A characterization of paracompactness of locally Lindelöf spaces

Yang Lecheng

Tsukuba journal of mathematics
volume 17
number 2
page range 339-343
year 1993-12
URL http://hdl.handle.net/2241/7264
A CHARACTERIZATION OF PARACOMPACTNESS
OF LOCALLY LINDELOF SPACES

Lecheng Yang

Abstract. A space X is said to have property B if every infinite open cover \mathcal{U} of X has an open refinement \mathcal{V} such that every point $x \in X$ has a neighborhood W with $|\{V \in \mathcal{V} : W \cap V \neq \emptyset\}| < |\mathcal{U}|$. It is proved that a locally Lindelöf space is paracompact iff it has property B.

All spaces are assumed to be regular T_1.

A well-known problem posed by Arhangel’skii and Tall is: Is every locally compact normal metacompact space paracompact? The problem is affirmative if we assume $V=L$ [10] or if the space is perfectly normal [1] or boundedly metacompact [5] or locally connected [6].

In connection with this problem, in this paper we give a characterization of paracompactness for locally Lindelöf spaces by using property B, and provide another partial answer to the problem.

Property B was introduced originally by Zenor [12] as a generalization of paracompactness: a space X is said to have property B, if for every monotone increasing open cover $\mathcal{U} = \{U_\alpha : \alpha \in \kappa\}$ (that is, $U_\alpha \subseteq U_\beta$ if $\alpha < \beta$) of X, there exists a monotone increasing open cover $\mathcal{V} = \{V_\alpha : \alpha \in \kappa\}$ which is a shrinking of \mathcal{U}, i.e., $\bigcap V_\alpha \subseteq U_\alpha$ for $\alpha \in \kappa$.

It is proved in [11] that a space X has property B iff every open cover of X of infinite cardinality κ has an open refinement \mathcal{V} such that every point $x \in X$ has a neighborhood W with $|\{V \in \mathcal{V} : W \cap V \neq \emptyset\}| < \kappa$; we say such a refinement \mathcal{V} is locally κ. It is known from Rudin [9] that normal spaces with property B are not necessarily paracompact. However, Balogh and Rudin [3] recently proved that a monotonically normal space is paracompact iff it has property B. Using the idea in Balogh [2] we now prove the following theorem.

Theorem 1. A locally Lindelöf space is paracompact iff it has property B.

Proof. Let X be a locally Lindelöf space with property B. Suppose X is not paracompact. Then there exists a minimal cardinal κ such that we have
some open cover \(\mathcal{U} \) of \(X \) of cardinality \(\kappa \) which has no locally finite open refinement. We will show \(\mathcal{U} \) has, however, a locally finite open refinement. Let \(\mathcal{U} = \{ U_\alpha : \alpha \in \kappa \} \). Since \(X \) is countably paracompact and locally Lindelöf we can assume that \(\kappa > \omega \) and each \(U_\alpha \) is Lindelöf. There are two cases to consider.

Case 1. \(\kappa \) is singular. Then \(\text{cf}(\kappa) = \tau < \kappa \). Let \(\{ \kappa_\mu : \mu \in \tau \} \) be an increasing cofinal subset of \(\kappa \) so that \(\{ \cup U_{\kappa_\mu} : \mu \in \tau \} \) is a monotone increasing open cover of \(X \), where \(U_\alpha = \{ U_\beta : \beta \in \alpha \} \) for every \(\alpha \in \kappa \). Since \(X \) has property \(\mathcal{B} \), there is a monotone increasing open cover \(\{ V_\mu : \mu \in \tau \} \) of \(X \) such that \(\bigcup V_\mu \subseteq \bigcup U_{\kappa_\mu} \) for every \(\mu \in \tau \). By the definition of \(\kappa \), there exists a locally finite open collection \(\mathcal{U}_\mu \) such that \(\mathcal{U}_\mu \) refines \(U_{\kappa_\mu} \) and \(\bigcup U_{\kappa_\mu} \subseteq \bigcup \mathcal{U}_\mu \). Let us consider the open cover \(\mathcal{U} = \bigcup \{ \mathcal{U}_\mu : \mu \in \tau \} \) of \(X \). Note that each member of \(\mathcal{U} \) has Lindelöf closure, it is easy to check that each member of \(\mathcal{U} \) meets at most \(\tau \) many other members of \(\mathcal{U} \). Using usual chaining argument, we may find some partition \(\{ \lambda_\alpha : \alpha \in A \} \) of \(\mathcal{U} \) such that \((\cup \lambda_\alpha) \cap (\cup \lambda_{\alpha'}) = \emptyset \) if \(\alpha, \alpha' \in A \) with \(\alpha \neq \alpha' \), and \(| \lambda_\alpha | \leq \tau \) for every \(\alpha \in A \). By the definition of \(\kappa \), \(\lambda_\alpha \) has, since \(\cup \lambda_\alpha \) is clopen, a locally finite open refinement \(\mathcal{J}_\alpha \), so that \(\cup \{ \mathcal{J}_\alpha : \alpha \in A \} \) is the desired refinement of \(\mathcal{U} \).

Case 2. \(\kappa \) is regular. Using property \(\mathcal{B} \) find an open refinement \(\mathcal{U} \) of \(\mathcal{U} \) such that every point in \(X \) has a neighborhood \(V \) with

\[| \{ G : G \in \mathcal{U}, G \cap V = \emptyset \} | < \kappa. \]

Clearly we may assume \(\mathcal{U} = \{ G_\alpha : \alpha \in \kappa \} \) with \(G_\alpha \subseteq U_\alpha \) for every \(\alpha \in \kappa \). Let us first show that

\[S = \{ \alpha \in \kappa : \overline{G_\alpha} \cap G_\alpha^* = \emptyset \} \]

is a non-stationary subset in \(\kappa \), where \(G_\alpha^* = \cup \{ G_\beta : \beta \in \alpha \} \) for \(\alpha \in \kappa \).

Suppose the contrary that \(S \) is stationary. Then for every \(\alpha \in S \), pick a point \(x_\alpha \in \overline{G_\alpha} \setminus G_\alpha^* \) and let \(s(\alpha) = \sup \{ \mu \in \kappa : x_\alpha \in G_\mu \} \) which belongs to \(\kappa \), since \(\kappa \) is regular. Define a subset \(C \) of \(\kappa \) by

\[C = \{ \alpha \in \kappa : \beta \in S \cap \alpha \text{ implies } s(\beta) < \alpha \}. \]

Let us check that \(C \) is a c. u. b. set in \(\kappa \). Indeed, if \(\alpha \in C \), then there is a \(\beta \in S \cap \alpha \) with \(s(\beta) \geq \alpha \), so that \((\beta, \alpha] \) is a neighborhood of \(\alpha \) which misses \(C \). To see \(C \) is unbounded, let \(\alpha \in \kappa \) be given, since \(S \) is stationary, we may find an \(\alpha_t \in S \) such that \(\alpha < \alpha_t \). Proceeding by induction, find an \(\alpha_{n+1} \in S \) so that

\[\alpha_{n+1} > \sup \{ s(\mu) : \mu \in S, \mu \leq \alpha_n \}. \]

Then we obtain an increasing sequence \(\{ \alpha_n : n \in \mathbb{N} \} \) such that \(\alpha < \sup \{ \alpha_n : n \in \mathbb{N} \} \in C \). This concludes that \(C \) is a c. u. b. set in \(\kappa \). Let \(S_1 = S \cap C \) and for every \(\alpha \in S_1 \) define \(m(\alpha) = \min \{ \mu \in \kappa : x_\alpha \in G_\mu \} \) so that \(\alpha \leq m(\alpha) \leq s(\alpha) \). It follows that
A characterization of paracompactness

$x_\neq G_{m(\beta)}$ and $x_\neq G_{m(\alpha)}$ whenever $\alpha, \beta \subseteq S$ with $\alpha \neq \beta$. This implies that the set $P = \{x_\neq : \alpha \subseteq S\}$ consists of distinct points of X, and $\{G_{m(\alpha)} : \alpha \subseteq S\}$ is an open expansion of P, i.e., $G_{m(\alpha)} \cap P = \{x_\neq\}$ for every $\alpha \subseteq S$. Now for every $\alpha \subseteq S$, since $x_\neq \subseteq G_{\beta} : \beta \subseteq \alpha]$, there is a $\beta(\alpha) \subseteq \alpha$ such that $G_{\beta} \cap G_{m(\alpha)} \neq \emptyset$. By Pressing Down Lemma, there are a $\beta \subseteq \kappa$ and a stationary set $S_\beta \subseteq S$ such that $\beta(\alpha) = \beta$ for all $\alpha \subseteq S_\beta$, consequently $G_{\beta} \cap G_{m(\alpha)} \neq \emptyset$ for all $\alpha \subseteq S_\beta$. This contradicts our assumption that \overline{G}_{β} is Lindelöf.

Now take a c. u. b. set C_α in κ such that $C_\alpha \cap S = \emptyset$ and thus G^{*}_β is clopen for every $\alpha \subseteq C_\alpha$. Define H_α for $\alpha \subseteq C_\alpha$ by

$$H_\alpha = G^{*}_\beta \cap \{\mu \subseteq C_\alpha \cap \alpha\}$$

so that $X = \cup \{H_\alpha : \alpha \subseteq C_\alpha\}$. Furthermore for every $\alpha \subseteq C_\alpha$, we have

(1) either $H_\alpha = \emptyset$ or $H_\alpha = G^{*}_\alpha \cap G^{*}_\mu(\alpha)$ for some $\mu(\alpha) \subseteq C_\alpha \cap \alpha$. In fact, if $H_\alpha \neq \emptyset$, then there is an $x \subseteq H_\alpha$, and thus $x \subseteq C_\alpha \cap \alpha$. This shows $G^{*}_\alpha \cap C_\alpha = \emptyset$, because if there is some $\mu(\alpha) \subseteq G^{*}_\alpha \cap C_\alpha$, then $x \subseteq G^{*}_\alpha \cap G^{*}_\mu(\alpha)$ which is impossible. Define $\mu(\alpha) = \sup\{\mu \subseteq \gamma : \mu \subseteq C_\alpha\}$ which belongs to C_α. Then for every $\mu \subseteq C_\alpha \cap \alpha$, since $\gamma(\alpha) \cap C_\alpha = \emptyset$, we must have $\mu(\alpha) \subseteq \gamma$. This implies $\mu(\alpha) \subseteq \mu(\alpha)$ from which it follows that $H_\alpha = G^{*}_\alpha \cap G^{*}_\mu(\alpha)$, i.e., (1) holds. By the definition of κ, we can find, for every $\alpha \subseteq C_\alpha$, a locally finite open cover of \mathcal{A}_α of H_α such that every member of \mathcal{A}_α is contained in some member of \mathcal{U}, so that $\cup \{\mathcal{A}_\alpha : \alpha \subseteq C_\alpha\}$ is, since X is now the union of the disjoint clopen collection $\{H_\alpha : \alpha \subseteq C_\alpha\}$, a locally finite open refinement of \mathcal{U}. Thus the proof is complete.

In [9], by proving that the Navy's space has property \mathcal{B}, Rudin shows that normality plus property \mathcal{B} does not imply paracompactness. But the Navy's space is metacompact [7], in connection with Arhangel'skii and Tall's problem, it is natural to ask if the Navy's space is locally compact. But our Theorem 1 even shows that

Corollary 1. The Navy's space is not locally Lindelöf.

Also from Theorem 1 the problem of Arhangel'skii and Tall can be stated as follows:

Problem 1. Does every locally compact normal metacompact space have property \mathcal{B}?

However note that normal metacompact spaces do not necessarily have property \mathcal{B}, see Example 4.9 (ii) in [4] or [8] for such a counterexample.
With a modification of proof of Theorem 1 we can prove Arhangel'skii's result mentioned above, even we have

THEOREM 2. Locally Lindelöf perfectly normal metacompact spaces are paracompact.

Proof. Since normal metacompact spaces are shrinking (thus countably paracompact), \(\kappa \) and a point-finite open cover \(\mathcal{G} = \{ G_\alpha : \alpha \in \kappa \} \) can be defined in the same way as Theorem 1. Clearly we need only consider the case of \(\kappa \) being regular, and it suffices to prove that

\[
S = \{ \alpha \in \kappa : \bigcup_{\beta \leq \alpha} G_\beta \setminus \bigcup_{\beta \leq \alpha} G_\beta = \emptyset \}
\]

is non-stationary.

Suppose indirectly that \(S \) is stationary. As in the proof of Theorem 1, define \(m(\alpha) \in \kappa \) for every \(\alpha \in S \). Without loss of generality, we may assume that there is a \(\beta \in \kappa \) such that

\[
G_{m(\alpha)} \setminus G_\beta \neq \emptyset
\]

for all \(\alpha \in S \).

For every \(n \in \omega \) let

\[
X_n = \{ x \in X : \text{ord}(x, \mathcal{G}) \leq n \}.
\]

Then \(X_n \) is closed in \(X \). Let

\[
S_n = \{ \alpha \in S : G_{m(\alpha)} \cap G_\beta \cap X_n \neq \emptyset \}
\]

so that \(S = \bigcup_{n \in \omega} S_n \) and thus there is a minimal \(n \in \omega \) with \(|S_n| = \kappa \).

Since

\[
G_\beta \cap X_n = G_\beta \cap X_n \cap (X \setminus (G_\beta \cap X_{n-1})) \cup (G_\beta \cap X_{n-1}),
\]

we can assume that

\[
G_{m(\alpha)} \cap G_\beta \cap X_n \cap (X \setminus (G_\beta \cap X_{n-1})) \neq \emptyset
\]

for all \(\alpha \in S_n \).

Now every point in \(G_\beta \cap X_n \cap (X \setminus (G_\beta \cap X_{n-1})) \) has a neighborhood which meets \(G_{m(\alpha)} \cap G_\beta \cap X_n \) for at most finitely many \(\alpha \in S_n \). Since \(X \) is perfect, the set \(G_\beta \cap X_n \cap (X \setminus (G_\beta \cap X_{n-1})) \) is Lindelöf, and hence

\[
G_{m(\alpha)} \cap G_\beta \cap X_n \cap (X \setminus (G_\beta \cap X_{n-1})) \neq \emptyset
\]

for at most countably many \(\alpha \in S_n \), a contradiction proving \(S \) is non-stationary. Thus the proof is complete.
A characterization of paracompactness

Note that normal submetacompact spaces are shrinking [11], but we do not know whether in Theorem 2 metacompactness can be replaced by submetacompactness, that is

Problem 2. Are locally Lindelöf perfectly normal and submetacompact spaces paracompact?

References

Department of Mathematics, Institute of Xian Highway, Xian, China
Current Address: Institute of Mathematics, University of Tsukuba, Tsukuba Ibaraki 305