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Abstract

Shannon’s channel coding theorem states the existence of long random codes that can
make the error probability arbitrarily small. Recently, advanced error-correcting codes
such as turbo and low-density parity-check codes have almost reached the theoretical
Shannon limit for binary additive white Gaussian noise channels. However, designing
optimal high-rate short-block codes with automatic bit-labeling for various wireless net-
works is still an unsolved problem.

Deep-learning-based autoencoders (AE) have appeared as a potential near-optimal
solution for designing wireless communications systems. We take a holistic approach that
jointly optimizes all the components of the communication networks by performing data-
driven end-to-end learning of the neural network-based transmitter and receiver together.
Specifically, to tackle the fading channels, we show that AE frameworks can perform
near-optimal block coded-modulation (BCM) and differential BCM (d-BCM) designs in
the presence and absence of the channel state information knowledge. Moreover, we
focus on AE-based designing of high-rate short block codes with automatic bit-labeling
that are capable of outperforming conventional networks with larger margins as the rate
R increases. We also investigate the BCM and d-BCM from an information-theoretic
perspective.

With the advent of internet-of-things (IoT) networks and the widespread use of small
devices, we face the challenge of limited available bandwidth. Therefore, novel tech-
niques need to be utilized, such as full-duplex (FD) mode transmission reception at the
base station for the full utilization of the spectrum, and non-orthogonal multiple access
(NOMA) at the user-end for serving multiple IoT devices while fulfilling their quality-
of-service requirement. Furthermore, the deployment of relay nodes will play a pivotal
role in improving network coverage, reliability, and spectral efficiency for the future 5G
networks. Thus, we design and develop novel end-to-end-learning-based AE frameworks
for BCM and d-BCM in various scenarios such as amplify-and-forward and decode-and-
forward relaying networks, FD relaying networks, and multi-user downlink networks.
We focus on interpretability and understand the AE-based BCM and d-BCM from an
information-theoretic perspective, such as the AE’s estimated mutual information, con-

vergence, loss optimization, and training principles. We also determine the distinct prop-
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erties of AE-based (differential) coded-modulation designs in higher-dimensional space.
Moreover, we also studied the reproducibility of the trained AE framework.

In contrast, large bandwidth and worldwide spectrum availability at mm-wave bands
have also shown a great potential for 5G and beyond, but the high path loss (PL) and
significant scattering/absorption loss make the signal propagation challenging. Highly
accurate PL prediction is fundamental for mm-wave network planning and optimization,
whereas existing methods such as slope-intercept models and ray tracing fall short in
capturing the large street-by-street variation seen in urban cities. We also exploited the
potential benefits of AE framework-based compression capabilities in mm-wave PL pre-
diction. Specifically, we employ extensive 28 GHz measurements from Manhattan Street
canyons and model the street clutters via a LIDAR point cloud dataset and 3D-buildings
by a mesh-grid building dataset. We aggressively compress 3D-building shape infor-
mation using convolutional-AE frameworks to reduce overfitting and propose a machine

learning (ML)-based PL prediction model for mm-wave propagation.
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