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ABSTRACT 

 

The ciliary band is a distinct region of embryonic ectoderm that is specified between oral 

and aboral ectoderm.  Flask-shaped ciliary cells and neurons differentiate in this region 

and they are patterned to form an integrated tissue that functions as the principal 

swimming and feeding organ of the larva. TGFβ signaling, which is known to mediate 

oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation.  

We have used morpholino knockdown and ectopic expression of RNA to alter TGFβ 

signaling at the level of ligands, receptors, and signal transduction components and 

assessed the differentiation and patterning of the ciliary band cells and associated 

neurons.  These results suggest that the effect of TGFβ signaling on the development of 

most neurons is indirect.  We propose that the primary effects of these signals are to 

position the ciliary cells, which in turn support neural differentiation.  Nodal signaling 

determines the position of the oral margin of the ciliary band, while BMP signals 

regulate the width of the band.  Since both Nodal and BMP2/4 signaling produce 

ectoderm that does not support neurogenesis, we propose that formation of a ciliary 

band requires protection from these signals.  In addition, our studies reveal that 

interfering with the expression of the only sea urchin BMP receptor, Alk3/6, produces a 

ciliary band phenotype that is different from that resulting from the loss of BMP2/4.  This 

suggests that at least one additional component that signals through Alk3/6 is part of 

normal ectoderm signaling.  We propose a model that incorporates spatially regulated 

control of Nodal and BMP signaling to determine the position and differentiation of the 

ciliary band, and subsequent neural patterning.  
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INTRODUCTION 

Members of the transforming growth factor-β (TGF-β) superfamily play central 

roles in cell fate specification in development.  TGF-β ligands are secreted proteins that 

diffuse from their source and activate complex signaling networks that regulate 

differentiation.  TGF-β signaling patterns are complicated because a range of factors 

modify ligand availability and receptor and signal transduction functions, creating 

complex developmental patterns from seemingly simple arrangements of localized 

signaling sources and widespread receptors.  Well-known examples are Nodal and 

BMP4.  In vertebrates, nodal is expressed on the left side of the embryo and its 

localized effects are controlled by Lefty-1 and Lefty-2 (Meno et al., 1996).  Leftys bind to 

the EGF-CFC proteins that are required for Nodal to bind to the activin-like kinase (Alk) 

receptor at the midline of the body, thereby blocking Nodal binding, and preventing 

Nodal signals from spreading to right side (Chen and Shen, 2004).  BMP4, which is 

expressed on the future ventral side of vertebrate ectoderm, diffuses throughout the 

embryo, but is antagonized by the direct binding of Chordin, which is expressed in the 

dorsal organizer.  The consequence is that dorsal tissues form where BMP4’s 

ventralizing effects are blocked (De Robertis and Kuroda 2004).  It is a hallmark of 

TGFβ signaling that molecular antagonists pattern the effects of the secreting ligands 

with surprising precision.   

In sea urchin embryos four regions of ectoderm – the animal plate, oral ectoderm, 

aboral ectoderm and ciliary band – are produced by animal hemisphere blastomeres 

(Davidson et al., 1998; Yaguchi et al., 2006). Incompletely characterized events, 
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dependent on vegetal canonical Wnt, restrict the animal plate to the animal pole 

(Yaguchi et al., 2006) and eliminate a repressor of nodal expression (Yaguchi et al., 

2008).  As a consequence, the TGF-β signals, Nodal and subsequently BMP2/4, begin 

to pattern the remaining ectoderm in the animal hemisphere, producing oral, aboral and 

ciliary band ectoderm (Duboc et al., 2004, Yaguchi et al., 2006).  Models of ectodermal 

specification suggest that Nodal signaling is limited to the oral ectoderm by Lefty, which 

depends on Nodal and has long-range inhibitory functions (Duboc et al., 2008).  A 

reaction-diffusion model in which Lefty acts as a feedback inhibitor has been proposed 

to explain how it restricts Nodal signaling to oral ectoderm (Duboc et al., 2008; Bolouri 

and Davidson, 2009).  BMP2/4, which also acts downstream of Nodal, is transcribed in 

the oral ectoderm (Angerer et al., 2000, Duboc et al., 2004), yet acts outside of oral 

ectoderm to induce aboral ectoderm Lapraz et al., 2009).  Bradham et al. (2009) and 

Lapraz et al. (2009) showed that Chordin, expressed in the oral ectoderm under the 

control of Nodal, blocks BMP2/4 activity.  In its absence, or in the absence of Nodal, 

differentiation of ciliary band neurons is altered as well as the normal expression pattern 

of a ciliary band marker.  Although TGFβ signaling accounts for many aspects of oral 

and aboral ectoderm specification, we understand very little of the mechanisms involved 

in ciliary band formation, and the differentiation of ciliary band neurons. 

The ciliary band is the principal swimming and feeding organ of the larva.  It is a 

tightly packed strip of flask-shaped, ciliary cells that beat away from the mouth, 

producing a force that moves the larva forward and captures food particles deflected by 

ciliary reversals (Strathmann, 2007).  In addition to the ciliary cells, there is a series of 

neurons, mostly on the oral side of the ciliary band, that have short, microvillar dendritic 
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processes on their surface (Burke, 1978).  A tract of axons that lies at the base of the 

ciliary cells interconnects the nerve cells.  The nervous system is thought to regulate the 

direction of ciliary beat, as depolarization of the ciliary cells accompanies reversals of 

ciliary beat (Mackie et al., 1969; Satterlie and Cameron, 1985).  Thus, the ciliary band is 

an integrated tissue innervated by neurons arranged in a precise pattern.   

Our objective was to determine how components of the oral-aboral signaling 

network specify and pattern the ciliary cells and neurons of the ciliary band.  We 

manipulated the signaling network by knocking down ligands and receptors with 

morpholinos and expressing RNAs encoding antagonists and dominant negative, or 

constitutively active signal transduction components.  We anticipated that by assessing 

the distribution of different types of ectoderm and neurons, we would be able to deduce 

how oral/aboral ectoderm patterning mechanisms regulate formation of the ciliary band. 

Our results indicate that the ciliary band is positioned by TGFβ signaling, yet it is a 

region in which TGFβ signaling is suppressed.  As well, the ciliary band cells are 

required for the differentiation and patterning of ciliary band neurons.  We identify 

several novel roles for known components of the oral-aboral signaling network and for 

other components that appear to be missing.   

 

MATERIALS AND METHODS  

Animals and embryo culture  

Strongylocentrotus purpuratus were collected near Victoria, BC or purchased 

from The Cultured Abalone, Goleta, CA.  Gametes were obtained by intra-coelomic 

injection of 0.5M KCl and embryos were cultured by standard methods with filtered 
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seawater (FSW) or artificial seawater at 15˚C.   

 

Microinjection of morpholino anti-sense oligonucleotides (MO) and mRNAs  

  Eggs were prepared as described previously (Yaguchi et al., 2006).  Morpholinos 

(Gene Tools, Eugene, OR) were microinjected in 22.5% glycerol with the following 

concentration in the injection needles: nodal-MO (600µM), lefty-MO (200µM), BMP2/4-

MO (150µM), and Alk3/6-MO (200µM).  The morpholino sequences are: 

  

nodal-MO: 5’-GATGTCTCAGCTCTCTGAAATGTAG-3’  

lefty-MO: 5’-AGCACCGAGTGATAATTCCATATTG-3’  

BMP2/4-MO: 5’-GTGGTAACCATGATGGGTCTGAAAG-3’  

Alk3/6-MO: 5'-TAGTGTTACATCTGTCGC[CAT]ATTC-3' 

 

The preparation and concentration for nodal, lefty, modified smad2/3 and 

BMP2/4 mRNAs are described previously (Yaguchi et al., 2006; Yaguchi et al., 2007).  

To misexpress modified smad1/5, the C-terminal of Sp-Smad1/5 was substituted or 

deleted in a manner similar to that described for Smad2/3 modification (Yaguchi et al., 

2007).  The concentration of act-smad1/5 and dn-smad1/5 were 3.0µg/µl in injection 

needles.   

 

Immunohistochemistry   

Immunohistochemistry was done as described previously (Yaguchi et al., 2006).  

Primary antibodies were incubated overnight at 4˚C using the following dilutions: 
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Synaptotagmin (1E11, 1:800; Nakajima et al., 2004), Goosecoid (Gsc, 1:600; Kenny et 

al., 2003), Hnf6 (1:500), serotonin (1:1000, Sigma), and Nk2.1 (1:800; Takacs et al., 

2004).  The specimens were observed using Leica (DM6000) and Zeiss (Axiovert 200M 

and LSM410) microscopes.  The images were analyzed with ImageJ (NIH) and Adobe 

Photoshop and the figures were prepared with Canvas8.   

 

RESULTS 

Ciliary Band Neurons 

The ciliary band in a pluteus larva is composed of 3-4 rows of columnar cells that 

surround the oral ectoderm (Fig. 1A, green line).  To identify differentiating ciliary band 

cells, we prepared an antibody to Hnf6, a transcription factor of the ONECUT family, 

which is expressed in the ciliary band (Otim et al., 2004; Poustka et al., 2004).  In prism 

and pluteus stages, Hnf6 protein is detected in the nuclei of the tightly packed columnar 

cells of the ciliary band.  Double staining for Goosecoid (Gsc), a transcription factor 

expressed in squamous oral ectoderm (Angerer et al., 2001) and Hnf6 shows that these 

do not co-localize and ciliary band is a distinct region of ectoderm (Fig 1C-E).   

In the early pluteus larva some neurons are in the thickened animal plate and 

around the mouth, but most reside in the ciliary band (Fig. 1B, H-K).  The cell bodies of 

ciliary band neurons are predominantly on the oral side of the ciliary band and bundled 

axon tracts connect the neurons and encircle the oral ectoderm (Fig. 1F-G). 

Synaptotagmin B-containing projections from the ciliary band neurons underlie the 

aboral ectoderm, are oriented toward the posterior end of the larva, and are not bundled.  

On the left and right sides of the pluteus, lateral ganglia each include a cluster of 2-4 
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neural cell bodies beneath the aboral ectoderm that extend projections posteriorly and 

into the axonal tracts of the ciliary band.  The only neural projections under the oral 

ectoderm are two bundles of axons that cross the oral ectoderm at the base of the 

postoral arms (Fig 1B, arrow).  The serotonergic neurons are restricted to the animal 

plate at this stage of development (Fig 1L-N).  Thus, the types and organization of 

neurons and neural projections are distinctive in the oral and aboral ectoderm as well as 

in different parts of the ciliary band.  The key features of the ciliary band neurons are:  1. 

Neuronal cell bodies are restricted to the oral side of the ciliary band; 2. Axons in the 

ciliary band form bundles; 3. Unbundled axons project posteriorly under the aboral 

ectoderm; 4. Only two axonal tracks at the base of the postoral arms project under the 

oral ectoderm. 

 

Suppressing Nodal signaling 

Injecting eggs with an Sp-nodal morpholino oligonucleotide (nodal-MO) results in 

embryos that are radialized with a gut that elongates toward the animal plate, yet no 

mouth forms (Duboc et al., 2004; Fig. 2A inset).  A more severe phenotype with an 

everted archenteron, which has not been reported in Paracentrotus lividus (Duboc et al., 

2004) or Hemicentrotus pulcherrimus (data not shown), is common in S. purpuratus.  At 

the end of gastrulation, there is a large disk of tightly packed, columnar cells, 10-14 cells 

wide, that contain nuclear Hnf6.  This disk includes the animal plate, as it expresses 

Nk2.1 (Fig. 2A-F; Yaguchi et al., 2006; Takacs et al., 2004) and serotonergic neurons 

(Fig. 2D-F), and the remaining ectoderm derived from animal blastomeres.  There is 

another region lacking nuclear Hnf6, but marked by small, non-nuclear spots of non-
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specific staining in the basal bodies.  Cells in this region are less densely packed, 

squamous, and express the aboral ectoderm, Spec1 (data not shown). Thus in nodal-

MO embryos, the ectoderm is specified as animal plate, surrounded by an expanded 

region of ciliary band cells, and a squamous epithelium that has features of aboral 

ectoderm.   

Synaptotagmin-expressing neurons differentiate throughout much of the 

ectoderm in nodal-MO embryos, although most of the cell bodies are associated with 

the ciliary band.  Much of the Synaptotagmin signal is in growth cones on neurites 

projecting toward the blastopore beneath the aboral ectoderm (Fig. 2A-F).  The neurons 

in the ciliary band region do not interconnect and form bundled axon tracts (Fig 2A, D).  

An alternative, although not equivalent, means of suppressing Nodal signaling is over-

expression of lefty, an endogenous antagonist of Nodal (Duboc et al., 2008). As 

expected, the Nodal-dependent gene, gsc, is not expressed in these embryos (Fig. 2G, 

I; Gsc protein), which are similar in form to nodal-MO embryos, with a radialized 

ectoderm, a straight archenteron and no mouth.  The Hnf6 expression pattern, the 

distribution of neurons and axon projections are also the same in lefty RNA-injected 

embryos as described for nodal-MO containing embryos (Fig. 2G-L). Similarly, embryos 

injected with a dominant negative version of smad2/3 (Yaguchi et al., 2007), a 

downstream effector of Nodal signals, have the same phenotype as nodal-MO- or lefty 

RNA-injected embryos: Synaptotagmin neurons differentiate along the margin of the 

thickened ciliary band ectoderm and extend neurites posteriorly (Fig. 2M-O).  Taken 

together, these results show that embryos lacking Nodal function have 3 types of 

ectoderm: animal plate, a region with some ciliary band features, and a more vegetal 
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region with aboral ectoderm features.  Most of nerve cell bodies are near the ciliary 

band, but they lack the neural patterning characteristic of ciliary band.  

 

Enhancing Nodal signaling 

  Injecting eggs with nodal RNA also produces a radialized embryo, but in this 

case, four regions of ectoderm are present and arranged along the animal-vegetal axis: 

the animal plate, and successive rings of oral ectoderm, ciliary band, and aboral-like 

ectoderm (Duboc et al., 2004; Yaguchi et al., 2006).  Hnf6 protein is detected in cells of 

the animal plate and in a thin, interrupted strip of ciliary band, 1-2 cells wide (Fig. 3B), 

confirming previously reported in situ hybridization data (Yaguchi et al., 2006).  In nodal 

RNA-injected embryos, the cell bodies of Synaptotagmin-expressing neurons are 

predominantly in the ciliary band, axons form a single tract that joins the neurons and 

short neurites project posteriorly. (Fig. 3A, C, D, F).  In 4-day plutei, neurons expressing 

Synaptotagmin appear in the animal plate, but there are no cells expressing serotonin 

(Fig. 3D-F).  

 Lefty-MO embryos are similar to nodal mRNA-injected embryos (Duboc et al., 

2008).  The expression of the oral ectoderm marker, Gsc, is radialized in both cases 

(Fig. 3G-I; Duboc et al., 2008) and serotonergic neurons do not differentiate in the 

animal plate (Fig. 3J-L; Yaguchi et al., 2007).  However, there is no ciliary band, as Hnf6 

protein (Fig. 3H) and Synaptotagmin neurons are found only in the animal plate (Fig. 3J-

L) in lefty-MO-injected embryos.  Embryos injected with act-smad2/3 mRNA are similar 

in form to lefty-MO-injected embryos, being radialized, lacking ciliary bands and 

serotonergic neurons (Fig. 3N and O) (Yaguchi et al., 2007).  However, unlike lefty-MO 
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embryos, there are no Synaptotagmin expressing animal plate neurons (Fig. 3M-O). 

Injection of nodal RNA results in ectopic Nodal signaling and also ectopic 

expression of Nodal-dependent genes like lefty, BMP2/4 and chordin.  The neural 

patterning is normal in the ciliary band that forms in these embryos as cells are 

interconnected with bundled axons and extend aboral projections.  The fact that 

misexpressed nodal can still direct the formation of a set of fully integrated ectodermal 

tissues supporting the differentiation and patterning of neural components reinforces the 

idea that it functions near the top of the oral/aboral ectoderm specification pathway.  

The loss of a ciliary band in lefty-MO embryos or those misexpressing act-smad2/3 

suggests that if Nodal signaling is not suppressed by Lefty, or if its downstream effector 

is present throughout the embryo, then development of this tissue is blocked. 

Suppressing BMP2/4 signaling 

BMP2/4-MO-injected embryos developed as previously described (Duboc et al., 

2004).  They are not radialized, as the gut bends to the oral side and fuses to form a 

mouth (Fig. 4B, inset).  The overall form of the embryo is distorted, but they contain four 

regions of ectoderm: animal plate, oral ectoderm, ciliary band, and aboral ectoderm.  

However, the oral ectoderm marker, Gsc, is not restricted to the oral side but surrounds 

the animal plate (Fig. 4D-F).  A band 5-6 cells wide of Hnf6-expressing ciliary cells, 

slightly wider than ciliary bands in control embryos, is present but is displaced to the 

aboral side and does not intersect the ciliated cells in the animal plate, as in normal 

embryos (Fig. 4A-F). The squamous ectoderm opposite to the oral ectoderm has a low 

cell density and expresses the aboral ectoderm marker, Spec1 (data not shown).  

Synaptotagmin-expressing neurons differentiate in embryos injected with BMP2/4-MO; 
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however, they are not restricted to the ciliary band but the cell bodies are predominantly 

in the oral half of the embryo (Fig. 4A, C).  The cell bodies are multipolar and neurites 

project randomly without forming bundled tracts.  Few neurites associate with the oral 

ectoderm and no serotonergic neurons develop in the animal plate.  

Similarly, knockdown of Alk3/6, the only BMP receptor in the sea urchin genome, 

produced embryos with some features in common with embryos in which BMP2/4 

expression is blocked (Fig. 4G-I).  Again, the ciliary band shifts toward the aboral side 

around the animal plate (Fig. 4H and I), oral ectoderm, marked by Gsc expression, 

surrounds the animal plate (Fig. 4J and L), and the animal plate marker Nk2.1 is 

expressed in animal pole cells, although this domain is larger than normal (Fig. 4L).  

Alk3/6-MO injected embryos are more radial than BMP2/4-MO injected embryos as the 

ciliary band is in a plane almost orthagonal to the animal-vegetal axis.  The major 

difference between the BMP2/4-MO and the Alk3/6-MO embryos is that the band of 

Hnf6-expressing cells is much wider, 10-12 cells, than it is in BMP2/4-MO embryos.  

Synaptotagmin-expressing neurons differentiate throughout this broad band of cells 

expressing Hnf6 as well as ectopically throughout the aboral region.  The neurons 

project neurites randomly throughout the non-oral half of the embryo and the neurons 

interconnect, but axon tracts fail to form.  Thus, embryos in which expression of the 

Alk3/6 receptor is blocked are not identical to embryos in which one of the ligands, 

BMP2/4, is suppressed.  

When RNA encoding a dominant-negative form of smad1/5 (dn-smad1/5) is 

injected into eggs, the embryos are similar in form to embryos injected with Alk3/6-MO.  

The oral territory is expanded to surround the animal plate and the Hnf6-expressing 
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ciliary band is shifted aborally and is as wide as that in Alk3/6-MO-injected embryos (Fig. 

4M-O).  Similarly, embryos expressing dn-smad1/5 have Synaptotagmin neurons 

throughout the aboral ectoderm, only short randomly oriented projections form, the cells 

are not interconnected nor do axons bundle into tracts (Fig. 4P-R).  Thus, suppressing 

signaling that specifies aboral ectoderm with either Alk3/6-MO or dn-smad1/5 results in 

ectoderm that supports the differentiation but not the patterning of neurons.  These 

neurons are not associated with the band of Hnf-6 cells, indicating BMP ligands are 

involved in the process that patterns neurons within the ciliary band. 

 

Enhancing BMP2/4 signaling 

Embryos injected with BMP2/4 mRNA develop as previously described (Angerer 

et al., 2000; Yaguchi et al., 2006).  Most of the ectoderm expresses Spec1 but not Gsc 

(Fig. 5G-I).  As well, neither ciliary band cells nor Synaptotagmin expressing, ciliary 

band neurons differentiate (Fig. 5A-F).  The animal plate is pronounced, expressing 

Hnf6 and Nk2.1 and contains serotonergic neurons that express Synaptotagmin (Fig. 

5C, F, and I).  This phenotype also results in embryos expressing act-smad1/5 (Fig. 5J-

O), as neither ciliary band ectoderm nor ciliary band neurons differentiate (Fig. 5J and 

N).  However, these embryos lack serotonin-containing neurons in the animal plate.  

Taken together, these experiments indicate that BMP2/4 can inhibit formation of ciliary 

band and suppress differentiation of ciliary band neurons.  
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DISCUSSION  

TGFβ signaling acts indirectly on differentiation of neurons 

Treatments that enhance BMP2/4 or Nodal signaling appear to inhibit neural 

differentiation. Misexpressed ligands could be acting on neural progenitors directly, or 

they could be acting indirectly on the non-neural ectoderm, which in turn either supports 

or suppresses neural differentiation.  If signaling acts directly on neural progenitors to 

prevent their differentiation, then blocking of that signaling with either a receptor 

morpholino or mRNA encoding dn-smads should result in a cell-autonomous increase in 

the number of neurons. However, if this happens it must affect only a small fraction of 

the ciliary band neurons, indicating that most, if not all of them respond indirectly to 

TGFβ signals.  Our model proposes that the indirect effect of TGFβ signaling is to 

provide the appropriate environment for neural development and the Hnf6-expressing 

ciliary cells provide this environment.   

Much of the behavior of neurons reported in untreated embryos and in embryos 

resulting from the perturbations described here support a model in which the ciliary 

band is required for the differentiation of neurons and the outgrowth and bundling of 

axons.  Neurons do not differentiate in treatments that result in the loss of the ciliary 

band and when the ciliary band is displaced, neurons differentiate at the new site.  Our 

data show that oral ectoderm does not support any of these events and aboral 

ectoderm only promotes growth of unbundled neurites. There are numerous situations 

in neural development of other metazoans in which neural progenitors must receive 

appropriate neurotrophic support to differentiate and neurite outgrowth is directed by 

axon guidance cues that determine the direction of neurite growth and regulate axon 
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bundling by regulating adhesion (Chilton, 2006).  We propose that the ciliary band 

provides an environment conducive to neural development and organization.  

 

A model for patterning the ciliary band  

When Nodal is expressed in the oral ectoderm, it initiates a sequence of 

signaling and differentiation events that includes the expression of factors that 

antagonize or modify Nodal and BMP2/4 signals (Fig. 6).  So far, Lefty and Chordin 

have this role (Duboc et al., 2004, 2008; Bradham et al., 2009), and we propose that 

they exclude TGFβ signals from the ciliary band.  Here we show that Nodal signaling 

localized by Lefty, positions the oral margin of the ciliary band.  Signaling from BMP2/4 

and at least one additional BMP narrows the potential width of the band on the aboral 

side from about 12 cells to 4.  Although Nodal and BMP2/4 signaling block development 

of ciliary band neurons, the correct patterning of these cells within the ciliary band 

depends on both of these signals being present.  In the normal embryo, the ectoderm 

that is subject to these TGFβ signals includes all of the ectoderm except the animal 

plate and the ectoderm surrounding the blastopore.  Little is known about specification 

of the vegetal ectoderm, but it likely involves canonical Wnt signaling, which is active in 

precursors during cleavage stages. However, the specification mechanisms of the 

ectoderm at the animal pole (Wei et al., 2009) and that of oral and aboral ectoderm, 

which require TGFβ signals, are beginning to emerge (Duboc et al., 2004, Range et al., 

2007, Nam et al., 2007, Bradham et al., 2009, Su et al., 2009, Lapraz et al., 2009).  

Here we have examined how these signals position the cells expressing Hnf6 that will 

become the ciliary cells of the ciliary band. 
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Nodal is sufficient for differentiation and neural patterning of the ciliary band  

All the data presented here suggest that Nodal initiates a series of events, 

including expression of another TGFβ, BMP2/4, that are required for the differentiation 

and patterning of the neural components of the ciliary band in the TGFβ-responsive 

ectoderm.  We found that neither a ciliary band nor differentiated synaptotagmin 

expressing neurons form in embryos mis-expressing act-smad2/3, which transduces the 

effects of Nodal signaling throughout the embryo, and bypasses negative feedback 

regulation by Lefty, a Nodal antagonist.  In contrast, an innervated ciliary band can form 

in embryos mis-expressing nodal, and its downstream target lefty, even though nodal is 

initially expressed uniformly throughout the embryo.  

Our data support the proposition that Lefty is a critical regulator of ciliary band 

formation.  When Lefty expression is blocked, the domain of endogenous Nodal 

signaling expands and no ciliary band is detectable by Hnf6 staining.  In addition, the 

ectoderm that results does not support differentiation of Synaptotagmin expressing 

neurons.  The loss of ciliary band and neurons in embryos with suppressed expression 

of Lefty argues that in the normal embryo prevention of ectopic Nodal signaling by Lefty 

is an essential feature of patterning of the TGFβ-responsive ectoderm as proposed by 

Duboc and Lepage (2008). 

When Nodal signaling is blocked, all but the most vegetal ectoderm continues to 

express Hnf6, a transcription factor that is a component of not only the basal regulatory 

state of ectoderm operating before Nodal or BMP2/4 signaling begins, but also of the 

mature ciliary band.  When BMP signaling is blocked, ciliary band cells, expressing Hnf6, 
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are present, whereas in embryos mis-expressing BMP2/4, they are absent (this paper; 

Angerer et al., 2000; Duboc et al., 2004; Bradham et al., 2009; Lapraz et al., 2009).  

Control of BMP signaling is likely to be mediated, at least in part, by Chordin, which has 

been shown to antagonize BMP2/4 in sea urchin embryos and is necessary for correct 

formation of the ciliary band and development of ciliary band neurons (Bradham et al., 

2009; Lapraz et al., 2009).  Taken together, these observations suggest that TGFβ 

signaling transforms most of the early ectoderm into an epidermal regulatory state 

except in cells where these signals are excluded; the site of ciliary band formation.  It 

follows that the ciliary band, and subsequently the development and patterning of 

neurons within it, require protection from Nodal and BMP. 

Restriction of the ciliary band to a narrow strip of cells expressing Hnf6 follows 

shortly after the activation of the oral signaling network. The levels of nodal and lefty 

mRNAs increase significantly during early blastula stages and chordin and BMP2/4 

transcription is up-regulated a few hours later during mesenchyme blastula stage 

(Angerer et al., 2000; Bradham et al., 2009).  This precedes by only a few hours the 

emergence of the ciliary band at late mesenchyme blastula stage (Otim et al., 2004; 

Poustka et al., 2004).  Exactly how spatially regulated TGFβ signaling restricts the 

expression of hnf6 is not yet clear, however, it is likely that mechanisms that control the 

levels and distribution of Lefty, Chordin and other TGFβ antagonists are involved. 

Nodal positions the oral boundary of the ciliary band, and BMP regulates its width  

The position and size of the band of cells expressing Hnf6 is dramatically altered 

when the domain of Nodal expression is altered.  When it is blocked, the band is 10-14 

cells wide and shifts toward the animal pole of the embryo, whereas, when it is over 
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expressed, the band is reduced to a width of only 1 cell and shifts toward the vegetal 

end of the embryo.  In normal embryos, Gsc, a target of Nodal signaling, is expressed in 

a domain that directly abuts the ciliary band.  These observations suggest that Nodal 

signaling regulates the position of the oral margin of Hnf-6 expressing ciliary band cells. 

BMP2/4 appears to determine the position of the posterior margin of the band of 

cells expressing Hnf6.  When embryos are injected with BMP2/4 RNA or act-smad1/5 

no band of Hnf6 cells forms.  As well when BMP2/4 signaling is suppressed (BMP2/4-

MO, dnsmad1/5 RNA, Alk3/6-MO), the band of Hnf-6 cells that forms is shifted away 

from the animal plate toward the vegetal pole and is wider.  Its posterior margin is 

restricted by at least two factors that signal through ALK3/6, yet BMP2/4 appears to play 

a relatively small role in this process.  Loss of BMP2/4 increases the band from 4 to 5 or 

6 cells in width while loss of Alk3/6 further increases it to 10-12 cells. This is the first 

demonstration that at least one additional BMP must be involved in patterning of this 

region of the aboral ectoderm.  However, Lapraz et al. (2009) do not report a similar 

difference between the effects of BMP2/4-MO and Alk3/6-MO on embryos of 

Paracentrotus lividus.  Leaving open the possibility that there is an incomplete 

suppression of BMP2/4 in S. purpuratus or species differences in regulation of aboral 

ectoderm specification by BMP pathways. 

 

Vegetal ectoderm is resistant to TGFβ signals 

The specification and differentiation of the most vegetal region of ectoderm is 

poorly understood. Perturbations of Nodal or BMP signaling make it clear that this 

ectoderm responds differently than more animal ectoderm.  Although loss of BMP 
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signaling results in expansion of the ciliary band, it does not extend into the vegetal 

ectoderm.  Loss of Nodal signaling, and consequently BMP2/4, reveals that the vegetal 

ectoderm continues to express aboral markers (Duboc et al., 2004) rather than Hnf6 as 

most of the rest of the ectoderm does (this work).  Although misexpression of nodal 

generates a ciliary band near the vegetal pole, there remains a vegetal strip of aboral 

ectoderm (this work, Duboc et al., 2004).  At least some of this ectoderm is probably 

derived from veg1 blastomeres, which surround to blastopore (Davidson et al., 1998), 

and as such its regulatory state is likely to be different from animal blastomere-derived 

ectoderm as a result of vegetal Wnt signaling (Davidson et al., 2002).   

 

Patterning of the ciliary band nervous system 

Nodal and BMP2/4 specify oral and aboral ectoderm, and suppression of these 

signals in a narrow region of ectoderm between them produces the ciliary band.  These 

tissues appear to control how the neurons develop within this band. Oral ectoderm 

inhibits differentiation of neurons and outgrowth of neurites, but aboral ectoderm 

supports outgrowth of unbundled neurites.  The ciliary band cells are under the 

influence of a gene regulatory network that includes hnf6, but the presence of Hnf6 is 

not sufficient to ensure correct patterning of ciliary band neurons.  The Hnf6-expressing 

cells are capable of forming a thickened, ciliated epithelium but, in the absence of TGFβ 

signals, they do not support correct formation of bundled axonal tracts that interconnect.  

The mechanisms by which TGFβ signaling affects the direction of neural projections 

and the interactions among them are not understood.  Rigorous testing will be required 

to understand the intricate mechanisms by which TGFβ signaling patterns the elegant, 
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yet relatively simple, tissues that serve the critical functions of swimming and feeding in 

the larva.   
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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