Optimal hypothesis testing under unbiased estimates: applications to the family of retracted distributions

Nogami Yoshiko

2003

Institute of Policy and Planning Sciences

Discussion paper series - no. 1053, 1058

URL http://hdl.handle.net/2241/690
Optimal Hypothesis Testing under Unbiased Estimates—Applications to the Family of Retracted Distributions (I).

by

Yoshiko Nogami

August 2003
Optimal Hypothesis Testing under Unbiased Estimates—
Applications to the Family of Retracted Distributions (I).

Yoshiko Nogami
Institute of Policy and Planning Sciences
University of Tsukuba, Japan

§0. Summary.
First, I would like to say that I support Professor L. J. Savage (1972, Chap. 17, §2)'s statement concerning interval estimation.

Here, we consider hypothesis testing with the regret region derived from inverting the minimum random interval based on unbiased estimate for the parameter by using Lagrange's method.

As examples we consider two oblong (or uniform) distributions in the family of retracted distributions. (See Y. Nogami(2002 a,b,c).)

§1. The Oblong (or Uniform) $U(\theta+\theta_1, \theta+\theta_2)$ (θ_1, θ_2: reals such that $\theta_1<\theta_2$).
For simplicity, we let $\theta_1=0$ and $\theta_2=1$. The underlined density is

$$f(x|\theta) = \begin{cases} 1, & \text{for } 0 < x < 1, \quad (-\infty < \theta < \infty) \\ 0, & \text{otherwise.} \end{cases}$$

We take a random sample X_1, \ldots, X_n from $f(x|\theta)$ and test the null hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_1: \theta \neq \theta_0$ with a given real number θ_0.

Part (i): Let $X_{(i)}$ be the i-th smallest observation of X_1, \ldots, X_n. Let $V = X_{(1)}$, $W = X_{(n)}$ and $Y = (V + W - 1)/2$. Since the p.d.f. of Y is given by

$$g_Y(y|\theta) = \begin{cases} n(1-2|y-\theta|)^{n-1}, & \text{for } -1/2 < y < 1/2, \\ 0, & \text{otherwise.} \end{cases}$$
We can easily get \(E(Y) = 0 \) and \(\text{Var}(Y) = 1/[2(n+1)(n+2)] \).

To find the density of \(T^* = (Y-\theta)/\sqrt{\text{Var}(Y)} = 1/[2(n+1)(n+2)](Y-\theta) \) we simplify the problem to find the density of \(T = 2n(Y-\theta) \) as follows:

\[
h_T(t) = \begin{cases} 2^{-1}(1-|t|/n)^{n-1}, & -n < t < n \\ 0, & \text{otherwise} \end{cases}
\]

Let \(\theta \) be a real number with \(0 < \theta < 1 \). Let \(r_1, r_2, t_1 \) and \(t_2 \) be real numbers such that \(r_1 < r_2 \) and \(t_1 < t_2 \). Minimizing \(t_2 - t_1 \) subject to

\[
P_\theta[r_1 < Y - \theta < r_2] = P[t_1 < T < t_2] = 1 - \theta,
\]

we get by Lagrange's multiplier's method that \(t = t_2 = -t_1 = n(1-\theta^{1/n}) \) (\(-\log_n \theta \) as \(n \to \infty \)) and \(r_2 = -r_1 = (1-\theta^{1/n})/2 \) (\(\to 0 \) as \(n \to \infty \)).

Actually, the density of \(T^* \) converges to the density

\[
\phi(t) = 2^{-1/2} \exp\{-|t|/2\}, \quad -\infty < t < \infty.
\]

Hence, letting \(T_0 = 2n(Y-\theta_0) \) we regret not rejecting \(H_0 \) if \(-t \leq T_0 \leq t \) and satisfy to reject \(H_0 \) if \(|T_0| > t \). We call \((-t, t)\) the regret region based on \(T_0 \).

Part (II). Here, we consider the bibliographies; especially, S. K. Chatterjee and G. Chattopadhyay(1994). We first consider our non-regret region as follows:

\[
D^c = \{Y \neq \theta_0 - r, Y \neq \theta_0 + r, \theta_0 \leq V < W < \theta_0 + 1\} \cup \{V \leq \theta_0, W - V < 1\} \cup \{W \geq \theta_0 + 1, W - V < 1\}.
\]

We call \(\{(\theta) = P_\theta(D^c) \) the regret probability function. \(D^c \) is the
complement of D.) From p. 4 of Y. Nogami (2002b) \(\xi(\theta) \) is symmetric at \(\theta = \theta_0 \), a concave function from below and \(\xi(\theta) \leq 1 - \theta = \xi(\theta_0) \), \(\forall \theta \). (This property is also seen from Result 2.1 of S. K. Chatterjee and G. Chattopadhyay (1994).)

We return to S. K. Chatterjee and G. Chattopadhyay (1994). They consider the test of the hypotheses \(H_0 : \theta = \theta_0 \) versus \(H_1 : \theta \neq \theta_0 \). Let \(x = (x_1, \ldots, x_n) \). In Result 2.2 they introduced the test

\[
\psi^0_1(x) = \begin{cases}
1, & \text{if } x \in [\theta_0, \theta_0 + 1]^n \text{ or } \\
\theta_0 + 1 - \frac{1}{n^2} < v < \theta_0 + 1, & \\
0, & \text{otherwise}
\end{cases}
\]

and compared with J. W. Pratt (1961)'s test \(\psi^0_1(x) \) for \(\theta > \theta_0 \). We can see the difference of the structures of non-regret regions under \(H_0 \) for the tests \(D^c \), \(\psi^0 \), and \(\psi^0_1 \) in Figures 1 and 2. In their Result 3.1 they showed unique locally best test

\[
\psi_1(x) = \begin{cases}
1, & \text{if } x \notin [0, \theta_0 + 1]^n \text{ or } \\
\theta_0 + 1 - \frac{1}{n^2} < v < \theta_0 + 1 + \left(1 - \frac{1}{n^2}\right)/2, & \\
0, & \text{otherwise}
\end{cases}
\]

whose non-regret region appeared in Figure 3.
This is just like the regret region. Even if \(\phi_L \) is the unique locally best test, practical statistician does not want to use this test.

This kind of curious phenomenon happens for this oblong (or uniform) distribution.

Remark: (i) We note that for \(\theta_0-a^1/n<\theta<\theta_0 \) \(\{(\theta)\in E_o(1-\phi^0_{1}(X)) \} \), but the other side of \(\theta \) the inequality is reversed.
(ii) Consider to test \(H_0: \theta=\theta_0 \) versus \(H_1: \theta>\theta_0 \). We can construct the regret region \(D_1 \) where \(P_\theta(D_1)=1-a \) and

\[
P_\theta(D_1)=E_\theta(1-\phi^0_{1}(X)), \quad \text{for } \theta_0-a^{1/n}<\theta<\theta_0+1-(2a)^{1/n}
\]

\[
> E_\theta(1-\phi^0_{1}(X))=0, \quad \text{for } \theta_0+1-a^{1/n}<\theta.
\]

So, our test cannot overcome their \(\phi^0_{1} \).

For the case of unknown \(c=b_2-b_1(>0) \), we omit the discussion here. (See e.g. Y. Nogami(2002b,c)).

§2. The Oblong (or Uniform) \(U(0,\theta) \).

The underlined density is

\[
f(x|\theta) = \begin{cases}
\theta^{-1}, & \text{for } 0<x<\theta, \\
0, & \text{otherwise.}
\end{cases}
\]

We take a random sample \(X_1, \ldots, X_n \) from \(f(x|\theta) \) and test the hypotheses \(H_0: \theta=\theta_0 \) versus \(H_1: \theta>\theta_0 \). Let \(\theta^* = \log_e \theta \) and \(Y = \log_e X \). The p.d.f. of \(Y \) is given by
\[g_r(y) = \begin{cases} \exp(y - \theta^*) \text{ for } 0 < \theta^* \\ 0 \text{ otherwise.} \end{cases} \]

Let \(U = \sqrt{n} + n^{-1} \sum_{i=1}^{n} Y_i + 1 \). Then, \(E(U) = \theta^* \). We call \((b_1, b_2)\) the (1-\(\alpha \)) random interval for \(\theta \) if \(P_r(b_1 < \theta < b_2) = 1 - \alpha \). Using the density \(h_r(v) \) of \(V = 2n(\theta^* + 1 - U) \) and minimizing \(v_2 - v_1(\theta) \) subject to

\[P[v_1 < V < v_2] = 1 - \alpha \]

we get by Lagrange's method the minimum (1-\(\alpha \)) random interval \((U - 1 + v_1/(2n), U - 1 + v_2/(2n))\) for \(\theta^* \) with \(v_1 \) and \(v_2 \) determined by

\[h_r(v_1) = h_r(v_2). \]

Letting \(u_1 = \theta^* + 1 - v_2/(2n) \) and \(u_2 = \theta^* + 1 - v_1/(2n) \), we get the regret region

\[D = \{ u_1 < U < u_2 \} \cap \{ Y_{i0} \leq \theta_0^* \} = \{ u_1 < U < u_2 \} \cap \{ X_{i0} \leq \theta_0 \}. \]

\(\psi(\theta) = P_r(D) \) becomes a concave function from below and \(\psi(\theta) \uparrow \{ \theta_0 \}, \psi(\theta) \downarrow \{ \theta_0 \}, \forall \theta \).

This test is also applicable for the one-edged test of \(H'_0: \theta \leq \theta_0 \) versus \(H'_1: \theta > \theta_0 \) and gives uniformly least regret test. (See Y. Nogami(2002a).)
REFERENCES

