<table>
<thead>
<tr>
<th>著者</th>
<th>正式的な情報が含まれていないため、詳細な情報が提供されない</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>正式的な情報が含まれていないため、詳細な情報が提供されない</td>
</tr>
<tr>
<td>発行</td>
<td>正式な情報が含まれていないため、詳細な情報が提供されない</td>
</tr>
<tr>
<td>年</td>
<td>正式な情報が含まれていないため、詳細な情報が提供されない</td>
</tr>
<tr>
<td>頁</td>
<td>正式な情報が含まれていないため、詳細な情報が提供されない</td>
</tr>
</tbody>
</table>
GRADED COALGEBRAS
AND MORITA-TAKEUCHI CONTEXTS

By
S. Dăscălescu, C. Năstăsescu, S. Raianu
and F. Van Oystaeyen

0. Introduction

Viewing a G-graded k-coalgebra over the field k as a right kG-comodule coalgebra it is possible to use a Hopf algebraic approach to the study of coalgebras graded by an arbitrary group that was started in [NT].

Let $C = \bigoplus_{g \in G} C_g$ be a G-graded coalgebra. The graded C-comodules may be viewed as comodules over the smash product $C \rtimes kG$, the general definition of which was given in [M]. Coalgebras graded by an arbitrary group have been considered in [FM] in order to introduce the notion of G-graded Hopf algebras. On the other hand, M. Takeuchi introduced in [T] the sets of pre-equivalence data connecting categories of comodules over two coalgebras (we call such a set a Morita-Takeuchi context). The main result of this note is a coalgebra version of a result established by M. Cohen, S. Montgomery in [CM] for group-graded rings: for a graded coalgebra C the coalgebras C, and $C \rtimes kG$ are connected by a Morita-Takeuchi context in which one of the structure maps is injective. Most of the results in this note are consequences of the foregoing. As a first application we find that a coalgebra C is strongly graded if and only if the other structure map of the context is also injective. The final section provides analogues of the Cohen-Montgomery duality theorems: if C is a coalgebra graded by the finite group G of order n, then G acts on the smash coproduct as a group of automorphisms of coalgebras and $(C \rtimes kG) \rtimes kG^*$ is coalgebra isomorphic to the comatrix coalgebra $M^c(n, C)$. If G is a finite group of order n, acting on the coalgebra D as a group of coalgebra automorphisms, then the smash coproduct $D \rtimes kG^*$ is strongly graded by G and moreover: $(D \rtimes kG^*) \rtimes kG \cong M^c(n, D)$. The second duality theorem is again a direct consequence of the Morita-Takeuchi context mentioned above.

Received November 25, 1993.
1. Graded Coalgebras and the Smash Coproduct

Throughout this paper k is a field. We use Sweedler’s “sigma” notation [S] and further notation and conventions in [T], [D]. Let G be a group with identity element 1. Recall that a k-coalgebra (C, Δ, ε) is graded by G if C is a direct sum of k-subspaces, $C = \bigoplus_{g \in G} C_g$, such that $\Delta(C_g) \subseteq \sum_{x+y=g} C_x \otimes C_y$, for all $g \in G$, and $\varepsilon(C_g) = 0$ for $g \neq 1$. A right C-comodule M with structure map $\rho : M \to M \otimes C$ is a graded C-comodule if $M = \bigoplus_{g \in G} M_g$ as k-subspaces, such that $\rho(M_g) \subseteq \sum_{x+y=g} M_x \otimes C_y$ for all $g \in G$. For graded right C-comodules M and N a graded comodule morphism is a C-comodule morphism $f : M \to N$ such that $f(M_g) \subseteq N_g$ for all $g \in G$. The category of graded right C-comodules, denoted by grc, is a Grothendieck category, cf. [NT]. The main purpose of this section is to develop a Hopf algebraic approach to the graded theory. First we recall, see [S] or [A], some definitions.

1.1. Definition. Let H be a bialgebra over the field k, A a k-algebra and $(C, \Delta_c, \varepsilon_c)$ a k-coalgebra. Then:

i. A is said to be a (right) H-module algebra if A is a right H-module such that $(ab) \cdot h = \sum (a \cdot h_1)(b \cdot h_2)$ and $1_A \cdot h = \varepsilon(h)1_A$ for any $h \in H$, and $a, b \in A$.

ii. C is a right H-comodule coalgebra if C is an H-comodule by $c \to \sum c(0) \otimes c(1)$ such that we have:

\[\sum c_1(0) \otimes c_2(0) \otimes c_1(1) c_2(1) = \sum c(0)_1 \otimes c(0)_2 \otimes c(1) , \]

\[\sum \varepsilon_c(c(0)) c(1) = \varepsilon_c(c)1_H \quad \text{for all } c \in C \]

iii. C is a (left) H-module coalgebra if C is a left H-module such that:

\[\Delta_c(h \cdot c) = \sum h_1 c_1 \otimes h_2 c_2, \varepsilon_c(h \cdot c) = \varepsilon_H(h) \varepsilon_c(c) \quad \text{for } c \in C, h \in H. \]

In the sequel we shall not refer to “right” or “left” as in the above definitions, the choice of “sides” shall remain fixed throughout.

For any group G the group algebra kG has a bialgebra structure defined by $\Delta(g) = g \otimes g$ and $\varepsilon(g) = 1$ for all $g \in G$. The next result establishes the connection between G-graded coalgebras and kG-comodule coalgebras.

1.2. Proposition. A coalgebra C graded by G many in a natural way be viewed as a kG-comodule coalgebra; conversely every kG-comodule coalgebra is a G-graded coalgebra.

Proof. For a G-graded C the map $\rho : C \to C \otimes kG$, $c \to c \otimes \sigma$ for all $\sigma \in G$, ...
Graded coalgebras and Morita-Takeuchi contexts

$c\in C_{\sigma}$ defines a kG-comodule coalgebra structure on C. Conversely, if C is a kG-comodule coalgebra then any $c\in C$ has a unique presentation $\rho(c) = \sum_{g\in G} c_g \otimes g$. Put $C_g = \{c_g : c\in C, g\in G\}$. From $(I\otimes \varepsilon)(\rho(c)) = c\otimes 1$ we derive that $c = \sum_{g\in G} c_g$ and $C = \sum_{g\in G} C_g$. For $c\in C$, $g\in G$ we have that $c\in C_g$ if and only if $\rho(c) = c_g\otimes g$. We say that the group G acts on the coalgebra D whenever there is a group morphism $\varphi : G\to \text{Aut}(D)$, the latter denoting the set of all coalgebra automorphisms of D with group structure defined as follows: if $f, g\in \text{Aut}(D)$, $f \cdot g = f \cdot g$.

1.3. Proposition. If G acts on the coalgebra D then D has the structure of a kG-module coalgebra; conversely any kG-module coalgebra has a natural G-action.

Proof. Suppose that $\varphi : G\to \text{Aut}(D)$ determines that G acts on D then the map $kG\otimes D\to D, g\otimes d\mapsto \varphi(g)(d)$ defines a kG-module structure on D as desired. Conversely, if D is a kG-module coalgebra then we may define a G-action on D by $\varphi : G\to \text{Aut}(D), \varphi(g)(d) = g\cdot d$ for $g\in G, d\in D$.

1.4. Remark. Let, for a finite group G, kG^* be the dual bialgebra for the finite dimensional bialgebra kG. If the finite group G acts on the coalgebra D then D is also a kG^*-comodule coalgebra. If $\{p_g, g\in G\}$ is the dual basis of $\{g, g\in G\}$ then $\{p_g, g\in G\}$ is a system of orthogonal idempotents of kG^*. The coalgebra structure of kG^* is given in the usual way by: $\Delta(p_g) = \sum_{x,y=g} p_x \otimes p_y, \varepsilon(p_g) = \delta_{g,1}$.

The right comodule structure of D is given by $\rho : D\to D \otimes kG^*, \rho(d) = \sum_{g\in G} (g\cdot d) \otimes p_g$.

In the sequel, the smash coproduct plays a central part. For a bialgebra H and an H-module coalgebra C the smash-coproduct $C \rtimes H$ is defined as the k-space $C \otimes H$ with $\Delta : C \rtimes H \to (C \rtimes H) \otimes (C \rtimes H)$ given by $\Delta(c \rtimes h) = \sum (c_1 \rtimes c_2) \otimes (c_1^{(0)} \rtimes h_1)$, and $\varepsilon : C \rtimes H \to k$ given by $\varepsilon(c \rtimes h) = \varepsilon(c)\varepsilon_H(h)$.
1.5. Proposition. \(C \times H \) with \(\Delta \) and \(\varepsilon \) as above is a coalgebra.

Proof. This is just the right hand version of Theorem 2.11 of [M], a proof is given in Proposition 2.3 of [FM]. \(\square \)

The smash coproduct is useful in general but has particular interest in some special cases frequently considered:

i. Graded smash coproduct

If the coalgebra \(C \) is graded by \(G \) then the coalgebra structure of \(C \times kG \) is given by:
\[
\Delta(c \times g) = \sum (c_i \times \deg c_i g) \otimes (c_i \otimes g),
\]
for any homogeneous \(c \in C \) and \(g \in G \) (where we assumed, as we will always do in the sequel, that we have used the homogeneous decomposition \(\sum c_i \otimes c_i \)), whereas for all \(c \in C, g \in G \) we have that \(\varepsilon(c \times g) = \varepsilon_c(c) \).

ii. If the finite group \(G \) acts on the coalgebra \(D \), i.e. \(D \) is a \(kG \)-comodule coalgebra, then the coalgebra structure of \(D \times kG^* \) is given by:
\[
\Delta(d \times p_g) = \sum_{u \in G} (d \times p_g) \otimes (v \cdot d \times p_u),
\]
and
\[
\varepsilon(d \times p_g) = \varepsilon_g(d) \delta_{k,1}, \quad \text{for all } d \in D, g \in G.
\]

Note that the graded smash coproduct appears in a natural way when one studies graded comodules. Recall that a \(k \)-Abelian category is \(k \)-equivalent to a category of comodules \(\mathcal{M} \) over some coalgebra \(C \) if and only it is of finite type (Theorem 5.1 of [T]). The coalgebra giving the category as a category of comodules may, in general, be a somewhat mystical object. However for a \(G \)-graded coalgebra \(C \) the \(k \)-Abelian category of graded comodules, say \(\text{gr}^G \), is of finite type and it is therefore, equivalent to a category of comodules over the coalgebra given in the following.

Theorem 1.6. If \(C \) is a coalgebra graded by \(G \) then the categories \(\text{gr}^G \) and \(\mathcal{M}^{C \times kG} \) are isomorphic.

Proof. Take \(M \in \text{gr}^G \) with \(\rho : M \rightarrow M \otimes C, \rho(m) = \sum m_0 \otimes m_1 \). We make \(M \) into a right \(C \times kG \)-comodule by defining \(\rho' : M \rightarrow M \otimes (C \times kG), m \mapsto \sum m_0 \otimes (m_1 \otimes (\deg m)^{-1}) \) for homogeneous \(m \in M \). A morphism \(f : M \rightarrow N \) of \(G \)-graded \(C \)-comodules is also a morphism of \(C \times kG \)-comodules and we have defined a functor \(T : \text{gr}^G \rightarrow \mathcal{M}^{C \times kG} \).

Conversely, starting from an \(M \in \mathcal{M}^{C \times kG} \) we obtain on \(M \) a right \(C \)-comodule
structure and a right kG-comodule structure because the linear maps $\alpha: C \times kG \rightarrow C$, $c \times g \mapsto c$, and $\beta: C \times kG \rightarrow kG$, $c \times g \mapsto c(c)g^{-1}$ for $c \in C$, $g \in G$, are coalgebra morphisms. As in the proof of Proposition 1.2 it follows that $M = \bigoplus_{g \in G} M_g$ and a straightforward verification learns that M becomes a graded C-comodule. Now, for $M, N \in \mathcal{M}^{C \times kG}$ and a morphism of $C \times kG$-comodules $f: M \rightarrow N$ it follows that f is also a morphism of G-graded C-comodules when M and N are viewed as such. This defines the functors $S: \mathcal{M}^{C \times kG} \rightarrow \text{gr}C$ and it is easily seen that T and S are isomorphisms of categories and inverse to each other.

1.7. Remarks. 1. If the coalgebra C is graded by a finite group G, then the dual algebra C^* is graded by G with $C^*_x = \{ f \in C^*, f(C_z) = 0 \text{ for all } x \neq g \}$. Hence C^* is a kG^*-module algebra and we may construct the smash product $C^* \# kG^*$ with multiplication given by $(c^* \# h^*)(d^* \# g^*) = \sum (c^*(d^* \cdot h^*)) \# g^* h^*$, for all $c^*, d^* \in C^*$ and $h^*, g^* \in kG^*$. It is easy to see that the algebra $C^* \# kG^*$ is algebra-isomorphic to the dual algebra of $C \times kG$.

2. If G acts on the coalgebra D via $\varphi: G \rightarrow \text{Aut}(D)$, then the group morphism $\bar{\varphi}: G \rightarrow \text{Aut}(D^*)$ given by $\bar{\varphi}(g)(d^*) = d^* \varphi(g)$ for $g \in G$, $d^* \in D^*$, defines an action of G on the algebra D^*. Note that $\text{Aut}(D^*)$ is a group with respect to $\sigma \cdot \tau = \tau \cdot \sigma$ for $\sigma, \tau \in \text{Aut}(D^*)$. Thus D is a kG-module coalgebra and D^* is a kG-module algebra. If G is finite then D is a kG^*-comodule coalgebra and the dual algebra of the smash coproduct $D \times kG^*$ is isomorphic to the skew group ring $D^* \# kG$.

2. The Morita-Takeuchi Context Associated to a Graded Coalgebra

The Morita-theorems for categories of comodules have been proved by M. Takeuchi in [T]; we call a set of pre-equivalence data as in [T] a Morita-Takeuchi context.

2.1. Definition. A Morita-Takeuchi context (C, D, cP_D, dQ_C, f, g) consists of coalgebras C and D, bicomodules cP_D, dQ_C and bicolinear maps $f: C \rightarrow P \Box dQ$, $g: D \rightarrow Q \Box cP$ making the following diagrams commute:

\[
\begin{align*}
P & \xrightarrow{\cong} P \Box dQ \\
\downarrow & \cong \\
C \Box cP & \xrightarrow{f \Box 1} P \Box dQ \Box cP
\end{align*}
\]

\[
\begin{align*}
Q & \xrightarrow{\cong} Q \Box cC \\
\downarrow & \cong \\
D \Box dQ & \xrightarrow{g \Box 1} Q \Box cP \Box dQ
\end{align*}
\]

The context is called strict if f and g are injective, hence isomorphisms. In
this case the categories \mathcal{M}^C and \mathcal{M}^D of comodules over C, resp. D, are equivalent categories.

The following remark extends a corresponding one for Morita contexts given in [CRW].

2.2. Proposition. Let (C, D, cP_d, cQ_c, f, g) be a Morita-Takeuchi context such that f is injective. Then \mathcal{M}^C is equivalent to a quotient category of \mathcal{M}^D.

Proof. Theorem 2.5 of [T] yields that f is an isomorphism and the exact functor $S = \Box_{DQ}^c P : \mathcal{M}^C \to \mathcal{M}^D$, has a right adjoint $T = \Box_P^c D : \mathcal{M}^C \to \mathcal{M}^D$ such that the natural transformation $f^{-1} : ST \to Id$ is an isomorphism. By a result of P. Gabriel (cf. [G] or Proposition 15.18 of [F]) we have: ker $S = \{X \in \mathcal{M}^D, X \Box_P c Q = 0\}$ is a localizing subcategory of \mathcal{M}^D and S induces an equivalence from the quotient category $\mathcal{M}^D/\ker S$ to \mathcal{M}^C. ☐

2.3. Corollary. Let (C, D, cP_d, cQ_c, f, g) be a Morita-Takeuchi context such that f is injective then g is injective (i.e. the context is strict) if and only if $\Box_P c Q$ is faithfully coflat.

Proof. By Proposition 2.2 the injectivity of g is equivalent to S being an equivalence, again equivalent to Ker $S = \{0\}$ or $\Box_P c Q$ being faithfully coflat. ☐

Before establishing the main result of this section let us point out that there is a natural way to associate a graded coalgebra to a given Morita-Takeuchi context. Indeed, if we have a Morita-Takeuchi context (C, D, cP_d, cQ_c, f, g) let $x \to \Sigma x_{-1} \otimes x_0$, resp. $x \to \Sigma x_{(1)} \otimes x_{(2)}$, be the left, resp. right, comodule structure of P, resp. Q. The image of $u \in C$ (resp. D) under f (resp. g) in $P \Box_P c Q$ (resp. $Q \Box_P c D$) will be denoted by $\Sigma f(u) \otimes f(u)_1$, (resp. $\Sigma g(u) \otimes g(u)_2$).

Put $\Gamma = \begin{pmatrix} C & P \cr Q & D \end{pmatrix} = \{(c, d) \in C, d \in D, p \in P, q \in Q\}.$

We make Γ into a coalgebra by defining $\Delta : \Gamma \to \Gamma \otimes \Gamma$ as follows:

$$\Delta_{c, 0} = \Sigma (c_1, 0, 0) \otimes (c_2, 0, 0) + \Sigma (0, f(c)_1, 0) \otimes (0, f(c)_2, 0)$$
$$\Delta_{0, d} = \Sigma (0, d_1, 0) \otimes (0, d_2, 0) + \Sigma (0, g(d)_1, 0) \otimes (0, g(d)_2, 0)$$
$$\Delta_{0, p} = \Sigma (0, p_{-1}, 0) \otimes (0, p_0, 0) + \Sigma (0, p_0, 0) \otimes (0, p_{(1)}, 0)$$
$$\Delta_{q, 0} = \Sigma (0, q_{-1}, 0) \otimes (0, q_0, 0) + \Sigma (0, q_0, 0) \otimes (0, q_{(1)}, 0)$$
for \(c \in C, d \in D, p \in P, q \in Q \), and extended linearly, \(\varepsilon: \Gamma \to k \) given by \(\varepsilon(c, p) = \varepsilon(c) + s_p(d) \). Moreover \(\Gamma \) is \(\mathbb{Z} \)-graded by putting \(\Gamma_0 = \begin{pmatrix} C & 0 \\ 0 & D \end{pmatrix}, \Gamma_1 = \begin{pmatrix} 0 & P \\ 0 & Q \end{pmatrix} \) and \(\Gamma_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \) for \(k = -1, 0, 1 \).

Let \(C = \bigoplus_{x \in G} C_x \) be a coalgebra, graded by \(G \). Recall from [NT] that \(C_1 \) is a coalgebra with comultiplication \(\Delta_1: C_1 \to C_1 \otimes C_1 \) given by \(\Delta_1(c) = \sum \pi(c_1) \otimes \pi(c_2) = \sum \sum c_1 \otimes c_2 \) for all \(c \in C_1 \), where \(\pi: C \to C_1 \) is the natural projection. The co-unit of \(C_1 \) is \(\varepsilon_c \) restricted to \(C_1 \). Since \(\pi \) is a coalgebra map, \(C \) becomes a left \(C_1 \)-comodule via the structure map \(\rho^1_c: C \to C_1 \otimes C \), \(c \mapsto \sum \pi(c_1) \otimes c_2 \) (\(c \) homogeneous) and it becomes a right \(C_1 \)-comodule via \(\rho^1_c: C \to C \otimes C_1 \), \(c \mapsto \sum c_1 \otimes \pi(c_2) \) (\(c \) homogeneous). Now \(C \) is a graded right \(C \)-comodule, so by Theorem 1.6 \(C \) is a right \(C \rtimes kG \)-comodule via the map

\[
\rho^2_c: C \to C \otimes (C \rtimes kG), \quad c \mapsto \sum c_1 \otimes (c_2 \otimes (\deg c_1)^{-1})
\]

for \(c \) homogeneous. For any homogeneous \(c \in C \), we have \((I \otimes \rho^2_c)\rho^1_c(c) = (\rho^1_c \otimes I)\rho^2_c(c) = \sum \pi(c_1) \otimes c_2 \otimes (c_3 \otimes (\deg c_1)^{-1}) \); thus \(C \) becomes a left \(C_1 \), right \(C \rtimes kG \)-bicodule. In a similar way \(C \) becomes a left \(C \rtimes kG \), right \(C_1 \)-bicodule where the left \(C \rtimes kG \)-comodule-structure of \(C \) is given by \(\rho^1(c) = \sum (c_1 \otimes \deg c_2) \otimes c_3 \), for any homogeneous \(c \in C \).

Define \(f: C_1 \to C \square_{C \rtimes kG} C, c \mapsto \sum c_1 \otimes c_2 = \Delta_c(c) \). Observe that for any \(c \in C_1 \) we obtain:

\[
\sum \rho^2_{c_1}(c_2) \otimes c_3 = \sum c_1 \otimes c_2 \otimes (\deg c_1)^{-1} \otimes c_3 = \sum c_1 \otimes c_2 \otimes \deg c_2 \otimes c_3 = \sum c_1 \otimes c_2 \otimes c_3
\]

so the definition of \(f \) above is satisfactory. Moreover, \(f \) is a morphism of left and right \(C_1 \)-comodules as is easily verified. Note also that \(f \) is injective because it is the restriction of the comultiplication of \(C \) to \(C_1 \).

Next define \(g: C \times kG \to C \square_{C_1} C, c \times x \to \sum c_1 \otimes \pi_{x,-1}(c_2) \) for \(x \in G \) and homogeneous \(c \in C \), where \(\pi_x \) denotes the projection from \(C \) to \(C_x \). In order to have that \(g \) is well-defined it is necessary that: \(\sum (c_1_1 \otimes \pi_x(c_1_2) \otimes \pi_{x,-1}(c_2)) = \sum c_1 \otimes \pi_x(c_1_1) \otimes \pi_{x,-1}(c_2) \). However the left hand side is obtained from \(\sum c_1 \otimes c_2 \otimes c_3 \) by collecting the terms with \(\deg c_2 = 1 \) and \(\deg c_3 = x^{-1} \); on the other hand the right hand sum is an expression of the same thing. Moreover \(g \) is a morphism of right (and left) \(C \times kG \)-comodules; this follows from:

\[
\sum \deg c_2 = x^{-1}(c_1 \otimes c_2)
\]
Let \(C = \bigoplus_{g \in G} C_g \) be a graded coalgebra, then the following assertions are equivalent:

1. \(C \) is strongly \(G \)-graded
2. The context given in Theorem 2.4 is strict
3. \(C \) is faithfully coflat as a left \(C \times kG \)-comodule.
Graded coalgebras and Morita-Takeuchi contexts

Proof. 2. \Rightarrow 1. Take $u, v \in G$ and $c \in C_{uG}$ such that we have: $g(c \times v^{-1}) = \sum \pi_u(c_1) \otimes \pi_u(c_2) = 0$. Then $g(c \times v^{-1}) = \sum c_1 \otimes \pi_u(c_2) = 0$, hence $c \times v^{-1} = 0$ and $c = 0$.

1. \Rightarrow 2. Let $\alpha = \sum c_i \times x_i \in C \times kG$ with c_i homogeneous of degree σ_i. Suppose that for $i \neq j$ we have $(\sigma_i, x_i) \neq (\sigma_j, x_j)$. If $g(\alpha) = 0$ then $\sum \pi_{\sigma_i x_i}((c_i)_1) \otimes \pi_{\sigma_j x_j}((c_j)_1) = 0$, therefore $\sum_{i, j} \pi_{\sigma_i x_i}((c_i)_1) \otimes \pi_{\sigma_j x_j}((c_j)_1) = 0$. On the other hand: $\pi_{\sigma_i x_i}((c_i)_1) \otimes \pi_{\sigma_j x_j}((c_j)_1) \in C_{\sigma_i x_i} \otimes C_{\sigma_j x_j}$. Since $C \otimes C = \bigoplus_{u, v \in G} C_u \otimes C_v$ we obtain for fixed i, the relation: $\sum \pi_{\sigma_i x_i}((c_i)_1) \otimes \pi_{\sigma_j x_j}((c_j)_1) = 0$. The latter yields $\pi_{\sigma_i x_i}((c_i)_1) = 0$ and therefore $c_i = 0$ for every choice of i, i.e. $\alpha = 0$ follows.

2. \Leftarrow 3. Follows from Corollary 2.3. □

As a further application we reobtain Theorem 5.3 of [NT] which is a coalgebra version of a well-known result of E. Dade.

2.7. COROLLARY. The graded coalgebra C is strongly graded if and only if the induced functor $- \square c_i C : \mathcal{M} \rightarrow \text{gr} C$ is an equivalence of categories.

2.8. REMARK. The functor $(-)_c : \text{gr} C \rightarrow \mathcal{M}, M \rightarrow M_c$, is naturally isomorphic to the functor $- \square c_i G$ since they are both left adjoints of the induced functor $- \square c_i C$ (see [NT] Proposition 4.1, [T] Remark 2.4). Therefore the localizing category implicit in Corollary 2.5 is just $\text{Ker}(-)_c = \text{Ker}(- \square c_{\text{M}G} C)$.

As a final application of these techniques let us include a short proof of Corollary 6.4 in [NT].

2.9. COROLLARY. If C is a strongly graded coalgebra for the group G then G is a finite group.

Proof. If G is infinite we could select a non-zero homogeneous $c \in C$ and $x \in G$ such that $x \neq \deg(c_n^{-1})$ for all c_n. Then $g(c \times x) = 0$, but that would contradict injectivity of g. □

3. Duality.

For a quasi-finite right C-comodule M, the so-called coalgebra of “co-endomorphisms” of M has been defined in [T., 1.17] and it is denoted by $e_c(M)$. Unfortunately this coalgebra is not easy to use because of the rather complex comultiplication, so it will be useful to give a nicer description of $e_c(M)$ in some particular situation, e.g. in case M is a finitely cogenerated free-comodule (that is, $M \cong X \otimes C$, for some finite dimensional k-vectorspace X, with the obvious
comodule structure).

Let \(C \) be a coalgebra, \(X \) an \(n \)-dimensional \(k \)-space with basis \(\{ x_1, \ldots, x_n \} \). Consider the \(n \times n \) comatrix coalgebra \(M^e(n, k) \) which is a \(k \)-space with basis \(\{ x_{ij}, 1 \leq i, j \leq n \} \) and \(\Delta, \varepsilon \) given as follows: \(\Delta(x_{ij}) = \sum_p x_{ip} \otimes x_{pj}, \varepsilon(x_{ij}) = \delta_{ij} \).

The \(n \times n \) comatrix coalgebras over \(C \), denoted by \(M^e(n, C) \) is defined to be the tensor product of coalgebra \(C \otimes M^e(n, k) \). We endow \(C \otimes X \) with a left \(C \)-and a right \(M^e(n, C) \)-bicomodule structure as follows. The left \(C \)-comodule structure is given by the map: \(\rho^L: C \otimes X \rightarrow C \otimes C \otimes X, c \otimes x \mapsto \sum c_i \otimes x_{ip} \otimes c_s \otimes x_p \).

The \(M^e(n, C) \)-comodule structure is given by the map: \(\rho^R: C \otimes X \rightarrow C \otimes X \otimes M^e(n, C), c \otimes x_{ij} \mapsto \sum_p c_i \otimes x_{ip} \otimes c_s \otimes x_p \).

In a similar way \(C \otimes X \) is a left \(M^e(n, C) \)-right \(C \)-bicomodule via the structure maps:

\[
\rho^L: C \otimes X \rightarrow C \otimes C \otimes X, c \otimes x \mapsto \sum c_i \otimes x_{ip} \otimes c_s \otimes x_p \\
\rho^R: C \otimes X \rightarrow M^e(n, C) \otimes C \otimes X, c \otimes x_{ij} \mapsto \sum_p c_i \otimes x_{ip} \otimes c_s \otimes x_p.
\]

Define \(f: C \rightarrow (C \otimes X) \longrightarrow M^e(n, C) \otimes C \otimes X, c \mapsto \sum_{c_{ij}} (c_i \otimes x_{ij}) \otimes (c_s \otimes x_p), \) which is obviously injective and \(C \)-bicolinear. Define \(g: M^e(n, C) \rightarrow (C \otimes X) \longrightarrow M^e(n, C) \otimes C \otimes X, c \otimes x_{ij} \mapsto \sum (c_i \otimes x_{ij}) \otimes (c_s \otimes x_p) \) which is also injective and \(M^e(n, C) \)-bicolinear. One easily verifies the following relations:

\[
(I \square f) \rho^L(c \otimes x_i) = (g \square I) \rho^R(c \otimes x_i) = \sum_p c_i \otimes x_{ip} \otimes c_s \otimes x_p \\
(f \square I) \rho^R(c \otimes x_i) = (I \square g) \rho^L(c \otimes x_i) = \sum_p c_i \otimes x_{ip} \otimes c_s \otimes x_p \otimes c_i \otimes x_i
\]

According to results of \([T]\) we immediately obtain:

3.1. **Proposition.** \((C, M^e(n, C), C \otimes X, C \otimes X, f, g)\) is a strict Morita-Takeuchi context. In particular we have coalgebra isomorphisms:

\[
e_C(C \otimes X) \cong M^e(n, C) \cong e_C(C \otimes X)
\]

3.2. **Theorem.** Let \(G \) be a finite group acting on the coalgebra \(D \), then \(D \rtimes k G^* \) is a strongly graded coalgebra and there exist coalgebra isomorphisms:

\[
(D \rtimes k G^*) \rtimes k G \cong e_{D \rtimes k G^* } \cong (D \rtimes k G^*) \rtimes M^e(n, D)
\]

where \(n = |G| \).

Proof. The map \(\rho: D \otimes k G^* , d \rightarrow \sum_g (g \cdot d) \otimes p_g \), makes \(D \) into a \(k G^* \)-comodule. The comultiplication of \(D \rtimes k G^* \) is given by \(\Delta(d \rtimes p_x) = \sum_{y \in G} (d \rtimes p_y) \otimes (\nu_d \rtimes p_w) \). This establishes that \(D \rtimes k G^* \) is a graded coalgebra of type \(G \) with grading given by \((D \rtimes k G^*)_g = D \rtimes p_{g-1} \). The canonical morphism \(D \rtimes p_1 \rightarrow \)
Graded coalgebras and Morita-Takeuchi contexts

\[(D \times p_{e-1}) \otimes (D \times p_e), \quad d \times p_e \mapsto \sum (d_1 \times p_{e-1}) \otimes (\sigma^{-1} d_2 \times p_{e})\], is clearly injective. Thus\(D \times kG^*\) is a strongly graded coalgebra, and \((D \times kG^*)_1 = D \times p_1 = D\). Applying the Morita-Takeuchi context (constructed in Section 2) to \(D \times kG^*\), we have a strict context and so it provides us with coalgebra isomorphisms:

\[\left((D \times kG^*)_1 \otimes kG \cong (D \times kG^*)_1 \otimes (D \times kG^*)_1\right) \cong (D \times kG^*)_1\].

The left \((D \times p_1)\)-structure of \(D \times kG^*\) is given by \(d \times p_2 \mapsto \sum (d_1 \times p_1) \otimes (d_2 \times p_2)\), and this yields exactly the left \(D\)-comodule structure of \(D \otimes X\) where \(X = kG^*\) is a \(k\)-space of dimension \(n\). Proposition 3.1 yields the second isomorphism. \(\square\)

A similar result holds for graded coalgebras (or coactions).

3.3. Theorem. Let \(C\) be a coalgebra graded by the finite group \(G\). Then \(G\) acts on the coalgebra \(C \times kG\) and there are coalgebra isomorphisms:

\[(C \times kG) \times kG^* \cong (C \times kG) \cong \mathcal{M}(n, C)\]

Proof. An action of \(G\) on the coalgebra \(C \times kG\) is given by \(h \cdot (c \times g) = c \times gh^{-1}\), \(g, h \in G\) and \(c \in C\). Thus \(C \times kG\) becomes a \(kG^*\)-comodule coalgebra via the map:

\[c \times g \mapsto \sum y \cdot (c \times g) \otimes p_y = \sum (c \times g y^{-1}) \otimes p_y\]

The comultiplication of \((C \times kG) \times kG^*\) is given by

\[\Delta((c \times x) \times p_g) = \sum_{u,\bar{u} \in G} ((c_1 \times \deg x \cdot c_2) \times p_\bar{u}) \otimes ((c_3 \times x v^{-1}) \times p_u)\]

for any \(x, g \in G\) and homogeneous \(c \in C\). Now let \(\{e_x, y, x, y \in G\}\) be a basis for \(\mathcal{M}(n, k)\). Define a map \(F: (C \times kG) \times kG^* \to \mathcal{M}(n, C)\), \((c \times x) \times p_g \mapsto c \otimes e_{x, \beta}\) where \(\alpha = \deg c \cdot x, \beta = x g^{-1}\) for \(x, g \in G\) and homogeneous \(c \in C\). Let us check that \(F\) is a coalgebra morphism. Indeed,

\[\Delta(F((c \times x) \times p_g)) = \Delta(c \otimes e_{x, \beta}) = \sum (c_1 \otimes e_{x, x} \otimes c_2 \otimes e_{x, \beta})\]

and also

\[\Delta(F((c \times x) \times p_g)) = \sum (c \otimes e_{x, \deg c_2 x v^{-1}} \otimes (c_3 \otimes e_{\deg c_2 x v^{-1}, x v^{-1}, u v^{-1}, u v^{-1}}))\]

Since \(\{\deg c_2 x v^{-1}, v \in G\} = G\), both sums are equal. Now, consider \((c \times x) \times p_g \in (C \times kG) \times kG^*\) for \(x, g \in G\) and \(c\) homogeneous. Write \(\varepsilon\) for the co-unit of \((C \times kG) \times kG^*\) and \(\varepsilon'\) for the co-unit of \(\mathcal{M}(n, C)\). Then we have:
Therefore \(F \) is a coalgebra map as claimed. Now define \(H: \mathcal{M}^e(n, C) \to (C \times kG) \times kG^{*} \) by putting \(H(c(g)cu, v) = (c \times (\deg c)^{-1}u) \times p_{v^{-1}(\deg c)-1}u \), for \(u, v \in G \) and homogeneous \(c \in C \). Again \(H \) is a coalgebra morphism because:

\[
\Delta(H(c\otimes u, v)) = \sum_{z = v^{-1}(\deg c)-1}u ((c_1 \times \deg c)(\deg c)^{-1}u) \times p_z \otimes ((c_2 \times (\deg c)^{-1}u \times p_z)
\]

For fixed \(c_1 \) and \(u \) we have that \(\{h^{-1}(\deg c_1)^{-1}u, h \in G\} = G \) and if we write \(t = h^{-1}(\deg c_1)^{-1}u, z = v^{-1}(\deg c_3)^{-1}h \), then the above sums are clearly equal as desired. The fact that \(H \) preserves the co-unit too is obvious. Finally it is clear that \(F \cdot H \) and \(H \cdot F \) are the identities so that we do arrive at a coalgebra isomorphism. The isomorphism involving \(e_{c_1}(C \times kG) \) is obvious because of Proposition 3.1 (the left \(C \)-comodule structure of \(C \times kG \) is given by \(c \times g \mapsto \sum c_1 \otimes (c_2 \times g) \)).

3.4. COROLLARY. There exists a strict Morita-Tekeuchi context connecting \(C \) and \((C \times kG) \times kG^{*}\).

PROOF. \(C \times kG \) is a left \(C \)-comodule that is a quasi-finite injective cogenerator (in view of Proposition 3.1 and [T]). Moreover \(C \times kG \) is a right \((C \times kG) \times kG^{*}\)-comodule via \(c \times g \mapsto \sum (c_1 \times \deg c_2 g u) \otimes (c_3 \times g u) \times p_{u^{-1}} \), for \(g \in G \) and homogeneous \(c \in C \). Hence \(C \times kG \) is a \((C \times kG) \times kG^{*}\)-bicomodule. The assertion now follows from [T, Theorem 3.5 iv].

3.5. REMARKS. The Morita-Tekeuchi context of the above corollary may be given in detail. This may have an independent interest because it provides another proof of Theorem 3.3 and provides a hint for establishing a more general duality result we do not dwell upon here. The second bicomodule is also \(C \times kG \) with right \(C \)-comodule structure given by the map: \(c \times g \mapsto \sum (c_1 \times \deg c_2 g) \otimes c_3 \) (for homogeneous \(c \)) and left \((C \times kG) \times kG^{*}\)-comodule struc-
Graded coalgebras and Morita-Takeuchi contexts

The structure given by:

\[c \times g \mapsto \sum_h (c_1 \times \deg c_2 g) \otimes p_h \otimes (c_3 \times g h) \]

for homogeneous \(c \), we have \(f : C \to (C \times kG)^{\text{op}} \), \(g : (C \times kG)^{\text{op}} \to C \times kG \), \(f(c) = \sum_h (c_1 \times \deg c_2 h) \otimes (c_3 \times h_2) \) for homogeneous \(c \in C \), \(g((c \times g) \times p_h) = \sum h (c_1 \times \deg c_2 g) \otimes (c_3 \times g h) \), for homogeneous \(c \in C \). It is also easily seen that \(f \) and \(g \) are injective maps.

Acknowledgement. We thank Akira Masuoka for bringing paper [T] to our attention.

References

S. Dăscălescu, C. Năstăsescu, S. Raianu
Facultatea de Matematică
Str. Academiei 14
RO-70109, Bucharest, 1
Romania

F. Van Oystaeyen
Dept. of Mathematics
UIA, Universiteitsplein 1
B-2610 Antwerpen, Wilrijk
Belgium

Added in proof. A general duality result for crossed coproducts was proved by S. Dăscălescu, S. Raianu, Y. Zhang in "Finite Hopf-Galois coextensions, crossed coproducts and duality", to appear in J. Algebra.