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ABSTRACT 

 

NOD mice model human type 1diabetes and have been used to investigate 

tolerance induction protocols for islet transplantation in a setting of autoimmunity. 

Costimulation blockade-based tolerance protocols that induce prolonged skin and 

permanent islet allograft survival in non-autoimmune mice have failed in NOD mice. To 

investigate the underlying mechanisms, we generated NOD hematopoietic chimeras. We 

were able to show that dendritic cell maturation defects seen in NOD mice are partially 

corrected in mixed hematopoietic chimeras.  Furthermore, skin allograft survival was 

dependent upon the phenotype of the bone marrow donor, demonstrating that in the NOD 

the resistance to tolerance induction resides in the hematopoietic compartment.  In 

addition, we studied congenic NOD mice bearing insulin dependent diabetes (Idd) loci 

that reduce diabetes incidence. The incidence of diabetes is reduced in NOD.B6 Idd3 

mice, and virtually absent in NOD.B6 Idd3Idd5 mice. Islet allograft survival in NOD.B6 

Idd3 mice is prolonged as compared to NOD mice, and in NOD.B6 Idd3Idd5 mice islet 

allograft survival is similar to that achieved in C57BL/6 mice. Alloreactive CD8 T cell 

depletion in NOD mice treated with costimulation blockade is impaired, but is partially 

restored in NOD.B6 Idd3 mice, and completely restored in NOD.B6 Idd3Idd5 mice. Idd3 

results from variations in Il2 gene transcription. We hypothesized insufficient levels of 

IL-2 in NOD mice contributes to impaired deletion of alloreactive CD8 T cells and 

shortened islet allograft survival. We observed using synchimeric mice that co-
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administration of exogenous IL-2 to NOD mice treated with costimulation blockade led 

to deletion of alloreactive CD8 T cells comparable to that in C57BL/6 mice and 

prolonged islet allograft survival. However, some Idd loci impaired the induction of 

transplantation tolerance. These data suggest that Idd loci can facilitate or impair 

induction of transplantation tolerance by costimulation blockade, and that Idd3 (IL-2) is 

critical component in this process. 
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INTRODUCTION 

Overview of diabetes mellitus 

 Diabetes mellitus is a disease characterized by hyperglycemia [1]. Most cases are 

classified as either type-1, insulin-dependent diabetes mellitus (T1D), or type-2 non-

insulin-dependent diabetes mellitus [2]. Type-2 diabetes, the more common syndrome, is 

generally seen in adults, though its prevalence in children is rising [3]. It is associated 

with obesity and can often be controlled with diet and exercise. The pathology associated 

with type-2 diabetes is due to either an acquired insulin resistance or a relative deficiency 

in insulin. In most cases insulin secretion is altered but not totally lost [2].  

T1D is much less common and usually presents during childhood. Unlike type-2 

diabetes, T1D is caused by the autoimmune mediated destruction of insulin-producing 

pancreatic beta cells and results in absolute insulin deficiency. There is a substantial 

clinical dataset that supports the autoimmune hypothesis of T1D. Patients suffering from 

T1D often present with concurrent autoimmune diseases including Addison’s disease, 

vitiligo, celiac disease and lymphocytic thyroiditis [4, 5]. In addition, T1D is 

characterized by the presence of autoantibodies directed against islet cell antigens (ICA), 

insulin autoantibodies (IAA), glutamic acid decarboxylase (GAD), and tyrosine 

phosphatase (IA-2) among others [5]. In fact, the presence of combinations of these 

autoantibodies can be predictive of disease onset in euglycemic children [6]. Additional 

support for the autoimmune hypothesis was obtained from transplantation studies 

involving the transplant of a pancreas from a nondiabetic donor to a diabetic 
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monozygotic twin. Inflammation of the transplanted islets and eventual β cell destruction 

developed, which suggested the recurrence of a tissue-specific autoimmune process [7]. 

Patients with T1D require the administration of exogenous insulin for survival. 

Even with patient compliance, insulin therapy does not achieve perfect glucose regulation 

and complications such as cardiovascular disease, blindness and kidney failure develop. 

The difficulty in managing this disease, along with the severity of the associated 

complications, has made the search for a cure paramount. Cyclosporine-based 

immunosuppressive therapy was found to prolong endogenous insulin production in 

diabetic children, but the toxicity of the drug was too high to be used for acceptable 

curative therapy in patients [8]. The JDRF currently lists numerous trials with other 

agents that are under way and involve strategies based upon immunosuppression, 

immunomodulation and oral tolerance [9]. However, at present there are no interventions 

documented to be both safe and efficacious in preventing or reversing T1D.  

The only curative treatment presently available for patients with T1D is the 

transplantation of insulin-producing islet cells. In a landmark study, Scharp and 

colleagues published a successful report of one month of insulin independence in a TID 

patient following islet transplantation [10]. Unfortunately, technical limitations in islet 

isolation and complications from immunosuppression prevented the wide-scale 

application of this technique. Enthusiasm for using islet transplantation as a curative 

therapy for T1D declined until report of the Edmonton Islet Transplantation Protocol. 

Developed by Shapiro and colleagues in Edmonton, Canada, this transplantation protocol 

has achieved promising results through better islet isolation techniques and improved 
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immunosuppressive regimes [11, 12]. More than 70 patients have now undergone islet 

transplantation with this protocol, including three patients transplanted by the Diabetes 

Division at UMass. 

Though islet transplantation can achieve short-term normal glucose regulation, the 

perennial hope that it will result in long-term freedom from the need for exogenous 

insulin has failed to materialize. This is partly due to the recurrence of autoimmunity. 

Patients suffering from TID are programmed for autoimmunity, and there is reason to 

believe that the transplanted islets will become the target of a smoldering autoimmune 

environment. In addition, there are many difficulties inherent with the toxic side effects 

of the requisite immunosuppressive drugs and the complications associated with 

generalized immune suppression. These side effects include oral ulcers, anemia, diarrhea, 

weight loss, fatigue, LDL (low-density lipoprotein) elevation, hypertension, renal 

dysfunction, peripheral edema and increased risk of infection [13]. Excellent outcomes 

notwithstanding, contemporary immunosuppressive medications are toxic, are often not 

taken by patients [14], and pose long-term risks of infection and malignancy [15]. An 

alternative to immunosuppressive therapy is to achieve donor islet allograft survival by 

inducing transplantation tolerance.  

Solid Organ Transplantation  

Direct and indirect pathways of allorecognition 

 All tissues express cell surface proteins collectively referred to as major 

histocompatibility complex (MHC). The encoded region of the MHC, while structurally 

homologous, is extremely polymorphic at the peptide binding region. It is the disparity, 
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or allogenicity, of MHC between individuals that constitutes immune recognition of 

“self” versus “non self”. The more closely matched a donor and host are for MHC the 

greater the likelihood is that the donor graft will be accepted. The MHC is further 

subdivided into two classes designated MHC class I and MHC class II. Class I and class 

II molecules are responsible for presenting antigen to T cells in the generation of an 

immune response. Generally speaking, MHC class I molecules present self-antigen 

derived from the degradation of intracellular proteins. MHC class II molecules present 

extracellular, or foreign, antigens. 

 A targeted immune response to a transplanted graft occurs in two phases. In the 

first, donor antigens are presented to recipient T lymphocytes, which become activated, 

proliferate and secrete cytokines for growth and differentiation into a number of other 

cell types. The second phase, or effector phase, occurs when peripheral T cells are 

recruited into the site of the graft where they can recognize and destroy the foreign tissue.  

As mentioned above, antigen presentation takes place within the context of 

MHC/peptide complexes.  This recognition can either be direct or indirect. In the indirect 

pathway of allorecognition, host antigen presenting cells (APC) endocytose and process 

foreign antigen for expression in the extracellular domain of the class II MHC [16, 17]. 

Within the context of transplantation, this host TCR/MHC class II interaction would 

involve recognition of the foreign antigen and lead to the initiation of an immune 

response to the foreign tissue. While foreign donor antigens are usually presented to T 

cells by MHC class II molecules, presentation of foreign alloantigen by MHC class I 

molecules has also been proposed [17]. 
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 Alternatively, the direct pathway of alloantigen presentation involves the 

immediate recognition of MHC class I or class II on the surface of donor APC by host 

CD8+ and CD4+ T cells, respectively. This is thought to occur because of the high 

precursor frequency of T cells present in the host that have allospecific cross reactivity 

[18]. In this pathway, a TCR that is selected for restriction to a particular self-MHC is 

able to directly recognize and respond to allo-MHC-peptide complexes.  

Allografts can be rejected by all three mechanisms just described. In addition, the 

tempo of acute humoral, acute allograft and chronic rejections are mediated by different 

populations of cells and employ different mechanisms. Because of this, it is important to 

consider the individual and collaborative roles certain subsets of immune cells have in 

transplantation. 

Role of T cells 

Helper T cells (Th) express the coreceptor CD4 and bind to MHC class II/peptide 

complexes. CD4+ T cells can recognize alloantigen via both the direct recognition of the 

allo-MHC on the graft or through the indirect presentation of alloantigen within the 

context of self-MHC by the host APC. Th responses are subdivided into two categories, 

Th1 and Th2 [19]. Th1 CD4+ cells produce the cytokines IL-2, IFN-γ and TNF-β, which 

can activate both macrophages  (Mø) and T cells. These responses are proinflammatory 

and promote targeted cellular immunity such as delayed type hypersensitivity (DTH) and 

CTL activity that serve as an important effector mechanism in allograft rejection. Th2 

CD4+ T cells, on the other hand, polarize an immune response toward humoral IgE-

mediated allergic and mucosal immune responses through the production of IL-4, IL-5 
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and IL-10 [20]. Although Th2 type cells are thought to have an immunosuppressive effect 

on the tempo of allograft rejection, some studies have shown that in the absence of CD8+ 

T cells, Th2-type cytokines can contribute to graft rejection [21]. Depending on the 

cytokine milieu produced, immune responses can be polarized toward either a Th1 or a 

Th2 response. Allograft recognition by CD4+ cells in the presence of IL-4 skews the 

response to a Th2-type, while antigen recognition in the presence of IFN-γ directs a more 

Th1-type response. IFN-γ directs this polarization by preventing the differentiation of 

naïve CD4+ cells into Th2-type cells. 

There is also support of a role for a subset of CD4+ T cells in allograft survival. 

Depletion of CD4+ T cells during the maintenance phase of allograft survival has leads to 

rapid rejection of the transplanted tissue, and long-term survival of skin allografts in 

response to costimulation blockade-induced tolerance requires the presence of a CD4+ 

population [22, 23]. This is probably due to the ability of a subset of CD4+ CD25+ 

regulatory T cell (Treg) to regulate the activity of CD8+ T cells in alloresponses [24]. 

Interestingly, injection of anti-CD25 mAb does not prevent the deletion of alloreactive 

CD8+ T cells, though skin graft survival was nonetheless brief. In contrast, CD4+CD25+ 

cell deletion did not effect islet allograft survival [25].  This suggests that tissues have 

differential requirements in tolerance and therapies aimed at inducing tolerance may need 

to be modulated depending on the tissue being targeted. 

CD8+, or cytotoxic T lymphocytes (CTL), are restricted to recognition of MHC 

class I/peptide and have the ability to directly lyse a target cell. In addition, upon 

receiving help from CD4+ cells, naïve CD8+ T cells can become activated and release 
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perforin and granzymes, two cytotoxic granules that damage the offending cell membrane 

and lead to death. CTLs also express CD95 (Fas ligand), which can lead to target cell 

destruction via capsase-induced apoptosis on CD90 (Fas)-expressing cells [26]. CTLs are 

capable of rejecting allografts both through the release of cytotoxic granules and via FasL 

mechanisms [27]. Direct recognition of the allo-MHC is the main way CTL exert their 

effect in acute rejection, and eliminating alloreactive CD8+ T cells during the peri 

transplant period is a critical component of many tolerance induction protocols [22, 28, 

29]. 

Naïve T cells are cells that have emigrated from the thymus and have not 

encountered antigen. They have a stringent requirement of TCR engagement for their 

peripheral survival. Memory T cells, however, are antigen experienced and retain 

memory of that exposure. Naïve T cells have a higher requirement of antigen, need 

stronger costimulatory signals and rely on the presence of enhancing cytokines much 

more heavily than memory T cells for their activation [30]. Because of the differential 

requirements naïve T cells and memory T cells have for activation, tolerance induction 

protocols must be developed that both prevent the activation of allospecific naïve cells 

while eliminating the preexisting memory T cells able to respond to alloantigen. 

Role of NK cells 

 Natural killer cells (NK) do not require pre-sensitization and can directly lyse 

tumor and virus-infected target cells without T cell help. Unlike T cells, which rely on 

recognition of the appropriate peptide/MHC complex, NK cell recognition of malignant 

or infected targets is not restricted by the MHC. NK cell effector mechanisms, much like 
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CTL, involve perforin and granzymes. They can also drive antibody dependent cellular 

cytotoxicity (ADCC) of antibody coated targets through the expression of Fc receptors. 

Within the context of transplantation, NK cells can respond to allogeneic donor tissue 

that bears a different complement of MHC molecules [31]. In cardiac and skin allograft 

transplantation animal models, depletion of different lymphocyte populations showed that 

NK cells were neither necessary nor sufficient for acute allograft rejection [32, 33]. 

Evidence in favor of a role for allogeneic NK cells in allograft rejection comes from 

studies involving cardiac allografts in CD28 knockout mice [34, 35]. In these 

experiments, MHC haploidentical cardiac transplants were tolerated without 

immunosuppression. Fully MHC mismatched grafts were rejected acutely. This rejection 

was prevented with the depletion of NK cells. 

Role of dendritic cells  

Dendritic cells (DC) are sentinels of the immune system residing in interstitial 

tissues and can induce and regulate T cell activity through their role as an APC. They are 

uniquely well equipped because they can process and present antigen to naïve and 

memory T cells while providing the necessary costimulation molecules and cytokines 

required by T cells to become activated. Costimulation and its role in transplantation 

tolerance will be discussed in more detail in subsequent sections. 

Several studies suggest that DC are involved in both the direct and indirect 

pathways of allorecognition. In the indirect pathway, host DC continuously traffic 

through an allograft, where they uptake soluble antigen and cellular debris and present it 

within the context of self-MHC class II to host CD4+ T cells in peripheral lymphoid 
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organs [36]. This form of indirect allorecognition is similar to the process that occurs 

during pathogen recognition as DC process and present foreign antigen within the context 

of self-MHC.  

Alternatively, the direct pathway of allorecognition is mediated by passenger DC 

that migrate from the donor graft into the spleens of graft recipients, where they initiate 

immune responses with host CD4+ and CD8+ T cells [37]. Support for the role of DC in 

direct allorecognition has been shown in vitro. In primary mixed leukocyte cultures 

(MLC), the direct pathway is responsible for the proliferation of responder T cells 

following allogeneic APC stimulation and resulted from the high number of T cells able 

to recognize allogeneic MHC [38]. 

Because DC are such potent initiators of the allograft rejection response, therapies 

that either eliminate or block DC have been shown to result in prolonged allograft 

survival [39]. According to the “danger hypothesis”, a pro-inflammatory Th1-type 

environment leads to increased surface expression of MHC and costimulatory molecules 

on the DC and the production of proinflammatory factors that collectively induce a potent 

T cell response [40]. 

In addition to their role in initiating allograft rejection, DC can also serve a 

suppressive function. DC that have gobbled apoptotic debris are tolerogenic [41] and the 

injection of apoptotic cells improves the acceptance of allogeneic bone marrow grafts, 

presumably through the generation of tolerogenic DC [42]. The uptake of antigens by 

immature DC that express low levels of MHC and costimulatory molecules may induce 

tolerance to the peptide presented. This hypothesis is based upon the fact that binding of 
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the TCR on a naïve T cell to MHC-peptide complexes on a DC, either in the absence of 

or with low levels of costimulation leads to either anergy or apoptosis of the T cell [43] 

or to the generation of Treg [44]. 

Role of B cells 

 B cells are the effector cells of humoral immunity and secrete antibodies [45]. The 

B cell receptor (BCR) is a membrane-bound immunoglobulin (Ig) that is the same 

specificity as the Ig secreted by that particular B cell. A B cell activation program 

includes class-switching and affinity maturation of the Ig genes and results in high 

affinity, antigen-specific antibody responses. In addition, B cells express MHC class II 

and function as APC to T cells, efficiently presenting antigenic determinants that are 

specific for the BCR while concomitantly providing costimulation to the responding T 

cell [46]. 

 Although T cells alone are sufficient to reject an allograft, it is possible that the 

humoral activity of B cells could participate in this process either by synergizing with T 

cells or antagonizing them to prevent rejection [27]. Antibodies directed against the 

allograft could target the graft for destruction by Mø and neutrophils. Additionally, 

allografts coated with antibody could be recognized by NK cells via membrane-bound Fc 

receptors and targeted for ADCC. 

Role of Mø 

 Mø are among the first APC to infiltrate a graft and can initiate the inflammatory 

process while scavenging debris from necrotic graft tissue. Like other APC, they process 

and present alloantigen to the immune system with concomitant release of 
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proinflammatory cytokines and chemokines. Experimentally, mixed lymphocyte cultures 

performed in the absence of B7/CD28 interaction leads to the generation of Mø that have 

suppressive function, implicating a potential tolerogenic role for Mø in costimulation 

blockade-induced tolerance [47]. 

Central and peripheral tolerance 

Transplantation tolerance is defined functionally as the survival of foreign tissue 

in a host in the absence of immunosuppression. T cell tolerance may be accomplished 

through many mechanisms, but is most broadly divided into two categories: central 

tolerance and peripheral tolerance [48]. 

Central tolerance 

  Central tolerance is achieved in the thymus during T cell development. During 

positive selection, T cells undergo a highly selective process that ensures that the T cells 

bearing functional antigen receptors are selected for survival. For many developing T 

cells this is the end of their career. Most of the randomly rearranged T cell receptors 

(TCR) are useless because they cannot bind the MHC expressed in the individual. 

Positive selection is a crucial first step that ensures the selection of T cell progenitors that 

are MHC restricted. It allows only cells that express a TCR that interacts with self-

peptide-MHC to differentiate further. 

In contrast, clonal deletion ensures that self-reactive T cells that have high avidity 

for self MHC-peptide are deleted and do not immigrate to the periphery [49]. Within the 

context of transplantation tolerance, it follows that alloantigen expression in the thymus 

should likewise lead to the clonal deletion of alloreactive T cells and prevent peripheral 
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allograft rejection. Intrathymic injection of alloantigen, along with deletion of preexisting 

peripheral alloreactive T cells has shown to be effective for the tolerance to many 

different tissues [27]. These results are cautionary though, and have failed to work in 

other animal models or non-human primates. 

Central tolerance mechanisms are not perfect and some self-reactive T cells do 

escape into the periphery [50, 51]. Multiple peripheral tolerance mechanisms evolved to 

ensure that these thymic emigrant renegade autoreactive T cells are prevented from 

becoming inappropriately activated. These mechanisms include ignorance, apoptosis, 

anergy and the active suppression by CD4+CD25+ regulatory T cells (Tregs) and 

suppressor T cells (Ts) [52]. In fact, experimental approaches to the induction of 

tolerance have relied heavily on the mechanisms of peripheral tolerance to induce long-

term survival of allografts. We will discuss these mechanisms in the next section within 

the context of the multiple positive and negative signaling pathways available to a T cell. 

The signaling events propagated through these pathways collectively determine whether 

or not a T cell is permitted to become activated and gain effector function, remain 

lethargic and ignorant, or is destined to die in the periphery. 

Peripheral tolerance and costimulation blockade-based tolerance induction 

 The holy grail of inducing tolerance to foreign tissue is to find a way to prevent an 

alloimmune response against the grafted tissue without chronic generalized, nonspecific 

immune suppression. A promising area of research has been to target the various 

signaling pathways that lead to complete T cell activation or, conversely, activation 

induced cell death (AICD) or anergy. These pathways are triggered in response to antigen 
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recognition by the TCR and costimulation provided by an APC or in some cases 

epithelial cells. Modulation of these positive and negative signals triggered in response to 

allorecognition by the TCR can lead to targeted immune suppression that is allospecific. 

 The concept of costimulation was first introduced in the 1970s with the statement 

"induction and paralysis of an immune response involve the recognition of one and two 

determinants on an antigen respectively."[53]. This was soon expanded to become the 

“two signal hypothesis” of complete T cell activation [54]. This postulates that in order to 

become fully activated, a T cell needs to recognize a cognate MHC-antigen complex. 

Antigen recognition by the TCR generates signal 1 while the simultaneously delivered 

signal 2, or costimulation, completes the activation of the T cell. Furthermore, T cells that 

encounter cognate MHC-antigen and receive signal 1 in the absence of costimulatory 

signal 2 are either rendered anergic or undergo apoptosis. A more complete 

understanding of the two signal hypothesis within the context of allospecific T cells 

suggests that in order for a T cell to become fully activated, three receptor-ligand 

interactions must occur. The first follows TCR recognition of antigen/MHC complexes 

(signal 1). As a consequence, CD154 (CD40L) on the T cell interacts with CD40 on the 

APC (coactivation). Finally, CD80/86 (B7-1/2) on the participating APC provides 

costimulation (signal 2) to the responding T cell through CD28. These three interactions 

characterize a classic T cell response to foreign antigen, though in reality there are many 

more receptor/ligand pairs that participate or compete.  Antibody-mediated blockade of 

these receptor-ligand interactions lead to functional differences in T cell  activation.  The 

different efficiencies of costimulation blockade-based modulation of T cell activation is 
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likely due to the crosstalk and competition that occurs between these various receptor-

ligand pairs and the downstream signaling events they initiate. 

While signal 1 is provided by the antigen and is responsible for the specificity of 

the response, costimulation is not antigen specific and relies on the interactions between 

many cell surface receptors and their ligands. These costimulatory receptors are not 

restricted to T cell-APC interactions and have been found to be involved in cross talk 

between T cells with each other, interaction between T cells and B cells and T cell 

signaling from peripheral nonlymphoid cells including endothelial cells [55]. In contrast 

to the development of activation and effector function provided by positive costimulatory 

signals, negative costimulation results in anergy, apoptosis or the induction of Tregs. It 

therefore follows that the functional outcome of an alloimmune response is mediated by 

interactions between T cells and many other cell subsets and involves both positive and 

negative signaling events shared by multiple pathways. Modulating destructive 

alloimmune responses through costimulation blockade may therefore require the 

concomitant targeting of multiple costimulatory pathways. 

CD28/B7 

Costimulatory molecules are grouped into two broad families based upon 

structural homologies, the CD28/B7 family and the tumor necrosis factor/tumor necrosis 

factor receptor (TNF/TNFR) family. CD28 is constitutively expressed on the surface of 

naïve T cells and as mentioned above has two known ligands expressed on APCs, CD80 

(B7-1) and CD86 (B7-2). Upon activation through the TCR, T cells upregulate CD28 and 

CTLA-4. Though structurally similar, CTLA-4 binds with much higher avidity to CD80 
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and CD86 and results in a negative signal to the T cell that inhibits an immune response 

[56]. In contrast, costimulation through CD28 enhances T cell activation. Therefore, the 

competition between CD28 and CTLA-4 is one factor that determines the net result of a 

TCR signaling event.  

The role these receptor/ligand pairs have in transplantation has been investigated 

using animal models and monoclonal antibodies that are able to block downstream 

signaling events. Interestingly, CD80/CD86 double knockout mice reject skin and islet 

allografts but not cardiac allografts [57, 58]. In addition, blocking the interaction between 

CD28 and CD80/CD86 with the recombinant fusion protein CTLA4Ig has been shown to 

be tolorogenic [59, 60]. 

CD40/CD154 

Another positive signaling costimulatory pathway involves interaction between 

the TNF superfamily members CD40 and its ligand CD154. CD40 is constitutively 

expressed on APC, fibroblasts and endothelial cells while CD154 is found on activated T 

cells, B cells, dendritic cells and platelets [61, 62]. Unlike the CD28 pathway discussed 

above, signaling through CD40/CD154 results in indirect costimulation of the responding 

T cell. CD40/CD154 interaction augments the ability of the APC to present antigen, thus 

indirectly strengthening a T cell response.  

The in vivo use of an antibody directed against CD154 (anti-CD154) has been 

shown to block the CD40/CD154 ligation and prevent allograft rejection in mouse 

models of skin, islet, bone marrow and cardiac allografts and non-human primate models 

of kidney allografts [63-66]. It is important to note that while these studies showed the 
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utility of a blocking anti-CD154 antibody for use in preventing acute allograft rejection, 

long-term prevention of chronic allograft rejection requires additional factors. Co-

administration of bone marrow or a donor specific transfusion (DST) with the anti-

CD154 antibody results in durable, long-term allograft survival and donor-specific 

tolerance and will be discussed in more detail later [23, 67, 68]. 

ICOS/B7h 

A third costimulatory pathway that promotes complete T cell activation involves 

inducible costimulatory molecule (ICOS) and its ligand B7h. Unlike its homolog CD28, 

ICOS is not constitutively expressed but, as its name suggests, is induced upon TCR 

engagement on naïve T cells and on resting memory cells [69]. Its ligand, B7h is 

expressed on APCs, B cells and non-lymphoid endothelial cells at low levels, but upon 

cytokine triggered cellular activation is rapidly upregulated [70]. In a classic example of 

the crosstalk that occurs between various signaling pathways, ICOS/B7h ligation results 

in the increased expression of CD154, which upregulates CD80/CD86 expression and in 

turn increases CD28 signaling and T cell activation [71]. The ability of ICOS/B7h to 

buttress the strength of CD28 signaling illustrates how the amplitude and timing of 

various signaling pathways together maintain a balanced immune response. 

In addition to being a regulator of T cell activation and effector function, ICOS 

signaling provides an important boost to activated and resting memory T cells and aids in 

their production of the effector cytokines IL-2, IL-4, IL-5 and IFNγ [72]. It has also been 

shown to have a role in transplantation tolerance. Like the studies involving αCD154, 

ICOS blockade alone can prolong allograft survival, though to a lesser extent than 
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αCD154, but cannot prevent chronic allograft rejection [73]. When used in combination 

with αCD154, ICOS/B7h blockade resulted in the prolongation of cardiac allograft 

survival by preventing both acute and chronic allograft rejection [74]. 

OX40/OX40L 

A fourth pathway involved in the provision of costimulation to T cells and 

recognized to have a role in allograft tolerance is the pathway involving CD134 (OX40) 

and its ligand, CD134L (OX40L). Expressed on activated T cells, engagement of OX40 

with OX40L on APCs results in a costimulatory signal to the T cell as potent as that 

generated by CD28 in gaining Th effector function and Treg development [74].  

The role of OX40 in transplantation tolerance has been examined using rodent 

fully mismatched MHC cardiac and skin transplant models. While blockade of OX40L 

alone did not prolong allograft survival, when used in combination with CTLA-4Ig it was 

effective in achieving prolonged allograft survival [75]. Most interesting, however, is that 

memory T cell-mediated skin allograft rejection that is refractory to CD28/CD154 

blockade may be sensitive to OX40 blockade [76]. In this model, memory T cells 

generated by donor antigen priming quickly rejected skin allografts in mice treated with 

OX40 blockade alone, but when used in combination with CD154 blockade resulted in 

long term skin allograft survival. Once again, this illustrates that concomitant targeting of 

multiple costimulatory pathways may be necessary to achieve donor specific allograft 

tolerance and prevent both acute and chronic graft rejection. 

 

 



 18 

41-BB/41-BBL 

CD137 (4-1BB) is a TNFR family member like CD40 and CD154. It is expressed 

on activated T cells, DC and NK cells, while its ligand, 4-1BBL, is found on Mø, DCs 

and B cells [77-79]. 4-1BB engagement provides positive costimulatory signals to both 

CD4+ and CD8+ T cells, though its role in CD8+ T cell survival following activation 

seems to be critical [80]. It is perhaps the role of 4-1BB in circumventing activation 

induced cell death (AICD) in recently activated allospecific CD8+ T cells that explains 

the accelerated allograft rejection in mouse cardiac and skin transplant models in 

response to in vivo administration of a signaling 4-1BB mAb during the peri transplant 

period [81, 82].  

To extend these observations, some groups have shown in rejection-resistant 

mouse models the importance of CD8+ and NK cells as mediators of allograft rejection. 

In one study using CD28-deficient/CTLA-4-deficient mice with fully allogeneic cardiac 

grafts, CD86 blockade actually prolonged allograft survival, indicating that CD86 has an 

additional receptor that can provide a positive costimulatory signal to T cells [83]. In 

addition, another group investigated the effect of an OX40L blocking antibody on T cell 

activation in CD28-deficient mice and demonstrated that B cells can provide CD28-

independent costimulation to T cells [84]. These studies bolster the idea that targeting 

multiple positive costimulation pathways, including 4-1BB and OX40, may be important 

in modulating CD8+ mediated allograft rejection in stringent transplantation models. 
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CTLA-4 

In addition to the positive costimulation pathways involved in T cell activation, 

there exist multiple negative signaling pathways that serve to downregulate a T cell 

allorecognition event. As mentioned above, CTLA-4 expression is upregulated on T cells 

following the initiation of an activation program that includes CD40-CD154 engagement. 

Functionally, CTLA-4 competes with CD28 for CD80 and CD86 ligation and has a 10-

100 fold higher affinity for binding than does CD28 [56, 85]. The role of CTLA-4 in 

delivering a negative signal to the T cell and downregulating an immune response has 

been shown with CTLA-4 knockout mice. These animals develop a severe 

lymphoproliferative disease that can be prevented with the use of a CTLA-4Ig fusion 

protein that blocks CD28 interaction with CD80/86 [86, 87]. 

The use of a CTLA-4Ig fusion protein that competitively antagonizes CD28 

binding with CD80/86 has shed light on the role of CTLA-4 in allograft tolerance [88]. In 

one study using a rat cardiac allograft model, treatment of the animals with CTLA-4Ig 

during the transplant period prevented rejection of allografts compared to control rats 

[89]. In another study using rat renal allografts, the ability of CTLA-4Ig to prevent 

allograft rejection was based upon the timing of administration relative to transplantation 

[90]. This study also showed that the tolerance to allografts induced by CTLA-4Ig was 

donor specific, as third party allografts were quickly rejected. These observations have 

been extended to non-human primate studies, where CTLA-4Ig or CD80/86 blocking 

mAb prolongs both renal and islet allograft survival [91-93]. Interestingly, the effect seen 
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in some of these studies was dependent upon the coadministration of CTLA-4Ig and 

αCD154. 

PD-1 

Like CTLA-4, programmed death-1 (PD-1) also has a role in downregulating a T 

cell response by providing a negative signal. It is expressed on activated T cells, B cells, 

NK cells and Mø [94, 95]. The ligands for PD-1, PDL1 (B7-H1) and PDL2 (B7-DC) are 

tissue specific. PDL1 is promiscuously expressed in both the hematopoietic and non-

hematopoietic compartments, while PDL2 expression is restricted to DC and Mø [96-98]. 

Unlike the CTLA-4:CD80/86 pathway discussed above that is responsive to CD28 

engagement, PD-1 seems to have a role in the downregulation of CD4+ T cells 

independent of CD28 signaling [99]. 

Previous work in transplantation models has shown that ligation of PD-1 with PD-

L1.Ig prolonged cardiac allograft survival in conjunction with cyclosporine and was 

associated with decreased IFNγ production in both CD28 knockout and wild-type (WT) 

recipients [100]. In another study, PD-L1.Ig and αCD154 mAb synergized to promote 

long-term islet allograft survival [101]. It was also recently shown that donor cardiac 

allografts deficient in PD-L1 were quickly rejected in a partially mismatched mouse 

model where WT grafts survive indefinitely without any intervention, demonstrating that 

PD-L1 expression on allograft tissue serves as an important negative regulator of 

alloimmune responses in vivo [102]. 

It is likely that the clinical application of successful donor specific tolerance 

induction will depend upon a more complete understanding of the balance between the 
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positive and negative signaling pathways that affect the activation of alloreactive T cells. 

The scope and breadth of an alloimmune response is a balance between positive and 

negative regulation, and harnessing negative signaling pathways while blocking positive 

costimulatory receptors may lead to effective new therapies in inducing transplantation 

tolerance. 

The tolerance induction strategy used throughout this thesis is based upon a two-

element protocol that includes a donor specific transfusion (DST) to deliver a source of 

alloantigen and activate the immune response while blocking CD40-CD154 to induce 

peripheral transplantation tolerance [27] (Figure 1). As described in a previous section, 

alloantigen recognition by the TCR of the MHC-antigen complex on an APC results in 

the engagement of the TCR, generating signal 1. This induces CD154 expression on the 

responding T cell. The second step, upregulation of CD154, permits the engagement of 

CD40 on the APC and is termed coactivation. Triggering through CD40 leads to the 

subsequent upregulation of the costimulatory molecules CD80 and CD86 on the APC. 

The APC then reciprocally activates the T cell via interaction between CD80/86 and 

CD28 on the T cell in a process called signal 2, or costimulation. The activated 

allospecific T cell then becomes an effector cell capable of mediating allograft rejection. 

Blocking signal 2 with the anti-CD154 mAb while introducing the alloantigen via the 

DST prevents activation of the responding T cell and promotes non-responsiveness in the 

host to donor alloantigen. This protocol has prolonged allograft survival to both islets and 

skin in a mouse model [66, 103, 104] and concordant rat to mouse xenograft model [105, 

106]. Mechanistic studies have shown that allograft survival in response to costimulation 
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blockade is dependent upon both the presence of CD4+ cells and the deletion of recipient 

alloreactive CD8+ T cells [22, 23, 28]. Interestingly, the survival of skin and islet 

allografts is differentially regulated and appears to be mediated by different CD4+ 

subsets [25].

Figure 1: T cell activation 

Figure 1 legend: In order for a T cell to become fully activated, three receptor-ligand 

interactions must occur. The first follows TCR recognition of antigen/MHC complexes 

(signal 1). As a consequence, CD154 (CD40L) on the T cell interacts with CD40 on the 

APC (coactivation). Finally, CD80/86 (B7-1/2) on the participating APC provides 

costimulation (signal 2) to the responding T cell through CD28.In the absence of signal 2, 

as is the case with administration of anti-CD154 mAb, T cell activation does not occur.
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Modeling type 1 diabetes and Transplantation tolerance in NOD mice 

 We have chosen the Non-obese Diabetic (NOD) mouse to study transplantation 

tolerance within the context of autoimmunity. The ethical and technical pitfalls to 

studying diseases in human subjects make the development of animal models necessary. 

Animal models of diabetes have been bred to study modes of inheritance. They can be 

biopsied and autopsied. Their genome can be manipulated, or held constant by 

inbreeding. Furthermore, therapies developed to reverse or cure the disease can be tested 

in animal models. The two most common small animal models of type 1 diabetes are the 

BioBreeding (BB) rat and the Non-obese Diabetic (NOD) mouse [107]. The use of these 

two models has had a fundamental impact on our understanding of the genetics and 

pathogenesis of T1D. In addition, the NOD has proven invaluable as a tool for dissecting 

apart the pathways involved in tolerance, both to self and to alloantigens. 

The NOD mouse as a model for diabetes 

The NOD mouse is a model of type 1-like autoimmune diabetes mediated 

primarily by autoreactive T cells [107-109]. The kinetics of disease onset in the NOD 

closely resembles the tempo of disease progression in humans, with hyperglycemia being 

preceded by infiltration of mononuclear cells. Peri-insulitis is followed by more invasive 

infiltration directly into the islet. Development of diabetes proceeds from insulitis to an 

autoaggressive phase in which  β cells are viciously destroyed and glucose homeostasis is 

disrupted. The mononuclear infiltrates include CD4+ T cells, CD8+ T cells, DC, NK 

cells, B cells and Mø [110]. Disease seems to be dependent upon CD4+ and CD8+ cells, 

as purified populations of these cells from overtly diabetic donors were able to transfer 
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disease into nondiabetic NOD recipients [111-113], and Class I and Class II-restricted T 

cell clones derived from NOD islets can transfer disease to nondiabetic recipients [114]. 

NOD immunological defects 

NK cells 

NOD mice express a number of immune defects that may contribute to the 

pathogenesis of T1D. NK cell-mediated cytotoxicity is deficient in NOD mice when 

assayed against NK-sensitive targets [115-117]. A possible explanation for the reduced 

cell number and function of NOD NK cells is that these cells co-express the NK cell 

receptor NKG2D and its ligand, RAE-1 [118]. It is hypothesized that the dysregulated 

expression of RAE-1 causes NKG2D to be internalized, thus leading to reduced NK cell 

activity. In addition, NK cells have been associated with disease severity in some TCR 

transgenic NOD models, and NK cell depletion leads to reduced pathology [119]. The 

exact role NK cell defects play in the pathogenesis of diabetes has been difficult to 

determine due to the lack of NK1.1 at the NKRP-1 locus in NOD mice (NK1.1null), 

making identification of NK cells difficult. A promising strategy has been the congenic 

introgression of a diabetes resistant allele at Idd6, which includes genes important for NK 

function, including the NK1.1 allele at the NKRP-1 locus. NOD.Idd6 mice have 

improved NK cell function and are modestly protected from diabetes [115]. 

B cells 

NOD mice depleted of B cells were protected from the development of T1D, 

though the mechanisms by which B cells affect disease progression are unclear. It is 

possible that NOD B cells contribute to the development of autoimmunity through 
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production of autoantibodies, and in fact high titers of anti-insulin and anti-GAD 

autoantibodies are found in prediabetic NOD mice and diabetic humans. Paradoxically 

however, transfer of these autoantibodies failed to induce disease in NOD models [120]. In 

another study, an increased percentage of CD80+ and decreased percentage of CD86+ B 

cells were found in the spleens of NOD mice compared to the spleens of nonautoimmune 

C57BL/6 and BALB/c mice [121]. The skewed ratio of CD80 and CD86 expression was 

associated with the development of insulitis and CD4+CD25+ T reg deficiency, which 

suggests that NOD B cells may be associated with increased T cell costimulation and the 

development of insulitis.  

Dendritic cells 

In addition to B cell abnormalities, NOD mice harbor defects in DC maturation 

[122-127]. Recurrent to most of the dendritic cell studies done in NOD mice is the 

finding that both freshly isolated and bone marrow derived DC express lower basal levels 

of CD86, as seen above in the B cell compartment. Furthermore, following activation, 

CTLA-4 upregulation was reduced in NOD T cells as compared to levels seen in 

nonautoimmune control strains of mice. It has been hypothesized that lower levels of 

CD86 expression in the NOD mouse could contribute to defective regulation of 

autoreactive T cells by preventing the full activation of T cells and subsequent CTLA-4 

upregulation [123]. 

Macrophages 

Mø defects have also been reported in NOD mice [128-130]. One determination 

of Mø maturation is to quantify levels of secretion of IL-1β from bone marrow derived 

Mø stimulated with LPS [131], and NOD Mø secrete significantly less IL-1β than 
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similarly derived Mø from nonautoimmune C57BL/6 mice [132]. In addition, other 

groups have shown that Mø from NOD mice and patients with T1D display an increase in 

GM-CSF production and persistent STAT5 phosphorylation and are hypothesized to play 

a role in fostering a proinflammatory microenvironment within an immune system that is 

already conducive to the loss of tolerance regulation [129, 130]. 

T cells 

 Pathogenic CD4+ T cells restricted to the unique NOD I-Ag7 MHC class II 

molecule can adoptively transfer disease when isolated from overtly diabetic NOD mice 

[133-136]. It has been hypothesized that while these T cells are probably not responsible 

for initiating pathogenesis, they develop at the time of disease onset [109].  

 Many believe that the inflammatory process of T1D in the NOD mouse is 

propagated by the secretion of Th1 cytokines (IFN-γ) and suppressed by Th2 anti-

inflammatory cytokines (IL-4, IL-10). Several groups have shown that NOD mice have a 

generalized defect in the generation of an anti-inflammatory Th2 response [137-142]. In 

one study, thymic and peripheral T cell unresponsiveness after TCR cross-linking 

correlated with the time of insulitis and persisted until the onset of diabetes in NOD mice 

[143]. These T cells were shown to be deficient in the production of both IL-2 and IL-4 in 

response to TCR cross-linking compared to similarly activated T cells from non 

autoimmune BALB/c mice [139]. In addition, the administration of rIL-4 was shown to 

correct the thymic and peripheral T cell proliferation defect in vitro and protect against 

diabetes in vivo, suggesting that diabetes can be prevented in the NOD mouse by using 

Th2 secreted cytokines.  
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 In additional support of the Th1/Th2 paradigm, the activation of NKT cells with 

α-galactosylceramide to induce the secretion of Th2 cytokines has been found to protect 

NOD mice from diabetes [144, 145]. While these studies suggest that activated NKT 

cells modulate the occurrence of TID in NOD mice by skewing cytokine production from 

a Th1 to a Th2 response, other groups have documented that α-galactosylceramide 

treatment also induces T1D resistance in NOD mice genetically deficient in the Th2 

cytokines IL-4 and IL-10, which seems to suggest an alternative mechanism of protection 

[146]. 

The identification of regulatory T cells (Treg) as an important component of self-

tolerance has lead to the hypothesis that impaired Treg function may be influencing the 

autoimmune phenotype seen in NOD mice. It has long been appreciated that a population 

of CD4+ T cells present in the periphery of pre-diabetic NOD mice is capable of 

suppressing diabetes [147]. Further support for this was shown in NOD mice deficient in 

CD28. These animals do not generate a CD4+CD25+ Treg population and develop T1D 

at an accelerated rate [148]. In addition, the depletion of CD4+CD25+ T cells from 

splenocytes of pre-diabetic mice rapidly induced diabetes after transfer into NOD.SCID 

recipients. Conversely, a population of islet antigen-specific Treg expanded from 

BDC2.5 TCR-transgenic mice has the ability to both prevent and reverse spontaneous 

diabetes in NOD mice [149, 150]. 

 IL-2 has been shown to be an important component in the generation of Treg cells 

in the periphery [151]. Extending this observation to the NOD model, it has been shown 

that treatment with IL-2 in vivo inhibits diabetes development in NOD mice, with 
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protection associated with an improvement in Treg function. In addition, in vitro 

stimulated NOD thymocytes produce two-fold less IL-2 mRNA as compared to similarly 

treated thymocytes from non-autoimmune control mice [152]. This study also showed 

that the administration of exogenous IL-2 to NOD mice enhances the recruitment of 

regulatory T cells (Treg) to the inflammatory lesion in the islets, and the targeted genetic 

disruption of IL-2 accelerates the T1D phenotype. These data in their aggregate provide 

compelling evidence that reduced expression of IL-2 in the NOD leads to impaired Treg 

function and contributes to the T1D phenotype. 

Tolerance induction in the NOD 

 An ongoing problem with using transplantation as a curative therapy for diabetes 

is in trying to induce tolerance to alloantigens in an autoagressive environment that has 

already lost tolerance to autoantigens. In addition to being targeted by alloreactive T 

cells, the transplanted tissue risks becoming the target of recurrent autoimmunity. The 

NOD mouse is the model of choice in developing therapies to cure type 1 diabetes, 

including islet transplantation. NOD mice have fundamental defects in T cell self-

tolerance that appear to be related to breakdowns in both central and peripheral tolerance-

inducing mechanisms. 

Central tolerance 

The establishment of central tolerance is dependent upon the deletion of 

potentially autoreactive T cells during development in the thymus and studies have 

shown that NOD mice have impaired thymic deletion of autoreactive T cells [153-155]. 

A possible factor that could be contributing to the breakdown in mechanisms responsible 
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for deleting or inactivating such pathogenic effectors is the expression in the NOD of a 

unique H2g7 MHC. Multiple components of the H2g7 haplotype contribute to T1D 

susceptibility. These include the H2g7-encoded Kd and Db class I molecules. Though Kd 

and Db are common variants found in many non-autoimmune strains of mice, when 

expressed in the NOD they contribute to the development of diabetogenic CD8 T cell 

responses, most likely through interactions with Idd genes outside of the MHC [156]. The 

Class II genes contain the unusual H2-Ag7 variant but are H2-E null [157, 158]. The first 

clue that the H2g7 MHC was contributing to the breakdown in central tolerance was 

provided by studies using congenic strains of NOD mice that express MHC from non-

autoimmune strains of mice [159-161]. In these studies, TID was dominantly inhibited 

through the heterozygous expression of protective MHC with the NOD H2g7 MHC. It 

was also discovered that the transgenic or congenic expression of MHC from non-

autoimmune strains of mice leads to restored function in hematopoietically-derived NOD 

APCs and triggered mechanisms which delete, anergize or regulate renegade autoreactive 

T cells [158, 161-165].  

These studies suggest that hematopoietic chimerism in which APC express 

protective MHC molecules has the potential to prevent both autoimmune recurrence and 

the rejection of foreign tissues. To this end, there have been reports in which TID-

protective allogeneic hematopoietic chimerism has been established in the NOD, 

however, the hematopoietic cells in the NOD recipient eventually converted almost 

exclusively to donor type [166, 167]. Though full hematopoietic chimerism in NOD mice 

prevents TID, it does so at the cost of a generalized immunosuppression [168]. This is 
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potentially a consequence of circulating peripheral T cells that were positively selected 

by thymic epithelial cells of non-hematopoietic origin. As a result, they are not specific 

for the MHC expressed on the bone marrow-derived APC circulating in the periphery 

that are able to activate their effector function. It was recently shown that permanently 

establishing a state of mixed allogeneic hematopoietic chimerism both prevents TID in 

NOD mice while avoiding the undesirable side effect of general immunosuppression 

[168].  

Peripheral costimulation blockade based tolerance in the NOD 

 There are a number of tolerance induction protocols that establish peripheral 

transplantation tolerance in normal strains of mice [27]. Strategies usually include 

blockade of a) MHC/peptide-TCR interaction, b) costimulatory interaction, or c) 

CD80/86-CD28 interaction. Most of these protocols have failed in NOD mice, and we 

hypothesize that NOD mice have a generalized defect in their susceptibility to 

transplantation tolerance induction.  

Early work demonstrated that chemically diabetic NOD mice resist tolerance 

induction to both syngeneic and allogeneic islets when treated with protocols that induce 

permanent allograft survival in non-autoimmune strains [169, 170]. This outcome could 

be due to the inability to induce allotolerance or an ongoing autoimmunity. The fact that 

prediabetic male NOD mice also reject allogeneic skin [169], which is not a target of the 

autoimmunity, supports our hypothesis that the NOD mouse has a generalized defect in 

peripheral tolerance induction to alloantigens. In addition, another group extended this 



 31 

observation and showed a generalized defect in CD8+ peripheral tolerance induction 

using the targeted expression of a defined antigen on pancreatic β cells [171]. 

Many transplantation protocols target parts of the immune system that are 

abnormal in NOD mice and map to known Idd loci. Because of this, a common belief has 

been that the resistance seen in NOD mice to transplantation tolerance induction is a 

result of and/or controlled by the same genes that predispose it to autoimmunity [172]. 

The majority of Idd loci are NOD recessive susceptibility loci [173], and (NOD x 

C57BL/6)F1 mice, which are heterozygous at all Idd loci, are completely resistant to 

diabetes. Surprisingly, (NOD x C57BL/6)F1 mice remain resistant to costimulation 

blockade based tolerance induction to skin allografts, but not islet allografts [132]. These 

data suggest that the genetically dominant resistance of NOD mice to skin allograft 

tolerance induction is not a consequence of autoimmunity and that islet and skin allograft 

tolerance and the control of autoimmunity are not under identical genetic control [122, 

172]. To investigate further the cellular and genetic control of costimulation blockade-

induced transplantation tolerance, we have used NOD Idd congenic mice.  

NOD Idd congenic mice 

The contribution of multiple genes on many different chromosomes to disease 

susceptibility has been demonstrated in the NOD mouse [159, 174-177]. The first 

genome scan demonstrated the existence of multiple recessive loci, termed insulin-

dependent diabetes (Idd) loci that were linked to diabetes resistance or susceptibility. 

Congenic inbred NOD strains bearing diabetes resistance alleles at one or multiple loci 

on a normal background, and reciprocal congenic strains in which NOD-derived Idd 
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susceptibility alleles have been introgressed into a normal background, have shed light on 

the contributions of individual loci to a polygenic, multifactoral disease process.  

Idd9 

 Idd9 congenic mice carry at least three genes (Idd9.1, 9.2 and 9.3) derived from 

B10 mice within a 34-Mbp region. Candidate genes within this region include Lck and 4-

1BB [178]. Idd9 mice are profoundly protected from diabetes with the incidence of 

spontaneous autoimmunity reduced to less than 4%. In spite of this, they still develop 

significant insulitis and islet-specific autoantibodies [179]. 

Idd3 

 Idd3 maps within a 650-kb region on mouse chromosome 3 [180] and has a 

primary effect on the development of T1D in NOD mice. The Idd3 locus is known to 

play a role in the infiltration of autoreactive lymphocytes into the islets [181] and there is 

compelling evidence that Idd3 is the IL-2 gene [152]. In vitro stimulated NOD 

thymocytes produce two-fold less IL-2 mRNA as compared to similarly treated 

thymocytes from NOD Idd3 mice. Administration of exogenous IL-2 to NOD mice 

enhances the recruitment of Treg to the inflammatory lesion in the islets, and the targeted 

genetic disruption of IL-2 accelerates the T1D phenotype. In addition to reducing the 

frequency of spontaneous diabetes and insulitis in the NOD, Idd3 also mediates 

protection from experimental autoimmune encephalomyelitis (EAE), which is highly 

sensitive to IL-2 [182]. 
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Idd3/10/18 

 The Idd3/10/18 congenic mouse contains Idd3 described above with the addition 

of two other Idd loci termed Idd10 and Idd18, also located on chromosome 3. Of interest 

within the Idd10/18 region is the Ptpn8 gene, which is orthologous to human Ptpn22 

[183]. Studies have shown that single-nucleotide polymorphisms (SNPs) in the lymphoid 

tyrosine phosphatase (LYP) encoded by the PTPN22 gene correlate with the development 

of type 1 diabetes in humans [184]. This observation has been extended to include an 

association between the same SNP in Ptpn22 and many other autoimmune diseases, 

including systemic lupus erythematosis, rheumatoid arthritis, and Grave’s disease [185-

191]. The disease-associated allele of Ptpn22 is a gain-of-function variant that in vitro 

has been shown to suppress TCR signaling in response to TCR/CD28 ligation more 

efficiently than the ‘normal” allele [192]. Notably, the functional outcome of TCR 

signaling in the PTPN22 gain of function variant was reported to be reduced expression 

of IL-2. 

Idd5 

 Idd5 contains four discreet loci termed Idd5.1, 5.2, 5.3 and 5.4 located on mouse 

chromosome 1. Strong candidate genes within this region include CTLA-4 (Idd5.1), and 

NRAMP (Idd5.2) [193, 194]. Idd5 alone causes only partial reduction in TID incidence. 

Thirty percent of NOD.B10Idd5 females become spontaneously diabetic by 7 months of 

age as compared to 80% of NOD females [193]. In contrast, incidence of spontaneous 

diabetes development is reduced to less than 2% when Idd5 is introgressed together with 

Idd3 into the NOD background.  
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Tolerance induction in NOD.Idd mice 

 Costimulation blockade induced tolerance to skin allografts is prolonged on 

tolerized C57BL/6 mice and shortened on tolerized NOD mice. Surprisingly, NOD mice 

bearing very protective Idd loci remain resistant to tolerance induction and reject skin 

allografts rapidly [195]. Of note, NOD.B6Idd3B10Idd5 and NOD.B10Idd9 congenic 

stocks, which have a reduced frequency of spontaneously induced TID to 2% and 4%, 

respectively, still remain resistant to tolerance induction to skin allografts. These data, in 

addition to the data provided by the resistance to tolerance induction to skin allografts 

seen in the (NOD x C57BL/6)F1 mice , allow us to genetically separate the autoimmune 

phenotype from the resistance to tolerance induction phenotype.  

In addition to rapidly rejecting skin allografts following costimulation blockade, 

NOD mice also fail to become tolerant to islet allografts. However, differences in the 

survival of skin versus islet allografts can be found in non-autoimmune mice [27, 196, 

197]. In the case of the NOD mouse, destruction of the islet allograft could be due to 

underlying autoimmunity and not failure to induce allograft tolerance [170, 198]. While 

islet allograft tolerance cannot be induced in NOD.B10Idd5 or NOD.B10Idd9 mice that 

resist spontaneous autoimmunity, it can be achieved in non-autoimmune (NOD x 

C57BL/6)F1 and NOD.B6Idd3 mice [199]. These data suggest that in order for islet 

allografts to survive in the setting of autoimmune diabetes, costimulation blockade must 

overcome both spontaneous diabetes and the genetic resistance of NOD mice to 

allotolerance induction.
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Thesis goals and specific aims 

A treatment for the cure of human type 1 diabetes (T1D) is the transplantation of 

insulin-producing islet cells. Excellent outcomes notwithstanding, contemporary 

immunosuppressive medications are toxic, are often not taken by patients, and pose long-

term risks of infection and malignancy. An alternative to immunosuppressive therapy is 

to achieve donor allograft survival by inducing transplantation tolerance. 

The NOD mouse is a model of type 1-like autoimmune diabetes mediated 

primarily by autoreactive T cells and is extensively used to study costimulation blockade-

based transplantation tolerance within the context of autoimmunity. However, 

costimulation blockade-based transplantation tolerance protocols fail to prolong the 

survival of either islet or skin allografts in NOD mice. Interestingly, non-autoimmune 

(NOD x C57BL/6) F1 mice also resist the induction of transplantation tolerance to skin 

but not islet allografts. Furthermore, NOD mice bearing certain Idd loci that are potently 

protective of autoimmunity still fail to become tolerant to islet allografts. These data 

suggest that the genetically dominant resistance of NOD mice to skin allograft tolerance 

induction is not a consequence of autoimmunity and that islet and skin allograft tolerance 

and the control of autoimmunity are not under identical genetic control. To understand 

better the cellular and genetic contributions to both the susceptibility to autoimmunity 

and the resistance to transplantation tolerance in the NOD, three specific aims were 

addressed and we are hopeful that these studies will lead to a more thorough 
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understanding about the relationship between transplantation tolerance and 

autoimmunity. 

Specific aim 1: We first wanted to test the hypothesis that dendritic cell maturation 

defects and resistance to tolerance induction in NOD mice are based in the hematopoietic 

cell compartment. 

Specific aim 2: We hypothesized that Idd loci that are strongly protective against diabetes 

would enhance islet allograft survival in NOD mice treated with costimulation blockade. 

We chose to investigate Idd loci that contained promising candidate genes and confered 

varying degrees of protection from autoimmunity and compared their effects in 

alloimmunity. 

Specific aim 3: To identify the cellular basis and mechanism for the resistance to 

transplantation tolerance in NOD mice. We hypothesized that in the NOD, failure to 

delete alloreactive CD8+ T cells is a major barrier to costimulation blockade induced 

transplantation tolerance. We further hypothesized that the exogenous administration of 

IL-2 can correct the tolerance defect by driving the deletion of the alloreactive CD8+ T 

cells. 
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METHODS 

Animals 

C3H/HeJ mice were obtained from the National Cancer Institute (Frederick, MD), 

The Jackson Laboratory (Bar Harbor, ME) or Taconic Farms (Germantown, NY). NOD-

scid mice were obtained from The Jackson Laboratory. C57BL/6J (H2b), NOD/Mrk-

TacfBR, NOD.B6 Idd3R450 (Line 1098), NOD.Czech Idd3 (Line 1590), 

NOD.B6Idd3R450 + B10Idd5R444 (Line 1591 and re derived as Line 6109), 

NOD.B6Idd3R450 + B10Idd5R467 (Line 1573), NOD.B10Idd5R444 (Line 1094), 

NOD.B6Idd3Idd10Idd18R323 (Line 1538), NOD.B6Idd10Idd18R250 (Line 2410) 

NOD.B6Idd9 (line 905) and NOD.B6Idd10Idd18R2 (Line 1101) were obtained from 

Taconic Farms. Because the experimental data using the NOD.B6 Idd3R450 (Line 1098) 

and NOD.Czech Idd3 (Line 1590) congenic variants of Idd3 were comparable, these 

groups have been combined for presentation of the experimental data and are referred to 

in the text as “Idd3” NOD congenic mice. A schematic of the congenic intervals on 

mouse chromosomes is shown in Figure 8. C57BL/6.NODc17 (H2g7, hereafter termed 

C57BL/6.H2g7) mice developed by Edward Wakeland, University of Texas Southwestern 

Medical Center, Dallas, TX were the gift of Dr. Edward Leiter (The Jackson Laboratory, 

Bar Harbor, ME).  KB5 CBA x C57BL/6.H2g7) F1 mice and (KB5 CBA x NOD) F1 mice 

were generated by a single intercross of the appropriate parental strains and were bred in 

our facility [200]. The KB5 breeding founders were the generous gift of Dr. John 

Iacomini (Harvard Medical School, Boston, MA) who obtained the mouse from the 

original developer, Dr. Andrew Mellor (Medical College of Georgia, Augusta, GA). The 
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TCR transgene is expressed in CBA (H2k) mice by CD8+ cells and the transgenic TCR 

has specificity for native H2-Kb [201].  

All animals were certified to be free of Sendai virus, pneumonia virus of mice, 

murine hepatitis virus, minute virus of mice, ectromelia, lactate dehydrogenase–elevating 

virus, mouse poliovirus, Reo-3 virus, mouse adenovirus, lymphocytic choriomeningitis 

virus, polyoma, Mycoplasma pulmonis, and Encephalitozoon cuniculi. They were housed 

in a specific pathogen-free facility in microisolator cages and given autoclaved food and 

acidified water ad libitum. All animal use was in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of the University of Massachusetts 

Medical School and recommendations in the Guide for the Care and Use of Laboratory 

Animals (Institute of Laboratory Animal Resources, National Research Council, National 

Academy of Sciences, 1996). 

Antibodies and Flow Cytometry 

FITC-conjugated anti-Ly5.1 mAb (clone A20), PerCP-conjugated anti-Ly5.2 

mAb (clone 104), PE-congugated anti-CD11c mAb (clone HL3), APC-congugated anti 

CD11b mAb (clone M1/70), FITC-conjugated anti-CD11a mAb (clone M17/4), 

PerCept®-conjugated anti CD8 mAb (clone 53-6.7), PerCept®-Cy5.5-conjugated anti-

CD4 mAb (clone L3T4), Alexa Fluor 405-congugated anti-TNF-α mAb (clone MP6-

XT22) and PE-Cy7-conjugated anti-IFNγ mAb (clone XMG1.2) were obtained from BD 

PharMingen (San Diego, CA). Alexa Fluor 700-conjugated anti CD8α mAb (clone 

5H10) and Alexa Fluor 405-conjugated CD44 (clone IM7.8.1) were obtained from 

Caltag/Invitrogen (Carlsbad, CA). Isotype controls included FITC-conjugated rat IgG2a,κ, 
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PerCept®-conjugated hamster IgG1, PerCept®-Cy5.5-conjugated rat IgG2a,κ, APC-

conjugated rat IgG1, PE-Cy7-conjugated rat IgG1 and PE-conjugated rat IgG2b and were 

obtained from BD PharMingen. Alexa Fluor 405-conjugated rat IgG2b and Alexa Fluor 

700-conjugated rat IgG2b were obtained from Caltag/Invitrogen. 

MR1 hamster anti-mouse CD154 mAb was produced as tissue culture supernatant 

and purified by affinity chromatography (National Cell Culture Center, Minneapolis, 

MN). Antibody concentration was determined by measurement of optical density and 

confirmed by ELISA. The concentration of contaminating endotoxin was determined 

commercially (Charles River Endosafe, Charleston, SC) and was uniformly <10 units/mg 

of mAb. 

Multiparameter flow cytometry analyses of freshly isolated spleen cells were 

performed as described [132, 195, 199]. Briefly, 1x106 viable cells were incubated for 5 

min at 4°C with anti-FcγRIII/II mAb (clone 2.4G2) to eliminate non-specific Fc binding 

of conjugated antibodies. Cells were then washed and reacted with a mixture of 

conjugated mAbs for 20 min. Stained cells were washed, suspended in 1% 

paraformaldehyde-PBS, and analyzed using a FACScan flow cytometer (Becton 

Dickinson, San Jose, CA). Lymphoid cells were gated according their light-scattering 

properties, and approximately 2.5x104 events were acquired for each analysis. 

Generation of KB5 Synchimeras 

KB5 synchimeric mice were generated using a procedure previously described 

with slight modifications (40). Briefly, (CBA/J x NOD)F1 and (CBA/J x 

C57BL/6.H2g7)F1 non-transgenic mice were treated with 400 cGy of whole-body gamma 
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irradiation from a 137Cs source (Gammacell 40; Atomic Energy of Canada, Ottawa, 

Ontario, Canada or Mark I-30 Series 2000 Ci; JL Shepherd & Associates, San Fernando, 

CA) and given a single i.v. injection of 5x106 (KB5 CBA x NOD)F1 or (KB5 CBA x 

C57BL/6.H2g7)F1 bone marrow cells, respectively. Mice were entered into experiments 

8-12 weeks after bone marrow transplantation. 

Preparation of LPS-treated splenocytes 

Splenocytes were prepared from the indicated mouse strains (2x106 cells/ml in 

supplemented RPMI) and were treated with LPS (15 µg/ml) for 3 days in vitro. 

Following incubation, the cultures were washed 3 times with supplemented RPMI, 

γ-irradiated (20 Gy), and frozen at –70°C until used as previously described [202]. 

Intracellular Cytokine Staining 

Cytokine-producing mouse T cells were detected using the Cytofix/Cytoperm Kit 

PlusTM (with GolgiPlugTM, BD Biosciences, Boston, MA). Splenocytes (2x106 cells) from 

mice were incubated with 250 ng/ml of anti-mouse CD3ε mAb (145-2C11, BD 

Biosciences) or with the indicated LPS-treated splenocytes populations (1x106 stimulator 

cells per sample) in the presence of 1 U/ml of human recombinant IL-2 (BD Biosciences) 

and 1 µl/ml GolgiPlugTM at 37°C in an atmosphere of 5% CO2 for 5 hr. Following 

incubation, splenocytes were stained with mAb specific for CD8 (53-6.7), CD4 (RM4-5) 

and CD44 (RM5726). Samples were fixed and permeabilized with Cytofix/CytopermTM 

solution and stained with mAb specific for IFN-γ , TNF-a or IL-2 (XMG1.2 and MP6-

XT22, respectively, BD Biosciences), or with an IgG1-isotype control (R3-34, BD 

Biosciences). 
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Generation of Hematopoietic Chimeras 

Bone marrow donor NOD or C57BL/6g7 mice were killed in 100% CO2. Bone 

marrow was obtained by flushing the femurs and tibias of donor mice with RPMI using a 

24-gauge needle. Recovered cells were filtered through sterile nylon mesh (70 µm, 

Becton Dickinson, Franklin Lakes, NJ), counted by hemocytometer, and re-suspended in 

RPMI. 6-8 week old NOD or C57BL/6g7 recipient mice received 700 cGy of whole-body 

gamma irradiation from a 137Cs source (Gammacell 40; Atomic Energy of Canada, 

Ottawa, Ontario, Canada or Mark I-30 Series 2000 Ci; JL Shepherd & Associates, San 

Fernando, CA) two times with a 4 hour interval between. 10 x 106 prepared NOD cells or 

10 x 106 prepared C57BL/6g7cells, (or 5 x 106 NOD donor cells plus 5 x 106 C57BL/6g7 

donor cells in the case of the mixed chimeras) were injected in a volume of 0.5-1.0 ml via 

the lateral tail vein within 1-5 hrs of irradiation. Blood samples were obtained from all 

bone marrow recipients 4-6 weeks after transplantation for determination of the 

percentages of donor and host cells by flow microfluorometry.  

Dendritic Cell Maturation Assay 

 Bone marrow was flushed from the femurs and tibias of euthanized donors into 

RPMI-10% FC serum. Erythrocytes were lysed with a 0.85% hypotonic NH4Cl lysis 

buffer and the mononuclear cells were washed twice more in RPMI-10% FC. Viable 

mononuclear cells were counted and suspended at 2 x 106 cells/ml in RPMI-10% FC 

supplemented with 500 U/ml recombinant mouse GM-CSF and 1000 U/ml recombinant 

mouse IL-4 (R & D Systems). Bone marrow cells (3 x 106) were cultured in a six well 

tissue culture plate in a total volume of 3 ml/well. Typically, the cultures for each strain 
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consisted of pooled bone marrow from two mice. Cultures were incubated at 37 ° C in an 

atmosphere of 95% air 5% CO2. On day two, non-adherent cells were removed by gentle 

swirling and half the medium was replaced with fresh medium supplemented with 500 

U/ml GM-CSF and 1000 U/ml recombinant mouse IL-4. On day four, non-adherent cells 

were removed and fresh medium supplemented with cytokines was added as on day two 

and 5 ug/ml of an agonist anti-CD40 mAb (clone HM40-3, BD PharMingen) was added 

to the appropriate wells. Cultures were incubated an additional 48 hours at which point 

all cells (adherent and non-adherent) were harvested. Adherent cells were removed by 

gently scraping and pooled with the non-adherent cells. Each population was counted and 

then analyzed by flow cytometry. In all cases, cultured cells were washed twice in PBS-

1% FC in the presence of 0.1% sodium azide and prepared for flow cytometry. 

Tolerance Induction and Allograft Transplantation 

Diabetes was induced in male C57BL/6, NOD, and NOD Idd congenic mice by a 

single intraperitoneal injection of streptozotocin (150 mg/kg). Animals were tested for 

glycosuria (test strips, Glucosin, Bayer, Elkhart, IN) twice weekly. Diabetes was 

confirmed by documenting plasma glucose concentration >250 mg/dl (Accu-Chek 

Active, Roche Diagnostics, Indianapolis, IN.). Mice hyperglycemic for at least one week 

were used in the experiments. Chemically diabetic mice were treated with our standard 

costimulation blockade protocol consisting of a single C3H/HeJ donor-specific 

transfusion (DST) and anti-CD154 mAb and transplanted with a C3H/HeJ islet allograft 

as described [199]. Briefly, 1x107 spleen cells obtained from 5-10 week old female 

C3H/HeJ mice were injected intravenously in a volume of 0.5 ml. DST was given on day 
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–7 relative to transplantation. Islet allograft recipients were also injected intraperitoneally 

with anti-CD154 mAb (0.5 mg/dose) on days –7, –4, 0, and +4 relative to islet 

transplantation on day 0.  

Islets for transplantation were isolated from C3H/HeJ donors by collagenase 

digestion followed by density gradient separation as described (46,47). Handpicked islets 

(20 islets/gram body weight) were transplanted into the renal subcapsular space of 

chemically diabetic recipients. Plasma glucose concentrations were measured twice 

weekly and allograft rejection was defined as recurrent hyperglycemia (>250 mg/dL) on 

at least 2 consecutive days. 

(KB5 CBA x NOD)F1 or (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice were 

treated with a single C57BL/6 donor-specific transfusion (DST) and anti-CD154 mAb 

and transplanted with a C57BL/6 skin allograft as described (40). Full-thickness skin 

grafts 1-2 cm in diameter were transplanted onto the dorsal flanks of recipients (48). Skin 

graft survival was evaluated three times a week, and graft rejection was defined as the 

first day on which the entire graft was necrotic. 

Histology 

 Kidneys into which islet grafts had been transplanted were fixed in Boin’s solution 

overnight, washed, and stored in 10% buffered formalin. Paraffin- embedded sections 

were prepared and stained with hematoxylin and eosin. Additional sections were stained 

immunohistochemically for the presence of insulin and glucagon. 
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Injection of IL-2 During Costimulation Blockade 

In some experiments, mice were treated during costimulation blockade with 

exogenous IL-2. For these experiments, 0.8µg recombinant murine IL-2 (R & D systems, 

Minneapolis, MN) was injected intraperitoneally on days −7, −6, −5, −4 and −3 relative 

to analysis of KB5 DES+ CD8+ T cells or transplantation on day 0. Concurrently, 

costimulation blockade consisting of a single DST on day −7, and 4 injections of anti-

CD154 mAb on days −7, −4, 0, and +4 relative to transplantation on day 0. 

Statistics 

Average duration of allograft survival is presented as the median. Graft survival 

among groups was compared using the method of Kaplan and Meier. The equality of 

allograft survival distributions for animals in different treatment groups was tested using 

the log rank statistic. P values <0.05 were considered statistically significant. Data is 

presented as the mean ± 1 s.d. Comparisons of two means used Student’s t-test with 

separate variance estimates. Comparisons of three or more means used one-way analysis 

of variance and the LSD procedure for a posteriori contrasts. 
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Chapter 1: Resistance to transplantation tolerance and defects in dendritic 

cell maturation is intrinsic to the hematopoietic system 

 

Introduction 

The ability to induce transplantation tolerance to skin allografts by costimulation 

blockade in NOD mice is not a consequence of their expression of autoimmunity [132]. 

(NOD x C57BL/6)F1 mice are heterozygous at all Idd loci and are completely protected 

from autoimmune diabetes, yet they exhibit a genetically dominant resistance to the 

prolongation of skin allograft survival following treatment with a costimulation blockade 

protocol consisting of a donor-specific transfusion (DST) and anti-CD153 mAb [132]. It 

has also been shown that diabetes can be prevented by the adoptive transfer of bone 

marrow from diabetes-resistant donors [166, 167]. For example, TID was dominantly 

inhibited by the heterozygous expression of a protective MHC together with the diabetes 

prone NOD H2g7 MHC. Furthermore, the transgenic or congenic expression of MHC 

from non-autoimmune strains of mice led to restored function in NOD-derived APCs and 

triggered mechanisms that delete, anergize or regulate renegade autoreactive T cells [158, 

161-165].  

These data suggest that the susceptibility to diabetes resides in the hematopoietic 

compartment. It follows that non-autoimmune-prone donor stem cells developing into 

APCs that express diabetes-resistant MHC acquire the ability to “reset the immune 

system” through mechanisms that limit the development and function of autoreactive T 

cells. In NOD bone marrow chimeras in which the H2nb1 diabetes resistant MHC was 
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expressed on DC, macrophages and B cells, complete protection from diabetes was 

observed [203]. In this system, the H2nb1 expressing DC and macrophages from the bone 

marrow donor mediated virtually complete deletion of the autoagressive CD8+ T cell 

population. We would like to extend these observations to determine if hematopoietic 

chimerism can likewise correct the tolerance induction defect of NOD mice. Because the 

expression of diabetes and the resistance to transplantation tolerance can be separated 

genetically, it is not known whether the tolerance induction defects in NOD mice reside 

in the hematopoietic cell compartment or the stromal environment in which they mature 

and function.  

In this chapter, we first tested the hypothesis that the resistance of NOD mice to 

the induction of transplantation tolerance was dependent on the hematopoietic cell 

population, not the environment in which the hematopoietic cells mature and function. To 

investigate this, we created full hematopoietic chimeras by performing reciprocal NOD 

and C57BL/6g7 bone marrow transfers. We chose to use C57BL/6g7 based on their 1) lack 

of autoimmunity, 2) normal dendritic cell maturation, 3) ability to exhibit prolonged skin 

allograft survival following costimulation blockade, and 4) histocompatibility with NOD 

mice (both express the H2g7 MHC). This minimized the potential for development of 

graft-versus-host disease in the hematopoietic chimeras.  

The cellular basis for the resistance of NOD mice to transplantation tolerance is 

not known, but NOD mice do exhibit a broad spectrum of cellular and humoral immune 

abnormalities [116, 123, 131, 148, 204-208]. These include abnormal deletion of 

activated CD4+ and CD8+ T cells, decreased Treg function, defective cytokine secretion 
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by NK and NKT cells, B cell production of autoantibodies, and abnormal maturation of 

both DC and macrophages. Many of these cellular defects are genetically recessive and 

are not expressed in (NOD x C57BL/6)F1 mice. However, not all cellular defects are 

corrected, and CD8+ function and DC maturation in (NOD x C57BL/6)F1 mice continue 

to be abnormal. Based on these observations, we hypothesized that because of their 

critical role in modulating immune responses, DC maturation defects were important in 

the resistance of NOD mice to the induction of transplantation tolerance. To begin to test 

this hypothesis, we first determined if the dendritic cell maturation defect was intrinsic to 

the hematopoietic cells or the result of the non-hematopoietic environment.  

Our overall hypothesis in this chapter is that dendritic cell maturation defects and 

resistance to tolerance induction are both based in the hematopoietic cell compartment. In 

this chapter we demonstrate that skin allograft survival in NOD or C57BL/6g7 

hematopoietic chimeras is dependent on the hematopoietic cell donor, not the host. 

Furthermore, in full chimeras, dendritic cell maturation defects tracked with the genotype 

of the bone marrow donor. Together, these data demonstrate that the dendritic cell defects 

and resistance to tolerance induction of NOD mice are dependent on the source of the 

hematopoietic cell system.  
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Results 

1. Skin allograft survival in hematopoietic chimeras treated with costimulation blockade 

is dependent on the hematopoietic donor  

To begin to understand the basis for the dominant genetic resistance to tolerance 

induction seen in (NOD x C57BL/6) F1 mice, we first determined whether the resistance 

is dependent on the hematopoietic (irradiation-sensitive) or the non-hematopoietic 

(irradiation-resistant) cell compartment in which they mature and function. To begin to 

investigate this, we generated hematopoietic chimeras in which the entire hematopoietic 

system is of donor-origin. As shown in figure 2, the phenotype of skin allograft survival 

in mice treated with costimulation blockade tracked with the donor bone marrow. In 

control C57BL/6g7 into C57BL/6g7 hematopoietic chimeras, fully allogeneic C3H/HeJ 

(H2k) skin allograft survival was prolonged (Figure 2, median survival time MST=37.5 

days, N=10). As expected, the NOD into NOD hematopoietic chimeras had skin allograft 

survival that was relatively short (Figure 2, MST=12 days, N=15 p<0.0001 versus 

C57BL/6g7). Not shown is the NOD bone marrow into C57BL/6g7 recipient 

hematopoietic chimera group.  Though this is an important experimental cohort, technical 

difficulties prevented this group from being included in the skin allograft experiments.  

There are plans to include this group in future allograft survival experiments.  In the 

C57BL/6g7 into NOD hematopoietic chimeras, skin allograft survival was significantly 

prolonged (Figure 2, MST= 42 days, N=34 p<0.0001 versus NOD) relative to that 

achieved in the NOD into NOD hematopoietic chimera. These data demonstrate that skin 

allograft survival in NOD or C57BL/6g7 hematopoietic chimeras is dependent on the 



 49 

hematopoietic cell donor, not the host, and support our hypothesis that tolerance 

induction defects present in the NOD are based in the hematopoietic cell compartment.  

Likewise, skin allograft survival in the NOD bone marrow into C57BL/6g7 recipient 

hematopoietic chimera group that is significantly shortened compared to the control 

C57BL/6g7 into C57BL/6g7 group will further support our hypothesis
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Figure 2: Skin allograft survival in hematopoietic chimeras tracks with the hematopoietic system 
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Figure 2 Legend: Skin allograft survival on hematopoietic chimeric mice. Irradiated 

(1400G) recipient NOD and C57BL/6g7 mice were injected with 5 x 106 bone marrow 

cells from the indicated donor. Eight weeks later all mice were given a single C3H/HeJ 

DST consisting of 1 x 107 spleen cells intravenously on day -7, four injections of 0.5 mg 

of anti-CD154 mAb intraperitoneally on days -7, -4, 0 and +4 and a C3H/HeJ skin graft 

on day 0. In control C57BL/6g7 into C57BL/6g7 hematopoietic chimeras, fully allogeneic 

C3H/HeJ (H2k) skin allograft survival was prolonged (MST=37.5 days, N=10). As 

expected, in NOD into NOD hematopoietic chimeras, skin allograft survival was 

relatively short (MST=12 days, N=15 p<0.0001 versus C57BL/6g7). In C57BL/6g7 into 

NOD hematopoietic chimeras, skin allograft survival was significantly prolonged (MST= 

42 days, N=34 p<0.0001 versus NOD) relative to that achieved in the NOD into NOD 

hematopoietic chimeras and was not significantly different from that achieved in 

C57BL/6g7 into C57BL/6g7 hematopoietic chimeras.
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2. Dendritic cell maturation phenotype in hematopoietic chimeras 

 We next tested the hypothesis that dendritic cell defects, similar to resistance to 

tolerance induction, also depended on the hematopoietic cell donor, not the environment 

in which they matured and functioned. First we developed a flow cytometry strategy that 

would permit us to determine whether the dendritic cells were NOD or C57BL/6g7 origin. 

To do this we used an allele specific mAb recognizing the Ly5 antigen. NOD cells 

express Ly5.1 while C57BL/6g7 express Ly5.2. As shown in figure 3, use of the Ly5.1 

and Ly5.2 antibodies allowed us to distinguish the two different genotypes of DC, even in 

the mixed hematopoietic chimeras that circulated equal numbers of donor and host DC.  

 As shown in figure 3, we can easily discriminate NOD (Ly5.1+) and C57BL/6g7 

(Ly5.2+) dendritic cells (CD11b+CD11c+) and their expression of CD86 in mixed 

hematopoietic chimeras. CD86 is a maturation marker; dendritic cells in NOD mice 

express low levels of CD86 as compared to expression of CD86 in C57BL/6g7 dendritic 

cells [132]. Figure 4 is a representative histogram from mixed hematopoietic chimeras  

showing the determination of % CD86 expression on CD11b+ CD11c+  bone marrow 

derived DC cultures treated with anti-CD40.  Figure 5 shows the pooled data described in 

Figure 4. As expected, a significantly higher percentage of bone marrow derived 

dendritic cells from control C57BL/6g7 hematopoietic chimeras expressed CD86 in 

response to anti-CD40 stimulation than dendritic cells from similarly treated NOD 

hematopoietic chimeras (p <0.0001). This was also seen in dendritic cells from the mixed 

hematopoietic chimeras. The percentage of dendritic cells of the C57BL/6g7 phenotype 

expressing CD86 upon stimulation in culture was significantly higher than the NOD 
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dendritic cells, regardless of whether the recipient was of C57BL/6g7 or NOD origin.  In 

addition to CD86 expression,  we also looked at the parameters of CD80 and CD25 

expression as markers of DC maturation and activation.  As seen with  CD86 expression, 

there were significant differences between NOD and C57BL/6g7 dendritic cells in their 

ability to upregulate CD80 and CD25 in response to anti-CD40 (data not shown), though 

the percentages of CD11b+ CD11c+ CD80+ and CD11b+ CD11c+ CD25+ were much 

lower and more inconsistent than that seen with CD86 expression. 

 We were also interested in determining whether differences in DC maturation 

could be found in vivo in the mixed chimeric mice at the time of allogeneic skin graft 

rejection.  In some experimental groups, freshly isolated splenic DC were briefly 

stimulated in vitro with anti-CD40 and analyzed for their expression of CD80, CD86, 

CD25 and IFNγ (data not shown).  In these experiments, the percent of recovered 

CD11b+ CD11c+ splenic DC was extremely low and made determination of percent 

expression differences difficult. 

 Surprisingly, a significantly higher percentage of NOD dendritic cells from the 

mixed hematopoietic chimeras expressed CD86 upon stimulation in culture as compared 

to NOD controls.  These data suggest that the maturation defect seen in NOD bone 

marrow derived dendritic cells in response to stimulation with CD40 can be improved in 

mixed hematopoietic chimeras by the presence of C57BL/6g7 bone marrow, suggesting 

that the C57BL/6g7 dendritic cells are able to provide a critical factor that is missing in 

NOD mice. 
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Figure 3: Use of allele specific monoclonal antibodies to differentiate between NOD and C57BL/6 dendritic cells 

Figure 3 Legend: We cultured bone marrow from C57BL/6g7, NOD and C57BL/6g7:NOD experimental groups in the 

presence of 500 U/mGM-CSF and 1000 U/ml IL-4 for 6 days as described in Methods and added 5 µg/ml of an agonist anti-

CD40 mAb for the last 2 days. The total cultured cell population (adherent and non-adherent) was recovered on day 6, and 

labeled with antibodies to Ly5.1 and Ly5.2. Figure 3 shows the allele specific differentiation of both NOD and C57BL/6 

populations of dendritic cells. The last panel is representative of a mixed hematopoietic chimera.  
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Figure 4: Dendritic cell maturation phenotype in hematopoietic chimeras 
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Figure 4 Legend: Expression of CD86 on Ly5.1+ or Ly5.2+ dendritic cells from a mixed hematopoietic chimera. We cultured 

bone marrow in the presence of 500 U/mGM-CSF and 1000 U/ml IL-4 for 6 days and added 5 µg/ml of an agonist anti-CD40 

mAb for the last 2 days. The total cultured cell population (adherent and non-adherent) was recovered on day 6, and labeled 

with antibodies to Ly5.1, Ly5.2, CD11b, CD11c, and CD86. Figure 4 shows Ly5.1+ and Ly5.2+ populations that were further 

gated on the coexpression of the DC markers CD11b+CD11c+ cells (this intermediate gate is not shown).  The histogram shows 

the percent of CD86 positive DC in the Ly5.1/5.2 CD11b+CD11c+ populations.  The blue line represents CD86 expression on 

cells incubated in the presence of anti-CD40 mAb (activated), the red line is the isotype control. Representative plot from 

multiple experiments. Aggregate data shown in Figure 5. 
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Figure 5: Dendritic cell maturation phenotype  
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Figure 5 Legend:  Mixed and full bone marrow chimeras were established using 14 Gy total body irradiation (7 Gy + 7 Gy 4 

hr later) and an i.v. injection of a) 2.5 x 106 NOD and 2.5 x 106 C57BL/6g7  bone marrow cells for the mixed and b) 5 x 106 

either NOD or C57BL/6g7 bone marrow cells for the full chimeras into the recipients indicated.  Before injection, the bone 

marrow cells from each donor were counted, mixed (for the mixed chimeras) and T cell depleted (anti-CD4 plus anti-CD8 

mAb). Recipients were tested for % chimerism 6-8 weeks later using Ly5.1 and Ly5.2 mAb.  Recipients circulating 50% NOD 

and 50% C57BL/6g7 PBL were determined “mixed hematopoietic chimeras”.  Animals circulating 100% PBL of bone marrow 

donor origin were considered “full hematopoietic chimeras”. Figure 5 shows the expression of CD86 on Ly5.1+ or Ly5.2+ 

CD11b+ CD11c+ dendritic cells from hematopoietic chimeras. We cultured bone marrow in the presence of 500 U/mGM-CSF 

and 1000 U/ml IL-4 for 6 days and added 5 µg/ml of an agonist anti-CD40 mAb for the last 2 days. The total cultured cell 

population (adherent and non-adherent) was recovered on day 6, and labeled with antibodies to Ly5.1, Ly5.2, CD11b, CD11c, 

and CD86.  Parentheses indicate the recipient animal.  The genotype preceding the parenthesis is the genotype of the bone 

marrow derived dendritic cell graphically represented for that line. Comparitive P values for % CD86 expression on CD11b+ 

CD11c+ double positive dendritic cells shown in table.
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Summary 

 We show that resistance to transplantation tolerance in response to costimulation 

blockade in the NOD resides in the hematopoietic compartment and can be reversed with 

bone marrow from a transplantation tolerance susceptible donor. In addition, maturation 

defects in dendritic cells reside in the hematopoietic cell compartment of the donor. The 

maturation defect seen in NOD dendritic cells can be improved with the addition of 

C57BL/6g7 bone marrow, suggesting that the C57BL/6g7 dendritic cells are able to 

provide a critical factor that is missing in NOD mice.
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Chapter 2 

Idd Loci Synergize to Prolong Islet Allograft Survival Induced by Costimulation 

Blockade in NOD Mice 

 

Introduction 

 Costimulation blockade-based tolerance protocols that induce prolonged skin and 

permanent islet allograft survival in non-autoimmune mice have failed in NOD mice. To 

investigate the underlying mechanisms, we studied congenic NOD mice bearing insulin 

dependent diabetes (Idd) loci that reduce diabetes incidence. Our underlying assumption 

was that understanding the genetic basis for these phenotypes would lead to a more 

thorough understanding of the mechanisms that control transplantation tolerance and 

autoimmunity. 

We hypothesized that Idd loci that are strongly protective against diabetes would 

enhance islet allograft survival in NOD mice treated with costimulation blockade (Figure 

6). In order to obtain proof of principle we first documented that islet graft rejection seen 

in the NOD mouse was in fact due to the recognition of alloantigen and not a 

consequence of an underlying autoimmune process. Several NOD congenic lines were 

then studied based upon the candidate genes found within their defined intervals. We also 

determined that there was a synergistic effect between various Idd loci as graphically 

depicted in Figure 8, and investigated whether a stepwise improvement in diabetes 

protection seen in multi-congenic lines would also translate into an increased ability to 

induce costimulation blockade-based tolerance to islet allografts. 
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Figure 6: Islet allograft tolerance induction protocol 
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Figure 6 Legend: Diabetes was induced in male C57BL/6, NOD, and NOD Idd congenic mice by a single intraperitoneal 

injection of streptozotocin (150 mg/kg). Diabetes was confirmed by documenting plasma glucose concentration >250 mg/dl. 

Mice hyperglycemic for at least one week were used in the experiments. Chemically diabetic mice were treated with our 

standard costimulation blockade protocol consisting of a single C3H/HeJ donor-specific transfusion (DST) and anti-CD154 

mAb and transplanted with a C3H/HeJ islet allograft as described in materials and methods. Islets for transplantation were 

isolated from C3H/HeJ donors and were transplanted into the renal subcapsular space of the chemically diabetic recipients. 

Plasma glucose concentrations were measured twice weekly and allograft rejection was defined as recurrent hyperglycemia 

(>250 mg/dL) on at least 2 consecutive days. 



 63 

Results 

1. Islet allograft rejection in chemically diabetic male NOD mice is not due to islet 

autoimmunity 

We have previously shown that islet allograft survival in chemically diabetic male 

NOD mice treated with our costimulation blockade protocol is relatively short [199]. 

However, in those experiments, islet graft rejection could have resulted from either the 

development of islet autoimmunity or from the failure of costimulation blockade to 

induce allograft tolerance. To address this question, 6-8 week old male NOD mice were 

rendered hyperglycemic by treatment with streptozotocin and transplanted with 

syngeneic NOD-scid islets. Through 150 days after islet transplantation, all mice (5/5) 

remained normoglycemic. Histopathological analysis of the islet-bearing kidney revealed 

an insulin-producing islet graft present at the time of necropsy (Figure 7B). Of note, only 

a small amount of leukocytic infiltrate was observed and it was localized to margins of 

the islet graft, akin to “peri-insulitis” in the pancreas (Figure 7A). These data suggest that 

autoimmunity is substantially impaired in chemically diabetic NOD mice, and that islet 

graft rejection in our model system is due to the failure to induce tolerance to islet 

allografts and not due to the development of islet autoimmunity. 
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Figure 7: Islet allograft rejection in chemically diabetic male NOD mice is not due to islet 
autoimmunity 
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Figure 7 Legend: Histopathological analysis of the islet-bearing kidney revealed an insulin-producing islet graft present at the 

time of necropsy. The specimen was recovered 150 days post transplant from a recipient who was euglycemic and had not 

rejected the islet graft. A) A small amount of leukocytic infiltrate was observed and localized to the margins of the islet graft. 

B) Immunohistochemical staining for insulin reveals the presence of insulin producing β-cells within the graft. Hematoxylin 

and eosin (original magnification x 160).
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2. Islet allograft survival in NOD.B6 Idd10Idd18 or NOD.B6 Idd3Idd10Idd18 congenic 

mice following treatment with DST and anti-CD154 mAb 

Although islet allograft survival in NOD mice treated with costimulation blockade 

is relatively short, we have also shown that it can be prolonged in NOD mice bearing the 

diabetes resistant Idd3 congenic interval from C57BL/6 mice [199]. However, Idd3 is 

only partially protective against diabetes, but when combined with certain other Idd loci, 

can almost completely protect NOD mice from diabetes expression (Figure 8). We 

therefore hypothesized that the combinations of Idd loci that are strongly protective 

against diabetes would enhance islet allograft survival in NOD mice treated with 

costimulation blockade. NOD mice congenic for the Idd10 Idd18 intervals have reduced 

incidence of diabetes and when combined with Idd3, have a very low frequency of 

diabetes [181, 209, 210]. These congenic NOD mice were rendered chemically-diabetic, 

treated with donor-specific transfusion (DST) and anti-CD154 mAb, and transplanted 

with C3H/HeJ (H2k) islet allografts. 

Confirming our previous reports [199], islet allograft survival in NOD mice 

treated with costimulation blockade is short (median survival time, MST=74 days) 

whereas permanent islet allograft survival (MST>240 days) is observed in the majority of 

similarly treated C57BL/6 mice (Figure 9). We also confirmed our previous report that 

NOD mice bearing the Idd3 congenic interval exhibit prolonged islet allograft survival 

(MST=140 days) as compared with NOD mice treated with costimulation blockade, but 

that graft survival remains significantly shorter than that achieved in similarly treated 

C57BL/6 mice (Figure 10). Surprisingly, we observed that NOD Idd10 Idd18 congenic 
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mice exhibited statistically shorter islet allograft survival (MST=63 days) than that 

achieved in NOD mice treated with costimulation blockade (Figure 9). However, 

combination of the detrimental effects of the Idd10 Idd18 genetic intervals with the 

beneficial effects of Idd3 did not decrease islet allograft survival to less than that 

achieved in NOD.B6 Idd3 congenic mice (p=N.S., Figures 9 and 10). 
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 Figure 8: Schematic representation of candidate gene interval and chromosomal 

location 
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Figure 8 Legend: The filled bars represent B10-derived or B6-derived congenic 

segments on chromosomes 1 and 3, respectively. The arrows represent the size of each 

Idd interval as previously defined using additional congenic strains of mice: Idd3 (650 

kb) [152], Idd10 (950 kb) [211] ,Idd18 (4.0 Mb) [210], Idd5.1 (2.1 Mb) [193], Idd5.2 

(1.52 Mb) [193],and Idd5.3 (9.1 Mb)[in press] . The “Diabetes” column indicates the 

percentage of females developing diabetes by 7 months of age. Where a range is 

indicated, this summarizes the results of a number of frequency studies performed over 

many years.
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Figure 9: Life table analysis of islet allograft survival in chemically diabetic Idd3 Idd10 Idd18 congenic NOD mice 
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Figure 9 Legend: Groups of 6-8 week old chemically diabetic mice were treated with a donor-specific transfusion (DST) plus 

anti-CD154 mAb. DST (1x107 C3H/HeJ spleen cells) was given on day −7, and anti-CD154 mAb (0.5 mg/dose) was given on 

days −7, −4, 0, and +4 relative to transplantation with C3H/HeJ islets on day 0. Vertical bars indicate mice removed from the 

study with intact grafts or alive with intact grafts at the conclusion of the period of observation. Comparative p values of islet 

allograft survival in the various groups is shown in the table.
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3. Idd5 synergizes with Idd3 to prolong islet allograft survival in chemically diabetic 

NOD mice treated with DST and anti-CD154 mAb 

We next tested the hypothesis that other Idd congenic loci that reduce diabetes 

incidence in NOD mice would prolong islet allograft survival following treatment with 

costimulation blockade. We studied the effects of Idd5 alone or in combination with Idd3 

on islet allograft survival in NOD mice. NOD mice bearing the Idd5 loci are partially 

protected from diabetes [193], and the addition of Idd3 results in nearly complete disease 

suppression [in press][212] . NOD.B6 Idd5 and NOD.B6 Idd3Idd5 congenic mice were 

rendered chemically diabetic, treated with DST and anti-CD154 mAb, and transplanted 

with fully MHC-mismatched C3H/HeJ (H2k) islet allografts.  

Islet allograft survival in NOD.B6 Idd5 congenic mice (MST=96 days) was 

similar to that achieved in NOD mice (p=N.S., Figure 10). Islet allograft survival in the 

Idd5 congenic NOD mice was significantly shorter than that achieved in NOD mice 

bearing the Idd3 congenic region (p<0.005, Figure 10). These data, combined with the 

NOD.B6 Idd10Idd18 results show that enhancement of islet allograft survival by Idd loci 

does not strictly correlate with the extent they suppress diabetes expression. 

Strikingly, NOD mice bearing both the partially diabetes-protective Idd3 and Idd5 

congenic intervals exhibited prolonged islet allograft survival (MST>250 days) that was 

similar to that achieved in C57BL/6 mice (p=N.S.) and significantly greater than that 

achieved in NOD (p<0.005) or NOD. B6 Idd5 mice (p<0.01, Figure 10).  
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Figure 10: Life table analysis of islet allograft survival in chemically diabetic Idd3, Idd5, and Idd3/Idd5 congenic NOD 

mice 
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Figure 10 Legend: Groups of 6-8 week old chemically diabetic mice were treated with a donor-specific transfusion (DST) 

plus anti-CD154 mAb. DST (1x107 C3H/HeJ spleen cells) was given on day −7, and anti-CD154 mAb (0.5 mg/dose) was 

given on days −7, −4, 0, and +4 relative to transplantation with C3H/HeJ islets on day 0. Vertical bars indicate mice removed 

from the study with intact grafts or alive with intact grafts at the conclusion of the period of observation. Islet allograft survival 

in C57BL/6 and NOD mice shown in Figure 9 is reproduced here for ease of comparison with other strains. Comparative p 

values of islet allograft survival in the various groups is shown in the table. 
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4. Islet allograft survival in Idd3 congenic NOD mice bearing different Idd5 congenic 

intervals treated with costimulation blockade  

It is now known that the Idd5 interval contains at least 3 diabetes resistant loci 

termed Idd5.1, Idd5.2, and Idd5.3 [193][in press].   Strong candidate genes within this 

region include CTLA-4 (Idd5.1) and NRAMP (Idd5.2) [193, 194].  To begin to identify 

the congenic Idd5 interval that synergizes with Idd3 to prolong islet allograft survival in 

NOD mice treated with costimulation blockade, we tested two newly developed NOD 

congenic lines. The new congenic lines carry the Idd3 congenic interval as well as Idd5.1 

or Idd5.1 plus Idd5.3 (Figure 8). These congenic NOD mice were rendered chemically-

diabetic, treated with DST and anti-CD154 mAb, and transplanted with C3H/HeJ (H2k) 

islet allografts. 

NOD.B6 Idd3Idd5.1 congenic mice treated with costimulation blockade exhibited 

islet allograft survival that was shorter (MST=69 days) than that achieved in C57BL/6 

mice (p<0.0001) and not different from that achieved in NOD mice (p=N.S., Figure 11). 

Adding back the Idd5.3 region to the NOD.B6 Idd3Idd5.1 congenic line did not 

significantly improve islet allograft survival (MST=13 days) over that achieved in 

NOD.B6 Idd3Idd5.1 congenic mice (p=N.S., Figure 11).  
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Figure 11: Life table analysis of islet allograft survival in chemically diabetic Idd3 congenic NOD mice bearing different 

Idd5 congenic intervals 
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Figure 11 Legend: Groups of 6-8 week old chemically diabetic mice were treated with a donor-specific transfusion (DST) 

plus anti-CD154 mAb. DST (1x107 C3H/HeJ spleen cells) was given on day -7, and anti-CD154 mAb (0.5 mg/dose) was given 

on days −7, −4, 0, and +4 relative to transplantation with C3H/HeJ islets on day 0. Vertical bars indicate mice removed from 

the study with intact grafts or alive with intact grafts at the conclusion of the period of observation. Islet allograft survival in 

C57BL/6, NOD, and NOD Idd3 Idd5 congenic mice shown in Figures 9 and 10 are reproduced here for ease of comparison 

with other strains. Comparative p values of islet allograft survival in various groups is shown in the table. 
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5. Islet allograft survival in NOD.B10 Idd9 congenic mice following treatment with DST 

and anti-CD154 mAb 

Having shown that Idd5 synergizes with Idd3 to achieve prolonged islet allograft 

survival in NOD mice that is similar to that achieved in C57BL/6 mice, we next wanted 

to test whether Idd9 would also result in improved islet allograft survival. Idd9 mice 

carry three intervals (Idd9.1, 9.2 and 9.3) derived from B10 mice that include the 

candidate genes Lck and 4-1BB [178]. Like the Idd3/5 mice, Idd9 mice are extremely 

resistant to autoimmune diabetes [178], however, they develop insulitis and islet specific 

autoantibodies [179] that are absent in the Idd3/5 mice. Because Idd3/5 and Idd9 mice 

represent different checkpoints at which loss of self-tolerance and disease progression 

can be halted, we next compared islet allograft survival in Idd9 mice with that achieved 

the Idd3/5 mice treated with costimulation blockade. 

NOD, C57BL/6 and NOD.B10Idd9 congenic mice were rendered chemically-

diabetic, treated with DST and anti-CD154 mAb, and transplanted with C3H/HeJ (H2k) 

islet allografts. NOD.B10 Idd9 congenic mice treated with costimulation blockade 

exhibited islet allograft survival that was shorter (MST=69 days) than that achieved in 

C57BL/6 mice (p<0.0001) and not different from that achieved in NOD mice (p=N.S., 

Figure 12).
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Figure 12: Life table analysis of islet allograft survival in chemically diabetic Idd9 congenic NOD mice 
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Figure 12 Legend: Groups of 6-8 week old chemically diabetic mice were treated with a donor-specific transfusion (DST) 

plus anti-CD154 mAb. DST (1x107 C3H/HeJ spleen cells) was given on day -7, and anti-CD154 mAb (0.5 mg/dose) was given 

on days −7, −4, 0, and +4 relative to transplantation with C3H/HeJ islets on day 0. Islet allograft survival in C57BL/6 and 

NOD mice shown in Figure 9 is reproduced here for ease of comparison with Idd9. Comparative p values of islet allograft 

survival in various groups is shown in the table. 
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Summary 

We examined the contributions various Idd loci have in prolonging islet allograft 

survival in NOD mice. We were able to demonstrate that some Idd loci that are strongly 

protective against autoimmunity do not correct the tolerance induction defect of NOD 

mice. Furthermore, we identified a protective effect of Idd3 (IL-2) in transplantation 

tolerance that when combined with Idd5 is a potent determinant in susceptibility to 

tolerance induction to islet allografts. 
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Chapter 3: Failure of costimulation blockade to delete alloreactive CD8+ T cells in 

(NOD x KB5)F1 synchimeric mice can be reversed by administration of exogenous 

IL-2 

 
Introduction 

The Idd3 interval, alone or in combination with Idd5, mediates strong islet 

allograft survival prolonging effects in NOD mice treated with costimulation blockade. 

The Idd3 loci, located on mouse chromosome 3, has been shown to contain the encoding 

region for IL-2 [213]. Variation of the N-terminal amino acid sequence of IL-2 correlates 

with Idd3 allelic variation, and electrophoretic migration of NOD and C57BL/6 IL-2 

allotypes were consistent with differences in IL-2 glycosylation patterns and correlated 

with diabetes-resistance. Extending this observation, the Idd3 effect on diabetes 

expression in NOD mice appears to result from an IL-2 allele that is transcribed at lower 

levels than variants contributing to disease resistance [152]. In an elegant series of 

experiments, Wicker et al. were able to demonstrate a stepwise increase in IL-2 mRNA 

transcription from similarly treated NOD, (NOD x NOD.B6Idd3)F1, NOD.B6Idd3 and 

C57BL/6 splenocytes. The homozygous expression of NOD Idd3 alleles in the NOD 

splenocytes resulted in the lowest level of IL-2 mRNA expression upon stimulation. 

Heterozygous (NOD x NOD.B6Idd3)F1 splenocytes, carrying one copy of the B6 Idd3 

allele, produced significantly more IL-2 than NOD splenocytes and half the amount seen 

produced in the homozygous NOD.B6Idd3 and C567BL/6 splenocytes. Functionally, the 

enhanced production of IL-2 from the B6 Idd3 allele had a drastic effect on the ability of 

the diabetogenic clone 8.3 CD8+ T cells to differentiate into cytotoxic effectors both in 



 83 

vitro and in vivo. Clone 8.3 CD8+ T cells are transgenic NOD CD8+ T cells that target 

islet specific antigens and are highly pathogenic [214]. When compared to similarly 

treated NOD.Idd3.8.3+ T cells, the autoantigen-activated autoreactive 8.3 CD8 T cells 

from NOD.B6Idd3.8.3 mice produced more IL-2 and efficiently recruited more 

CD25+CD4+ Treg cells into the pancreatic draining lymph nodes [152]. What was most 

striking was that in NOD.B6Idd3 mice, increased IL-2 production and CD4+CD25+ 

recruitment and function were shown to be associated with decreased cross presentation 

of β-cell autoantigens to autoreactive CD8+ T cells by mature dendritic cells in the 

peripheral lymph nodes. It was previously shown that CD4+CD25+ Treg cells inhibit 

8.3+-like CD8+ T cell responses by suppressing the maturation of dendritic cells and 

their ability to cross-prime T cells [215]. The receptor for IL-2 (IL-2R), also known as 

CD25, is highly expressed on Treg cells (CD4+CD25+ T cells), and the differentiation, 

activation and homeostasis of CD4+CD25+ Treg cells is critically dependent on CD25 

function and IL-2 signaling [216-221]. 

Several groups have shown that IL-2 is important for costimulation blockade 

based tolerance induction by promoting AICD of alloreactive T cell clones [60, 222-224]. 

In addition, we [22, 28] and others [60, 224, 225] have shown that skin allograft survival, 

a robust tissue for analysis of tolerance, is strongly dependent on the ability of 

costimulation blockade to delete host alloreactive CD8+ T cells. Based on these 

observations, we hypothesized that a deficiency in IL-2 production in NOD mice would 

impair host alloreactive CD8+ T cell deletion, leading to shortened allograft survival. 
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Results 
 

1. Alloreactive CD8+ T cell deletion in synchimeric mice treated with costimulatory 

blockade and exogenous IL-2 

To test the hypothesis that the failure to delete alloreactive CD8+ T cells is a 

major barrier to tolerance induction in the NOD mouse, we used a modified synchimera 

model system that is based on KB5 TCR transgenic alloreactive CD8+ T cells [22]. This 

synchimeric system permits a direct analysis of the fate of host alloreactive CD8+ T cells 

in mice that have a partially NOD genetic background. As illustrated in figure 13, KB5 

CBA mice were mated with NOD mice, or with C57BL/6.H2g7 mice as normal controls, 

and were used to generate F1 synchimeric mice for these studies as described [22]. 

Synchimeric mice were treated with a C57BL/6 DST on day −7 and anti-CD154 mAb on 

days −7 and −4 relative to analysis of their circulating levels of KB5 transgenic 

alloreactive CD8+ T cells on day 0, the day islets would be transplanted. One cohort of 

synchimeric mice was also given 5 daily injections of recombinant mouse IL-2 beginning 

on the day of DST. 

A representative FACS plot showing the detection of circulating KB5+ transgenic 

T cells in a (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mouse prior to (left panel) or 7 

days after DST and anti-CD154 mAb administration (right panel, Figure 14A). (KB5 

CBA x C57BL/6.H2g7)F1 synchimeric mice treated with costimulation blockade 

exhibited marked deletion of their alloreactive CD8+ T cells, with an average deletion of 

63±30% (Figure 14B). In contrast, (KB5 CBA x NOD)F1 synchimeric mice exhibited 
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significantly less deletion of their alloreactive CD8+ T cell population (34±24%). To 

determine if the reduced deletion was due to insufficient levels of IL-2, exogenous IL-2 

was administered to (KB5 CBA x NOD)F1 synchimeric mice during the peri-transplant 

period when deletion occurs [226]. (KB5 CBA x NOD)F1 synchimeric mice treated with 

IL-2 and costimulation blockade exhibited enhanced alloreactive CD8+ T cell deletion 

(63±21%) that was significantly improved over that of (KB5 CBA x NOD)F1 

synchimeric mice treated with costimulation blockade alone and was not significantly 

different than that observed in (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice treated 

with costimulation blockade (Figure 14B).  Alloreactive CD8+ T cell deletion  in 

control(KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice treated with IL-2 and 

costimulation blockade was not significantly different (69.7±5.6%, N=3) than that 

observed in both the (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice treated with 

costimulation blockade and (KB5 CBA x NOD)F1 synchimeric mice treated with IL-2 

and costimulation blockade (data not shown). 
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Figure 13: Generation of a KB5 Synchimera 
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Figure 13 Legend: KB5 synchimeric mice were generated using a procedure previously described with slight modifications 

[22]. Briefly, (CBA/J x NOD)F1 and (CBA/J x C57BL/6.H2g7)F1 non-transgenic mice were treated with 400 cGy of whole-

body gamma irradiation from a 137Cs source and given a single i.v. injection of 5x106 (KB5 CBA x NOD)F1 or (KB5 CBA x 

C57BL/6.H2g7)F1 bone marrow cells, respectively. Mice were entered into experiments 8-12 weeks after bone marrow 

transplantation. 

 

 



 88 

 Figure 14 Panel A: Representative FACS plot of (CBA x C57BL/6H2g7)F1 KB5 synchimeric mouse treated with 

costimulation blockade and exogenous IL-2 
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Figure 14 Legend: (KB5 CBA x C57BL/6.H2g7)F1 mice and (KB5 CBA x NOD)F1 synchimeric mice were treated with a 

C57BL/6 DST on day −7 and anti-CD154 mAb on days −7 and −4 relative to analysis of their circulating levels of KB5 

transgenic CD8+ T cells on day 0 as described in Methods.  Indicated groups also received 5 consecutive intravenous doses of 

IL-2 on days -7, -6, -5, -4 and -3 concomitant with the initiation of the DST.  Panel A shows a representative FACS plot of 

circulating KB5 transgenic CD8+ T cells from a (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mouse on day -7 (before DST 

and costimulation blockade) and again in the same mouse on day 0 (after KB5 transgenic CD8+ T cell deletion). Panel B 

graphically depicts the FACS data from several experiments. Each dot in Panel B represents an individual mouse. P values are 

indicated by horizontal bars.  % deletion was calculated as the percent of KB5+ CD8+ transgenic T cells that were deleted in 

each mouse 7 days after initiating costimulation blockade, DST and IL-2 as compared to the day -7 pre-bleed levels. 
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2. Failure of costimulation blockade to prolong skin allograft survival in (KB5 CBA x 

NOD)F1 synchimeric mice 

Having shown that costimulation blockade failed to efficiently delete alloreactive 

T cells, we next determined if skin allograft survival was impaired in the (KB5 CBA x 

NOD)F1 synchimeric mice. (KB5 CBA x NOD)F1 synchimeric mice treated with 

costimulation blockade and transplanted with C57BL/6 skin allografts exhibited 

statistically significant shorter skin allograft survival (MST=12 days) than that achieved 

in similarly treated (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice (MST>59 days, 

Figure 15). These data document that, as predicted, (non-autoimmune prone x NOD)F1 

mice, i.e., (KB5 CBA x NOD)F1 synchimeric mice, are resistant to costimulation 

blockade induced skin allograft tolerance induction. 
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Figure 15 Legend: Groups of 6-8 week old synchimeric mice of the indicated strains were treated with a donor-specific 

transfusion (DST) plus anti-CD154 mAb. DST (1x107 C57BL/6 spleen cells) on day −7, and anti-CD154 mAb (0.5 mg/dose) 

was given on days −7, −4, 0, and +4 relative to transplantation with C57BL/6 skin on day 0. Vertical bars indicate mice 

removed from the study with intact grafts or alive with intact grafts at the conclusion of the period of observation. *p<0.001 vs. 

(KB5 CBA x NOD)F1 synchimeric mice.  
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3. Exogenous IL-2 improves islet allograft survival in NOD mice treated with 

costimulation blockade 

We next hypothesized that increased deletion of functional alloreactive CD8+ 

effector T cells in (KB5 CBA x NOD)F1 synchimeric mice treated with costimulation 

blockade plus IL-2 would lead to a difference in islet allograft survival. To test this, 

chemically diabetic NOD mice were treated with costimulation blockade and transplanted 

with C3H/HeJ islets with or without injection of exogenous IL-2 administration during 

the peri-transplant period as described in Methods. 

As expected, islet allograft survival in NOD mice treated with costimulation 

blockade was relatively short (MST=46 days, Figure 16). In contrast, NOD mice treated 

with costimulation blockade and exogenous IL-2 during the peri-transplant period 

exhibited slightly but significantly prolonged islet allograft survival (MST=83 days), 

although all islet allografts were eventually rejected (Figure 16).  The addition of IL-2 

had no effect on costimulation blockade based tolerance induction in B6 mice, as B6 

mice treated with exogenous IL-2 exhibited islet allograft survival that was significantly 

no different than that achieved in other studies with B6 mice treated with costimulation 

blockade alone (data not shown).
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Figure 16: Life table analysis of islet allograft survival in NOD mice treated with IL-2 
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Figure 16 Legend: Groups of 6-8 week old chemically diabetic NOD mice were treated with a C3H/HeJ DST on day −7 and 

anti-CD154 mAb (0.5 mg/dose) was given on days −7, −4, 0, and +4 relative to transplantation with C3H/HeJ islets on day 0. 

One group of mice also received 0.8µg recombinant murine IL-2 (R & D systems, Minneapolis, MN) intraperitoneally on days 

−7, −6, −5, −4 and −3 relative to islet transplantation on day 0 . *p<0.05 vs. NOD.
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Summary 

We demonstrated that (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice treated 

with costimulation blockade showed a marked deletion of alloreactive CD8+ T cell that 

was significantly greater than that achieved in the (KB5 CBA x NOD)F1 synchimeric 

mice. These (KB5 CBA x C57BL/6.H2g7)F1 synchimeric mice also showed significantly 

prolonged skin allograft survival compared to the (KB5 CBA x NOD)F1 synchimeric 

mice. We interpret this to mean that the failure to delete alloreactive CD8 T cells in 

response to costimulation blockade is a major barrier to tolerance induction in the NOD 

F1 mice.  

When (KB5 CBA x NOD)F1 synchimeric mice were treated with exogenous IL-2 

during the peri-transplant period, the alloreactive CD8+ T cell deletion was significantly 

improved and comparable to that achieved in (KB5 CBA x C57BL/6.H2g7)F1 

synchimeras. From these experiments we conclude that defects in IL-2 production in 

NOD mice lead to inefficient deletion of alloreactive CD8+ T cells in response to 

costimulation blockade. This failure to delete can in part be rescued by administration of 

exogenous IL-2 during the peri transplant period. To extend this finding, we showed that 

islet allograft survival in NOD mice treated with costimulation blockade plus IL-2 was 

slightly, but significantly longer than in NOD mice treated with costimulation blockade 

alone.  
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Chapter 4 

 
In vitro identification of allospecific CD8+ T cells in mice treated with costimulation 

blockade 

 
Introduction 

 
  

In Chapter 3 we showed that NOD mice fail to delete alloreactive CD8+ T cells in 

response to costimulation blockade. We also showed that this failure to delete was a 

major barrier to tolerance induction, and that the addition of exogenous IL-2 could both 

improve deletion of alloreactive CD8+ T cells and prolong islet allograft survival in NOD 

mice. We next wanted to extend this observation to determine if the alloreactive CD8 T 

cells that escaped deletion in the NOD developed into functional effector cells and were 

responsible for shortened allograft survival. The ability to identify the presence of 

alloreactive T cells has important implications clinically. Quantification of effector 

allospecific T cells before the onset of clinical signs of rejection could lead to better 

therapies for the maintenance of allograft survival. A hallmark characteristic of naïve 

CD8+ T cells is that they rapidly produce TNF-α but not IFN-γ following TCR 

engagement [227]. This differential expression of TNF-α and IFN-γ can be used to 

distinguish between naïve and effector/memory alloreactive T cells [202, 228]. To detect 

the presence of alloreactive effector CD8+ T cells that escape deletion in NOD mice we 

used an intracellular cytokine assay for detection of IFNγ-producing cells. We observed 
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that the CD8 T cells that were not deleted in NOD mice treated with costimulation 

blockade exhibited effector function when stimulated donor-specific antigen. 

We also wanted to determine whether NOD Idd congenic mice bearing two copies 

of the C57BL/10 Idd3 locus would show improved CD8+ T cell deletion and reduced 

numbers of functional effector cells in response to costimulation blockade compared to 

the NOD. Recently, we showed that the frequency of host alloreactive CD8 T cells as 

measured by CD44hi expression and IFN-γ production is a powerful predictor of allograft 

survival [227]. Since allograft survival in response to costimulation blockade and DST in 

NOD.B6Idd3 mice is intermediate to that seen in similarly treated NOD and C57BL/6 

mice and slightly shorter than that observed in NOD.B6Idd3B10Idd5 double congenic 

mice, we reasoned that the presence of CD44hi IFN-γ+ effector/memory cells would 

likewise show a stepwise increase and correlate with islet allograft survival.  
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1. Intracellular cytokine analysis of stimulated T cells from NOD and C57BL/6 mice 

In order to determine whether alloreactive CD8 T cells that escaped deletion in 

the NOD developed into functional effector cells, we first had to ensure that in our hands 

we could detect differences in cytokine production between both NOD and C57BL/6 

CD4 and CD8 T cells. Using the conditions described in Methods, we cultured freshly 

isolated NOD and C57BL/6 splenocytes in the presence or absence of anti-CD3 

stimulation. As shown in Figure 17, significant differences in IL-2 production were seen 

between NOD and C57BL/6 stimulated CD4 and CD8 splenocytes. These differences 

were apparent in both the CD44lo and CD44hi compartments. CD4 and CD8 C57BL/6 

splenocytes produce significantly more IL-2 in response to anti-CD3 stimulation than 

similarly treated NOD splenocytes. The mean fluorescent intensity (MFI) for IL-2 was 

not different (p=ns) between the NOD unstimulated and stimulated CD8+CD44 hi 

populations.  In contrast, significant differences were seen in the MFI of the unstimulated 

versus stimulated C57BL/6 CD8+CD44hi groups (MFI=717±55 and 1470±64 

respectively, p<0.0001) indicating higher IL-2 expression per cell in the C57BL/6 

population in response to stimulation.  Significant differences were also seen within the 

parameters of percent of cells producing  TNFα and IFN-γ in response to stimulation 

(Figure 18 and Figure 19, respectively). While a greater percentage of C57BL/6 CD44hi 

and CD44lo CD4 and CD8 T cells produced TNFα when stimulated compared to 

similarly treated NOD cells, there were no differences in the MFI of these populations.  

In contrast, when IFNγ was assessed, there were no differences in the MFI of NOD 

unstimulated and stimulated splenocytes, while the differences between C57BL/6 
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unstimulated and stimulated splenocytes was significant (MFI= 528±20 and 660±16, 

respectively, p=0.0004).  From these pilot studies we concluded that significant 

differences in cytokine production in response to stimulation were detectable between 

NOD and C57BL/6 mice.
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Figure 17: Intracellular cytokine analysis of stimulated and unstimulated NOD and 

C57BL/6 splenocytes 
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Figure 17 Legend: Freshly isolated NOD and C57BL/6 splenocytes were cultured either 

in the presence or absence of anti-CD3 as described in methods. Five hours later the 

cultured cells were harvested and labeled with fluorescent antibodies to detect CD4, CD8, 

CD44 and the intracellular cytokine IL-2. Cells were gated on CD4+ CD44hi, CD4+ 

CD44lo, CD8+ CD44hi and CD8+ CD44lo and the percent of IL-2 positive cells from each 

group was determined. Each bar represents an N of 6. 
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Figure 18: Intracellular cytokine analysis of stimulated and unstimulated NOD and 

C57BL/6 splenocytes 
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Figure 18 Legend: Freshly isolated NOD and C57BL/6 splenocytes were cultured either 

in the presence or absence of anti-CD3 as described in methods. Five hours later the 

cultured cells were harvested and labeled with fluorescent antibodies to detect CD4, CD8, 

CD44 and the intracellular cytokine TNF-α. Cells were gated on CD4+ CD44hi, CD4+ 

CD44lo, CD8+ CD44hi and CD8+ CD44lo and the percent of TNF-α positive cells from 

each group was determined. Each bar represents an N of 6. 
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Figure 19: Intracellular cytokine analysis of stimulated and unstimulated NOD 

andC57BL/6 splenocytes  
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Figure 19 Legend: Freshly isolated NOD and C57BL/6 splenocytes were cultured either 

in the presence or absence of anti-CD3 as described in methods. Five hours later the 

cultured cells were harvested and labeled with fluorescent antibodies to detect CD4, CD8, 

CD44 and the intracellular cytokine IFN-γ. Cells were gated on CD4+ CD44hi, CD4+ 

CD44lo, CD8+ CD44hi and CD8+ CD44lo and the percent of IFN-γ positive cells from 

each group was determined. Each bar represents an N of 6. 
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2. Intracellular cytokine analysis of the frequency of effector/memory alloreactive T cells 

in congenic NOD mice treated with costimulation blockade 

To determine if the alloreactive CD8 T cells that escaped deletion developed into 

functional effector cells, we used an intracellular cytokine assay for detection of 

IFNγ-producing cells that we have shown is a sensitive measure of the presence of 

effector/memory alloreactive CD8+ T cells [202, 228]. As shown in Figure 20, treatment 

of C57BL/6 mice with DST on day 0 and anti-CD154 mAb on days 0 and +4 resulted in 

low levels of CD8+CD44hiIFNγ+T cells on day +7 for all stimulating conditions indicated.  

It is interesting to note that the percent of CD8+CD44hisplenocytes producing IFNγ in 

response to in vitro anti-CD3 stimulation from the tolerized C57BL/6 mice treated with 

Kk DST and anti-CD40 is so low (0.23 %) compared to the response seen in similar  

populations of splenocytes from C57BL/6 mice that were primed with Kk DST in the 

absence of anti-CD40 (9.02%) (Figure 20).  Since splenocytes from both naïve and DST 

primed mice respond so robustly to anti-CD3 stimulation, this data seems to suggest that 

a large population of alloreactive cells has been eliminated in the tolerized C57BL/6 

mice.  Alternatively, several members of our lab have seen a general immunosuppressive 

effect of anti- CD40 treatment (unpublished observations).   

In contrast to the results seen in the tolerized C57BL/6 mice , priming C57BL/6 

mice with DST on day 0 in the absence of costimulation blockade lead to high levels of 

CD8+CD44hiIFNγ+T cells on day +7 in response to anti-CD3 and alloantigen (kk), but not 

in the unstimulated or syngeneic controls. The data in Figure 20 are a representative 

FACS plot of experiments depicted graphically in Figure 21.  
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Priming C57BL/6, NOD, NOD.B6 Idd3, and NOD.B6Idd3 B10Idd5 with an 

allogeneic DST led to readily detectable levels of splenic alloreactive CD8+CD44hiIFNγ+ 

T cells 7 days later in each of these lines of mice (Figure 21 A). As expected [195, 202], 

treatment of C57BL/6 mice with DST on day 0 and anti-CD154 mAb on days 0 and +4 

resulted in low levels of CD8+CD44hiIFNγ+T cells on day +7 (0.10±0.03%, Figures 20 

and 21 B). In contrast, high levels of CD8+CD44hiIFNγ+T cells were detected in similarly 

treated NOD mice (0.28±0.18%), correlating with their short islet allograft survival 

(Figure 9 and Figure 21 B). Levels of CD8+CD44hiIFNγ+ T cells in similarly treated 

NOD.Idd3 mice on day +7 (0.20±0.04%) were reduced, but not significantly lower than 

that observed in NOD mice. These levels were decreased further in NOD.B6 Idd3Idd5 

congenic mice (0.07±0.04%, Figure 20B) as compared to NOD mice (p<0.05) and were 

not significantly different than levels observed in C57BL/6 mice (p=N.S.), again 

correlating with improved islet allograft survival in NOD.B6 Idd3Idd5 congenic NOD 

mice that was similar to that achieved in C57BL/6 mice (Figure 10). 
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Figure 20: Detection of effector/memory CD8+CD44high IFNγ-producing cells  

CD44 
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Figure 20 Legend: Naïve C57BL/6 mice were treated with C3H/HeJ DST on day -7 with 

(bottom panel) or without (top panel) 0.5 mg anti-CD154 mAb on days –7 and -4 relative 

to analysis on day 0. Splenocytes were recovered and stimulated for 5 hr in vitro with the 

culture conditions described at the top of the panel (unstimulated, anti-CD3, allogeneic 

Kk and syngeneic Kb) and stained for cell surface CD8 and CD44 and for intracellular 

IFNγ (representative example shown in Figure 20). A graphic representation of aggregate 

data is shown in Figure 21. 
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Figure 21: Detection of effector/memory CD8+CD44high IFNγ-producing alloreactive 

T cells in mice treated with costimulatory blockade 

 

 

 

 
 



Figure 21 Legend:  C57BL/6, NOD and NOD Idd congenic mice were treated with a 

C3H/HeJ DST on day –7 and 0.5 mg anti-CD154 mAb on days –7 and -4 relative to 

analysis on day 0 (Panel B). Splenocytes were recovered and stimulated for 5 hr in vitro 

with allogeneic H2k splenocytes and stained for cell surface CD8 and CD44 and for 

intracellular IFNg. As controls, naïve C57BL/6, NOD, and congenic mice were treated 

with an injection of C3H/HeJ DST seven days earlier to prime alloreactive T cells (Panel 

A). Samples were gated on CD8+ T cells and the percentage of CD44high cells staining 

positive for IFNg were quantified by flow cytometry. Shown is the mean percent positive 

cytokine producing cells (mean ± s.d.). Student’s t test was used to compare groups 

(*p<0.05). 
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Summary 

We demonstrate that NOD mice treated with costimulation blockade and DST fail to 

delete alloreactive CD8 T cells as compared with C57BL/6 mice, and these cells develop 

cytotoxic effector/memory function when re-challenged with alloantigen. The stepwise 

improvement in islet allograft survival seen in the Idd3 and Idd3/5 congenic mice was 

also associated with a similar decrease in the levels of functional alloreactive cytotoxic 

CD8+ T cells detected after costimulation blockade. Priming C57BL/6, NOD, NOD.B6 

Idd3 and NOD.B6 Idd3B10Idd5 mice with allogeneic DST led to a reduction in the 

numbers of functional alloreactive CD8+ T cells, and that reduction corresponded with 

the presence of Idd3Idd5 or Idd3 alone.  
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DISCUSSION 

The aims described within this thesis were based upon the overall hypothesis that 

the susceptibility to autoimmunity and resistance to transplantation tolerance are 

genetically separate phenotypes in the NOD mouse. The results in Chapter 1 show that 

the resistance to transplantation tolerance in response to costimulation blockade in the 

NOD resides in the hematopoietic compartment and can be reversed with bone marrow 

from a tolerance susceptible donor. In addition, the maturation defects seen in NOD 

dendritic cells were partially corrected in NOD mixed hematopoietic chimeras, 

suggesting that NOD dendritic cells lack a critical component required for maturation that 

is provided by the B6 bone marrow. Next, in Chapter 2 we examined the contributions 

various Idd loci have in prolonging islet allograft survival in NOD mice. Because 

autoimmunity and resistance to transplantation tolerance are genetically separate in the 

NOD mouse, we hypothesized that tolerance induction to islet alloantigens, as well as 

tolerance to self, are polygeneically controlled mechanisms that may involve both distinct 

and overlapping genes. We were able to demonstrate that some Idd loci that are strongly 

protective against autoimmunity do not correct the tolerance induction defect of NOD 

mice. Furthermore, we identified a protective effect of Idd3 (IL-2) in transplantation 

tolerance that when combined with Idd5 is a potent determinant in susceptibility to 

tolerance induction to islet allografts. Finally, in Chapters 3 and 4 we present data that 

demonstrates a role for IL-2 in costimulation blockade based tolerance induction in the 

NOD. This effect was dependent on the ability of IL-2 to correct a defect in alloreactive 

CD8+ T cell deletion seen in the NOD following treatment with DST and costimulation 
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blockade. The remaining alloreactive CD8+ T cells in the NOD respond with cytotoxic 

effector/memory function when re-challenged with alloantigen. The stepwise 

improvement in islet allograft survival seen in the Idd3 and Idd3/5 congenic mice was 

also associated with a similar decrease in the levels of functional alloreactive cytotoxic 

CD8+ T cells detected after costimulation blockade. Treatment of C57BL/6, NOD, 

NOD.B6 Idd3 and NOD.B6 Idd3B10Idd5 mice with allogeneic DST and anti-CD154 

mAb led to a reduction in the numbers of functional alloreactive CD8+ T cells that 

corresponded with the presence of Idd3Idd5 or Idd3 alone.  

Hematopoietic chimerism and tolerance induction in the NOD 

Our overall hypothesis is that dendritic cell maturation defects and resistance to 

transplantation tolerance induction are both based in the hematopoietic cell compartment. 

To investigate this, we created hematopoietic chimeras by performing reciprocal NOD 

and C57BL/6g7 bone marrow transfers. 

This hypothesis predicts that NOD mice fully reconstituted with C57BL/6g7 bone 

marrow will exhibit prolonged skin allograft survival in response to costimulation 

blockade. It also predicts the reciprocal will be true, that is, C57BL/6g7 mice with a 

hematopoietic compartment of NOD origin will exhibit short skin allograft survival. Our 

results support this hypothesis, and the skin allograft survival seen in NOD mice with 

C57BL/6g7 hematopoietic origin was significantly prolonged over that achieved in 

similarly treated NOD recipients of NOD bone marrow. 

It has been shown that diabetes can be prevented by the adoptive transfer of bone 

marrow from diabetes-resistant donors [166, 167]. We wanted to extend this observation 
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and determine if hematopoietic chimerism can likewise correct the tolerance induction 

defect to alloantigens seen in the NOD. Because the expression of diabetes and the 

resistance to transplantation tolerance are phenotypes that can be separated genetically, it 

is not known if the tolerance induction defects in NOD mice reside in the hematopoietic 

cell compartment, as is the case for TID, or the stromal environment in which they 

mature and function. Our data are consistent with the tolerance induction defect residing 

in the hematopoietic compartment. We conclude that the generation of bone marrow 

chimerism in NOD mice, that is, the provision of non-autoimmune prone stem cells in a 

genetically autoimmune prone mouse, can prevent resistance to tolerance induction and 

has an important role in the mechanisms regulating both autoimmunity and alloimmunity.  

We wanted to extend this finding and try to determine if defects in dendritic cell 

maturation likewise track with the donor hematopoietic compartment and susceptibility to 

tolerance induction. Dendritic cells are regulators of immunity and self-tolerance [229, 

230] and have an important role in transplantation tolerance [231-233]. Maturation of 

dendritic cells is dependent on CD40-CD154 interaction [234] and NOD mice have 

abnormalities in dendritic cell maturation [123, 126, 127, 235, 236] and costimulation 

blockade-based tolerance induction [132]. Importantly, while many of the immunologic 

cellular defects demonstrated in the NOD are corrected in the tolerance-resistant (NOD x 

C57BL6g7)F1, the dendritic cell maturation defect is still expressed. 

We hypothesized that dendritic cell maturation defects in the NOD are based in 

the hematopoietic cell compartment.  In the case of NOD recipients fully reconstituted 

with C57BL/6g7 bone marrow, this would predict that the bone marrow derived dendritic 
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cells from these animals would be of C57BL/6g7 origin and would not have the 

maturation defect normally seen in the non-chimeric NOD recipient strain.  

We also wanted to determine whether the dendritic cell defect seen in the NOD 

was intrinsic or environmental. The relative contribution of NOD and C57BL/6g7 

dendritic cells in NOD:C57BL/6g7 mixed chimeric animals is 50%. Bone marrow derived 

NOD dendritic cells from these animals showed a partial but significant improvement in 

maturation in response to CD40 stimulation when evaluated by CD86 expression. In both 

combinations of mixed chimeras, whether it was the NOD recipient or the of C57BL/6g7 

recipient, the NOD derived dendritic cells had a significantly higher percentage of CD86 

expression than the dendritic cells derived from control NOD:NOD chimeras. These 

results suggest that a critical component required for dendritic cell maturation is absent in 

NOD mice but can be provided by the presence of C57BL/6g7 bone marrow.  

The role of specific Idd loci in transplantation tolerance 

 Our first goal was to determine whether the shortened islet allograft survival seen 

in the NOD results from the development of islet autoimmunity or from the failure of 

costimulation blockade to induce allograft tolerance.  To address this question we 

rendered prediabetic male NOD mice hyperglycemic by treatment with streptozotocin 

and transplanted them with syngeneic NOD-scid islets.  All mice remained 

normoglycemic through 150 days after islet transplantation, and histopathological 

analysis of the islet-bearing kidney revealed an insulin-producing islet graft present at the 

time of necropsy.  Studies have shown that islets transplanted beneath the kidney capsule 

can in fact be rejected by an ongoing autoimmune process, as syngeneic islets 
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transplanted into diabetic NOD males were rapidly rejected. These data suggest that 

autoimmunity is substantially impaired in chemically diabetic NOD mice.   

 It would be interesting to examine the immunomodulatory effects of 

streptozotocin more closely in the NOD model system.  Some have suggested that there 

is actually a temporal window of opportunity by which β cell death and the concomitant 

display of β autoantigens by DC in the pancreatic draining lymph node leads to the 

establishment of β cell autoimmunity. [237].  According to this model, physiological 

priming of islet reactive T cells by pancreatic DC must occur during a discrete timeframe 

for the establishment of type 1 diabetes. The autoimmune suppressive effect of 

streptozotocin treatment could be mediated by the death, thus removal, of β cells during 

this important window of antigenic priming.  This seems unlikely, however, because 

treatment of NOD mice with alloxan, a similar chemical used to target the destruction of 

β cells, does not have the same subsequent autoimmune suppressing effects [238].   

 A closer study revealed that the streptozotocin effect is due to the apoptosis of 

islet β cells and skews the development of Treg [239], though another study revealed a 

bigger role for CD8+ T cells [238].  It is clear that the mechanisms leading to the 

immunomodulatory effects of streptozotocin in NOD mice are complex and may involve 

a balance between autoimmune effector cells and the generation of a Treg population to 

control them.  Because streptozotocin treatment is one of so few strategies that exist to 

reverse autoimmune diabetes in NOD mice, 
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understanding streptozotocin mediated immune modulation could provide new strategies 

for the treatment of patients with type 1 diabetes.   

 Having removed the autoimmune component from the equation with 

streptozotocin treatment, we were confident that loss of euglycemia in our NOD islet 

allograft recipients would be indicative of a true allograft rejection process.   This 

allowed us to take a close look at allotolerance in the NOD compared to C57 mice in 

which tolerance to alloantigens is readily induced via costimulation blockade.  We were 

able to demonstrate that some Idd loci that are strongly protective against autoimmunity 

do not correct the tolerance induction defect of NOD mice. This led us to hypothesize 

that tolerance induction to islet alloantigens, as well as tolerance to self, are 

polygeneically controlled mechanisms that may involve both distinct and overlapping 

genes. Our goal was to understand the genetic relationship between transplantation 

tolerance and autoimmunity. The previously held dogma that autoimmunity and 

transplantation tolerance in the NOD are under the same genetic control may not be 

correct, and a further understanding of the mechanisms underlying these two processes 

may lead to insights into the mechanisms that control transplantation tolerance and may 

lead to protocols for islet transplantation in type 1 diabetes. 

To begin to test the hypothesis that tolerance to self, as well as tolerance to islet 

alloantigens, involves both distinct and overlapping genes, we investigated the role of 

Idd9 in transplantation tolerance induction. NOD Idd9 congenic mice carry at least three 

genes (Idd9.1, 9.2 and 9.3). Candidate genes within this region include Lck and 4-1BB, 

both of which have immunomodulatory functions [178]. Idd9 mice are profoundly 
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protected from diabetes with the incidence of spontaneous autoimmunity reduced to less 

than 4%. In spite of this, they still develop significant insulitis and islet-specific 

autoantibodies [179]. We chose to look at Idd9 because previous reports have shown that 

the presence of Idd9 genes in the NOD background leads to restored CD8 T cell tolerance 

to islet specific antigens [240]. We hypothesized that the protective Idd9 genes would 

also result in restored tolerance to islet alloantigens in response to costimulation 

blockade. Surprisingly this was not the case. The NOD.B10Idd9 mice resisted tolerance 

induction and rejected allogeneic islets with the same kinetics as the control NOD mice. 

These results clearly demonstrate that certain Idd loci that are profoundly protective for 

autoimmune diabetes may play little or no role in tolerance induction to alloantigen. 

We wanted to determine whether other profoundly diabetes-resistant Idd loci 

could confer susceptibility to allotolerance induction. Together, the Idd 3/10/18 regions 

confer almost complete protection from diabetes when homozygous B6/B10 alleles are 

introgressed into the NOD background [209]. This protection from diabetes is dependent 

upon the presence of both the Idd10 and Idd18 loci being combined with Idd3, as the 

protection seen when each is individually combined with Idd3 is indistinguishable than 

that achieved with Idd3 alone [183]. Because the Idd3/10/18 loci lead to almost complete 

protection from diabetes [181, 209, 210] and the Idd10/18 alleles provide moderate 

protection (45-55%) [183, 209, 241], we hypothesized that NOD.B6 Idd10/18 mice and 

NOD.B6 Idd3/10/18 mice would demonstrate a stepwise improvement in costimulation 

blockade induced tolerance to islet allografts. Surprisingly, this was not the case. The 

islet allograft survival we observed in the NOD.B6 Idd10/18 mice was significantly 
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shorter than what we observed in NOD mice. In addition, the detrimental effects of the 

Idd10/18 loci did not decrease islet allograft survival when combined with the beneficial 

effect of Idd3, as the MST between the NOD.B6 Idd3/10/18 mice and the NOD.B6 Idd3 

mice was not statistically different.  

Of interest within the Idd10/18 region is the Ptpn8 gene, which is orthologous to 

human Ptpn22 [183]. Studies have shown that single-nucleotide polymorphisms (SNPs) 

in the lymphoid tyrosine phosphatase (LYP) encoded by the PTPN22 gene correlate with 

the development of type 1 diabetes in humans [184]. This observation has been extended 

to include an association between the same SNP in Ptpn22 and many other autoimmune 

diseases, including systemic lupus erythematosis, rheumatoid arthritis, and Grave’s 

disease [185-191]. The disease-associated allele of Ptpn22 is a gain-of-function variant 

that in vitro has been shown to suppress TCR signaling in response to TCR/CD28 

ligation more efficiently than the ‘normal” allele [192]. Notably, the functional outcome 

of TCR signaling in the PTPN22 gain of function variant was reported to be reduced 

expression of IL-2. It is tantalizing to speculate that the aggressive rejection demonstrated 

in the Idd10/18 mice could likewise be due to the gain of function variant within that 

interval resulting in decreased IL-2 production. It is possible that the homozygous 

presence of the B6 Idd3 (IL-2) allele, either with or without the B6 Idd10/18 region, is 

enough to effect a modest increase in IL-2R signaling and protect against islet cell 

autoimmunity and permit costimulation blockade induced tolerance induction. However, 

in the absence of Idd3, the amount of IL-2 produced by the B6 copy of Idd10/18 is not 

enough to participate in the induction of transplantation tolerance. Additional studies are 
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underway to determine the role(s) Ptpn8 may have in transplantation and autoimmunity 

in the NOD. 

Given the surprising results seen with the NOD.B6 Idd3/10/18 islet allograft 

studies, we next wanted to determine if a synergistic effect could be found between Idd3 

and other Idd loci such as Idd5. NOD.B10 Idd5 mice are much less susceptible to 

spontaneous diabetes than NOD mice, and when combined with Idd3 the incidence of 

spontaneous diabetes is reduced to less than two percent [193, 212]. Surprisingly, 

NOD.B6Idd3B10Idd5 double congenic mice achieved islet allograft survival that was 

statistically no different than similarly treated C57BL/6 controls. Islet allograft survival 

in mice bearing the Idd5 resistance region was not significantly different than in NOD 

mice but was significantly shorter than the islet allograft survival achieved in the 

NOD.B6 Idd3 mice. Interestingly, the tempo of islet allograft rejection seen in the 

NOD.B10 Idd5 mice seems to be biphasic.  It is tantalizing to speculate that there is a 

differential requirement for Idd5 in the induction of central versus peripheral tolerance.  

Mechanisms involved in peripheral tolerance induction would translate into allograft 

survival at earlier timepoints, while those involved in the establishment of central 

tolerance would have more of a role at later timepoints. 

The islet allograft survival data from NOD.B6 Idd10/18 and NOD.B10 Idd5 

congenic regions, either alone or with Idd3, show that not all Idd loci that confer diabetes 

resistance lead to improved islet allograft survival. 

We next wanted to identify the Idd5 sub-region interval that synergizes with Idd3 

to improve islet allograft survival in NOD mice treated with costimulation blockade. Idd5 
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contains at least 4 different regions termed Idd5.1, Idd5.2, Idd5.3, and Idd5.4 [193, 212]. 

The Idd5.1 region is most likely to be variants of Ctla4, with the diabetes prone NOD 

allele producing less of the ligand-independent CTLA-4 (liCTLA-4) molecule than the 

resistant B10 allele [242]. CTLA-4 has been shown to be important for the induction of 

tolerance using costimulation blockade [23].  

Nramp1 is a candidate gene within the Idd5.2 region [193]. We became interested 

in interrogating the role of Idd5.2 in both allo and autoimmunity because of the plietropic 

effects the NRAMP1 protein has in immune processes.  Nramp1 codes for a metal ion 

transport protein that is important in macrophage function.  It is expressed in macrophage 

lysosomes and recruited to the membranes of phagosomes that have ingested either live 

bacteria or inert particles. There is evidence that NRAMP1 exerts its antimicrobial effect 

through its ability to deplete phagosomal divalent cations, which are essential for 

bacterial replication and important components of microbial metabolic activity  [243].  In 

addition, other groups showed that Nramp1 expression leads to qualitative differences in 

macrophage MHC class II expression and in processing of antigen for presentation to T 

cells [244-249].  Recently, another group was able to demonstrate Nramp1 expression in 

CD11c+ bone marrow-derived dendritic cells [250].  By utilizing Nramp1 congenic 

mouse strains this group was able to identify a role for NRAMP1 in modulating cytokine 

transcription, class II expression and antigen presenting function in DC.  Notably, several 

human and mouse studies have implicated a role for NRAMP1 variation and function in 

autoimmunity, including type 1 diabetes, rheumatoid arthritis, and the inducible 

experimental autoimmune encephalomyelitis (EAE) [182, 251-253].  RNAi experiments 
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in which Nramp1 silencing leads to protection from both EAE and T1D in mice further 

supports a role for NRAMP in autoimmunity [182, 194]. 

Interestingly, the B10 diabetes resistant NRAMP1 allele is nonfunctional [243].  

The loss of function Nramp1 mutation derived from B10 mice confers protection from 

the development of spontaneous T1D while concomitantly resulting in susceptibility to 

intracellular pathogen infection, demonstrating a clear role for the NRAMP1 protein in 

diverse immune processes [248, 254, 255].  These data in their aggregate seem to suggest 

that NRAMP1 may be an important modulator of allo and autoimmunity.  When diabetes 

is assessed, Idd5.2/Nramp1 is not required for the interaction with Idd3. In addition, the 

Idd5.1/Ctla4 and Idd3 resistance alleles did not increase protection from diabetes as 

compared to Idd3 alone. These results are consistent with our islet allograft survival data 

and seem to suggest that the polymorphisms seen in both the Ctla4 and Nramp1 diabetes 

susceptibility alleles do not lead to a functional difference in tolerance induction when 

allograft survival is assessed. That being said, the synergy observed between the Idd5 and 

Idd3 loci that results in nearly complete diabetes protection was shown to be dependent 

on the presence of the Idd5.3 locus [256]. To extend this observation, it would be 

interesting to test Idd3/5.3 in the absence of the Idd5.1 interval mice to determine the 

contribution Idd5.3 has in peripheral tolerance induction.  

Idd3, which is partially protective of diabetes, significantly improves islet 

allograft survival in the NOD mouse, with the strongest effect seen in the Idd3/5 

bicongenic. The Idd3 region of the NOD has approximately 100 SNPs per 10 kb when 

compared to the syntenic B6/B10 region [213]. Recent work has shown the Idd3 effect 
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likely results from differential expression of IL-2 and results in diminished function of 

CD4+CD25+ Treg cells in NOD mice [152].  

Cellular basis for the resistance to transplantation tolerance induction in the NOD 

Based upon the islet allograft survival achieved in the mice containing the Idd3 

interval, we became interested in interrogating the role of IL-2 in the resistance to 

transplantation tolerance induction seen in the NOD mouse. IL-2 has been shown to be 

required for the development of self-tolerance and for costimulation blockade induced 

allograft tolerance [223, 257]. It is essential for activation induced cell death via the 

CD95 pathway, and administration of IL-2 in vivo can either enhance or downregulate a 

CTL response [258, 259]. Because Idd3 significantly improves costimulation blockade 

induced tolerance and is likely the Il2 gene, we decided to interrogate the role of IL-2 in 

transplantation tolerance in the NOD.  

We have previously shown that deletion of recipient alloreactive CD8+ T cells is 

required for prolonged skin allograft survival [22, 23, 28]. We hypothesized that the 

failure to induce tolerance in NOD mice is due to a failure to delete host alloreactive 

CD8+ T cells because of insufficient levels of IL-2, and that administration of exogenous 

IL-2 would correct this defect. As expected, (KB5 CBA x C57BL/6.H2g7)F1 synchimeric 

mice treated with costimulation blockade showed a marked deletion of alloreactive CD8+ 

T cell that was significantly greater than that achieved in the (KB5 CBA x NOD)F1 

synchimeric mice. When (KB5 CBA x NOD)F1 synchimeric mice were treated with 

exogenous IL-2 during the peri-transplant period, the alloreactive CD8+ T cell deletion 

was significantly improved and comparable to that achieved in (KB5 CBA x 
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C57BL/6.H2g7)F1 synchimeras. From these experiments we conclude that NOD mice fail 

to efficiently delete alloreactive CD8+ T cells in response to costimulation blockade. This 

failure to delete can in part be rescued by administration of exogenous IL-2 during the 

peri-transplant period. 

To extend this finding we determined if the increased deletion of alloreactive 

CD8+ T cells we observed in (KB5 CBA x NOD)F1 synchimeric mice treated with 

costimulation blockade plus IL-2 would also enhance islet allograft survival. We 

hypothesized that the failure to induce tolerance to islet allografts in the NOD is partly 

due to dysregulated IL-2 production from the NOD Idd3 locus, and that the exogenous 

administration of IL-2 during the peri-transplant period would drive the deletion of the 

alloreactive recipient CD8+ T cells leading to prolonged islet allograft survival. Islet 

allograft survival in NOD mice treated with costimulation blockade plus IL-2 was 

slightly, but significantly longer than in NOD mice treated with costimulation blockade 

alone. The fact that the survival doesn’t appear to be as long as that achieved in NOD.B6 

Idd3 mice may be a due to the fact that the exogenous IL-2 used to correct this defect was 

only transient in its administration whereas the increased IL-2 achieved in NOD.B6 Idd3 

mice is presumably at the proper physiologic tolerogenic level throughout the animal’s 

life.   

It would be interesting to use the NOD.Idd3 congenics to determine the source of 

IL-2 provision responsible for correcting the tolerogenic defect in the NOD.  Wicker et al 

have shown that in the NOD model, IL-2 has a remarkable effect on the ability of CD8+ 

T cells to differentiate into cytotoxic effectors both in vitro and in vivo [152].   The 
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increased production of IL-2 by Idd3 CD8+ T cells  results in more efficient 

CD25+CD4+ Treg recruitment , which functionally translates into inhibition of the 

autoreactive CD8+ T cells.  IL-2 production and signaling is crucial for both CD8+ 

mediated Treg recruitment and for the subsequent Treg  differentiation, activation and 

homeostasis .  A possible model that could be developed to tease apart the source of IL-2 

responsible for correcting the tolerogenic defect in the NOD could involve the seperation 

and transfer of discreet populations of Idd3 CD4+ T cells or Idd3 CD8+ T cells into an 

NOD background. 

The stepwise improvement in islet allograft survival seen in the Idd3 and Idd3/5 

congenic mice was also associated with a similar decrease in the levels of functional 

alloreactive cytotoxic CD8+ T cells detected after costimulation blockade. The presence 

of a CD8+CD44+IFNγhi population is a sensitive measure for effector/memory 

alloreactive CD8+ T cells [202]. Treatment of C57BL/6, NOD, NOD.B6 Idd3 and 

NOD.B6 Idd3B10Idd5 mice with allogeneic DST and anti-CD154 mAb led to a 

reduction in the numbers of functional alloreactive CD8+ T cells that corresponded with 

the presence of Idd3Idd5 or Idd3 alone.    

These data suggest that impaired production of IL-2 in NOD mice is a barrier to 

costimulation blockade induced tolerance to skin and islet allografts. It is interesting that 

(NOD x C57BL/6)F1 mice carrying one copy of an Idd3 resistance variant are resistant to 

tolerance induction for skin but not islet allografts [132, 199]. It has long been 

appreciated that tolerance induction to distinct tissues is differentially regulated [27]. For 

example, costimulation blockade induced tolerance to skin has an absolute requirement 
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for the presence of CD4+CD25+ Treg in the host, whereas the same protocol induces 

tolerance to islet allografts in the absence of Treg activity. IL-2 is indispensable for 

supporting the in vivo growth, survival and function of naturally occurring Tregs [219, 

221, 260-262], and because of their corrected Idd3 haplotype, NOD.B6 Idd3 mice have 

CD4+CD25+ Tregs with enhanced regulatory activity [152].  
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Conclusions 

A confounding variable in using islet transplantation as a curative therapy for 

diabetes is in trying to induce tolerance to alloantigens in an autoagressive environment 

that has already lost tolerance to autoantigens. In addition to being targeted by 

alloreactive T cells, the transplanted tissue risks becoming the target of recurrent 

autoimmunity. The NOD mouse is the model of choice in developing therapies to cure 

type 1 diabetes, including islet transplantation. These mice have fundamental defects in T 

cell self-tolerance that appear to be related to breakdowns in both central and peripheral 

tolerance-inducing mechanisms. Understanding these fundamental defects in tolerance, 

and the relationship between transplantation tolerance and autoimmunity, represent an 

important area of research that can lead to more effective curative therapies for type 1 

diabetes. 

Because the expression of diabetes and the resistance to transplantation tolerance 

can be separated genetically, it was not known if the tolerance induction defects in NOD 

mice reside in the hematopoietic cell compartment or the stromal environment in which 

they mature and function. Preliminary results of Chapter 1 show that the defect lies in the 

hematopoietic compartment. We further hypothesized that dendritic cell maturation 

defects and resistance to tolerance induction are linked phenotypes in NOD mice and that 

both are based in the hematopoietic cell compartment. Bone marrow derived dendritic 

cell cultures from NOD and C57BL/6g7 reciprocal chimeras revealed that the dendritic 

cell defects track with the NOD bone marrow. Together, these data demonstrate that the 
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dendritic cell defects and resistance to tolerance induction of NOD mice are dependent on 

the source of the hematopoietic cell system.  

We have also shown in Chapter 3 that the cellular basis of NOD mouse resistance 

to costimulation blockade induced transplantation tolerance is in part due to the failure to 

efficiently delete alloreactive CD8 T cells. Genetically, this can be overcome by the 

introgression of a normal Idd3 (i.e. Il2) gene that synergizes with some but not all Idd 

protective loci to promote allograft tolerance, as we demonstrated in Chapter 2. 

The effects of Idd3 can be recapitulated by the administration of exogenous IL-2 

suggesting that the tolerance-enhancing effect of Idd3 is mediated through improved 

production of IL-2. This effect is mediated through enhanced deletion of alloreactive 

CD8 T cells (Chapter 3) as well as enhanced Treg activity [152]. The “normal” dendritic 

cells circulating in NOD mixed hematopoietic chimeras have been shown to drive the 

deletion of autoreactive CD8 T cells [168], and other groups have shown that dendritic 

cells are important mediators of Treg maintenance in the periphery [263, 264]. Notably, 

these studies showed that the ability of dendritic cells to support Treg populations is 

linked to a mature phenotype dendritic cell and requires IL-2 production by Treg. NOD 

Treg cells are deficient in IL-2 production, which can be rescued by the expression of 

Idd3 [152].  

Taken together, these data suggest a model in which alloreactive CD8 T cell 

deletion in response to costimulation blockade is controlled by a collaboration between 

regulatory T cells and dendritic cells. Mature dendritic cells acquire the ability to 

delete/control alloreactive CD8 T cells. They also participate in the maintenance of Treg 



 132 

populations. This maintenance is dependent on both the mature dendritic cell and the 

ability of the Treg to produce IL-2. Treg can also drive the deletion of alloreactive CD8 T 

cells with the provision of IL-2.  
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