw in the 2010 World Cup. For hard-kicked balls

at speeds in excess of, say, 25 m/s (55.9 mph), the Brazuca ball’s larger drag coefficient means that goal keepers in Brazil

may perceive hard-kicked balls slowing more rapidly compared to what they saw four years previously.

Brazuca ball’s smaller critical speed has implications forknuckle-ball effects. Figure 4 shows lift and side forces atan

air speed 20 m/s on the two balls of interest oriented in the two ways shown in Figure 2. Figure 5 is just like Figure 4,

except the air speed is 30 m/s. Each of the two aforementionedfigures was created by recording force for 9 s.

At an intermediate-kick speed like 20 m/s, compared to the Brazuca ball, the Jabulani ball shows significantly greater

force transverse to air velocity. That result suggests thata non-spinning Jabulani ball will be more erratic in its flight

compared to a non-spinning Brazuca ball. The aforementioned result is explained by the fact that the Jabulani ball’s critical

speed is greater than the Brazuca ball’s critical speed. Forintermediate-speed kicks, the air’s boundary layer experiences

both laminar and turbulent separation from the Jabulani ball. A Brazuca ball moving at 20 m/s, however, has only turbulent

separation of the boundary layer because the ball is super-critical at 20 m/s.

Moving to a power-shot speed like 30 m/s, Figure 5 shows an expected increase in the air’s forces on the balls. Although

position A for the Jabulani ball is perhaps slightly more stable than position A for the Brazuca ball, the Jabulani ball in

position B is clearly the most unstable of all combinations of ball type and orientation we tried. We attribute this result to

the more asymmetric distribution of panel boundaries on theJabulani ball compared to the Brazuca ball. The nearly 68%

greater total seam length on the Brazuca ball means surface roughness is more evenly distributed than it is on the Jabulani

ball.

4. No-Spin Model Trajectories

We now consider possible no-spin soccer trajectories. Though our model ball will not be spinning, we ignore “knuckle”

effects. Our goal is to use the drag coefficient data acquiredfrom our wind tunnel to make comparisons between Brazuca

ball and Jabulani ball trajectories.

There are two forces we consider on a soccer ball moving through the air. The first acts down on the ball, the ball’s

weight,mg, wherem is the ball’s mass andg = 9.80 m/s2 is the constant magnitude of gravitational acceleration near

Earth’s surface. The second force is the drag force, which points opposite the ball’s velocity and has magnitude given by
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equation (1). We ignore the buoyant force on the ball from theair because that force is small (∼ 1.5% of the ball’s weight),

and it is essentially accounted for when we measure the weight of a ball on a scale.

Taking thex axis to point along the horizontal and they axis to point vertically upward, Newton’s second law reduces

to

ẍ = −β v CD ẋ (2)

and

ÿ = −β v CD ẏ − g , (3)

whereβ = ρA/2m, v =
√

ẋ2 + ẏ2, and a dot signifies one total time derivative. For the Brazuca ball,β = 0.0527 m−1;

for the Jabulani ball,β = 0.0521 m−1. The difference inβ values is due to the Jabulani ball’s mass being 1.15% larger

than the Brazuca ball’s mass.

We numerically solve equations (2) and (3) with appropriateinitial conditions using a fourth-order Runge-Kutta

algorithm.12 For the speed-dependentCD in equations (2) and (3), we stay as true to the experimental data as possible

and use linear interpolation between data points. For thosereaders who wish to create their own trajectories, but desire an

analytic equation forCD, we offer13,14

CD = a +
b

1 + e[(v−vc)/vs]
, (4)

wherea, b, vc, andvs are fitting parameters. For the Brazuca ball:a = 0.187118, b = 0.260996, vC = 12.9084 m/s, and

vs = 0.717838 m/s. For the Jabulani ball:a = 0.163643, b = 0.306765, vC = 17.3015 m/s, andvs = 1.61952 m/s.

Data-fitting curves using equation (4) are shown in Figure 3.We note that differences between trajectories using a linear

interpolation scheme and equation (4) are small enough to have no influence on the conclusions we reach in this paper.

We first analyze a power shot taken 20 m from the goal, perhaps from a free kick. The ball is kicked with an initial

speed of 30 m/s (67.1 mph) at an angle of10◦ above the horizontal. Figure 6 shows model trajectories forthe power-shot

case. Because ball speeds throughout the trajectories are all super-critical in this power-shot case, the Brazuca ball’s CD is

about 20% larger than the Jabulani ball’sCD. Compared to the Brazuca ball, the Jabulani ball gets to the goal in about 14

ms less time (0.737 s vs 0.751 s), and passes through the goal plane about 6.8 cm higher (1.006 m vs 0.938 m) and 3.6%

faster (25.09 m/s vs 24.21 m/s). We do not see large enough differences between the two trajectories, especially given what

we see in Figure 6, to postulate that goal keepers will noticemuch difference between power shots taken in 2014 and those

taken in 2010.

Goal keepers may, however, notice differences in the next shot we consider. Suppose the ball is kicked 20 m from the

goal at an intermediate speed of 20 m/s (44.7 mph). To pass through the goal plane at a reasonable height, we need to

increase the launch angle from the10◦ power-shot case to20◦. Figure 7 shows model trajectories for the intermediate-speed

case. Considering all speeds throughout the trajectories,the Brazuca ball never quite gets into the critical region shown in

Figure 3, meaning itsCD does not change much. The Jabulani ball, however, spends itsentire flight in the critical region,

meaning itsCD increases as its speed decreases. Consequently, compared to the Jabulani ball, the Brazuca ball gets to

the goal plane in 93 ms less time (1.168 s vs 1.261 s), and passes through the goal plane about 57 cm higher (0.965 m vs

0.393 m) and 17.7% faster (16.46 m/s vs 13.98 m/s). Given morethan half a meter height difference and nearly 18% speed

difference, we postulate that goal keepers will notice a difference between intermediate-speed shots in 2014 comparedto

what they saw in 2010.

Including knuckle-ball effects serves only to increase thedifferences discussed above. At 20 m/s, the Brazuca ball feels

a drag force of about 1.7 N, whereas the Jabulani balls feels a2.2-N drag force. Figure 4 shows that the lift and drag forces

on the Jabulani ball are comparable, or even larger, than thedrag force it experiences. At 30 m/s, the Brazuca ball has a

4.0-N drag force on it; the Jabulani balls feels 3.3 N of drag force. Although Figure 5 shows that those drag forces are

comparable to the lift and side forces each ball experiences, the Jabulani ball has the greater chance for more erratic flight.
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5. Conclusions

Our wind-tunnel experiments show that the Brazuca ball has asmaller critical speed than that of the Jabulani ball. The

difference is large enough that intermediate-speed kicks should exhibit noticeable changes in flight patterns for players who

participated in the World Cup in both 2010 and 2014. Our computer trajectories for launch speeds at 20 m/s at a distance

of 20 m from the goal suggest that goal keepers will see the ball crossing the goal plane more than a half meter higher

in 2014 compared to balls hit in 2010. Power shots at high speeds, however, should not have noticeable differences in

2014 compared to what players saw in 2010. There is not enoughdifference in the super-critical drag coefficients between

Brazuca and Jabulani balls to lead to significantly different power-shot trajectories.

Because of the ball’s reduced critical speed, goal keepers are likely to notice a significant reduction in erratic flight in

the 2014 World Cup compared to the 2010 World Cup. The Brazucaball’s lower critical speed should give it more stable

flight compared to the Jabulani ball.

We have tested and modeled only balls without spin. Our next set of wind-tunnel experiments will determine lift

coefficients for spinning balls. Adding lift, also known as the Magnus force, to the trajectory model is trivial. A future

publication will report lift coefficients and compare three-dimensional trajectories between balls used in the World Cup in

2010 and 2014.
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Fig. 1. Adidas Brazuca soccer ball mounted on stainless steel rod in preparation for wind-tunnel experiment.
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Fig. 2. The two orientations we used to study knuckle-ball effects.
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Fig. 3. Wind-tunnel experimental drag coefficient results for the Brazuca and Jabulani balls. The fitted curves come from equation (4).
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Fig. 4. Lift and side forces at an air speed of 20 m/s (44.7 mph) for the orientations shown in Figure 2.
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Fig. 5. Lift and side forces at an air speed of 30 m/s (67.1 mph) for the orientations shown in Figure 2.
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Fig. 6. Computational trajectories for Brazuca and Jabulani balls kicked 30 m/s (67.1 mph) at an angle of10
◦ above the horizontal. The

goal plane is 2.44 m (8 ft) high.
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Fig. 7. Computational trajectories for Brazuca and Jabulani balls kicked 20 m/s (44.7 mph) at an angle of20
◦ above the horizontal. The

goal plane is 2.44 m (8 ft) high.


