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Mapping the human footprint from satellite measurements in Japan 

 

Abstract 

Due to increasing global urbanization and climate change, the quantification of 

“human footprints” has become an urgent goal in the fields of biodiversity 

conservation and regional environment management. A human footprint is defined as 

the impact of a particular human activity on the Earth's surface, which can be 

represented mainly by impervious surfaces (related to industry and urbanization) and 

cropland (related to agriculture). Here we present a method called sorted temporal 

mixture analysis with post-classification (STMAP) for mapping impervious surfaces 

and cropland simultaneously at the subpixel level to fill the demand for precise human 

footprint information on a national scale. The STMAP method applies a four-

endmember sorted temporal mixture analysis to provide the initial fractions of 

evergreen forests, deciduous forests, cropland, and impervious surfaces as a first step. 

Endmembers are selected from the sorted temporal profiles of the MODIS-normalized 

difference vegetation index (NDVI), as guided by a principal component analysis. 

The yearly maximum land surface temperatures and averaged stable nighttime light 

are then statistically analyzed to provide the thresholds for post-classification to 

further separate cropland from deciduous forest and bare land from impervious 

surface. As the four outputs of STMAP, the fractions of forest, cropland, impervious 

surfaces and bare land are derived. We used the reference maps of impervious 

surfaces and cropland obtained from the Landsat/TM and ALOS precise land-

use/land-cover map at the subpixel level to evaluate the performance of the proposed 

method, respectively. Historical satellite images with high spatial resolution were 

used to further evaluate the cropland results derived with the STMAP method. The 
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results showed that the STMAP method has promising accuracy for estimating 

impervious surfaces and cropland in Japan. The root mean square errors obtained with 

the STMAP method were 6.3% for the estimation of impervious surfaces and 9.8% 

for the estimation of cropland. Our findings can extend the applications of remote 

sensing technologies in ecological research and environment management on a large 

scale. 

 

Keywords 

Human footprint; impervious surface; cropland; temporal mixture analysis; MODIS; 

NDVI time series 
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1. Introduction 

Two of the core issues in ecology are the conservation of biodiversity and the 

improvement of ecosystem services in the context of global climate change (Dawson 

et al., 2011). With the global population exceeding 7 billion, massive human activity 

has become a leading driver affecting the ecosystem. There are few studies focusing 

on the quantitative impact assessment of human activity as it affects biodiversity on a 

regional scale, although scientists have already realized the key role human activity 

plays in ecosystems (Loreau et al., 2001). One reason may be that the estimation of 

human activity on a regional scale is one of the biggest challenges that ecological 

scientists are facing. 

Satellite remote sensing techniques, which have the inherent ability to monitor 

spatial and temporal information on the Earth's surface, may provide the means by 

which to effectively analyze the impact of human activity on ecosystems on a regional 

scale (Kerr and Ostrovsky, 2003). Human footprints, defined as the impressions of 

human activity on the Earth's surface, can be analyzed using satellite images. Previous 

studies on urban remote sensing and agricultural remote sensing have built a scientific 

basis for quantifying human footprints. 

An impervious surface (or an artificial surface) is a major human footprint 

made on the Earth's surface during the urbanization process (Irwin and Bockstael, 

2007; Sutton et al., 2009). The quantification of impervious surfaces is one of the 

most widely examined topics in urban remote sensing (Weng, 2012), because 

impervious surface coverage is not only an indicator of the degree of urbanization, but 

also a major indicator of the impact of urbanization on water resources and the natural 

ecosystem (Arnold and Gibbons, 1996; Schueler, 1994). An impervious surface 

generally results in spectral heterogeneity on a scale comparable to the sensors' spatial 
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resolution, which limits the utility of conventional hard classification methods (Small, 

2001). Therefore, many unmixing methods based on spectral information have been 

developed to overcome this limitation. 

The most typical method is the spectral mixture analysis (SMA) based on the 

Vegetation-Impervious-Soil (V-I-S) model (Ridd, 1995). In the V-I-S model-based 

SMA, there are several endmembers (pure materials) which represent the land cover 

type, i.e., vegetation, areas of impervious surface, and soil. Wu and Murray (2003) 

succeeded in extracting the impervious surface fraction by using the data for the 

vegetation, impervious surface (low albedo and high albedo), and soil endmembers. 

Lu and Weng (2006) improved this method by adding the information of land surface 

temperature to filter out the bare soil with high albedo. Normalization (Wu, 2004) and 

a multiple-endmember solution (Powell et al., 2007) were also applied to enhance the 

SMA method by reducing the endmember variability. 

In addition to SMA, there are other solutions that were developed to estimate 

impervious surfaces on an urban or drainage basin scale, such as considering 

impervious surfaces as a complement of the vegetation distribution (e.g., Bauer et al., 

2007; Carlson and Arthur, 2000), or calculating impervious surfaces using a 

regression approach (e.g., Elvidge et al., 2007), an artificial neural network (ANN; 

e.g., Weng and Hu, 2008; Hu and Weng, 2009), or an object-based image analysis 

(OBIA; e.g., Benz et al., 2004; Hu and Weng, 2010; Hu and Weng, 2011). More 

details are provided in the review by Weng (2012). However, on the national or 

regional scale, the methods used are still inadequate to accurately determine the 

amounts of impervious surface, due to the fact that low temporal resolution (16-day) 

and small swath width (185 km) of Landsat-style data limit the frequency of updating 

(Xian and Homer, 2010). 
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To estimate the impervious surface on a national scale, Yang et al. (2012b) 

developed a sorted temporal mixture analysis (STMA) by using rearranged temporal 

profiles of the normalized difference vegetation index (NDVI) to unmix the pixels. 

Similar to other methods, one remaining problem with the STMA in the Yang et al. 

(2012b) study was that impervious surface and bare land could not be distinguished 

due to the similarity between the temporal profiles of those two land cover types 

(Yang 2012b). On the other hand, as an advantage of STMA, the cropland fraction 

can also be estimated simultaneously, which extends the possible applications of 

STMA to the field of agricultural remote sensing. 

Agriculture is one of the most important human enterprises on the Earth's 

surface (Vitousek et al., 1997). In remote sensing, an agricultural human footprint can 

be quantitatively described as cropland. The precise estimation of cropland is a central 

topic of agricultural remote sensing in studies of food security (Lobell et al., 2008) 

and the global carbon and nitrogen cycle (Robertson et al., 2000). It is difficult to 

quantify cropland versus other vegetation types by using Landsat-style images, 

because of the limitations caused by spectral similarity and low temporal resolution. 

Instead, satellite images with high temporal resolution are widely used to 

analyze cropland spatially (Brown et al., 2012; Moran et al., 1997; Quarmby et al., 

1992; Sakamoto et al., 2005), since those images can capture the identical phenology 

of cropland despite their low spatial resolution (250 m – 1 km). Therefore, to 

overcome the spatial resolution limitation of such images, researchers apply unmixing 

to precisely extract the fraction information of cropland at the sub-pixel level (Lobell 

and Asner, 2004; Oleson et al., 1995; Ozdogan, 2010). 

Unfortunately, when unmixing is applied to high-temporal-resolution images 

on the national or regional scale, the phenological profiles of the same vegetation in 
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different geographic locations can shift along the time axis due to the climatic 

conditions. This problem was not prominent in previous studies that focused on local 

croplands (De Jong et al., 2011; Lobell and Asner, 2004; Oleson et al., 1995; 

Ozdogan, 2010; Verbesselt et al., 2010). STMA solves this problem through a sorting 

process (i.e., the rearrangement of NDVI temporal profiles from minimum to 

maximum according to the values of NDVI) and has proven to be effective to reduce 

the endmember variability (Yang et al., 2012b). 

As a follow-up study, Yang et al. (2012a) tested the STMA to quantify the 

subpixel land covers by using supervised endmembers, and they reported an 

underestimation of cropland, caused mainly by the similarity between the temporal 

profiles of deciduous forest and cropland. Consequently, there remains a need for an 

efficient method that can precisely estimate both impervious surface and cropland, 

both of which represent the human footprint. 

To fill the demand for precise impervious surface and cropland products on a 

national scale, we present an STMA with post-classification (STMAP) method for 

mapping remotely detectable human activities (i.e., impervious surface and cropland 

areas) in Japan. This method contains a four-endmember STMA model and a post-

classification process that regroups the fractions to improve the accuracy. In Section 2, 

the required datasets are described. STMA is extended to a four-endmember model 

(evergreen forest, deciduous forest, cropland and impervious surface) in Section 3.1. 

In Section 3.2, a post-classification process using the yearly maximum land surface 

temperature and stable nighttime light regroups the initial fractions into forest, 

cropland, impervious surface and bare land at the sub-pixel level. The accuracy of the 

impervious surface and cropland estimates by STMAP are assessed by comparing 

them to the local reference data in Japan (Section 3.3). The fraction maps for 
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impervious surface and cropland are shown and evaluated in Section 4. In Section 5, 

we discuss the results and implications, and present the general conclusion of this 

study.  

 

2. Data processing 

There are three types of satellite images included as inputs to be examined by the new 

method. The first type is the NDVI temporal profile from MODIS (the Moderate 

Resolution Imaging Spectroradiometer), which provides temporal information about 

the land surface. The second is the land surface temperature (LST) from MODIS, 

which is used in post-classification as a filter for impervious surface and cropland. 

The third type of satellite image is nighttime light from DMSP-OLS (the U. S. Air 

Force’s Defense Meteorological Satellite Program–Operational Linescan System), 

which is also used in post-classification as a filter for impervious surface. The final 

result identifying impervious surface is assessed using three reference maps of 

impervious surface made from Landsat images, and cropland is assessed according to 

the ALOS precise land-use/land-cover map (ALOS LULC map, 2013) in Japan, 

produced by the Earth Observation Research Center (EORC) of the Japan Aerospace 

Exploration Agency (JAXA). 

The MODIS 16-day vegetation index (VI) products (MOD13Q1; spatial 

resolution: 250 m) covering the four main islands of Japan (tile numbers: h27v04, 

h28v04, h28v05 and h29v05; Fig. 1) in 2001, 2006, and 2011 were downloaded from 

NASA's Earth Observing System Data and Information System (EOSDIS). The nadir-

adjusted NDVI temporal profiles (23 elements in total for one year) with pixel 

reliability were extracted. The NDVI temporal profiles were further smoothed to 

improve the data quality by using a Savitzky-Golay filter-based method (Chen et al., 

8 
 



2004). This method is based on the assumptions that the NDVI temporal profiles 

follow the phenology of vegetation, and that clouds or poor atmospheric conditions 

usually depress NDVI values. This method has been proved to be effective to smooth 

out noise in NDVI temporal profiles, specifically the noise caused by cloud 

contamination and atmospheric variability (Chen et al., 2004). 

There are two main parameters used in the Savitzky-Golay filter: one is the 

degree of the polynomial function (d), and the other is the local window size for the 

smoothing calculation (w). In this study, the default values of d=3 and w=4 were used. 

The yearly maximum LST values were calculated from MODIS 8-day LST 

measurements (MOD11A2; spatial resolution: 1 km) in 2001, 2006 and 2011. Three 

images of averaged stable DMSP-OLS nighttime light in 2001, 2006, and 2010 

(F152001, F162006 and F182010; spatial resolution: 1 km) were downloaded from 

the National Geophysical Data Center (NGDC) of the U.S. National Oceanic and 

Atmospheric Administration (NOAA). The yearly maximum LST values and 

averaged stable nighttime light were resampled (using the nearest neighbor method) 

to 250 m to match the spatial resolution of the NDVI temporal profiles. 

To determine the thresholds of LST and nighttime light for cropland, we used 

the national actual vegetation map (published by the Natural Conservation Bureau of 

the Ministry of the Environment of Japan, based on the latest National Survey on the 

Natural Environment (the Green Census), conducted from 1993 to 1998) to obtain 

detailed information about local vegetation types in Japan. To fit the needs of this 

study, the actual national vegetation map was reclassified into 10 classes: alpine 

scrub/snow patch (0.3%), subalpine needle leaf forest (5.1%), evergreen needle leaf 

forest (22.5%), deciduous needle leaf forest (3.7%), evergreen broadleaf forest 

(25.6%), deciduous broadleaf forest (16.7%), wetland (0.4%), grassland (3.0%), 
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bamboo (0.1%) and crop field (16.5%). The percentages in parentheses are the total 

coverage. After excluding the roads and buildings (using a map provided by the 

Geospatial Information Authority of Japan), this modified vegetation map was 

converted from vector to raster format (using the area prior method) with a spatial 

resolution of 250 m. 

Three Landsat-5 TM images covering Sapporo City (Hokkaido Prefecture, 

North Japan) on July 31, 2007, the Kanto Plain (East Japan) on July 11, 2000 and 

central Kagoshima Prefecture (Southwest Japan) on February 13, 2000 (Fig. 1) were 

used to generate the reference impervious surface fraction map for accuracy 

assessment. The impervious surface fraction was generated by the pre-screened and 

normalized multiple endmember spectral mixture analysis (PNMESMA) method 

(Yang et al., 2010). In the PNMESMA method, pre-screening of pure vegetation 

pixels, the normalization process and multiple endmember solutions are combined to 

reduce the endmember variability and improve the accuracy. Validation by using 

aerial photographs (with a spatial resolution of 0.5 m) proved that the estimation error 

of PNMESMA is 5.2%, and no obvious underestimation or overestimation occurs 

(Yang et al., 2010). 

The reference fraction maps of impervious surface in 2000 (Kanto Plain and 

Kagoshima Prefecture) and 2007 (Hokkaido Prefecture) were used to assess those 

fraction maps from MODIS in 2001 and 2006, respectively. This is because Landsat 

images were not available for 2001 and 2006 in our study areas. The land use/cover 

changes between 2000 and 2001 as well as 2006 and 2007 are ignored.  

A reference fraction map of cropland was generated from an ALOS LULC map. 

The ALOS LULC map was produced by using multi-temporal ALOS/AVNIR-2 

images with auxiliary data such as a digital elevation model, ALOS/PALSAR images, 
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Terra/MODIS NDVI time series and road maps in Japan. It has a spatial resolution of 

50 m, and has nine classes (water, urban area, paddy field, plowed field, grass, 

deciduous forest, evergreen forest, bare land, snow/ice). The total accuracy of the 

ALOS LULC map is 88.1% compared to the statistical data that provide the total 

coverage of the current land use for each prefecture of Japan (published by the 

Ministry of Internal Affairs and Communications [MIC] in 2009). The current version 

(ver.12.08) was downloaded, and the classes of paddy field and plowed field were 

merged as cropland with a user accuracy of 87.5% (assessed using approx. 2500 

random samples in Japan). Reference fraction maps of impervious surface and 

cropland were re-sampled (pixel-aggregated) to 250 m to match the spatial resolution 

of the NDVI temporal profiles. 

 

3. Methodology 

3.1. Development of a four-endmember sorted temporal mixture analysis 

Temporal mixture analysis (TMA), which is algebraically identical to spectral mixture 

analysis (SMA) but uses temporal profiles instead of electromagnetic spectra, is 

another mixture analysis technique to estimate the fraction of each endmember based 

on the different temporal characteristics of the endmembers (Piwowar et al., 1998). 

For a given pixel, a temporal profile (ρmix) can be unmixed by using a constrained 

linear mixture model as follows: 

∑ =
+×=

N

i iimix NDVIfNDVI
1

ε                                        (1) 

∑ =
=

N

i if1
1, 0≥if                                                     (2) 

where NDVImix is the temporal profile of the NDVI of the target pixel, NDVIi is the 

temporal profile of the NDVI of endmember i, fi is the fraction of endmember i, and ε 

is the residual representing the model error. In this study, the fraction of each 
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endmember was obtained using the constrained_min function in IDL 5.0 (Interactive 

Data Language; Exelis Visual Information Solutions Inc., Boulder, CO). 

To reduce the endmember variability in TMA, Yang et al. (2012b) proposed 

the use of a sorted NDVI temporal profile (i.e., rearranging the NDVI temporal 

profiles from minimum to maximum according to the NDVI values) instead of the 

original one. The variability of NDVI temporal profiles within each vegetation 

endmember could be greatly reduced through the sorting process. This is because the 

NDVI temporal profiles within the same vegetation endmember have similar shapes 

but different time phases due to the different climatic conditions in different regions 

of Japan. 

In addition, Yang et al. (2012b) found that the standard deviations in the high-

NDVI zone are significantly smaller than those in the low-NDVI zone for all 

vegetation types, and thus NDVI temporal profiles in the high-NDVI zone have the 

potential to be summarized as an endmember with low variability. Therefore, the last 

six maximum NDVI values in the sorted NDVI temporal profiles were selected to 

further reduce endmember variability (Yang et al., 2012b). To distinguish between the 

use of the original and sorted NDVI temporal profiles in the TMA, the latter was 

called STMA (sorted temporal mixture analysis) in the present study. Details of the 

STMA can be found in Yang et al. (2012b). 

Compared to the previous version of STMA in Yang et al. (2012b), two 

improvements were made in the present study. First, the analysis period was extended 

from the last six maximum NDVI values to the last 12 maximum NDVI values in a 

sorted temporal profile. This improvement allows the separation of deciduous forest 

from evergreen forest by using their different temporal characteristics. Second, the 

number of endmembers was increased from three (forest, cropland, and impervious 
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surface) to four (evergreen forest, deciduous forest, cropland, and impervious surface) 

based on the first improvement. The separation of deciduous forest from evergreen 

forest was done because some cropland and deciduous forests were often 

misestimated as the other and thus further refinements were necessary (Yang et al., 

2012a). 

We carried out a principal component analysis (PCA) for the last 12 maximum 

NDVI values in sorted NDVI temporal profiles to guide endmember selection in the 

image. Figure 2 shows the feature spaces of the first three principal components (PCs) 

representing 99.6% of the variance in the sorted NDVI temporal image. Four 

endmembers were identified in the feature spaces of PC1 versus PC2 (Fig. 2a) and 

PC1 versus PC3 (Fig. 2b), respectively. 

The temporal profiles of selected endmembers are shown in Figure 3. It can be 

seen that even when the NDVI temporal profiles were sorted, the phenological 

characteristic of each endmember could still be maintained. For example, the NDVI 

temporal profile of cropland showed a slowly increasing trend compared to that of 

deciduous forest even in the high-NDVI zone, whereas the NDVI temporal profiles of 

the evergreen forests and impervious surface showed almost no change in the high-

NDVI zone. The initial fraction information for any given pixel is calculated by Eq. 1 

using the constraints of Eq. 2. 

 

3.2. Post-classification 

According to our previous work (Yang et al., 2012a), due to the similar NDVI 

temporal profiles between bare land (e.g., soil, rock, desert, etc.) and impervious 

surface as well as between cropland (due mainly to the plowed field) and deciduous 

forest, some estimation errors will occur if only the STMA was used to estimate the 
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fractions of impervious surface and cropland. Therefore, a post-classification 

approach is needed to further reduce the estimating errors between cropland and 

deciduous forest and between impervious surface and bare land. 

In the post-classification, two additional datasets that are widely used in human 

activity-related researches were employed. The first is the LST. Nemani and Running 

(1997) reported that cropland can be effectively separated from forest based on the 

yearly maximum LST, since the higher aerodynamic resistances of crops suppress 

detectable heat transfer, resulting in higher LSTs. The second dataset is the nighttime 

light, which is used to filter bare land from the impervious surface fraction. Nighttime 

light can be used to monitor human settlements (Croft, 1973) and impervious surfaces 

(Elvidge et al., 2007) based on the fact that most of the nighttime lights are from 

human settlements (Elvidge et al., 1999). 

The threshold selections for post-classification were based on the statistical 

analysis results (Figs. 4, 5). A vegetation map published by the Natural Conservation 

Bureau of the Ministry of the Environment of Japan (described in Section 2) was used 

to assist with the statistical analysis. The values (from lower to upper limit, 5%, 25%, 

50%, 75%, and 95%) of LST and nighttime light for the 10 main vegetation types in 

Japan are shown in Figures 4 and 5, respectively. We selected the value of yearly 

maximum LST for cropland for the 5th percentile (i.e., 299 K) as the threshold to 

correct estimation errors in cropland; that is, if a pixel was estimated with a non-zero 

fraction of cropland but the yearly maximum LST was less than 299 K, the estimated 

cropland fraction should be modified as the fraction of forest, and the cropland 

fractions should be reset as zero. 

This is because only a few cropland pixels with a yearly maximum LST 

smaller than 299 K can be found from Figure 4. We selected another value of yearly 
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maximum LST for deciduous forest for the 95th percentile (i.e., 304 K) as the 

threshold to correct the estimation errors in deciduous forest; that is, if a pixel was 

estimated with a non-zero fraction of deciduous forest but the yearly maximum LST 

was larger than 304 K, the estimated fraction of deciduous forest should be modified 

as the fraction of cropland, and the fraction of deciduous forest should be reset as zero. 

This is because only a few forest pixels with a yearly maximum LST larger than 304 

K can be found from Figure 4. However, we found that if the yearly maximum LST 

exceeded 310 K, the impervious surface area (ISA) was the dominant component of 

the pixel, and then it was difficult to regroup the deciduous forest and cropland in this 

pixel. Therefore, the modification between deciduous forest and cropland should not 

be carried out if the yearly maximum LST is larger than 310 K. 

Since the NDVI temporal profiles were used in the mixture analysis in this 

study, it is difficult or impossible to separate bare land from impervious surface, and 

thus the analysis sometimes results in a slight overestimation of the ISA. To address 

this problem, we used the yearly averaged nighttime light data. It is assumed that if a 

pixel has a larger estimated ISA fraction but lower yearly averaged nighttime light, 

the estimated ISA fraction should be modified as the fraction of bare land, and the 

ISA fraction should be reset as zero. 

From Figure 5, it can be seen that the digital numbers (DNs) of the yearly 

averaged nighttime light in vegetation areas are almost all smaller than 15. The few 

exceptions, especially in cropland, probably arise because these pixels are in or close 

to urban areas. In addition, by examining the estimated ISA fraction around Mount 

Fuji, we found that all of the investigated pixels had an estimated ISA fraction larger 

than 30%. We therefore selected the threshold of the ISA fraction as 30% and that of 
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the DN of yearly averaged nighttime light as 15 to correct the estimation errors in the 

ISA fraction. 

Figure 6 is the flowchart of the STMAP method. Four endmembers (evergreen 

forest, deciduous forest, cropland and impervious surface) are selected from the sorted 

NDVI time series, guided by a principal component analysis. The initial fraction of 

each endmember is calculated via a sorted temporal mixture analysis. With the 

threshold values determined by yearly maximum LSTs and averaged stable nighttime 

light, the post-classification is conducted in four steps: (1) if the LST is smaller than 

299 K, the fractions of evergreen forest, deciduous forest, and cropland are merged to 

be that of forest, and the impervious surface fraction is classified as that of bare land; 

(2) if the LST is between 304 and 310 K, the fraction of evergreen forest is classified 

as that of forest, and deciduous forest and cropland are merged as cropland, and 

impervious surface is kept as it is; (3) if the DN of nighttime light is not larger than 15 

but the impervious surface fraction is not smaller than 30%, the fractions of evergreen 

forest and deciduous forest are merged to be that of forest, the cropland is kept as-is, 

and impervious surface is classified as bare land; (4) otherwise, the fractions of 

evergreen forest and deciduous forest are merged to be that of forest, and cropland 

and impervious surface are maintained as-is. After the post-classification, four final 

fractional results—i.e., the results for forest, cropland, impervious surface, and bare 

land—are determined. 

 

3.3. Accuracy assessment 

We assessed the accuracy of the STMAP method by comparing its results to the 

reference maps of the Kanto Plain, Sapporo City, and central Kagoshima Prefecture. 

These three areas were chosen because Tokyo is the largest city in the Kanto Plain, 
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and Sapporo is the largest city in northern Japan, and each city has large areas of 

surrounding cropland. Kagoshima City in central Kagoshima Prefecture is a relatively 

small city surrounded by a rural area in southwestern Japan. 

First, each reference map and corresponding fraction map estimated from 

MODIS data were evenly segmented into 10 × 10 meshes; a sampling window with a 

size of 1 km × 1 km at the center of each mesh was then extracted for the accuracy 

assessment. Therefore, a total of 100 samples was obtained for each place (i.e., Kanto 

Plain, Sapporo City, and Kagoshima City). After excluding the sampling windows 

that probably included a small water area or cloud contamination, there were 33, 68, 

and 36 sampling windows left for assessing the impervious surface in central 

Kagoshima Prefecture, the Kanto Plain, and Sapporo City, respectively. A 1 km × 1 

km sampling unit (4 × 4 MODIS pixels) was used to reduce the geometric correction 

errors associated with the different data sources. 

Three types of error measurement, i.e., root mean square error (RMSE) (Eq. 3), 

systematic error (SE) (Eq. 4), and mean absolute error (MAE) (Eq. 5), were employed 

to evaluate the accuracy of STMAP: 

 

∑ −=
=

M

j
MjrefjestRMSE XX1

2)( ,,
                                            (3) 

 

∑ =
−=

M

j jrefjest MSE XX1 ,, )(                                               (4) 

 

∑ =
−=

M

j jrefjest
MMAE XX1 ,,

                                           (5) 

 

where Xest,j is the estimated fraction of the impervious surface or cropland from the 

MODIS data and Xref,j is the referenced data in the sampling window j. M is the 
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number of sampling windows for validation (a total of 137 for the impervious surface 

and 300 for cropland). 

 

4. Results 

The STMAP method quantified the subpixel fractions of forest, cropland, impervious 

surface, and bare land. Figure 7a shows the spatial distribution map of the impervious 

surface, which represents urban human footprints in Japan. The largest 10 cities 

ranked by the population data in 2010 (published by the Statistics Bureau, MIC) are 

marked. A large fraction of impervious surface is distributed mainly in large cities; a 

medium fraction of impervious surface is found in small cities and rural areas; and 

forest area, the largest land cover type in Japan, has an extremely low or no fraction 

of impervious surface. 

The fraction map of cropland estimated in this study, which represents 

agricultural human footprints, is shown in Figure 7b, with the top 12 prefectures 

having the largest cropland (published by the Statistics Bureau, MIC in 2010). A high 

fraction of cropland is distributed mainly in northern and eastern Japan, where more 

paddy fields and plowed fields are located than in southern and western Japan; a 

medium fraction of cropland is found in the rural area, along with a medium fraction 

of impervious surface. There is a low or no fraction of cropland in large cities or 

forested areas. These results suggest that the STMAP method correctly captured the 

spatial distribution of remotely sensible human footprints visually. 

We assessed the accuracy of the STMAP method by comparing its results to 

reference maps of impervious surface and cropland, respectively. Figure 8a is the 

accuracy assessment of impervious surface estimated by STMAP. The Kanto Plain 

and Sapporo City have more assessment windows with high impervious surface 
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coverage than central Kagoshima Prefecture because of the comprehensive 

urbanization. The estimate of impervious surface by STMAP has no obvious 

underestimation or overestimation in any of these three locations, and the RMSE is 

0.063 in total. 

Figure 8b shows the accuracy assessment of the cropland made by using the 

ALOS LULC map as a reference. Since there is a lot of forest area coverage in the 

rural areas of central Kagoshima Prefecture, the assessment windows with high 

cropland coverage are fewer than those in the Kanto Plain and Sapporo City. The 

RMSE of cropland estimated by STMAP was 0.121 in total, which is larger than that 

of impervious surface. This might have been caused by the spatial resolution 

limitation of the ALOS LULC map, whose spatial resolution is 50 m. 

To analyze the error of the ALOS LULC map, we compared three different 

assessment datasets (Fig. 9). Figure 9a–c shows high-spatial-resolution images from 

Google Earth covering three assessment windows (1 km × 1 km) in Sapporo (June 12, 

2012), Kanto (May 29, 2009) and Kagoshima (March 27, 2012); the estimated results 

of %impervious are 16.9%, 23.2% and 13.9%, and those of %cropland are 44.2%, 

68.9%, and 2.6%. By checking historical records in Google Earth, it is found that no 

land cover change occurred in these three assessment windows from 2001 to 2012. 

Figure 9d–f shows the reference maps of the fractional impervious surface made from 

Landsat images for these three windows, and the referenced %impervious values are 

21.3%, 23.4% and 11.2%, respectively. These reference maps made from Landsat 

images capture the distribution of impervious surface accurately at the subpixel level. 

Figure 9g–i shows the ALOS LULC maps for these three sites. Pixels in blue 

are classified as cropland, and pixels in red are classified as urban area. Compared to 

the reference map of impervious surface, the ALOS LULC map has an inherent error 
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when assessing the cropland at the subpixel level, since it is a pixel-based 

classification. Another reason for the errors might be that the accuracy of the cropland 

designation in the ALOS LULC map depends on the available images of the ALOS 

AVNIR-2, whose repeat cycle is 46 days. This causes errors wherever insufficient 

temporal images are obtained (for example, cropland was underestimated in Fig. 9g). 

We also interpreted historical images in Google Earth as a true ground 

reference to assess the cropland estimate by the STMAP method. We extracted 25 

assessment windows that appeared to have overestimated, underestimated or well-

estimated the cropland (filled points in Fig. 8b) for photo interpretation. Figure 10a is 

the result of the assessment for the ALOS LULC map; the RMSE was 0.128 and the 

SE was −0.029 in the assessment by photo interpretation. Figure 10b is the result of 

the assessment for the STMAP method, and the RMSE was reduced to 0.098 from 

0.173 (RMSE of filled points in Fig. 8b) in the assessment by photo interpretation. 

This result confirmed that the error in the accuracy assessment of cropland was partly 

due to the inherent error of the ALOS LULC map. Although flaws exist in the ALOS 

LULC map, it is the only accessible spatial dataset covering all of Japan with both 

high spatial resolution (50 m) and frequency of updating (half a year) to assess 

cropland spatially in Japan. 

 

5. Discussion 

5.1. Advantages of STMA 

Yang et al. (2012b) noted that the STMA has three advantages: (1) it reduces 

endmember variability through the sorting process; (2) cropland can be distinguished 

from forest with the use of the temporal characteristics; (3) investigations of the 

human footprint on a large scale over a long term are made possible. Endmember 
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variability is the most profound source of error in mixture analysis (Somers et al., 

2011). In the STMA, sorting NDVI temporal profiles according to their values 

reduced the effects due to different vegetation phonologies under different 

meteorological conditions (Figs. 2 and 3 in Yang et al., 2012b), and thus small 

endmember variability was obtainable, especially in temporal zones with larger NDVI 

values (i.e., stable temporal zones, Table 1 in Yang et al., 2012b). 

On the other hand, the sorting process has a demerit; that is, it unnecessarily 

enhances collinearity among the endmembers. The degree of correlation among the 

endmembers will strongly relate to the outcome of the unmixing process in terms of 

the error and difference between true and estimated fractions (Van der Meer and De 

Jong, 2000). From Figure 3, it can be seen that there are very high correlations among 

the four endmembers. The variance inflation factors (VIFs) were calculated as 468, 64, 

59, and 764 for evergreen forest, deciduous forest, cropland, and impervious surface, 

respectively. As a rule of thumb, the user should start to become suspicious of the 

results for a VIF larger than 10 (Van der Meer and Jia, 2012). 

However, to further consider the merits and the demerits of the sorting process, 

another metric referred to as the InStability Index (ISI; Somers et al., 2010) was used. 

The ISI is defined as the ratio of the within-class endmember variability to the 

between-class endmember variability. The accuracy of a subpixel fraction estimate 

decreases linearly with increasing variability within endmember classes, and it 

increases linearly with increasing variability among endmembers (Van der Meer and 

Jia, 2012). 

Table 1 shows the ISI values for a two-endmember scenario in each period. It 

can be seen that all ISI values are smaller than 1 except for the two-endmember 

scenario of evergreen forest and deciduous forest. This finding indicates that the 
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sorting process can not only effectively reduce variability within each endmember, 

but also maintain the temporal characteristic of each endmember. Therefore, it can be 

considered that the merit derived from the sorting process is larger than the demerit 

derived from the same process, and thus the method provides acceptable accuracies 

for estimating the fractions of impervious surface and cropland. 

It can also be considered that errors probably occurred in the fraction 

estimations between evergreen forest and deciduous forest because the ISI values 

were larger than 1 for several periods (Table 1).  However, these errors will not affect 

the fraction estimations for impervious surface and cropland, because evergreen forest 

and deciduous forest were finally merged into one forest category (Fig. 6). 

 

5.2. Necessity of post-classification 

Table 2 shows the effects of different steps in post-classification. The first step uses 

LST (i.e., LST < 299 K) to remove overestimations of the fractions of impervious 

surface and cropland, and doing so improves the results slightly (the RMSE is 

reduced from 0.065 to 0.063 and the MAE is reduced from 0.034 to 0.033) for the 

estimation of impervious surface. The second step uses LST (i.e., LST ≥ 304 K and 

LST ≤ 310 K) to add the mis-estimated deciduous forest back to cropland, and doing 

so reduces the RMSE for estimating cropland from 0.132 to 0.122, and from 0.176 to 

0.098 (Fig. 10) for the results assessed by the ALOS LULC map and photo 

interpretation, respectively. 

The third step uses nighttime light to remove the bare land from impervious 

surface, and that seems to have had little effect on the three assessment areas. As 

detailed in Table 2, the second step improves the results of STMA significantly, 

which is consistent with the findings reported by Nemani and Running (1997) in that 
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LST is a critical factor to separate cropland and forest, in addition to the NDVI 

temporal profile. The first and third steps do not cause any obvious improvement, 

which is consistent with the assumption (Yang et al., 2012b) that little bare land exists 

in Japan. 

However, for applying the STMAP method to areas that include large regions 

of bare soil or desert, the improvements will be obvious. The overestimation or 

underestimation of the fraction estimations of impervious surface and cropland is due 

to the similar NDVI temporal profiles between impervious surface and bare land, as 

well as some cropland and deciduous forest. Therefore, the post-classification is 

necessary to further refine the results of fraction estimations by STMA. 

 

5.3. Limitations and recommendations of the proposed method 

Some limitations of the STMAP method are worth noting. The method is based on 

images derived by optical sensors, and thus the impact of weather conditions should 

be considered. Although the filtering and sorting process guarantees the quality of 

temporal data, it still might be difficult to apply the system in some countries with a 

low ratio of good-weather days. In this case, the solution of applying radar data (e.g., 

Lu et al., 2011) could be an alternative. Another limitation of the STMPA method is 

the thresholds used in the process of post-classification. Although the statistical 

thresholds in this study are close to the global thresholds (Nemani and Running, 

1997), we suggest a local investigation before performing the STMAP method if land 

cover/use data are available. 

In the present study, cropland was not further classified as paddy fields and 

plowed fields, since these fields represent agricultural human footprints. The role of 

paddy fields is especially important in the dynamic analyses of nutrition with regard 
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to water quality (Fukushima et al., 2007), because of the unique farming process 

involved. As a future application, we plan to distinguish paddy fields from other 

cropland by classifying the water use at the subpixel level with high accuracy. In 

addition, to quantify the impact of human activity on a regional environment or 

ecosystem, we must determine how to integrate the effects of urban and agricultural 

human footprints into the process of environment and ecosystem assessments. 

 

6. Conclusions 

Here we proposed a sorted temporal mixture analysis with a post-classification 

(STMAP) method to simultaneously estimate the fractions of impervious surface and 

cropland, which represent the human footprints on the Earth’s surface. In the STMAP 

method, the initial fractions of impervious surface and cropland were calculated from 

MODIS time-series NDVI using the sorted temporal mixture analysis (STMA) 

method, and then the initial results were improved through a post-classification based 

on the information of land surface temperature (LST) from MODIS and nighttime 

light from DMSP-OLS. Three datasets (i.e., the fraction of impervious surface from 

Landsat/TM, the cropland fraction from the ALOS LULC map, and the cropland 

fraction from a Google Earth map) were used to validate the performance of the 

proposed method. The results showed that the STMAP method has promising 

accuracy for estimating the fractions of impervious surface and cropland in Japan. 

The RMSEs were 6.3% for the estimation of impervious surface and 9.8% for the 

estimation of cropland. The fractions of impervious surface and cropland on the 

national scale can be further applied to the impact assessment of human activities on 

biodiversity and regional environment management. The results of this study can be 
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expected to broaden the applications of remote sensing technology in ecological 

research and environment management. 
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Tables and Figures  

 

 

Table 2 Comparisons of the estimation accuracies of impervious surface and cropland among different 

methods  

 

STMA: sorted temporal mixture analysis  

STMA + 1st step: STMA with the first step of post-classification process (i.e. LST<299K in Fig. 6) 

STMA + 2nd step: STMA with the second step of post-classification process (i.e. LST≥304K and 

LST≤310K in Fig. 6) 

STMA + 3rd step: STMA with the third step of post-classification process (i.e. DNlight≤15 and 

fimp,0≥30% in Fig. 6) 

STMAP: STMA with whole post-classification process 

RMSE: root mean square error 

SE: system error 

MAE: mean absolute error 

Table 1. InStability Index calculation for a two endmember scenario in each period.
Period No. E-D E-C E-I D-C D-I C-I

12 0.257 0.118 0.077 0.159 0.454 0.445
13 0.462 0.119 0.075 0.162 0.371 0.406
14 0.468 0.122 0.074 0.113 0.233 0.373
15 0.912 0.134 0.074 0.106 0.204 0.325
16 1.477 0.160 0.074 0.083 0.149 0.278
17 6.293 0.192 0.075 0.076 0.136 0.238
18 9.691 0.229 0.075 0.067 0.124 0.197
19 5.716 0.308 0.076 0.064 0.119 0.179
20 6.412 0.340 0.074 0.055 0.115 0.143
21 9.392 0.438 0.073 0.050 0.109 0.133
22 10.558 0.473 0.074 0.042 0.105 0.115
23 6.524 0.537 0.075 0.041 0.104 0.113

average 4.847 0.264 0.075 0.085 0.185 0.246
E: evergreen forest, D: deciduous forest, C: cropland, I: impervious surface

RMSE SE MAE RMSE SE MAE
STMA 0.065 0.015 0.034 0.132 -0.033 0.085
STMA + 1st step 0.063 0.015 0.033 0.132 -0.034 0.084
STMA + 2nd step 0.065 0.015 0.034 0.122 0.026 0.084
STMA + 3rd step 0.065 0.015 0.034 0.132 -0.033 0.085
STMAP 0.063 0.014 0.033 0.122 0.025 0.083

Method Impervious Cropland

29 
 



 

Figure 1: Location of the study area. Four MODIS tiles (h27v04, h28v04, h28v05 and h29v05) cover 

four main islands of Japan. Sapporo City, the Kanto Plain and central Kagoshima Prefecture were 

chosen for accuracy assessment. 
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(a) 

 

(b) 

 

Figure 2: Feature space representations of the first three principal components. Four endmembers are 

found: E- evergreen forest, D- deciduous forest, C- cropland, I- impervious surface. 
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Figure 3: Temporal profiles of endmembers for sorted temporal mixture analysis 
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(a) 

 

(b) 

 

(c) 

 

Figure 4: Summary statistics of yearly maximum land surface temperature for 10 main vegetation types 

in Japan. 1- alpine scrub & snow patch community; 2- subalpine needleleaf forest; 3- evergreen 

needleleaf forest; 4- deciduous needleleaf forest; 5- evergreen broadleaf forest; 6- deciduous broadleaf 

forest; 7- wetland; 8- grassland; 9- bamboo; 10- crop. For each type, the 5%, 25%, 50% (median), 75%. 

95% percentiles and mean value (marked as plus) are shown. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5: Summary statistics of averaged stable nighttime light for 10 main vegetation types in Japan, 

which are the same as those in Fig. 4. For each type, the 5%, 25%, 50% (median), 75%. 95% 

percentiles and mean value (marked as plus) are shown. 
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Figure 6: Flowchart of STMAP. fe, fd, fc,0 and fimp,0 represent the initial fractions of four endmembers 

(i.e., evergreen forest, deciduous forest, cropland and impervious surface) obtained from the sorted 

temporal mixture analysis, respectively. ff, fcrop, fimp and fbare represent the four final results (i.e., 

fractions of forest, cropland, impervious surface and bare land) of STMAP. LST is the yearly 

maximum land surface temperature and DNlight represents the digital number of averaged stable 

nightlight light. 
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(a) 

 

(b) 

 

Figure 7: Distribution maps of impervious surface and cropland. (a) Estimated impervious surface. Top 

10 cities (number is the rank) having the largest population are marked; (b) estimated cropland. Top 12 

prefectures having the largest cropland are marked. 
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(a) 

 

(b) 

 

Figure 8: Accuracy assessment. (a) Accuracy assessment of impervious surface by comparing to the 

referenced maps made from Landsat images; (b) accuracy assessment of cropland by comparing to the 

ALOS LULC map. The points with number are chosen for visual comparison in Fig.9, and the filled 

points are randomly chosen for photo interpretation further in Fig.10. 
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(a) Window example 1          (b) Window example 2          (c) Window example 3 

   

(d) %Impervious = 21.3%       (e) %Impervious = 23.4%        (f) %Impervious = 11.2% 

   

(g) %U = 0.0%, %C = 21.9%  (h) %U = 18.8%, %C = 41.3%   (i) %U = 0.0%, %C = 27.5% 

   

Figure 9: Three examples for visual comparison. a, b, c are the aerial photos for three assessment 

windows around 2011 in Google Earth, respectively; d, e, f are the reference maps of impervious 

surface generated from Landsat images for each window. g, h, i are from ALOS LULC map: the pixels 

classified as crop are in blue and urban in red for each window. 
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(a) 

 

(b) 

 

Figure 10: Accuracy assessment for 25 assessment windows. (a) Twenty-five sampled cropland 

windows referenced from ALOS LULC map are assessed by photo interpretation; (b) Twenty-five 

sampled cropland windows estimated by STMAP are assessed by photo interpretation. Points with 

number of 1, 2 and 3 are the results of window example 1, 2 and 3 shown in Fig. 8 and Fig.9, 

respectively. 
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