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Abstract

In plant cells, many vacuolar proteins are synthesized as precursors in the endoplasmic reticulum and are

subsequently transported to the vacuole. These precursors are subject to post-translational modifications to allow

the active mature forms to be produced. Vacuolar processing enzyme (VPE) has been identified as a family of

cysteine proteases involved in protein maturation in the vacuole. In this study, novel VPE genes were isolated from

tomato (Solanum lycopersicum), and they were designated SlVPE1–SlVPE5. Phylogenic analysis suggested that

SlVPE1 and SlVPE2 were categorized as the seed coat type, SlVPE4 was categorized as the seed type, and both

SlVPE3 and SlVPE5 were categorized as the vegetative type. Expression analysis demonstrated that these genes

were expressed during fruit development, and that their expression profiles agreed with this classification. High VPE
enzyme activity was observed during tomato fruit development; the enzyme activity was correlated with the SlVPE

mRNA levels, indicating that the SlVPE encoded active VPE proteins. The total sugar content was higher in RNA

interference (RNAi) lines compared with the control plants, suggesting negative roles for SlVPE in sugar

accumulation. The quantitative expression analysis of each SlVPE gene in the RNAi lines suggested that the

suppression of SlVPE5 probably had the strongest effect on the sugar accumulation observed. The suppression of

SlVPE did not influence the total amino acid content, suggesting that the molecular targets of SlVPE were mainly

involved in sugar accumulation.

Key words: Fruit, RNA interference, sugar accumulation, tomato, vacuolar processing enzyme.

Introduction

The precursors of many vacuolar proteins are synthesized in

the endoplasmic reticulum (ER) via the Golgi apparatus

before they are transported into the vacuole. These pre-

cursors are then processed to generate mature active

proteins. This protein maturation process is generally

achieved by the cleavage of asparagine or aspartic acid

residues in the C-terminal region, and this reaction is
catalysed by vacuolar processing enzyme (VPE) proteins

(Hara-Nishimura et al., 1985, 2005; Hara-Nishimura and

Nishimura, 1987; Hiraiwa et al., 1997, 1999; Kuroyanagi

et al., 2002). VPE protein was originally identified as a novel

cysteine proteinase involved in the maturation process of

seed storage proteins (Hara-Nishimura et al., 1991). The

VPE proteins belong to a family of cysteine proteinases and

are well conserved among a variety of organisms including

many plant and animal species (Hara-Nishimura et al.,

1993; Hara-Nishimura, 1998; Shirahama-Noda et al., 2003).

It has been demonstrated that the VPE proteins are
synthesized in the ER as inactive precursors before they are

converted into the mature active forms by self-catalytic

activity under acidic conditions; this implies that VPE

maturation takes place in the vacuole (Kuroyanagi et al.,

Abbreviations: DTT, dithiothreitol; PCD, programmed cell death; PMSF, phenylmethylsulphonyl fluoride; RNAi, RNA interference; SGN, Solanaceae Genomics
Network; Sl, Solanum lycopersicum; SlVPE, Solanum lycopersicum vacuolar processing enzyme; VPE, vacuolar processing enzyme; z-ANN-MCA, bnzyloxycarbonyl-L-
alanyl-L-asparagine-4-methyl coumary-7-amide.
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2002). Several lines of evidence have also demonstrated that

the cleavage of specific amino acid residues within the VPE

proteins is essential for the maturation of the VPE proteins

(Hiraiwa et al., 1997, 1999; Chen et al., 1998). Consistent

with this, artificial mutations in these amino acid residues

fail to produce the active forms of the VPE proteins

(Hiraiwa et al., 1999).

Previous phylogenic, as well as expression and sequence
analyses of VPE proteins have indicated that they are

classified into the three following categories: seed type,

seed coat type, and vegetative type (Yamada et al., 2005).

Two vegetative-type VPE proteins have been identified in

Arabidopsis, namely aVPE and cVPE, both of which are

mainly expressed in vegetative tissues. The mRNA expres-

sion of these genes shows up-regulation upon various

abiotic stresses, such as wounding, senescence, and treat-
ment with hormones such as jasmonic acids, ethylene, and

salicylic acid (Kinoshita et al., 1995, 1999; Yamada et al.,

2004). It is likely that cVPE is specifically localized in

vacuoles (Kinoshita et al., 1995, 1999), and cVPE exhibits

caspase-1-like activity, which is thought to be the critical

factor initiating programmed cell death (PCD) in animals

(Rojo et al., 2004). Although studies on the direct targets of

VPE proteins have not been very successful, the processing
activity of the vegetative cVPE on yeast carboxypeptidase Y

(CPY) has been demonstrated by heterologous expression

analysis (Kinoshita et al., 1999). In addition, the Arabidopsis

orthologous AtCPY protein appears to be targeted for

processing by cVPE (Rojo et al., 2003). Furthermore, cVPE
is essential for the degradation of the senescence-induced

AtFRUCT4 (Arabidopsis b-FRUCTOSIDASE4) protein

encoding an Arabidopsis vacuolar invertase in senescent
leaves, indicating that cVPE exhibits proteolytic activity

(Rojo et al., 2003). Interestingly, a proteomics-based ap-

proach using tandem mass spectrometry analysis suggested

that cVPE targets various types of vacuolar hydrolases (such

as b-glycosidase, a-mannnosidases, and a-galactosidases) for
degradation, thus suggesting the presence of a regulatory

mechanism for sugar accumulation and degradation by VPE

proteins (Rojo et al., 2003).
The seed-type VPE proteins, such as Arabidopsis bVPE,

are known to be involved in the processing of seed storage

proteins (Gruis et al., 2002, 2004; Shimada et al., 2003;

Wang et al., 2009). Seeds from the Arabidopsis bvpe
knockout mutant are hindered in the maturation of storage

proteins such as globulin and albumin. In addition, bVPE is

highly expressed not only in seeds, but also in flower buds

and mature pollen grains, suggesting that bVPE has
nutritional roles required for pollen germination (Kinoshita

et al., 1995; Noguchi, 2006). Moreover, some seed-type VPE

proteins are involved in the activation of antibiotic peptides

in maturing seeds (Hara-Nishimura et al., 1991; Yamada

et al., 1999; Shimada et al., 2003). The Arabidopsis dVPE
protein is a representative of the seed coat-type VPE

proteins. dVPE is specifically expressed in two cell layers of

the inner integument within the seed coat, and the loss
of function of the dVPE gene results in delayed cell death of

the two layers (Nakaune et al., 2005). Unlike vegetative-

type VPE proteins, the seed coat-type dVPE lacks vacuolar

sorting signals in the C-terminal region. It is therefore

secreted into the apoplastic compartment and act as

a regulator for PCD of the inner seed coat during the seed

coat formation.

In addition to Arabidopsis, orthologous VPE genes have

been reported in other plants. For example, the processing

activity of castor bean and pumpkin VPEs on several seed
storage proteins has been demonstrated in vitro (Hara-

Nishimura et al., 1993; Yamada et al., 1999). Furthermore,

tobacco was reported to express a functional VPE protein

which acts as a key factor initiating hypersensitive cell death

in response to infection with tobacco mosaic virus (TMV)

and Pseudomonas syringae pv phaseolicola (Woltering et al.,

2002; Hatsugai et al., 2004). Mutations in the Oryza sativa

VPE1 (OsVPE1) or GLUTELIN PRECURSOR 3 (GLUP3)
in rice resulted in decreased VPE enzyme activity in seeds

(Wang et al., 2009; Kumamaru et al., 2010). The decreased

VPE enzyme activity in rice seeds not only causes the

overaccumulation of proglutelin in seeds, but also alters the

structure and morphology of the protein storage vacuoles

and is involved in the compartmentalization of the storage

proteins. Several VPE genes have been also identified in

fruit crops. A functional VPE gene has been identified in
Citrus sinensis; its mRNA expression was high in fruit and

gradually increased as fruit matured (Alonso and Granell,

1995). In tomato, the expressed sequence tag (EST)

sequence of the VPE orthologue, Lycopersicum esculentum

VPE (LeVPE1l or SlVPE1 in this study) was reported

(Lemaire-Chamley et al., 1999). LeVPE is specifically

expressed in fruit; however, no biochemical and genetic

evidence for this gene has been reported.
In this study, the expression and activity of the tomato

VPE genes were examined during fruit development. First,

four additional VPE genes (SlVPE2–SlVPE5) were identi-

fied in the tomato genome by BLAST database searches

using SlVPE1 as the query; the quantitative expression

analysis of the five VPE genes was conducted. Next,

expression analysis of the five SlVPE promoters using the

GUS (b-glucosidase) reporter gene was performed; the
spatial expression pattern of these SlVPE genes was

examined during fruit development. The expression of the

SlVPE genes was suppressed by the RNA interference

(RNAi) strategy to examine the effect of decreased SlVPE

mRNA expression on VPE enzyme activity. The results

suggest that the levels of SlVPE mRNA expression were

correlated to the levels of VPE activity; decreased VPE

enzyme activity interfered with sugar accumulation in
mature fruits.

Materials and methods

Plant materials and growth conditions

Seeds of S. lycopersicum cv. Micro-Tom (Scott and Harbaugh,
1989) were obtained from the National BioResource Project
Tomato (NBRP-tomato, http://tomato.nbrp.jp/indexEn.html)
(Yamazaki et al., 2010) from the TOMATOMA database (http://
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tomatoma.nbrp.jp/). Seeds of the wild type, a transformant with
the control vector (control), transformants in which each SlVPE
gene is suppressed by RNAi (RNAi-SlVPE), and transformants in
which each SlVPE promoter is transcriptionally fused to the GUS
gene were used in this study. All seeds were imbibed in sterile
water at 26 �C for 7 d under fluorescent light (16 h/8 h day/night).
The seedlings were then transferred to rock wool and grown under
the same conditions.

Protein structural analysis of the SlVPE proteins using publicly

available databases

To identify orthologous VPE genes from the tomato genome,
a BLAST database search analysis was performed at SGN
(Solanaceae Genomics Network, http://solgenomics.net/) and Kaf-
tom (http://www.pgb.kazusa.or.jp/kaftom/) (Aoki et al., 2010). The
primary features of the SlVPE proteins were examined using the
publicly available databases mentioned below. To predict the
presence of the signal peptide and to postulate subcellular
localization, the iPSORT (http://ipsort.hgc.jp/), SignalP (http://
www.cbs.dtu.dk/services/SignalP/), and TargetP (http://
www.cbs.dtu.dk/services/TargetP/) programs were used. To predict
the presence of functional motifs, the Pfam (http://pfam.sanger.-
ac.uk/) program was used. The MEGA4 (http://www.megasoftwar-
e.net/mega.html) program was used for phylogenic analysis. To
predict the molecular weight and isoelectric point (pI), the
Compute pI/Mw tool (http://au.expasy.org/tools/pi_tool.html) pro-
gram was used.

Vector construction and transformation

RNAi constructs to suppress mRNA expression of each SlVPE
gene were created under control of the constitutive cauliflower
mosaic virus (CaMV) 35S promoter. To create RNAi constructs
targeted for SlVPE1 suppression, the DNA fragment of SlVPE1
was amplified as the RNAi-targeted region, by using the gene-
specific primers shown in Supplementary Table S5 available at
JXB online. The PCR fragment was directly cloned into the entry
vector pCR8/GW/TOPO (Invitrogen) and was then transferred
into the Gateway vector pBIDAVL-GWR1 (In planta innovation)
by the Gateway LR Clonase enzyme (Invitrogen), resulting in
SlVPE1/pBIDAVL-GWR1. This construct was designated RNAi-
SlVPE1. The same strategy was used to create RNAi constructs
for the suppression of other SlVPE genes using the primers shown
in Supplementary Table S5. The RNAi constructs obtained
targeted SlVPE2, SlVPE3, SlVPE4, and SlVPE5 for down-
regulation, and were designated RNAi-SlVPE2, RNAi-SlVPE3,
RNAi-SlVPE4, and RNAi-SlVPE5, respectively.
For spatial expression analysis, transcriptional fusion constructs

in which each SlVPE promoter was fused to the GUS reporter
gene were created. To create the SlVPE1 transcriptional fusion
vector, ;2.0 kb of the promoter region of SlVPE1 was amplified
using promoter-specific primers (Supplementary Table S5 at JXB
online) and directly cloned into the entry vector pCR8/GW/TOPO.
The PCR fragment of the promoter region was transferred to the
Gateway vector pWGB3 in which the GUS reporter gene is present
at the C-terminus (Nakagawa et al., 2007); the resulting construct
was an SlVPE1 promoter transcriptional vector designated
SlVPE1p-GUS. The same strategy was used to create transcrip-
tional fusion constructs for the other SlVPE genes, and the
constructs were designated SlVPE2p-GUS, SlVPE3p-GUS,
SlVPE4p-GUS, and SlVPE5p-GUS, respectively.
These constructs were then transformed into Agrobacterium

tumefaciens GV2205 by the freeze–thaw method (An et al., 1988).
The constructs were transformed into WT Micro-Tom by the
Agrobacterium method (Sun et al., 2006). The pGWB3 empty
vector was also introduced into Micro-Tom to create control
plants. The transgenic plants were selected on Murashige and
Skoog (MS) agar plates containing kanamycin (100 mg l�1). In
this study, the transgenic RNAi lines with single copy insertions

were selected, and their T2 generations were used for further
studies.

Quantitative expression analysis

The mRNA expression of each SlVPE gene was analysed by
quantitative reverse transcription-PCR (qRT-PCR) using total
RNA extracted from the whole fruit, leaf, root, stem, flower, and
anther tissues indicated in Fig. 2 and using an RNA easy kit
(Qiagen). Genomic DNA contamination was removed using the
RNase-free DNase Set (Qiagen). cDNA was generated from 5 lg
of total RNA using the SuperScript III First-Strand Synthesis
System (Invitrogen). The cDNA was then used as a template for
quantitative PCR and was amplified with gene-specific primers
(Supplementary Table S5 at JXB online). The primer specificities
were confirmed by sequencing the PCR fragments. The qRT-PCR
experiments were performed using a Takara Thermal Cycler Dice
Real Time System with SYBR Premix Ex Taq II. The PCR
conditions were as follows: 10 s of denaturation at 95 �C, followed
by 40 cycles of 5 s of denaturation at 95 �C and 30 s of annealing/
extension at 55–60 �C, depending on the primer pairs (Supplemen-
tary Table S5). The transcript levels were analysed to determine
the mRNA levels of each SlVPE relative to the control UBIQ-
UITIN (UBQ) mRNA as performed by Kim et al. (2010).

Histochemical expression analysis

The spatial GUS expression pattern of each SlVPEp-GUS plant
was analysed by a histochemical assay using fruit samples, as
indicated in Figs 3 and 4. T1 generations of each transgenic plant
were used for histochemical analysis. These fruit samples were
soaked in a GUS assay solution consisting of 100 mM sodium
phosphate (pH 7.0), 1 mM potassium ferrocyanide, 1 mM potas-
sium ferricyanide, 0.3% Triton X-100, 20% methanol, and 1 mM
X-gluc (5-bromo-4-chloro-3-indolyl-D-glucuronide). The samples
were incubated at 37 �C for 24 h, washed with water several times,
and bleached with 70% ethanol. The samples were mounted on
slides and photographed using a light microscope.

Measurement of VPE enzyme activity

The VPE enzyme activity was determined using the fluorescent
VPE-specific substrate z-ANN-MCA (benzyloxycarbonyl-L-alanyl-
L-asparagine-4-methyl coumary-7-amide; Peptide Institute) to
monitor the rate of substrate degradation by VPE enzyme activity,
according to Shimada et al. (2003). The tissues listed in Figs 5 and
7, and in Supplementary Figs S2–S4 at JXB online, were ground
with liquid N2, and the respective powders were resuspended in
buffer A [50 mM Na-acetate buffer (pH 5.5), 50 mM NaCl, 1 mM
EDTA, 1 mM phenylmethylsulphonyl fluoride (PMSF), 0.1 mM
E-64-d]. Then, the solution was mixed well and centrifuged at
10 000 g for 30 min. The supernatant was used to measure enzyme
activity. Exactly 30 ll of the supernatant were resuspended in
130 ll of distilled deionized water and 40 ll of buffer B [buffer B is
53 solution; 500 mM Na-acetate buffer (pH 5.5), 500 mM
dithiothreitol (DTT)], and the solution was mixed well. The
mixture was incubated at 37 �C for 10 min, before 4 ll of 10 mM
z-ANN-MCA was added. The solution was incubated at 37 �C,
and the fluorescence intensity was determined using Wallac 1420
ARVO MX/Light (Perkin-Elmer). The fluorescence was measured
at an excitation wavelength of 380 nm and at an emission
wavelength of 460 nm.

Measurement of sugar content in fruits

Whole fruits were harvested from the control plants transformed
with the empty vector and T2 generations of transgenic RNAi
plants at the mature green (MG) stage [27–30 days after flowering
(DAF) and mature red (RED) stage (DAF39–45); these samples
were used for sugar analysis. The fruit samples were ground under
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liquid N2, and 200 mg of the powder was resuspended in 200 ll of
deionized water. The samples were boiled at 100 �C for 10 min to
inactivate the sugar-degrading enzymes, placed on ice for 5 min,
and centrifuged at 15 000 g for 30 min. Next, 200 ll of superna-
tant was resuspended in 600 ll of acetonitrile, centrifuged at
15 000 g for 15 min, and the supernatant was filtrated using a filter
(PTFE 0.45 ll DISMIC 25HP, Millipore). The content of glucose,
fructose, and sucrose was determined by high-performance liquid
chromatography (HPLC). The soluble sugars were separated at
40 �C on a Shodex Asahi pack NH2P-50 4E column
(25034.6 mm, Showa Denko KK) installed in the LC system 8020
series (Tosoh Co.), and the refractive index (RI) was detected using
an RI detector. The mobile phase was acetonitrile/water (75%/
25%) at a flow rate of 1 ml min�1 as described previously (Yin
et al., 2010).

Measurements of amino acids and related metabolites

The whole fruits at the MG and RED stages were ground under
liquid N2; 50 mg of the powdered tissues were resuspended in
500 ll of 8% trichloroacetic acid (TCA) solution and centrifuged
at 15 700 g for 20 min. Then, 300 ll of supernatant were trans-
ferred to a 1.5 ml tube, and 400 ll of diethyl ether was added. The
solution was mixed well for 10 min and was centrifuged at
13 400 g for 5 min. The lower phase was resuspended with 400 ll
of diethyl ether, mixed well for 10 min, and centrifuged at 13 400 g
for 5 min. The upper phase (diethyl ether) was removed, and the
tubes were dried for 30 min at room temperature. The remaining
solution was completely evaporated by a centrifugal evaporator at
60 �C for 30 min. The pellet was dissolved in 100 ll of deionized
water, and evaporated by the centrifugal evaporator. This process
was repeated once more, and the dried samples were dissolved in
300 ll of 0.1 N HCl. The metabolites were determined using an
amino acid analyser (JEOL JLC-500/V2).

Cytological analysis

To observe seed coat formation, fruit samples at DAF19 were
fixed overnight in FAA (formalin–acetic acid–alcohol: ethanol
50%, acetic acid 5.0%, and formaldehyde 3.7%), dehydrated in
a graded ethanol series (50% 32, 70%, 85%, and 100% 33), and
embedded in paraffin (Parapast Plus, Oxford). Seed transverse
sections (15–20 lm) were then observed under a light microscope.

Results

Isolation of a family of SlVPE genes from tomato

A previous study isolated an orthologue of the Arabidopsis

VPE, named LeVPE (SlVPE1 in this study), which was

originally identified as the EST sequence specifically

expressed in tomato fruits (Lemaire-Chamley et al., 1999).
To isolate its homologous genes in tomato, the SlVPE1

sequence was subjected to a BLAST database search at the

SGN. This analysis isolated four additional homologous

genes, designated SlVPE2, SlVPE3, SlVPE4, and SlVPE5.

SlVPE5 appeared to be identical to S. lycopersicum

CYSTEINE PROTEINASE (SlCp), a gene which was

previously identified as showing sequence similarity to

cysteine proteinases (Matarasso et al., 2005). These five
full-length coding sequences (CDS) were recovered from the

SGN and Kaftom databases (Supplementary Table S1 at

JXB online) (Aoki et al., 2010), and their chromosome

locations were examined. Only SlVPE5 was located on

chromosome 12; the other four genes were located on

chromosome 8. Interestingly, LeVPE1/SlVPE1 and SlVPE2

were tandemly located within an 8 kb interval, implying

that both might result from gene duplication. The sequence

similarity among these proteins was generally high (77.6–

91.1%). In addition, the five SlVPE proteins had primary

protein features (e.g. length of CDS, protein length, and

molecular weight) comparable with the Arabidopsis VPE

proteins (Supplementary Table S2 at JXB online). Interest-
ingly, SlVPE1 and SlVPE2 showed the highest similarity

(91.1%) among the five SlVPE proteins. Consistently,

phylogenic analysis indicated that SlVPE1 and SlVPE2 were

classified as seed coat-type VPEs, which also include

Arabidopsis dVPE (Fig. 1). SlVPE4 belonged to the seed-

type VPEs containing the Arabidopsis bVPE, whereas

SlVPE3 and SlVPE5 belonged to the vegetative-type VPEs

containing the Arabidopsis aVPE and cVPE.
The presence of a signal peptide in the SlVPE proteins

was predicted by the three representative databases,

iPSORT, SignalP3.0, and TargetP. This analysis suggested

that all SlVPEs contained signal peptides, like the Arabi-

dopsis VPE proteins (Supplementary Table S2 at JXB

online). Next, the sequences of these SlVPEs were subject

to a Pfam motif analysis. Like the Arabidopsis VPE

proteins, all the SlVPEs contained a motif for peptidase
C13, which is well conserved in members of asparaginyl

Fig. 1. Phylogenic analysis of VPE and VPE-like proteins in plants.

Plant VPE proteins were classified based on their protein sequences

into the three following categories: seed coat type, seed type, and

vegetative type. Phylogenic analyses were conducted using MEGA4.

At, Arabidopsis thaliana; Cs, Citrus sinensis; Gm, Glycine max; Nt,

Nicotiana tabacum; Os, Oryza sativa; Rc, Ricinus communis; Vm,

Vigna mungo; Zm, Zea mays. The size bar shows the estimated

evolutionary distance.
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peptidases and VPE proteins (Hara-Nishimura et al., 1993;

Yamada et al., 2005). In addition, these five SlVPE proteins

contained one histidine and two cysteine residues, all of

which are required for the VPE self-catalytic activity and

were similar to the already characterized Arabidopsis and

rice VPE proteins (Supplementary Fig. S1A–C) at JXB

online (Chen et al., 1998; Hiraiwa et al., 1999). Activation

of VPE requires processing of the VPE precursors in the C-
terminal region, while proper protein folding may require

cleavage in the N-terminal region (Kuroyanagi et al., 2002).

All SlVPE proteins contained conserved cleavage sites in

both the N- and C-terminal regions (Supplementary Fig.

S1D, E at JXB online). These results suggested that the five

SlVPE genes identified in this study had primary protein

features very similar to those of other VPE proteins,

suggesting that these SlVPE proteins might encode proteins
exhibiting VPE biochemical activity.

Quantitative temporal expression analysis of SlVPE
genes

To examine the temporal expression pattern of the SlVPE

genes, qRT-PCR analysis was carried out using mRNA

extracted from leaf, stem, root, and different developmental

stages of anther and fruit as depicted in Fig. 2A. The

mRNA accumulation of SlVPE1 and SlVPE2 was specifi-
cally observed in fruit, especially during early fruit de-

velopment (i.e. after DAF9), and expression of SlVPE1 and

SlVPE2 was specifically high at DAF15 and DAF21,

whereas their expression was significantly decreased after

DAF27 (Fig. 2B). Although these two seed coat-type

SlVPE genes showed similar temporal patterns of mRNA

expression, the other members showed different expression

patterns. The mRNA expression of SlVPE3 and SlVPE5,
classified as vegetative-type VPEs, was elevated around

DAF15–27, and the highest expression was observed at

DAF39 and DAF33, respectively, followed by a decrease at

DAF45 (Fig. 2D, F). In addition, the mRNA expression of

SlVPE3 and SlVPE5 was observed in vegetative tissues, and

strong expression was evident in anthers at anthesis. The

mRNA expression of SlVPE4, classified as a seed coat-type

VPE, was observed during fruit development, especially
after DAF15, and the highest expression was evident at

DAF33 (Fig. 2E). The mRNA expression of SlVPE4 was

decreased after DAF39. In addition, SlVPE4 expression

was detected in vegetative and flower tissues. These results

suggested that a family of SlVPE genes might function

throughout many plant tissues.

Spatial expression analysis of SlVPE genes using the
GUS reporter gene

Next the spatial expression pattern of the SlVPE genes
during fruit development was explored using a 2 kb pro-

moter region of each SlVPE gene, which was fused to

the GUS reporter gene (SlVPEp1–SlVPE5-GUS). Histo-

chemical staining using developing fruits from the

SlVPE1p-GUS lines showed that the majority of GUS

activity was evident in the seeds within fruits at the MG

(DAF27–30) stage (Fig. 3A). The SlVPE2p-GUS plants

showed GUS activity in the seeds and in the vascular

bundles at the MG stage (Fig. 3B). Weak GUS activity was

observed within the placenta at the yellow (YL; DAF30–33)

stage in SlVPE1p-GUS and SlVPE2p-GUS. Clear GUS

activity was observed in vascular bundles extending from

the seeds to the placenta as well as around the endocarp in
SlVPE3p-GUS and SlVPE5p-GUS throughout fruit devel-

opment (Figs 3C, E, 4A). Interestingly, SlVPE4p-GUS

showed weak GUS activity in the vascular bundles around

the endocarp at the MG stage, whereas the GUS activity

was exclusively restricted to within seeds at the YL and the

RED (DAF39–45) stages (Fig. 3D). Next, the pattern of

GUS expression in seeds was carefully observed under

a stereo microscope. As shown in Fig. 4B, SlVPE1p-GUS

and SlVPE2p-GUS showed GUS activity in the seed coat of

developing fruits; this finding was consistent with the fact

that SlVPE1 and SLVPE2 are seed coat-type VPEs (Fig. 1).

Similarly, both SlVPE3p-GUS and SlVPE5p-GUS showed

GUS activity in the seed coat (Fig. 4B). The GUS activity

of SlVPE4p-GUS was exclusively evident in the seed

endosperm and embryo of developing fruits (Fig. 4B); this

observation was also consistent with the notion that the
SlVPE4 belongs to the seed-type VPEs (Fig. 1). These

spatial expression analyses of the SlVPE genes suggested

that SlVPE may play a role(s) during fruit development,

especially through vascular bundles and seeds.

The expression pattern observed using the GUS histo-

chemical assay was not entirely consistent with the results

obtained from qRT-PCR. For example, the mRNA expres-

sion of SlVPE1 and SlVPE2 was barely detected at the
RED stage (Fig. 2B, C), whereas clear GUS activity was

evident at the RED stage in SlVPE1p-GUS and SlVPE2p-

GUS (Fig. 3A, B). This unexpected GUS staining might be

due to the high stability of the GUS protein as reported

previously (Kosugi et al., 1990; Deblock and Debrouwer,

1992; Aarts et al., 1997; Wilson et al., 2001; Ariizumi et al.,

2002; Ito and Shinozaki, 2002).

Measurement of VPE enzyme activity during fruit
development

The expression analysis suggested that SlVPE proteins

function during fruit development. If this were true, tomato
fruits would be expected to exhibit VPE enzymatic activity,

because VPE functional activity is most probably correlated

with VPE enzyme activity (Gruis et al., 2002, 2004; Shimada

et al., 2003; Hara-Nishimura et al., 2005; Yamada et al.,

2005; Wang et al., 2009; Kumamaru et al., 2010). A time

course experiment was performed to measure the VPE

activity of wild-type (WT) Micro-Tom over 45 d during

fruit development as depicted in Fig. 2A. VPE activity was
barely detected at the early stages (DAF3 and DAF9), but

it gradually increased as the fruit developed (i.e. between

DAF15 and DAF39) (Fig. 5). The highest VPE activity

was recorded at DAF39, but its activity was significantly

decreased at DAF45 (;50% compared with DAF39).
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Fig. 2. Quantitative RT-PCR expression analysis of five SlVPE genes. (A) Fruit developmental stages used for this experiment.

Bar¼15 mm. (B–F) Levels of mRNA expression in fruits, leaves, root, stem, flower, and anther were determined at the indicated time

points. Levels of (B) SlVPE1 mRNA, (C) SlVPE2 mRNA, (D) SlVPE3 mRNA, (E) SlVPE4 mRNA, and (F) SlVPE5. The mean values of at

least three independent experiments are shown. The error bars represent the SE. DAF, days after flowering.
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This observation was similar to the significant decline

observed in SlVPE3–SlVPE5 mRNA expression at DAF45

(Fig. 2D–F). In addition, VPE activity was detected in

vegetative tissues such as root, leaf, and stem, although its

activity in these tissues was relatively lower compared with
that in developing fruits (Supplementary Fig. S2 at JXB

online). It seems likely that the pattern of intensity of VPE

enzyme activity was similar to that of SlVPE3–SlVPE5

mRNA expression (Figs 2, 5).

Creation of transgenic tomato with decreased SlVPE
expression

To examine further whether the VPE enzyme activity in

tomato was related to the levels of SlVPE mRNA

expression, and to explore the physiological functions of

SlVPE during fruit development, transgenic plants with

decreased mRNA levels of each of the SlVPE genes were

produced using the RNAi strategy. In this experiment, the

levels of SlVPE mRNA expression in the RNAi lines were

compared with those in the control plants (Fig. 6). The
mRNA was extracted from fruits, and the mRNA expres-

sion of each of the SlVPE genes relative to the UBQ gene

was compared between RNAi-SlVPE lines and the control

plants by qRT-PCR. The qRT-PCR analysis revealed that

the expression levels of SlVPE1 relative to UBQ in the

RNAi-SlVPE1 lines were greatly reduced, reaching only

0.001 (1-a), 0.002 (1-b), and 0.11, (1-c), respectively, when

the SlVPE1 expression level in the control plants was set as
1.0 (Fig. 6A). The same experiment was performed with the

RNAi-SlVPE2 (2-a, 2-b, and 2-c), RNAi-SlVPE3 (3-a, 3-b,

and 3-c), RNAi-SlVPE4 (4-a), and RNAi-SlVPE5 (5-a, 5-b,

and 5-c) lines. When the mRNA expression level was

compared with that of the control plants, the expression of

SlVPE3 in the RNAi-SlVPE3 line showed a considerable

reduction of 0.26 (3-a), 0.11 (3-b), and 0.16 (3-c), respecti-

vely (Fig. 6C); on the other hand, the mRNA expression of
SlVPE5 in the RNAi-SlVPE5 line decreased to 0.12 (5-a),

0.11 (5-b), and 0.07 (5-c), respectively (Fig. 6E). Relative to

Fig. 3. Spatial expression analysis of SlVPE genes by histological

staining during fruit development. The GUS expression pattern

was examined during fruit development in SlVPE1p-GUS,

SlVPE2p-GUS, SlVPE3p-GUS, SlVPE4p-GUS, and SlVPE5p-GUS.

WT fruits were also stained as a negative control. MG, mature

green stage (DAF27–30). YL, yellow stage (DAF30–33). RED, red

stage (DAF39–45). P, placenta; V, vascular bundle; S, seed.

Bar¼1.0 cm.

Fig. 4. Histochemical analysis of SlVPEp-GUS lines. (A) Longitu-

dinal sections of SlVPE3p-GUS and SlVPE5p-GUS at the MG

stage (upper panel). Clear GUS activity was evident in the vascular

bundles in SlVPE3p-GUS and SlVPE5p-GUS at the RED stage

(lower panel). Bar¼1.0 cm. (B) GUS activity pattern in seeds in

SlVPEp-GUS lines. Bar¼0.5 mm. E, embryo; P, placenta; S, seed;

SC, seed coat; V, vascular bundle.
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the expression in the control plants, the mRNA expression

of SlVPE2 in the RNAi-SlVPE2 line was 0.07 (2-a), 0.03 (2-

b), and 0.12 (2-c) (Supplementary Fig. S3A at JXB online)
and that of SlVPE4 in the RNAi-SlVPE4 line was 0.05 (4-a)

(Supplementary Fig. S3B at JXB online).

Because the vegetative-type SlVPE genes showed higher

mRNA expression in the leaf (Fig. 2), the relative mRNA

levels were examined using leaf tissue in several independent

lines of RNAi-SlVPE3 (3-a, 3-b, 3-c, 3-d, and 3-e) and

RNAi-SlVPE5 (5-a, 5-b, 5-c, and 5-d). The qRT-PCR

analysis performed to examine the suppression in SlVPE3

or SlVPE5 indicated that both RNAi-SlVPE3 and RNAi-

SlVPE5 showed a great reduction from 0.05 to 0.66, and

from 0.7 to 0.15, respectively, compared with the expression

levels in the control plants (the expression level was set as

1.0) (Supplementary Fig. S4A at JXB online). These results

indicated that a decrease in mRNA expression of all the

SlVPE genes was effectively achieved by the RNAi strategy.

When the highly conserved region of a gene family is used
for RNAi-mediated gene silencing, mRNA expression of

other members of the gene family is effectively suppressed

(Miki et al., 2005). Since five members of the SlVPE gene

family show high sequence similarity, it was expected that

the RNAi-SlVPE plants would show decreased mRNA

expression in other members of the SlVPE gene family. To

examine this hypothesis, the relative mRNA expression of

all members of the SlVPE genes was determined by qRT-
PCR in the RNAi-SlVPE1, RNAi-SlVPE3, and RNAi-

SlVPE5 lines. This experiment demonstrated that the

mRNA levels of five members of the SlVPE genes were also

highly suppressed to variable degrees in all transgenic plants

(Fig. 6). As expected, there was a large suppression in the

genes showing high DNA homology to the RNAi-targeted

region (Supplementary Table S3 at JXB online). In fact, the

highest DNA homology between SlVPE1 and SlVPE2 in
the RNAi-targeted region (89.2%) resulted in the greatest

suppression in both SlVPE genes (Fig. 6A, B). The sequence

similarity of the RNAi-targeted regions was between 68.7%

and 89.2% (Supplementary Table S3 at JXB online),

suggesting that a sequence homology of ;70% could be

effectively targeted by RNAi in tomato; this finding was

consistent with a previous report in rice (Miki et al., 2005).

SlVPE proteins exhibited biochemical VPE activity in
tomato

In rice and Arabidopsis, loss-of-function mutations in the
VPE genes result in significantly reduced VPE enzyme

activity (Chen et al., 1998; Gruis et al., 2002, 2004; Shimada

et al., 2003; Kumamaru et al., 2010). To examine whether

a decrease in SlVPE mRNA expression was associated with

a decrease in VPE activity, the VPE enzyme activity was

measured using leaf and fruit tissues in the RNAi lines.

Figure 7 shows the VPE enzyme activity in the RNAi-

SlVPE lines using the same fruit samples used in Fig. 6. The
RNAi-SlVPE1 line exhibited 42.4–70.0% VPE activity,

while RNAi-SlVPE3 exhibited 72.0–75.6% VPE activity,

when the VPE activity in the control plants was set as 100%.

The RNAi-SlVPE5 exhibited 71.2–83.5% VPE activity. The

RNAi-SlVPE2 and RNAi-SlVPE4 lines also showed de-

creased VPE enzyme activity compared with the control

plants (Supplementary Fig. S3C at JXB online). Moreover,

reduction in SlVPE mRNA expression in leaves was also
correlated to the levels of VPE enzyme activity (Supplemen-

tary Fig. S4B at JXB online). These results suggested that

the decreased levels of SlVPE mRNA were correlated to the

decreased levels of VPE activity. Taken together, it is likely

that the SlVPE genes identified in this study encode

proteins exhibiting biochemical VPE activity in tomato.

Decrease in VPE activity enhances sugar accumulation
in tomato fruit

Since it was previously demonstrated in many plant and
animal species that decreased VPE activity results in various

developmental arrests (Gruis et al., 2002, 2004; Shimada

et al., 2003; Yamada et al., 2005; Wang et al., 2009;

Kumamaru et al., 2010), whether the reduction in VPE

activity affected tomato growth was next investigated. To

examine whether the reduced VPE activity caused defects in

inner seed coat formation similar to the Arabidopsis dvpe
mutants (Nakaune et al., 2005), tranverse sections of
developing seeds were observed. However, no difference in

the thickness of the inner integument was observed between

the RNAi-SlVPE lines and the control plants (Supplemen-

tary Fig. S5 at JXB online). To explore further the roles of

the SlVPE proteins during fruit development, fruits at the

MG stage and the RED stage were harvested, and the

contents of fructose, sucrose, and glucose were compared

between the control and RNAi lines. As shown in Fig. 8,
although no significant difference in content was calculated

for any of the sugars at the MG stage between the RNAi

lines and the control plants, the suppression of the SlVPE

genes appeared to cause an increase in the sugar content at

the RED stage. For instance, the glucose content in two
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lines of RNAi-SlVPE1 (1-a and 1-b) showed an approxi-

mate increase of 2.4- to 2.6-fold compared with the control;

interestingly, two lines of RNAi-SlVPE5 (5-a and 5-c) also

showed an increase of ;2.1- to 2.3-fold, respectively (Fig.

8A). In contrast, no significant difference was observed

between the RNAi-SlVPE3 lines and control plants. The

level of fructose accumulation showed a small increase from

the MG stage to the RED stage, like the control. A larger
increase in fructose accumulation was observed in the

RNAi-SlVPE1 and RNAi-SlVPE5 lines (Fig. 8B). The

fructose content in the RNAi-SlVPE1 (1-a and 1-b) and

RNAi-SlVPE5 (5-c) lines was ;1.4- to 1.7-fold higher than

that of the control, respectively, whereas the fructose level

in the RNAi-SlVPE3 lines (3-a and 3-b) was equivalent to

that of the control. The level of sucrose accumulation was

sharply reduced from the MG stage to the RED stage in the
control (Fig. 8C). In contrast to the control, the level of

sucrose accumulation in the RNAi-SlVPE lines showed

a significant increase, except for lines 1-b and 3-a; they

showed no significant difference compared with the control

plants. The sucrose contents in lines 1-a, 3-b, 5-a, and 5-c

were 3.7-, 3.8-, 5.0-, and 8.2-fold higher than that in the

control, respectively. The total sugar content in RNAi-

SlVPE1 and RNAi-SlVPE5 was increased by 1.8- to 2.1-
fold, but no significant changes in sugar content were

observed in RNAi-SlVPE3 compared with that in the

control (Fig. 9). This result suggests that the suppression of

SlVPE1 and SlVPE5 had stronger effects on the increased

sugar content in fruits. The results also suggest that

decreased VPE activity was associated with the increased

levels of sugars in the fruits at the RED stage.

Measurement of amino acids and related substances

Whether the suppression of the SlVPE genes influenced

the accumulation of the 22 standard amino acids and 11
other related substances was next explored. In this

experiment, fruits at the MG stage and the RED stage

were harvested from the control and RNAi lines, and

their metabolites were analysed using an amino acid

analyser. As shown in Supplementary Table S4 at JXB

online, no significant difference was calculated in the

accumulation of the compounds examined at the MG

stage between the control and RNAi lines. At the RED
stage, the accumulation of several amino acids was higher

in the RNAi lines than that in the control plants. For

example, the accumulation of aspartic acid, glutamic

acid, valine, histidine, and lysine in RNAi-SlVPE3 was

1.39-, 1.36-, 1.39-, 1.34-, and 1.30-fold higher than that in

the control, respectively. The accumulation of serine and

glutamic acid in RNAi-SlVPE1 was 1.40- and 1.44-fold

higher than that in the control, respectively. However, no
difference was observed between the control and RNAi-

SlVPE5 at the RED stage. In addition, no difference in

the total content of amino acids and related substances

between the control and the RNAi-SlVPE lines was

found. These results suggested that the suppression of

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

0.5

1.0

1.5

2.0

2.5

RNAi-
SlVPE1

RNAi-
SlVPE3

RNAi-
SlVPE5

1-a 1-b 1-c 3-a 3-b 3-c 5-a 5-b 5-cC

S
lV

P
E

5 
m

R
N

A
/U

B
Q

co
nt

ro
l m

R
N

A
S

lV
P

E
4 

m
R

N
A

/U
B

Q
co

nt
ro

l m
R

N
A

S
lV

P
E

3 
m

R
N

A
/U

B
Q

co
nt

ro
l m

R
N

A
S

lV
P

E
2 

m
R

N
A

/U
B

Q
co

nt
ro

l m
R

N
A

S
lV

P
E

1 
m

R
N

A
/U

B
Q

co
nt

ro
l m

R
N

A

SlVPE1

SlVPE2

SlVPE3

SlVPE4

SlVPE5

A

B

C

D

E

b b

b
b b

b b b

a

b
b

b b

b b
b

b
b

b
b

b

b

b

b b

a

a

a

a

b
a a

a

a a

Fig. 6. Levels of SlVPE mRNA suppression in RNAi lines. The

expression levels of (A) SlVPE1, (B) SlVPE2, (C) SlVPE3, (D)

SlVPE4, and (E) SlVPE5 in the RNAi-SlVPE1, RNAi-SlVPE3, and

RNAi-SlVPE5 lines were determined by qRT-PCR. The mRNA

was extracted from whole fruits at the MG stage. The mRNA

levels in three independent transgenic lines of RNAi-SlVPE1

(1-a, 1-b, and 1-c), NAi-SlVPE3 (3-a, 3-b, 3-c), and RNAi-

SlVPE5 (5-a, 5-b, and 5-c), were determined. The mean values

of at least three independent experiments are shown. The error

bars represent the SE. a, P <0.05; b, P <0.01, as determined by

the t-test.
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SlVPE1 and SlVPE3 may influence the composition of

amino acids, whereas the suppression of SlVPE5 did not

have any effect on amino acid accumulation.

Discussion

Identification of novel VPE proteins from tomato

The completion of the tomato genome sequence project has

allowed orthologous or homologous genes from the tomato

genome to be easily identified using a specific sequence as

query. In this study, five VPE genes from tomato (SlVPE)

were identified; the phylogenic and motif analyses using
other VPE proteins (i.e. Arabidopsis VPE) revealed that the

SlVPE proteins showed significant similarity in their protein

sequence as well as their protein primary structure

(Supplementary Table S2 at JXB online). For example, the

SlVPE proteins are comprised of several conserved amino

acid residues that are important for the VPE enzymatic

activity (Supplementary Fig. S1 at JXB online). Consistent

with this, levels of SlVPE mRNA expression were
correlated with VPE enzymatic activity, suggesting that

the tomato SlVPE genes encode biochemically active VPE

proteins (Figs 6, 7; Supplementary Figs S3, S4 at JXB

online).

Interestingly, the presence of VPE proteins is well

conserved among many organisms including bacteria,

animals, and plants (Yamada et al., 2005). Like these

proteins, five SlVPE proteins were classified into the three
categories, seed type (SlVPE4), seed coat type (SlVPE1 and

SlVPE2), and vegetative type (SlVPE3 and SlVPE5)

(Fig. 1). The function of plant VPEs is mainly focused on

the processing of storage proteins in developing seeds and

on proteins having caspase-1 activity that induce PCD upon

the defence response. However, VPEs are also essential for

the degradation of invertase, an enzyme that catalyses the

hydrolysis of sucrose in senescent leaves (Rojo et al., 2003).

Hence, it has been suggested that VPE activity is associated

with sugar accumulation in plants. This possibility was
explored using one of the fruit crops, the tomato, because it

has more advantages in terms of the availability of genetic

and molecular tools than other fruit crops (Aoki et al.,

2010). In addition, the tomato transformation protocol is

well established, and its efficiency is higher than that of

other fruit crops (Sun et al., 2006).
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A decrease in VPE activity was associated with increased sugar
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bar) and the RED stage (grey bar) was measured in the control,
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represent the SE. A significant difference was calculated between

the RNAi lines and the control. a, P <0.05; b, P <0.01, as

determined by the t-test.
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To examine the roles of VPEs during fruit development,

the mRNA level of each SlVPE gene was determined by

qRT-PCR analysis. This analysis indicated that all SlVPE
genes were expressed in fruit but showed different temporal

patterning (Fig. 2). Expression analysis using the GUS

reporter gene revealed that the SlVPE genes were markedly

expressed in vascular bundles and in seeds within the fruit

(Figs 3, 4). These results suggested that the SlVPE proteins

function somehow in seeds and/or fruits. Consistent with

this, a high level of VPE enzymatic activity was observed in

developing fruits compared with other vegetative tissues
such as leaf, root, and stem (Fig. 5, Supplementary Fig. S2

at JXB online).

To examine whether the SlVPE proteins play a role(s) in

inducing PCD of the seed inner integument, sections of

seeds from developing fruit were made and observed by

light microscopy. However, no significant difference in the

thickness of the seed coat was observed between the control

and the RNAi-SlVPE lines (Supplementary Fig. S5 at JXB
online). Moreover, the distribution of the storage proteins

in seeds was similar between the control and the RNAi-

SlVPE lines when seed storage proteins were examined by

Coomassie blue staining (data not shown). These results

suggested that SlVPE proteins may not play major roles in

regulating PCD in the seed inner integument and processing

storage proteins in tomato. However, it is possible that the

large reduction in VPE enzymatic activity is required to
stop PCD and protein processing. The Arabidopsis bvpe
mutant lacks ;90% of the VPE activity in seeds and shows

the accumulation of precursors of globulin and albumin due

to a failure in the processing of proteins with a storage

function (Gruis et al., 2002, 2004; Shimada et al., 2003).

Although bVPE is essential for the processing of storage

proteins, mutations in both the aVPE and cVPE genes in

the bvpe mutant give an additive effect on the decreased
VPE activity and on the increased accumulation of pre-

cursors; however, single avpe and cvpe mutants do not show

significant defects in processing activity. These findings

suggested that the family of VPE genes show highly

redundant functions. Since the five SlVPE genes show very

similar spatial expression patterns (Figs 3, 4), it is possible

that a reduction in VPE activity in the RNAi-SlVPE lines

was not sufficient to hinder PCD and protein processing;

therefore, the remaining VPE activity in the RNAi-SlVPE

lines probably compensated the protein function. Further
studies are needed to clarify the roles of SlVPE proteins in

these processes.

SlVPE5 mainly functions in total sugar accumulation

The plant vacuole is the main site for solute accumulation,

and the vacuole in fruit accumulates large volumes of

sugars, organic acids, and secondary metabolites (Johnson

et al., 1988; Shiratake and Martinoia, 2007). To explore

whether the suppression of SlVPE genes influenced fruit

development, sugar accumulation was determined in the

RNAi lines and control plants. The HPLC analysis to

examine the sugar contents indicated that sugar accumula-
tion was unchanged at the MG stage between the RNAi-

SlVPE lines and the control plants (Fig. 8). However, the

effect of SlVPE suppression on sugar accumulation was

observed at the RED stage, suggesting that the molecular

targets of SlVPE might function at the RED stage. In

contrast, RNAi-SlVPE1 showed decreased levels of VPE

activity associated with increased sugar accumulation in

fruit at the RED stage (Figs 7, 8), although the mRNA
expression of the SlVPE1 gene was barely observed at the

RED stage (Fig. 2B). To determine whether RNAi sup-

pressed expression not only of SlVPE1 but also of other

SlVPE genes due to high DNA sequence homology among

the RNAi-targeted regions (Supplementary Table S3 at JXB

online), the mRNA expression of the other SlVPE genes

was determined. As predicted, the mRNA expression of the

SlVPE2, SlVPE3, and SlVPE5 genes appeared to be
effectively suppressed, suggesting that the increased sugar

content resulted from the simultaneous reduced expression

of SlVPE2, SlVPE3, and/or SlVPE5 (Fig. 6). The fact that

the mRNA expression of SlVPE2 was hardly observed at

the RED stage (Fig. 2C) and that the total sugar content in

the RNAi-SlVPE3 lines was unchanged suggests that the

suppression of SlVPE5 had the strongest effect among the

SlVPE genes on the increased total sugar accumulation in
fruits (Fig. 9). Consistent with this, the transgenic 5-a line of

RNAi-SlVPE5 showed nearly specific suppression of

SlVPE5, which was associated with increased total sugar

content (Figs 6, 9). A reduction of ;10% in SlVPE5 mRNA

expression in the transgenic 3-a and 3-b lines of RNAi-

SlVPE3 did not result in an increased total sugar content,

whereas a reduction of ;40% in SlVPE5 mRNA in the 1-a

and 1-b lines of RNAi-SlVPE1 caused a large increase in the
total sugar levels (Figs 6E, 9). In addition, the reduction in

SlVPE5 expression seemed to have a stronger effect on

sugar accumulation than on the reduction of the absolute

level of VPE enzymatic activity, since the RNAi-SlVPE5

lines still exhibited higher levels of VPE activity (line 5-a,
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Fig. 9. Total sugar content in fruits at the RED stage in control

plants and RNAi-SlVPE lines. Total sugar accumulation of fruits at

the RED stage was calculated in the control, RNAi-SlVPE1 (line 1-

a and 1-b), RNAi-SlVPE3 (line 3-a and 3-b), and RNAi-SlVPE5 (line

5-a and 5-c) plants. The mean values of at least three independent

experiments are shown. The error bars represent the SE. a,

P <0.05; b, P <0.01, as determined by the t-test.
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83.5%; line 5-c, 71.2%) than other RNAi lines (i.e. line 1-a,

42.4%; 3-a, 72.0%) (Fig. 7). These results suggested that the

greater reduction of the vegetative-type SlVPE5 is probably

important for increasing the total sugar content. However,

since none of the RNAi-SlVPE lines showed absolute

specific suppression of the targeted genes (Fig. 6), the

possibility could not be excluded that the simultaneous

suppression of several SlVPE genes was essential for
triggering the sugar accumulation observed.

Interestingly, it is proposed that the vegetative-type VPE

is responsible for the maturation and activation of vacuole

hydrolytic enzymes (hydrolases), which are involved in the

degradation of cellular components sequestered from the

cytosol by autophagy during senescence (Yamada et al.,

2005). Furthermore, cVPE targets hydrolases such as the

AtFRUCT4 invertase protein, b-glycosidases, a-mannnosi-
dases, and a-galactosidases for degradation, indicating that

cVPE exhibits proteolytic activity (Rojo et al., 2003).

Several lines of evidence have indicated that the sugar

content is greatly affected by the activity of hydrolases

(Fridman et al., 2004; Baxter et al., 2005). For instance,

invertase enzyme activity is most probably correlated with

total sugar contents in tomato fruits and carrot taproots

(Ohyama et al., 1995; Klann et al., 1996; Tang et al., 1999;
Husain et al., 2001). Expression of the invertase gene is

preferentially observed in the vascular tissues within the

placenta that lead to the developing seeds as well as the

surrounding pericarp (Fridman et al., 2004). Interestingly,

this expression pattern was quite similar to that in

vegetative-type SlVPE3 and SlVPE5 genes (Figs 3, 4).

The vacuoles in fruit crops accumulate high concentra-

tions of sugars, minerals, and organic acids, resulting in
high osmotic pressure (Shiratake and Martinoia, 2007). As

a consequence, water is absorbed into the vacuole, and

>90% of the cellular volume is occupied by the vacuole at

the maturation stage (Johnson et al., 1988). Intriguingly, the

vacuoles at this stage are mildly acidic, and this is the

optimal environment for activating the VPE protein enzyme

by self-catalytic activity (Hara-Nishimura et al., 1993;

Kuroyanagi et al., 2002). These findings suggested that the
molecular target of the vegetative-type SlVPE proteins may

be hydrolases in the vacuole of fruits at the RED stage. It is

possible that the decreased VPE activity resulting from

decreased SlVPE expression may slow down the proteolysis

of the hydrolases, such as invertases, leading to their

accumulation and thus modifying sugar metabolism and

sugar accumulation.

Moreover, the movement of substances into the vacuole
probably requires an electrochemical proton gradient,

which is generated by the vacuolar H+-ATPase (V-ATPase)

acting as a proton pump in the vacuolar membrane

(Shiratake and Martinoia, 2007). The suppression of

V-ATPase in tomato fruit by the antisense strategy results

in an increased sucrose content in fruit, whereas the hexose

content was unchanged; consequently, the sugar composi-

tion was altered, as for the RNAi-SlVPE3 lines (line 3-b)
(Fig. 8C) (Amemiya et al., 2006). It is possible that the

reduced VPE activity influenced the activity of V-ATPase

somewhat. The suppression of SlVPE5 did not influence

other metabolites such as amino acids and related substan-

ces (Supplementary Table S4 at JXB online), suggesting

that the mechanism for SlVEP5-dependent regulation

specifically targeted sugar accumulation. However, the

content of several amino acids was significantly higher in

the RNAi-SlVPE1 and RNAi-SlVPE3 lines than in the

control (Supplementary Table S4). This suggested that
SlVPE1 and SlVPE3 were somehow involved in amino acid

accumulation. However, the fact that SlVPE suppression

did not cause any change in the total content of amino acids

and related substances suggested that the effect could be

subtle, if any.

In conclusion, this study has demonstrated that the five

SlVPE genes isolated encode novel VPE proteins that

exhibited biochemical activity in tomato. Tomato fruit
quality is largely determined by the content of soluble

solids, with soluble sugars being the major components of

the soluble solid fraction. Hence the present strategy would

be useful for generating high quality tomato fruit by genetic

engineering.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Key amino acid residues important for VPE

self-catalytic activity.

Figure S2. Comparison of the intensity of VPE enzyme

activity in vegetative tissues and fruits.

Figure S3. Suppression of SlVPE2 and SlVPE4 mRNA

expression was associated with decreased VPE enzyme
activity.
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caused a reduction in VPE enzyme activity in leaf tissue.

Figure S5. Seed coat formation in control and RNAi

lines.
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