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We investigate the string correlation functions proposed by den Nijs and Rommelse for S =1 Heisen-
berg antiferromagnets in one dimension. The Hamiltonian with D ¥ ;(S?)? term is diagonalized by the
Lanczos method to obtain the ground state. We calculate both the usual spin-spin correlation functions
and the string correlation functions not only in the z direction (quantized direction) but also in the x
direction to investigate the Z, X Z, symmetry breaking recently proposed by Kennedy and Tasaki. We
find that the long-range string correlation, which is argued to exist in the Haldane disordered phase, in
fact, exists at the Heisenberg point D =0 by a finite-size analysis. We can show explicitly that the string
correlation in the x direction signifies the difference between the Haldane phase and the Néel phase,
which appears for the D <0, |[D|X 1 case. In the large-D (D X 1) phase, all spin-spin correlations are
short ranged as expected. There is a significant enhancement in the usual and string correlations in the x
direction at the boundary between the Haldane phase and the large-D phase.

I. INTRODUCTION

In 1983, Haldane argued that the ground state of the
quantum antiferromagnetic Heisenberg chain has an exci-
tation gap when spin S is integral.! This proposal is
surprising since it was believed that there should be a
spin-wave excitation without an energy gap. There are
many analytical and numerical studies to confirm this ar-
gument and now it is believed that the conjecture is
correct.? 8

An exactly solvable model for the S =1 quantum anti-
ferromagnetic chain was discovered by Affleck, Kennedy,
Lieb, and Tasaki (AKLT).? The Hamiltonian includes an
additional biquadratic term which is not presented in the
usual Heinsenberg Hamiltonian. The ground state is the
valence bond solid (VBS) which is singlet and unique with
a finite excitation gap. It is a quantum-disordered state
since the usual spin-spin correlation functions decay ex-
ponentially. Most of the properties Haldane proposed for
the S =1 Heisenberg antiferromagnets are realized. Thus
the model may prove to be useful in the understanding of
the physics of the Haldane phase.

Den Nijs and Rommelse® proposed an order parameter
which is long ranged in the VBS of the AKLT model.
The order parameter is nonlocal and is called the “string
order parameter.” Girvin and Arovas!® calculated the
string correlation. It is speculated to remain long ranged
at the Heisenberg point. One of the purposes of the
present work is to clarify this point by systematic numeri-
cal calculations.

The XXZ Hamiltonian with the D 3,(s7)* term [see
Eq. (2.5) below] has been investigated in detail using
analytical and numerical methods.®~!* Several phases
are known to exist (see Fig. 1 for a schematic phase dia-
gram). The symmetry breaking which may characterize
the Haldane phase was discussed by Kennedy and
Tasaki.!> They discovered a unitary transformation in
the S =1 antiferromagnetic chain. By the transformation
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the original O(2) symmetry is hidden and a Z,XZ,
discrete symmetry emerges. They argued that the break-
down of the discrete symmetry brings the Haldane gap.
The phases in the antiferromagnetic region have been
proposed to be characterized by a full or a partial break-
ing of the Z, X Z, symmetry. We will examine this propo-
sal by numerical calculations.

Up to now, two classes of quantum-disordered states
are known. One is the VBS state mentioned above and
the other is the Laughlin’s quantum liquid state for the
fractional quantum Hall effect. !%!” Each state is a unique
quantum-disordered (liquid) state and there is an excita-
tion gap. There are several similarities between these two
types of ground states.'®!° The order parameter for the
Laughlin state has been discussed by several au-
thors.!” 72! The important point is that the order param-
eter is hidden. Girvin and MacDonald!® argued that the

FIG. 1. Schematic phase diagram for the S=1 extended
Heisenberg Hamiltonian in the A—D plane.
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one-body density matrix in the magnetic field is exponen-
tially short ranged but there appears to be a long-range
(power law) behavior if one performs a singular gauge
transformation. This hidden order may characterize the
Laughlin state. The singular gauge transformation used
by Girvin and MacDonald can be expressed by a gauge
potential of a “string” type.?? The string order parame-
ter found in the VBS state is also hidden in the sense that
it is not a local order parameter. It is transformed into a
local ferromagnetic order parameter after the nonlocal
unitary transformation. '

In this paper, we investigate the extended Hamiltoni-
ans [see Egs. (2.4) and (2.5) below] by calculating several
order parameters in detail and characterize different
phases by systematic finite-size studies. In Sec. IT we dis-
cuss the theoretical background. In Sec. III numerical
results are presented. Section IV is a summary.

II. MODEL AND CORRELATION

In this section we discuss the order parameters and the
symmetry of the Haldane phase. We consider a spherical
symmetric Hamiltonian and a XXZ Hamiltonian with a
D3 .(S7)? term for S =1 [see Egs. (2.4) and (2.5)].

A spin chain with an antiferromagnetic coupling is
usually characterized by the Néel order parameter
defined in the a direction (where a=x,y, or z) by

(Izéel = lim O%éel(i’j )7

li—jl— o

. (2.1)
Oﬁéel(i,j)Z(—1)‘_’<S,~‘7‘Sf‘> ,

where ( ) means the expectation value in the ground
state. It is defined by a two-point correlation of the local
operator. The symmetry breaking is usually considered
for a local order parameter of this type. In the Haldane
phase, the ground state is disordered and the usual Néel
order parameters vanish. In order to probe the hidden
order in the Haldane phase, den Nijs and Rommelse’
defined the following nonlocal string order parameter:

0
S;"> .

It plays a significant role in characterizing the Haldane
phase. Kennedy and Tasaki'® introduced a nonlocal uni-
tary transformation which sheds light on the string order
parameter. By the transformation, the Heisenberg Ham-
iltonian H is transformed to a Hamiltonian H and the
string order parameter (2.2) is transformed to a usual fer-
romagnetic order parameter

gtring(H)= iqerro(ﬁ) .

stringa: . hm Ostringa(l’f )’
li—jl—e

, (2.2)
j—1
im Y S¢

satring(i’j )=— <Siaexp
k=i+1

(2.3)

In the transformed system, the original continuous sym-
metry [O(2) or O(3)] is hidden and the discrete Z,XZ,
symmetry, which corresponds to the rotation by =
around the z and x axes, emerges. This is the only expli-
cit symmetry. The order parameters O, (H )(a=x and
z) determine breakings of the Z,XZ, symmetry. If
0%, (H)#0, the Z, symmetry corresponding to the rota-
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tion of 7 around the x axis is broken. Similarly, if
0%, (H)#0, the Z, symmetry corresponding to the rota-
tion of 7 around the z axis is broken. Therefore, due to
(2.3), the string order parameters in the original Hamil-
tonian probe the breakings or nonbreakings of the Z, X Z,
symmetry.

A. Heisenberg Hamiltonian with a biquadratic term

Let us consider the following S =1 antiferromagnetic
Hamiltonian with a biquadratic term,

sz[si'si+1_ﬁ(si'si+l)2] . (2.4)
1

At =0, it is the spherically symmetric Heisenberg mod-
el. The AKLT Hamiltonian is realized at S=—1/3. In
this case, most of the Haldane’s picture is explicitly real-
ized. There is an excitation gap. The ground state is a
unique spin singlet and is disordered in the sense that the
usual spin-spin correlation functions decay exponential-
ly.>'® Den Nijs and Rommelse’ showed that 0%, =4/9
(a=x,y, or z). Thus the Z,XZ, symmetry is fully broken
in the AKLT model. One of the main interests is wheth-
er such a state is realized in the isotropic Heisenberg
model (8=0). The Hamiltonian (2.4) is also exactly solv-
able at B= —1 (Ref. 23) and B=1 (Ref. 24). There is no
excitation gap at these points. Thus, it is a nontrivial
problem to determine whether the Heisenberg model
(B=0) is in the same universality class with f=—1/3.
In this paper, we focus on this point, performing sys-
tematic numerical calculations of the order parameters.

B. Heisenberg Hamiltonian with a uniaxial antisotropy

Consider the following S =1 Heisenberg Hamiltonian
with uniaxial anisotropy,

H= 73 [S7S7+S/St. +AS7SE +D(S7)] . (2.5)
1

This model was investigated by a number of au-
thors® 1!~ 1* and the phase diagram in the D-A plane was
presented.®!%!* Here we assume the model to be antifer-
romagnetic, i.e., A>0. It is expected to have three
phases: a Néel phase, a Haldane phase, and a large-D
phase as shown in Fig. 1 schematically. For a negative D
and |[D|=21,|1) and |l ) states are preferred against the
|0) state. Thus there may exist an Ising-like antiferro-
magnetic correlation and one expects that O%,,70 and
O%iring 70 while O =Oiring =0. Thus only one Z,
symmetry, which corresponds to the rotation of , is bro-
ken (the Néel phase). On the other hand, the |0) state is
preferred in the large-D phase. thus all the correlation
functions are expected to be short ranged
(Ogéel =0:tring = f\léel :Oztring =0).

In the AKLT model [B=—1/3 in Eq. (2.4)], the usual
correlation functions decay exponentially, but one has the
hidden order (0%;,,70 and Og,,70). The Z,XZ,
symmetry is fully broken. the problem is whether this be-
havior is realized in some of the parameter regions of the
Hamiltonian (2.5) which includes the Heisenberg point
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TABLE 1. Relation between the Z,XZ, symmetry breaking
and the three phases: large-D, Haldane, and Néel. (There might
be a Kosterlitz-Thouless transition near the A=0 boundary.) O:
The symmetry is not broken in the ground state. X: The sym-
metry is broken in the ground state.

Phase ZZ(Z) Oétring ZZ(x) O:tring
Large-D o Zero o zero
Haldane X finite X finite

Néel X finite ) zero
(A=1,D=0). The correspondence between the three

phases and the Z, X Z, symmetry is summarized in Table
I

III. NUMERICAL RESULTS

We present numerical results to confirm the above
scenario. The Lanczos method and the inverse iteration
method? were used to obtain the ground state of (2.4)
and (2.5). We restrict ourselves to the sector with
3:5/=0 to reduce the maximum required computer
memory size for the ground-state calculations. For a
spherically symmetric model, there is a degeneracy be-
tween sectors with different total S% Thus it is sufficient
to investigate a sector with 3 ;S7=0 to obtain the ground
state. For the cases with D70, this degeneracy is re-
moved. The ground state in these cases, however, lies
also in the 3,S7=0 sector and is unique when A=1 (see
the Appendix).

We have calculated several correlation functions in-
cluding string correlations. In order to calculate string
correlations in the x direction, we have to include inter-
mediate states with different total S,. Thus we take bases
of the full Hilbert space for the calculation of the correla-
tion functions in the x direction. In the following, we
take the periodic boundary condition.

Isotropic Heisenberg model

0.50 — r
[ 4 I !
2 ..
0.40}F — o string(l’l) E
— ; — E
0.30f ]
0.20f \ 2 ii ]
\ O eei(ied) / ]
~ L ; ]
o0.10f o
0.00 L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

distance

FIG. 2. Correlation functions OR(i,j) and Ol (i,j) for a
14-site Hamiltonian (2.4) with S=0.
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A. Heisenberg Hamiltonian with a biquadratic term

In Fig. 2 we show the correlation functions O%(i,j)
and Ogyn,(i,j) for a 14-site system with =0 for the
Hamiltonian (2.4).2® The same result has been obtained
by Girvin and Arovas.!© It suggests that 0%, (i,j) is
short ranged and O¢;;,, (i, /) is long ranged. In Figs. 3(a)
and 3(b) we show Of (i,j) and O%;,,(i,j) for a 10-site
system when we change B from —1/2 to 0. The data
suggest that there is no phase transition between
B=—1/3 and 0.

B. Heisenberg Hamiltonian with a uniaxial anisotropy

We change D in the Hamiltonian (2.5) to investigate
the three phases. For simplicity, A is fixed to unity.?’
We choose D =4,0 and —4, which will correspond to the
large-D, Haldane, and Néel phases, respectively. In Figs.
4(a), 4(b), and 4(c) we show the longest distance behavior,
ORser(O,N /2) and Ogy,,,(0,N/2)(a@=x or z), in finite-
size systems as a function of the inverse of the system size
1/N. It shows that all four order parameters are zero in
the large-D phase (D =4) in the thermodynamic limit.
In the Haldane phase (D =0), it suggests that Néel order
parameters are zero and string order parameters are
nonzero. In the Néel phase (D = —4), it shows that only
order parameters in the z direction are nonzero. The re-
sults confirm the proposed behavior summarized in Table
I. In all cases, the string order parameter takes a larger

()

FIG. 3. Correlation functions Of(i,j) and O, (i,j) for a
10-site Hamiltonian (2.4) when B is varied from —0.5 to 0. (a)
ONéel(irj) and (b) O:Iring(iyj)'
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FIG. 4. The longest distance behavior Of,(0,N/2) and
O%ting(0,N/2)(a=x or z) for the Hamiltonian (2.5) in a finite-
size system as a function of the inverse of the system size 1/N.
(a) D=4, (b) D=0, and (c) D= —4.
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value than that of the Néel order parameter. '*

In Figs. 5(a)-5(d) we show the correlation functions in
the parameter region De[ —3,3]. The results are con-
sistent with the above discussions. There is an interesting
phenomenon not mentioned before when D takes a value
near unity where a significant enhancement in the corre-
lation in the x direction [Oee(i,j) and O, (4,7)] is
observed.

There is an antiferromagnetic correlation when D ~O0.
The antiferromagnetic correlation in the z direction is
suppressed if D is increased. It is possible that only the
antiferromagnetic correlation in the x direction survives
until D takes a large value where the energy gain by spin
flip term is overcome by the energy loss of the D term.

In Fig. 6 we show the longest distance behavior,
ORei(0,N /2) and Oy, (O,N /2)(a=x or z) at D =1, as
a function of the inverse of the system size. If there is a
phase transition between the Haldane phase and the
large-D phase, it is natural to imagine that the excitation
gap which exists in both phases could collapse at an in-
termediate value of D. Several authors?""?? investigated
the phase transition in detail by calculating the excitation
gap in finite-size systems. If the system is massless, one
expects that the correlation length of some operator
diverges. The present numerical data suggest that the
correlation function which is responsible for the critical
behavior is the Néel correlation in the x direction
OZea (i, j). At this point, we speculate that the correla-
tion length of the Néel correlation in the x direction
diverges and it shows a power-law behavior that is ex-
ponential in both the large-D and the Haldane phases.

IV. SUMMARY

We focused on the string correlation functions pro-
posed by den Nijs and Rommelse for the S =1 Heisen-
berg antiferromagnets by a numerical diagonalization of
finite size systems. We calculated correlation functions
for the Hamiltonian with a biquadratic term [Eq. (2.4)]
for B[ —1/3,0]. We also treated the Hamiltonian with
the DY .(s7)* term [Eq. (2.5)] and investigated the phases
by extensively calculating the string order parameters
which show Z,XZ, symmetry breakings proposed by
Kennedy and Tasaki as well as the usual order parame-
ters. These two Z, symmetries are characterized by the
string order parameters in the z and x directions. From
finite size studies we obtained clear evidence about the
correspondence between the three phases: large-D, Hal-
dane, and Néel, and the Z, XZ, symmetry breakings (see
Table I). In the Haldane phase, the Z,XZ, symmetry is
fully broken, that is, the string order parameters are
nonzero in both x and z directions. In the Néel phase,
the ground state breaks only one Z, symmetry. Only the
string order parameter in the z direction is nonzero. In
the large-D phase, the Z,XZ, symmetry is not broken
and all string order parameters are zero.

We found that there is a significant enhancement in the
spin-spin correlation in the x direction both for string
type and usual Néel type when D =1. We speculate that
the energy gap collapses and the correlation length of the
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staggered spin-spin correlations in the x direction
diverges at this point.
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APPENDIX

The following lemma guarantees that the ground state
of the Heisenberg Hamiltonian with uniaxial anisotropy
is within the sector 3;S7=0. The proof is due to H.
Tasaki.

A “configuration” o={o;} will mean a choice of
0;=—1,0, or +1 at each site i, and ¥, denotes the
eigenstate with SV _ =o,;V¥,.

We consider the antiferromagnetic Hamiltonian with
uniaxial anisotropy

(a)

0.8

080, (i)

11793

H=Z[stf+1 +SSY +ASiSF  +D(S)?] .

Lemma: For a finite L, the ground state is unique and
satisfies ¥,S7=0 if (i) A=1, D<0 or (i) —1<A=<1,
D =0. Proof: We simply extend the methods in Ref. 28
and 29. The standard application of the Perron-
Frobenius theorem (as in Ref. 28) implies that, for any
values of A and D, the ground state within the sector with
3.:S7=M is unique, and can be written as a linear com-
bination of all the basis states (within the sector) with
nonvanishing coefficients. So, to prove the lemma, we
only have to state that the ground state is in the sector
with M =0. As for the SO(3) invariant model with A=1
and D =0, this fact has been proved by Lieb and
Mattis.?® Following Ref. 29, we will prove that, in the
models with (i) and (ii), the ground states are at most two-
fold degenerate. In fact, this implies that the ground
state is in the sector M =0 for the following reason. Sup-
pose the converse. Then when continuously modifying
the Hamiltonian starting from the isotropic one, we must
have a level crossing between the M =0 sector and the
other sector with M0. Since the sectors with 3,S7/=M
and 3 ,S/5~M are degenerate, we must have at least

(d)

FIG. 5. Correlation functions for a 10-site Hamiltonian (2.5) when we change D from —3 to 3. (a) Ofza(i,j), (b) Ogsing(i,7), (©)

Ogéel(i,j ), and (d) Ogtring(iuj ).
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1/N.

threefold degeneracy, which is a contradiction. To prove
that there can be at most twofold degeneracy, we inter-
change the x and z coordinates (as in Ref. 29) to express
the Hamiltonian as

Y. HATSUGAI AND M. KOHMOTO

S

H=3 1‘%’—1(5,.+s;1 +57S )
i

F TS S8

+SESF g+ (S (S
+(S;tS7+S781)) | .

When the parameters in the Hamiltonian satisfy (i) or (ii),
we see that the Hamiltonian breaks up the basis states
into two blocks with 3,,S7= even or odd. (The isotropic
point with A=1 and D =0 is an exception. But this case
is already covered in the original work.?’) All the basis
states in each block are connected with each other by the
action of the Hamiltonian. Let N = 3 S ZZ] and
Noga= X ;S%;+1- If we set W, =( — 1)V go for case (i)
and W, =(i)Veven ™V odd  for case (ii), we can show that
(W,,H'Y_,)<0 for any ¢ and o'. Thus we can apply
the Perron-Frobenius theorem to show that the ground
state is unique within each sector. Therefore the true
ground states are at most twofold degenerate. Q.E.D.
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