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Optimal Frequency Hopping Sequences: Auto- and
Cross-Correlation Properties

Gennian Ge, Ying Miao, and Zhongxiang Yao

Abstract—Frequency hopping (FH) sequences play a key role
in frequency hopping spread spectrum communication systems.
In order to evaluate the performance of FH sequences, Lempel
and Greenberger (1974) and Peng and Fan (2004) derived lower
bounds on their Hamming auto- and cross-correlations. In this
paper, we construct families of FH sequences with Hamming
correlations meeting those bounds by combinatorial and algebraic
techniques. We first construct optimal families consisting of a
single FH sequence with maximum Hamming correlation equal
to 2 from a combinatorial approach. Then we investigate families
consisting of multiple FH sequences. We provide a combinatorial
characterization for such families, and present a recursive method
to construct them by means of this characterization. We also
describe two algebraic constructions for such families of FH
sequences, generalizing those of Ding, Moisio, and Yuan (2007).
As a consequence, many new optimal families of FH sequences
are obtained.

Index Terms—1I function, character sum, frequency hopping se-
quence, Hamming correlation, optimality, partition-type balanced
nested difference packing, spread-spectrum communication, trace
function.

I. INTRODUCTION

ET F = {fo,...,fm—1} be a set of m available fre-

quencies called a frequency library, and x(v; F') be the
set of all sequences X = (zg,...,Ty-1) of length v with
z; € Ffori=0,...,v— 1. Any element of x(v; F') is called
a frequency hopping (FH) sequence of length v over F. FH se-
quences are used in frequency hopping multi-access (FHMA)
spread spectrum communication systems as data modulation
technique to specify which frequency is used for transmission
at any given time slot. Emerged from military communications
for their antijamming, secure and multi-access properties, fre-
quency hopping spread spectrum techniques are now widely
used in civil communications such as “Bluetooth™ and ultra-
wideband (UWB) communications.
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In an FHMA spread spectrum communication system,
each sender transmits a message along with switching fre-
quencies in every time slot according to an FH sequence
X € & provided to him/her, where S is a subset of x(v; F').
FH sequences are often used periodically, i.e., they appear
as ...,Ty-2,Ty-1,%0,T1,.... The corresponding receiver
then translates the received signals using the same FH se-
quence X € S. Suppose that another sender wants to transmit
another message over the same frequency library F, using
another FH sequence ¥ = (vo,...,%u-1) from the same
subset S of x(v; F') starting at some time slot ¢. Then it may
happen that the two senders transmit messages using the
same frequency at the same time slot. If such signal inter-
ference occurs, then the messages transmitted at these time
slots may be corrupted. Therefore it is generally desirable
to keep the mutual interference, or the Hamming cross-cor-
relations and the out-of-phase Hamming autocorrelations,
as low as possible. In addition, it is also required that the
frequency hopping signals have the in-phase Hamming au-
tocorrelation as impulsive as possible so as to minimize any
ambiguity about the source identity and the information in
communication systems. For any two periodic FH sequences
X = ("EO, K amv—l): Y = (’1}0» v ’val) € X(’U;F)’ their
Hamming correlation is defined by the number of coincidences,
or hits, for relative time delay 7, i.e.

Hxy(r)=)_ M3, Yigr)

0<i<v—1
where

0, ifz; Yitr
M3, Yitr) = {1’ if:z:: i y;T

and all operations among position indices are performed modulo
v.If X # Y, Hx y(7) is the Hamming cross-correlation for
relative time delay 7. If X = Y, Hx y(7) is the out-of-phase
Hamming autocorrelation for + % 0 (mod v) and the
in-phase Hamming autocorrelation for 7 = 0 (mod v).
Especially in military communications, FH sequences are also
required to have large linear span [10], which is defined to be
the length of the shortest linear feedback shift register that can
produce the sequence.

In this paper, we will mainly consider the Hamming correla-
tions of FH sequences instead of their linear spans. In Section 11,
we will review two known lower bounds on the Hamming cor-
relations of FH sequences. In Section ITI-A, we focus on the
constructions of optimal families consisting of a single FH se-
quence with the maximum Hamming correlations being 2 from
a combinatorial approach. In Section ITI-B, we investigate fam-
ilies consisting of multiple FH sequences. We first provide a
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combinatorial characterization of such families of multiple FH
sequences, then present a general recursive method to construct
such families by means of this characterization. We also pro-
vide two algebraic constructions for such families of FH se-
quences, using trace functions in Section IV-A and I functions
in Section IV-B, respectively. Concluding remarks are listed in
Section V.

II. LOWER BOUNDS ON THE HAMMING CORRELATIONS OF
FH SEQUENCES

As is well known (see, for example, [4] and [10]), FH se-
quence design normally involves six parameters: the size m of
the frequency library F, the sequence length v, the family size
N of the subset S C x(v; F), the maximum out-of-phase Ham-
ming autocorrelation H,, the maximum Hamming cross-corre-
lation H,, and the linear span. It is generally desired that the
family & of FH sequences has the following properties:

1) the maximum out-of-phase Hamming autocorrelation
H, should be as small as possible;

2) the maximum Hamming cross-correlation H, should be
as small as possible;

3) the family size N = |S| for given H,, H.,m and v
should be as large as possible;

4) the linear span should be as large as possible.

In order to evaluate the theoretical performance of the FH se-
quences, it is important to find some theoretical bounds for these
parameters. Given m, v and N of § C x(v; F'), Lempel and
Greenberger [11] and Peng and Fan [13] derived lower bounds
on H, and H. of FH sequences in S C x(v; F'). We restate
their results in this section, which will be used later as the cri-
teria to determine whether the new FH sequences constructed in
this paper are optimal or not.

For any single FH sequence X € x(v; F'), let

Hy(X)= max {Hxx(7)}

1<r<v—-1
be the maximum out-of-phase value of Hx x (7). If Ho(X*) <
H,(X) forall X € x(v; F), then X* is called an optimal FH
sequence. In 1974, Lempel and Greenberger [11] developed the
following lower bound on H,(X).

Theorem 2.1: [11] For any single FH sequence X € x(v; F)
with [F'| = m, we have

> (v—¢€)(v+e—m)

Ha(X) 2 m(v — 1)

where ¢ is the least non-negative residue of v modulo m.

Corollary 2.2: [7] For any single FH sequence X € yx(v; F)
with |F| = m, we have

E, fv#m
Ha(X) 2 {O, ifv=m
where v = km+ ¢ 0 < e < m.
Corollary 2.2 implies that when v > m, if H(X) = | %],
then the single FH sequence X" € x(v; F') is optimal.

For any two distinct FH sequences X,Y € x(v; F), define
HAX,Y)= oslilgf_l{H“'"'(T)}

and
M(X,Y)=max{H,(X),H,(Y), H.(X,Y)}.

If M(X*,Y*) < M(X,Y) for all pairs of distinct FH se-
quences {X,Y} C x(v; F), then {X*,Y*} C x(v; F) is said
to be an optimal pair of FH sequences. Lempel and Green-
berger [11] also derived the following lower bound (called
Lempel-Greenberger bound) on the value of M(X,Y).

Theorem 2.3: [11] For any pair of distinct FH sequences
{X,Y} C x(v; F) with |F| = m, we have

m—1, 42 2 o\
M(.X,Y) > Ei::o (dz ':;'vei "gdzez) 2v

where d;, e;, 0 < @ < m ~ 1, denote the number of occurrences
of the ith frequency f; € F in one period of sequences X and
Y, respectively. The right-hand side of the above inequality is
minimized if the following conditions are satisfied:

do <dy £+ Ldppy Withdpyg —dp <1
€y >ey > > em-1 with e — em—1 < 1.

Lempel and Greenberger [11] defined a family S C x(v; F')
to be optimal if every pair of distinct FH sequences of S is an
optimal pair of FH sequences. Peng and Fan [13] called such
a family S a Lempel-Greenberger optimal family of FH se-
quences.

For any family S C y(v; F') consisting of IV distinct FH se-
quences, define the maximum out-of-phase Hamming autocor-
relation H,(S) and the maximum Hamming cross-correlation
H.(S) as

Ho(S) = max{H,(X): X € S}
Ho(S) = max{H.(X,Y): X,Y €5, X #£Y}

and the maximum nontrivial Hamming correlation M (S) as
M(S8) = max{H,(S), H.(S)}.

In 2004, Peng and Fan [13] developed the following lower
bound (called Peng—Fan bound) by taking into consideration
the maximum values H,(S) and H.(S) separately (see also
[15] for comments on [13]).

Theorem 2.4: [14], [13] For any family of FH sequences S C
x(v; F) with |F'| = m and |[S] = N, we have

(v — V)NH,(S) + (N — 1)NvH.(S) > 2IoN — (I + 1)Im

where I = [vN/m].

Peng and Fan [13] called such a family S optimal if
{H,(S).H.(S)} is a pair of the minimum integer solutions
of the inequality described in Theorem 2.4. They [13] showed
some illustrative examples in which the Hamming correlations
meet the Lempel-Greenberger bound [11] but do not meet the
lower bound stated in Theorem 2.4. In order to distinguish the
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optimality defined by Peng and Fan [13] from that derived from
the Lempel-Greenberger bound [11], we say S is a Peng—Fan
optimal family of FH sequences in this case.

When restricted to a pair of distinct FH sequences, say
X,Y € x(v; F), Theorem 2.4 implies the following.

Theorem 2.5: [13], [14] For any pair of distinct FH sequences
{X,Y} C x(v; F) with |F| = m, we have
4Iv — (I + 1)Im
>N T
M(X,Y) 2 dy — 2
where 2v = Im+rand 0 < r < m.

We should note that the Lempel-Greenberger bound is infe-
rior to the Peng—Fan bound for any family S of x(v; F') of FH
sequences. If N = 1, then v = m.J + ¢, where 0 < € < m. Sub-
stituting I = (v — €)/m into Theorem 2.4, we immediately ob-
tain Theorem 2.1, which implies that Theorem 2.1 is only a spe-
cial case of Theorem 2.4. For the case N = 2, by a tedious veri-
fication, we can know that for any pair of distinct FH sequences
{X,Y} C x(v; F), the Peng-Fan bound on M(X,Y’) is al-
ways tighter than or equal to the Lempel-Greenberger bound
on M(X,Y). Therefore, when we consider the optimality of
any pair of distinct FH sequences, we should use the Peng—Fan
bound in Theorem 2.4.

III. COMBINATORIAL CONSTRUCTIONS

From now on, we consider the constructions of optimal FH
sequences. As being witnessed in [7] and [9], combinatorial ap-
proach is very effective in the construction of optimal families
consisting of a single FH sequence. In fact, as we will see in
this section, this approach can also be used in the construction
of optimal families consisting of multiple FH sequences.

A. Families Consisting of a Single Sequence

We first consider the case when the family S of FH sequences
consists of only one sequence, i.e., N = |§| = 1, or equiva-
lently, we suppose that all senders use the same FH sequence,
starting from different time slots. In this case, there is no am-
biguity in the definition of optimality, so we can use the word
“optimal” in the remainder of this paper for |S| = 1. We will
construct several new series of cyclic frames, and then use a
known “frame construction” in [9] to produce new series of op-
timal families consisting of a single FH sequence.

We begin with some terminologies in combinatorial design
theory. Let P be a collection of m subsets (called blocks)
Bo,...,Bpn—1 of Z,, where Z, is the residue ring of integers
modulo v. P = {By,...,Bm-1} is said to form a difference
packing over Z,, and denoted by m-DP (v, K, A), where K is the
set of sizes of the blocks By, i.e., K = {|B;] : 0 <i<m—1},
if, for each d € Z, \ {0}, the ordered pairs (a,b) € B; x B;
such that d = a — b (mod v) appear at most A times in
Bg,...,Bp-1.Ifeach d € Z, \ {0} appears exactly A times
as the differences arising from By, ..., B,,_1, then P is called
a difference family, denoted by (v, K, A)-difference family. If
every element of Z, is contained in exactly one block of P,
then the m-DP(v, K, ) is called a partition-type difference
packing.

Fuji-Hara et al. [7] revealed a connection between FH se-
quences and partition-type difference packings.

Theorem 3.1: [7] There exists an FHS(v. m, \) over a fre-
quency library F' = {0,...,m — 1} if and only if there exists
a partition-type m-DP(v, K, A), P = {Bo...., By-1}, over
Z,,where K = {|B;|: 0 <i<m—1}.

Lemma 3.2: [7]Letv = km + m — 1 with & > 1. Then
there exists an optimal FHS (v, m, k) if and only if there exists
apartition-type m-(v, {k, k + 1}, k)-difference family in which
m — 1 blocks are of size k£ + 1 and the remaining one is of size k.

If we take & = 2 in Lemma 3.2 for arbitrary v = 3m — 1, we
would like to know whether there exists an optimal FHS(3m —
1,m,2). In FHMA communications, if the maximum number
of coincidences or hits between any pair of FH sequences for
any shift is 2, then the mutual interference is kept at a defined
and low level, resulting in low-error probability. Meanwhile, if
such FH sequences are assigned to users, then each frequency
is used only twice or three times within the sequence period,
which would facilitate a simple synchronization scheme.

In order to construct optimal FHS(3m — 1,m, 2), or equiva-
lently, partition-type m-(3m — 1, {2, 3}, 2)-difference families
in which m — 1 blocks are of size 3 and the remaining one is
of size 2, we need the concept of a cyclic frame. Let & be a
positive integer. A group divisible design (k, A)-GDD is a triple
(X, G, B) where X is a finite set of elements called points, G
is a set of subsets of X called groups which partition X', B is a
collection of k-subsets of X called blocks such that every pair
of points from distinct groups occurs in exactly A blocks, and
no pair of points belonging to a group occurs in any block. We
use the usual exponential notation for the fype of GDDs. Thus a
GDD of type 1¢27 - - - is one in which there are i groups of size
1, j groups of size 2, and so on. A (k, A)-frame of type T'is a
(k,A)-GDD (X, G,B) of type T in which the collection B of
blocks can be partitioned into holey resolution classes each of
which partitions X \ G; for some G; € G.

Let (X, G,B) be a (£, A)-GDD of type h", and o be a per-
mutation on X . For any subset T = {zy,..., 2} C X, define
T° = {29,...,27} G = {G° : G € G} = G and
B? = {B? : B € B} = B, then ¢ is an automorphism of the
GDD (X, G, B). Any automorphism ¢ partitions B into equiv-
alence classes called the block orbits of B under o. An arbi-
trary set of representatives for these block orbits of B is the ba-
blocks of the GDD. If there is an automorphism consisting of
single cycle of length | X| = nh, then the (k, A)-GDD is said tc
be cyclic and denoted by (K, A)-CGDD. For a (K, A)-CGDD,
the point set X can be identified with Z,,p,. In this case, the de-
sign has an automorphism o : ¢ +— i+ 1 (mod nh), and
each group must be the subgroup nZ, of Z,, or its cosets.
In this paper, when we say a (k, A)-CGDD, we always mean
a (k, A)-CGDD in which each of its block orbits under the au-
tomorphism o contains exactly nh distinct blocks.

In a (k,k — 1)-frame of type A", it is well known (see [8]
for example) that there are h holey resolution classes associated
with each group, and there are altogether 724 holey resolution
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classes. If the underlying GDD of a (k,k — 1)-frame of type
h™ is cyclic with respect to an automorphism ¢ : % — ¢+ 1
(mod mh) of order nh = |X|, such that the blocks of the jth
holey resolution class R ; are the jth translates of the blocks of
the resolution class Ryg, i.e., R; = jo =Ro+J (mod nh)
forall j € Zyp, then the frame is said to be cyclic with respect to
o. The class Ry is an initial holey resolution class of this cyclic
frame.

Now we state the following elementary but important result.

Lemma 3.3: For any integer ¢ > 0, if there exists a cyclic
(3,2)-frame of type 23¢*+1, then there also exist both a partition-
type (2t + 1)-(6t + 2, {2, 3}, 2)-difference family in which 27
blocks are of size 3 and the remaining one is of size 2, and an
optimal FHS(6¢ + 2,2t + 1,2).

Proof: Let Bg be the initial holey resolution class of a
cyclic (3, 2)-frame of type 23t+! which partitions Zg:4.2 \ (3t +
1)Zy. Then the 2¢ base blocks of By together with {0, 3¢ +
1} form the desired partition-type (6t + 2, {2, 3}, 2)-difference
family. Apply Lemma 3.2. O

In the following two lemmas, we construct two new infinite
series of cyclic (3, 2)-frames, which immediately imply two
new infinite series of optimal FH sequences.

Lemma 3.4: There exists a cyclic (3, 2)-frame of type 27 and
thus an optimal FHS(2p, (2p + 1)/3,2) for any prime p = 1
(mod 6).

Proof: Letp = 6s + 1 for some positive integer s, and let
€ € F, be a primitive element of the finite filed F';, of order p.
Let § = (£° +1)/2. Define X = F,, x Zy. Then the desired
(3, 2)-frame of type 27 can be obtained by taking the following
base blocks over the additive group of Fy x Z2, which form an
initial holey resolution class

{(¢%,0),(6'%%,0),(6¢", 1)},
0<i<s5—-1,2s<1<3s5—1,45s<1<ds—1,

{(6€7F2, 1), (96735, 1), (861>, 1)},
0<i<s—1.

Then apply Lemma 3.3. O

As being described in [9], cyclic (3,2)-frames with other
group size can also be used to obtain optimal FH sequences with
maximum number of coincidences or hits between any pair of
sequences for any shift being 2. Lemma 3.5 shows such an ex-
ample. The interested reader is referred to [9] for more details.

Lemma 3.5: There exists a cyclic (3, 2)-frame of type 87 and
thus an optimal FHS(8p, (8p+1)/3,2) for any prime p = 7,13
(mod 18).

Proof: Letp = 185+ Tor 18s + 13,and let £ € F,
be a primitive element. Define X = F, x Zg, and let Hy =
{€0,€8,£6, ..., £P~4] be the subgroup of index 3 of the mul-
tiple group of F,. Then the desired (3, 2)-frame of type 8 can
be obtained by takmg the following 8(p — 1)/3 base blocks over

the additive group of ¥',, x Zg, which form an initial holey res-
olution class:

{(1,0),(€%,0),(£*,0)} xr, reH
{(1,1),(6%,2),(¢%*,3)} x r, r€H
(@, )( °.3),(£%,6)} x v, reH
{(1,3),(€%%,6), (¢ BNy xr, rEH
K14)M% 7), (¢ “)}X7, r € Hy
{(1,5),(%,1),(*. "} xr, 7 €H
{(1,6), (6>, )(4”U}Xv, r e Hy
{(1,7),(€%,5), (*,4)} x r, 7€ Hy.

Adding three new blocks {(0,0), (4,0)}, {(1,0),(6,0),(7,0)}
and {(2,0),(3,0),(5,0)} to the above, we obtain a partition-
type (8p+1)/3-(8p, {2, 3}, 2)-difference family in which (8p—
2)/3 blocks are of size 3 and the remaining one of size 2. Then
apply Lemma 3.2. |

The first half of Lemma 3.5 can be generalized by introducing

the notation of a double difference matrix. Let 3, = (0i;) be
an m X n matrix with entries from Z,,. If U?:l oij = Z, for
i =1,2,...,m,and U{£(on; —oi;) 1 j = 1,2,...,n} =

27, for any h # i, where 1 < h,i < m, then Y is called
an (mn, n)-double difference matrix (or (m,n)-DDM for short)
over Z,,. It can be easily checked that the matrix composed of
the second components of points in the eight representative base

blocks in Lemma 3.5, that is

01 2 3 45 67
0 2 3 6 7 1 4 5
0 3 6 2 5 7 1 4
is in fact a (3, 8)-DDM over Zg. We can also easily check that
012 3
0 2 31
0 3 1 2

is also a (3,4)-DDM over Z;.
Replacing the 8(p — 1)/3 base blocks over the additive group

of F, x Zg in Lemma 3.5 by the following n(p — 1)/3 base
blocks over the additive group of Fy, X Z,,:
{(1.011). (€% 0’21) ¥ooa)} xr, r€Hp
{(1,0’1'7 (E ) E 0’32)} xr, r€Hp
{(17 Ulm)- (45259 Tam )~ ('645‘0,3‘"1)} Xr, re Hy

where 3 =
lowing result.

(oi;) is a (3.n)-DDM, we easily obtain the fol-

Lemma 3.6: If there exists a (3. n)-DDM over Z,,, then there
exists a cyclic (3. 2)-frame of type n? for any prime p = 7,13
(mod 18) such that ged(p.n} = 1.

So it is also interesting to construct double difference ma-
trices. To do this, we need the concept of a difference matrix.
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LetI' = (7;;) be a t X An matrix with entries from Z,,. If each
element of Z,, occurs exactly A times in the multiset of differ-
ences {vn; — vi; : § = 1,2,...,An} for any h # 4, where
1 £ hyi < t, then T is called a (¢, n; \)-difference matrix (or
(t,n; A)-DM for short) over Z,,. Itis easy to see that the property
of a difference matrix is preserved even if we add any element of
Z,, to all entries in any row or column of the difference matrix.
Then, without loss of generality, we can assume that all entries
in the first row are zero. Such a difference matrix is said to be
normalized. The difference matrix obtained from a normalized
(t,n; A)-DM by deleting the entries in its first row is said to be
homogeneous. It is obvious that in a homogeneous difference
matrix, any element of Z,, appears in every row A times. The
existence of a homogeneous (t — 1, n; \)-DM is equivalent to
that of a (¢,m; A)-DM. The interested reader is referred to [2]
for more detailed information on difference matrices.

Theorem 3.7: If there exist both a (¢, m)-DDM over Z,, and
a homogeneous (t,n;1)-DM over Z,, then there also exists a
(t,mn)-DDM over Zyy,y,.
Proof: Assume that the (¢, m)-DDM is

a11 Q12 Q1m
A= @'21 (L-zz agm
ayy Q2 i
and the (£,n;1)-DM is
b1y b1 bin
o
ber  bio bin
Forevery i = 1,2,...,m, denote
a1; +bum  a; +bam ay; + binm
az; + baam  ag; + baam ag; + bam
ay; +bam  ag + bm ag; + binm
and define
D= (Dl D, Dm) .

Then it is readily checked that D is the desired (3, mn)-DDM
over Zonn.- O

B. Families Consisting of Multiple Sequences

Families consisting of multiple FH sequences are more inter-
esting than those consisting of only one FH sequence, at least
for the reason that they allow more users to communicate in
the FHMA spread spectrum communication systems. In this

subsection, we focus on families consisting of multiple FH se-
quences. We first provide a combinatorial characterization of
such families, then describe a general recursive method to con-
struct optimal them by means of this characterization.

1) A Combinatorial Characterization: The central idea of
the combinatorial approach used in Section III-A for designing
FH sequences is to regard a single FH sequence as a parti-
tion-type difference packing. In fact, this idea can be extended
to families consisting of multiple FH sequences by regarding
a family consisting of multiple FH sequences as a family of
partition-type difference packings with “nested” property. Com-
binatorial structures with such “nested” property were investi-
gated in [6). For convenience, a family of N FHS(v, m, Aq, A,)
will denote a family of N FH sequences {Xi,..., Xy} with
length v over a frequency library of size rn having Hamming au-
tocorrelations A, = {H,(X1),..., H,(Xxn)} and Hamming
cross-correlations A, = {H.(X;. X¢) : 1 < j,k < N, j#
k}.

Let 5, 1 < j
(called blocks) Bj,...,BJ, _;
collections P, .. PN are said to form a family of bal-
anced nested dzﬁ"erence packings over Z,, denoted by
N-BNDP(v,m, K, Ay, A.), where K = {Ki,...,Kn},
K; = {|Bg'|:o<1<m—1} 1< j < N, if for
each d € Z, \ {0}, the ordered pairs (a,b) € B! x B

< N, be a collection of . subsets
. B2 . of Z,, respectively. The N

such that d = a — b (mod v) appear at most A; times in
B},...,B} _, for each j, and for each d € Z,, the ordered

pairs (a,b) € Bg x B¥ such that d=a~-b (mod v)appear
at most \;; times in all pairs (BY, B§),.... (B2 _;. BE _),
where A, = {A; : 1 < § < N} and A, = {Ajr 1 <
gk < N,j # k}. If every element of Z,, is contained in
exactly one block of P; for each j = .V, then the
N-BNDP(v,m, K, Ay, A.) is called a family of balanced
nested difference packing of partition-type, or a partition-type
N-BNDP(v,m, K, Ay, A.) for short.

,.a,..

Lemma 3.8: There  exists a family of N
FHS(v,m, Ay, A){X1,Xo,...,Xn} if and only if
there exist NV pastitions of Z,,
P, ={B},....,BY _i},....Pn ={B}.....BY_}}
such that
m~—1
;= = I (B! <j<
A =Ho(X;) = 113%{?;‘13 (Bl +0)j}, 1<j<N
m—1

A = He( (Bf + 1)},

LX) = S |B
X5 Xo) = Orgfg{’”{i:o B
1<j k<N, j#k

where B +t = {b/ +¢ (modv): b € Bj}

Proof: Let the frequency library be F' = {O 1,...,m—1},
and the supportofi € F in X; = (2. be Bl = {m:
i, =i, 0<m<wv—1}. By deﬁnmg

) 1, fr=y=i,
hi(z.y) = {0, otherwise

lJ—
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fori € F, we have

v—1

|BI N (BF + )| =Y hi(z],fy),

=0
which implies that
m—1 m—1v—1 .
Z ‘BJ B{c + f)[ = hi(m{am}:—t)
=0 =0 I=0
v—1m-1

hi(, ‘E?—-t)
=0

I
S o~
LI
- O

h’(£{> w?—t)

I
'IT
o

i

X555 (=)

Then if j = k, we have

m—1
ax { 21BN (B + Z‘)I} = max {Hx,x,(-1)}
= Ha(Xj;)
= \j,

otherwise, we have

m—1
in(BE _ e
gggg,{ZlB (! +*|}—ngg,{HAj,,xk< 0)
"'_"HC(X_MXL)

= Ajk- O

Theorem 3.9: There exists a family of N FHS(v, m, Ag, Ac)
over a frequency library F' = {0,1,...,m — 1} if and only
if there exists a partition-type N-BNDP(v,m, K, Ay, A;)
over Z,, P; {B},...,Bj,_1}, 1 < j < N, where
K= {Kl,...,I{N} andKj = {|B5| :OSiSm—l}.

Proof: Letl < j,k < N.We first consider the case j # k.
Let BY € Pj and B* € Py. For any d € Z,, we prove that the
number of ordered pairs (a,b) € B/ x B* suchthata —b=d
(mod ) is equal to |BY N (B* + d)].

Let (a1,b1),.-..(ar, b,) be all the ordered pairs in BY x B*
whose ordered differences are d. Since a1, . . . , a, are all distinct
and contained in B* + d, so |BY N (B* + d)| > r. On the
other hand, suppose B N (B* +d) = {a1,...,a;}. Then by =
a; —d,....by = a; — d are all contained in B*, which implies
that there exist at least | ordered pairs (a1,b1),...,(a,b1) €
B x B* whose ordered differences are d. That is, | BY N (B* +

d)| =1 < r. Hence, |B? N (B* + d)| = r.

Let Ay(B? x B¥) be the number of pairs in Bf x B whose
ordered differences are d for each BJ € P;, B € P;.From the
above consequence

-

Z Xa(B! x BFy = Z |BI N

i=0 i=0

N (Bf +d)|.

- and only if 7" [BJ

So we have that Zm Y \a(B! x BF) < Ajy forany d € Zy, if

(BF +d)| < A\ji forany d € Zo,.
The case j = k can be proved in a similar way for any d €

Z, \ {0}. a

We note that there is some symmetry in differences. It can
be easily checked that A;; = Ag,; holds for any 1 < j,k <
N, 5 # k. Therefore, when we compute A., we need only
compute A, forl <j <k < N.

This characterization builds a bridge between combinatorial
designs and families of FH sequences, which would facilitate
the construction for optimal families consisting of multiple FH
sequences. There are several established construction methods
in combinatorial design theory. We expect that some of them
could be specified to work for these special families of balanced
nested difference packings of partition-type, which would im-
mediately imply families consisting of multiple FH sequences.
The recursive construction described in the next subsection is
one of such successful examples.

2) A Recursive Construction via Difference Matrices: Com-
binatorial direct constructions and algebraic constructions often
produce families of FH sequences with restricted lengths re-
lated to prime powers, for the reason that they are mainly based
on finite fields. Combinatorial recursive constructions, on the
other hand, can produce families of FH sequences with com-
posite lengths. All these construction methods are indispensable
in constructing optimal families of FH sequences.

The combinatorial characterization in Section III-B1 enables
us to develop a general recursive construction for families con-
sisting of multiple FH sequences via difference matrices. Fu-
jiwara and Fuji-Hara [5] described a similar but restrictive re-
cursive construction which is stated only for families of FH se-
quences obtained via cyclotomy by Chu and Colbourn [1].

Theorem 3.10: Assume that & is a family of
N FHS(v,m,As,A:) in which one frequency appears
in a fixed position, say the Oth position, and each of the
other frequencies appears in different non-Oth positions of
the N FH sequences of S. Assume also that 7 is a family
of N FHS(w,n,As, Ac). If there exists a homogeneous
difference matrix (u,w;1)-DM over Z,,, where u is the
maximum number of total occurrences that frequencies appear
in all the NV FH sequences of S, then there also exists a family
F of N FHS(vw, (m — Dw + n, A, Ag).

Proof: Without loss of generality, we may assume that
the two families S, 7 of FH sequences are defined over F' =
{0,1,...,m — 1} and F’ = {0,1,...,n — 1}, respectively,
where 0 € F appears in the Oth position and each 7 € F '\
{0} appears in different non-Oth positions of the N FH se-
quences of S. By Theorem 3.9, S corresponds to a partition-type
N-BNDP(v,m, K, Ay, A.) over z,,,P ={4},..., A .},
1< j < N, where A} = {0}, 4] n @forzeF\{O}
and1 < j # j < N,AU UAﬁnl—-Z,\{O} and
K = {Kl,...,KN}, K; = {]Afl 0<i<m-— 1}. Also,
T corresponds to a partition-type N-BNDP (w, 7, K', Aq, Ac)
over Zu,, Qp = {Bk,...,BL_1}.1 < 1 < N, where K’ =
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o KihYand K] = {|B} : 0 <4 < n— 1} Let
= ('y”) be the homogeneous (u,w;1)-DM over Z.,, where
= MAX0<i<m—1 {Z =t |A’ |}. For each collection of the fol-
7ing N mutually disjoint blocks

A% = {a},l, -

2 _ .2
Af ={ai 410

’af,kl}

H a?«,kg}

N _ (. N N
A —{a'i,kN_.l—l—l)"')ai,kN}

ere 1 < i < m — 1, we construct the following Nw new
cks:

(k) = {a’g’kj__l.*_] + Vej1+1,EVs -0 a'g’kj + ’)’kj,kv},
1<ji<N, 1<k<Lw.

en it can be readily checked that each element of Z,,, \ #Z,
1 be represented as the difference =z — 2’ of two distinct el-
ents z, ' € A{(k), 1<4<m-1,1<%k < w,inat
st A; € A, ways for any 1 < j < N, and each element of
w \ vZ can be represented as the dlfference y — 4" of two
tinct elements y € Al(k), v’ € A’ (k),1 <i<m=-1,
< k < w,in at most A; ;+ € A, ways forany 1 < j #
< N. Meanwhile, it can also be readily checked that for any
< § < N, the newly defined blocks AJ(k), 1 <4 < m —1,
< k < w, partition Z,,, \ vZ,. By adding the collec-
n of blocks {vBj},...,vB}_,} to the collection of blocks
Uk):1<i<m—1,1<k<w}foranyl <j<N,we
tain a family of N FHS(vw, (m — L)w 4+ n, Aq, Ae). O

The optimality of the resultant family 7 of FH sequences can
checked for any specified ingredients in Theorem 3.10. For
ample, we can readily check that by applying Theorem 3.10,
: Lempel-Greenberger optimal families of FH sequences ob-
ned via cyclotomy (see [1]) satisfy all the conditions required
Theorem 3.10 by a suitable permutation of frequencies, and
1s can be used to produce new optimal families of FH se-
ences with longer length and larger frequency library but in-
riant Hamming correlations, where the required difference
atrices can be found in, say, [2]. We omit the tedicus verifi-
tion here.

IV. ALGEBRAIC CONSTRUCTIONS

Families consisting of multiple FH sequences can also be
nstructed from an algebraic approach. In this section, we
scribe two algebraic constructions for optimal families con-
sting of multiple FH sequences, which are generalizations of
ose in [3].

A Construction via Trace Functions

Throughout this subsection, p will denote a prime and ¢ = p”
r some positive integer 7. Suppose that m, [ are two positive
tegers satisfying [ | (¢"™ — 1) and gcd(9—~ [) = 1.In this
se,[](g—1).Letabea prlrmtlve element of Fom,sbea
sitive integer with ged(s,¢™ — 1) = 1, and let § = a*.
snote n = 3—-’—
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In [3], Ding, Moisio, and Yuan constructed a Lempel-Green-
berger optimal pair of FH sequences in the case that p and m are
odd while [ = 2 by defining the following sequence of length n
over F:

Cq = (Tl'q’"/q(g)’Trq"‘/q(gmv"'>Trq"‘/q(gﬁn—l))

for every g € Fym, where Trym /, denotes the trace function
from Fym to Fy.

In this subsection, we will generalize the above Ding, Moisio,
and Yuan’s construction. We need the following result in our
proof, where G is the Gaussian sum defined by G(n,x) =
> gEF" n(g)x(g) for any multiplicative character 7 of Fgm
and any additive character x of Fym.

Lemma 4.1: ([12, Th. 5.30]) Let x be a nontrivial additive
character of F, n € N, and ) a multiplicative character of F,
of order d = ged(n, ¢ — 1). Then

z x(fg" +h)

g€EF,

forany f,h € F, with f ## 0.

Lemma 4.2: The Hamming weight of ¢, defined above is
given by

d-1

x(h Z)\J

)G(M, x)

0, ifg=0,
= ™ me—1
wleg) =\ =" irg e

Proof: Our proof is a generalization of that for [3, Lemma
7].If g = 0, then ¢, is the all-zero sequence and thus w(c,) =
0. Now assume g # 0. Let x and x be the canonical additive
character of F', and Fm, respectively, and 7] and 7 be the /th
multiplicative character of F, and F jn, respectively. Let Tr,/,,
denote the trace function from F, to F,. Then we have

n—1
1 . )
n—w(cy) = - Z X(CTT‘qm/q(gﬂJ))
j=0 q cEF,
n-1 ‘
= }- z egﬁi%q/p(CTrq'"/q(gﬂJ))
j=0 7 c€EF,
1 ’I?:+ Z 8 p Trwp(Tf m/q(gcﬂJ)))
¢ ceF; j=0
TL+ Z ZP & q'"/p(gm’”))
c€Fy j=0
]' q -2 ”1\'1 lsk
Lt 31 et
q cEF* k=0
1
St 31 xoesh) ~ 1)
q CEF“ zEF m

By Lemma 4.1, we know that

> x(gea!)

J’JEqu

7Ia

E:W@c
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so we have
=
n—w(c,) = n+ Z 7 Z 7 (ge)G(, x) — 1))
ceFr 7 j=1
1 g—1 1
== 'Z-ZG(U x) Y 7 (ge))

ceF;

Since « is a primitive element of Fym, & = a™¢=T is obviously
a primitive element of F,. Then for any ¢ = ak e Fy and any
je{12,...,0-1}

i (e) = (@) =i (@) =

By the assumption that g(d(i-'ﬁ1 ) = 1, we know that for any
j€{1,2,...,1=1},77 isnot the trivial multiplicative character
7o when it is restricted on F¢, where 7jo(c 2) = 1 for any ¢ =
ak € Fi. Hence ), €F: ni(¢) = Oforany j € {1,2,...,l—1},
which nnphes

> ni(ge) =

™m
ok -1 .
edwzlﬂ-———q__l I

S i) =1 (g) D e

(,‘EF; CEF:' (‘EF*
and
g—-1 133
n—w(cy) == [n ! +7 Z G(n’,x)x 0
j=1
1 _
4o
q l
_ lqm ~q
qg I
qm—~1 1
-
Therefore,
m—1 __ 1 mo__ m-1
wicy) =n — g 7 =1 lq . 0

In a way similar to that in [3], we can determine the autocor-
relation values of c,.

Lemma 4.3: H,cq = 1—_;_—1 forany g € anu
Proof: For any t with 1 < ¢ < n, if we cyclicaily shift ¢,
to the left for ¢ times, we obtain

Copt = (Trgm/g(98"), Trgm pg(9871), - Trgm g (877" 7H)).

Then by noting that for any g, h € Fym, ¢, —
forany 1 <t < n,g — gp' # 0, we have

Ch = Cyg—h» and

qm -1
Hepop(t)=n— du(cg,cypt) = T~ w(cy—_gat)

where dy(cy,cs) denotes the Hamming distance between cg
and cp, for g,h € Fy=. Then the result follows from Lemma
4.2, O

Theorem 4.4: ¢, is an optimal FHS(41,q, ﬂ;-) for
any g € Fon.

Proof: The conclusion follows from Corollary 2.2 and
Lemma 4.3. O

Now we consider a pair of FH sequences ¢, and c;.

Theorem 4.5: 1f g, § belong to distinct cyclotomic classes of
order [ in F ;= , then ¢, and c; constitute a Lempel-Greenberger
optimal pair of FH sequences. s

Proof- By Theorem 4.4, H,(c,) = H,(c;) = L=,
Now we compute the cross-correlation values of ¢, and
cz. From the definition of c,, we know that for any
t € {0,1,...,n — 1}, if we cyclically shift ¢, to the left
for ¢ times, we obtain

cgpt =(Trgm /q(98°), Trgm /q(98 1), .., rIqu/q(g,BH”"'l)).

Then, by noting that ¢, — ¢ = ¢4, for any g, h € Fyn, we
have

=n —dg(cg, cyst)
qm -1
=7 wW(Ch—gpr ).

Hc;,,c(, (t)

Since g, § are in distinct cyclotomic classes of order I in Fyn.,
— g[8t can never be zero. It then follows from Lemma 4.2 that

qm-—l -1
Heje,(t) = ———

forany ¢t € {0,1,.
Ha({cg,c5}) =

We claim that ¢, and c; constitute a Lempel-Greenberger op-
timal pair of FH sequences if g, § belong to distinct cyclotomic
classes of order I > 2 in Fym. In fact, for any two g-ary se-

1

quencesX Y oflength 9——— ,since 2x & 1—1 =2x 1— “Lg+
2% i—— , where 0 < 2 X J——— < g when ! > 2, Theorem 2.5
says that if weputd = 9—-7—— and e = il—— then

4dn — 2n + 4de + 2e

.,n — 1}. Therefore we can conclude that

m—1
Hﬁ’(cg)cg) M(cgacg) =4 =1

{

M(X,Y) >
(X.¥) 2 4n — 2
=d__2n—4de—2d—
in — 2

A straightforward verification shows that
< 2n — 4de — 2d — 2e

- 4n — 2 <1
which implies that
m—1 _
MX,Y)=d="T— 1
This completes the proof. O

Immediately, we have the following result.

Theorem4.6: Let {go, g1, ...} be a subset of the complete set
of representatives for the cyclotomic classes of order [ in Fyn .
Then {cg,,Cy, . . . .} constitutes a Lempel-Greenberger optimal
family of FH sequences.

The case [ = 2 in the above theorem covers Ding, Moisio and
Yuan’s result [3] mentioned at the beginning of this subsection.
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In fact, we can say more about ¢, for g € F,...

Theorem4.7: Let{go,91,- .-, g1—1} be acomplete set of rep-
resentatives for the cyclotomic classes of order [ in Fym . Then

S:{cgnﬁcgm"'7cgz—1}

constitutes a Peng—Fan optimal family of [ FH sequences.
Proof: We apply Theorem 2.4, where I = |[vN/m| =

m-—1

q — 1. Since

(v = DN HL(S) + (N — 1)NvH.(S)

qm__]_ lqm—l_l qm_lqm-—l_l

B R ey e Uy ey ey
m m—1 _ 1 m—1 _ 1
= (" -1 - DI ==+ (- 1" - )I—F—
— (qm—l _ 1)(C]m _ 2)1
and
2IvN — (I + 1)Im
mo__
=2(gm - )T g - 1)
— (qm—l . 1)(qm . 2)
we know that

(v — N H,(S) + (N — 1)NvH.(S) = 2IvN — (I + 1)Im

which means that {H,(S) = ©=t H.(S) = ©=1} s
a pair of the minimum integer solutions of the inequality de-
scribed in Theorem 2.4, that is, S is a Peng—Fan optimal family
of FH sequences. The proof is then completed. O

Summarizing the above, we obtain the main result of this sub-
section.

Theorem 4.8: Let q be a prime power and m, [ be two positive

integers such that [|¢™ — 1 and gcd(%l, [) = 1. Then there

exists a Peng—Fan optimal family of [ FHS(QILL—ZI, g, ﬂin;ll;l)
in which each subset of the family is also a Lempel-Greenberger
optimal family of FHS(Q"%, g, qm31“1 ), and each sequence
of the family is an optimal FHS(iml;l, q, ﬂm——l—l:l).

Finally, we give an illustrative example below.

Example 4.9: letp = ¢g=7,m = 2,1l = 3,s = 5, and
n = 16. Using the irreducible quadratic polynomial f(z) =
z? + = + 3 € Fr[z], we construct Fyg as F7[a]/( f(c)) where
f(@) = & 4+ a+3 = 0. The forty-nine elements of F4g can be
given in the form ag + a1, ag, a1 € F7, and we can check that
1+« is a primitive element of F49, where the [ = 3 cyclotomic
classes are listed below:

{1,2 + 50,6 + 20,3 + 3, 3 + b, 4, 3 + 21,4 + 20
6,5+ 2a,1 + 5e,4 + 4, 4 + @, 3,4 + 5, 3 + 5}
{1+a,1+2a,60,1+3c,6+3a,2,4+ 3,5 + 4o
6 + 60,6 + 5, v, 6 + 4, 1 + 4, 5,3 + 4, 2 + 3a}
{+a,2+a3.6+a4+60,2+20,2+4e,5a
2+ 6,5+ 6a,4,1 + 6,3+ @,5 + 5a, 5 + 3e, 20}

Letf = (a+ 1) = (a+1)¥ =da.go= 1.1 = (a+1)% =
3,and g = (o + 1)1 = 2. Then go, g1.92 are in distinct
cyclotomic classes of order [ = 3 in Fyy, and

Cgo = (2»3543 1,0, 17 3331 5-, 433, 61 O, 6. "1»4)
¢y =(6,2,5,3,0,3,2,2,1,5,2,4,0,4,5,5)
cg, =(4,6,1,2,0,2,6,6,3,1,6,5,0,5,1,1).

We can check that

Ha(cg,) = Huleg,) = Hqy(eg,) = He(eg, ey, )
=H0(c9mcﬂz) = HC:(Cg: ) ng) = 2.

Then, each of ¢y, ¢y, , €4, constitutes an optimal FH sequence,
any two of them constitute a Lempel-Greenberger optimal pair
of FH sequences, and altogether constitute a Peng—Fan and also
a Lempel-Greenberger optimal family of 3 FH sequences, all of
length 16 over the frequency library Fr.

B. A Construction via I" Functions

In [3], Ding, Moisio and Yuan also constructed a
Lempel-Greenberger optimal family of FH sequences via
norm functions. In this section, we will generalize their idea
by introducing a new class I" of functions from Fg» to Fy,
where ¢ = p” for some positive integer 7, and p is a prime.
Let1 < 5 < ¢™ — 2, and ¢ be a function from N to Z,_1,
where N is the set of all positive integers. We define I' to be a
class of functions I'y 4, from Fn to F, satisfying the following
properties (called I' property):

1) T,,4(0) =0, and for any € Fjn, Iy, (2%) # 0;
2) Tyglay) =Ty 4(x)l s 4(y) forany o,y € Fym;
3) Tygylex) = 9™, () for any ¢ € Fjand any z €
Fq"'l.
Clearly, Iy ;(1) = 1.Foranyd € Fym,a € Fy, b € Fym, we
define a function from Fyn to Fy

Jaa () = Trgn jq(dalsg(z") + bi).

‘We also define the following periodic sequence of length g™ —1
over F:

Cda,b = (fdu,b(&())~ fda,b(al): ey fdu,b(aqm_z))

where « is a primitive element of Fgn..
Let x() and () be the canonical additive characters of F;
and F ., respectively. By the definition, we have

x(z) =eF Tl for g e F,

p(z) = e T 6@ for ¢ € Fym.

Lemma 4.10: Assume ged(1 — sg(m),q — 1) = 1. Then

0, if Tryn pg(da) =b=0

" -1, if Trym y(da) #0,b=0
(g— g™ L if Trym o(da) = 0. b #0
(=)™ ' =1, i Trympu(da) # 0, b#0.

u’(cda,b) =
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Proof: If Trym /q(da) = b = 0, then for any z € Fym,

since I's 4(2°) € F,, we have

Trqm/q(daf‘s,g(ms) + bx)
=Trgm jq(dal's g(z°)) + Trgm /q(bz)
=T g(2°)Trgm sq(da) + Trym /o (bz)
=0

SO

w(cda,b) =0.

If Trgm /q(da) # 0, = 0O, then

w(Cdap) =q™ —-1—— Z E

:cEF* ceEF,

Trgm/q(dal’s,o(2%))c)

=qm~1—g S S M(Trgmjg(da)Ts o(z%)c).

2EFL,, c€F,
Since
Trgm/q(da) # 0, and T's 4(z°) # O for any « € Fym

we have

Z X(Trgm/q(da)Ts,g(z*)c) = 0
c€F,

which implies
w(cdap) = ¢ — 1.
If Trgm q(da) = 0, b # 0, then
w(Cda,b)

=¢"—1- 1 Z Z X(Trgm q(dals 4(z°) + bx)c)

q a:EF;m ceF,

=gm—1- % Z Z X(Trgm /q(bez))

zEF"m ceF,
=l@-D@ =)= 3 pbes)
7 c€Fy 2€F
=Xg- D" -1) - 3 (1)
g ceF;
=(g— g™ "

If Trym sq(da) # 0, b # 0, then

W(Cda,p)
1
=q¢"-1-=

Z }: X(Trgm q(dal’s o(2°) + bx)c)

z-EF;m cEF,

=r-1-0Y %

c€F, weF;m

p(cdal's ¢(z*) + bex)

= é((q —D@™-1)= Y Y @(cdals o(z*) + be)).

ceF; .'I:EF;,,"
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Replace cz by y. Since T, ,(cz) = 9™ () foranyc € F;
and any & € Fym, we have

w(Cdap)
= (@- D"~ 1)
- Z Z ¢(dals g(y°)c"

cEFy yeF;m
(@~ D" -1
- Z Qﬂ(by) Z X(Trq"'/q(da,)]__‘s’g(ys)cl—s.‘l(m))).

YEF cEFy

<o) 1 by))

By the assumption that ged(1 — sg(m),g — 1) = 1, we
know the mapping ¢ +— c'7%9™) is a permutation of F.
Also, Trgm q(da) # 0, and ['s 4(y®) # 0 forany y € Fin
Therefore,

1
w(Cdep) ==((a=D@" =+ Y o(by)
4 VeF .
=(g-1)¢™ " -1
The proof is then completed. O

Lemma4.11: Assume ged(1 —sg(m),q—1)=1,d € Fgm,

a€Fgandd € F’“m Then

1) If a = 0 or Trgm/e(d) = 0, we have Hy(Caap) =

qm 1 __ 1.

2) Otherwise, we have H,(C4qp) < g™ 1.

Proof: The length of the sequence cq,p IS L = g™ — 1.
Let cqq,5(k) denote the kth element of ¢4, Where 0 < k < L.
Since I's g (zy) = Ts g(z)Ts 4 (y) for any 2,y € Fym, we see
that forany ¢ with 1 < ¢ < ¢™ - 2,

(Cdap(t mod L), Cgqp(t+1mod L), . . ., Cgap(t+L—1 mod L))

is equal to the sequence Cyqr, ,(at¢),bat- Then

Hcda.,b’cda,b (t) =q"—1- dH(cda,ba Cdan,g(a”),bai)

=¢™ — 1 — w(Cga(1-T, ,(at*))b(1—at))-

Smce be qu , ¢ is the primitive element of Fym,and1 <t <
— 2, we know that
b(1—cat) #0.
By Lemma 4.10
W(Caa(1-T, , (ate))b(1—at)) = (g—=1)g™ " =1 or (g—1)¢™ !

according to whether Trym /,(da(l — T's 4(a®®))) # 0 or not.
But

Trgm jq(da(l = Ts,(a*))) = a(1 = Ts,4(a*)) Trym 74 (d),

so 1) if a = 0 or Trgm/e(d) = 0, then

W(Cda(1-T, ,(a**))b(1-at)) = (g — 1)g™ ! for any
twith1 < ¢ < ¢™ — 2, which implies H,(cqu ) = ¢™ 1 — 15
2) otherwise w(Caqa(1-T, ,(at*)) b(1—at)) = (@ —1)g™ 1 -1
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for any £ with 1 < ¢ < ¢™ — 2, which implies
sz(cda,b) S qm.-1' O

Theorem4.12: Assumeged(1—sg(m),q—1) =1,d € Fym,

a € Fg,and b € Fjm. Then ¢y, is an optimal FHS(¢™ —
Lg.qm 1t =1) prov1ded that a = 0 or Trym /q(d) = 0.

Proof: The conclusion follows from Corollary 2.2 and

Lemma 4.11. O

In the following, we choose a fixed element d € anz with
Trym jq(d) # 0. We consider a set of sequences

Rs = {Cdapp : (a,0) € Fy x Fym }.

We claim that these ¢(¢™ — 1) sequences are pairwise distinct
under the assumption Trym /,(d) # 0. Since €ay b, ~ Cdaz,by =
Cd(a) —as),b; —by TOT aNY (a1,b1), (a2,b2) € Fy x Fyu, we only
need to prove that if ¢y, p is the all-zero sequence, thena = b =
0. Suppose cq4,; = (0,...,0) for some (a,b) € Fy x Fym.
Then w(cgqp) = 0,and b = Trym/q(da) = 0 by Lemma 4.10.
But Trym /,(da) = 0 also implies o = 0 since Trym /,(d) # 0.

Now we fix b € Fy. in Ry and denote such a subset of
sequences by R, (b) = {caa,p : a € Fy}. We claim that any
two distinct sequences in R4(b) are not equivalent, that is, any
one is not a cyclic shift of the other. Since

Hc,mg.hg,c,iul,bl (t)
=™ =1 = dE(Cday,by» Cday Ty 4 (at*) brat)
=™ =1 = w(Ca(ag—aiTs 4 (at*)) by=bs )

for0 <t < g™
should have

— 2, if cyq, b, 18 a cyclic t-shift of cyq, 3, We

u)(cd(ag-—alr's,g(C!t“")),bg‘—bl&t) = O

It then follows from the discussions above, under the condi-
tion that Trgm /(d) # 0, two sequences Cq, b, and Cyq, b, are
equivalent if and only if

ag — a1ls,4(a®) = 0 and by — biat = 0.

Since b = by = bin R (b), if two distinct sequences in R, (b)
are equivalent, we should have ¢ = 0, which implies as = a;
by the fact that T's ¢(1) = 1.

We can prove that R,(b) is a Lempel-Greenberger optimal
family of ¢ FH sequences, in which the sequence ¢ 3 is optimal.

Let Cgq, » and cgq,p be any two distinct sequences in
Rs(b). Since a3 # ag and Trgm/,(d) # 0, at least one of
Trym q(d(az — a1Ts g(a**)) and b(1 ~ o) is nonzero. By
Lemma 4.10

w(cd(ag—-ml‘s,g(a“’)),b(l—a‘))

=(g-1)¢g™ ~1lor (¢—1)¢" " or g™ —1

S0
T_1o0r0

-1 -
Hcd(xz.becrlﬂl.b(t) =q" or ¢"

877

hence

He(Cday.b Cday ) = _max . {I:{cniu._»,incdal.h(t)} = qm-1'

N<t<g™ -2
Together with Lemma 4.11, we have

Af(c(lal Wb Cda:’b)

= IH&X{H‘L(Cda, 'b)w Hu(cdu.g ‘b)a Hc(cdal by Cday ,b)}
— qmwl'

This implies the following theorem.

Theorem 4.13: Let 1 < ¢ < ¢™ — 2, ¢ a function from N to
Z,_1,gcd(1—-sg(m),¢—1) = 1, and d an element of F.. with
Trym /q(d) # 0. Then for any b € Fyn, Ry(b) = {Caap : 0 €
F,} is aLempel-Greenberger optimal family of ¢ FH sequences
of length ¢™ — 1 over F,, in which the sequence cg  is optimal.

Proof: Theorem 2.4 withv = ¢™ — 1, N =2 and |F| =
g shows that for every pair of distinct FH sequences X,)" €
x(v; F), we have M(X,Y) > ¢™~!. This completes the proof
of the first assertion. The second assertion comes from Theorem
4.12 witha = 0. |

Please note that for a pair of distinct FH sequences
{Cd(“,bv Cday b} C R b {Hu({crlu.l bacdug,b})ch({Cdal,b’
Cdas,b})} is usually not a pair of the minimum integer solutions
of the inequality in Theorem 2.4 for N = 2. Also, R,(b)
is usually not a Peng-Fan optimal family of FH sequences.
However, if we consider the parameter M (R (b)), then from
Theorem 2.4, we know that M (R, (b)) should be greater than
or equal to ¢!, Meanwhile, as we have already seen

H, (R (D)) = max{H,(Cqap) : a € Fy} < g™}
H (Ry(b)) = max{H.(Cda, b Cdas p) : a1, 02 € Fy,a1 # as}

— qm—l
$0 M(R.(b)) = ¢™~!. This means that R ,(h) has the minimum
possible maximum value of auto- and cross-correlations.

Noting that the norm function Ny j4(z) = " ~D/le-D
from Fm to F is an example of the functlons inT' withg(m) =
m  (mod ¢ — 1) for any m € N and Nym/,(z*) # 0 for any
r € Fjn, where 1 < 5 < ¢™ — 2, we obtain Ding, Moisio,
and Yuan’s third Lempel-Greenberger optimal family of FH
sequences described in [3], which has the same number of se-
quences as the family of sequences constructed by Lempel and
Greenberger in {11, Th. 2].

Now we consider the degenerated function I'y ; € I' from
Fy toFyfor1 < s < g™ — 2 such that for any 2 € Fim,
Ui g(z) = L. Clearly Ty is a function in T" with g(m) = 0
(mod g — 1), which can be denoted by I'} . In this case, by
Theorem 4.13, for d € F}a with Trgm /q(d) # 0, RYUY) =
{8, : @ € Fg} with

Chap = (Trym jq(da+ ba). Tryn q(da + bat)
- Tl'q.‘n/q(dﬂl —+ bﬂlqm——z))

where ¢ is a primitive element of F'., is a Lempel-Greenberger
optimal family of ¢ FH sequences of length g™ — 1 over F, for
any b € F* . From the proof of Lemma 4.11, we can know
that H,(cl, ) = H,(RYb) = ¢q™~! - 1 since we always
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have Trym /,(da(l = T (@'*))) = 0 in this case. Then it can
be checked that RU(b) is a Peng-Fan optimal family of FH se-

quences.

Corollary 4.14: Let o be a primitive element of Fym . Then
for any b € Fy.. and any d € Fj.. with Trgm/,(d) # 0, the
following

{(Trgm sq(da+ ba), Trpm /o (da + bat)
ooy Trgm jg(da+ a2 72) s a € Fy}

forms a Lempel-Greenberger and also a Peng—Fan optimal
family of ¢ FH sequences.
The following is an illustrative example.

Example 4.15: letp = g =5, m = 2,0 =d =1, and s
be any integer betweenl and 23. Using the irreducible quadratic
polynomial f(z) = x® + & + 1 € Fy[x], we construct Foy as
Fsler]/(f()) where f(«) = @? + « + 1 = 0. The twenty-five
elements of Fa5 can be given in the form ag-+a10v, ag, a1 € Fs,
and we can check that 2 + «v is a primitive element of Fy5. The
five FH sequences of R{(1) are

C?xn,l
=(2,3,3,0,1,3,1,4,4,0,3,4,3,2,2,0,4,2,4,1,1,0,2,1)

0
C1x1,1

=(4,0,0.2,3,0,3,1,1,2,0,1,0,4,4,2,1,4,1,3,3,2,4, 3)

0
Cix2,1

=(1,2,2,4,0,2,0,3,3,4,2,3,2,1,1,4,3,1,3,0,0,4, 1,0)

0
Cixs,1

=(3,4,4.1,2,4,2.0,0,1,4,0,4,3,3,1,0,3,0,2,2,1,3,2)

c(llx»i.l
=(0,1,1,3,4,1,4,2,2,3,1,2,1,0,0,3,2,0,2,4,4,3,0,4).

We can check that H,(c,,1) = 4 and Ho(cly, 1,60y 1) =
5 for any a # o’ € F5. Then, each of the five FH sequences in
RY(1) is optimal, and all these five FH sequences constitute a
Lempel-Greenberger optimal family of length 24 over F;. By a
simple verification, we know that these five FH sequences even
constitute a Peng—Fan optimal family.

Since Trym o (B4+0) = Trym jq(3)+Trgm (@) forall 3.6 €

F .=, we can see that the ith components of the ¢ FH sequences
with degenerated function I'f |

Cga,b = (Trgm jq(da + ba®), Trgm q(da + ba')
PR Tl'qm/q(da« + baq’"-—-’.!)“)

are obtained by adding Tr . ;,(da) to Trym /, (ba') respectively
with g distinct a € F,. Moreover, each ¢y with any function
Ty,g € T reduces to the sequence

cy = (Trym4(g). Tryrm q(g3). . .. .Trquzq(gﬁ"'l)‘)

defined in Section IV-A with s = [ = 1 and b = ¢. On the other
hand, each c{}, , can be obtained from c, by putting s = [ = 1.
These show some connections between these two trace function
constructions.

More generally, we can consider the following function
I'y,y € I from Fyn to F, defined by

("l__l
=g a1k

Ty g() = Nym g ()*
forany 1 < s £ ¢™ — 2 and any positive integer k. ' , sat-
isfies the " property with g(m) = mk (mod q — 1), which
can be denoted by N(;",,, Jq- By Theorem 4.13, for d € Fy.. with
Trym 7q(d) # 0 and ged(1 —smk,g—1) = 1, Ry(b) = {Caab :
a € F,} is a Lempel-Greenberger optimal family of ¢ FH se-
quences of length ¢™* — 1 over F. Obviously, when & is a mul-
tiplier of ¢ — 1, N(j‘ , becomes I'? > Which we have already

discussed in the above. The following is an example with k& = 2.

Example 4.16: Letp =g¢=5,k=m=2,s=b=d= 1.
We construct Fog as Fy[«r]/(f(«)), where f(z) = 2?2 +xz+1 €
Fj[x] is an irreducible quadratic polynomial, and 2 + ¢ is a
primitive element of Fa5. The five FH sequences of R (1) are

C1x0,1
=(2,3,3,0,1,3,1,4.4,0,3,4,3,2,2,0,4,2,4,1,1,0,2,1)

Cix1,1
=(4,1,0,3,3,1,3,2,1,3,0,2,0,0,4,3,1,0,1,4, 2,3,4,4)

C1x2,1
=(1,4,2,1,0,4,0,0,3,1,2,0,2,3,1,1,3,3,3,2,0,1,1,2)

Cix3,1
=(3,2,4,4,2,2,2,3,0,4,4,3,4,1,3,4,0,1,0,0,2,4, 3,0)

Clxd,1
=(0,0,1,2,4,0,4,1,2,2,1,1,1,4,0,2,2,4,2,3,4,2,0, 3).

We can check that H,(c1xe.1) £ 4 and Ho(C1x4,1, Cixara) =
5 for any a,a’ € F5, a # . So these five FH sequences of
Rs(1) are a Lempel-Greenberger optimal family of length 24
over F5.

We make the final remark of this subsection. Since I" func-
tions are multiplicative homomorphisms from Fg» to Fg, they
are determined by the images of any primitive element of F -,
where the number of possible images is clearly ¢. The g exam-
ples of I functions described above are exactly the only possible
I' functions from F = to F,.

V. CONCLUSION

In this paper, we considered the Hamming auto- and cross-
correlations of FH sequences. We first reviewed the two known
lower bounds on the Hamming correlations of FH sequences and
the two concepts of optimality of FH sequences due to Lempel
and Greenberger [11] and Peng and Fan [13], respectively. Then
we constructed several new series of optimal families consisting
of a single FH sequences from a combinatorial approach. We
also provided a combinatorial characterization of families con-
sisting of multiple FH sequences, and provided a general re-
cursive construction via difference matrices by means of this
characterization. Two algebraic constructions for such families
of multiple FH sequences using trace functions and I" functions
were also described. However, there are still a lot of challenging
problems left, More efforts are necessary for further research,



GE et al.: OPTIMAL FREQUENCY HOPPING SEQUENCES: AUTO- AND CROSS-CORRELATION PROPERTIES 879

especially for those optimal families consisted of multiple FH
sequences.
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