-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Tsukuba Repository

Generalization of Subpixel Analysis for
Hyperspectral Data With Flexibility iIn
Spectral Similarity Measures

0ad Chen Jin, Jia Xiuping, Yang Wei, Matsushita
Bunkei

journal or IEEE transactions on geoscience and remote

publication title |sensing

volume 47

number 7

page range 2165-2171

year 2009-07

00O (C) 2009 IEEE

URL http://hdl._handle.net/2241/103235

doi: 10.1109/TGRS.2008.2011432


https://core.ac.uk/display/56643334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 7, JULY 2009

2165

Generalization of Subpixel Analysis for
Hyperspectral Data With Flexibility in
Spectral Similarity Measures

Jin Chen, Xiuping Jia, Wei Yang, and Bunkei Matsushita

Abstract—Several spectral unmixing techniques have been de-
veloped for subpixel mapping using hyperspectral data in the
past two decades, among which the fully constrained least squares
method based on the linear spectral mixture model (LSMM) has
been widely accepted. However, the shortage of this method is that
the Euclidean spectral distance measure is used, and therefore, it
is sensitive to the magnitude of the spectra. While other spectral
matching criteria are available, such as spectral angle mapping
(SAM) and spectral information divergence (SID), the current
unmixing algorithm is unable to be extended to these measures.
In this paper, we propose a unified subpixel mapping framework
that models the unmixing process as a best match of the un-
known pixel’s spectrum to a weighted sum of the endmembers’
spectra. We introduce sequential quadratic programming to solve
the nonlinear optimization problem encountered in the imple-
mentation of this framework. The main feature of this proposed
method is that it is not restricted to any particular similarity
measures. Experiments were conducted with both simulated and
Hyperion data. The tests demonstrated the proposed framework’s
advantage in accommodating various spectral similarity measures
and provided performance comparisons of the Euclidean distance
measure with other spectral matching criteria including SAM,
spectral correlation measure, and SID.

Index Terms—Constrained nonlinear optimization, sequen-
tial quadratic optimization, spectral mixture analysis, spectrum
matching.

I. INTRODUCTION

HE REFLECTED solar spectrum measured by a sensor
mounted on an aircraft or satellite is the combination of
the spectra of all the materials present within the instantaneous
field of view (a pixel). Therefore, mixed pixels exist widely in a
remotely sensed image. The spectral mixture not only results in
inaccuracy for the materials’ discrimination and classification
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but also greatly hinders the development of quantitative remote
sensing. In the past two decades, several unmixing techniques
have been proposed including the linear spectral mixture model
(LSMM) [1], neural networks [2], Gaussian mixture discrimi-
nant analysis [3], and subspace projection approach [4]. Among
these methods, LSMM has been widely adopted in applica-
tions such as urban environment monitoring [5], [6], water
turbidity monitoring [7], land-cover change detection [8], and
vegetation-type mapping [9].

LSMM-based methods can be implemented with or without
constrains. The unconstrained method is straightforward but
may produce negative abundance fractions and total abundance
higher than 100% that are hard to interpret. To overcome this
problem, a fully constrained least squares (FCLS) method was
proposed to impose the abundance sum-to-one constraint and
abundance nonnegative constraint [10]. The weakness of the al-
gorithm is that it decomposes a mixed spectrum into a weighted
sum of the endmembers’ brightnesses at each waveband. In
other words, only the minimum spectral distance can be used
as a similarity measure in implementing FCLS.

As we know, minimum spectral distance is one of the several
spectral matching criteria. The shortage of this method is that it
is sensitive to the absolute magnitude of the spectra. Due to ex-
ternal factors, such as atmospheric effect, environmental radia-
tion, shading, etc., the magnitude of the spectrum varies greatly
compared with laboratory measurements, so the brightness-
based FCLS method may produce significant errors. Other
spectral matching criteria are available, such as spectral angle
mapping (SAM) [11], spectral correlation measure (SCM) [12],
and spectral information divergence (SID) [13]; they are less
sensitive to brightness. Unfortunately, the current FCLS algo-
rithm is unable to be extended to these similarity measures.

In this paper, we propose a generalized spectral unmix-
ing method and introduce sequential quadratic programming
(SQP) to solve the nonlinear optimization problem encoun-
tered. Under this framework, various similarity measures can
be applied, including the minimum distance measure. The
developed program is then tested with both simulated and EO-1
Hyperion data.

II. METHOD
A. LSMM

LSMM is reasonable when multiscattering is believed to be
negligible. In LSMM, the reflectance of a pixel in the nth
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band s,, n = 1,2,..., N, is regarded as a weighted sum of the
reflectance of each endmember within a pixel

M
$n= fmlmn+en, n=12....N (I)
m=1

where a,,,, is the reflectance of endmember m at band n,
fm is the fraction of the endmember, M is the number of
endmembers, and e,, is the residual error. The fractions of the
endmembers are commonly constrained by

M
> fm=1 0< fm <L )

m=1

Model fit is conventionally assessed by the root-mean-square
error (rmse)

rmse —

3)

This model unmixes the spectrum based on its absolute bright-
ness values. Unfortunately, it cannot be used to implement other
similarity measures. Considering the limitation of minimum
brightness distance measure, it is important to develop spectral
unmixing methods using other spectral matching criteria, such
as spectral correlation.

B. Generalized Spectral Unmixing Framework

Instead of decomposing a mixed pixel’s brightness into a
weighted sum of the endmembers’ brightnesses, we propose
to seek the best match of the unknown pixel spectrum to a
weighted sum of the endmembers’ spectra, where the user
determines the matching criterion. The details are described
hereinafter.

Suppose that there are M endmembers’ spectral vectors,
an,,m=1,2,..., M, obtained from images or spectral library.
The reference (mixed) spectral vector s, can be expressed
as s, = Z%Zl fmam; then, the best match of this reference
spectrum to the target spectrum s is resolved by finding the right
fractions, f1, fa,..., fasr. These fractions of endmembers are
the unmixing results for the unknown spectrum s. Therefore,
the unmixing framework can be described as follows:

min d(s,s;) =G(f1, fo, -, far)
M
st Y fm=1 0<frn <1 4)

m=1

where G is the objective function, which is the spectral match-
ing criterion selected to measure the difference between the
reference spectrum and the target spectrum, and the fractions
of the endmembers, f1, f2, ..., fas, are the decision variables.
The constraints are the same as (2). Equation (4) represents
a constrained nonlinear optimization problem, which can be
solved by using the SQP method.
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C. SOP

The SQP method is one of the most successful methods for
the numerical solution of general constrained nonlinear opti-
mization problems. SQP is characterized by solving a sequence
of quadratic programming (QP) subproblems, and the solution
of QP is used as the search direction of line search in the next
iteration [14].

To solve the specific optimization problem [(4)] of this paper,
the constraints in (4) can be rewritten as

Af > B 5)
where
r 1 1 ... 17 r 17
-1 -1 ... -1 -1
1 0 0 fi
0 1 0 0 fa
A=1" | B o] e
-1 0 ... -1 .
0 -1 ... 0 -1 Far
L 0 0 -1 -1

G(f) can be replaced by its local quadratic approximation at
current iteration k

G(f)=a (f“”) + VG (f<k>)T (f _ f(’f))
+ % (f — f(’“)>T H, (f _ f(k)> ©)

where Hj, is the Hesse matrix of G(f) at £(*). Then, we get an
approximate QP subproblem at iteration k

i of-e) e or)
+ (f—f(k))TVG ()

s.t. a?(f—f(k))zo, ie{ain(k):bi, i:1,2,...,M}

fi-1P|<6, i=12. M (7)

where a; and b; are the ith row vectors of matrices A and
B, respectively. ¢ is the user-defined convergence threshold to
stop the iteration. The aforementioned equation is the quadratic
approximation of the original program (4) at point £(*), and
its optimal solution is used as the search direction in the next
iteration. The more detailed steps of SQP used in this paper can
be found in [15] and [16].

D. Advantages of the Generalized Spectral
Unmixing Framework

The proposed spectral unmixing framework is developed by
replacing the spectral decomposing problem into matching an
unknown spectrum with a mixed spectrum of the endmembers.

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on July 1, 2009 at 21:07 from IEEE Xplore. Restrictions apply.



CHEN et al.: GENERALIZATION OF SUBPIXEL ANALYSIS FOR HYPERSPECTRAL DATA

0.6 1
0.5 A
0.4 A
0.3 A

021 — Soil
0.1 A —Grass
—Dry Grass
0 T T T T T T T T T T T T T T T T T T T T 1
400 700 1000 1300 1600 1900 2200

Wavelength (nm)

Fig. 1. Reflectance spectra of soil, grass, and dry grass.

This is a unified spectral unmixing approach, and its ad-
vantage is the ability to accommodate any spectral similarity
measure that the user decides to use. The conventional spectral
unmixing method given in (1) (the Euclidean-distance-based
FCLS) can be implemented using this framework by selecting
the objective function G as the brightness difference between
the reference spectrum and the target spectrum, i.e.,

G = Grcos = (s —s,) (s —s,). (8)

Unlike the model given in (1), other spectral matching algo-
rithms can also be implemented easily with this new framework
by using the selected spectral similarity measure as the objec-
tive function. For SCM, G becomes

(sr —58,)(s —8)

Gsem =1 — = - €))
llsr =5l - [Is — s
The objective function G for SAM is given as
Gsan = cos ! (STS> . (10)
sl - [Isll

The objective function G for SID is defined as

N N
Gsip =Y palog (z) + gnlog (i) (11)
n n=1 n

n=1

where p,, and g,, n =1,2,..., N, the two probability mass
functions produced by the reference spectrum and the target
spectrum, respectively, are defined by

Sr.n Sn

qn =

Pn = 12)

Sn

M=
M=

Sr.n
1 n

n 1

SID is a measure of the discrepancy between the two spectra
based on their corresponding probability mass functions.

III. ALGORITHM TESTS WITH SIMULATED DATA

Three distinct reflectance spectra of soil (grayish brown
loam), grass, and dry grass were selected from the spectral
library in ENVI4.3 (Fig. 1). Because the range of wavelength
and spectral resolution of the original spectra were different,
they were convolved to the spectral range of 400—2400 nm with
resolution of 10 nm using the bilinear interpolation method.
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Fig. 2. Estimated fraction of grass for the Group I data.

Three groups of simulated data were generated, as detailed
in the following.

Group I: The abundance of grass was fixed at 20%. The
abundance of dry grass decreased from 80% to 0%
at 0.8% intervals. The abundance of soil increased
from 0% to 80% at 0.8% intervals. Some 101
mixed spectra were generated in this way.

White Gaussian noise was added to each spectrum
in Group I to achieve a 30: 1 signal-to-noise ratio
(SNR).

Each mixed spectrum of Group I was multiplied
by a random number between 0.8 and 1.2 to pro-
duce another 101 spectra with the same spectral
shape as that in Group I but different magnitude.

Group II:

Group III:

Four spectral similarity measures, i.e., brightness-based
spectral distance, SAM, SCM, and SID, were implemented
using the developed spectral unmixing framework. The per-
formance of each method is assessed using the rmse in its
estimations of the fraction of grass. The true fraction was 20%,
so the rmse is calculated as

101

Z (fgrass,k - 20%)2

k=1

rmse = 100 x (%).  (13)

101

The estimated fractions using the four similarity measures for
each group data are shown in Figs. 2—4, respectively. Table I
shows the rmse of each method on the three groups of data.

It can be seen that all four methods worked very well for
the Group I data, which were noise free. For the data of
Group II in which small amount of white Gaussian noise was
added to each spectrum, performances of the four methods
were all satisfactory with quite small rmse ranging from 0.83%
to 1.25%. For the spectra in Group III, whose shape features
are identical to the spectra in Group I but the magnitudes
change significantly, the output of the brightness-based unmix-
ing method contained significant error from the true fraction,
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Fig. 3. Estimated fraction of grass for the Group II data.
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Fig. 4. Estimated fraction of grass for the Group III data.

with the largest rmse being 4.49%, while the other three shape-
based methods, namely, SAM, SCM, and SID, coped well with
the magnitude variations, as expected (Fig. 4).

IV. APPLICATION: SUBPIXEL MAPPING OF BIOLOGICAL
SoOIL CRUSTS USING HYPERION DATA

Biological soil crusts are communities of mosses, lichens,
liverworts, algae, fungi, cyanobacteria, and bacteria. They have
strong effect on the functioning of the desert ecosystem and
have been recommended as the top management priority in
desert regions [17]. As preliminary work to protect biological
soil crusts in desert regions, it is critical to identify its distribu-
tion quantitatively. Hyperion data are tested for this application
and discussed in the following.
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TABLE 1
RMSE OF EACH UNMIXING METHOD
Euclidean
Distance SAM SCM SID
Group 1 0.00 0.07 0.00 0.00
Group IT 0.94 0.87 1.25 0.83
Group I 4.49 0.07 0.00 0.00

Shihezi City

Fukang City

Fig. 5. Gurbantunggut Desert, Xinjiang, China, and landscape of biological
soil crust.

A. Study Area and Data Processing

The study area is located in Gurbantunggut Desert
(44°11'—46°20" N, 84°31'—90°00" E, Fig. 5), Xinjiang, which
is the second largest desert of China, with an area of
48 800 km?. The area is covered by huge and dense semifixed
sand dunes with stable moisture content. There are abundant
lichen-dominated biological soil crusts on the sand surface of
the desert, which grow most during wet and cool periods (fall
and early spring) when dew, fog, or temporary rainfalls, as
moisture sources, are available to species relating to the forma-
tion of biological soil crusts. Intensive fieldwork was carried out
on October 20-30, 2003, during the growth peak of biological
soil crusts in the desert. At that time, it was observed that
annual plants died, and shrub perennials dried out. Samples of
the most common land-cover types, including lichen-dominated
biological soil crusts, bare sand, plant litter, and dry desert
shrubs, were collected at 17 sampling sites. Three fundamental
classes, i.e., lichen-dominated biological soil crusts, dry plant,
and bare sand, were selected as endmembers. Their spectra
were measured in the laboratory using an Analytical Spectral
Devices FieldSpec Pro FR portable spectrometer (Fig. 6) [18].

The EO-1 Hyperion data of the study area were collected
on October 22, 2003, when the field survey was carried out.
The north portion of the Hyperion scene (7.7 km x 64 km)
covered by well-developed biological soil crust was selected for
algorithm validation. The radiometrically calibrated Hyperion
data consist of 198 bands from 400 to 2600 nm with spatial res-
olution of 30 m at nadir [19]. They were converted into surface

Authorized licensed use limited to: NAGOYA UNIV. Downloaded on July 1, 2009 at 21:07 from IEEE Xplore. Restrictions apply.
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Fig. 6. Spectra of endmembers collected in Gurbantunggut Desert.
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Fig. 7. Fraction of lichen-dominated biological soil crust estimated by SAM,
SCM, SID, and Euclidean distance.

reflectance, using the Atmospheric Correction Now software in
which a MODTRAN4-based technique was used to minimize
scattering and absorption effects of several atmosphere con-
stituents (e.g., water vapor, carbon dioxide, ozone, and oxygen).
Due to the low SNR ratio at both spectral ends (< 500 and
> 2400 nm) and heavy water absorption centered at 1400
and 1900 nm, a total of 31 bands were removed from the
original 198 bands, leaving 167 bands for use in the following
experiments.

B. Spectral Unmixing Results

The conventional Euclidean-distance-based FCLS method
and developed spectral unmixing methods based on SAM,
SCM, and SID were applied to EO-1 Hyperion data.
Fig. 7(a)—(d) shows the coverage of the lichen-dominated bi-
ological soil crusts obtained using the four difference similarity
measures, respectively. We can see that the spatial distribution
pattern of the four results is consistent in most of areas with
about 50% abundance of biological soil crusts in the center of
the image, patchy in the south, and low abundance in the north.

In order to assess the performance of each similarity measure
quantitatively, a random sampling method was applied. For
classification accuracy validation, there is a consensus among
researchers that a minimum of 50 samples for each category
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Fig. 8. Accuracy comparisons of the lichen-dominated biological soil crusts
derived from the unmixing methods based on (a) SAM, (b) SCM, (c) SID, and
(d) Euclidean distance.

is reasonable from both statistical and practical point of views
with random or stratified random sampling schemes [20]. Since
there are three endmembers in this paper, 150 sites of coverage
for lichen-dominated biological soil crust were selected for the
field survey, and the locations of these sites were recorded
by GPS. A mean abundance within the 3 x 3 sampling unit
(30 m) around the GPS point was utilized for accuracy as-
sessment to reduce the impacts of geometric errors associated
with Hyperion and GPS. Comparisons between the reference
fraction (observed fraction) f, and estimated fraction f are
shown in Fig. 8. Two indexes of error measurement, rmse, and
systematic error (SE) were utilized in this paper to evaluate the
accuracy of results derived from the unmixing methods based
on spectral Euclidean distance, SAM, SCM, and SID

K
Z (fk - fo,k)2
rmse = 100 x % (%) (14)
K
D (fr = for)
SE =100 x -~ (%). (15)

K
The correlation between estimated fractions and reference frac-
tions was also used to evaluate the performance. The “goodness
of fit” of the correlation was assessed by the slope, intercept,
and R-squared values, where, in an ideal case, the slope of the
relationship would equal to one, the intercept is zero, and the
R-squared value approaches one (Table II).

It can be seen that both rmse and SE produced by SAM,
SCM, and SID were all much smaller than that by Euclidean
distance. The SEs of SCM, SID, and Euclidean distance were
negative, which indicated that the coverage of lichen-dominated
biological soil crusts was underestimated, while the result of
SAM overestimated with the positive SE. In the correlation
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TABLE 1II
COMPARISONS OF LICHEN-DOMINATED BIOLOGICAL
SoiL CRUST ESTIMATION ACCURACY

2

RMSE SE Slope  Intercept R
SAM 7.65 0.32 0.77 0.07 0.68
SCM 7.25 -0.49 0.74 0.07 0.7
SID 7.16 -1.31 0.71 0.07 0.72
Euclidean Distance 12.02 -8.76 0.77 -0.02 0.64

analysis between observed and estimated fractions, the R?
values of the shape-based similar measure methods (SAM,
SCM, and SID) were all higher than that of the magnitude-
based method. All these results demonstrated that the SAM,
SCM, and SID measures outperformed the Euclidean distance
in detecting biological soil crusts using Hyperion data. As
we know, the SNR of EO-1 Hyperion data is not high which
can reduce the accuracy of the reflectance derived from DN
values. The accurate atmospheric parameters at the time that
the data were recorded are often unavailable; therefore, some
errors will be included in the atmospheric correction proce-
dure. The aforementioned two points make the shape-based
spectral unmixing method more suitable than the brightness-
based technique. Among the three shape-based measures, their
performances are similar in terms of rmse and SE. However,
the R? of the SID method was the higher than that of SAM and
SCM. In other words, this set of experiments showed that SID
is the most effective method among the shape-based methods,
which is consistent with the conclusion presented in [21].

V. DISCUSSION AND CONCLUSION

In this paper, a generalized spectral unmixing framework was
developed, in which various spectral similarity measures can
be applied. Three shape-based spectral matching criteria, i.e.,
SAM, SCM, and SID, and spectral brightness-based methods
using the Euclidean distance measure were investigated using
both simulated and EO-1 Hyperion data sets. The experimental
results suggest that the methods based on SAM, SCM, and SID
perform better than the method based on Euclidean distance
when the shape feature of the spectra keeps well while the
magnitude changes significantly, and SID is more stable than
SAM and SCM.

The flexibility of the developed subpixel mapping framework
in the selection of spectral similarity measures removes the
limitation that the spectral unmixing has to be achieved by de-
composing an unknown spectrum’s brightness into a weighted
sum of the brightness of each endmember. The spectral-shape-
based measures are less sensitive to magnitude variations. For
example, SAM is independent of solar illumination factors and
can cope with the pixels in the shade. Moreover, shape-based
methods have lower requirement for exact atmospheric correc-
tion than the brightness-based algorithm, which can avoid the
difficulties in obtaining all the atmospheric parameters.

The developed spectral unmixing framework searches the
best match of the unknown pixel spectrum to a weighted sum
of the endmembers’ spectra. It is anticipated that the noise
contained in the measured spectrum may have a lower impact
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on the unmixing process. This will be investigated as future
work. Further improvement also includes efficient algorithm
development to solve the constrained nonlinear optimization
problem so that the spectral unmixing process can be sped up.
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