EFFICIENT HYBRID FuzzING FOR
DETECTING VULNERABILITIES AND
AcHIEVING HIGH COVERAGE IN
SOFTWARE

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF

DocToOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE AND ENGINEERING

2023

By
KALED M ALSHMRANY

DePARTMENT OF COMPUTER SCIENCE

Contents

List of Figures 4
List of Tables 7
Abbreviations 8
Abstract 9
Declaration 10
Copyright 11
List of Publications 12
Acknowledgements 13
1 Introduction 15
1.1 Problem Statement, 18

1.2 ScopeofthisThesis 19

1.3 Contributions L 22

1.4 Overviewof thisthesis, 23

2 Background 25
2.1 Software Testing 25

2.2 Testing Techniques 28

2.3 Bounded Model Checking 28

24 Fuzzing e 31
24.1 FuzzingProcess 31

24.1.1 Fuzzing Algorithm: 32

242 Typesof Fuzzers 33

2.4.2.1 Mutation-based and generation-based 33

2

2.4.2.2 White-box, black-box and grey-box 34

2.4.2.3 Feedback and no-feedback fuzzers 35

243 CodeCoverage o i it 36

2.4.4 Types of Vulnerabilities 38

2.5 RelatedWork 39
25.1 Fuzzers 39

2.5.2 BMC and Symbolic execution 41

253 Combination 42

2.5.4 Existing Solutions & their Limitations 43

2.6 Overview of hybrid fuzzing 44
277 Summary e e e e e 50

FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vulner-

abilities in C Programs 51
3.0 Chapter OVerview v v v v et et e e e 51
3.0.1 ThesisContext 51
3.0.2 Author’s Contributions, 52
3.03 Abstract 52
3.1 Introduction L 53
3.2 FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vul-
nerabilities in C Programs 55
32.1 AnalyzeCCode 57
322 ImjectLabels 59
3.2.3 Produce Counterexamples 59
324 Create Graphml 60
3.2.5 Producetestcases 60
32.6 Selective Fuzzer 60
327 TestValidator 61
33 Evaluation 62
3.3.1 Description of Benchmarks and Setup 62
332 Objectives v v v e e e 62
333 Results 63
3.4 Tool Setup and Configuration 69
3.5 Software Project. L 69
3.6 Conclusions and Future work 69

FuSeBMC v4: Improving code coverage with smart seeds via fuzzing and

static analysis 71
4.0 Chapter Overview o e 71
4.0.1 ThesisContext 71

4.0.2 Author’s Contributionso

4.0.3 Abstract e e

4.1 Introduction e e
4.2 FuSeBMC v4 Framework
421 OVerview e e e e e e

4.2.2 Code Instrumentation & Static Analysis
422.1 Code Instrumentation

4222 StaticAnalysis oL

4223 SharedMemory

423 SeedGeneration

424 TestGenerationl
4241 MainFuzzer,

4242 Bounded Model Checker

4243 Tracer

4244 Selective Fuzzer

43 Evaluation e
4.3.1 Description of Benchmarks and Setup

432 Objectives.

433 Results
433.1 FuSeBMC v4 vs FuSeBMCVv3

4.3.3.2 FuSeBMC v4 vs state-of-the-art

44 Conclusion e e

Conclusion & Future Work Directions

5.1 Future Work Directions

5.2 ConcludingRemarks L oL

Extensions

Al Appendix
A1l Artifact
A.1.2 Tool Availability
A.13 ToolSetup

FuSeBMC in Open-Source Software

B.1 Appendix
B.1.1 Open-Source Software
B.1.2 Experiments of FuSeBMC

Word Count: 33,914

95
96
97

118
118
118
118
118

List of Figures

1.1
1.2

2.1

22

2.3

2.4

2.5

2.6
2.7

2.8

3.1
3.2
33
34
3.5
3.6

Nlustrative example Lo o

BMC unwinding of the loop at line 9 of figure 1.1

A testing life cycle model. The initial three steps are the development
phase, the fourth step is the testing phase, and the final three steps are the
error-fixing phase [63]. Lo
An illustration of a transition system when the program is modelled in
BMC, where M represents a transition system and ¢ represents a property.
The general process of fuzzing. It takes the target program and seeds as
inputs and then executes the fuzz processes, outputting a report when the
target program crashes. L.
An illustrative code fragment containing an (Add) function that receives
tWO INteger arguments. it e e
An example code fragment containing (add and foo) functions that receive
an integer argument. e e
Limitations of Existing Related Solutions.
Code coverage comparison for each software testing technique. Circles
represent the paths in the target program and their depth, while the colours
indicate the ability of each technology to cover the paths.
Techniques comparisons in code coverage and execution process. The z-
axis shows the capacity of coverage achieved, while the y-axis shows the

effectiveness.

FuSeBMC: An Energy-Efficient Test Generator Framework.
Anexample ofametadata.
Anexample of testcasefile.,
Original C code vs code instrumented.
Produce Counterexamples.

An example of targetedges

27

29

33

44

47

3.7
3.8
3.9

4.1

4.2

The Selective Fuzzer
Code fragment that contains a large array.

Quantile functions for category Overall. [183]

The Framework of FuSeBMC v4. This figure illustrates the main com-
ponents of FuSeBMC. Our tool starts by instrumenting and analyzing the
source code, then performs coverage analysis in two stages: seed genera-
tion and test generation.l
An example of a) a C program, b) the corresponding instrumented code,

and c) the resulting goals tree, their depth in the code, and resulting rank

List of Tables

2.1
22
2.3

3.1
3.2
33
34

4.1

4.2

43

4.4

4.5

4.6

4.7

B.1

Common Black-box, Grey-box, and White-box Fuzzers 34
A history of research on hybrid fuzzers. 46
Comparing the performance of techniques 49
Cover-Error L 64
Cover-Brancheso oL 66
The Consumption of CPU and Memory [183]. 68
Overall 68

Comparison of the average coverage (per subcategory and the category
overall) achieved by FuSeBMC v4 and FuSeBMC v3 in the Cover-Branches

category in TestComp-2022 and TestComp-2021, respectively. 87
Comparison of code coverage achieved by FuSeBMC v4 and FuSeBMC
v3 in a subset of tasks from the Combinations subcategory. 88

Comparison of the percentages of the successfully detected errors (per
category and the category overall) by FuSeBMC v4 and FuSeBMC v3
in the Error Coverage category in TestComp-2022 and TestComp-2021,
respectively. L. L 89
Comparison of FuSeBMC v4 performance with smart seeds and with stan-
dard seeds, where TRUE shows that the bug has been detected success-
fully, UNKNOWN means otherwise. 89
Test-Comp 2022 Overall Results. The table illustrates the scores obtained

by all state-of-art tools overall, where we identify the best tool in bold. . . 90
Cover-Branches category results at Test-COMP 2022. The best score for
each subcategory is highlightedinbold. 91
Cover-Error category results at Test-Comp 2022. The best score for each
subcategory is highlightedinbold. 93
FuSeBMC’s results on open-source software 121

Abbreviations

SMB Server Message Block

BMC Bounded Model Checking

ESBMC Efficient SMT-based Bounded Model Checker
AFL American Fuzzy Lop

FA Floating Point

SMT Satisfiability Modulo Theories

IEEE Institute of Electronics and Electrical Engineers
SAT Satisfiability

TS Transition System

VC Verification Condition

PCSG Probabilistic Context-Sensitive Grammar
CMU Carnegie Mellon University

DoS Denial of Service Attack

CDP Cisco Discovery Protocol

KJ Kilo Joule

Cp Core Point

GA Genetic Algorithms

SAGE Scalable Automated Guided Execution
PUT Program Under Test

SSA Static Single Assignment

AST Abstract Syntax Tree

PCSG Probabilistic Context Sensitive Grammar
SGF Smart Grey-box Fuzzing

CFG Control Flow Graph

CLP Constraint Logic Programming

IL Intermediate Language

MEIC Maximum Expectation of Instruction Count

Abstract

Developing secure and bug-free software is an extraordinarily challenging task. Due
to the devastating effects vulnerabilities may have on financial, security, or an individual’s
well-being. Detecting such issues is difficult because (i) many bugs manifest themselves
only after a lengthy operation, and (i1) the search space to be explored becomes complex
and extremely extensive. In this thesis, we describe and evaluate approaches for detect-
ing vulnerabilities and achieving high coverage in C software using the combination of
bounded model checking (BMC) and fuzzing. We present three significant novel con-
tributions. First, we develop a method that generates initial inputs (seeds) that bypass
sophisticated guards to enhance the fuzzer’s exploration more profound into the target
program. Furthermore, this method decreases the burden of the fuzzer in mutation pro-
cesses through static analysis. As part of this contribution, we propose and design a tracer
subsystem, which coordinates and analyses the processes and the connection between the
employed techniques. Second, we present our new fuzzer, which has the benefit of per-
forming a lightweight static program analysis to identify input verification. This improved
fuzzer has the benefit of performing a lightweight static program analysis to identify input
verification and to ensure that only seeds satisfying the conditions are chosen. This pro-
cedure reduces our method’s dependence on a computationally expensive bounded model
checker to discover high-quality seeds. Also, the improved fuzzer analyses the target
program and identifies potential infinite loops using heuristics. The loops are then con-
strained to speed up the fuzzing process, depending on an approximate estimate of the
number of program paths. In addition, we describe our new approach: a selective fuzzer
that learns from test cases produced by BMC and a modified fuzzer to generate new test
cases that successfully detect software vulnerabilities. Finally, we develop and evaluate
FuSeBMC, an automated testing tool that exploits the combination of BMC and fuzzing
to test software and increase code coverage. FuSeBMC has demonstrated advantages in
resource management and consequently reduces the consumption of CPU and memory by
exchanging essential information between engines in a manner that maximises the bene-
fit of their cooperation. Additionally, it decreases the generation processes for execution
paths that BMC may not reach or cause path explosion problems. As a result, FuSeBMC
can mitigate the negative impact, generate effective seeds, and avoid the path explosion is-
sue. FuSeBMC has been evaluated exhaustively and competitively by participating in the
most prominent and competitive international software testing competition for two years,
2021 and 2022, winning six international prizes. FuSeBMC is currently the leading state-
of-the-art software testing tool for C programs. We further hypothesise that FuSeBMC is
currently the most robust automated testing tool in the literature.

Declaration

No portion of the work referred to in this thesis has been submitted in support of an
application for another degree or qualification of this or any other university or other

institute of learning.

10

Copyright

1 The author of this thesis (including any appendices and/or schedules to this thesis)
owns certain copyright or related rights in it (the “Copyright”) and s/he has given
The University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate, in
accordance with licensing agreements which the University has from time to time.
This page must form part of any such copies made. You are required to submit your
thesis electronically

iii The ownership of certain Copyright, patents, designs, trademarks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the thesis, for example graphs and tables (‘“Reproduction”), which may
be described in this thesis, may not be owned by the author and may be owned by
third parties. Such Intellectual Property and Reproductions cannot and must not be
made available for use without the prior written permission of the owner(s) of the
relevant Intellectual Property and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and com-
mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-
productions described in it may take place is available in the University IP Policy
(seehttp://documents.manchester.ac.uk/Doculnfo.aspx?DocID=
24420), in any relevant Thesis restriction declarations deposited in the Univer-
sity Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s pol-

icy on Presentation of Theses.

11

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

List of Publications

Published and accepted papers:

Kaled M Alshmrany, Rafael S Menezes, Mikhail R Gadelha, and Lucas C Cordeiro.
“FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs”.
In: The 24th International Conference on Fundamental Approaches to Software Engi-
neering (FASE) 12649 (2020). https://doi.org/10.1007/978-3-030-
71500-7_19, pp. 363-367.

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C Cordeiro.
“FuSeBMC: An energy-efficient test generator for finding security vulnerabilities in ¢
programs”. In: The International Conference on Tests and Proofs (TAP). https: //
doi.org/10.1007/978-3-030-79379-1_6. Springer. 2021, pp. 85-105.

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C Cordeiro.
“FuSeBMC v4: Smart Seed Generation for Hybrid Fuzzing”. In: The 25th International
Conference on Fundamental Approaches to Software Engineering (FASE) 13241 (2022).
https://doi.org/10.1007/978-3-030-99429-7_19, pp. 336-340.

Kaled Alshmrany, Ahmed Bhayat, Franz Braufle, Lucas Cordeiro, Konstantin Korovin,
Tom Melham, Mustafa A. Mustafa, Pierre Olivier, Giles Reger, and Fedor Shmarov. “Po-
sition Paper: Towards a Hybrid Approach to Protect Against Memory Safety Vulnerabil-
ities”. In: IEEE Secure Development Conference. Aug. 2022.

Submitted / In progress / co-authored papers:

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, Fedor Shmarov, Fatimah
Aljaafari, and Lucas C Cordeiro. “FuSeBMC v4: Improving code coverage with smart

seeds via fuzzing and static analysis”. In: The Formal Aspects of Computing Journal
(FAC) (2022).

Mohannad Aldughaim, Kaled Alshmrany, Mohamed Mustafa, Lucas Cordeiro, and Alexan-
dru Stancu. “Bounded Model Checking of Software Using Interval Methods via Contrac-
tors”. In: arXiv preprint arXiv:2012.11245, Submitted in International Conference on
Software Engineering (ICSE 2023) (2022).

12

https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-99429-7_19

Acknowledgements

First and foremost, I thank the Almighty Allah for giving me the strength to do my
PhD. I am grateful for all your blessings.

I would not be where I am now without the folks that stood by my side along the
journey. I want to express my sincere gratitude to my supervisor Dr. Lucas C. Cordeiro for
his guidance and assistance throughout my PhD journey. Dr. Lucas is a great supervisor
who inspired me to be a scientist and do the right thing, even when the road got tough.
I faced numerous challenges during my PhD, but he was always encouraging and helped
me see things from a different, more optimistic viewpoint; I’'ll miss his phrase "good
student who follows what the supervisor says." Thank you for supporting me, for the long
discussions and for lifting me when I was feeling upset. Your patience, insights, and good
humour were invaluable and very much appreciated.

Thanks to the whole ESBMC team, including Lucas Cordeiro, Mikhail Gadelha, and
Rafael Menezes. I learned something from all of them. Likewise, I thank the entire
SCorCH team, especially Giles Reger, Fedor Shmarov, and Ahmed Bhayat. In particular,
I benefited from conversations and collaboration with the hybrid approach.

The research community at the university of Manchester helped make the PhD an
enjoyable experience. Thanks to my fellow PhD students, in particular Ahmed Bhayat,
Mohannad Aldughaim, and Moteb Alghamdi, whom I learned from and shared my ideas
during my PhD journey.

Thanks to my dear family, who has always been a supporter. Special thanks to my
mother for all of her moral support, patience, and concern. Thank you for being there
when I most needed you. Finally, big thanks to my great father for supporting me through-
out my entire education. Thank you for making my life easy and assisting me in achieving

my dream.

13

To my dearest mother and father . . .

14

Chapter

Introduction

When you change the way you look at
things, the things you look at change.

Max Planck

Cybersecurity is a global phenomenon that presents researchers with a significant
technical challenge. Cybersecurity challenges come in various forms, including ran-
somware, phishing, and malware attacks [7]. However, cybersecurity also requires the
involvement of different techniques to address these challenges [8, 9, 10, 11]. While cy-
bersecurity is one of the most serious challenges nowadays, access to information and
knowledge has never been as easy as today. In this regard, technology plays a significant
role.

Errors in computer systems can have a significant negative impact and are dangerous
since they potentially cause monetary and human loss. For example, the crash of the
Bloomberg terminal in 2015 caused substantial financial losses. It forced the government
to postpone the sale of debts estimated at three billion pounds [12]. In addition, a flaw in
the win32k system enabled Windows 10 users to escape from security sandboxes due to a
security vulnerability [13]. Also, in 2015, a software bug rendered an F-35 fighter aircraft
incapable of detecting targets accurately [14]. In terms of human lives, the China Airlines
Airbus A300 crash on April 26, 1994, which was caused by a software error, claimed 264
lives [15].

Vulnerabilities are flaws or weaknesses in the design of a system that allow an attacker
to exploit and violate the system’s security policy. They are considered a significant
cause of a wave of threats to cybersecurity [16, 17]. A vulnerability-based cyber attack
can pose significant damage. For instance, the WannaCry ransomware attack in 2017
exploited a vulnerability in Server Message Block (SMB) protocol, which resulted in
millions of pounds in losses and gross reputation damage to the UK medical sector [18].
It has infected over 200, 000 computers in 150 countries [19]. In addition, it has caused
severe crisis management issues and enormous financial losses for numerous companies

and governments. WannaCry ransomware attack is notorious for blocking user access to

15

Efficient hybrid fuzzing for detecting vulnerabilities in software

files and systems by encrypting them until the victim pays a ransom for the decryption
key [20]. Even though it has been nearly four years since the first WannaCry ransomware
attack, WannaCry attacks have recently increased. Compared to January 2021, Check

Point indicates a 53% increase in WannaCry ransomware attacks in March 2021.

Software testing is one of the most significant validation methods [21]. Research has
shown that software testing may detect up to 90% of the errors detected during develop-
ment [22, 23]. Software testing is a method of executing a program to locate software bugs
and vulnerabilities, thus guaranteeing software product quality. The concept of software
testing is detecting problems by running exhaustive tests known as test suites. However,
establishing a test is difficult since it requires knowledge of the system’s behaviour, how
it might be violated, and the capacity to reach and cover deep system paths. In addi-
tion, software testing must be updated periodically during the system development phase
to ensure its efficacy. Moreover, these tests may result in a significant drain on effort,

negatively reflecting on the system development.

In recent years, research has been devoted to reducing the impact of development
expenses by relying on automated techniques. Fuzzing is one of the most common tech-
niques [24]. In general, the fuzzing technique works to automatically provide random
or invalid data to test the system for various exceptions, such as system crashes, code
failures, and monitoring behaviour, or to provide coverage statistics. It yielded interesting
results even though it runs randomly during the detection process [25], which may require
considerable effort to identify unacceptable behaviour. Symbolic execution, on the other
hand, is another technique that analyzes the source code, identifies the inputs that execute
each part of the program, and solves its constraints by assuming symbolic values rather
than constant values [26]. However, symbolic execution faces challenges in resolving
constraints containing non-linear arithmetic combinations and path explosion with loops
that may result in infinite operations [27].

Moreover, static analysis techniques have been investigated, where they concentrate
their efforts solely on the source code and disregard the actual program execution [28].
Static analysis techniques utilize an abstract domain to track the current program state.
For example, it can determine the upper and lower bounds of a program variable rather
than all the possible values it can assume throughout the program execution. Also, path,
flow, and context-sensitive can be added to static analysis by differentiating between path-
ways, statement execution order, and method call [29]. Static analysis is often used to
detect common errors such as overflow, array out-of-bound, memory leaks, and invalid
arithmetic operations. Although static analysis techniques are the most widely used tech-
nique for program analysis, they may fail to demonstrate some safety properties and have
high false-positive rates, resulting in inaccurate reporting [30].

Formal verification methods also have a role in this field, which can be split into

deductive verification and model checking [31]. Deductive verification utilizes computer-

16 Chapter 1 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

assisted theorem provers to prove the correctness of a system [32]. It can handle the data-
intensive elements of the design. Although it is time-consuming, it is scalable to large
systems [33]. Model checking is a computer-aided formal method for verifying the correct
functioning of a system design model [21, 34]. It examines all potential model behaviours.
Also, model checking can address control-flow challenges, including concurrency and
deadlock [31]. However, model checking faces difficulties when exploring the entire state
space. It is highly resource-hungry, which might lead to the consumption of memory or

time before providing an answer.

With software testing technologies, organizations seek testing completeness and qual-
ity metrics to establish test completion criteria. One such metric is code coverage [35].
Code coverage is a crucial component because the ability to cover all paths in a program
increases the rate of error detection or, at the very least, ensures that an execution path in
the program does not contain any errors [36]. If coverage is less than 100%, further tests
can be created to test the elements that were missed, hence increasing coverage. Test cov-
erage can assist in assessing the quality of testing and directing test generators to produce

tests that cover previously untested areas [37].

This thesis uses two techniques above - Fuzzing and Bounded Model Checking - to
verify real-world C programs and increase code coverage. These techniques were selected
due to their impact on the field and simplicity in understanding and development. Also,
the main motivation behind combining such complementary techniques is to leverage
the strengths of concolic execution and bounded model checking in generating inputs
satisfying complex branch conditions, which are challenging to derive for mutation-based
fuzzing. At the same time, fuzzing can quickly explore deep paths with simple checks
that can offset the large resources consumption of concolic execution and bounded model
checking. These techniques are summarized below and discussed in further detail in
Sections 2.3, and 2.4. We also experimentally evaluated their performance against the

proposed hybrid fuzzer algorithm in Chapter 3 and Chapter 4.

Bounded Model Checking (BMC) is a method of unwinding a program and limiting
bound until it detects a property violation. It relies on the symbolic implementation of
unrolling the program’s loops [38]. BMC has been applied in many single- and multi-
threaded programs to detect subtle errors [39, 40] and demonstrate its effectiveness [41].
Although BMC can detect shallow bugs efficiently, the BMC method may not detect
profound errors efficiently unless the bound is large enough to reach all cases in the state
space. However, widening the limit may cause the BMC method to become slow and
resource-intensive for error detection and code coverage [42]. Therefore, we employ
BMC as a component in our automated approach to detect shallow bugs and help the

fuzzer to explore profound bugs in the program. Furthermore, we evaluate BMC when

Chapter 1 Kaled Alshmrany 17

Efficient hybrid fuzzing for detecting vulnerabilities in software

verifying and obtaining code coverage on general and various criteria that include much
real-world software.

Fuzzing has been relied on in many works and has demonstrated extraordinary effi-
cacy, making it the standard in commercial software development processes [43]. Never-
theless, despite its advancements, fuzzing still faces challenges that it suffers. One of them
is its inability to explore deep paths. Also, it causes an overhead if the initial seed is inef-
ficient because its mutation is dependent on the seed. Moreover, fuzzing may encounter
difficulties while exploring program execution paths with complex programming protec-
tions. Therefore, we considered these challenges in our automated approach to reduce
the negative impact and benefit from our analysis in alleviating overhead and providing
effective seeds.

1.1 | Problem Statement

In order to effectively combine the fuzzing and BMC to generate test cases that verify C
programs and achieve high coverage, we first need to focus on and understand the chal-
lenges and shortcomings. Therefore, this PhD thesis presents the following challenges
and shortcomings of fuzzing and BMC: First, a fuzzer finds it hard to explore program
sections occurring behind complex guards [44]. Second, the instrumentation of the target
program brings a significant overhead to the program execution, affecting the fuzzer’s
execution speed. Third, the straightforward method by which a fuzzer generates seeds
might result in the fuzzer being stuck in one portion of the code and failing to explore
other branches. Four, BMC explores a potentially exponential number of paths in the
source code which may lead to path explosion. Finally, BMC takes enormous time when
there are many loops, making it slow and resource-intensive [42].

To illustrate the main shortcomings of both fuzzing and BMC, we introduce a short C
program in Figure 1.1. The presented program accepts coefficients of a quadratic poly-
nomial and an integer candidate solution in the range [1,100] as input from the user.
It terminates successfully if the provided candidate solves the equation. However, the
program returns an error if the given equation does not have real solutions or the input
candidate value is outside the [1,100] range.

The program takes four integer inputs (lines 5, 6, 7, and 10): a, b, ¢, and x. On line-8, it
checks if the condition (b*b >= 4xax*c) is true. After that, there is a loop that iterates an
unknown number of times with an if-condition inside (line-11). Lastly, an else-condition
on line-17 can be reached after the loop terminates.

Let us suppose we need to generate test cases to cover all the branches in this pro-
gram. Fuzzing struggles to generate the inputs that satisfy the if-condition because of the
complex mathematical guards on line-8. Such guards pose a challenge to a fuzzer [44]

as it relies on mutating the given seed randomly and is therefore unlikely to satisfy the

18 Chapter 1 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

| 1 #include <assert.h>

\ % void reach_error () { assert (0); }

} 4 int main() {

| S int a = input();

| 6 1int b = input();

| 7 dint c = input();

| 8 if(b*b == 4xaxc) { // fuzzer struggles

| 9 while (1) { // unknown # iterations
| 10 int x = input();

|11 if(x <= 0 || x > 100) // easy to reach by both
|12 reach_error () ;

| 13 else

| 14 return 0;

\%g } // BMC struggles

\ }

|17 else

|18 reach_error () ;

|19

|20 return O;

|21 }

Figure 1.1: Illustrative example

guard condition. At the same time, a fuzzer does not have to deal with loop termination
on line-9 as it only needs to generate random test inputs, in contrast to BMC, which needs
to unwind each loop a sufficient number of times. This brings challenges to BMC. In
order to illustrate these challenges, we expanded the execution of line-9 in figure 1.2. For
example, the if-statements on lines 1 and 8 represent the first and second unwindings of
the loop. Observe that there are three paths between lines 1 and 14. In detail, three paths
through the if-statement on line-1, followed by three paths through the if-statement on
line-8. Therefore, k unwindings of the loop will result in k if-else statements paths. This
indicates that there will be 3* possible paths, resulting in an exponential explosion that
makes the model checking process intractable [45].

This shows that there could be parts of a program that are hard for fuzzing and
parts that are hard for BMC, inhibiting both techniques from producing complete test
inputs. Therefore, the problem statement focuses on overcoming challenges, integrating
the strengths of fuzzing and BMC technologies, and mitigating their negative effects to
generate test cases that verify C programs, achieve high coverage in a sufficient time, and

reduce energy consumption.

1.2 | Scope of this Thesis

This thesis focuses on automated software testing and code coverage for programs written
in the C programming language. In particular, this thesis will also concentrate on the
methodologies and tools that enhance the efficiency of the used techniques while reducing
used hardware resource consumption further.

Despite the prevalence of high-level programming languages, we chose to focus on

the C programming language because it is widely used [46], and most system software

Chapter 1 Kaled Alshmrany 19

Efficient hybrid fuzzing for detecting vulnerabilities in software

T

| 1 1£(*) | // unwinding# 1 for the loop

| 2 int x = input();

| 3 if(x <=0 || x > 100)

| 4 reach_error () ;

| 5 else

\ ? return 0;

\ }

| 8 1f (%) | // unwinding# 2 for the loop}

| 9 int x = input();

|10 if(x <=0 || x > 100)

|11 reach_error () ;

|12 else

|13 return O;

14)

| 15 // unwinding# ?? for the loop
|16 // unwinding# until unknown !!!
\1% // 2” #unwinding paths... explosion!!
| }

Figure 1.2: BMC unwinding of the loop at line 9 of figure 1.1

like the Unix computer operating system uses it [46]. Moreover, there are only a few
computer architectures for which no C compiler exists [47]. Also, it is used to program
complex and essential data because of its adaptability and efficacy [48].

The C programming language is generally involved in many domains, such as (Oper-
ating Systems, the Development of New Languages, and Embedded Systems). For exam-
ple, C is the programming language used to create the Unix-Kernel, Microsoft Windows
utilities, operating system programs, and a significant portion of the Android operating
system.

The growth of the C programming language has an impact on programming languages
as well. Examples include C++, C#, Python, Java, JavaScript, PHP, and the C shell of the
Unix operating system, among others. Every language makes use of C to varying degrees.
For example, language syntax and control structures like C++, PHP, and Perl are based
on C, whereas Python leverages C to provide standard libraries.

On the other hand, C is the language of preference for creating embedded systems.
This language’s popularity can be attributed to its availability of machine-level hardware
Interfaces, C compilers, and deterministic resource utilization.

Therefore, providing methods and techniques for testing any C software and present-
ing statistics analysis of code coverage will significantly benefit correcting the systems.

Automated testing is applied directly to the program’s source code, thus reducing po-
tential impediments to its implementation [28]. Additionally, it often saves time because
the tester may execute a significant number of tests in a short period. Also, automation
testing saves money and effort, enhances the quality of testing tasks [49], and contributes

to software quality [50].

In the context of software testing and achieving high code coverage for C programs,

we define our research question in three parts:

20 Chapter 1 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

* How can fuzzing and BMC techniques be enhanced and combined to allow the

validation of real-world programs?

The Clang front-end offers many advantages for analyzing and validating programs. Fur-
thermore, it uses much less memory than other compilers, allowing taking more code
into memory at a time [51]. Clang, a state-of-the-art compiler, has been widely used in
industry because it is fast, light, and reduces interface issues. In addition, it provides
clear and concise diagnostics [51]. Finally, an incremental bounded model checking is an
adaptive and evolving method for other methodologies by taking advantage of the outputs
provided by this method to support other technologies, such as selective fuzzer in our
approach. This is the focus of Chapter 3.

This thesis introduced a novel approach implemented in a new tool named FuSeBMC
to automate test generation that combines Fuzzing and BMC technologies to detect se-
curity vulnerabilities in C programs. The work conducted during this thesis successfully
explored and analysed the targeted C program through the Clang compiler [51] to inject
labels incrementally, which will be used later to guide the Fuzzing and BMC techniques
to produce test cases. In addition, a new fuzzing algorithm was introduced as a part of
this research, which learns from the test cases produced by the implemented techniques
to produce new test cases to explore the remaining uncovered program paths. Lastly, a
novel algorithm was presented for managing the time allocated to fuzzing and BMC to

improve FuSeBMC’s energy consumption.

* How can resource consumption be reduced during testing while achieving high ac-

curacy results and better code coverage on the targeted software?

Software Testing is time-consuming and resource-hungry [52]. It accounts for approxi-
mately 40% to 50% of total resources and 30% of total effort [53, 54]. Since resource
consumption accounts for a significant portion of test generation cost, it may also be
important to consider energy consumption efficiency. In addition, consider performance
and its associated cost. Performance is problematic for validators because of the state
explosion problem. The state explosion problem can consume a great deal of time and
resources and detract from their primary responsibility [55].

We present our green testing approach that uses low energy consumption and main-
tains high performance and code coverage by linking BMC with fuzzing to work collab-
oratively and monitor the processes in each technique. This approach is designed and

evaluated in Chapter 3.

* How can the quality of test cases be enhanced by employing additional analysis to
eliminate technique overheads and reduce the time necessary to achieve high code

coverage?

Chapter 1 Kaled Alshmrany 21

Efficient hybrid fuzzing for detecting vulnerabilities in software

Testing tools have worked on making many methods to improve testing quality and cov-
erage by producing a high-quality test suite and achieving coverage of most execution
paths in the program. Nonetheless, the production of this test suite is an expensive bur-
den, which causes industry tools to produce unsound and incomplete testing tools because
their requirements are low, and they give results quickly. However, these results are inac-
curacy and could not achieve a high percentage of code coverage.

We present our FuSeBMC v4 approach, which relies on smart seeds, static analysis,
and subsystem tracer to generate high-quality test suites with accurate results and high
coverage while simultaneously reducing the costs associated with the fuzzing and BMC

techniques. Our new approach is described in Chapter 4.

1.3 | Contributions

The main contribution of this thesis is the development, implementation, and evaluation
of a hybrid fuzzer to automatically verify C programs and achieve high coverage. In this
respect, this thesis provides three significant novel contributions.

First, we introduce an automated approach based on BMC technology for seed gener-
ation that bypasses complex guards and thus helps fuzzers explore deep paths within the
targeted program. Also, it simplifies the target program through static analysis to reduce
the overhead of fuzzers when managing the mutation process to speed up the fuzzing pro-
cess. In addition, it presents a new method for producing seeds that makes the fuzzers
process effective and fast due to its reliance on the subsystem that coordinates the process
and static analysis. Finally, since loop unwinding causes an exponential path burst, we
limit the decoding depth of each loop to a small number, depending on a rough estimate
of the number of program paths.

Second, we describe the new fuzzing technique based on the popular American Fuzzy
Lop tool [56]. The newly presented approach can perform a lightweight static program
analysis to recognize input verification. It analyzes the code for conditions on the input
variables and ensures that seeds are only selected if they pass these conditions. This
reduces the dependence on the computationally expensive bounded model checker for
finding quality seeds. Another interesting feature of the modified fuzzer is that it analyses
the PUT and identifies potentially infinite loops heuristically. It then bounds these loops
in an attempt to speed up fuzzing. During the several rounds of fuzzing, these bounds
are incremented. Furthermore, we introduce our new method, a selective fuzzer based on
learning from test cases generated by BMC/Fuzzing to produce new test cases that can
successfully detect new vulnerabilities.

Finally, we developed FuSeBMC, an automated test generation tool that exploits the
combination of Fuzzing and BMC to verify real-world C programs and increase code

coverage. FuSeBMC was distinguished by its novel algorithm for managing the time al-

22 Chapter 1 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

located to each engine and goal. The advantage of this algorithm is to prevent FuSeBMC
from wasting time finding test cases for challenging goals. At the same time, the informa-
tion gathered before any prevention is used later by a selective fuzzer. Furthermore, this
approach can reduce generation processes for paths we believe BMC cannot access. As a
result, we can generate high-coverage test cases to avoid the path explosion issue, reduce
the negative impact, and benefit from our analysis in alleviating overhead and providing
effective seeds. Also, we produce test cases that can detect errors leading to crashes.
Our tool was evaluated by participating in the international competition in software test-
ing (Test-Comp) for two years, 2021 and 2022. The competition contained approximately
3173 benchmarks in 2021 and 4236 in 2022 from the largest and most diverse open-source
repository of software verification tasks. In addition, we provide a detailed analysis of the
evaluation’s results and a comparison of the state-of-the-art- tools in this field. This con-

tribution shows our effective methods that successfully earn six international awards.

1.4 | Overview of this thesis

This thesis is structured as a journal/alternative format with permission from the Depart-
ment of Computer Science supervisory team. The thesis core chapters (i.e., chapters 3
to 5) represent research papers published and under review by various international con-
ferences and journals. In addition, a section titled “Thesis context” was inserted at the
beginning of each chapter. It connects the chapters and highlights their contributions
to the entire work. Furthermore, it provides a straightforward narrative for the thesis and

turns it into a storyline. The chapters in this thesis are organized and described as follows:

* Chapter 2 provides a background in software testing and code coverage research.
Also, it presents a brief background of the employed technologies and discusses
their effectiveness in code coverage and software testing research. Then, it reviews

related works and identifies shortcomings and challenges.

» Chapter 3 provides an overview of the latest science in software testing. In addi-
tion, it presents a summary of the state-of-the-art tools in this field and explains
the techniques for these tools. Finally, it describes our approach FuSeBMC to
find security vulnerabilities in C programs. This chapter explains the techniques
used in FuSeBMC and how they have been employed and connected to work col-
laboratively. Furthermore, this chapter shows how our approach has been clas-
sified as a low energy consumption tool. The content of this chapter is adapted
from: Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C

Cordeiro. “FuSeBMC: An energy-efficient test generator for finding security vul-

Chapter 1 Kaled Alshmrany 23

Efficient hybrid fuzzing for detecting vulnerabilities in software

nerabilities in ¢ programs”. In: The International Conference on Tests and Proofs
(TAP). https://doi.org/10.1007/978-3-030-79379-1_6. Springer.
2021, pp. 85-105.

Chapter 4 discusses the importance of code coverage, its role in developing vali-
dation methods, and how the science of code coverage directly relates to detecting
vulnerabilities. In addition, it describes the various types of code coverage and
their differences. Furthermore, this chapter summarizes the common and utilized
techniques in code coverage, as well as the obstacles and challenges these technolo-
gies may face. Then, we introduce our new approach FuSeBMC v4, which relies on
smart seeds and static analysis to achieve high code coverage. Also, it demonstrates
how the smart seeds produced by FuSeBMC v4 were used to speed up the coverage
process and maintain the quality of software testing. This chapter is based on our
submitted paper: Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, Fe-
dor Shmarov, Fatimah Aljaafari, and Lucas C Cordeiro. “FuSeBMC v4: Improving
code coverage with smart seeds via fuzzing and static analysis”. In: The Formal
Aspects of Computing Journal (FAC) (2022).

Chapter 5 concludes this thesis by summarising the contributions, results, and

awards this research has received and mentioning current and future work.

24

Chapter 1 Kaled Alshmrany

https://doi.org/10.1007/978-3-030-79379-1_6

Chapter

Background

Success on any major scale requires
you to accept responsibility... in the
final analysis, the one quality that all
successful people have... is the ability

to take on responsibility.

Michael Korda

The purpose of this chapter is to provide definitions and background needed to un-
derstand this thesis. In addition, it presents related works to the method and an overview
of the combined techniques, including their history, pros, and cons. This thesis primar-
ily focuses on developing novel C program testing techniques built on top of bounded
model checking and fuzzing. This chapter is structured as follows: First, we discuss the
field of software testing in section 2.1. After that, section 2.2 describes the various tech-
niques used to verify C programs. Then, section 2.4.3 discusses code coverage and its
relationship to software testing. Next, section 2.3 explains the bounded model checking
technique and its evolution in support of software testing. Afterward, section 2.4 illus-
trates the fuzzing technique and discusses its types in software testing. Section 2.5 then
reviews related work focused on hybrid fuzzer and identifies its current challenges and
shortcomings. The chapter concludes with section 2.6, which overviews the combined

techniques.

2.1 | Software Testing

The literature on software testing dates back to the early 1970s [57]. Although it is plausi-
ble that the concept of testing emerged along with the earliest programming experiences:
Hetzel dates the first program testing conference to 1972 [58]. Testing was envisioned as
an art and was demonstrated as the “destructive” process of executing a program to detect
errors. Dijkstra’s most frequently cited adage concerning software testing is that it can

only demonstrate the presence of faults, never their absence [59].

25

Efficient hybrid fuzzing for detecting vulnerabilities in software

Definition 1 (Software Testing). Software testing is a process or series of operations
meant to ensure that computer code performs as intended and does not perform any unin-
tended actions [60].

There are many different types of testing in software. In this thesis, we will highlight
the most common and most widely used software testing strategies, which differ in terms
of classification and purpose. For example, correctness testing can be divided into a white
box, black box, and gray box testing techniques. This type is used to test the correct
behavior of the system. Also, there is performance testing, which is divided into load
testing and pressure testing, in which the testing takes place in the form of the life cycle
of a process. In addition, reliability testing focuses in its content on the fact that errors are
detected before the system is deployed. Finally, security testing is one of the most popular
tests because it is useful for the tester to find and fix problems. This type of testing aims
to find loopholes and vulnerabilities in the system that could cause significant damage to
any system.

Typically, verification consists of a sequence of tests [61]. For many projects, the
acceptance criterion is that the product executes specific tasks correctly, and the only
way to verify this is to test the product against these tasks. In order to facilitate this
operation, test suites incorporate into software projects. The test suites are compilations
of independent tests. Importantly, test suites can be automatically used in the codebase.
This will enable developers to validate the target code without individual effort during
the development cycle. However, writing tests is difficult because they require substantial
system knowledge. In addition, test suites must be maintained in tandem with system
development to prevent incompatibilities. This alone requires a considerable amount of
engineering time [62].

As a result of the testing industry’s evolution over decades and the contributions of
numerous authors, the majority of testing literature contains confusing and sometimes
inconsistent terminology [63]. Therefore, this thesis derives the terminologies from the

Institute of Electronics and Electrical Engineers IEEE Computer Society standards [63].

Definition 2 (Error). When programmers make mistakes (errors), we refer to them as
bugs. There is a tendency for errors to spread where a requirements error may be increased

during the design and coding phases.

Definition 3 (Fault). A fault is the representation of an error. The representation refers
to the manner of expressions. When a designer commits an error, something that should
have been included in the representation is missed. A fault occurs when we enter incorrect

data into a representation or fail to enter the correct information.

Definition 4 (Vulnerability). A vulnerability is a weakness or error in the security de-
sign, implementation, or methods of software that can be exploited and lead to a security

violation [64]. Software may contain a vulnerability in one or more components [64].

26 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Error Error Error Error

I 1| |

Requirements ﬁ\ 7 m .
’ Codi / \4 Fault Resoluti Fix
(Speciﬁcation/'\ (oing /\ Classificatio n//\ ault Resolution ||

Design 7\ Testing Fault Isolation

=2

Figure 2.1: A testing life cycle model. The initial three steps are the development phase, the
fourth step is the testing phase, and the final three steps are the error-fixing phase [63].

Definition 5 (7est Case). A test case is a collection of actions performed on a target
software under which a tester will determine whether the software satisfies requirements
and functions correctly [63]. Each test case has a unique identifier linked to specific

program activity. In addition, a test case also consists of inputs and expected outputs.

Definition 6 (7est). Testing is concerned with failures, errors, and faults. A test is a
process of utilizing test cases to exercise software. A test serves two essential purposes:

detecting errors and validating correct execution.

Definition 7 (Test Suite). A test suite, also known as a test set, is a sequence of test cases
gathered for test execution. Also, a test suite includes instructions and details regarding
the system configuration to be utilized during testing. It is a good practice for organiz-
ing test cases so that developers can classify them according to analytical or planning

requirements.

Figure 2.1 illustrates a testing life cycle model, which can be divided into three phases.
The initial is the development phase, followed by the testing phase, and finally, the de-
bugging phase. This cycle demonstrates that the probability of errors increases in the first
phase and may spread to the rest of the other phases. In addition, there is a possibility
that an error will arise during the debugging phase if the fix is insufficient or may cause
misbehaviour of the correct program earlier. However, a notable tester [63] characterized
the life cycle as beginning with Putting Bugs IN, then Finding Bugs, and ending with
Getting Bugs OUT. This series of terms demonstrates that test cases play a significant
role in testing. The testing process can be divided into three steps: test design, test case
development, and run.

Test Cases. The core of software testing is specifying a set of test cases for the target
software to be tested. A test case usually has inputs that may be preconditions or the actual
inputs identified by a particular testing method. To be effective, each test should include

the appropriate preconditions and test case inputs. In addition, it must monitor the outputs

Chapter 2 Kaled Alshmrany 27

Efficient hybrid fuzzing for detecting vulnerabilities in software

and validate the expected postconditions to determine whether the test was successful.
Finally, other information might be helpful to include in the test case to support testing
management, such as the execution history of a test case, ID, date, by whom it was run,
and the version of software on which it was run. All of this demonstrates that test cases are
valuable, if not more valuable than source code. Therefore, test cases must be developed
and reviewed continuously to ensure that test coverage is sufficient, potential impacts are

identified, and the test data is accurate.

2.2 | Testing Techniques

Techniques for software testing are the strategies, procedures, and templates used to ac-
complish software testing activities successfully and efficiently [65]. Methods based on
metrics for test estimation, black-box or white-box techniques for test design, and static
testing techniques are examples of software testing techniques. At the same time, tools
for dynamic analysis, coverage analysis, and test design are examples of software testing
tools that provide automated or semi-automatic support for software testing techniques
and processes. Software testing tools are developed to support software testing tech-
niques [66] and fully or partially automate the processes.

In light of many studies and reviews on many aspects of software testing method-
ologies and challenges [57, 67, 68, 69, 70], the current software testing practices are far
from satisfactory. These studies claim that advanced tools and seamless integration be-
tween development and testing [69] are still required [57, 67]. Also, there remain gaps
between industry practices and testing research [68]. These deficiencies present oppor-
tunities for the enhancement of testing processes [71], testing procedures [72], and sup-
porting tools [73]. Therefore, numerous studies have been conducted to determine which
testing techniques and selection methods are employed [74] and which approaches and
tools are prevalent [75]. In addition, Automated software testing techniques are observed

by Kasurinen et al. [73] and identify factors that influence software testing automation.

2.3 | Bounded Model Checking

The process of applying the ideas behind model checking to software is a complex task.
For instance, if we seek to verify properties such as the reachability property, the verifi-
cation problem becomes undecidable [76] because it is impossible for an algorithm to de-
termine whether or not a specific program state can be achieved and always finished [77].
In addition, the amount of memory that generic programs can potentially require is essen-
tially limitless. Therefore, to implement a model checker, one must accept the possibility
that the software will never finish or use an unsound or incomplete approximation.

Bounded Model Checking (BMC) can be used instead of transforming the program

28 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Transition System [TS] - > M, M,; M, M, My s Bound [k]
® o -0 o -0
Initial States > — @ — 0, — o, — Oy — Oy e Property [P

Figure 2.2: An illustration of a transition system when the program is modelled in BMC, where
M represents a transition system and ¢ represents a property.

under test (PUT) into a state machine for evaluation, as explained by Biere et al. [78].
BMC is based on Boolean Satisfiability (SAT) [79] or Satisfiability Modulo Theories
(SMT) [80]. Initial proposals using BMC based on SAT [79] to verify hardware designs
were made in the early 2000s [78, 79]. Studies carried out by a team from Carnegie
Mellon University (CMU) demonstrated the success of verifying large digital circuits by
BMC, which depends on standard SAT solvers [78]. In contrast, Armando et al. [81]
initially proposed BMC based on SMT [80] to address the ever-increasing complexity of
software verification. BMC based on SAT or SMT has been successfully applied to detect
subtle vulnerabilities in real programs [39, 82, 83, 84]. In BMC, the set of program states
is still formalized as an evaluation of all program variables and the program counter’s
placement because the program statements are considered as transitions from one state to
the next [61]. These transitions are viewed as constituting a sequence within the program,
where each is transitioning the current state of the program to a new state. Exploration
terminates with the completion of £ transitions, where & represents the number of bounds.
The final state is examined to determine whether it violates a property by finding if the
variable evaluation of the final state satisfies the negation of the verification property
¢. The concept underlying BMC is to examine the negation of certain properties at a

specified depth. Figure 2.2 describes how BMC operates.

The program is modelled in BMC as a state transition system (TS) derived from its
control-flow graph [85]. Then, it converts to a Static Single Assignment form (SSA). Each
control graph node will be transformed into an assignment, or a guard will be created
from a conditional expression. Each edge indicates a change in the control position of
the program [86]. Kripke structure [87] is utilized as TS M = (S, T, Sp) when modeling
the program. A Kripke is an abstract machine consisting of a collection of states .S,
initial states So C S, and transition relation 7" C S x S. The collection of states S =
{so0, 1, ...sn} : n € Nincludes all the states. Each state contains the values of all program
variables and a program counter pc. Each transition is represented by ~(si, si + 1) € T,
where it represents a logical formula encoding all the changes in variables and pc from s;
to s;11. Then, a Verification Condition (VC) denoted by W is computed. The Verification

Chapter 2 Kaled Alshmrany 29

Efficient hybrid fuzzing for detecting vulnerabilities in software

Condition is a quantifier-free formula in a decidable subset of first-order logic. As input,
BMC takes three components: transition system M, a property ¢, and a bound k. Then,
BMC unfolds the transition system M k times and translates it into a verification condition
U, where W is satisfiable if and only if ¢ contains a counterexample of depth less than
or equal to k. Formally, the bounded model checking procedure may be formulated as

follows:
ki1

Uy = I(sp) A \/ /\ Y(85,8541) A p(S;) (2.1)
i=0j=0

The initial states of M are represented by [in the above formula (2.1), and the relation
between the two states in M is represented by v(s;, s;41). ¢ represents the safety proper-
ties that must not be compromised. 1(sg) A /\j;t v(s;, $j+1) represents the execution of
M with the 7 length. If some ¢ < k satisfies Uy, at time-step ¢, then there exists a state in
which ¢ is violated. Then, an SMT solver takes W, to check for satisfiability. Then, if W,
is satisfiable, the SMT solver will provide an assignment that satisfies it. The counterex-
ample is produced using this assignment’s values extracted from the program variables.
A counterexample for a property ¢ consists of a sequence of states { s, s1, .., Sk }|So € So
and s; € S|0 < ¢ < k and 7(s;, s;41). If Wy is unsatisfiable, then no error state is
reachable in k or fewer steps, indicating that no property was broken.

Two quantifier-free formulas encode the constraints and properties. The first formula
(C) serves as the first part of Wy, which is I(sg) A \/f:0 /\;‘.1:0 v(s;, 8j+1). And the second
formula (P) the second part of ¥ which is \/f:O —¢(s;). The SMT solver, after that,
examines C' =7 P in the form of C' A —P.

Bounded Model Checking analyzes only bounded program runs. However, it pro-
duces verification conditions that specify the precise execution path of a statement, the
context in which a particular function is invoked, and the bit-exact representation of ex-
pressions [88]. In this context, a verification condition is a logical formula derived from
a bounded program and desired correctness properties, the validity of which indicates
that the program’s behaviour conforms to its specification [76]. Within the context, users
can describe correctness attributes using assert statements or code created automatically
from a specification language [89]. If all verification conditions of a bounded program are
valid, then the program conforms to its specification up to the provided bound. Although
BMC was developed about two decades ago, considerable developments in SMT [80]
have only recently made it practical and feasible. Due to the current size of source codes
and complex software systems, however, the impact of this methodology is still restricted
in reality [90].

Furthermore, BMC tools typically fail because of the limitation of memory or time.
This limitation is often observed in programs with loops whose bounds cannot be stati-
cally identified and validated or whose bounds are too large. Moreover, even if a program

does not include a violation up to a specific bound k, we cannot ensure its safety af-

30 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

ter bound k£ (k+1). As a result of these limitations, researchers have been motivated to
design new techniques to search deeply into a program’s search space while simultane-
ously demonstrating global correctness [91]. In particular, hybrid techniques have been

proposed to mitigate these limitations, which are explained briefly in Section 2.6.

2.4 | Fuzzing

The term “fuzz” was invented in 1990 by Miller et al. [24]. It refers to a program that
produces a stream of random inputs for the target program to consume [24]. Numerous
contexts, such as penetration testing [92], grammar-based test case generation [93, 94],
and dynamic symbolic execution [95, 96], have used the term “fuzz” or “fuzzing.”

Fuzzing is an effective and widely-used method for detecting software security vul-
nerabilities and bugs. The purpose of fuzzing is to identify security bugs, such as buffer
overflows and software crashes, by repeatedly executing the software with diverse in-
puts [97]. Fuzzing is simple to implement compared to other techniques and may be
conducted with or without the source code. In addition, fuzzing requires less knowledge
of target programs than other testing methods and can be quickly scaled up to accommo-
date large-scale applications [17].

In the last two decades, fuzzing has become the most effective and efficient state-
of-the-art vulnerability detection technique, despite its many disadvantages, such as low
efficiency and low code coverage. The positives have outweighed the negatives, and
fuzzing has become the industry standard for software development procedures in the
commercial sector [43]. For example, Microsoft’s Security Development Lifecycle [98]

requires fuzzing on all untrusted product interfaces.

2.4.1 | Fuzzing Process

Fuzzing is the process of executing a Program Under Test (PUT) with fuzz inputs. Miller
et al. [24] consider a fuzz input to be an unanticipated input that the PUT may receive.

The following definition describes the concept of fuzzing.

Definition 8 (Fuzzing). Fuzzing is the PUT’s execution using inputs sampled from a fuzz

input space that extends beyond the expected input space of the PUT.

Definition 9 (Fuzz Testing). Fuzz testing is the practice of using fuzzing to determine

whether a program under test violates a correctness policy.

Definition 10 (Fuzzer). A fuzzer is a program that conducts fuzz testing on a program

under test.

Chapter 2 Kaled Alshmrany 31

Efficient hybrid fuzzing for detecting vulnerabilities in software

Algorithm 1 A Fundamental fuzzing algorithm.

Require: program P, timeout T’
1: corpus < initial_inputs_(seeds)
2: B+ 0 // a collection of detected bugs
3. Q <« 0 // a queue for preparing seed to fuzz
4. while —isDone(B, Q) do
candidate < Select(Q, B);
mutated < Mutate(candidate, B);
B + FEwvaluate(mutated);
if is_unexpected_behavior_OR_system_crash(B, Bs) then
Q < Q Umutated
10: B+ BsUB
11: end if
12: end while
13: return B

o

2.4.1.1 Fuzzing Algorithm:

We present a fundamental fuzzing approach in Algorithm 1. It is sufficiently generic to
understand the basic idea of the fuzzing process and accommodate existing fuzzing meth-
ods. Algorithm 1 accepts a target program P and a timeout 7" as input and returns a
collection of detected bugs B. The testing of the target program begins with selecting a
corpus of initial inputs (seeds). Then, the fuzzer repeatedly modifies these inputs and eval-
uates the target program. If the outcome creates unexpected behaviour or a system crash,
the fuzzer maintains the input made for future processing. Finally, the fuzzer terminates

by achieving a certain objective, such as detecting a bug or exceeding a timeout.

The general process of fuzzing is illustrated in Figure 2.3. Five modules are contained
within the fuzzer system: Target program, test case generator, monitor, bug detector,
and bug filter. Generally, it starts with the target program and seed files as inputs. The
target program can be a program under test or any program being tested. It could be
software for a network service, an operating system, application software, or binary code
with or without source code. The test case generator then typically mutates a sample
and generates inputs for the program being tested. The generated inputs may consist
of a specific file type or a network data stream. The generator can use many mutation
strategies for initial inputs to improve the efficacy of fuzzing. Then, during the execution
of the PUT, the fuzzer monitors the execution state to detect crashes or unusual behaviour.
Utilizing techniques such as taint analysis and code instrumentation, the monitor obtains
code coverage and useful runtime data of the target program. When the target program
crashes, the bug detector reports and analyzes pertinent data to determine if a bug is
present. The bug detector is built and implemented within a fuzzer to assist debuggers in
discovering potential bugs in a target program. Finally, filtering vulnerabilities is typically

conducted manually, making it time-consuming and complex to resolve. Recent tools

32 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Fuzzer

Error/Crash

R Information
Seed Files Monitor Bug Detector
CEE— Test|Cases Report| Bug Bugs / Crashes
A

Target Program
— Test Case

Bug Filter

(Generator

Figure 2.3: The general process of fuzzing. It takes the target program and seeds as inputs and
then executes the fuzz processes, outputting a report when the target program crashes.

such as Chen et al. [99], Francis et al. [100], and Zalewski [101] have alleviated the issue.
Some relied on sorting the fuzzer’s outputs (bug-inducing test cases), while others relied

on evaluating the exploitability of a bug [102].

2.4.2 | Types of Fuzzers

Fuzzing techniques can be categorized from several angles. First, they can be classed as
black-box, white-box, or grey-box fuzzing according to their understanding of the tar-
get program [103]. Also, fuzzing can be mutation-based or generation-based, depending
on the sort of data generation. Lastly, it can be categorized by the feedback type (i.e.,
feedback and no-feedback fuzzing).

2.4.2.1 Mutation-based and generation-based

Fuzzing techniques are straightforward to use. Nevertheless, weaknesses in fuzzing have
emerged over time, such as the inability to explore paths outside narrow-ranged input
constraints [104] and the production of specific inputs to pass complex paths [44]. These
weaknesses prompted developers to seek new techniques to improve fuzzing, such as
mutation-based and generation-based approaches, to address some of these weaknesses.
Mutation-based fuzzers: For the mutation-based fuzzers technique, collecting mul-
tiple samples of the target program type is necessary. The fuzzer then applies mutations
to these samples and sends them to the parser of the target program. One type of mutation
is the replacement of data bytes with bytes. This is also possible for several byte ranges,
such as two- and four-byte ranges. Thus, mutation-based fuzzers produce test cases by
manipulating input data that feeds a target. However, this approach of fuzzers has a few

disadvantages. It can take some time to complete fuzzing on a single sample because it is

Chapter 2 Kaled Alshmrany 33

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 2.1: Common Black-box, Grey-box, and White-box Fuzzers. The table represents the types
of fuzzers and the approach used for each type.

Fuzzer types Mutation-based Generation-based

SAGE [106], Libfuzzer [107] CLsmith [25], LangFuzz [94]
Black-box fuzzers

QuickFuzz [108]

AFL [56], Driller [44] Syzkaller [109]
Grey-box fuzzers

Vuzzer [110], Mayhem [111]

Miller [112] Sulley [113], SPIKE [114]
White-box fuzzers

Peach [115]

a very inefficient method [97]. Also, a significant component of functionality will almost
always be missed [97]. In general, mutation-based fuzzers are unaware of the required
input format or specifications [105].

Generation-based fuzzers: For generation-based fuzzers, it is necessary to conduct
a preliminary investigation into the file specifications. Generation-based fuzzers do not
need any sample file (initial inputs - seed). Nonetheless, it will rely on user-supplied con-
figuration files to make the process smarter [97]. Typically, these files contain metadata
that describes the types of variables and language of the target program. Consider these
templates as lists of data structures, relative placements, and potential values. Generally
speaking, generation-based fuzzers produce inputs based on a specification. Although
generation-based fuzzers are an effective fuzzing technique that capitalizes on the user’s
knowledge and inventiveness, it is arduous, time-consuming, and error-prone because
constructing specifications is so broad. There are so many potential fuzzing rule configu-
rations [43].

2.4.2.2 White-box, black-box and grey-box

Fuzzers could be classified as white-box, grey-box, or black-box based on their reliance
on program source code and the depth of their program analysis. Table 2.1 contains a
selection of common black-box, grey-box, and white-box fuzzers. Beginning with rudi-
mentary techniques applied in the early days of fuzzing and moving to progressively
complicated techniques, the following is an overview of fuzzing techniques. Also, we

examine the benefits and drawbacks of each approach.

34 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Black-box fuzzers do not consider the program’s internal logic; instead, they contin-
uously feed input data and examine the output results [116]. In terms of understanding the
program, black-box fuzzers lie at one extreme. Black-box fuzzers are the most straight-
forward sort of fuzzing [117]. They modify initial inputs randomly and then test the target
program with these modified inputs. The efficacy of black-box random fuzzers is reliant
on a good collection of initial inputs to initiate the fuzzing process. Good initial inputs
will rapidly exercise more code in the program to be fuzzed. In contrast, initial inputs that
are not well-formed may lead to expenditures and inefficient resource use, and they may

not produce any benefits [43].

White-box fuzzers were first proposed by Godefroid et al. [118]. They can get com-
prehensive program information, such as source code, design specifications, and run-
time information. Then, they use this information to enhance the efficacy of the fuzzing
process. White-box fuzzing may efficiently and exhaustively search the target program
through the use of dynamic symbolic execution and a coverage-maximizing guided search
technique [119]. Theoretically, white-box fuzzing is capable of producing test cases that
cover all program paths. However, the code coverage of white-box fuzzing cannot ap-
proach 100 percent in practice because of issues such as the various execution pathways
in real software and the imprecision of satisfying a constraint during symbolic execu-
tion [119].

Grey-box fuzzers enhance black-box fuzzing with approaches for white-box fuzzing.
They closely resemble white-box fuzzing by removing some of its components to re-
duce expenses and complexity [43]. Code instrumentation is the most frequent technique
for grey-box fuzzers [120]. They gather certain information, such as runtime coverage
information. Then, they use this information to modify mutation strategies to produce
test cases that cover more paths or quickly detect bugs. However, no assurance that us-
ing this information would build improved test cases to cover additional paths or trigger
bugs [119].

2.4.2.3 Feedback and no-feedback fuzzers

Some fuzzers employ static or dynamic program analysis approaches to improve fuzzing
efficiency. It can obtain useful information about the target program and then produce test
cases based on this information. This type of work was categorized as Feedback fuzzers,
where Feedback refers to the runtime information. It can be used to guide production test
cases in the next loop. Path coverage is the foundation of most feedback techniques [116].
In contrast, no information is collected during the program’s execution using no-feedback

fuzzers.

Chapter 2 Kaled Alshmrany 35

Efficient hybrid fuzzing for detecting vulnerabilities in software

2.4.3 | Code Coverage

Test cases are critical software project artefacts because they enable developers to validate
software and generate software with a low probability of errors. Assigning a quality mea-
sure to test cases is one of the challenges in software testing. For example, higher-quality
test cases detect more bugs than low-quality test cases. These measures of quality are
known as test adequacy criteria. Code coverage is frequently applied in software testing
because it indicates which portions of the PUT have been tested. Also, code coverage is
the commonly used test adequacy criterion [121]. In general, code coverage is a measure
of identifying the parts of the program under test (PUT) that execute when the program
is executed and the extent to which a test case covers the PUT [122]. Furthermore, code
coverage could assist figure out the portions of code or paths that have been covered and
have not. Thus, code coverage information helps focus testing on the uncovered por-
tions. In addition, it is usually utilized as a measure of the effectiveness and sufficiency
of a test [123]. Also, it could assist the developers in understanding how much code is
covered in quantitative measurement.

Code coverage has been utilized in various contexts, such as software testing, integra-
tion testing, and unit testing. Therefore, a code coverage tool is usually integrated into
various tools [60]. Code coverage can indicate how much code has been tested, although
good code coverage does not necessarily indicate effective testing. For instance, even if
the code coverage shows that testing has covered 100% of the code coverage, it may be
unable to reveal some or all of the existing vulnerabilities. Therefore, test coverage does

not necessarily imply exhaustiveness.

Nevertheless, code coverage provides a quantifiable assessment of a test’s thorough-
ness. Also, code coverage could be helpful to determine whether given test cases do
not cover portions of a PUT. In addition, the information on code coverage can generate
additional test cases to increase coverage [124].

Coverage measurements can be control- or data-flow oriented. The idea of control
flow criteria is to examine the execution flow of test cases in the target code. Statement,
branch, and path coverage are examples of common control-flow code coverage metrics.
These coverage criteria specify which statements must be executed to achieve full cover-
age of the target code [125].

Data-flow coverage criteria are based on examining the relationships between values
and variables and how these relationships may affect how the program is executed [35].
Data-flow coverage criteria aim to examine how value-assigning and value-utilizing state-
ments interact. Def-use pair coverage is one example of a data-flow coverage criterion.
The def-use pair coverage criteria check how well a variable’s use has been evaluated in

relation to its potential definition points [126].

While control flow-related coverage criteria are frequently employed in practice, data

36 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

flow-related coverage criteria are used less often since they are more difficult to automate
and more expensive to conduct [127]. Our research concentrated on control flow-related
coverage criteria because they were comparable and supported by the many state-of-the-
art tools [125].

In general, coverage measures the quantity of testing conducted depending on a par-
ticular criterion [128]. A coverage criterion is a rule or group of rules determining the test
requirements for a given test set. Typically, these metrics are calculated by dividing the
number of items tested by the total number of program items. Methods for code coverage

can be classified into three standard criteria:

» Statement Coverage: each statement must be executed at least once for statement
coverage to be complete. It is the most fundamental coverage criterion in white-box
testing. The industry’s most prevalent type of coverage is statement coverage [124].
Developers utilize it frequently to evaluate software quality. It is a method for
ensuring that each line of source code gets tested at least once. While measuring
Statement Coverage, this may appear straightforward, but care must be taken. This
is because a particular condition in the source code may not be executed depending
on the input values. This would imply that testing would not cover all lines of
code. Therefore, employing distinct input values may be necessary to account for
all such scenarios in the source code. To calculate statement coverage, we divide the
number of executed statements in the PUT by the number of statements in the PUT.
Figure 2.4 illustrates a code fragment. To illustrate the calculation of statement
coverage for this code, consider the cases where variables x = 2 and y = 3. The
statements on lines 1-5 and 11 are performed in this case. Therefore, the number
of statements executed is 6, and the total number of statements in 2.4 is 11. Thus,
the statement coverage for this code fragment in Figure 2.4 with inputs = 2 and
y = 3is 5 (100) = 55%. However, the “if” part of the code would not be executed
if x = 3 and y = 2. This indicates that Statement Coverage would not be 100%
with either set of values. In such a scenario, it may be necessary to execute the tests
with all three sets of inputs [(z = 2,y = 3), (x =3,y = 2),and (x =0, y = 0)] to

achieve 100% Statement Coverage of the code.

(Number of executed statements)
Statement Coverage = x100
(Total number of statements)

* Branch coverage: tests all program branches to ensure that each decision point
(e.g., if statements, loops) has been executed in the code at least once during testing.
Branch coverage is extensively utilized due to its simplicity of implementation and
negligible impact on the execution of the PUT. Figure 2.4 illustrates an example

of code for calculating branch coverage. This code contains three branches: two

Chapter 2 Kaled Alshmrany 37

Efficient hybrid fuzzing for detecting vulnerabilities in software

—_—

— OOV NRWN—

-

Add (int x, int y){
if (y > x){
Yy =Y~ X;
printf ("°%d'', vy);
}
if (x > y){
y = X - y;
printf ("7%d'', vy);
}
else: printf("°0'");

Figure 2.4: An illustrative code fragment containing an (Add) function that receives two integer
arguments.

conditional branches from lines 2 — 5 and 6 — 9, and one unconditional branch from
line 10. If x = 2 and y = 3, the condition on line 2 will be true and executed.
Consequently, the branch coverage is 3(100) = 33%. Likewise, if 2 = 4 and
y = 2, then the condition on line 6 will be executed too, and the branch coverage
will be 33%. Finally, if z = 1 and y = 1, the “else” branch in line 9 will be
examined and executed. Providing these various values for x and y indicates that
we have covered all three branches in the code, achieving 100% (each branch 33%

x3) branch coverage.

((Number of executed branches)
Branch Coverage = x100
(Total number of branches)

* Function coverage: measures the extent to which PUT’s functions are covered

during testing [129]. During test execution, all functions found in PUT are exam-
ined. It must be ensured that these functions are extensively tested using a variety
of input values. Because there may be several functions within PUT’s source code,
and based on the input values used, a function may or may not be executed. Thus,
function coverage aims to ensure that we call every function in PUT. Each function
in the PUT must be covered by at least one input to achieve 100% of function cov-
erage. Code coverage is the most specific criterion to measure. Consider figure 2.5,
which contains two functions (add and foo). If a = 10, then only the function “add”

will be called, making the function coverage 50% (3 (100)).

, ((Number of functions called)
Function Coverage = , x100
(Total number of function)

2.4.4 | Types of Vulnerabilities

Software, in general, is prone to vulnerabilities caused by developer errors, which in-

clude: buffer overflow, where a running program attempts to write data outside the mem-

38

Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

int x;
if (x>7)

add (x) ;
else:

foo (x);
}

A [e)NV, EEN O] X
—~

|
|
|
|
|
|
|

Figure 2.5: An example code fragment containing (add and foo) functions that receive an integer
argument.

ory buffer, which is intended to store this data [130]; memory leak, which occurs when
programmers create a memory in a heap and forget to delete it [131]; integer overflows,
when the value of an integer is greater than the integer’s maximum size in memory or less
than the minimum value of an integer. It usually occurs when converting a signed inte-
ger to an unsigned integer and vice-versa [132]. Another example is string manipulation,
where the string may contain malicious code and is accepted as an input; this is reason-
ably common in the C programming language [133]. Denial-of-service attack (DoS) is
a security event that occurs when an attacker prevents legitimate users from accessing
specific computer systems, devices, services, or other IT resources [134]. For example,
a vulnerability in the Cisco Discovery Protocol (CDP) module of Cisco I0S XE Soft-
ware Releases 16.6.1 and 16.6.2 could have allowed an unauthenticated, adjacent attacker
to cause a memory leak, which could have lead to a DoS condition [135]. Part of our
motivation is to mitigate the harm done by these vulnerabilities by the proposed method
FuSeBMC.

2.5 | Related Work

This section presents various existing research to discuss appropriate tools and method-
ologies. The purpose of this section is to clarify the context of our research. Most related

techniques include fuzzing, bounded model checking, or combining the two.

2.5.1 | Fuzzers

In the 1990s, Barton Miller [136] proposed fuzzing at the University of Wisconsin, and
it quickly gained popularity as a technique for identifying software vulnerabilities [97].
American fuzzy lop (AFL) [56, 137] is one of the most popular fuzzing tools. AFL is
a coverage-based fuzzer designed to detect software vulnerabilities. AFL employs an
evolutionary strategy to learn mutations based on measurements of code coverage. AFL
yields high code coverage by employing genetic algorithms and guided fuzzing. Another
implemented fuzzing technique is Vuzzer [110], a fuzzer with an application-aware strat-
egy. The primary benefit of this approach is that it does not require prior knowledge of the

application or input format. Vuzzer leverages control- and data-flow features derived from

Chapter 2 Kaled Alshmrany 39

Efficient hybrid fuzzing for detecting vulnerabilities in software

static and dynamic analysis to infer fundamental properties of the application in order to
increase coverage and investigate deeper paths. This allows significantly faster produc-
tion of interesting inputs compared to a technique that is application-agnostic. Further-
more, similar to AFL, Syzkaller [109] utilizes coverage-guided methodologies to conduct
fuzzing testing on the target program. Also, LibFuzzer [107] uses code coverage infor-
mation produced by LLVM’s (SanitizerCoverage) instrumentation to generate test cases.
LibFuzzer is ideally suited for testing libraries with tiny input and a runtime of millisec-
onds per input to ensure that library code does not crash due to invalid input'. Wang
et al. [138] proposed a method employing data-driven seed generation (Skyfire). It pro-
cesses and generates well-distributed seed inputs for fuzzing algorithms by extracting the
knowledge of grammar. However, Skyfire is designed to identify syntax features and se-
mantic rules using probabilistic context-sensitive grammar (PCSG). AFLFast [139] is an
upgraded version of AFL that exercises a low-frequency path using many techniques. The

tool was found to be seven times faster than AFL [139].

Smart grey-box fuzzing (SGF) [140] is a fuzzer that generates high-impact seeds by
employing a high-level structural representation of the original seeds. Likewise, AFLS-
mart [140] is a structure-aware fuzzing that combines the AFL fuzzer and the PEACH
fuzzer engine. GTFuzz [141] is a tool for prioritizing inputs based on the extraction of
syntax tokens that guard the target location. These tokens are extracted using the tech-
nique of backward static analysis. Additionally, this extraction helps GTFuzz enhance
its mutation algorithm. Instrim [142] is a control flow graph CFG-aware fuzzer. It ana-
lyzes software to maintain the fuzzing speed in specific blocks selected according to the
Control Flow Graph CFG. As a consequence, Instrim enhanced speed by a maximum of
1.75 times. Moreover, there is Peach [115]. This tool’s advanced and reliable fuzzing
framework is one of its primary features. This framework can generate an XML file for
defining a data model and state model. In addition, numerous fuzzers have been produced,
and each with its unique improvements. For example, DGF [137] searches for directed
paths, and SYMFUZZ [143] controls the selection of paths, while Alexandre Rebert’s
method [144] employs guided seed selection. AutoFuzz [145] is a verification approach
for network protocols that employs fuzzing. It begins with locating the protocol’s specifi-

cations, then uses fuzzing to detect vulnerabilities.

The common weakness of pure fuzzing approaches is their inability to provide test
cases that explore program code that occurs beyond complicated guards. In addition,
because fuzzers essentially work by randomly mutating seeds, they struggle to find inputs

required to satisfy complicated guards.

"https://1llvm.org/docs/LibFuzzer.html

40 Chapter 2 Kaled Alshmrany

https://llvm.org/docs/LibFuzzer.html

Efficient hybrid fuzzing for detecting vulnerabilities in software

2.5.2 | BMC and Symbolic execution

In recent years, bounded model checking has been successfully applied to verifying C pro-
grams. There are various state-of-the-art bounded model checkers. CBMC [82] is likely
one of the most popular bounded model checkers currently available. It is a bounded
model checker based on SAT [79] for sequential and concurrent programs [146, 147].
Another approach is ESBMC [148] which is derived from CBMC. It employs SMT [80]
solvers instead of SAT solvers to validate C programs. Also, LLBMC is a sequential
bounded model checker for C and C++ programs. Unlike ESBMC, LLBMC [83] per-
forms model checking on LLVM bytecode rather than the clang-generated abstract syntax
tree (AST). Although this method simplifies the verification and reduces costs, it may also
create flaws, such as losing context information (e.g., mangled class and function names

and source location information) [149].

Symbolic execution is a popular technique for detecting errors in software [150]. It
has demonstrated proficiency in generating test cases with high coverage and detecting
bugs in complicated software. In contrast to BMC, which depends on its concept of en-
coding execution paths up to a specific length, symbolic execution explores each path
symbolically and independently. SAT or SMT solvers are applied to the constraints deter-
mined for each path. KLEE [151] is one of the most used symbolic execution engines. It
is a tool that exploits the LLVM compiler infrastructure and dynamic symbolic execution
to explore the search space path-by-path. KLEE has been used in numerous specialized
tools as a reliable symbolic execution engine. Additionally, BAP [152] is constructed
on top of Vine [153], which relies on symbolic execution. BAP contains valuable anal-
ysis and verification methods. In its analysis, BAP relies on an intermediate language
(IL). A Tracer [154] is a tool for verification that employs constraint logic programming
(CLP) and interpolation techniques. DART [155] is another approach based on symbolic
execution. It performs software analysis and employs random automated testing to iden-
tify software bugs. Avgerinos, Thanassis, et al. [150] proposed a method for enhancing
symbolic execution with verification-based algorithms. It works to enhance the efficacy
of dynamic symbolic execution. The method demonstrated its capacity to detect errors
and obtain higher code coverage than existing methods for dynamic symbolic execution.
Also, SymbexNet [156] and SymNet [157] are used to validate the implementation of
network protocols. CoVeriTest [158] is a Cooperative Verifier Test generation that uses a
hybrid method for test generation. It applies several conditional model checkers in iter-
ations with numerous configurations for value analysis. CoVeriTest modifies the level of
cooperation and assigns each verifier a time budget. However, the path explosion problem

associated with loops and arrays makes BMC and symbolic execution impractical.

Chapter 2 Kaled Alshmrany 41

Efficient hybrid fuzzing for detecting vulnerabilities in software

2.5.3 | Combination

Relatively recently, the combination of symbolic execution and BMC with fuzzing has
been employed to leverage the power of both techniques. VeriFuzz [159] is among the
most advanced tools that combine BMC with fuzzing. It is a program-aware fuzz tester
that combines feedback-driven evolutionary fuzz testing with static analysis. In addition,
it leverages grey-box fuzzing to exploit lightweight instrumentation for monitoring test-
run behaviour. VeriFuzz won the top prize at Test-Comp 2020 [160]. FuSeBMC and
VeriFuzz are similar in their general concept because they combine the BMC and fuzzing
techniques. However, FuSeBMC differs in many aspects. Firstly, we adopted the ESBMC
tool as a BMC engine and modified fuzzer (based on AFL) and the selective fuzzer as our
fuzzing engines. Secondly, we apply Clang to analyze the target code, unlike VeriFuzz,
which relies on a C and C++ parser. We also employ SMT-based encodings in FuSeBMC,
as opposed to SAT-based encodings in VeriFuzz. Furthermore, in terms of seeds, our
tool produces seeds during the detecting process, unlike VeriFuzz, which relies on pre-
seeds. Moreover, instrumentation was developed in FuSeBMC to analyze the code, while
VeriFuzz relied on IR. Finally, in our approach, we have developed a system called Tracer
to coordinate the operations between the engines other than VeriFuzz, which employs the

BMC as an initial step only and relies on fuzzing heavily.

Stephens et al. developed Diriller [44], a hybrid vulnerability excavation tool. It de-
tects deeply embedded bugs by combining guided fuzzing and concolic execution. It uti-
lizes concolic execution to analyze the program and trace the inputs. Also, the concolic
execution guides fuzzing along various paths by utilizing its constraint-solving engine.
Stephens et al. combined the strengths of the two techniques and reduced their limitations
by avoiding path explosion in concolic analysis and incompletion in fuzzing. First, Driller
splits the program based on tests for specific input values. Then, applying the proficiency
of fuzzing, Driller explores potential input values in a compartment. Although Driller
has demonstrated its effectiveness in detecting more bugs, it may lead to the path explo-
sion problem because it requires significant computational resources. MaxAFL [161] is
a gradient-based fuzzer that is built on top of AFL. Initially, the developers determine
the Maximum Expectation of Instruction Count (MEIC) using a lightweight static anal-
ysis. Then, they produce an objective function using MEIC. After that, a gradient-based
optimization algorithm is used to generate efficient inputs by minimizing the objective
function. Hybrid Fuzz Testing [162] is a tool that easily generates provably random test
cases, ensuring the execution of unique paths. In addition, it identifies unique execution
paths by utilizing symbolic execution to identify the border nodes that lead to such paths.
Also, the tool gathers all possible border nodes based on resource restrictions to utilize

fuzzing with provably random input, preconditioned to lead to each border node.

Badger [163] presents a hybrid testing approach for complexity analysis. It produces

42 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

new input using Symbolic PathFinder [164] and provides the Kelinci fuzzer with worst-
case analysis. Badger utilizes fuzz testing to generate a diverse set of inputs to increase
coverage and the resource-related cost associated with each path. He et al. [165] devel-
oped a method for learning a fuzzer via symbolic execution. It begins by phrasing the
learning task within the context of imitation learning. Then, it leverages symbolic exe-
cution to provide high-quality inputs with high coverage, while a neural network-based
fuzzer learns to fuzz new programs. LibKluzzer [166] is a novel implementation that
combines symbolic execution and fuzzing. Its strength is derived from the combination
of coverage-guided fuzzing and white-box fuzzing. LibKluzzer is constructed of Lib-
Fuzzer, and an extension of KLEE called KLUZZER [167]. Munch [129] is a hybrid
framework tool. It utilizes fuzzing with seed inputs produced by symbolic execution and
focuses on symbolic execution when fuzzing becomes saturated. It aims to decrease the
number of queries sent to the SMT solver to concentrate on the paths that may lead to un-
covered functions. The developers designed Munch to increase function coverage. SAGE
(Scalable Automated Guided Execution) is a hybrid fuzzer developed by Godefroid et
al. [106]. Microsoft makes considerable use of SAGE, which has successfully detected
security-related bugs. It utilizes generational search to expand dynamic symbolic exe-
cution and improve code coverage by negating and solving path predicates. In addition,
SAGE relies on DART’s random test methodology to mutate good inputs using grammar.
FairFuzz [168] is a grey-box fuzzer employing guided mutation. It employs a mutation
mask for each pair of seeds and rare branches to guide the fuzzing to each uncommon
branch using coverage. SAFL [169] is an effective fuzzer for C/C++ programs. It uses
symbolic execution in a lightweight approach to producing initial seeds that can be used
to determine the proper fuzzing direction.

The combination of fuzzing and symbolic execution for software verification has
proven to be the most effective. Our approach uses fuzzing and BMC in tandem to lever-
age their strengths and overcome their weaknesses. It expands on this combination by
utilizing our main novelties, which we explained in chapters 3 and 4. The tracer module
and smart seed generation distinguish our approach (FuSeBMC) from other approaches
and tools. In addition, by utilizing shared memory and analyzing the graph goal in order

to select an effective strategy, FuSeBMC was able to win six international awards.

2.5.4 | Existing Solutions & their Limitations

Numerous kinds of research have been conducted to find solutions to software problems
based on C language because of its popularity in many common systems in governments
and large companies. Table X reviews the most popular state-of-the-art tools that work on
C programs, where the most efficient techniques and tools in each technique are divided

on the table. Throughout our research, we focused on employing requirements relating

Chapter 2 Kaled Alshmrany 43

Efficient hybrid fuzzing for detecting vulnerabilities in software

Requirements Symbol Description
Approach R1 R2 R3 R4 Y Requirement met
N Requirement not met

Fuzzing
SPIKE [137] Y Y N N * Partial functionality
AutoFuzz [153] & N
AFL[66] Y * N *
VeriFuzz [167] Y Y * *
Symbolic execution
SYMBEXNET [164] Y Y Y *
Klee [159] v N . + RI. Capacity to detect vulnerabilities.

ee
LibKluzzer [174] v N . N * R2. Ability to achieve high code coverage

ibKluzzer
SymNet [165] Y « v N + R3. Avoiding the path explosion
Model checking * R4, How fast to detect vulnerabilities
ESBMC [156] Y N N *
CBMC [105] & N N W

Figure 2.6: Limitations of Existing Related Solutions.

to the fundamental elements and highlighting the limitations of most methodologies. Our
requirements revolve around the following: 1) Capacity to detect vulnerabilities. 2) Abil-
ity to achieve high code coverage. 3) Avoiding the path explosion. 4) How fast to detect
vulnerabilities. The table evaluates whether these approaches can or cannot satisfy those

requirements. The table also identifies the solutions and their constraints.

2.6 | Overview of hybrid fuzzing

Since 2007, numerous researchers have incrementally improved hybrid fuzzing. Table 2.2
outlines the stages of development and the essential tools for combining the two tech-
niques. In 2007, Miller B.P. et al. [112] introduced the notion of hybrid testing. The
author proposes a mixed test method by combining the two techniques. The experiment
demonstrates that the effect of the mixed test is significantly superior to that of the single
instance. However, the author did not clarify if the techniques could compensate for each
other’s weaknesses. Even though the author did not explicitly propose the hybrid fuzzing
technique in this study, the random testing notion employed is consistent with the fuzzing.
Therefore this research has become the conceptual prototype for numerous hybrid fuzzing
techniques that have followed [170]. Then, TaintScope [171], a checksum-aware directed
fuzzing solution, was introduced in 2010. Combining concrete and symbolic execution
approaches, TaintScope can automatically correct the checksum fields of malformed test
cases. In 2012 Pak B S. et al. [162] introduced the idea of hybrid fuzzing. They showed
the advantages of the hybrid fuzz testing technique for improving code coverage with rea-
sonably low overhead. After that, Sword [172], an automatic fuzzing solution for software

vulnerability identification, was proposed in 2014. It utilizes a combination of fuzzing,

44 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

symbolic execution, and taint analysis techniques to address the various issues. Sword can
produce test cases with the highest likelihood of triggering deep-seated program vulnera-
bilities by the guidance of symbolic execution and taint analysis. In 2015, Binary-oriented
hybrid fuzz testing [173] was developed, which combines the benefits of fuzz testing and
symbolic execution. The concept behind this strategy is that when fuzz testing cannot
raise the code coverage ratio, symbolic execution will begin to operate and create new
program input. The introduction of AFL [56] introduced innovative concepts to the cor-
porate and academic communities. It is a significant step forward in developing fuzzing
and a turning point for the hybrid fuzzing technique [170], which can bring design ideas.
Therefore, in 2016, N.J. et al. presented Driller [44], a novel hybrid fuzzing technique.
Driller combines the most efficient fuzzing and symbolic execution techniques using the
fork server concept. In 2018, hybrid fuzzing expanded, attracting domestic and interna-
tional researchers. This year, QSYM [104] proposed by Yun is a comprehensive analysis
of the benefits and drawbacks of hybrid fuzzing. It demonstrated remarkable results. In
2019, Xie Xiaofei et al. proposed Afleer [174]. It integrates AFL with KLEE [151] via a
branch coverage methodology, produces many test cases with AFL, and then searches for
the coverage knowledge gained from AFL using Klee. In 2020, hybrid fuzzing technology
emerged as one of the most significant coverage-oriented fuzzing branches [170]. By ad-
justing the constraint-solving portion of symbolic execution, the Pangolin [175] approach

described by Rongxin Wu et al. enhances the effectiveness of vulnerability mining.

The developments of hybrid fuzzing recently are due to the advancement with sym-
bolic execution and the advancement with fuzzing. For example, KLEE has dramatically
improved the efficiency of symbolic execution, making it possible to combine symbolic
execution and fuzzing. On the other hand, tools such as AFL and Libfuzzer [107] have
made coverage-oriented fuzzing the standard, allowing hybrid fuzzing to introduce new
concepts. In the years that followed, the combination of constraint solutions and coverage
became widespread [170]. There have been numerous excellent academic and commer-

cial tools for hybrid fuzzing to date.

In this section, we compare the performance and coverage of each software testing
methodology. Figure 2.7 shows a comparison of Code coverage for each software testing
technique. Fuzzing tools are fast, enabling them to explore PUT branches more simply
and deeply. However, the fuzzer frequently generates test inputs that cannot explore new
paths. This causes the fuzzer to become time-consuming and less effective. On the one
hand, symbolic execution can cover and analyze all fundamental program blocks. On the
other hand, symbolic execution may not be theoretically scalable due to the vast number of
paths in the target program. Also, the path explosion problem poses a substantial obstacle
for symbolic execution users, which may impede the coverage process. In contrast, the
hybrid fuzzer can cover all branches effectively, as shown in Figure 2.7c. The fundamental

concept underlying hybrid fuzzers is integrating both techniques to alleviate each other’s

Chapter 2 Kaled Alshmrany 45

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 2.2: A history of research on hybrid fuzzers.

Most proposals/tools for hybrid fuzzers

2007 Miller B.P. et al. [112] introduced the notion of hybrid testing

2010 TaintScope [171], a checksum-aware directed fuzzing solution

2012 Pak B S. et al. [162] introduced the idea of hybrid fuzzing for the first time
2014 Sword [172], an automatic fuzzing solution for software vulnerability identification
2015 Binary-oriented hybrid fuzz testing [173]

2016 Driller [44], a novel hybrid fuzzing technique

2018 || QSYM [104] is a comprehensive analysis of the benefits and drawbacks of hybrid fuzzing.

2019 Xie Xiaofei et al. proposed Afleer [174]

2020 Pangolin [175] approach enhances the effectiveness of vulnerability mining.

limitations and obtain high code coverage.

Table 2.3 provides a comprehensive comparison of software testing techniques. In
addition, the purpose and objective of the combination, as well as the most popular tools
utilized, are described. Furthermore, it illustrates the pros and cons of each technique
and its usability, scalability, and accuracy. The table demonstrates that hybrid fuzzing
approaches are superior to other methods in several aspects. Moreover, numerous soft-
ware testing competitions are being dominated by hybrid fuzzing tools, demonstrating the

effectiveness of this technique.

The effectiveness of each technique’s execution rate and code coverage is compared
in Figure 2.8. Although symbolic execution has a high code coverage, its execution rate
speed is one of its major limitations. In addition, the fuzzing approach is fast in finding
bugs, but they have low code coverage results. The result of a low code coverage ren-
ders it ineffective for finding all program bugs. The hybrid fuzzer approach is the most
effective due to its speed and capacity to test and cover large systems, even though it
has a lower code coverage than symbolic execution. Therefore, we present our hybrid
fuzzer FuSeBMC that has been used recently as a comparison tool in many research pa-
pers [45, 176]. FuSeBMC differs from many hybrid fuzzer in that it is based on three
engines (modified AFL, BMC, and selective fuzzer) that are co-operated by the subsys-
tem tracer. Moreover, we provided lightweight instrumentation on AFL to help prevent

the fuzzing process from getting stuck. Also, in our fuzzing, we have been working on

46 Chapter 2 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

el ST ol
| [| [|
ray ras

(a) Fuzzing (b) Symbolic execution (c) Hybrid fuzzing

Figure 2.7: Code coverage comparison for each software testing technique. Circles represent
the paths in the target program and their depth, while the colours indicate the ability of each
technology to cover the paths.

what we call life push; when we see that the fuzzing process is stuck in a certain process,
we push the bits to go to the following process, preventing the fuzzer from wasting time
or becoming stuck in one. In terms of BMC, our BMC here is characterized by providing
instrumentation and labels, which helps guide and run the BMC engine to reduce resource
consumption. Finally, we apply static analysis to mitigate the downsides when integrating
the technologies. As a result, FuSeBMC showed its efficiency compared to our closest

competitors, Klee, Symbiotic, and VeriFuzz.

Chapter 2 Kaled Alshmrany 47

Efficient hybrid fuzzing for detecting vulnerabilities in software

Effectiveness Fast

Slow

White-Box

Ve I\
fuzzer
R Hybrid fuzzer
Grey-Box J
o)
fuzzer
Ve Y
BMC ()
Symbolic
execution
_ _J
Low Coverage High

Figure 2.8: Techniques comparisons in code coverage and execution process. The x-axis shows
the capacity of coverage achieved, while the y-axis shows the effectiveness.

48

Chapter 2

Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

498N 0})1 ST
x3[dwod MOy

Aseq pleH pIeH Aseq
Anqeress
1s°d ped pooH pooH
£oeanddy
1SoYSIH Y31 91BIOPOIN QIBIOPOIN
UOTJBOYTIAA - UOTJBOYTIAA -
aAnd3lqO
a3e10A0)) / 3unsqy, - 93e10A0)) / SUNSY, - uonedyYLIA / Junsay, 93e10A0)) / Sunsay,
98eI10A00 Ur oA1sudxy - SWA)SAS JUIRIISUOD d3IB] YIIM MO[S - mo[syuorsordxe yied - syjed weaSoid ssIp -
Suo
QIBM]JOS 9[BIS-93IR] UL JUSIOYJAU] -|S90In0sal aaIsuadxg uorsojdxe-yied -| sdooj a3re[woiy Jopng - [suonipuod xajdwoos je 9133nng - 0
sSnq a10ur 30919 - 9819400 YS1H - swo[qoid ureyrad 10j 19eg -| $1$9) PIJRWOINE WIOJIO{ -
S0
suonipuod Apyomb ssed4q - SI[NSaI 9JBINIIV//ISE - JSe} pue dnewoine A[e3Ie - u3isop 03 oduwig - d
[(+01]1 WASO [sSTl ava [8¥1] DINISH [LOT] 19zzn)qr] [0o],
Jrdwrexy
[#¥] 1M [rs1] 9™ [c8] DNED [9¢] TV
Su1zzny ym
djeI3NUI Jo dsodang
Surpino - uoneiodxe yred uonetojdxa yred uoneIouas pass -
PUQAH UOIINIIXI I[OqUIAS IING Suizzng

sanbruyo9) jo soueuroyrad ay; Sutredwo)) :¢°g AqeRL,

49

Kaled Alshmrany

Chapter 2

Efficient hybrid fuzzing for detecting vulnerabilities in software

2.7 | Summary

This chapter has outlined the background of software testing, code coverage, and tech-
niques used in this thesis. Also, it provides research relevant to the method and an
overview of the combined techniques, including their history, pros, and cons. In Sec-
tion 2.1, we began by providing a historical overview of software testing, its origins, and
its significance in the industry. Then, we defined numerous concepts, including errors, test
cases, and test suites, necessary to understand a technique for detecting software bugs. In
addition, we provided a summary of the testing life cycle model to illustrate test pro-
cesses and potential mistake locations. Then, we described the components of test cases
and their function in software testing. Next, in Section 2.4.3, we discussed code coverage
and its function in finding vulnerabilities and ensuring system correctness. Moreover, we
explored various viewpoints regarding the relationship between code coverage and bug
detection. After that, we described the various code coverage types and presented an
example for each.

In section 2.2, we provided an overview of the testing techniques and how software
testing practices are far from satisfactory [67, 68, 69, 70]. After that, we presented the
BMC technique, which consists of unwinding the design and the correctness property k
times. Then, we explained its concept and operation in detail. In Section 2.4, we discussed
the fuzzing approach, its concept, and its algorithm. Also, we described types of fuzzing,
including their advantages and disadvantages, and reasons for classifying each type.

In Section 2.5, we discussed and classified related work based on the employed tech-
niques. Also, we briefly discussed state-of-the-art tools for each technique. In addition,
we outlined the disadvantages and challenges of these tools and approaches.

Finally, we surveyed hybrid fuzzing tools in Section 2.6. First, this survey examined
the development of this type of technology across time. Then, we demonstrated the ad-
vantages of hybrid tools and how they leverage strengths and overcome weaknesses in
each technique. Following that, we created a comparison between the hybrid techniques
and other software testing techniques, comparing them in numerous areas, such as accu-
racy, usability, and scalability. As a result, the survey showed the advantages of hybrid

testing approaches for detecting software errors and achieved high coverage.

50 Chapter 2 Kaled Alshmrany

Chapter

FuSeBMC: An Energy-Efficient Test
Generator for Finding Security

Vulnerabilities in C Programs

A man who dares to waste one hour of
time has not discovered the value of
life.

Charles Darwin

3.0 | Chapter Overview

3.0.1 | Thesis Context

The previous chapter provided an overview of the software testing field and introduced
its basic terminology. The section then illuminated the primary obstacles associated with
the employed techniques. In addition, it clarified related works and their challenges and
shortcomings. Lastly, a survey was conducted on hybrid techniques, their impact on
software testing, and how they have become attractive. In this chapter, we explore hybrid
techniques that combine both techniques’ strengths to optimize the vulnerability detection
process. In addition, we aim to reduce the effort and consumption caused by hybrid tech-
niques. We then conducted a literature review on theories and state-of-the-art tools. Next,
we discuss our hybrid approach based on fuzzing and symbolic execution via bounded
model checking. Also, we provide our selective fuzzer that learns from the test cases
produced by fuzzing/BMC to produce new test cases for the uncovered goals. Finally, we
present a novel algorithm for managing the time allocated to fuzzing and BMC to improve

FuSeBMC’s energy consumption.

51

Efficient hybrid fuzzing for detecting vulnerabilities in software

=

Check for
updates

FuSeBMC': An Energy-Efficient Test
Generator for Finding Security
Vulnerabilities in C Programs

If'f Pt Kaled M. Alshmrany'2(®)@®, Mohannad Aldughaim'®, SN
g Evaluation
Evalugtion Ahmed Bhayat'@®), and Lucas C. Cordeiro’ AR

*

Available 1 University of Manchester, Manchester, UK
kaled.alshmrany@postgrad.manchester.ac.uk
2 Institute of Public Administration, Jeddah, Saudi Arabia

The content of this chapter is adapted from: Kaled M Alshmrany, Mohannad Al-
dughaim, Ahmed Bhayat, and Lucas C Cordeiro. “FuSeBMC: An energy-efficient test
generator for finding security vulnerabilities in ¢ programs”. In: The International Con-
ference on Tests and Proofs (TAP). https://doi.org/10.1007/978-3-030~
79379-1_6. Springer. 2021, pp. 85-105.

3.0.2 | Author’s Contributions

I designed the main idea of the research paper, developed and validated the approach,
conducted experiments and evaluation, analysed results, investigated related work, pro-
vided and edited all graphics, participated in the entire writing process, and addressed
the reviewer’s comments. In addition, Muhannad and Ahmed provided critical feedback,
proofread the paper, and made revisions and amendments during the writing process. My
supervisor, Lucas, also contributed to the idea and proofread the paper. Moreover, he

guided the entire research procedure.

3.0.3 | Abstract

We describe and evaluate a novel approach to automated test generation that exploits
fuzzing and Bounded Model Checking (BMC) engines to detect security vulnerabilities
in C programs. We implement this approach in a new tool FuSeBMC that explores and
analyzes the target C program by injecting labels that guide the engines to produce test
cases. FuSeBMC also exploits a selective fuzzer to produce test cases for the labels that
fuzzing and BMC engines could not produce test cases. Lastly, we manage each engine’s
execution time to improve FuSeBMC’s energy consumption. We evaluate FuSeBMC by
analysing the results of its participation in Test-Comp 2021 whose two main categories
evaluate a tool’s ability to provide code coverage and bug detection. The competition re-

sults show that FuSeBMC performs well compared to the state-of-the-art software testing

52 Chapter 3 Kaled Alshmrany

https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-79379-1_6

Efficient hybrid fuzzing for detecting vulnerabilities in software

tools. FuSeBMC achieved 3 awards in the Test-Comp 2021: first place in the Cover-Error
category, second place in the Overall category, and third place in the Low Energy Con-

sumption category.

keywords Automated Test Generation and Bounded Model Checking and Fuzzing

and Security.

3.1 | Introduction

Developing software that is secure and bug-free is an extraordinarily challenging task.
Due to the devastating effects vulnerabilities may have, financially or on an individual’s
well-being, software verification is a necessity [177]. For example, Airbus found a soft-
ware vulnerability in the A400M aircraft that caused a crash in 2015. This vulnerability
created a fault in the control units for the engines, which caused them to power off shortly
after taking-off [178]. A software vulnerability is best described as a defect or weak-
ness in software design [179]. That design can be verified by Model Checking [180] or
Fuzzing [43]. Model-checking and fuzzing are two techniques that are well suited to find
bugs. In particular, model-checking has proven to be one of the most successful tech-
niques based on its use in research and industry [181]. This paper will focus on fuzzing
and bounded model checking (BMC) techniques for code coverage and vulnerability de-
tection. Code coverage has proven to be a challenge due to the state space problem, where
the search space to be explored becomes extremely large [181]. For example, vulnera-
bilities are hard to detect in network protocols because the state-space of sophisticated
protocol software is too large to be explored [182]. Vulnerability detection is another
challenge that we have to take besides the code coverage. Some vulnerabilities cannot be
detected without going deep into the software implementation. Many reasons motivate us
to verify software for coverage and to detect security vulnerabilities formally. Therefore,
these problems have attracted many researchers’ attention to developing automated tools.

Researchers have been advancing the state-of-the-art to detect software vulnerabili-
ties, as observed in the recent edition of the International Competition on Software Testing
(Test-Comp 2021) [183]. Test-Comp is a competition that aims to reflect the state-of-the-
art in software testing to the community and establish a set of benchmarks for software
testing. Test-Comp 2021 [183], had two categories Error Coverage (or Cover-Error) and
Branch Coverage (or Cover-Branches). The Error Coverage category tests the tool’s abil-
ity to discover bugs where every C program in the benchmarks contains a bug. The aim
of the Branch Coverage category is to cover as many program branches as possible. Test-
Comp 2021 works as follows: each tool task is a pair of an input program (a program
under test) and a test specification. The tool then should generate a test suite according

to the test specification. A test suite is a sequence of test cases, given as a directory of

Chapter 3 Kaled Alshmrany 53

Efficient hybrid fuzzing for detecting vulnerabilities in software

files according to the format for exchangeable test-suites'. The specification for testing
a program is given to the test generator as an input file (either coverage-error-call.prp or
coverage branches.prp for Test-Comp 2021) [183].

Techniques such as fuzzing [112], symbolic execution [184], static code analysis [185],
and taint tracking [186] are the most common techniques, which were employed in Test-
Comp 2021 to cover branches and detect security vulnerabilities [183]. Fuzzing is gen-
erally unable to create various inputs that exercise all paths in the software execution.
Symbolic execution might also not achieve high path coverage because of the depen-
dence on Satisfiability Modulo Theories (SMT) solvers and the path-explosion problem.
Consequently, fuzzing and symbolic execution by themselves often cannot reach deep
software states. In particular, the deep states’ vulnerabilities cannot be identified and
detected by these techniques in isolation [187]. Therefore, a hybrid technique involv-
ing fuzzing and symbolic execution might achieve better code coverage than fuzzing or
symbolic execution alone. VeriFuzz [159] and LibKluzzer [166] are the most prominent
tools that combine these techniques. VeriFuzz combines the power of feedback-driven
evolutionary fuzz testing with static analysis, where LibKluzzer combines the strengths
of coverage-guided fuzzing and dynamic symbolic execution.

This paper proposes a novel method for detecting security vulnerabilities in C pro-
grams that combines fuzzing with symbolic execution via bounded model checking. We
make use of coverage-guided fuzzing to produce random inputs to locate security vulner-
abilities in C programs. Separately, we make use of BMC techniques [188, 189]. BMC
unfolds a program up to depth k& by evaluating (conditional) branch sides and merging
states after that branch. It builds one logical formula expressed in a fragment of first-
order theories and checks the satisfiability of the resulting formula using SMT solvers.
These two methods are combined in our tool FuSeBMC which can consequently handle
the two main features in software testing: bug detection and code coverage, as defined by
Beyer et al. [190]. We also manage each engine’s execution time to improve FuSeBMC’s
efficiency in terms of verification time. Therefore, we raise the chance of bug detection
due to its ability to cover different blocks of the C program, which other tools could not
reach, e.g., KLEE [151], CPAchecker [191], VeriFuzz [159], and LibKluzzer [166].
Contributions. This paper extends our prior work [8] by making the following original
contributions.

* We detail how FuSeBMC guides fuzzing and BMC engines to produce test cases
that can detect security vulnerabilities and achieve high code coverage while mas-
sively reducing the consumption of both CPU and memory. Furthermore, we dis-
cuss using a custom fuzzer we refer to as a selective fuzzer as a third engine that
learns from the test cases produced by fuzzing/BMC to produce new test cases for

the uncovered goals.

"https://gitlab.com/sosy-lab/software/test-format/

54 Chapter 3 Kaled Alshmrany

https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-error-call.prp
https://github.com/sosy-lab/sv-benchmarks/blob/testcomp21/c/properties/coverage-branches.prp
https://gitlab.com/sosy-lab/software/test-format/

Efficient hybrid fuzzing for detecting vulnerabilities in software

Test speciﬁca fion Test execution

MHﬁ

i Anlyze C code / Produce counterexamples for [Create Graphml]

(C Code

cover-error and cover-branches

Fuzzing
4: Selctive Learn || Test suite ||
Inject labels Fuzzer
Test
Specification

L

Test-Suite

Test
Validator

Coverage
Statistics

C

Figure 3.1: FuSeBMC: An Energy-Efficient Test Generator Framework.

Test generation
* We provide a detailed analysis of the results from FuSeBMC’s successful partic-
ipation in Test-Comp 2021.FuSeBMC achieved first place in Cover-Error cate-
gory and second place in Overall category. FuSeBMC achieved first place in the
subcategories ReachSafety-BitVectors, ReachSafety-Floats, ReachSafety-Recursive,
ReachSafety-Sequentialized and ReachSafety-XCSP. We analyse the results in depth
and explain how our research has enabled FuSeBMC’s success across these cate-

gories as well its low energy consumption.

3.2 | FuSeBMC: An Energy-Efficient Test Generator for Finding Security

Vulnerabilities in C Programs

We propose a novel verification method named FuSeBMC (cf. Fig. 3.1) for detecting se-
curity vulnerabilities in C programs using fuzzing and BMC techniques. FuSeBMC builds
on top of the Clang compiler [51] to instrument the C program, uses Map2check [192,
193] as a fuzzing engine, and ESBMC (Efficient SMT-based Bounded Model Checker)
[90, 194] as BMC and symbolic execution engines, thus combining dynamic and static
verification techniques. We have employed Map2check as our fuzzing engine for several
reasons. First, it relies on a fuzzer based on libFuzzer. The fuzzer in this place is quick
and lightweight when providing inputs for programs with large arrays, relieving much of
the load on our main engine BMC. In addition, the joint collaboration between developers
in FuSeBMC and Map2check is a good motivation for integrating Map2check easily into
our approach.

The method proceeds as follows. First, FuSeBMC takes a C program and a test speci-
fication as input. Then, FuSeBMC invokes the fuzzing and BMC engines sequentially to

Chapter 3 Kaled Alshmrany 55

Efficient hybrid fuzzing for detecting vulnerabilities in software

find an execution path that violates a given property. It uses an iterative BMC approach
that incrementally unwinds the program until it finds a property violation or exhausts time
or memory limits. In code coverage mode, FuSeBMC explores and analyzes the target C
program using the clang compiler to inject labels incrementally. FuSeBMC traverses ev-
ery branch of the Clang AST and injects a label in each of the form GOAL; for i € N.
Then, both engines will check whether these injected labels are reachable to produce test
cases for branch coverage. After that, FuSeBMC analyzes the counterexamples and saves
them as a graphml file. It checks whether the fuzzing and BMC engines could produce
counterexamples for both categories Cover-Error and Cover-Branches. If that is not the
case, FuSeBMC employs a second fuzzing engine, the so-called selective fuzzer (cf. Sec-
tion 3.2.6), which attempts to produce test cases for the rest of the labels. The selective

fuzzer produces test cases by learning from the two previous engines’ output.

FuSeBMC introduces a novel algorithm for managing the time allocated to its compo-
nent engines. In particular, FuSeBMC manages the time allocated to each engine to avoid
wasting time for a specific engine to find test cases for challenging goals. For example,
let us assume we have 100 goals injected by FuSeBMC and 1000s to produce test cases.
In this case, FuSeBMC distributes the time per engine per goal so that each goal will have
10s and recalculate the time for the goals remaining after each goal passed. If an engine
succeeds on a particular goal within the time limit, the extra time is redistributed to the

other goals; otherwise, FuSeBMC kills the process that passes the time set for it.

Furthermore, FuSeBMC has a minimum time, which a goal must be allocated. If there
are too many goals for all to receive this minimum time, FuSeBMC will select a subset
to attempt using a quasi-random strategy (e.g., all even-numbered goals). FuSeBMC also
manages the global time of the fuzzing, BMC, and selective fuzzing engines. It gives
13% of the time for fuzzing, 77% for BMC, and 10% for selective fuzzing. The timing of
all engines was divided based on the evaluation of various prior experiments. FuSeBMC
further carries out time management at this global level to maximize engine usage. If, for
example, the fuzzing engine is finished before the time allocated to it, its remaining time
will be carried over and added to the allocated time of the BMC engine. Similarly, we

add the remaining time from the BMC engine to the selective fuzzer allocated time.

FuSeBMC prepares valid test cases with metadata to test a target C program using
TestCov [195] as a test validator. The metadata file is an XML file that describes the test
suite and is consistently named metadata.xml. Fig 3.2 illustrates an example metadata
file with all available fields [195]. Some essential fields include the program function
that is tested by the test suite (entryfunction), the coverage criterion for the test suite
(speci fication), the programming language of the program under test (sourcecodelang),
the system architecture the program tests were created for (architecture), the creation
time (creationtime), the SHA-256 hash of the program under test (programhash), the

producer of counterexample (producer) and the name of the target program

56 Chapter 3 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

1 <?xml version='1.0">

2 <!DOCTYPE test-metadata PUBLIC [...]>

3 <test-metadata>

<entryfunction>main</entryfunction>

<specification>COVER (init (main()), FQL(COVER EDGES (RDECISIONEDGE
)))

</specification>

<sourcecodelang>C</sourcecodelang>

<architecture>32bit</architecture>

<creationtime>2021-02-28 20:44:56.117416</creationtime>

<programhash>e8f2cf545726d8f791bfcl37e9%9eca7e9dedcb696</
programhash>

<producer>FuSeBMC</producer>

<programfile>sv-benchmarks/c/array-tiling/skippedu.c</
programfile>

</test-metadata>

—_
OOOIN Wik

—

W N—=

Figure 3.2: An example of a metadata.

(programfile). A test case file contains a sequence of tags (input) that describes the
input values sequence. Fig 3.3 illustrates an example of the test case file.

Algorithm 2 describes the main steps we implemented in FuSeBMC. It consists of
extracting all goals of a C program (line 1). For each goal, the instrumented C program,
containing the goals (line 2), is executed on our verification engines (fuzzing and BMC)
to check the reachability property produced by REACH(G) for that goal (lines 8 & 20).
REACH indicates that it has been reached, while BMC refers to our BMC engine (ES-
BMC), and selective fuzzer is referred to our selective fuzzer engine. REACH is a func-
tion; it takes a goal (G) as input and produces a corresponding property for fuzzing/BMC
(line 7 & 19). If our engines find that the property is violated, meaning that there is a
valid execution path that reaches the goal (counterexample), then the goals are marked as
covered, and the test case is saved for later (lines 9-11). Then, we continue if we still have
time allotted for each engine. Otherwise, if our verification engines could not reach some
goals, then we employ the selective fuzzer in attempt to reach these as yet uncovered
goals. In the end, we return all test cases for all the goals we have found in the speci-
fied XML format (line 41). Goal labels demonstrate the effectiveness of our technique
in guiding engines—moreover, the way of combining the two technologies and utilizing
duties for each. The generated test cases are then used in the selective fuzzer to build

additional test cases that could detect bugs or increase coverage.

3.2.1 | Analyze C Code

FuSeBMC explores and analyzes the target C programs as the first step using Clang [196].
In this phase, FuSeBMC analyzes every single line in the C code and considers the con-
ditional statements such as the if-conditions, for, while, and do while loops in the code.
FuSeBMC takes all these branches as path conditions, containing different values due to
the conditions set used to produce the counterexamples, thus helping increase the code

coverage. It supports blocks, branches, and conditions. All the values of the variables

Chapter 3 Kaled Alshmrany 57

Efficient hybrid fuzzing for detecting vulnerabilities in software

Algorithm 2 Proposed FuSeBMC algorithm.
Require: program P
1: goals < clang_extract_goals(P) ; // reachability property

2: instrumentedP < clang_instrument_goals(P, goals)
3: reached_goals < ()
4: tests < ()
5: FuzzingTime = 150
6: for all G € goals do
7. ¢+ REACH(G); // ¢ : property for fuzzing/BMC
8: result,test_case < Fuzzing(instrumentedP, ¢, FuzzingTime)
9: ifresult = false then
10: reached_goals < reached_goals U {G}
11 tests < tests U {test_case}
12: endif
13: if FuzzingTime = (O then
14: break
15: endif
16: end for
17: BMCTime = FuzzingTime + 700
18: for all G € (goals — reached_goals) do
190 ¢ <+ REACH(G)
20: result, test_case < BMC(instrumentedP, ¢, BMCTime)
21: if result = false then
22: reached_goals < reached_goals U {G}
23: tests < tests U {test_case}
24: end if
25: if BMCTime = 0 then
26: break
27: end if
28: end for
29: Selective FuzzerTime = BMCTime + 50
30: for all G € (goals — reached_goals) do
31: ¢« REACH(G)
32: result < selective fuzzer(instrumentedP, ¢, Selective FuzzerTime)
33: if result = false then
34: reached_goals < reached_goals U {G}
35: tests < tests U {test_case}
36: end if
37: if Selective FuzzerTime = 0 then
38: break
39: endif
40: end for
41: return tests

58 Chapter 3 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

<?xml version="1.0"?>
<!DOCTYPE testcase PUBLIC [...]>
<testcase>
<input>2</input>
<input>1</input>
<input>128</input>
<input>0</input>
<input>0</input>
<input>1</input>
<input>64</input>
<input>0</input>
<input>0</input>
</testcase>

WN— OOV N W —

—

Figure 3.3: An example of test case file.

within each path are taken into account. Parentheses and the else-branch are added to

compile the target code without errors.

3.2.2 | Inject Labels

FuSeBMC injects labels of the form GOAL; in every branch in the C code as the second
step. In particular, FuSeBMC adds else to the C code that has an if-condition with no
else at the end of the condition. Additionally, FuSeBMC will consider this as another
branch that should produce a counterexample for it to increase the chance of detecting
bugs and covering more statements in the program. For example, the code in Fig. 3.4
consists of two branches: the if-branch is entered if condition x < 0 holds; otherwise, the
else-branch is entered implicitly, which can exercise the remaining execution paths. Also,

Fig. 3.4 shows how FuSeBMC injects the labels and considers it as a new branch.

1 #include <stdio.h>

\ \
| 2 int example () { \
| 3 int x; \
|4 if (x <0) \
: , | 5 GOAL_1:; \
| 1 #include <stdio.h> \ | 6 e
| 2 int example () { \ | 7 }
| 3 int x; \ | 8 else{
| 4 if (x <0){ \ | 9 GOAL 2:; \
| 5 Y \ | 10 } \
| 6 } | |11 return 0; \
|7 | 12 |
(a) Original C code. (b) Code instrumented.

Figure 3.4: Original C code vs code instrumented.

3.2.3 | Produce Counterexamples

FuSeBMC uses its verification engines to generate test cases that can reach goals amongst
GOAL,, GOAL,, ..., GOAL, inserted in the previous phase. FuSeBMC then checks
whether all goals within the C program are covered. If so, FuSeBMC continues to the

next phase; otherwise, FuSeBMC passes the goals that are not covered to the selective

Chapter 3 Kaled Alshmrany 59

Efficient hybrid fuzzing for detecting vulnerabilities in software

fuzzer to produce test cases for it using randomly generated inputs learned from the test

cases produced from both engines. Fig. 3.5 illustrates how the method works.

[Selective Fuzzer]

Goal4 Goal6

Fuzzing
Have all
goals been
@ @ @ covered?
BMC

Goall Goal2 Goal3

Create Graphml

Figure 3.5: Produce Counterexamples.

3.2.4 | Create Graphml

FuSeBMC will generate a graphml for each goal injected and then name it. The name
of the graphml takes the number of the goal extended by the graphml extension, e.g.,
(GOALI. graphml). The graphml file contains data about the counterexample, such as
data types, values, and line numbers for the variables, which will be used to obtain the

values of the target variable.

3.2.5 | Produce test cases

In this phase, FuSeBMC will analyze all the graphml files produced in the previous phase.
Practically, FuSeBMC will focus on the <edge> tags in the graphml that refer to the
variable with a type non-deterministic. These variables will store their value in a file
called, for example, (testcasel.xml). Fig. 3.6 illustrates the edges and values used to

create the test cases.

3.2.6 | Selective Fuzzer

In this phase, we apply the selective fuzzer to learn from the test cases produced by either
fuzzing or BMC engines to produce test cases for the goals that have not been covered by
the two. The selective fuzzer uses the previously produced test cases by extracting from

each the number of assignments required to reach an error. For example, in Fig. 3.7, we

60 Chapter 3 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

<edge id="E2" source="N2" target="N3">
<data key="startline">3</data>
<data key="assumption"> a = -2147483647;</data>
<data key="threadId">0</data>

</edge>

<edge id="E4" source="N4" target="N5">
<data key="startline">4</data>
<data key="assumption">b = 0;</data>
<data key="threadId">0</data>
</edge>

— OV NN

—_—

Figure 3.6: An example of target edges

Selective
Fuzzer

Test Suite

New Test-Case I8

One example of Test-Case

1 18
30 18
-45 18
78 18
91 18
128 18

Figure 3.7: The Selective Fuzzer

assumed that the fuzzing/BMC produced a test case that contains values 18 (1000 times)
generated from a random seed. The selective fuzzer will produce random numbers (1000
times) based on the test case produced by the fuzzer. In several cases, the BMC engine
can exhaust the time limit before providing the information needed by the selective fuzzer,
such as the number of inputs, when large arrays need to be initialized at the beginning of

the program.

3.2.7 | Test Validator

The test validator takes as input the test cases produced by FuSeBMC and then validates
these test cases by executing the program on all test cases. The test validator checks
whether the bug is exposed if the test was bug-detection, and it reports the code cov-
erage if the test was a measure of the coverage. In our experiments, we use the tool
TESTCOV [195] as a test validator. The tool provides coverage statistics per test. It
supports block, branch, and condition coverage and covering calls to an error function.
TESTCOV uses the XML-based exchange format for test cases specifications defined
by Test-Comp [188]. TESTCOV was successfully used in recent editions of Test-Comp
2019, 2020, and 2021 to execute almost 9 million tests on 1720 different programs [195].

Chapter 3 Kaled Alshmrany 61

Efficient hybrid fuzzing for detecting vulnerabilities in software

3.3 | Evaluation

3.3.1 | Description of Benchmarks and Setup

We conducted experiments with FuSeBMC on the benchmarks of Test-Comp 2021 [197]
to check the tool’s ability in the previously mentioned criteria. Our evaluation benchmarks
are taken from the largest and most diverse open-source repository of software verification
tasks. The same benchmark collection is used by SV-COMP [198]. These benchmarks
yield 3173 test tasks, namely 607 test tasks for the category Error Coverage and 2566 test
tasks for the category Code Coverage. Both categories contain C programs with loops,
arrays, bit-vectors, floating-point numbers, dynamic memory allocation, and recursive
functions.

The experiments were conducted on the server of Test-Comp 2021 [197]. Each run
was limited to 8 processing units, 15 GB of memory, and 15 min of CPU time. The test
suite validation was limited to 2 processing units, 7 GB of memory, and 5 min of CPU
time. Also, the machine had the following specification of the test node was: one Intel
Xeon E3-1230 v5 CPU, with 8 processing units each, a frequency of 3.4 GHz, 33 GB
of RAM, and a GNU/Linux operating system (x86-64-Linux, Ubuntu 20.04 with Linux
kernel 5.4).

FuSeBMC source code is written in C++; it is available for downloading at GitHub,?
which includes the latest release of FuSeBMC v3.6.6. FuSeBMC is publicly available
under the terms of the MIT license. Instructions for building FuSeBMC from the source
code are given in the file README.md.

3.3.2 | Objectives

This evaluation’s main goal is to check the performance of FuSeBMC and the system’s
suitability for detecting security vulnerabilities in open-source C programs. Our experi-

mental evaluation aims to answer three experimental goals:

EGI1 (Security Vulnerability Detection) Can FuSeBMC generate test cases that
lead to more security vulnerabilities than state-of-the-art software testing
tools?

EG2 (Coverage Capacity) Can FuSeBMC achieve a higher coverage when com-
pared with other state-of-the-art software testing tools?

EG3 (Low Energy Consumption) Can FuSeBMC reduce the consumption of
CPU and memory compared with the state-of-the-art tools?

https://github.com/kaled-alshmrany/FuSeBMC

62 Chapter 3 Kaled Alshmrany

https://github.com/kaled-alshmrany/FuSeBMC

Efficient hybrid fuzzing for detecting vulnerabilities in software

3.3.3 | Results

First, we evaluated FuSeBMC on the Error Coverage category. Table 3.1 shows the ex-
perimental results compared with other tools in Test-Comp 2021 [197], where FuSeBMC
achieved the 1st place in this category by solving 500 out of 607 tasks, an 82% success
rate.

In detail, FuSeBMC achieved 1st place in the subcategories ReachSafety-BitVectors,
ReachSafety-Floats, ReachSafety-Recursive, ReachSafety-XCSP and ReachSafety- Sequen-
tialized. FuSeBMC solved 10 out of 10 tasks in ReachSafety-BitVectors, 32 out of 33 tasks
in ReachSafety -Floats, 19 out of 20 tasks in ReachSafety-Recursive, 53 out of 59 tasks in
ReachSafety-XCSP and 101 out of 107 tasks in ReachSafety-Sequentialized.

FuSeBMC outperformed the top tools in Test-Comp 2021, such as KLEE [151],
CPAchecker [191], Symbiotic [199], LibKluzzer [166], and VeriFuzz [159] in these sub-
categories. However, FuSeBMC did not perform as well in the ReachSafety-ECA subcat-
egory if compared with leading tools in the competition. We suspect that this is due to the
prevalence of nested branches in these benchmarks. The FuSeBMC’s verification engines
and the selective fuzzer could not produce test cases to reach the error due to the exis-
tence of too many path conditions, making the logical formula hard to solve and making
it difficult to create random inputs to reach the error. Also, we had an issue with our BMC
engine, which we rely heavily on in this subcategory. The issue is reported in the ESBMC
repository on GitHub . This issue is related to the “witnesses.h” file, where we define
the variable as "unsigned short int start_line." Our BMC engine cannot reach the input
“non-deterministic input” if this input is located in the line number higher than 13,372 in
the target code. For example, in the program “problem(07-lable10.c” in the benchmarks of
Test-Comp 2020, our BMC engine could not perform well. This issue happened since the
variable responsible for storing the line number in our BMC engine could not approxi-
mately store a value higher than approximately 13,372. In the “problem07-lable10.c” pro-
gram, the non-deterministic variable is located in line 215,423, which caused our BMC

engine to be unable to produce counterexamples for these goals.

Overall, the results show that FuSeBMC produces test cases that detect more se-
curity vulnerabilities in C programs than state-of-the-art tools, which successfully

answers EG1.

FuSeBMC also participated in the Branch Coverage category at Test-Comp 2021. Ta-
ble 3.2 shows the experimental results from this category. FuSeBMC achieved 4th place
in the category by successfully achieving a score of 1161 out of 2566, behind the 3rd place
system by 8 scores only. In the subcategory ReachSafety-Floats, FuSeBMC obtained the

3https://github.com/esbmc/esbme/issues/291
‘https://test-comp.sosy—-lab.org/2021/results/results-verified/

Chapter 3 Kaled Alshmrany 63

https://github.com/esbmc/esbmc/issues/291
https://test-comp.sosy-lab.org/2021/results/results-verified/

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 3.1: Cover-Error Results*. We identify the best for each tool in bold.

N
N - = o
S E S Dla s %03 B P |8
Z |8 @ |r E o8 |5 [© |-= 5 =)
Cover-Error IR R IR IGD BEE S8 |E
IR ERIBEE EIZIE
SHI S 0 e
@)
ReachSafety-Arrays 10093 | 0 {59169 886796 |11 |73|75]|095
ReachSafety-BitVectors 10/10/ 0| 8|6 |19|0|9 5|8 |79
ReachSafety-ControlFlow 3218108 |8|10{0|11{0|7]|9]9
ReachSafety-ECA 1818|021 14,0110 |15|2]|16
ReachSafety-Floats 331321016226 |0 |30, 3 |0 |0]30
ReachSafety-Heap 57145| 0 |37(38|46| 0 |47 | 9 |47 |44 |47
ReachSafety-Loops 158{131| 0 | 35|53 96| 4 |138]/102| 82 | 78 |136
ReachSafety-Recursive 200190 |0 | 5|16]0 17| 1 17|14 13
ReachSafety-Sequentialized 107|/101] O |61 {93 |86 | O | 83| O [79|57 |99
ReachSafety-XCSP 59153|0|46|52|37|10 |3 |0 |41|31]|25
SoftwareSystems-BusyBox-MemSafety|| 11| 0 | O | 0O | O [0 |0 | 0] 0|0]0]O0
DeviceDriversLinux64-ReachSafety 210{0]0]0O|0O|0]O]O]O]O0]O
Overall 607(405| 0 |225]266|339| 35 |359| 79 |314|246|385

64 Chapter 3 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

first place by achieving 103 out of 226 scores. Thus, FuSeBMC outperformed the top
tools in Test-Comp 2021. Further, FuSeBMC obtained the first place in the subcategory
ReachSafety-XCSP by achieving 97 out of 119 scores. However, FuSeBMC did not per-
form well in the subcategory ReachSafety-ECA compared with the leading tools in the
Test-Comp 2021. Again we suspect the cause to be the prevalence of nested branches in

these benchmarks.

These results validate EG2. FuSeBMC proved its capability in Branch Cover-
age category, especially in the subcategories ReachSafety-Floats and ReachSafety-
XCSP, where it ranked first.

In both Cover-Error and Cover-Branches categories, various test cases produced by
FuSeBMC are validated successfully. The majority of our test cases were produced by
the BMC engine and the selective fuzzer. Incremental BMC allows FuSeBMC to keep
unwinding the program until a property violation is found or time or memory limits are
exhausted. This approach is advantageous in the Cover—-Error category, as finding
one error is the primary goal. Another strength of FuSeBMC is that it can accurately
model C programs that use the IEEE floating-point arithmetic [148, 200]. The floating-
point encoding layer in our BMC engine extends the support for the SMT FP theory
to solvers that do not support it natively. FuSeBMC can test programs with floating-
point arithmetic using all currently supported solvers in BMC engine (ESBMC), including
Boolector [201], which does not support the SMT FP theory natively. On the other hand,
our fuzzing engine did not produce many test cases because it does not model the C
library, so it mostly guesses the inputs. For example, in the Cover-Error category, TestCov
confirms 500 test cases produced by FuSeBMC, where our fuzzing engine produces 13
(Map2Check), BMC engine produces 393 (ESBMC), while our selective fuzzer produces
94 test cases (selective).

However, note that our fuzzing engine is not limited to only producing test cases. It
helps our selective fuzzer by providing information about the number of inputs required
to trigger a property violation, i.e., the number of assignments required to reach an er-
ror. In several cases, the BMC engine can exhaust the time limit before providing such
information, e.g., when there are large arrays that need to be initialized at the beginning
of the program. For example, consider the following code fragment extracted from the
standard_copyl_ground-2.c benchmark, as illustrated in Fig. 3.8.

In this particular example, ESBMC exhausts the time limit before checking the asser-
tion al[z] == a2[x]. Apart from that, our employed verification engines also demonstrate
a certain level of weakness in producing test cases due to the many optimizations we per-

form when converting the program to SMT. In particular, two techniques affected the

Shttps://test-comp.sosy—-lab.org/2021/results/results-verified/

Chapter 3 Kaled Alshmrany 65

https://test-comp.sosy-lab.org/2021/results/results-verified/

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 3.2: Cover-Branches Results®. We identify the best for each tool in bold.

£ @) E 7 5 5 3
“ = N
SIS 2 g & mis|s(z|2 % |3
Cover-Branches i T m |5 |= L.H B2 B |8 S | HE
22 l=|z2 EIR|3|% K |E |8 |5
g |2 |38 |z = o & |5

QO

ReachSafety-Arrays 400 | 284 |139] 229 (225]| 96 |195] 296 [119| 226 | 223 | 295
ReachSafety-BitVectors 62 | 37 |23] 39 | 13|28(29| 40 (27| 37 | 37 | 38

ReachSafety-ControlFlow 67 | 15| 4|16 |3 |8 | 8|16 |5 | 18 | 15 | 18

ReachSafety-ECA 29| 51016 (27310210 7 |12
ReachSafety-Floats 226 1103 | 51| 98 |84 |16 |64 | 90 |41 | 50 | 48 | 99
ReachSafety-Heap 143 | 88 [19| 79 |74 181 |69| 90 40| 84 | 86 | 86
ReachSafety-Loops 581 | 412 |152| 402 |338|274|271| 419 |252| 383 | 385 | 424
ReachSafety-Recursive 53 136 |19 31 |31|18(20]| 36 |9 | 38 | 34| 35

ReachSafety-Sequentialized || 82 | 62 | O | 61 [39|26| 1 | 55| 8 | 36 | 41 | 71

ReachSafety-XCSP 119197 | 0| 80 |80 (81| 2 | 8 |[79] 93 | 69 | 88

ReachSafety-Combinations || 210 | 15 | O | 31 | 8 |82 |18 |139| 2 | 135| 99 | 180

SoftwareSystems-BusyBox-MemSafety 72 1 0 5 4 6 0 6 4 7 4 8

DeviceDriversLinux64-ReachSafety 290 | 35 13| 60 6 | 25|56 58 16 | 44 56 57

SoftwareSystemsSQLite-MemSafety 1 0 0 0 0 0 0 0 0 0 0 0

Termination-MainHeap 231|202 |138| 193 |189]119]166| 199 | 51 | 178 | 185 | 204

Overall 25661161 |411{1128|860|784|651(1292|519|1169|1087|1389

66 Chapter 3 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

#define N 100000

int a, al[N], a2[N];
for (a =0 ; a < N ; a++) {

1
\
\
\
}
__VERIFIER_nondet_int (); \
\
\
\

SOOI N~ W

allal __ _VERIFIER_nondet_int ();
a2lal
}
féf (int x = 0 ; x < N ; x++)
1 __ _VERIFIER_assert (al[x] == a2[x]);

Figure 3.8: Code fragment that contains a large array.

test-case generation significantly: constant folding and slicing. Constant folding evalu-
ates constants (which includes nondeterministic symbols) and propagates them through-
out the formula during encoding, and slicing removes expression not in the path to trigger
a property violation. These two techniques can significantly reduce SMT-solving time.
However, they can remove the expressions required to trigger a violation when the pro-
gram is compiled, i.e., variable initialization might be optimized away, forcing FuSeBMC
to generate a test case with undefined behavior.

Regarding our fuzzing engine, we identified a limitation in handling programs with
pointer dereferences. The fuzzing engine keeps track of variables throughout the program
but has issues identifying when they go out of scope. When we try to generate a test
case that triggers a pointer dereference, our fuzzing engine provides thrash values, and
the selective fuzzer might create test cases that do not reach the error.

FuSeBMC achieved 2nd place overall at Test-Comp 2021, with a score of 1776 out of
3173. Table 3.4 and Fig. 3.9 shows the overall results compared with other tools in the

competition. Overall, FuSeBMC performed well compared with top tools in the subcate-

3000 CMA-ES-Fuzz .
CoVeriTest —¥%—
FuSeBMC —&—
2 2500 HybridTiger —v— i
4 KLEE —8—
s Legion
§ 2000 LibKluzzer .
5 PRTest
= Symbiotic
g 1500 - TracerX)
g VeriFuzz
& 1000 - .
£
=
500 n
0 = | |
0 200 400 600 800 1000 1200 1400 1600 1800

Cumulative score

Figure 3.9: Quantile functions for category Overall. [183]

Chapter 3 Kaled Alshmrany 67

Efficient hybrid fuzzing for detecting vulnerabilities in software

gories ReachSafety-BitVectors, ReachSafety-Floats, ReachSafety-Recursive, ReachSafety-
Sequentialized and ReachSafety -XCSP.

Test-Comp 2021 also considers energy efficiency in rankings since a large part of
the cost of test generation is caused by energy consumption. FuSeBMC is classified as a
Green-testing tool - Low Energy Consumption tool (see Table. 3.3). FuSeBMC consumed
less energy than many other tools in the competition. This ranking category uses the
energy consumption per score point as a rank measure: CPU Energy Quality, with the
unit kilo-joule per score point (kJ/sp). It uses CPU Energy Meter [202] for measuring the

energy.
Table 3.3: The Consumption of CPU and Memory [183].

Rank Test Generator Quality(sp) CPU Time(h) CPU Energy(kWh) Rank Measure
Green Testing (kj/sp)

1 TRACERX 1315 210 2.5 6.8

2 KLEE 1370 210 2.6 6.8

3 FuSeBMC 1776 410 4.8 9.7
worst 51

These experimental results showed that FuSeBMC could reduce the consumption

of CPU and memory efficiently and effectively in C programs, which answers EG3.

®https://test—comp.sosy-lab.org/2021/results/results-verified/

Table 3.4: Test-Comp 2021 Overall Results®.

N
N [
=S b7 3) b5 o
SIS EE (& |m 5]8 |2 |8 |% |8
Cover-Error and Branches i § c[ﬁ § =] 5 go E:’ E é § %
% ' 8 |~ 5}
& 12 518 |2 -5 P e |E P
Q
OVERALL 3173|1776|254|1286|1228|1370(495|1738|526|1543 (1315|1865

68 Chapter 3 Kaled Alshmrany

https://test-comp.sosy-lab.org/2021/results/results-verified/

Efficient hybrid fuzzing for detecting vulnerabilities in software

3.4 | Tool Setup and Configuration

FuSeBMC can be run using the command below. The user is required to set the architec-
ture, the property file path, the competition strategy, and the benchmark path, as:
fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]
[-s {kinduction, falsi, incr, fixed}]
[BENCHMARK_PATH]
where —a sets the architecture to 32 or 64, —p sets the property file to PROPERTY_ —
FILE, where it has a list of all the properties to be tested. —s sets the BMC strategy to one
of the listed strategies{kinduction, falsi, incr, fixed}. For Test-Comp’21,
FuSeBMC uses incr for incremental BMC, which relies on the ESBMC’s symbolic
execution engine to increasingly unwind the program loops using an iterative technique.
The incr strategy verifies the program for each unwind bound up to a maximum default
value of 50 or indefinitely (until it exhausts the time or memory limits). The Benchexec

tool info module is fusebmc . py and the benchmark definition file is FuSeBMC . xm1.

3.5 | Software Project

FuSeBMC is implemented using C++, and it is publicly available under the terms of the
MIT License at GitHub’. The repository includes the latest version of FuSeBMC (version
3.6.6). FuSeBMC dependencies and instructions for building from source code are all
listed in the README . md file. Test-Comp 2021 provides the script, benchmarks, and

FuSeBMC binary to reproduce the competition’s results®,

3.6 | Conclusions and Future work

We proposed a novel test case generation approach that combined Fuzzing and BMC
and implemented it in the FuSeBMC tool. FuSeBMC explores and analyzes the target
C programs by incrementally injecting labels to guide the fuzzing and BMC engines to
produce test cases. We inject labels in every program branch to check for their reach-
ability, producing test cases if these labels are reachable. We also exploit the selective
fuzzer to produce test cases for the labels that fuzzing and BMC could not produce test
cases. FuSeBMC achieved two significant awards from Test-Comp 2021. First place in
the Cover-Error category and second place in the Overall category. FuSeBMC outper-
formed the leading state-of-the-art tools because of two main factors. Firstly, the usage
of the selective fuzzer as a third engine that learns from the test cases of fuzzing/BMC to

produce new test cases for the as-yet uncovered goals. Overall, it substantially increased

"https://github.com/kaled-alshmrany/FuSeBMC
8https://test-comp.sosy-lab.org/2021/

Chapter 3 Kaled Alshmrany 69

https://github.com/kaled-alshmrany/FuSeBMC
https://test-comp.sosy-lab.org/2021/

Efficient hybrid fuzzing for detecting vulnerabilities in software

the percentage of successful tasks. Secondly, we apply a novel algorithm of managing
the time allocated for each engine and goal. This algorithm prevents FuSeBMC from
wasting time finding test cases for difficult goals so that if the fuzzing engine is finished
before the time allocated to it, the remaining time will be carried over and added to the
allocated time of the BMC engine. Similarly, we add the remaining time from the BMC
engine to the selective fuzzer allocated time. As a result, FuSeBMC raised the bar for the
competition, thus advancing state-of-the-art software testing. Future work will investigate
the extension of FuSeBMC to test multi-threaded programs [203, 204] and reinforcement
learning techniques to guide our selective fuzzer to find test cases that path-based fuzzing
and BMC could not find.

70 Chapter 3 Kaled Alshmrany

Chapter

FuSeBMC v4: Improving code coverage
with smart seeds via fuzzing and static

analysis

If you believe in yourself and have
dedication and pride -and never quit,
you’ll be a winner. The price of

victory is high, but so are the rewards.

Vince Lombardi

4.0 | Chapter Overview

4.0.1 | Thesis Context

In the previous chapter, we described our approach FuSeBMC, an automated test gener-
ating tool that leveraged the combination of Fuzzing and BMC, as well as its scientific
contributions and impact on the field of software testing. It has also won multiple in-
ternational awards and introduced a method that reduces the consumption of resources.
In addition to these contributions, we noticed several areas that require improvement in
our previous methods, such as code coverage and the significance of contributing to it.
In this regard, we set out to develop the method to maintain its effectiveness in detect-
ing vulnerabilities while simultaneously obtaining high code coverage. In this chapter,
we introduce our improved approach FuSeBMC v4, improving code coverage with smart
seeds via fuzzing and static analysis. It includes smart seeds generation, shared memory,
a new fuzzer, and a “Tracer” subsystem, among other enhancements and features. This
approach relies on smart seed to improve performance in hybrid fuzzers and achieve high
C program coverage. Besides, FuSeBMC employs shared memory to coordinate the en-

gines and seed distribution by the Tracer. Together, these features turn FuSeBMC into a

71

Efficient hybrid fuzzing for detecting vulnerabilities in software

FuSeBMC v4: Improving code
coverage with smart seeds via fuzzing
and static analysis

Kaled M. Alshmrany® %, Mohannad Aldughaim!, Ahmed Bhayat!, Fedor Shmarov',

Fatimah Aljaafari' and Lucas C. Cordeiro!

1University of Manchester, Manchester, UK
2Institute of Public Administration, Jeddah, Saudi Arabia

leading fuzzer, as demonstrated by our evaluation results.

The content of this chapter is adapted from: Kaled M Alshmrany, Mohannad Al-
dughaim, Ahmed Bhayat, Fedor Shmarov, Fatimah Aljaafari, and Lucas C Cordeiro.
“FuSeBMC v4: Improving code coverage with smart seeds via fuzzing and static analy-
sis”. In: The Formal Aspects of Computing Journal (FAC) (2022).

4.0.2 | Author’s Contributions

I designed the main idea of the research paper, developed and validated the approach,
conducted experiments and evaluation, analysed results, investigated related work, pro-
vided and edited all graphics, participated in the entire writing process, and addressed
the reviewer’s comments. In addition, Mohannad, Ahmed, Fedor and Fatimah provided
critical feedback, proofread the paper, and made revisions and amendments during the
writing process. My supervisor, Lucas, also contributed to the idea and proofread the

paper. Moreover, he guided the entire research procedure.

4.0.3 | Abstract

Bounded model checking (BMC) and fuzzing techniques are among the most effective
methods for detecting errors and security vulnerabilities in software. However, there are
still shortcomings in detecting these errors due to the inability of extant methods to cover
large areas in target code. We propose FuSeBMC v4, a test generator that synthesizes
seeds with useful properties, that we refer to as smart seeds, to improve the performance
of its hybrid fuzzer thereby achieving high C program coverage. FuSeBMC works by first
analyzing and incrementally injecting goal labels into the given C program to guide BMC
and Evolutionary Fuzzing engines. It ranks these goal labels according to a user-defined
strategy. After that, the engines are employed for an initial period to produce the so—called

smart seeds. Finally, the engines are run again, with these smart seeds as starting seeds, in

72 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

an attempt to achieve maximum code coverage / find bugs. During both seed generation
and normal running, coordination between the engines is aided by the Tracer subsystem.
This subsystem carries out additional coverage analysis and updates a shared memory
with information on goals covered so far. Furthermore, the Tracer evaluates test cases
dynamically to convert cases into seeds for subsequent test fuzzing. Thus, the BMC en-
gine can provide the seed that allows the fuzzing engine to bypass complex mathematical
guards (e.g., input validation). As a result, we received three awards for participation in
the fourth international competition in software testing (Test-Comp 2022), outperforming

all state-of-the-art tools in every category, including the coverage category.

keywords Code Coverage and Coverage Branches and Automated Test Generation

and Bounded Model Checking and Fuzzing and Security

4.1 | Introduction

Fuzzing is one of the essential techniques for discovering software bugs and is used by
major corporations such as Microsoft [106], and Google [205]. Fuzzers work by con-
structing inputs known as seeds and then running the program under test (PUT) on these
seeds. The goal is to discover a bug by causing the PUT to crash. The main disadvan-
tage of fuzzers is that due to the random manner in which they generate inputs, they are
often unable to explore program paths with complex guards. BMC, on the other hand,
are very good at using program information to circumvent guards but are often slow and
resource-intensive to run.

Hybrid fuzzing attempts to circumvent this issue with more significant program-specific
analysis. One common technique is concolic fuzzing, which involves using a theorem
prover to solve path constraints and thereby helps the fuzzer to explore deeper into the
program [44, 206, 207]. However, they still have some fundamental weaknesses; the
most important is that the straightforward way they generate seeds can lead to the fuzzer
becoming stuck in one part of the code and not exploring other branches.

This paper presents FuSeBMC, a state-of-the-art hybrid fuzzer that incorporates vari-
ous innovative features and techniques. This journal paper is based on several published
conference papers [8, 9, 10]. In practice, we concentrated on the enhancements made
to FuSeBMC between 2021 (when our TAP paper [9] was published) and 2022. We dis-
cussed these enhancements briefly in our FASE *22 paper [10], but were unable to provide
all of the details due to the limited number of pages allowed. In this journal paper, we are
able to expand on these enhancements, such as the use of the Tracer subsystem, shared
memory, and the method of analyzing and ranking goals. In addition, we demonstrate the
advancement achieved by carrying out a more thorough experimental evaluation. To sum-

marise, we extend those papers by (i) discussing FuSeBMC in greater detail (Section 4.2)

Chapter 4 Kaled Alshmrany 73

Efficient hybrid fuzzing for detecting vulnerabilities in software

(i1) providing more examples, and (iii) providing a thorough and up-to-date experimental
evaluation of the tool (Section 4.3).

An important FuSeBMC subsystem discussed in this paper is the Tracer which coor-
dinates the bounded model checker and the various fuzzing engines. The Tracer monitors
the test cases produced by the fuzzers. It selects those with the highest impact (as mea-
sured by a couple of metrics discussed in Section 4.2) to act as seeds for future rounds
of fuzzing. Further, as discussed above, ESBMC produces test cases to cover particular
branches. However, a test case it produces may also cover branches other than the one
targeted. In order to ascertain precisely which branches a test case covers and thereby
prevent ESBMC from running multiple times unnecessarily, the Tracer takes a test case
produced by ESBMC and runs the PUT on it, recording all goals covered.

Bounded model checking can be slow and resource-intensive. To mitigate against
this, FuSeBMC does not make use of an off-the-shelf fuzzer for its grey box fuzzing,
but instead uses a modified version of the popular American Fuzzy Lop tool. One of
the features of this modified fuzzer is its ability to carry out lightweight static analysis
of a program to recognize input verification. It analyzes the code for conditions on the
input variables and ensures that seeds are only selected if they pass these conditions. This
reduces the dependence on the computationally expensive bounded model checker for
finding quality seeds. Another interesting feature of the modified fuzzer is that it analyses
the PUT and heuristically identifies potentially infinite loops. It then bounds these loops
in an attempt to speed up fuzzing. These bounds are incremented during the multiple
fuzzing rounds. In this version, FuSeBMC relied on this fuzzer instead of the previous
one because our modified fuzzer is consistent with our new theory of producing and using
seeds. In contrast, the previous fuzzer (Map2Check) does not support that. Also, we
wanted to integrate our selective fuzzer to be within the stages in the AFL and thus benefit
from the power and analysis of AFL, generating effective test cases.

Together, these features turn FuSeBMC into a leading fuzzer. In the 2022 edition of
the Test-Comp software testing competition, FuSeBMC achieved first place in both the
main categories, Cover-Error and Cover-Branches. In the Cover-Branches category, it
achieved first place in 9 out of the 16 subcategories that it participated in. In the Cover-
Error category, it achieved first place, or joint first place, in 8 out of the 14 subcategories

that it participated in.

Contributions. This journal paper explains the latest developments to the FuSeBMC
fuzzer. The work presented here is a substantial extension of our previous published con-

ference papers [8, 9, 10]. FuSeBMC’s main new features can be summarised as follows:
* The use of lightweight static analysis to recognize some forms of input validation
on variables, thereby enabling fuzzing to produce more effective seeds and speed

up the fuzzing process.

74 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

* The prioritization of deeper goals with regards to finding test cases as this can result
in providing higher code coverage and generating fewer test cases.

* The setting of a loop unwinding depth during seed generation and fuzzing. As loop
unwinding leads to exponential path explosion, we restrict the unwinding depth of
each loop to a small number, depending on an approximate estimate of the number

of program paths.

We also extend our previous papers by:

* Explaining the working of the FuSeBMC tool in greater depth and clarity than pre-
viously.

* Providing a detailed analysis of our participation in the international competition on
software testing (Test-Comp 2022), where our tool FuSeBMC was able to achieve
three significant awards. FuSeBMC earned first place in all the categories by the
improvements described in this manuscript. We also provide a thorough compar-
ison between version 4 of the tool and the previous iteration, version 3, thereby

demonstrating the effectiveness of our extensions.

4.2 | FuSeBMC v4 Framework

FuSeBMC combines dynamic and static verification techniques for improving code cov-
erage and bug discovery. It utilizes the Clang compiler [51] front-end to perform various
code transformations, ESBMC (Efficient SMT-based Bounded Model Checking) [148,
194] as a BMC and symbolic execution engine, and a modified version of the Ameri-
can Fuzzy Lop (AFL) tool [56, 137] as well as a custom selective fuzzer [9] as fuzzing
engines.

FuSeBMC takes a C program as input and produces a set of test cases, maximizing
code coverage while also checking for various bugs. Users can choose to check for several
types of bugs that are supported by ESBMC (such as array bounds violations, divisions
by zero, pointers safety, arithmetic overflows, memory leaks, and other user-defined prop-
erties). Figure 4.1 illustrates the FuSeBMC architecture and its workflow, and Algorithm

3 presents the main stages of the FuSeBMC execution.

4.2.1 | Overview

FuSeBMC begins by injecting goal labels into the given C program (based on the code
coverage criteria that we introduce in Section 4.2.2.1) and ranking them according to
one of the strategies described in Section 4.2.2.2 (i.e., depending on the goal’s origin or
depth in the PUT). From then on, FuSeBMC’s workflow can be divided into two main
stages: seed generation (the preliminary stage) and fest generation (the full coverage

analysis stage). During seed generation, FuSeBMC applies the fuzzers and BMC to the

Chapter 4 Kaled Alshmrany 75

Efficient hybrid fuzzing for detecting vulnerabilities in software

Shared Memory

C Code]
. Code . Instrumented Code
mstrumentation !

: 5 Test
Property Static Analysis Goal Queue Cases

Goals Covered
Array

Seeds Store
Consumed Input

Size

Figure 4.1: The Framework of FuSeBMC v4. This figure illustrates the main components of
FuSeBMC. Our tool starts by instrumenting and analyzing the source code, then performs coverage
analysis in two stages: seed generation and test generation.

instrumented code once for a short time to produce seeds that are used by the fuzzers
at the test generation stage and test cases that may provide coverage of some ‘“shallow”
goals. The intuition behind this divide is to quickly generate some meaningful seeds for
the fuzzer that could increase the chances of exploring the PUT past the entry point, which
often contains restrictive input validators that are hard to negotiate for the fuzzers. During
test generation, the above engines are applied with a longer timeout while accompanied
by another analysis engine called Tracer. It helps the execution of the fuzzers and the
bounded model checker by recording which goal labels in the PUT have been covered
by the test cases produced by these engines. This is done to prevent the computationally
expensive BMC engine from trying to reach an already covered goal. FuSeBMC continues
with the test generation stage until all goals are covered or a timeout is reached.

In Figure 4.2 we introduce a short C program which we use as a running example
to demonstrate the main code transformations throughout this section. The presented
program accepts coefficients of a quadratic polynomial and an integer candidate solution
in the range [1,100] as input from the user. It terminates successfully if the provided
candidate solves the equation. However, the program returns an error if the given equation

does not have real solutions or the input candidate value is outside the [1,100] range.

76 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Algorithm 3 FuSeBMC algorithm

1:

P := get_input_PUT()
// Code Instrumentation & Analysis

. P':=1inject_goal_labels(P)
: G = get_list_of_sorted_goals(P') // Seed Generation
- T:=0;B:=0; // initializing queues for test cases and bug

reports

{S,Geov, T} := generate_seeds(P'); // see Algorithm 4
G.remove_goals(G .oy)

// Test Generation

7. while G # () or timeout do

o *®

10:
11:

12:

13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:

24
25:
26:
27:
28:
29:
30:
31:

g = G.pop() ; // Start of main loop
{output, Gepp } = run_fuzzer(P', g, S, fuzzimeout)
if G.op #) then
{T, G, S} := run_tracer(P’, output, T, G, Geo», S); // see Algorithm
5
end if
// current goal has been covered, so skip to the next
iteration
if g € G,,, then
continue
end if
// BMC’s output can be a reachability witness or a bug
trace
{output,res} := run_bmc(P’, g, bnciimeout)
if res = success then
{T,G,S} ;= run_tracer(P’, output, T,G,0,S); // see Algorithm 5
else
if output # () then
B := B U generate_bug_report(P’, output)
else
{T, G, S} .= run_tracer(P’, output, T,G,0,S); // see Algorithm
5
end if
end if
end while; // End of main loop
if G # () then
{testcases, Gopp } = run_selective_fuzzer(P')
T :=T Utestcases
end if
return {7, B,G}

Chapter 4 Kaled Alshmrany 77

Efficient hybrid fuzzing for detecting vulnerabilities in software

‘sonfea
yuelx Sunnsal pue ‘9pod ay) ut yidep 1oy ‘eax s[eod Funpnsar oyl (9 pue ‘9pod pajuawnysur Jurpuodsarrod oy (q ‘wreidord O e (e jo o[dwexs uy g IngLf
) (@ (®)

g = yidsp { ¢¢ { 1¢C
{0 uanisa ¢ {0 uanisx (g
11¢TTIVOD €€ {()xoxxs yoesx gl

. =\ydep {{()x0xa2 yoeaa € asTa QI
£:67IV0D ¢ L1

} esTe (¢ { o1

9 = Uidep {({:/7IV09 67 ‘{0 uaniyex 9

{ 8z ((x ‘o ‘q ‘e)3xdo9yd)JIT 14!

G = yidep {11 IV0D LT () xoxxo yorol €1

} esTe 9T (00T < x || 0 =>x)IT CI
{{0 uaniesx SC !()3uT 39puouU JHAIATYHIA = X 3JUT 11
v = tdep L1017 IY09 T PoAT)eTTUM 01
}o((x ‘D ‘g ‘e)30eUud)IT ¢ } (oxexy =< gxq)IT 6
{f:6 TIV0D (44 {()3UT 3epUOU YHIATYHA = O 3JUT §
€ = tdop } esTe T {()3UuT 3epUOU WHATATIIA = J IUT [
{?()a03ae yoeaa 0¢ £() 3UT 39PUOU JATATIHA = B 3JUT 9
Z = yidep {187 IV0D 61 } ()uTew 3uT ¢
}o(0o0T < x || 0 => x)3JT 81 {{(0 == O 4+ XxJ + XxXx®) UINIDI ¢
() 3UT 39PUOU YATATIYIA = X 3JUT L1 } (x 3uT ‘D 3uTr ‘g JUT ‘e JUT)YOSUD TOO] ¢
| = yidap {197 IV0D 91 { } ()Ioxas " yoesx proa T
} (T)eTTum ¢ <U-3Iiosse> oSpnIouT# |

{1PTIVOD Pl

}o(oxexy =< qxq)IT ¢[

{()3UT 39pUOU YHIAIMAA = O 3JUT ¢I

() 3uT 3e9puouU JHIAIYHIA™ = J 3JUT]

£()2UT 3epuUOU YATATIYIA = © 2UT (]

{107TIV0D 6

} ()utew 3ut §

{ L

(0 == DO + XxJ + Xx¥Xx®) UuInisIx 9

{177TIV0D €

} (X 3uT ‘D 3UT ‘g JUT ‘B JUT)YDSYD T0O] ¢

{ITTIVOD €

} ()Ioxxs yodesI pPTOA

<J-rilIssse> QUSHOCH# ~

Kaled Alshmrany

Chapter 4

78

Efficient hybrid fuzzing for detecting vulnerabilities in software

4.2.2 | Code Instrumentation & Static Analysis

At this stage, FuSeBMC instruments the PUT and performs multiple static analyses. It
takes the PUT (i.e., a C program) and a property file as inputs and produces three files:

the instrumented program, Goal Queue, and Consumed Input Size.

4.2.2.1 Code Instrumentation

FuSeBMC uses Clang tooling infrastructure [51] at its front-end to parse the input C
program and traverse the resulting Abstract Syntax Tree (AST), recursively injecting goal
labels into the PUT. This process is guided by the FuSeBMC code coverage criteria.
Namely, FuSeBMC inserts labels inside conditional statements, loops, and functions as
follows.

* For conditional statements: the label is inserted at the beginning of the block whether

the statement is an i1 f, else, or an instrumented empty else.

* For loops: the label is placed at the beginning of the loop body and right after

exiting the loop.

* For functions: labels are injected at the beginning and at the end of the function

body.

Furthermore, FuSeBMC adds declarations for several standard C library functions,
such as “printf, “strcpy”, “memset” and other C language functions, to ensure that we
cover the majority of the functions that we may encounter in large programs while also
maintaining the proper operation of our approach. The resulting instrumented code is
functionally equivalent to the original C program. Figure 4.2b demonstrates an example

of the described code instrumentation for the program in Figure 4.2a.

4.2.2.2 Static Analysis

Apart from the required code instrumentation, Clang produces compilation error and
warning messages and utilizes its static analyzer to simplify the input program (e.g.,
calculating the sizes of expressions, evaluating static asserts, and performing constants
propagation) [208].

Furthermore, the Clang static code analyzer produces the Consumed Input Size, which
represents the minimum number of bytes required for fuzzing. This information plays an
important role in enhancing the fuzzing process (see Section 4.2.4.1).

Another function of static analysis is to identify the ranges of the input variables.
This is performed by collecting branch conditions that match a pattern (x o val), where
x is the name of the variable, val is a numeric value, and o € {>, >, <, <, = #}. This
information is used by both fuzzers for generating inputs only from the identified ranges.

Finally, FuSeBMC analyzes the instrumented code and ranks the injected goal labels.

Each goal label is attributed with its origin information (i.e., if statement, while loop, end

Chapter 4 Kaled Alshmrany 79

Efficient hybrid fuzzing for detecting vulnerabilities in software

of function) and its depth in the instrumented program. Then FuSeBMC sorts all goals
using one of the two strategies (line 3 of Algorithm 3): (1) based on their depth (i.e.,
depth-first search), or (2) based on their rank scores calculated as a product of a goal’s
depth and its power score - a value between 1 and 5 describing the goal’s branching power.
Each power score has been decided via experimental analysis. The if statement goals are
assigned a score of 5 (goals 4, 8 and 9 in Figure 4.2b), the function goals - 4 (goals 1 and
2 in Figure 4.2b, note that main function goals are scored differently), the loop goals - 3
(goal 6 in Figure 4.2b) and the else goals - 2 (goal 5 in Figure 4.2b). All remaining types
of goals (i.e., end-of-main (goal 3 in Figure 4.2b), empty-else, and after-loop goals (goal
7 in Figure 4.2b)) are assigned a value of 1.

In general, the goal sorting improves overall FuSeBMC performance. Using the depth
strategy, FuSeBMC attempts to cover the deeper goals first. This is beneficial since all
preceding goals on the path to a deep goal can be ignored during subsequent fuzzing as
the same test case covers them. On the other hand, the ranking strategy allows priori-
tizing conditional branches as they may lead to multiple goals increasing potential code
coverage.

Figure 4.2c features the resulting goals tree for the instrumented code from Figure 4.2b
(with GOAL_ 0 representing the entry point of the program, i.e., the main function). Note
that FuSeBMC builds it based on the original Clang AST without analyzing the code for
trivially unreachable goals. For example, labels GOAL_7 and GOAL_3 can never be
reached during the program’s execution. However, this will not be reflected in the goals
tree.

The goal’s depth value is assigned at its highest depth. Therefore, labels GOAL_1,
GOAL_7, and GOAL_3 are assigned depth values of 5, 7, and 8, respectively. When the
first ranking strategy is applied, two goals at the same depth are ordered in the ascending
order of their label names. Using the second ranking strategy, two goals with the same
rank value are processed in the “power score first” manner. For example, GOAL_ 8 will be
placed in front of GOAL_1 and GOAL_ 2 since it has a higher power score (5 vs 4). Hence,
FuSeBMC will process the goal labels in the following orders {3,7,10,11,1,2,8,9,6,4,5},
{10,8,1,2,4,6,3,7,11,5,9} using the first and second sorting strategies, respectively. Fi-
nally, the list of goals is stored in the shared memory as the Goal Queue. This queue can
be modified by the BMC and Tracer engines during the consecutive stages to remove the

goal labels that have been covered.

4.2.2.3 Shared Memory

The set of data files that each component of FuSeBMC has access to (both for reading and
writing) is called Shared Memory. Apart from Instrumented Code, Consumed Input Size
and Goal Queue discussed above, it contains Seeds Store — a collection of seeds used by

the fuzzer for test generation, Test cases — all test cases generated by FuSeBMC, and Goal

80 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Covered Array — list of all goal labels that have been covered by the produced test cases.

4.2.3 | Seed Generation

Algorithm 4 generate_seeds() algorithm

Input: P’ : instrumented file

Output: S : setofseeds, G, : goals covered, 7T: generated test
cases
1: S := generate_primary_seeds(P'); // 0’s, 1’s, and random
2: {testcases, Gop} = run_fuzzer(P', S, fuzzimeout); // timeout = 5
seconds
3: if Gpp # () then
4. T :=T Utestcases
5: S := S Ugenerate_seed(testcases)
6: end if
7: {output,res} := run_light_bmc(P’, binciimeout); // BMC with partial
loops & timeout = 15 seconds
8: if res = success then
9: S :=.SUoutput
10: T :=T U generate_testcases(P',{output})
11: else
12: if output = () then
13: T :=T U generate_testcases(P’, S)
14: end if
15: end if

16: return {S,G.pp, T}

Having ranked the goals, FuSeBMC carries out seed generation (line 5 of Algorithm 3
and Algorithm 4 where it is described in detail) as a preliminary step before full coverage
analysis (i.e., fest generation) begins. In this phase, FuSeBMC simplifies the target pro-
gram by limiting loop bounds, and utilizes the information about the input ranges. Then
FuSeBMC applies the fuzzer and the BMC engine (for 5 and 15 seconds, respectively) for
a short time in succession.

Since the seed store is empty at this point, FuSeBMC performs primary seed gen-
eration (Line 1 Algorithim 4) to enable the fuzzing process. This procedure involves
generating binary seeds (i.e., a stream of bytes) based on Consumed Input Size and the
input constraints collected during static analysis. In detail, it generates three sequences of
bytes, where: 1) all bytes have a value of 0, 2) all bytes have a value of 1, 3) all byte values
drawn randomly from the identified input ranges. Then the fuzzer (see Section 4.2.4.1) is
initialized with the primary seeds and is run for a short time to produce test cases that are
then converted into new seeds and added to the Seeds store (see Figure 4.1 and lines 2 —
6 in Algorithm 4).

Chapter 4 Kaled Alshmrany 81

Efficient hybrid fuzzing for detecting vulnerabilities in software

When the seed generation by fuzzing is finished, FuSeBMC executes the BMC engine
(see Section 4.2.4.2) for each goal label in the Goal Queue. In order to minimize the
execution time, it is run with "lighter" settings: all implicit checks (i.e., memory safety,
arithmetic overflows) and assertion checks are disabled, and the bound for loop unwinding
is reduced. If a goal label is reached successfully, the BMC engine produces a witness —
a set of program inputs that lead to that goal label. The sequence of these input values is
added as a seed to the Seed Store.

All new seeds produced by the fuzzer and the BMC engine are deemed smart due to
their powerful effect on code coverage. Conceptually, bounded model checkers use SMT
solvers to produce test cases that resolve complex branch conditions (i.e., guards). Such
guards (for example, lines 5 and 12 in Figure 4.2a) pose a challenge to a fuzzer [44] as it
relies on mutating the given seed randomly and is therefore unlikely to satisfy the branch
condition. Seeds produced by BMC help solve this issue since they can be passed to a
fuzzer, which can then advance deeper behind the complex guards into the target program

(which is usually hard for a bounded model checker).

4.2.4 | Test Generation

Following seed generation, FuSeBMC begins the main coverage analysis phase (lines 7 —
30 of Algorithm 3). FuSeBMC incorporates three engines to carry out this analysis: two
fuzzers (main fuzzer and selective fuzzer) and a bounded model checker. Here, both the
main fuzzer and the BMC engine are run with longer timeouts than during the seed gen-
eration stage. Briefly, the fuzzers utilize the smart seeds produced at the previous stage,
and generate test cases by randomly mutating the program’s input and running it to ana-
lyze code coverage. The bounded model checker determines the reachability of particular
goal labels similarly to the seed generation stage. FuSeBMC’s Tracer component aids the
above engines by running a light-weight analysis (see Section 4.2.4.3) of the produced
test cases and updating the Shared Memory.

In the following subsections, we discuss the FuSeBMC components involved in cov-

erage analysis in greater detail.

4.2.4.1 Main Fuzzer

In FuSeBMC we implement a modified version of the American Fuzzy Lop (AFL) tool [56].
The modified AFL generates test cases based on the evolutionary algorithm implemented
in AFL [137].

The standard algorithm implemented in the AFL tool works as follows. Firstly, an
initial input stream of fixed size is generated using the provided seed (a random seed is
used if not explicitly specified). Secondly, the target program is repeatedly executed with

the randomly mutated input. If the target program does not reach any new states after

82 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

multiple input mutation rounds, a new byte is added to or removed from the input stream,
and the mutation process restarts. The above algorithm continues until an internal timeout
is reached or the fuzzer finds inputs that fully cover the program. In general, the AFL’s
mutation algorithm heavily relies on the quality of the initial seeds for providing higher
code coverage. Therefore, generating seeds with higher coverage potential is crucial.

FuSeBMC modifies the original AFL fuzzer as follows.

1. It performs additional instrumentation to the PUT to minimize its execution over-
head by limiting the bounds of loops heuristically identified as potentially infinite.
Note that these bounds can be iteratively changed between the AFL runs.

2. The mutation operators are modified by accepting only inputs from the ranges iden-
tified during the static code analysis.

3. It controls the size of the generated test cases via the Consumed Input Size. In de-
tail, the minimum size of the test cases produced by the fuzzer is set to the current
value of the consumed input size. This allows counter-acting the size selection bias
of the AFL mutation algorithms, which tend to favor a reduction of the number of
bytes in the generated test cases (instead of adding extra bytes) between the muta-
tion rounds. At the same time, the modified fuzzer can control the maximum size of
the produced test cases. For example, when the Consumed Input Size starts grow-
ing gradually during the fuzzing process (a behaviour often observed in programs
accepting input in an infinite loop), the maximum test-case size is set in order to
prevent performance degradation.

4. It outputs the list of goals covered by the produced test cases and records them in

Goals Covered Array.

4.2.4.2 Bounded Model Checker

FuSeBMC uses ESBMC to check for the reachability of a given goal label within the
instrumented program (lines 16 - 25 of Algorithm 3). If it concludes that the current goal
is reachable it produces a counterexample that can be turned into a witness — a sequence
of inputs that leads the program’s execution to that goal label — which is then used to
generate a test case. Every new test case thus discovered is also added to the Seed Store
to be used by the fuzzers. Even if the BMC runs out of time or memory, its progress in
reducing the input ranges is saved as a incomplete seed — a sequence of input values that
lead the PUT execution part of the way towards the given goal label.

4.2.4.3 Tracer

The Tracer subsystem determines the goals covered by test cases produced by the
bounded model checker and the fuzzer. Whenever a test case is produced, Tracer com-

piles the instrumented program together with the newly generated test cases and runs the

Chapter 4 Kaled Alshmrany 83

Efficient hybrid fuzzing for detecting vulnerabilities in software

Algorithm 5 run_tracer() algorithm

Input: P’ : instrumented file, output : engines output ,
T': generated test cases , GG : list of goals , G, : covered goals list, S : set of seeds
Output : 7 generated test cases , G : list of goals , S
set of seeds

1: if output from BMC and incomplete then
2: testcase := complete_testcase(output)
3: else
4: testcase := generate_testcases(output, Gepy)
5: end if

6: T : =T Utestcase

70 Geoy = run_testcase(P’ testcase)

8: G.remove_goals(G o)

9: S := S Utestcase

10: return {7T,G, S}

resulting executable. Prior to the compilation, it performs additional instrumentation to
the test case to output information about the PUT input size, the types of input variables,
and the visited goals. This information is dynamically updated in the Shared Memory

(i.e., Goals Covered Array and Consumed Input Size).

The Tracer also analyses the test cases produced by the other two engines to add the
highest impact cases (i.e., the test cases leading to new goals or reaching the maximum
analysis depth) to the Seeds Store.

Another responsibility of Tracer is to handle the partial output of the bounded model
checker when it reaches the timeout outputting an incomplete counterexample. Tracer
completes such counterexamples randomly and performs the coverage analysis and up-

dates Seeds Store as described above.

4.2.4.4 Selective Fuzzer

The selective fuzzer’s [9] main function is to attempt to reach the remaining uncovered
goals after the iterative process of applying the fuzzer, and the BMC engine has finished.
Similarly to the main fuzzer, it utilizes information about the identified ranges of the input
variables to produce inputs for the PUT. At the same time, it implements a complementary
test generation approach. It produces random values from the given input ranges — in
contrast to the mutation-based approach used in the main fuzzer. The selective fuzzer

terminates upon covering all the remaining goals or upon reaching the timeout.

84 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

4.3 | Evaluation

4.3.1 | Description of Benchmarks and Setup

In order to assess the performance of FuSeBMC v4, we evaluated its participation in Test-
Comp 2022 [209], and also compared it to the results obtained by the previous version of
the tool, FuSeBMC v3, in Test-Comp 2021 [210].

Test-Comp is a software testing competition where the participating tools compete in
automated test case generation. All test case generation tasks in Test-Comp are divided
into two categories: Cover-Branches and Cover-Error. The former requires producing
a set of test cases that maximize code coverage (in particular, branch coverage) for the
given C program, and the latter deals with error coverage: generating a test case that leads
to the predefined error location (i.e., explicitly marked error function) within the given C
program. In Cover-Branches, code coverage is measured by the TestCov [195] tool, which
assigns a score between 0 and 1 for each task. For example, if a competing tool achieves
80% code coverage on a particular task, it is assigned a score of 0.8 for that task and
so forth. Overall scores for the subcategories are calculated by summing the individual
scores for each task in the subcategory and rounding the result. In Cover-Error, each tool
earns a score of 1 if it can provide a test case that reaches the error function and gets a 0
score otherwise. Each category is further divided into multiple subcategories (see Tables
4.1 and 4.3) based on the most prominent program features and/or the program’s origin.
The vast majority of the programs present in Test-Comp are taken from SV-COMP [198]
— the largest and most diverse open-source repository of software verification tasks. It
contains hand-crafted and real-world C programs with loops, arrays, bit-vectors, floating-
point numbers, dynamic memory allocation, and recursive functions, event-condition-
action software, concurrent programs, and BusyBox! software.

Both Test-Comp 2021 and Test-Comp 2022 evaluations were conducted on servers
featuring an 8-core (4 physical cores) Intel Xeon E3-1230 v5 CPU @ 3.4 GHz, 33 GB of
RAM and running x86-64 Ubuntu 20.04 with Linux kernel 5.4. Each test suite generation
run was limited to 8 CPU cores, 15 GB of RAM, and 15 mins of CPU time, while each
test suite validation run was limited to 2 CPU cores, 7 GB of RAM, and 5 mins of CPU
time. In 2021, FuSeBMC distributed its allocated time to its various engines as follows.
The fuzzer received 150s when running on benchmarks from the Cover-Error category
and 70s on benchmarks from the Cover-Branches category. The bounded model checker
received 700s and 780s on benchmarks from the two categories, respectively. Finally,
the selective fuzzer received 50s for benchmarks from both categories. In 2022, these
figures were tweaked. The seed generation received 20s for benchmarks from both cate-

gories. The fuzzer received 200s and 250s on benchmarks from Cover-Error and Cover-

"https://busybox.net/

Chapter 4 Kaled Alshmrany 85

Efficient hybrid fuzzing for detecting vulnerabilities in software

Branches, respectively, the bounded model checker 650s and 600s, and the allocation for
the selective fuzzer was decreased from 50s to 30s from the previous year.

Despite the fact that the hardware setup remained unchanged across the two competi-
tion editions, the set of test generation tasks was significantly expanded. Namely, the task
set in Test-Comp 2021 consisted of 3173 tasks: 607 in the Cover-Error category, and 2566
in the Cover-Branches category. By contrast, Test-Comp 2022 was expanded to contain
4236 test tasks: 776 in the Cover-Error category and 3460 in the Cover-Branches cat-
egory (including a new subcategory ProductLines introduced into both categories). We
have taken this into consideration when discussing the performance of two versions of
FuSeBMC in Section 4.3.3.1. A detailed report of the results produced by the competing
tools in both Test-Comp 20212 and Test-Comp 20223 is available online.

FuSeBMC source code is written in C++ and Python; it is available for download
from GitHub*. The latest release of FuSeBMC is v4.1.14. FuSeBMC is publicly available
under the terms of the MIT license. Instructions for building FuSeBMC from the source
code are given in the file README.md.

4.3.2 | Objectives

The main goal of our experimental evaluation is to assess the improvements of FuSeBMC
v4 and its suitability for achieving high code coverage and error coverage in open-source

C programs. As a result, we identify three key evaluation objectives:

O1 (Performance Improvement) Demonstrate that FuSeBMC v4 outperforms
FuSeBMC v3 in both code coverage and error coverage.

02 (Coverage Capacity) Demonstrate that FuSeBMC v4 achieves higher code
coverage for C programs than other state-of-the-art software testing tools.

03 (Error Detection) Demonstrate that FuSeBMC v4 finds more errors in C

programs than other state-of-the-art software testing tools.

4.3.3 | Results

4.3.3.1 FuSeBMC v4 vs FuSeBMC v3

Tables 4.1 and 4.3 contain the comparison of the FuSeBMC v4 and FuSeBMC v3 per-
formances in Cover-Branches and Cover-Error categories of Test-Comp, respectively.
FuSeBMC v3 achieved first place in Cover-Error, fourth place in Cover-Branches, and
placed second overall in Test-Comp 2021, while FuSeBMC v4 reached first place in both

https://test-comp.sosy-lab.org/2022/results/results-verified/
3https://test-comp.sosy—-lab.org/2021/results/results-verified/
‘https://github.com/kaled-alshmrany/FuSeBMC

86 Chapter 4 Kaled Alshmrany

https://test-comp.sosy-lab.org/2022/results/results-verified/
https://test-comp.sosy-lab.org/2021/results/results-verified/
https://github.com/kaled-alshmrany/FuSeBMC

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 4.1: Comparison of the average coverage (per subcategory and the category overall)
achieved by FuSeBMC v4 and FuSeBMC v3 in the Cover-Branches category in TestComp-2022
and TestComp-2021, respectively.

Subcategory % average coverage Improvement
FuSeBMC v4 | FuSeBMC v3 A%
Arrays 82% 71% 11%
BitVectors 80% 60% 20%
ControlFlow 64% 22% 42%
ECA 37% 17% 20%
Floats 54% 46% 8%
Heap 73% 62% 11%
Loops 81% 71% 10%
ProductLines 29% - -
Recursive 85% 68% 18%
Sequentialized 87% 76% 11%
XCSP 90% 82% 8%
Combinations 61% 7% 53%
BusyBox 34% 1% 32%
DeviceDrivers 20% 12% 8%
SQLite-MemSafety 4% 0% 4%
Termination 92% 87% 5%
Cover-Branches 61% 45% 16%

categories and overall in Test-Comp 2022. However, taking into account that the test gen-
eration task set has been significantly expanded in Test-Comp 2022, we analyze their rela-
tive performances in each subcategory. Namely, in Cover-Branches, we compare average
code branch coverage, and in Cover-Error, we compare the percentages of successfully
detected errors demonstrated by both tools in every subcategory and in the entire category
(as well the improvements of FuseBMC v4 in comparison to FuSeBMC v3), respectively.

Table 4.1 shows that FuSeBMC v4 advanced in each individual subcategory, including
the overall average improvement of 16% in the Cover-Branches category in comparison
to FuSeBMC v3. The greatest increase (i.e., 53%) was demonstrated in the Combina-
tions subcategory. FuSeBMC v3 achieved eighth place in this subcategory in Test-Comp
2021, while FuSeBMC v4 reached first place in Combinations in Test-Comp 2022. We
attribute this success to the modifications in the seed generation phase of FuSeBMC v4
(in particular, the introduction of smart seeds). Table 4.2 presents a subset of generation
tasks from the Combinations subcategory where FuSeBMC v4 demonstrated the most
striking improvement. It can be seen that FuSeBMC v3 provided very low code cover-
age of ~ 6.52% for these tasks on average, while FuSeBMC v4 increased this number to
~ 90.14% (i.e., 83.62% average improvement).

As for the Cover-Error category, FuSeBMC v4 progressed by 14% on average in
comparison to FuSeBMC v3 (see Table 4.3). FuSeBMC v4 improved in the majority

of subcategories while showing no change in three subcategories: both FuSeBMC ver-

Chapter 4 Kaled Alshmrany 87

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 4.2: Comparison of code coverage achieved by FuSeBMC v4 and FuSeBMC v3 in a subset
of tasks from the Combinations subcategory.

% coverage Improvement

Task name FuSeBMC v4 | FuSeBMC v3 A%

pals_lcr.3.1.ufo.BOUNDED-6.pals+Probleml2_labelOl 94.90% 13.30% 81.60%
pals_lcr.3.1.ufo.UNBOUNDED.pals+Probleml2_label02 84.40% 5.19% 79.21%
pals_lcr.4.1.ufo.BOUNDED-8.pals+Probleml2_label04 94.10% 4.44% 89.66%
pals_lcr.4_overflow.ufo.UNBOUNDED.pals+Probleml2_label05 94.00% 11.50% 82.50%
pals_lcr.5.1.ufo.UNBOUNDED.pals+Probleml2_label05 86.20% 0.78% 85.42%
pals_lcr.5_overflow.ufo.UNBOUNDED.pals+Probleml2_label09 94.00% 4.82% 89.18%
pals_lcr.6.1.ufo.BOUNDED-12.pals+Probleml2_label09 92.90% 5.18% 87.72%
pals_lcr.7_overflow.ufo.UNBOUNDED.pals+Probleml2_label09 92.60% 5.31% 87.29%
pals_lcr.8.ufo.UNBOUNDED.pals+Probleml2_label08 78.20% 8.17% 70.03%
Average value 90.14% 6.52% 83.62%

sions achieved the highest possible result of 100% in BitVectors, FuSeBMC v4 failed to
advance the number of detected errors past 95% in Recursive, while FuSeBMC v4 could
not identify any errors in DeviceDrivers similarly to FuSeBMC v3. Also, FuSeBMC v4
demonstrated a performance degradation of 2% in the XCSP subcategory.

Additionally, we compared the performance of FuSeBMC v4 utilizing smart seeds
with the version of FuSeBMC v4 using only primary seeds (i.e. all zeros, all ones, and
randomly chosen values) on the ECA (which stands for event-condition-action systems)
subcategory in Cover-Error (where FuSeBMC v4 demonstrated 28% improvement in
comparison to FuSeBMC v3 in the competition settings; see Table 4.3). It contains 18
test case generation tasks with C programs featuring input validation that involves rela-
tively complex mathematical expressions. Such a program feature is notoriously difficult
for the fuzzers whose initial seed is based on a random choice. Table 4.4 presents the re-
sults obtained by the versions of FuSeBMC v4 with smart seeds and with primary seeds.
It can be seen that smart seeds allow detecting 5 more bugs than the version of FuSeBMC
using standard seeds.

Overall, the results presented in Tables 4.1 and 4.3 provide sufficient evidence that the

evaluation objective Q1 has been achieved.

4.3.3.2 FuSeBMC v4 vs state-of-the-art

FuSeBMC v4 achieved the overall first place at Test-Comp 2022, obtaining a score of
3003 out of 4236 with the closest competitor, VeriFuzz [159], scoring 2971 and signifi-
cantly outperforming several state-of-the-art tools such as LibKluzzer [166], KLEE [151],
CPAchecker [191] and Symbiotic [199] (see Table 4.5).

Table 4.6 demonstrates the code coverage capabilities of FuSeBMC v4 in comparison

to other state-of-the-art software testing tools. It can be seen that FuSeBMC achieved

88 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 4.3: Comparison of the percentages of the successfully detected errors (per category and the
category overall) by FuSeBMC v4 and FuSeBMC v3 in the Error Coverage category in TestComp-
2022 and TestComp-2021, respectively.

Subcategory % errors detected Improvement
FuSeBMC v4 | FuSeBMC v3 A%
Arrays 99% 93% 6%
BitVectors 100% 100% 0%
ControlFlow 100% 25% 75%
ECA 72% 44% 28%
Floats 100% 97% 3%
Heap 95% 80% 14%
Loops 93% 83% 10%
ProductLines 100% - -
Recursive 95% 95% 0%
Sequentialized 95% 94% 1%
XCSP 88% 90% 2%
BusyBox 15% 0% 15%
DeviceDrivers 0% 0% 0%
Cover-Error 81% 67% 14%

Table 4.4: Comparison of FuSeBMC v4 performance with smart seeds and with standard seeds,
where TRUE shows that the bug has been detected successfully, UNKNOWN means otherwise.

FuSeBMC v4
Task name Smart Seeds | Primary Seeds
eca-rers2012/Problem05_label00.yml TRUE TRUE
eca-rers2012/Problem06_label00.yml TRUE TRUE
eca-rers2012/Problemll_label00.yml TRUE TRUE
eca-rers2012/Probleml2_label00.yml TRUE TRUE
eca-rers2012/Probleml5_label00.yml TRUE TRUE
eca-rers2012/Probleml6_label00.yml TRUE UNKNOWN
eca-rers2012/Probleml8_label00.ymll TRUE TRUE
eca-rers2018/Probleml0.yml TRUE TRUE
eca-rers2018/Problemll.yml TRUE TRUE
eca-rers2018/Probleml2.yml TRUE UNKNOWN
eca-rers2018/Probleml3.yml TRUE UNKNOWN
eca-rers2018/Probleml4d.yml TRUE UNKNOWN
eca-rers2018/Probleml5.yml TRUE UNKNOWN
eca-rers2018/Probleml6.yml UNKNOWN | UNKNOWN
eca-rers2018/Probleml7.yml UNKNOWN | UNKNOWN
eca-rers2018/Probleml8.yml UNKNOWN | UNKNOWN
eca-programs/Probleml101_label00.yml || UNKNOWN | UNKNOWN
eca-programs/Probleml103_label32.yml || UNKNOWN | UNKNOWN

Chapter 4

Kaled Alshmrany

89

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table 4.5: Test-Comp 2022 Overall Results. The table illustrates the scores obtained by all state-
of-art tools overall, where we identify the best tool in bold.

Tool

— <t @\
2029 ¥ 7|28 z]d/% =<
s i o > 5 N > | 5| B > 3 > >
e m & O = m = |» N 7 | B < N
s« | B2l |83 glg 2|€ 25| 5| 2
s < g = S ,4 S g | 2|2 5} 2
o) s) S = W Q[B = 2 =
S & E = | 4 15 = >
4236 | 382229313003 | 1830 | 2125|787 | - | 2658 | 945 | 2367 | 1069 | 2971

first place with an overall score of 2104 out of 3460. FuSeBMC participated in all 16
subcategories, in 9 of which (i.e. Arrays, BitVectors, Floats, Heap, Loops, ProductLines,
Recursive, Combinations and Termination) it achieved first place and in 6 of which it
reached second place. The results presented in Table 4.6 allow us concluding that the

evaluation objective Q2 has been achieved.

90 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

GLOT | OVLT | CO8T | 968 | 0661 | L8] | €€01 | TVCI | 90V | $OIT | 0981 | 9 | 091 ¢ §YIUDI-19400)
c0C | ¢ol | 6L1 | 09 | vOT | SvI | 891 | 8II | S6I | €IT | CIT | evl | 1€C UoneuIuLIa,
0 0 0 0 0 0 0 0 0 0 0 0 I KoyeSWON-NTOS
LS 9¢ oy | 91 | LS LY 9¢ ¢¢ 9 65 09 | €I | 06C SISALI(991A2(J
6¢ 81 6l | SI | ¥C 0 0 1T 9 Y4 4! 0 SL XogAsng
[S€ | S6C | 8€€ | 6L | C6C | ¥TC | 6L1 | 961 | LO9T | TOF | 8ET | €9 | IL9 suoneurquioy
oIt | 96 | vIT1 | 2Ol | 8IT | 2Ol (4 <0l | 61T | LOT | OIT | O | 611 dSOX
16 LS IS | IT | SL v I 33 8¢ 06 6L 0 | €01 pazifenuanbog
I ov St | 11 | ¢ LT 9¢ IC 6¢ 514 Iv | SC | ¢S SAISINIIY
LL LL 69 | 8V | LL YL 0L YL 9¢ LL LL | 61 | €9C saurpIonpoId
L8S | ¥¥S | 8ES | 6SE | SLS | TVS | LSE | 08C | L9V | 16S | VLS | IIC| LTL sdoo
10T | 10T | 86 | 6V | ¥OI | 8L 18 €6 ¥8 | YOI | 001 | €T | £Vl deoy
oIl | 9S ¢S | 9v | €01 | C9 L 61 ¢6 | TCL | €IT | €5 | 9CC S1e0[q
4! 8 01 [4 0l € € L C I 9 0 6¢ vod
144 6¢ 9% 9 014 4% Ll ¢ 14! 1974 9¢ S L9 MO[J[ONUO)
1% (14 6v | €€ | 8v 9% 142 153 91 6% 6v | 9¢ | 09 SIOIANY
LOE | €vC | 0SC | 091 | €C¢ | €9C | OIC | vO1 | L¥C | 8T€ | LST | 661 | 00V ske1ry
T ~xy @)
g2 |¢ 58 = s 2 2] 5
=. o m s, o) =. Q s W e
Wa 8 o ~ ~ o aQ — =] =) g > =
g o s | @ = =3 5 e — < = _ =} A1039180QNS
N S S |2 | § % = m | og a g | 7| *
= < o < (,m < < S < - G)
- —_ < [\ —_ o < N < T 2
b i ° || = Q o bo - | = > | g 3
= Py o = @ % ﬂ m N
[00],

"p1oq ur paySiyS1y st A1059120qNs Yora I0J 91098 159q Y, 2207 IO -IS2L T S)NSaI A10331ed Sayounig-1240)) 9} dqe],

91

Kaled Alshmrany

Chapter 4

Efficient hybrid fuzzing for detecting vulnerabilities in software

Similarly, Table 4.7 demonstrates demonstrates the error detecting abilities of FuSeBMC
v4. In particular, FuSeBMC achieved first place in 9 subcategories (i.e. Arrays, BitVectors,
ControlFlow, Floats, Heap, Loops, ProductLines, Recursive and BusyBox) reaching the
first overall place in this category with the result of 628 out of 776 (~ 81% success rate).
Overall, the results show that FuSeBMC produces test cases that detect more security
vulnerabilities in C programs than state-of-the-art tools, which successfully demonstrates

that the evaluation objective O3 has been achieved.

92 Chapter 4 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

€9 | 0 | €9% | Syl | 8CS | - LS | 00§ | SS€ | 879 0 0 | 9LL AOLLH-12400)
0 0 0 0 0 - 0 0 0 0 0 0 4 SIDALI(Ja1AR(
¢ 0| 0 0 0 | - |0 | 1 0 (4 0 | 0| €l xogAsng
SS 0 Iy 0 ¢ - 0 LE [4S [4Y 0¢ 0 6S dSOX
vor | O 6L 0 I8 - 0 98 ¢6 | <01 19 0 | LOT || pezienusnbeg
91 0 L1 I L1 - 0 91 ¢ 61 L 0 0¢ QAISINIY
691 | 0 | 661 6 | 691 - | ve | 691 €S | 691 | 091 | O | 691 saurponpold
arl | 0 I8 | <0l | 9¢I - 14 ¢6 €S | 9L | SL 0 | LSI sdoog
€S 0 €S el €S - € (4 (4% €S 61 0 9¢ desy
(43 0 0 € 0¢ - 0 9 €C 1% ¢¢C 0 €e S1eo0[q
ST 0 14! 0 I'T - 0 el I el € 0 81 vOod
0¢ 0 Ve 0 LT - 0 LT 91 (43 81 0 [43 MO[A[ONUOT)
1]} 0 8 ¢ 1]} - 0 6 9 1]} 8 0 01 SI010_ANY
66 0 VL LE L6 - L9 | 68 69 66 eL 0 | 001 skelry
T | =
- = | - = Q
g, S = g = Y = = m.. W M m =
T 8 W. ~ ~ 2 | o3 = o o8 e > S
g = S = =3 = = oo = = =) =) K1039180QNg
N < = «@ N »n | B t ag o) S o I+
Szl S sl e |52l %<2 14 8
bIS| BN |2l 2R R |8
— p () . “|. C
o | @ < i IS ="
[00L

"P1oq ur paySiyS1y st A1089380qNSs YB3 I0J 91098 159q Y], "7707 dwo)-1saL, 18 s1nsa1 A108918d L0L4F-12400) L} S[qEL

93

Kaled Alshmrany

Chapter 4

Efficient hybrid fuzzing for detecting vulnerabilities in software

4.4 | Conclusion

In this paper, we presented FuSeBMC v4, a test generator that relies on smart seed gen-
eration to improve the state-of-the-art in hybrid fuzzing and achieve high coverage for
C programs. First, FuSeBMC analyses and injects goal labels into the given C program.
Then, It ranks these goal labels according to the given strategy. After that, the engines
are employed to produce smart seeds for a short time to use them later. Then, FuSeBMC
coordinates between the engines and seed distribution by the Tracer. This Tracer will
generally manage the tool to record the goals covered and deal with the transfer of infor-
mation between the engines by providing a shared memory to harness the power and take
advantage of the power of each engine. So that the BMC engine helps give the seed that
makes the fuzzing engine not struggle with complex mathematical guards. Furthermore,
Tracer evaluates test cases dynamically to convert high-impact cases into seeds for sub-
sequent test fuzzing. This approach was evaluated by participating in the fourth interna-
tional competition on software testing Test-Comp 2022. Our approach FuSeBMC showed
its effectiveness by achieving first place in the Cover-branches category, first place in the
Cover-Error category and first place in the Overall category. This performance is due
to various features of our tool, the most important of which are the following. First the
generation of smart seeds, which help harness the power of the fuzzers and allow them to
fuzz deeper. Second, simplifying the target program by limiting the bounds of potentially
infinite loops to avoid the path explosion problem and produce seeds faster. Third, utiliz-
ing static analysis to manage the mutation process by limiting the range of values input
variables can take, speeding up the fuzzing process. In the future, we are planning on
developing the tool to deal with different types of programs, such as multi-threaded pro-
grams. Furthermore, we work with the SCorCH project® to improve our performance in

detecting memory safety bugs by incorporating SoftBoundCETS [211] into FuSeBMC.

Shttps://scorch-project.github.io/about/

94 Chapter 4 Kaled Alshmrany

https://scorch-project.github.io/about/

Chapter

Conclusion & Future Work Directions

In this thesis, I have presented three contributions to automated software testing. Firstly,
I have developed an approach that generates seeds that bypass complex guards to aid the
fuzzer in exploring deeper into the target program. Furthermore, this approach reduces
the burden of the fuzzer in mutation processes through static analysis. As part of this con-
tribution, I proposed, developed, and evaluated a tracer subsystem, which coordinates and

analyses the processes within the approach and the link between the employed techniques.

Secondly, I introduced our new fuzzer, which shares the general concept of the AFL
fuzzer. This modified fuzzer has the advantage of performing a lightweight static program
analysis in order to recognise input verification. Therefore, the condition code is parsed
against the input variables to guarantee that only seeds satisfying the conditions are se-
lected. This reduces our approach’s reliance on a computationally expensive bounded
model checker to discover high-quality seeds. Also, the modified fuzzer provides analy-
sis of the target program and identifies potential infinite loops through heuristics. It then
constrains these loops to speed up the fuzzing process, with the level of constraint in-
creasing as rounds go. Furthermore, I introduced our new approach: a selective fuzzer
that relies on learning from test cases produced by BMC and a modified fuzzer to generate

new test cases that can successfully detect software vulnerabilities.

Finally, I developed and evaluated FuSeBMC, an automated testing tool that exploits
the combination of BMC and fuzzing to test software and increase code coverage.
FuSeBMC has demonstrated advantages in managing the use of resources and conse-
quently reduces the consumption of BMC by exchanging data between engines in a man-
ner that maximises the benefit of their cooperation. Also, it decreases the generation
processes for execution paths that BMC might not reach or cause path explosion issues.
As aresult, FuSeBMC can reduce the negative impact, generate effective seeds, and avoid
the path explosion issue. FuSeBMC has been evaluated comprehensively and compet-
itively by participating in the most powerful and complex international software testing

competition for two years, 2021 and 2022, in which our tool won six international awards.

95

Efficient hybrid fuzzing for detecting vulnerabilities in software

FuSeBMC is currently the leading state-of-the-art software testing tool (Chapter 4 and Ta-
ble 4.5. I also hypothesise that FuSeBMC is currently the strongest automated testing tool

in the literature.

5.1 | Future Work Directions

This thesis’s work opens numerous avenues of investigation, but I will discuss the most

promising and intriguing ones here.

In light of the tool FuSeBMC’s accomplishments, it invited many projects to be con-
sidered and the prospect of adopting it in their projects. One of the promising new projects
is SCorCH!. It is a collaboration between the University of Manchester and the University
of Oxford, two leading automated verification and testing centres. The SCorCH project
aims to use a range of modern formal analysis technology for reasoning about capability-
based systems and verifying their security properties. SCorCH invited FuSeBMC to be
part of the hybrid approach to protect against memory safety vulnerabilities. Therefore, I
developed and evaluated FuSeBMC to provide additional software security properties for
detecting vulnerabilities, such as memory leaks. Future efforts will be made to assist the
hybrid technique in identifying temporal memory vulnerabilities. In particular, we intend
to combine FuSeBMC and SoftBoundCETS [211, 212] in order to incorporate the pro-
gram’s memory statistics during execution to guide the fuzzer toward inputs that violate
spatial memory safety. Our published paper [4] highlighted the current status and plans
for the project.

In this paper [4], we conducted experiments on various open-source programs, €.g.,
bftpd, which is an FTP server for Unix systems. One of the primary objectives of our
hybrid fuzzer was to develop it to verify open-source software and provide what enhances
and contributes to this field on the ground. The results demonstrated that our approach

works well with open-source software and achieves the intended results.

Future implementation of FuSeBMC will include a verification technique based on
interval methods via contractors [6]. It will help to reduce the domains of variables repre-
senting the search space. FuSeBMC’s current implementation prevents the BMC engine
from entering large loops, hence decreasing the probability of passing the path. Instead,
reliance will be placed solely on the fuzzing engine. Thus, FuSeBMC’s involvement in
a verification approach based on interval methods via contractor project will benefit both
sides. FuSeBMC can provide analysis for the approach, while the verification approach

reduces resource consumption and enhances the BMC engine’s effectiveness.

"https://scorch-project.github.io/

96 Chapter 5 Kaled Alshmrany

https://scorch-project.github.io/

Efficient hybrid fuzzing for detecting vulnerabilities in software

5.2 | Concluding Remarks

Over the years, vulnerabilities increased almost continuously. 2017 saw its peak and
severity due to the emergence of a ransomware attack [18]. Simultaneously, software and
programs compete to provide several services and benefits. Expanding the software and
increasing the number of required functions makes the software massive and susceptible
to overlapping and conflicting functions; hence, vulnerabilities may occur. This required
hardware and software developers to deliver periodic updates to fix software bugs and
security vulnerabilities. In contrast, verifying a program and covering its source code has
become increasingly complex and challenging. This thesis, in particular, proposed an effi-
cient hybrid fuzzing for detecting vulnerabilities and achieving high coverage in software.
The hybrid fuzzer combines BMC and fuzzing techniques to minimize each approach’s
drawbacks, verify deep paths in software, and reduce the consumption of resources. How-
ever, the development of reliable software is a complex problem, and software testing
techniques still need to evolve to keep pace with the rapid expansion of software and

programs.

Chapter 5 Kaled Alshmrany 97

Bibliography

Kaled M Alshmrany, Rafael S Menezes, Mikhail R Gadelha, and Lucas C
Cordeiro. “FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabil-
ities in C Programs”. In: The 24th International Conference on Fundamental
Approaches to Software Engineering (FASE) 12649 (2020). https: //doi .
org/10.1007/978-3-030-71500-7_19, pp. 363-367 (page 12).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C
Cordeiro. “FuSeBMC: An energy-efficient test generator for finding security
vulnerabilities in ¢ programs”. In: The International Conference on Tests and
Proofs (TAP). https://doi.org/10.1007/978-3-030-79379-1_6.
Springer. 2021, pp. 85-105 (pages 12, 23, 52).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C
Cordeiro. “FuSeBMC v4: Smart Seed Generation for Hybrid Fuzzing”. In: The
25th International Conference on Fundamental Approaches to Software Engi-
neering (FASE) 13241 (2022). https://doi.org/10.1007/978-3~
030-99429-7_19, pp. 336-340 (page 12).

Kaled Alshmrany, Ahmed Bhayat, Franz Brauf3e, Lucas Cordeiro, Konstantin Ko-
rovin, Tom Melham, Mustafa A. Mustafa, Pierre Olivier, Giles Reger, and Fedor
Shmarov. “Position Paper: Towards a Hybrid Approach to Protect Against Mem-
ory Safety Vulnerabilities”. In: IEEE Secure Development Conference. Aug. 2022
(pages 12, 96).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, Fedor Shmarov, Fa-
timah Aljaafari, and Lucas C Cordeiro. “FuSeBMC v4: Improving code coverage
with smart seeds via fuzzing and static analysis”. In: The Formal Aspects of Com-
puting Journal (FAC) (2022) (pages 12, 24, 72).

Mohannad Aldughaim, Kaled Alshmrany, Mohamed Mustafa, Lucas Cordeiro,
and Alexandru Stancu. “Bounded Model Checking of Software Using Interval
Methods via Contractors”. In: arXiv preprint arXiv:2012.11245, Submitted in In-

98

https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19

Efficient hybrid fuzzing for detecting vulnerabilities in software

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ternational Conference on Software Engineering (ICSE 2023) (2022) (pages 12,
96).

Mamoona Humayun, Mahmood Niazi, NZ Jhanjhi, Mohammad Alshayeb, and
Sajjad Mahmood. “Cyber security threats and vulnerabilities: a systematic map-
ping study”. In: Arabian Journal for Science and Engineering 45.4 (2020),
pp- 3171-3189 (page 15).

Kaled M Alshmrany, Rafael S Menezes, Mikhail R Gadelha, and Lucas C
Cordeiro. “FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabil-
ities in C Programs”. In: In 24th International Conference on Fundamental
Approaches to Software Engineering (FASE) 12649 (2020). https: //doi .
org/10.1007/978-3-030-71500-7_19, pp. 363-367 (pages 15, 54, 73,
74).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C
Cordeiro. “FuSeBMC: An energy-efficient test generator for finding security
vulnerabilities in ¢ programs”. In: International Conference on Tests and Proofs.
https://doi.org/10.1007/978-3-030-79379~-1_6. Springer.
2021, pp. 85-105 (pages 15, 73-75, 84).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, and Lucas C
Cordeiro. “FuSeBMC v4: Smart Seed Generation for Hybrid Fuzzing”. In: In
25th International Conference on Fundamental Approaches to Software Engi-
neering (FASE) 13241 (2022). https://doi.org/10.1007/978-3~
030-99429-7_19, pp. 336-340 (pages 15, 73, 74).

Kaled M Alshmrany, Mohannad Aldughaim, Ahmed Bhayat, Fedor Shmarov, Fa-
timah Aljaafari, and Lucas C Cordeiro. “FuSeBMC v4: Improving code coverage

with smart seeds via fuzzing and static analysis”. In: In the Formal Aspects of
Computing Journal (FAC 2022) (2022) (page 15).

Tom CW Lin. “Financial weapons of war”. In: Minn. L. Rev. 100 (2015), p. 1377
(page 15).

J. Butler and Nils. MWR Labs Pwn20wn 2013 Write-up — Kernel Exploit. 2013.
URL: https://labs.mwrinfosecurity.com/blog/2013/09/06/

mwr—labs-pwn2own-2013-write-up—-—-—-kernel-exploit/ (visited
on 04/25/2022) (page 15).

Daniel Moore. “Targeting technology: Mapping military offensive network opera-
tions”. In: 2018 10th International Conference on Cyber Conflict (CyCon). IEEE.
2018, pp. 89-108 (page 15).

Kathy Abbott, Stephen M Slotte, Donald K Stimson, et al. “The interfaces be-
tween flightcrews and modern flight deck systems”. In: (1996) (page 15).

Chapter 5 Kaled Alshmrany 99

https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-71500-7_19
https://doi.org/10.1007/978-3-030-79379-1_6
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/
https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/

Efficient hybrid fuzzing for detecting vulnerabilities in software

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

[28]

Robert Shirey. Internet security glossary. 2000 (page 15).

Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: a survey”. In: Cybersecurity
1.1 (2018), pp. 1-13 (pages 15, 31).

E Cert. “Wannacry ransomware campaign exploiting smb vulnerability”. In: Re-
trieved from Cert Europa Website: https://cert.europa.eu/static/SecurityAdvisories
/2017/CERT-EU-SA201 (2017), pp. 7-012. URL: https://cert.europa.
eu/ static / SecurityAdvisories /2017 / CERT - EU - SA2017 -
012.pdf (pages 15, 97).

Wikipedia. Wannacry ransomware attack (2017). 2017. URL: https://en.

wikipedia.org/wiki/WannaCry_ransomware_attack (visited on
04/25/2022) (page 15).

Savita Mohurle and Manisha Patil. “A brief study of wannacry threat: Ran-
somware attack 2017”. In: International Journal of Advanced Research in Com-
puter Science 8.5 (2017), pp. 1938—-1940 (page 16).

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008 (pages 16, 17).

Lionel C Briand. “A critical analysis of empirical research in software testing”.
In: First International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2007). IEEE. 2007, pp. 1-8 (page 16).

Lucas C. Cordeiro. “SMT-based bounded model checking of multi-threaded soft-
ware in embedded systems”. PhD thesis. University of Southampton, UK, 2011.
URL: http://eprints.soton.ac.uk/186011/ (page 16).

Barton P Miller, Louis Fredriksen, and Bryan So. “An empirical study of the reli-
ability of UNIX utilities”. In: Communications of the ACM 33.12 (1990), pp. 32—
44 (pages 16, 31).

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
“Many-core compiler fuzzing”. In: ACM SIGPLAN Notices 50.6 (2015), pp. 65—
76 (pages 16, 34).

Tao Zhang, Pan Wang, and Xi Guo. “A survey of symbolic execution and its tool
klee”. In: Procedia Computer Science 166 (2020), pp. 330-334 (page 16).

Cristian Cadar and Koushik Sen. “Symbolic execution for software testing: three
decades later”. In: Communications of the ACM 56.2 (2013), pp. 82-90 (page 16).

Daniel Marjamiki. Cppcheck: a tool for static C/C++ code analysis. 2013
(pages 16, 20).

100

Chapter 5 Kaled Alshmrany

https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
https://cert.europa.eu/static/SecurityAdvisories/2017/CERT-EU-SA2017-012.pdf
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
http://eprints.soton.ac.uk/186011/

Efficient hybrid fuzzing for detecting vulnerabilities in software

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Anjana Gosain and Ganga Sharma. “Static analysis: A survey of techniques and
tools”. In: Intelligent Computing and Applications. Springer, 2015, pp. 581-591
(page 16).

J Aaron Pendergrass, Susan C Lee, and C Durward McDonell. “Theory and prac-

tice of mechanized software analysis”. In: Johns Hopkins APL Technical Digest
32.2 (2013), pp. 499-508 (page 16).

Yonit Kesten, Amit Klein, Amir Pnueli, and Gil Raanan. “A Perfecto Verification:
combining model checking with deductive analysis to verify real-life software”.
In: International Symposium on Formal Methods. Springer. 1999, pp. 173-194
(pages 16, 17).

Jussi Lahtinen, Janne Valkonen, Kim Bjorkman, Juho Frits, Ilkka Niemeld, and
Keijo Heljanko. “Model checking of safety-critical software in the nuclear en-
gineering domain”. In: Reliability Engineering & System Safety 105 (2012),
pp- 104-113 (page 17).

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse
Whittemore, Sudhindra Pandav, Anna Slobodov4, Christopher Taylor, Vladimir
Frolov, Erik Reeber, et al. “Replacing Testing with Formal Verification in Intel
CoreTM 17 Processor Execution Engine Validation”. In: International Conference
on Computer Aided Verification. Springer. 2009, pp. 414-429 (page 17).

Edmund M Clarke. “Model checking”. In: International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Springer. 1997,
pp. 54-56 (page 17).

Hong Zhu, Patrick AV Hall, and John HR May. “Software unit test coverage and

adequacy”. In: Acm computing surveys (csur) 29.4 (1997), pp. 366—427 (pages 17,
36).

Youngjoon Kim and Jiwon Yoon. “MaxAFL: Maximizing Code Coverage with
a Gradient-Based Optimization Technique”. In: Electronics 10.1 (2021), p. 11
(page 17).

Raanan Grinwald, Eran Harel, Michael Orgad, Shmuel Ur, and Avi Ziv. “User
defined coverage-a tool supported methodology for design verification”. In:
Proceedings 1998 Design and Automation Conference. 35th DAC.(Cat. No.
98CH36175). IEEE. 1998, pp. 158-163 (page 17).

Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. “Bounded Model Checking.” In: Handbook of satisfiability 185.99
(2009), pp. 457-481 (page 17).

Chapter 5 Kaled Alshmrany 101

Efficient hybrid fuzzing for detecting vulnerabilities in software

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]
[49]

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. “SMT-based bounded
model checking for embedded ANSI-C software”. In: IEEE Transactions on Soft-
ware Engineering 38.4 (2011), pp. 957-974 (pages 17, 29).

Phillipe A. Pereira, Higo F. Albuquerque, Isabela da Silva, Hendrio Marques, Fe-
lipe R. Monteiro, Ricardo Ferreira, and Lucas C. Cordeiro. “SMT-based context-
bounded model checking for CUDA programs”. In: Concurr. Comput. Pract. Exp.
29.22 (2017). DOI: 10.1002/cpe. 3934 (page 17).

Lucas C. Cordeiro, Eddie Batista de Lima Filho, and ITury Valente de Bessa. “Sur-
vey on automated symbolic verification and its application for synthesising cyber-
physical systems”. In: IET Cyper-Phys. Syst.: Theory & Appl. 5.1 (2020), pp. 1-
24.D01: 10.1049/1iet-cps.2018.5006 (page 17).

Lucas C. Cordeiro. “Exploiting the SAT Revolution for Automated Software Ver-
ification: Report from an Industrial Case Study”. In: /0th Latin-American Sympo-
sium on Dependable Computing, LADC 2021, Florianopolis, Brazil, November
22-26, 2021 - Companion Volume. Brazilian Computing Society, 2021, pp. 8-9.
DOI: 10.5753/1adc.2021.18531 (pages 17, 18).

Patrice Godefroid. “Fuzzing: Hack, art, and science”. In: Communications of the
ACM 63.2 (2020), pp. 70-76 (pages 18, 31, 34, 35, 53).

Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vi-
gna. “Driller: Augmenting Fuzzing Through Selective Symbolic Execution.” In:
NDSS. 2016, pp. 1-16 (pages 18, 33, 34, 42, 45, 46, 49, 73, 82).

Ravindra Metta, Raveendra Kumar Medicherla, and Samarjit Chakraborty.
“BMC+ Fuzz: Efficient and effective test generation”. In: 2022 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2022, pp. 1419-
1424 (pages 19, 46).

Nikolaos S Papaspyrou. “A formal semantics for the C programming lan-
guage”. In: Doctoral Disseration. National Technical University of Athens. Athens
(Greece) 15 (1998) (pages 19, 20).

Dennis M Ritchie, Brian W Kernighan, and Michael E Lesk. The C programming
language. Prentice Hall Englewood Cliffs, 1988 (page 20).

Steve Oualline. Practical C programming. " O’Reilly Media, Inc.", 1997 (page 20).

Macario Polo, Pedro Reales, Mario Piattini, and Christof Ebert. “Test automa-
tion”. In: IEEE software 30.1 (2013), pp. 84—89 (page 20).

Hrushikesha Mohanty, JR Mohanty, and Arunkumar Balakrishnan. Trends in soft-
ware testing. Springer, 2017 (page 20).

102

Chapter 5 Kaled Alshmrany

https://doi.org/10.1002/cpe.3934
https://doi.org/10.1049/iet-cps.2018.5006
https://doi.org/10.5753/ladc.2021.18531

Efficient hybrid fuzzing for detecting vulnerabilities in software

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

Clang Documentation. http://clang.llvm.org/docs/index.html.
[Online; accessed August-2019]. 2015 (pages 21, 55, 75, 79).

George Candea, Stefan Bucur, and Cristian Zamfir. “Automated software testing
as a service”. In: Proceedings of the 1st ACM symposium on Cloud computing.
2010, pp. 155-160 (page 21).

Edward Kit and Susannah Finzi. Software testing in the real world: improving the
process. ACM Press/Addison-Wesley Publishing Co., 1995 (page 21).

Rudolf Ramler and Klaus Wolfmaier. “Economic perspectives in test automation:
balancing automated and manual testing with opportunity cost”. In: Proceedings
of the 2006 international workshop on Automation of software test. 2006, pp. 85—
91 (page 21).

Hubert Garavel, Radu Mateescu, and Irina Smarandache. “Parallel state space
construction for model-checking”. In: International SPIN Workshop on Model
Checking of Software. Springer. 2001, pp. 217-234 (page 21).

American fuzzy lop, https : // lcamtuf . coredump . cx /afl/. 2021
(pages 22, 34, 39, 45, 49, 75, 82).

b

Antonia Bertolino. “Software testing research: Achievements, challenges, dreams”.
In: Future of Software Engineering (FOSE’07). IEEE. 2007, pp. 85-103 (pages 25,
28).

Bill Hetzel. The complete guide to software testing. QED Information Sciences,
Inc., 1988 (page 25).

Edsger Wybe Dijkstra et al. Notes on structured programming. 1970 (page 25).

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011 (pages 26, 36).

Jeremy Morse. “Expressive and efficient bounded model checking of concurrent
software”. PhD thesis. University of Southampton, 2015 (pages 26, 29).

Frederick P Brooks Jr. The mythical man-month: essays on software engineering.

Pearson Education, 1995 (page 26).

Paul C Jorgensen. Software testing: a craftsman’s approach. Auerbach Publica-
tions, 2013 (pages 26, 27).

Fokke Heikamp. “Gray-box Network Fuzzing using Genetic Algorithms and
Code Coverage”. MA thesis. University of Twente, 2018 (page 26).

Jihyun Lee, Sungwon Kang, and Danhyung Lee. “Survey on software testing
practices”. In: IET software 6.3 (2012), pp. 275-282 (page 28).

Chapter 5 Kaled Alshmrany 103

http://clang.llvm.org/docs/index.html
https://lcamtuf.coredump.cx/afl/

Efficient hybrid fuzzing for detecting vulnerabilities in software

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

IEEE Computer Society Professional Practices Committee et al. “SWEBOK:
Guide to the Software Engineering Body of Knowledge, 2004 version”. In: IEEE
Computer Society (2004) (page 28).

Robert L Glass, Ross Collard, Antonia Bertolino, James Bach, and Cem Kaner.
“Software testing and industry needs”. In: IEEE Software 23.4 (2006), pp. 55-57
(pages 28, 50).

Natalia Juristo, Ana M Moreno, and Wolfgang Strigel. “Guest editors’ intro-
duction: Software testing practices in industry”. In: IEEE software 23.4 (2006),
pp- 19-21 (pages 28, 50).

Antonia Bertolino. “Software testing research and practice”. In: International
Workshop on Abstract State Machines. Springer. 2003, pp. 1-21 (pages 28, 50).

Ram Chillarege. Software testing best practices. IBM Thomas J. Watson Research
Division, 1999 (pages 28, 50).

Ossi Taipale and Kari Smolander. “Improving software testing by observing prac-
tice”. In: Proceedings of the 2006 ACM/IEEE international symposium on Empir-
ical software engineering. 2006, pp. 262-271 (page 28).

Natalia Juristo, Ana M Moreno, and Sira Vegas. “Reviewing 25 years of testing
technique experiments”. In: Empirical Software Engineering 9.1 (2004), pp. 7-44
(page 28).

Jussi Kasurinen, Ossi Taipale, and Kari Smolander. “Software test automation

in practice: empirical observations”. In: Advances in Software Engineering 2010
(2010) (page 28).

Mats Grindal, Jeft Offutt, and Jonas Mellin. “On the testing maturity of soft-
ware producing organizations”. In: Testing: Academic & Industrial Conference-

Practice And Research Techniques (TAIC PART’06). IEEE. 2006, pp. 171-180
(page 28).
Vahid Garousi and Tan Varma. “A replicated survey of software testing practices

in the Canadian province of Alberta: What has changed from 2004 to 20097 In:
Journal of Systems and Software 83.11 (2010), pp. 2251-2262 (page 28).

Aaron R Bradley and Zohar Manna. The calculus of computation: decision proce-
dures with applications to verification. Springer Science & Business Media, 2007
(pages 28, 30).

Alan Mathison Turing et al. “On computable numbers, with an application to the
Entscheidungsproblem”. In: J. of Math 58.345-363 (1936), p. 5 (page 28).

104

Chapter 5 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. “Symbolic
model checking without BDDs”. In: International conference on tools and algo-
rithms for the construction and analysis of systems. Springer. 1999, pp. 193-207
(page 29).

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability.
Vol. 185. IOS press, 2009 (pages 29, 41).

Clark Barrett, Roberto Sebastiani, Sanjit A Seshia, Cesare Tinelli, A Biere, M
Heule, H van Maaren, and T Walsh. “Handbook of satisfiability”. In: Satisfiability
modulo theories 185 (2009), pp. 825-885 (pages 29, 30, 41).

Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. “Bounded model
checking of software using SMT solvers instead of SAT solvers”. In: Interna-
tional Journal on Software Tools for Technology Transfer 11.1 (2009), pp. 69-83
(page 29).

Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A tool for checking ANSI-
C programs”. In: International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer. 2004, pp. 168-176 (pages 29, 41,
49).

Florian Merz, Stephan Falke, and Carsten Sinz. “LLBMC: Bounded model check-
ing of C and C++ programs using a compiler IR”. In: International Conference
on Verified Software: Tools, Theories, Experiments. Springer. 2012, pp. 146161
(pages 29, 41).

Dirk Beyer, Matthias Dangl, and Philipp Wendler. “Boosting k-induction with
continuously-refined invariants”. In: International Conference on Computer
Aided Verification. Springer. 2015, pp. 622-640 (page 29).

Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan Kauf-
mann Publishers Inc., 1997. 1SBN: 1558603204 (page 29).

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. “SMT-based bounded
model checking for embedded ANSI-C software”. In: IEEE Transactions on Soft-
ware Engineering 38.4 (2012), pp. 957-974. 1SSN: 00985589. DOI: 10.1109/
TSE.2011.59. URL: http://www.esbmc.org (page 29).

Saul A. Kripke. “Semantical Analysis of Modal Logic I Normal Modal Proposi-
tional Calculi”. In: Mathematical Logic Quarterly 9.5-6 (1963), pp. 67-96. ISSN:
15213870. DO1: 10.1002/malqg.19630090502 (page 29).

Lucas Cordeiro. “SMT-based bounded model checking for multi-threaded soft-
ware in embedded systems”. In: 2010 ACM/IEEE 32nd International Conference
on Software Engineering. Vol. 2. IEEE. 2010, pp. 373-376 (page 30).

Chapter 5 Kaled Alshmrany 105

https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
http://www.esbmc.org
https://doi.org/10.1002/malq.19630090502

Efficient hybrid fuzzing for detecting vulnerabilities in software

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

T Ball and SK Rajamani. SLIC: A Specication Language for Interface Checking
(of C), Microsoft Research, Technical Report, MSR-TR-2001-21. 2002 (page 30).

Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd
Fischer, and Denis A Nicole. “ESBMC 5.0: an industrial-strength C model
checker”. In: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 2018, pp. 888—-891 (pages 30, 55).

Omar M Alhawi, Herbert Rocha, Mikhail R Gadelha, Lucas C Cordeiro, and Ed-
die Batista. “Verification and refutation of C programs based on k-induction and

invariant inference”. In: International Journal on Software Tools for Technology
Transfer 23.2 (2021), pp. 115-135 (page 31).

Collin Mulliner, Nico Golde, and Jean-Pierre Seifert. “{SMS} of Death: From
Analyzing to Attacking Mobile Phones on a Large Scale”. In: 20th USENIX Se-
curity Symposium (USENIX Security 11). 2011 (page 31).

Patrice Godefroid, Adam Kiezun, and Michael Y Levin. “Grammar-based white-
box fuzzing”. In: Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 2008, pp. 206-215 (page 31).

Christian Holler, Kim Herzig, and Andreas Zeller. “Fuzzing with code frag-
ments”. In: 21st USENIX Security Symposium (USENIX Security 12). 2012,
pp- 445458 (pages 31, 34).

Patrice Godefroid, Michael Y Levin, David A Molnar, et al. “Automated whitebox
fuzz testing.” In: NDSS. Vol. 8. 2008, pp. 151-166 (page 31).

Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. “Fitness-
guided path exploration in dynamic symbolic execution”. In: 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE. 2009,
pp- 359-368 (page 31).

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnera-
bility discovery. Pearson Education, 2007 (pages 31, 34, 39).

Michael Howard and Steve Lipner. The security development lifecycle. Vol. 8.
Microsoft Press Redmond, 2006 (page 31).

Yang Chen, Alex Groce, Chaogiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric
Eide, and John Regehr. “Taming compiler fuzzers”. In: Proceedings of the 34th
ACM SIGPLAN conference on Programming language design and implementa-
tion. 2013, pp. 197-208 (page 33).

Patrick Francis, David Leon, Melinda Minch, and Andy Podgurski. “Tree-based
methods for classifying software failures”. In: 15th International Symposium on
Software Reliability Engineering. IEEE. 2004, pp. 451-462 (page 33).

106

Chapter 5 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Michat Zalewski. American Fuzzy Lop (AFL) fuzzer. 2015. URL: http : / /
lcamtuf.coredump.cx/afl/ (visited on 05/12/2019) (page 33).

Team Microsoft. /exploitable. 2013. URL: https://www.microsoft.com/
security/blog/2013/06/13/exploitable—-crash—analyzer—
version-1-6/ (visited on 06/17/2022) (page 33).

Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. “The art, science, and engineer-

ing of fuzzing: A survey”. In: IEEE Transactions on Software Engineering 47.11
(2019), pp. 2312-2331 (page 33).

Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. “QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing”. In: Proceed-
ings of the 27th USENIX Conference on Security Symposium. SEC’18. Baltimore,
MD, USA: USENIX Association, 2018, pp. 745-761. 1SBN: 9781931971461
(pages 33, 45, 46, 49).

Munea, Tewodros Legesse, Lim, Hyunwoo, Shon, and Taeshik. “Network pro-
tocol fuzz testing for information systems and applications: a survey and tax-
onomy”. In: Multimedia Tools and Applications 75.22 (2016), pp. 1474514757
(page 34).

Patrice Godefroid, Michael Y Levin, and David Molnar. “SAGE: whitebox
fuzzing for security testing”. In: Queue 10.1 (2012), pp. 20-27 (pages 34, 43,
73).

Kostya Serebryany. “libFuzzer—a library for coverage-guided fuzz testing”. In:
LLVM project (2015) (pages 34, 40, 45, 49).

Gustavo Grieco, Martién Ceresa, and Pablo Buiras. “Quickfuzz: An automatic
random fuzzer for common file formats”. In: ACM SIGPLAN Notices 51.12
(2016), pp. 13-20 (page 34).

D. Vyukov. Syzkaller—Linux Kernel Fuzzer. 2016. URL: https://github.
com/google/syzkaller (visited on 06/19/2022) (pages 34, 40).

Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. “VUzzer: Application-aware Evolutionary Fuzzing.” In: NDSS.
Vol. 17. 2017, pp. 1-14 (pages 34, 39).

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. “Un-
leashing mayhem on binary code”. In: 2012 IEEE Symposium on Security and
Privacy. IEEE. 2012, pp. 380-394 (page 34).

Miller and et al. Barton. Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services. Tech. rep. UW-Madison, 1995 (pages 34, 44, 46, 54).

Chapter 5 Kaled Alshmrany 107

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6/
https://www.microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6/
https://www.microsoft.com/security/blog/2013/06/13/exploitable-crash-analyzer-version-1-6/
https://github.com/google/syzkaller
https://github.com/google/syzkaller

Efficient hybrid fuzzing for detecting vulnerabilities in software

[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Pedram Amini and Aaron Portnoy. Sulley fuzzing framework. 2010 (page 34).

Fuzzing with spike. https : / / samsclass . info /127 /proj/pl8 -
spike.htm. [Online; accessed August-2022]. 2015 (page 34).

Michael Eddington. “Peach fuzzing platform”. In: Peach Fuzzer 34 (2011)
(pages 34, 40).

Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqgian
Liu. “A systematic review of fuzzing techniques”. In: Computers & Security 75
(2018), pp. 118-137 (page 35).

Barton P Miller, Gregory Cooksey, and Fredrick Moore. “An empirical study of
the robustness of macos applications using random testing”. In: Proceedings of

the Ist international workshop on Random testing. 2006, pp. 46—54 (page 35).

Patrice Godefroid. “Random testing for security: blackbox vs. whitebox fuzzing”.
In: Proceedings of the 2nd international workshop on Random testing: co-located
with the 22nd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE 2007). 2007, pp. 1-1 (page 35).

Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang.
“Fuzzing: State of the art”. In: IEEE Transactions on Reliability 67.3 (2018),
pp- 1199-1218 (page 35).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. “Pin: build-
ing customized program analysis tools with dynamic instrumentation”. In: Acm
sigplan notices 40.6 (2005), pp. 190-200 (page 35).

Hadi Hemmati. “How Effective Are Code Coverage Criteria?” In: 2015 IEEE
International Conference on Software Quality, Reliability and Security. 2015,
pp- 151-156. DOI: 10.1109/QRS.2015. 30 (page 36).

Marko Ivankovié, Goran Petrovi¢, René Just, and Gordon Fraser. “Code coverage
at Google”. In: Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 2019, pp. 955-963 (page 36).

Pavneet Singh Kochhar, Ferdian Thung, and David Lo. “Code coverage and test
suite effectiveness: Empirical study with real bugs in large systems”. In: 2015
IEEE 22nd international conference on software analysis, evolution, and reengi-
neering (SANER). 1IEEE. 2015, pp. 560-564 (page 36).

Baoying Lou and Jia Song. “A Study on Using Code Coverage Information Ex-
tracted from Binary to Guide Fuzzing.” In: International Journal of Computer
Science and Security (IJCSS) 14.5 (2020), pp. 200-210 (pages 36, 37).

108

Chapter 5 Kaled Alshmrany

https://samsclass.info/127/proj/p18-spike.htm
https://samsclass.info/127/proj/p18-spike.htm
https://doi.org/10.1109/QRS.2015.30

Efficient hybrid fuzzing for detecting vulnerabilities in software

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

André Baresel, Mirko Conrad, Sadegh Sadeghipour, and Joachim Wegener. “The
interplay between model coverage and code coverage”. In: Proc. EuroCAST.
2003, pp. 1-14 (pages 36, 37).

Hadi Hemmati. “How effective are code coverage criteria?” In: 2015 IEEE Inter-
national Conference on Software Quality, Reliability and Security. IEEE. 2015,
pp- 151-156 (page 36).

Raul Santelices and Mary Jean Harrold. “Efficiently monitoring data-flow test
coverage”. In: Proceedings of the twenty-second IEEE/ACM international con-

ference on Automated software engineering. 2007, pp. 343-352 (page 37).

Cem Kaner. “Software negligence and testing coverage”. In: Proceedings of STAR
96 (1996), p. 313 (page 37).

Saahil Ognawala, Thomas Hutzelmann, Eirini Psallida, and Alexander Pretschner.
“Improving function coverage with munch: a hybrid fuzzing and directed sym-
bolic execution approach”. In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing. 2018, pp. 1475-1482 (pages 38, 43).

Paul E Black and Irena Bojanova. “Defeating Buffer Overflow: A Trivial but Dan-
gerous Bug”. In: IT professional 18.6 (2016), pp. 58—61 (page 39).

Sen Zhang, Jingwen Zhu, Ao Liu, Weijing Wang, Chenkai Guo, and Jing Xu.
“A Novel Memory Leak Classification for Evaluating the Applicability of Static
Analysis Tools”. In: 2018 IEEE International Conference on Progress in Infor-
matics and Computing (PIC). IEEE. 2018, pp. 351-356 (page 39).

Willy Jimenez, Amel Mammar, and Ana Cavalli. “Software vulnerabilities, pre-
vention and detection methods: A reviewl”. In: Security in model-driven archi-
tecture 215995 (2009), p. 215995 (page 39).

El Habib Boudjema, Christele Faure, Mathieu Sassolas, and Lynda Mokdad. “De-
tection of security vulnerabilities in C language applications”. In: Security and
Privacy 1.1 (2018), e8 (page 39).

US-CERT. Understanding Denial-of-Service Attacks | CISA.2009. URL: https:
//www.us—cert.gov/ncas/tips/ST04-015 (page 39).

Cisco. Cisco 10S XE Software Cisco Discovery Protocol Memory Leak Vulnera-
bility. 2018. URL: https://tools.cisco.com/security/center/
content /CiscoSecurityAdvisory/cisco-sa—-20180926—-cdp-
memleak (page 39).

Barton, James H., Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek.
“Fault injection experiments using FIAT”. In: IEEE Trans. Comput. 39.4 (1990),
pp- 575-582 (page 39).

Chapter 5 Kaled Alshmrany 109

https://www.us-cert.gov/ncas/tips/ST04-015
https://www.us-cert.gov/ncas/tips/ST04-015
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180926-cdp-memleak
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180926-cdp-memleak
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20180926-cdp-memleak

Efficient hybrid fuzzing for detecting vulnerabilities in software

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Marcel Béhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. “Directed greybox fuzzing”. In: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 2017, pp. 2329-2344
(pages 39, 40, 75, 82).

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. “Skyfire: Data-driven seed
generation for fuzzing”. In: 2017 IEEE Symposium on Security and Privacy (SP).
IEEE. 2017, pp. 579-594 (page 40).

Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-based
greybox fuzzing as markov chain”. In: IEEE Transactions on Software Engineer-
ing 45.5 (2017), pp. 489-506 (page 40).

Van-Thuan Pham, Marcel Bohme, Andrew E Santosa, Alexandru Razvan Caci-
ulescu, and Abhik Roychoudhury. “Smart greybox fuzzing”. In: IEEE Transac-
tions on Software Engineering 47.9 (2019), pp. 1980-1997 (page 40).

Rundong Li, Hongliang Liang, Liming Liu, Xutong Ma, Rong Qu, Jun Yan, and
Jian Zhang. “GTFuzz: Guard Token Directed Grey-Box Fuzzing”. In: 2020 IEEE
25th Pacific Rim International Symposium on Dependable Computing (PRDC).
IEEE. 2020, pp. 160—-170 (page 40).

Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang. “Instrim:
Lightweight instrumentation for coverage-guided fuzzing”. In: Symposium on
Network and Distributed System Security (NDSS), Workshop on Binary Analysis
Research. 2018 (page 40).

Sang Kil Cha, Maverick Woo, and David Brumley. ‘“Program-adaptive muta-
tional fuzzing”. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015,
pp- 725-741 (page 40).

Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. “Optimizing seed selection for
fuzzing”. In: 23rd USENIX Security Symposium (USENIX Security 14). 2014,
pp- 861-875 (page 40).

Serge Gorbunov and Arnold Rosenbloom. “Autofuzz: Automated network proto-
col fuzzing framework™. In: IJCSNS 10.8 (2010), p. 239 (page 40).

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek
Trtik. “JBMC: A bounded model checking tool for verifying Java bytecode”.
In: International Conference on Computer Aided Verification. Springer. 2018,
pp- 183190 (page 41).

110

Chapter 5 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Lucas C. Cordeiro, Daniel Kroening, and Peter Schrammel. “JBMC: Bounded
Model Checking for Java Bytecode - (Competition Contribution)”. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). Vol. 11429.
LNCS. Springer, 2019, pp. 219-223 (page 41).

Mikhail R Gadelha, Rafael Menezes, Felipe R Monteiro, Lucas C Cordeiro,
and Denis Nicole. “ESBMC: Scalable and Precise Test Generation based on
the Floating-Point Theory:(Competition Contribution)”. In: Fundamental Ap-
proaches to Software Engineering 12076 (2020), p. 525 (pages 41, 49, 65, 75).

Kevin Atkinson, Matthew Flatt, and Gary Lindstrom. “ABI compatibility through
a customizable language”. In: Proceedings of the ninth international conference
on Generative programming and component engineering. 2010, pp. 147-156
(page 41).

Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. “En-
hancing symbolic execution with veritesting”. In: Proceedings of the 36th Inter-
national Conference on Software Engineering. 2014, pp. 1083-1094 (page 41).

Cadar, Cristian, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.”
In: OSDI. Vol. 8. 2008, pp. 209-224 (pages 41, 45, 49, 54, 63, 88).

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. “BAP:
A binary analysis platform™. In: International Conference on Computer Aided
Verification. Springer. 2011, pp. 463—469 (page 41).

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung
Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Sax-
ena. “BitBlaze: A new approach to computer security via binary analysis”. In:
International conference on information systems security. Springer. 2008, pp. 1—
25 (page 41).

Joxan Jaffar, Vijayaraghavan Murali, Jorge A Navas, and Andrew E Santosa.
“TRACER: A symbolic execution tool for verification”. In: International Con-

ference on Computer Aided Verification. Springer. 2012, pp. 758-766 (page 41).

Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed automated
random testing”. In: Proceedings of the 2005 ACM SIGPLAN conference on Pro-

gramming language design and implementation. 2005, pp. 213-223 (pages 41,
49).

Song, JaeSeung, Cristian Cadar, and Peter Pietzuch. “SYMBEXNET: testing net-
work protocol implementations with symbolic execution and rule-based specifi-
cations”. In: IEEE TSE 40.7 (2014), pp. 695-709 (page 41).

Chapter 5 Kaled Alshmrany 111

Efficient hybrid fuzzing for detecting vulnerabilities in software

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

Sasnauskas, Raimondas, Philipp Kaiser, Russ Lucas Jukié, and Klaus Wehrle.
“Integration testing of protocol implementations using symbolic distributed exe-
cution”. In: ICNP. IEEE. 2012, pp. 1-6 (page 41).

Dirk Beyer and Marie-Christine Jakobs. “CoVeriTest: Cooperative Verifier-Based
Testing.” In: FASE. 2019, pp. 389—-408 (page 41).

Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and R Venkatesh.
“VeriFuzz: Program aware fuzzing”. In: International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Springer. 2019,
pp. 244-249 (pages 42, 54, 63, 88).

Dirk Beyer. “Second Competition on Software Testing: Test-Comp 2020.” In:
FASE. 2020, pp. 505-519 (page 42).

Youngjoon Kim and Jiwon Yoon. “Maxafl: Maximizing code coverage with

a gradient-based optimization technique”. In: Electronics 10.1 (2020), p. 11
(page 42).
Brian S Pak. “Hybrid fuzz testing: Discovering software bugs via fuzzing and

symbolic execution”. In: School of Computer Science Carnegie Mellon University
(2012) (pages 42, 44, 46).

Yannic Noller, Rody Kersten, and Corina S Pasareanu. “Badger: complexity anal-
ysis with fuzzing and symbolic execution”. In: Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. 2018, pp. 322—
332 (page 42).

Corina S Pasdreanu and Neha Rungta. “Symbolic PathFinder: symbolic execution
of Java bytecode”. In: Proceedings of the IEEE/ACM international conference on
Automated software engineering. 2010, pp. 179—-180 (page 43).

Jingxuan He, Mislav Balunovi¢, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. “Learning to fuzz from symbolic execution with application to smart con-
tracts”. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 531-548 (page 43).

Hoang M Le. “LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Con-
tribution).” In: FASE. 2020, pp. 535-539 (pages 43, 54, 63, 88).

Hoang M. Le. “LLVM-based Hybrid Fuzzing with LibKluzzer (Competition
Contribution)”. In: Fundamental Approaches to Software Engineering. Ed. by

Heike Wehrheim and Jordi Cabot. Cham: Springer International Publishing,
2020, pp. 535-539. 1SBN: 978-3-030-45234-6 (page 43).

112

Chapter 5 Kaled Alshmrany

Efficient hybrid fuzzing for detecting vulnerabilities in software

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Caroline Lemieux and Koushik Sen. “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage”. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 2018, pp. 475-485
(page 43).

Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin
Zhao, and Jiaguang Sun. “SAFL: increasing and accelerating testing coverage
with symbolic execution and guided fuzzing”. In: Proceedings of the 40th Inter-
national Conference on Software Engineering: Companion Proceeedings. 2018,
pp. 61-64 (page 43).

Tao Zhang, Yu Jiang, Runsheng Guo, Xiaoran Zheng, and Hui Lu. “A survey of
hybrid fuzzing based on symbolic execution”. In: Proceedings of the 2020 Inter-
national Conference on Cyberspace Innovation of Advanced Technologies. 2020,
pp- 192—-196 (pages 44, 45).

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. “TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection”. In: 2010
IEEE Symposium on Security and Privacy. IEEE. 2010, pp. 497-512 (pages 44,
46).

Jun Cai, Shangfei Yang, Jinquan Men, and Jun He. “Automatic software vulnera-
bility detection based on guided deep fuzzing”. In: 2014 IEEE 5th International
Conference on Software Engineering and Service Science. IEEE. 2014, pp. 231-
234 (pages 44, 46).

Dong Fangquan, Dong Chaoqun, Zhang Yao, and Lin Teng. “Binary-oriented hy-
brid fuzz testing”. In: 2015 6th IEEE International Conference on Software Engi-
neering and Service Science (ICSESS). IEEE. 2015, pp. 345-348 (pages 45, 46).

XF Xie, XH Li, X Chen, GZ Meng, and Y Liu. “Hybrid testing based on symbolic
execution and fuzzing. Ruan Jian Xue Bao”. In: J. Softw 30 (2019), pp. 3071-3089
(pages 45, 46).

Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles Zhang. “Pan-
golin: Incremental hybrid fuzzing with polyhedral path abstraction”. In: 2020
IEEE Symposium on Security and Privacy (SP). IEEE. 2020, pp. 1613-1627
(pages 45, 46).

Dirk Beyer, Po-Chun Chien, and Nian-Ze Lee. “Bridging Hardware and Software
Analysis with Btor2C: A Word-Level-Circuit-to-C Translator”. In: () (page 46).

M. Rodriguez, M. Piattini, and C. Ebert. “Software Verification and Validation
Technologies and Tools”. In: IEEE Software 36.2 (2019), pp. 13-24. DOI: 10 .
1109/MS.2018.2883354 (page 53).

Chapter 5 Kaled Alshmrany 113

https://doi.org/10.1109/MS.2018.2883354
https://doi.org/10.1109/MS.2018.2883354

Efficient hybrid fuzzing for detecting vulnerabilities in software

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

Airbus issues software bug alert after fatal plane crash. the Guardian https://
tinyurl.com/xw67wtd9. [Online; accessed March-2021]. 2015 (page 53).

Bingchang Liu, Liang Shi, Zhuhua Cai, and Min Li. “Software vulnerability dis-
covery techniques: A survey”. In: 2012 fourth international conference on multi-
media information networking and security. IEEE. 2012, pp. 152-156 (page 53).

Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchro-
nization Skeletons Using Branching Time Temporal Logic”. In: 25 Years of Model
Checking. Ed. by Orna Grumberg and Helmut Veith. 2008, pp. 196-215 (page 53).

Edmund M. Clarke, William Klieber, Milo§ Novacek, and Paolo Zuliani. “Model
checking and the state explosion problem”. In: LASER Summer School 7682
LNCS.2005 (2012), pp. 1-30 (page 53).

Wen Shameng and et al. Feng Chao. “Testing Network Protocol Binary Software
with Selective Symbolic Execution”. In: CIS. IEEE. 2016, pp. 318-322 (page 53).

Dirk Beyer. 3rd Competition on Software Testing (Test-Comp 2021). 2021
(pages 53, 54, 67, 63).

James C King. “Symbolic execution and program testing”. In: Communications
of the ACM 19.7 (1976), pp. 385-394 (page 54).

JP Faria. “Inspections, revisions and other techniques of software static analysis”.
In: Software Testing and Quality, Lecture 9 (2008) (page 54).

Qin, S, and K. “Lift: A low-overhead practical information flow tracking sys-
tem for detecting security attacks”. In: MICRO’06. IEEE. 2006, pp. 135-148
(page 54).

Saahil Ognawala, Fabian Kilger, and Alexander Pretschner. “Compositional

fuzzing aided by targeted symbolic execution”. In: arXiv preprint arXiv:1903.
02981 (2019) (page 54).

Armin Biere. “Bounded Model Checking”. In: Handbook of Satisfiability. Ed.
by Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Vol. 185.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2009, pp. 457-
481.DO1: 10.3233/978-1-58603-929-5-457. URL: https://doi.
org/10.3233/978-1-58603-929-5-457 (pages 54, 61).

Lucas C. Cordeiro, Bernd Fischer, and Jodo Marques-Silva. “SMT-Based Bounded
Model Checking for Embedded ANSI-C Software”. In: IEEE Trans. Software
Eng. 38.4 (2012), pp. 957-974.DOI1: 10.1109/TSE.2011.59. URL: https:
//doi.org/10.1109/TSE.2011.59 (page 54).

114

Chapter 5 Kaled Alshmrany

https://tinyurl.com/xw67wtd9
https://tinyurl.com/xw67wtd9
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.3233/978-1-58603-929-5-457
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59
https://doi.org/10.1109/TSE.2011.59

Efficient hybrid fuzzing for detecting vulnerabilities in software

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

Dirk Beyer. “Second Competition on Software Testing: Test-Comp 2020”. In:
FASE. Ed. by Heike Wehrheim and Jordi Cabot. Vol. 12076. LNCS. Springer,
2020, pp. 505-519 (page 54).

Dirk Beyer and M Erkan Keremoglu. “CPAchecker: A tool for configurable soft-
ware verification”. In: International Conference on Computer Aided Verification.
Springer. 2011, pp. 184-190 (pages 54, 63, 88).

Herbert Rocha, Raimundo Barreto, and Lucas C. Cordeiro. “Hunting Memory
Bugs In C Programs With Map2Check™. In: Tools And Algorithms For The
Construction And Analysis Of Systems. Vol. 9636. LNCS. 2016, pp. 934-937
(page 55).

Herbert Rocha, Rafael Menezes, Lucas C. Cordeiro, and Raimundo S. Barreto.
“Map2Check: Using Symbolic Execution and Fuzzing - (Competition Contribu-
tion)”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Vol. 12079. LNCS. 2020, pp. 403-407 (page 55).

Mikhail R Gadelha, Felipe Monteiro, Lucas Cordeiro, and Denis Nicole. “ES-
BMC v6. 0: Verifying C Programs Using k-Induction and Invariant Inference”.
In: International Conference on TACAS. Springer. 2019, pp. 209-213 (pages 55,
75).

Dirk Beyer and Thomas Lemberger. “TestCov: Robust test-suite execution and
coverage measurement”. In: 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE. 2019, pp. 1074-1077 (pages 56,
61, 85).

Bruno Cardoso Lopes and Rafael Auler. Getting started with LLVM core libraries.
Packt Publishing Ltd, 2014 (page 57).

Dirk Beyer. “Status Report on Software Testing: Test-Comp 2021”. In: Proc.
FASE. LNCS 12649 () (pages 62, 63).

Dirk Beyer. “Software Verification: 10th Comparative Evaluation (SV-COMP
2021)”. In: Proc. TACAS (2). LNCS 12652 () (pages 62, 85).

Chalupa, Marek, Novik, J, Strejcek, and Jan. “Symbiotic 8: Parallel and targeted
test generation (competition contribution)”. In: FASE. Vol. 12649. LNCS. 2021
(pages 63, 88).

Mikhail R Gadelha, Lucas C Cordeiro, and Denis A Nicole. “An efficient floating-
point bit-blasting API for verifying C programs”. In: Software Verification.
Springer, 2020, pp. 178-195 (page 65).

Chapter 5 Kaled Alshmrany 115

Efficient hybrid fuzzing for detecting vulnerabilities in software

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Aina Niemetz, Mathias Preiner, and Armin Biere. “Boolector 2.0”. In: J. Satisf.
Boolean Model. Comput. 9.1 (2014), pp. 53-58. DOI: 10.3233/sat190101.
URL: https://doi.org/10.3233/sat190101 (page 65).

Dirk Beyer and Philipp Wendler. “CPU Energy Meter: A tool for energy-aware al-
gorithms engineering”. In: International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer. 2020, pp. 126133 (page 68).
Lucas C. Cordeiro. “SMT-based bounded model checking for multi-threaded soft-

ware in embedded systems”. In: International Conference on Software Engineer-
ing. ACM, 2010, pp. 373-376 (page 70).

Phillipe A. Pereira, Higo F. Albuquerque, Hendrio Marques, Isabela da Silva,
Celso B. Carvalho, Lucas C. Cordeiro, Vanessa Santos, and Ricardo Ferreira.
“Verifying CUDA programs using SMT-based context-bounded model checking”.
In: Annual ACM Symposium on Applied Computing. Ed. by Sascha Ossowski.
ACM, 2016, pp. 1648-1653 (page 70).

Tavis Ormandy Chris Evans Matt Moore. URL: https : / / security .

googleblog.com/ 2011 /08 / fuzzing-at —scale . html (visited
on 10/04/2021) (page 73).

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. “A Survey of Symbolic Execution Techniques”. In: ACM Com-
put. Surv. 51.3 (May 2018). 1SSN: 0360-0300. bO1: 10.1145/3182657. URL:
https://doi.org/10.1145/3182657 (page 73).

Xianya Mi, Baosheng Wang, Yong Tang, Pengfei Wang, and Bo Yu. “SHFuzz:
Selective Hybrid Fuzzing with Branch Scheduling Based on Binary Instrumenta-
tion”. In: Applied Sciences 10.16 (2020), p. 5449 (page 73).

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Life-
long Program Analysis and Transformation”. In: CGO. San Jose, CA, USA, 2004,
pp- 75-88 (page 79).

D. Beyer. “Advances in Automatic Software Testing: Test-Comp 2022”. In: Proc.
FASE. LNCS 13241. Springer, 2022 (page 85).

Dirk Beyer. “Third Competition on Software Testing: Test-Comp 2021”. In:
Fundamental Approaches to Software Engineering. Vol. 12076. LNCS. 2021,
pp- 505-519 (page 85).

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
“SoftBound: Highly compatible and complete spatial memory safety for C”. In:
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 2009, pp. 245-258 (pages 94, 96).

116

Chapter 5 Kaled Alshmrany

https://doi.org/10.3233/sat190101
https://doi.org/10.3233/sat190101
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://security.googleblog.com/2011/08/fuzzing-at-scale.html
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657

Efficient hybrid fuzzing for detecting vulnerabilities in software

[212] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
“CETS: compiler enforced temporal safety for C”. In: Proceedings of the 2010
International Symposium on Memory Management. 2010, pp. 31-40 (page 96).

Chapter Kaled Alshmrany 117

Appendix

Extensions

A.1 | Appendix

A.1.1 | Artifact

We have set up a zenodo entry that contains the necessary materials to reproduce the re-
sults given in this paper: https://doi.org/10.5281/zenodo.4710599. Also,

it contains instructions to run the tool.

A.1.2 | Tool Availability

FuSeBMC contents are publicly available in our repository in GitHub under the terms of
the MIT License. FuSeBMC provides, besides other files, a script called fusebmc.py. In
order to run our fusebmc.py script, one must set the architecture (i.e., 32 or 64-bit), the
competition strategy (i.e., k-induction, falsification, or incremental BMC), the property
file path, and the benchmark path. FuSeBMC participated in the 3rd international com-
petition, Test-Comp 21, and met all the requirements each tool needs to meet to qualify
and participate. The results in our paper are also available on the Test-Comp 21 website.
Finally, instructions for building FuSeBMC from the source code are given in the file

README.md in our GitHub repository, including the description of all dependencies.

A.1.3 | Tool Setup

FuSeBMC is available to download from the link.! To generate test cases for a C program

a command of the following form is run:

fusebmc.py [-a {32, 64}] [-p PROPERTY_FILE]

[-s {kinduction, falsi,incr, fixed}] [<file>.c]

"https://doi.org/10.5281/zenodo.4710599

118

https://doi.org/10.5281/zenodo.4710599
https://doi.org/10.5281/zenodo.4710599

Efficient hybrid fuzzing for detecting vulnerabilities in software

where —a sets the architecture (either 32- or 64-bit), —p sets the property file path, —s
sets the strategy (one of kinduction, falsi, incr, or fixed)and <file>.c is the C

program to be checked. FuSeBMC produces the test cases in the XML format.

Chapter A Kaled Alshmrany 119

Appendix B

FuSeBMC in Open-Source Software

B.1 | Appendix

B.1.1 | Open-Source Software

Implementation of a project on the ground is crucial and indicative of its success. In the
field of software testing, open-source systems are referred to here. Open-source provides
developers with foundations to build upon, so they do not need to start from scratch.
Additionally, developers can write code, report an issue, and solve it themselves, which
is challenging in a proprietary system. Herein lies the significance of evaluating our
approach to open-source software. In addition, we desired to accomplish the objectives
of performing such experiments, the most essential of which was the development of our
hybrid fuzzer to verify open-source software and deliver what improves and contributes

to this field on the ground.

B.1.2 | Experiments of FuSeBMC

We conducted experiments on benchmarks taken from the 2021 memory safety category
of SV-COMP, which contain various open-source applications, e.g., Amazon AWS C
commons library and bftpd, which is an FTP server for Unix systems. Table B.1 shows
the results of our experiments where our approach successfully got 3 scores out of 5 in
the FTP server and archived 141 scores out of 174 in Amazon AWS programs. The out-
comes demonstrated that our hybrid fuzzer FuSeBMC works effectively with open-source

software and achieves the desired outcomes.

120

Efficient hybrid fuzzing for detecting vulnerabilities in software

Table B.1: FuSeBMC'’s results on open-source software.

Software ||LOC (avg) |Result Property TIME (avg) |# of Programs
FTP server 727 3 Memory Safety 2s 5
AWS program 7174 141 |Unreachability of Error Function 30s 174

Chapter B Kaled Alshmrany 121

	List of Figures
	List of Tables
	Abbreviations
	Abstract
	Declaration
	Copyright
	List of Publications
	Acknowledgements
	Introduction
	Problem Statement
	Scope of this Thesis
	Contributions
	Overview of this thesis

	Background
	Software Testing
	Testing Techniques
	Bounded Model Checking
	Fuzzing
	Fuzzing Process
	Fuzzing Algorithm:

	Types of Fuzzers
	Mutation-based and generation-based
	White-box, black-box and grey-box
	Feedback and no-feedback fuzzers

	Code Coverage
	Types of Vulnerabilities

	Related Work
	Fuzzers
	BMC and Symbolic execution
	Combination
	Existing Solutions & their Limitations

	Overview of hybrid fuzzing
	Summary

	FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vulnerabilities in C Programs
	Chapter Overview
	Thesis Context
	Author’s Contributions
	Abstract

	Introduction
	FuSeBMC: An Energy-Efficient Test Generator for Finding Security Vulnerabilities in C Programs
	Analyze C Code
	Inject Labels
	Produce Counterexamples
	Create Graphml
	Produce test cases
	Selective Fuzzer
	Test Validator

	Evaluation
	Description of Benchmarks and Setup
	Objectives
	Results

	Tool Setup and Configuration
	Software Project
	Conclusions and Future work

	FuSeBMC v4: Improving code coverage with smart seeds via fuzzing and static analysis
	Chapter Overview
	Thesis Context
	Author’s Contributions
	Abstract

	Introduction
	FuSeBMC v4 Framework
	Overview
	Code Instrumentation & Static Analysis
	Code Instrumentation
	Static Analysis
	Shared Memory

	Seed Generation
	Test Generation
	Main Fuzzer
	Bounded Model Checker
	Tracer
	Selective Fuzzer

	Evaluation
	Description of Benchmarks and Setup
	Objectives
	Results
	FuSeBMC v4 vs FuSeBMC v3
	FuSeBMC v4 vs state-of-the-art

	Conclusion

	Conclusion & Future Work Directions
	Future Work Directions
	Concluding Remarks

	Extensions
	Appendix
	Artifact
	Tool Availability
	Tool Setup

	FuSeBMC in Open-Source Software
	Appendix
	Open-Source Software
	Experiments of FuSeBMC

