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Abstract 

In this study, an upper limit in the solar energy conversion efficiency 

which can be translated to a maximum potential algal yield of a large-scale 

culture is calculated based on the algal productivity model in which light and 

nutrient are made the growth rate limiting factors, and taking the design 

characteristics of the cultivation system into account. Our results indicate 

that for the production of low-cost biodiesel within the limits of the 

wastewater quality standards, that the culturing of high lipid content algae 

within a raceway pond would provide an appropriate solution for 

manufacturing biodiesel from algae. However, due to inefficient sunlight 

utilization and due to the large amount of fertilizer required in raceway 
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ponds, a greater effluent recycle rate would have to be implemented to 

reduce the amount of fertilizer discharge to meet the wastewater quality 

standards and to maximize the attainable productivity of algal biomass.  
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1 Introduction 

A sustainable development cannot be achieved without the support of 

robust energy supplies that are steady, cost-effective and low-hazard. 

Biofuels that can substitute fossil fuels are a hot topic today in many 

countries around the world. Algae as feedstock for biofuels have been highly 

regarded for several decades, due to its high biomass productivity and no 

competition with food supplies (Chisti, 2008; Mata et al., 2010; Sheehan et 

al., 1998). Despite these advantages, production of algae has larger potential 

environmental impacts in energy use, greenhouse gas emissions and water 

use, compared to conventional crops from a life cycle perspective (Clarens et 

al., 2010; Lardon et al., 2009).  

Lardon et al. (2009) and Clarens (2010) et al. have also determined the 

impacts associated with fertilizer demand for algal cultivation according to 

the algae composition and life cycle inventory database, respectively, despite 

there are not many analyses focused on this topic. Their results showed 

fertilizer demand is a critical challenge for algae-derived biofuel due to the 

fact that mass algal cultivation requires significant amounts of nitrogen 
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fertilizer, and production of chemical fertilizer is a principal burden driver of 

greenhouse gas emissions and eutrophication. Utilization of the wastewater 

as nutrient sources and recycling the spent biomass contained nutrients 

were suggested as a way to reduce the fertilizer consumptions and nutrient 

discharges. However, the actual environmental impact of fertilizer discharge 

may be underestimated since the algal culture must be enriched with 

nutrients to be viable for commercial purposes. For instance, the ammonium 

concentrations contained in enrichment media that are suitable for mass 

production of microalgae in large-scale extensive systems are generally 

above 100 mg per liter (Lavens & Sorgeloos, 1996), which can increase the 

fertilizer discharge beyond expected levels.  

To mitigate the environmental impact of the consumption of great 

quantities of energy, anaerobic digestion used for energy recovery from 

microalgae residues after biofuel production was theoretically estimated in 

the studies of Chisti (2008), Sialve et al. (2009) and Heaven et al. (2011). The 

technology for anaerobic digestion using microalgae residues was further 

experimentally investigated and has been proved to be feasible by Ehimen et 

al. (2009; 2011). Harun et al (2011) and Davis et al. (2011) conducted 

techno-economic analyses on the integration of biofuel production systems 

with biogas production. Both of their studies completely assessed the 

processes from algae growth to oil refining and also compared two common 

types of algal cultivation systems, i.e. the raceway ponds and 

photobioreactors (PBRs). Their results underscored that the utilization of 

biogas can not only contribute to cost reduction of algal-derived biofuel, but 
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can also indirectly lower carbon emissions resulting from the consumption of 

energy supplied by a power grid. However, these calculations were 

respectively based on using a given annual yield of algal-derived biofuel. 

In this study, we presents a preliminary attempt to further evaluate the 

simultaneous biofuel production systems with biogas using algae, by 

establishing a detailed modeling method that can more effectively reflect the 

influence of vital factors of nutrient and light on algal growth. 

 

2 Methods 

In this section, an approach to calculation of the production of biofuel and 

biogas from algae in closed cultivation systems is presented. Basing on the 

thermodynamic model, a theoretical attainable algal productivity, as well as 

the yields of biofuel and biogas can be calculated gradually with the given 

available solar irradiation and nutrient loading. Next, to assess the 

environmental impact from nutrient discharge, three scenarios of nutrient 

supply designed for reducing chemical fertilizers use are considered. Also, 

the cases assume that technology improvement is applied in algal cultivation 

are taken into consideration, in order to discuss the possible limitation on 

mass production of algae for biofuels in the future. The scheme of a serial of 

models/calculations is shown as Fig. 1. 

 

2.1 Theoretical maximum yield of algae 

Considering the major environmental factors of light intensity ( I ), 

nutrients ( S ) and temperature (T ), the photochemical conversion of 
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radiant energy into algal biomass growth ( p ) over a period of time, 

following the basic concepts of Shelef et al. (1968) and Goldman (1979), 

can be described as: 

 S a rp E E I S T D      (1) 

where SE  is the total solar irradiation in terms of joules per area per 

time, aE  is the heat of combustion per unit mass of algae, and rD  is the 

overall decay in terms of grams of dry weight (DW) per area per time.  

Goldman (1979) calculated the theoretical maximum yield of 

microalgae by considering physical laws. According to his study, a 

theoretically production rate of 60 g m-2 d-1 was possible. However, it 

should be considered that only 30-40 g m-2 d-1 was practical and that the 

production rate of microalgae was assessed in open ponds. In contrast, 

Weyer et al. (2010) and Zemke et al. (2010) developed similar theoretical 

models for estimating the thermodynamically possible production rates 

of microalgae, focused on projecting annual biodiesel productivity by 

converting available solar energy to algal lipids. They also considered the 

factor in a variety of cultivation systems. Those models employed basic 

physical laws, making the calculations of the theoretical upper limit of 

algae production more robust and variable in different growth locations 

by adjusting the given conditions of solar irradiation. However, the 

cultivation of algae using wastewater was not considered during their 

studies. Thus, attempts have been made to incorporate this issue into the 

models used in this paper, through subtle variation. 
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Ignoring decay and the factor of temperature, the equation of algal 

mass productivity in terms of mass of algae per area of land per time is 

rearranged as follows: 

  S a a PAR sp E E C   (2) 

where   is the sunlight transmission efficiency and a  is the solar 

energy capture efficiency of the microalgae, used to express two phases of 

the transmission of sunlight to the surface of the algal mass and the 

absorption of light by the algae cell. PARC  is the fraction of the solar 

spectrum corresponding to photosynthetically active radiation (PAR). 

Herein, S , representing the factor of limited nutrient supply, is given by 

as: 

 s n S nS K S    (3) 

where nS  is set as a particular limiting nutrient by assuming all 

other nutrients are supplied in excess, and SK  is the half saturation 

constant. 

 

2.2 Model and scenario design 

2.2.1 Scenario design for nutrients supply 

Chlorella vulgaris and Botryococcus braunii, two of the most researched 

microalgae as biodiesel feedstock, were selected as representative species for 

the analysis. Although the composition of the microorganism typically 

changes with the culture conditions, such as nitrogen concentration or salt 
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stress (Brennan & Owende, 2010; Kumar et al., 2010; Lakaniemi et al., 2011; 

Mata et al., 2010; Mulbry et al., 2005), in our study the protein, lipid and 

carbohydrate fraction of the microalgae, based on the reports of Thomas et al. 

(1984) and Illman et al. (2000), were constant for the sake of computational 

convenience and also due to the reason of lack of data.  

With regard to the condition under depletion of important nutrients such 

as nitrogen or phosphorous, nutrient starvation is widely applied in 

microalgal triacylglyceride production as a lipid induction technique. 

However, lipid accumulation in the algal cell attained through 

nitrogen-deficiency, as one of the conclusions that quoted in the literature 

review conducted by Rodolfi et al. (2009), does not increase oil productivity 

due to the higher lipid accumulation usually accompanies more decreases in 

growth rate. Thus, the regardless of nutrient starvation as a practicable 

process does not make a limitation on the assessment of the theoretical 

maximum oil production in this study. However, it should be noted that since 

the variation in chemical composition of algal cell with nutrient loading is 

ignored, a bias may exist in present model for projections of biofuel and 

biogas production despite it should be in a rational range while variation in 

algal biomass concentration with nutrient loading is considered in our 

analysis.  

Lastly, to understand how the proposed closed cycle system will reduce the 

environmental load resulting from excessive nutrients, three nutrients 

supply scenarios were used for the comparison (see Fig. 2.). It was assumed 

that nutrients were available from the following four sources: (i) secondary 
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treated sewage (STS) from sewage treatment plants ( STSS ); (ii) extra inputs 

( inputS ); (iii) the digestate from an anaerobic fermenter ( DIGS ); and (iv) the 

effluent from culture medium after isolating the algal cells ( outS ). In Scenario 

1, the nitrogen requirement was supplied by STS only ( in STSS S ). In Scenario 

2, the nitrogen requirement was supplied with STS, extra inputs and 

digestate ( in STS input DIGS S S S   ).whereas in scenario 3 it was supplied by 

extra inputs and effluent ( in input DIGS S S  ).  

 

2.2.2 Modeling for the closed algal cultivation system 

Based on equation (2), the total annual algal biomass yield ( aY ) using a 

closed cycle system is predicted as follows:  

 a a s a PAR S a
365 365 365

( ) ( ) ( ) ( )
T T T

t t t

Y y t p t A t C E t E A 
  

         (4) 

 s n S n( ) ( ) ( )t S t K S t    (5) 

where aY  is expressed in terms of kg DW of algae a year, ay  is the daily 

yield of algal biomass expressed in terms of kg DW of algae, and A  is the 

algae cultivation area expressed in m2.  

The total concentration of nutrient in the culture medium (i.e. the 

concentration of T-N) was calculated separately for the three scenarios. The 

rate of nutrient change in the medium is given as: 

  in in out out

Rate of change = Consumption + Input Output

           SV t xV F S F S
 

     
 (6) 
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where V  is a unit volume of culture medium,   is the specific rate of 

substrate consumption x  is the biomass concentration in terms of biomass 

per volume and F  is the medium flow rate. In scenarios 1 and 2, where 

continuous culture was assumed to occur, once the culture was in a steady 

state, the rate of change in nutrient concentration would be zero. That is to 

say, to maintain a steady state, the amount of nutrient inputs has to equate 

to the amounts of the nutrients that are consumed by algal biomass and that 

flowed away. Thus, 

         n STS input DIG n 1S t S t S t S t S t       (7) 

However, inputS  and DIGS  are zero in scenario 1 and 

1 1
DIG NH3-N( ) ( )S t y t d V   (8) 

where NH3-Ny  is the theoretical NH3-N recovery from anaerobically 

digested residuals expressed in mg NH3-N of total solids (TS), and d  is the 

ratio of the flow rate to the culture volume and is called the dilution rate. 

Compared with a continuous culture, a closed cultivation system in which 

nutrient-contented effluent is recycled for biomass culture can be regarded 

as a batch culture. Thus, 

S t x     (9) 

According to Tam and Wong (1996), the algal biomass concentration (mg 

L-1) and the average daily nitrogen removal efficiency (mg NH3-N L-1) of C. 

vulgaris under different NH3-N concentrations can be given as follows (see 

Fig. 3.). The average daily nitrogen removal efficiency of microalgae ( NR ) 
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within the range of 1 to 1000 mg NH3-N L-1 is given by: 

0.3779
N n0.5131R S  (10) 

The algal biomass concentration within the range of 10 to 50 mg NH3-N 

L-1 is given by (see Fig. 4 (a)): 

2
n n0.3201 29.12 49.051x S S     (11) 

The algal biomass concentration within the range of 51 to 1000 mg NH3-N 

L-1 is given by (see Fig. 4 (b)): 

2
n n0.0002 0.0848 701.62x S S     (12) 

Assuming that the variation of nutrient concentration due to algal 

assimilation is totally converted into biomass, then: 

1
NR x   (13) 

For a continuous cultivation using recycled effluents, as in scenario 3, 

nutrient replenishment was required after nutrients were assimilated by 

microorganisms to sustain or enhance the biomass production capacity. 

Therefore, by taking effluent recycling rate (q ) into account, 

     n in out 1S t S t qS t    (14) 

Herein, 

         out n nS t S t S t S t x t      (15) 

           in out input DIG1 1 1S t S t q S t S t S t         (16) 

1
DIG NH3-NS y V   (17) 

When the composition of the organic matter and the daily yield of algal 
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biomass ( ay ) are known, it is possible to calculate a theoretical specific 

methane yield associated with a theoretical ammonia release by using the 

formula adapted from Symons and Buswell (1933) (Angelidaki & Sanders, 

2004; Heaven et al., 2011; Sialve et al., 2009). Table 1 shows the theoretical 

methane yields and ammonia concentrations for three types of organic 

compounds. 

 

2.3 Cultivation system geometry and production costs 

Two typical types of algal cultivation systems were discussed in this study; 

raceway ponds and horizontal tubular photobioreactor. The volume and area 

required, as well as energy consumption in the processes from biomass 

cultivation to dewatering, are scaled up or down for the basic case of one 

hectare scale, based on the design of Benemann and Oswald (1996) and 

Tapie and Bernard (1988) (see Table 2. and Table 3., respectively.). 

In addition, the presuppositions for the economic analysis are: (i) a 

continuous supply of free CO2 is available from flue gas, and a small amount 

of organic carbon is assumed to be supplied from recycled medium or digester 

effluent; and (ii) the nutrients required by the algae, notably nitrogen and 

phosphorous, have been assumed to be provided by animal manure. Carbon 

and fertilizer costs have therefore been excluded from the operating costs. 

 

2.4 Cases of improving cultivation technology 

To address the difficulty of developing future algal cultivation systems, 

four cases were used to compare the calculation results: (i) Base Case: 
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current technology of raceway ponds and PBRs; (ii) Case 1: improving the 

technology of raceway ponds; (iii) Case 2: improving the technology of PBRs; 

and (iv) Case 3: highly improving the technology of PBRs. The Base Case was 

based on the literature data. Cases 1 to 3 were based on the assumption that 

cultivation technology has improved (see Table 4.). 

To illustrate the simulation model of algal biomass cultivation using 

closed recycle system, Tsukuba, a city located 65 km north of Tokyo, Japan, 

was selected as a demonstration example because of the moderate climate 

conditions and the average daily solar radiation in this region, which 

approximated to the national average observed in Japan over the last 30 

years. The average daily solar radiation for January to December is between 

8.35 and 17.56 MJ m-2 d-1. In addition, owing to the proposed scenarios in 

which the domestic wastewater was assumed to be an option of nutrient 

sources, nearby Lake Kasumigaura, the second-largest lake in Japan, was 

identified as potential site for providing the nutrients for algal cultivation. 

The average daily T-N concentration among STS from the sewage treatment 

plant of Kasumigaura was 6 mg L-1.  

. 

3 Results and Discussion 

3.1 Algae-to-oil system as tertiary advantage wastewater treatment 

As previously mentioned, it is practicable to grow lipid-rich algae with 

STS from wastewater treatment plants (Doušková et al., 2010; Órpez et al., 

2009; Sawayama et al., 1992). In this study, Scenario 1 was designed to 

assess the feasibility of the idea of a comprehensive approach to energy and 
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water management using algal biotechnology.  

In our view, from an economic perspective, raceway ponds are more 

suitable than PBRs for the cultivation of algae and simultaneously provide 

the tertiary advantage of wastewater treatment. Nevertheless, the 

calculated net production costs of biodiesel from C. vulgaris and B. braunii 

presented the very costly results of ¥2,595 L-1 and ¥1,213 L-1, respectively 

(Case 1). This resulted from a poor harvest of algal biomass caused by the 

nutritional deficiency in STS. The small population of organism also led to 

limitations in their nitrogen removal performance from wastewater. The 

maximum average daily nitrogen removal rates (or uptake rates) of C. 

vulgaris and B. braunii were calculated for scenario 1 to be 0.25 and 0.221 

mg N L-1 d-1, respectively. Both results were found to be lower than the 

experimental results of 1.05 and 0.852 mg N L-1 d-1 for C. vulgaris and B. 

braunii, respectively, as obtained from the studies of Kima and Lingarajua et 

al. (2010) and Sawayama et al. (1992). By converting with the annual yields 

of biomass, the total annual nitrogen uptake by algae was 126 kg N ha-1 yr-1 

for C. vulgaris and 111 kg N ha-1 yr-1 for B. braunii. 

In summary, the results indicated that algal cultivation in which only the 

STS used has a significant effect on the purification of wastewater would be 

ideal. However, if the purpose were for maximizing the bio-energy generation 

and minimizing its production cost, then the function as tertiary advantage 

wastewater treatment would be eliminated because large-scale cultivation 

always requires additional nutrient inputs that are accompanied by nutrient 

discharges from effluents. 
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3.2 Maximum biodiesel productivity and minimum production cost 

Consideration of Cases 2 and 3 allowed for the realization that ideal algal 

productivity would be difficult to achieve under the limitations imposed by 

current algal cultivation technology. A maximum biodiesel productivity of 

119,676 L ha-1 yr-1 was obtained in Case 3 involving the cultivation of B. 

braunii with PBRs at a net production cost of ¥236 L-1. A minimum net 

biodiesel production cost was obtained in Case 1 involving the cultivation of 

B. braunii with raceway ponds, which reduced production costs to ¥193 L-1 at 

an annual biodiesel productivity of 53,854 L ha-1 yr-1. The above results 

provide a clear indication that a lipid-rich algal species would be required to 

be cultured for biodiesel production. Depending on these calculated values of 

biodiesel production costs, the cost with raceway ponds cultivation was 22% 

less than with PBRs. However, owing to the limitation in technology of 

raceway ponds, biodiesel yields in raceway ponds cultivation were almost 

half of that obtained with PBRs cultivation. 

From an energy balance perspective, the results indicated that raceway 

pond cultivation should be used for producing biodiesel from algae, in spite of 

its lower productivity. However, in a country that has small land area such 

as Japan, a massive cultivation using raceway pond technology may not only 

create conflicts over land resources but may also raise the production costs. 

Thus, in such countries, a new PBRs technology requiring less energy usage 

and with a high efficiency of land use would be the key to driving further cost 

reductions. 
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3.3 Minimizing fertilizer use and discharge in biodiesel production 

Given that large-scale cultivation for algae-based biodiesel production not 

only requires a large amount of water and fertilizer usage but also causes 

plenty of fertilizer discharges at the same time, the nutrient-rich effluents 

have to be properly treated.  

According to the latest revision to national wastewater treatment 

standards promulgated by the Ministry of the Environment of Japan, a 

permit average limit for nitrogen of 150 mg L-1 a day was set for agriculture 

wastewater. Considering the reuse of the culture medium as the only way to 

meet the effluent quality standards in this study, the amount of nitrogen 

used and discharged was calculated for scenarios 2 and 3, and were assessed 

according to the following assumptions: (i) the sources of nutrients based on 

priority order of utilization in scenario 2 are STS, digestate from anaerobic 

digestion and extra input; (ii) the sources of nutrients based on priority order 

of utilization in scenario 3 are reclaimed effluent water, digestate from 

anaerobic digestion and extra input; and (iii) if only a given nutrient level 

was reached, then any excessive amounts of nutrients fall into disuse and 

fertilizer discharge would occur. 

Depending on the results of the calculation, the demand for additional 

nitrogen input and the total nitrogen discharge both revealed a trend 

towards decline occurring at a similar rate, with an increase in the ratio of 

the use of reclaimed medium. A greater demand for additional nitrogen input 

and total nitrogen discharge was observed in biodiesel production using B. 
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braunii in comparison to C. vulgaris, resulting from the smaller available 

quantity of digestate encountered using B. braunii in contrast to C. vulgaris. 

This feature of growing these two different strains of algae for oil production, 

however, resulted in a reverse effect in the cases where nutrient levels were 

limited ( nS  is less than 300 mg N L-1) and effluent recycle rates were high 

(greater than 0.7). As shown in Fig. 5., the total nitrogen discharge figures 

from cultivation using C. vulgaris were greater numbers than those 

encountered when using B. braunii because its demands for nutrient supply 

were almost satisfied with reclaimed medium, which resulted in an increase 

in the amounts of disused excessive nitrogen from digestate. 

Under an effluent limitation for wastewater quality of 150 mg N L-1, the 

production of lipids extracted from algal biomass and used for 

manufacturing biodiesel showed a 17% decline compared with projected 

maximum biodiesel production in every case. Associated with the increases 

on culture medium recycle ratio, the production of biodiesel has been 

improved because most of the nitrogen contained in effluent has been reused, 

and therefore, it was permitted to grow algae in the medium with higher 

nitrogen concentration levels, making the cultivation system more effective. 

The variance of volumes experienced between the raceway ponds and 

PBRs creates a fundamental difference in the requirements and discharge of 

fertilizer. Based on the parameters adapted in this study for cultivation 

system designs, when the nitrogen concentration level was set to 1000 mg N 

and there was no effluent to be recycled, the results indicated that 489 to 493 

ton N and 248 to 255 ton N per hectare per year were required as additional 
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nitrogen inputs when using raceway ponds and PBRs, respectively. In 

contrast, the nitrogen discharges were forecasted to be approximately 500 

and 260 ton N per hectare per year for cultivation using raceway ponds and 

PBRs, respectively. 

As the effluent recycle rate was increased to 0.5, as in Case 1 involving the 

culturing of B. braunii in a raceway pond, the demand for additional 

nitrogen input was reduced from 491 to 248 ton N ha-1 yr-1, accompanied by a 

decrease in the discharge of nitrogen from 499 to 251 ton N ha-1 yr-1 and in 

biodiesel production costs from ¥230 L-1 to ¥208 L-1. With the same recycle 

rate of q = 0.5 for Case 3 involving the culturing of B. braunii in a PBR, 

additional nitrogen input was reduced from 252 to 123 ton N ha-1 yr-1. The 

nitrogen discharge was also reduced from 259 to 130 ton N ha-1 yr-1, 

accompanied by a reduction in biodiesel production costs from ¥273 L-1 to 

¥251 L-1 (see Fig. 6.) 

In summary, the results indicate that for the production of low-cost 

biodiesel within the limits of the wastewater quality standards, that the 

culturing of high lipid content algae within a raceway pond would provide an 

appropriate solution for manufacturing biodiesel from algae. However, due to 

inefficient sunlight utilization and due to the large amount of fertilizer 

required in raceway ponds, a greater effluent recycle rate would have to be 

implemented to reduce the amount of fertilizer discharge to meet the 

wastewater quality standards and to maximize the attainable productivity of 

algal biomass. The reuse of the culture medium is an important 

consideration for the large-scale production of algae. Several investigations, 
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including reports by Burlew (1953), Leone (1963) and Kim et al. (2011), have 

demonstrated that the reuse of medium could be accomplished without 

special treatment and that there was no inhibition observed during 

cultivation periods of 16 to 72 days. These results suggest that the reuse or 

recycling of the culture medium is not only a practical procedure for algal 

cultivation, but also an important measure to conserve water and nutrients 

in any application of an algal system in a closed ecological system. 

 

3.4 Opportunities for algal biodiesel production in Japan 

Currently, microalgae are regarded as a suitable alternative feedstock for 

biodiesel production. To achieve their full processing capabilities, recent 

research efforts have concentrated on genetic engineering to identify an algal 

species optimized for high productivity and energy value. In addition, many 

different designs of algal culture systems such as PBRs have been developed 

with the aim of using the most effective and economical technology to 

produce large amounts of oil within large-scale algal cultivation units. 

However, in the current technology of algal cultivation, the raceway pond is 

still a low-cost method for producing biodiesel from algae despite its poor 

biomass productivity and high contamination risk. From our results for the 

scenario aimed at minimizing production cost, it is clear that the raceway 

pond cultivation technique required 545,120 ha of culture lands for a 

biodiesel supply of 29,357,000 kl, based on the diesel consumption in the 

transportation sector in 2008 Japan. Since the cost of land use can multiply 

the price of algae-derived biodiesel, the problem with using a large area of 
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land may become a challenge for promoting the algae-derived biodiesel policy 

within an island country like Japan.  

Application of a high productivity of biomass cultivation technique such as 

PBRs represents a better use of land. The projected per unit area of biodiesel 

output of PBRs was 1.3 times that of raceway ponds for the Base Case and 

was up to 2.8 times greater for Case 3. This means that the demand for land 

can be reduced at the same rate to produce an equivalent amount of biodiesel 

from algae using PBRs; for example, to meet the total consumption of diesel 

in the transportation sector in Japan, 195,000 and 419,000 ha would be 

required for algal cultivation in Case 3 and Base Case, respectively.  

One of the main problems with PBRs is the requirement for a large energy 

input. Combining biomass gasification plants with the algal cultivation 

system as an integrated approach to algal biodiesel production and CO2 

utilization is possible to make up for the shortage of power required by PBRs, 

amounting to a projected reduction in the biodiesel production cost of up to 

22% for the Base Case, or 20% from ¥236 to ¥189 L-1 for Case 3. Given the 

current pump price for petroleum diesel fuel that reported at ¥121 L-1 in 

July 2012, the currently projected costs of algae-based biodiesel are high. 

However, in the near future, this hybrid biomass energy generation system 

simultaneously providing power and fuels when they are consumed on site 

may provide a practicable measure for reducing our dependence on fossil 

fuels. Long-term basic and applied R&D is required to develop algal 

technology, as one of the many options that will be required in the future to 

reduce Japanese imports of oil and other foreign energy sources. 
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4 Conclusions 

A potential problem for fertilizer discharge from mass cultivation of 

microalgae was studied. The writers have developed a theoretical approach 

to the modelling of the attainable biodiesel production with simultaneous 

biogas yield in algae and showed that nutrient recycling should be 

considered as a necessary process to reduce fertilizer discharges. Our results 

indicated the increase in cultivation system's illuminated surface can 

contribute to the cost reduction, however, it is still not cost-effective to 

compete with fossil fuels. Thus, future research should not only focus on 

improving cultivation technologies, but also explore the mechanism of algal 

lipid accumulation.  
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Table captions 

Nomenclature 
Table 1. Theoretical methane yields for three types of organic compounds 

and ammonia concentrations for digested algal biomasses from the 
empirical formula of microalgae using the Buswell equation. 

Table 2. Geometry parameters of raceway ponds and PBRs. 
Table 3. Capital and operating cost parameters for algae production with 

raceway ponds and PBRs. 
Table 4. Parameters for improving cultivation technology cases. 
Table 5. Maximum production of biomass, biogas and biodiesel (Cases 1, 2 

and 3). 
 
 
Figure captions 

Fig. 1. The scheme of a serial of calculations. 
Fig. 2. Scenarios for different nutrient supplies. 
Fig. 3. Average daily NH3-N removal efficiency of C. vulgaris. 
Fig. 4. Biomass concentration of C. vulgaris under different NH3-N 

concentration (a) 0-50 mg NH3-N L-1; (b) 50-1000 mg NH3-N L-1. 
Fig. 5. Nitrogen discharged by per kilogram algal biomass production in 

medium of Sn= 150 mg N L-1. 
Fig. 6. Variation of biodiesel productivity and the net production cost of 

biodiesel for different ratios of effluent reuse under a nitrogen 
discharge limit of 150 mg N L-1. 
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Nomenclature 

A  algae cultivation area (m2) STSS  T-N concentration of the STS from sewage treatment plants (mg L-1) 

PARC  fraction of sunlight that is photosynthetically active radiation T  temperature factor 

d  (daily) dilution rate (%) V  total cultivation volume (L) 

rD  overall decay x  algal biomass concentration 

aE  heat of combustion per unit mass of algae (MJ kg-1) aY  total annual algal biomass yield (kg DW) 

SE  (daily) total solar irradiation (MJ m-2) ay  (daily) algal biomass yield (kg DW) 

inF  medium inflow rate NH3-Ny (daily) NH3-N recovery from anaerobically digested residuals (mg NH3-N TS)

outF  medium outflow rate   

I  light intensity factor Greek letters 

sK  half-saturation constant (mg L-1) a  efficiency of conversion of incident sunlight to biomass in algae 
p  algae productivity per time per area s  limiting nutrient supply factor 
q  effluent recycling rate   specific rate of substrate consumption 

NR  average daily nitrogen removal efficiency of algae   efficiency of light transmission to algae 

S  nutrients factor   

DIGS  T-N concentration of digestate from anaerobic fermenter (mg L-1) Abbreviations 

inS  concentration of nutrient in the inflowing medium (mg L-1) DW dry weight 

inputS  T-N concentration of extra nutrient inputs (mg L-1) PBR photobioreactor 

nS  specific limiting nutrient (mg L-1) STS secondarily treated sewage 

outS  concentration of nutrient in the effluent (mg L-1) TS total solids 
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Table 1. Theoretical methane yields for three types of organic compounds and ammonia concentrations for digested 
algal biomasses from the empirical formula of microalgae using the Buswell equation.  

 Empirical formula (moles) 
% in  

C. vulgaris

% in 

B. braunii

Methane yield

(l CH4 g-1 TS) 

NH3-N  

(mg NH3-N g-1 TS)C H O N 

Protein 1.9 3.8 1.0 0.5 29 22  0.446 140.8 

Carbohydrate 6.0 10.0 5.0 0.0 51 14.1  0.415 0.0 

Lipid 57.0 104.0 6.0 0.0 18 44.5  1.014 0.0 
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Table 2. Geometry parameters of raceway ponds and PBRs.  

Parameter Raceway ponds PBRs Units 

Illuminated surface  6,899 7,200 (m2) 

Space required  10,000 10,000 (m2) 

Total Volume  1,379,840 720,000 (L) 

Land use efficiencya  0.690 0.720  

Electricity input  85.0 1888.9 (kWh d-1) 

a Land use efficiency = Illuminated surface / Space required 
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Table 3. Capital and operating cost parameters for algae production with raceway ponds and PBRs. 
Raceway pond  (¥ ha-1) PBR 

Capital cost   
Capital 
cost  

Grading, earth works, etc. 773,000    Passive PBR 
CO2 sumps 716,000    Circulation and agitation 
Mixing and carbonation system 732,000    Carbonation 
Harvesting 1,017,000    Harvesting 
Water storage reservoir and distribution 374,000    Construction and off-sites 
CO2 delivery and distribution system 1,407,000  Anaerobic digestion system 
Nutrient supply system 61,000  

Anaerobic digestion system 325,000  

Other capital cost factors 5,097,000  

Total capital cost 10,502,000  Total capital cost 

Operating cost  
Operating 
cost  

Power (mixing, harvest,misc.) 150,000  Power (circulation, carbonation.,centrifugati
CO2(flue gas) blower power 161,000  Maintenance (5% of total capital) 
Maintenance (5% of total Capital) 457,000  Labor 
Labor 8,799,000  
Total operating cost 9,567,000  Total operating cost 

Annual fixed charge (10.3% of capital cost) 1,085,000 Annual fixed charge (10.3% of capital cost) 
Annual operating cost 9,567,000 Annual operating cost 
Total annual cost 10,652,000 Total annual cost 
* The conversion rate of 1 U.S. dollar = 77.9 Japanese yen, released on October 1, 2012. (http://www.federalreserve.gov/releases/h10/current/default.htm) 
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Table 4. Parameters for improving cultivation technology cases.  
 Raceway ponds  PBRs  

 Land use efficiency 
Environmental 

conditions coefficient 
Land use efficiency 

Environmental 

conditions coefficient 

Base case 0.69 0.8 0.72 0.98 

Case 1 0.98 (+42%) 0.9 (+12.5%) 0.72 (+0%) 0.98 (+0%) 

Case 2 0.98 (+42%) 0.9 (+12.5%) 1.5 (+108%) 0.98 (+0%) 
Case 3 0.98 (+42%) 0.9 (+12.5%) 2.0 (+178%) 0.98 (+0%) 
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Table 5. Maximum production of biomass, biogas and biodiesel (Cases 1, 2 and 3). 

Theoretical maximum algal productivitya  
(Sn =1000 mg N L-1, Scenario 3) 

C. vulgaris Botryococcus braunii 

Units 

 

(P=0.29, 
C=0.51, 
L=0.18)b 

(P=0.220, 
C=0.141, 
L=0.445) 

(P=0.220, 
C=0.141, 
L=0.445) 

(P=0.220, 
C=0.141, 
L=0.445) 

 

Case 1 Case 1 Case 2 Case 3  

Raceway ponds PBRs  

  Algal biomass yields  160,127.0 142,013.9 236,689.9 315,586.5 (kg DW) 

      Daily areal productivity 43.9 38.9 64.8 86.5 (g m-2) 

      Daily volumetric productivity 0.3 0.3 0.9 1.2 (g L-1) 

  Biodiesel production  24,562.1 53,854.2 89,756.9 119,675.9 (L) 

  Methane production using the residual algal biomass 54,601.7 22,244.4 37,073.9 49,431.9 (m3 CH4) 

  NH3-N recovery from anaerobic digestion  6,540.4 4,400.4 7,334.1 9,778.7 (kg NH3-N) 

  Energy recovery from combustion of CH4  140,978.5 57,433.7 95,722.8 127,630.4 (kWh) 

  Energy consumption 31,025.0 31,025.0 689,453.9 689,453.9 (kWh) 

  Net energy gain from combustion of CH4 109,953.5 26,408.7 -593,731.1 -561,823.5 (kWh) 

  Algal biomass production cost 67 75 112 84 (¥ kg-1) 

  Net biodiesel production costc 222 193 310 236 (¥ L-1)  

  Nitrogen fixed quantity 1,906.2 1,690.6 2,817.7 3,756.9 (kg N) 
  Demand for additional nitrogen inputs 246,233.5 248,265.7 125,474.8 123,499.7 (kg N) 
  Nitrogen discharge 250,867.7 250,975.5 129,991.2 129,521.6 (kg N)  
a 1 ha-scaled cultivation for one year. 
b P, C and L is protein, carbohydrate and lipid, respectively. 
c Transesterification cost is ¥25 L-1, and selling price for excess electricity generated on-site is ¥40 per kWh. 
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Fig. 1. The scheme of a serial of calculations.  
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Fig. 2. Scenarios for different nutrient supplies.  
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Fig. 3. Average daily NH3-N removal efficiency of C. vulgaris.  
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Fig. 4. Biomass concentration of C. vulgaris under different NH3-N concentration (a) 0-50 mg NH3-N L-1; (b) 50-1000 mg 
NH3-N L-1.  
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Fig. 5. Nitrogen discharged by per kilogram algal biomass production in medium of Sn= 150 mg N L-1.  
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Fig. 6. Variation of biodiesel productivity and the net production cost of biodiesel for different ratios of effluent reuse 
under a nitrogen discharge limit of 150 mg N L-1.  


