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Abstract

Shannon’s channel coding theorem states the existence of long random codes that can

make the error probability arbitrarily small. Recently, advanced error-correcting codes

such as turbo and low-density parity-check codes have almost reached the theoretical

Shannon limit for binary additive white Gaussian noise channels. However, designing

optimal high-rate short-block codes with automatic bit-labeling for various wireless net-

works is still an unsolved problem.

Deep-learning-based autoencoders (AE) have appeared as a potential near-optimal

solution for designing wireless communications systems. We take a holistic approach that

jointly optimizes all the components of the communication networks by performing data-

driven end-to-end learning of the neural network-based transmitter and receiver together.

Specifically, to tackle the fading channels, we show that AE frameworks can perform

near-optimal block coded-modulation (BCM) and differential BCM (d-BCM) designs in

the presence and absence of the channel state information knowledge. Moreover, we

focus on AE-based designing of high-rate short block codes with automatic bit-labeling

that are capable of outperforming conventional networks with larger margins as the rate

R increases. We also investigate the BCM and d-BCM from an information-theoretic

perspective.

With the advent of internet-of-things (IoT) networks and the widespread use of small

devices, we face the challenge of limited available bandwidth. Therefore, novel tech-

niques need to be utilized, such as full-duplex (FD) mode transmission reception at the

base station for the full utilization of the spectrum, and non-orthogonal multiple access

(NOMA) at the user-end for serving multiple IoT devices while fulfilling their quality-

of-service requirement. Furthermore, the deployment of relay nodes will play a pivotal

role in improving network coverage, reliability, and spectral efficiency for the future 5G

networks. Thus, we design and develop novel end-to-end-learning-based AE frameworks

for BCM and d-BCM in various scenarios such as amplify-and-forward and decode-and-

forward relaying networks, FD relaying networks, and multi-user downlink networks.

We focus on interpretability and understand the AE-based BCM and d-BCM from an

information-theoretic perspective, such as the AE’s estimated mutual information, con-

vergence, loss optimization, and training principles. We also determine the distinct prop-
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erties of AE-based (differential) coded-modulation designs in higher-dimensional space.

Moreover, we also studied the reproducibility of the trained AE framework.

In contrast, large bandwidth and worldwide spectrum availability at mm-wave bands

have also shown a great potential for 5G and beyond, but the high path loss (PL) and

significant scattering/absorption loss make the signal propagation challenging. Highly

accurate PL prediction is fundamental for mm-wave network planning and optimization,

whereas existing methods such as slope-intercept models and ray tracing fall short in

capturing the large street-by-street variation seen in urban cities. We also exploited the

potential benefits of AE framework-based compression capabilities in mm-wave PL pre-

diction. Specifically, we employ extensive 28 GHz measurements from Manhattan Street

canyons and model the street clutters via a LiDAR point cloud dataset and 3D-buildings

by a mesh-grid building dataset. We aggressively compress 3D-building shape infor-

mation using convolutional-AE frameworks to reduce overfitting and propose a machine

learning (ML)-based PL prediction model for mm-wave propagation.
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Chapter 1

Introduction

Today, the communication system is well-defined into various independent blocks, each

of which performs an explicit function, such as source encoding, channel encoding, mod-

ulation, demodulation, channel decoding, and source decoding [1]. Designing the modu-

lation schemes and error-correcting codes in a traditional digital communication system

are viewed as two separate problems. For instance, the coding theorists focus on improv-

ing the performance by designing the error-correcting codes by aggregating the impacts

of modulation and channel impairments into an “effective physical channel” having de-

fined analytical characteristics. Likewise, communication theorists focus on band-limited

channels by commonly overlooking the error-correcting codes while devising effective

modulation schemes to conserve the bandwidth. However, there is no practical evidence

that individually optimizing each block of the communication network achieves the best

possible throughput. For example, the separate source and channel coding and the sepa-

rate channel coding and modulation designs are known to be suboptimal [2], [3].

In the seminal 1982 work [4], Ungerboeck introduced the bandwidth-efficient coded

modulation design by combining the convolutional coding with modulation for achiev-

ing the optimal designs, thereby enhancing the reliability of the network. Broadly, we

can classify the coded modulation designs into two categories – trellis-coded modulation

(TCM) design and block-coded modulation (BCM) design. In a TCM design, a trellis is

employed to specify the dependency of each codeword on any earlier codewords. The

dependency is employed to improve the minimum squared Euclidean distance (MSED)

between the different code paths comprised of the codewords [5]. In a BCM design, for

a block length (n), the codewords are selected in the 2n-dimensional space, such that

the MSED between any two codewords is sufficiently large to achieve the desired trans-

mission reliability [6]. Moreover, the BCM designs can provide high-performance gains

and low complexity design in contrast to the TCM designs [7]. However, even the most

famous TCM and BCM designs for the binary Additive white Gaussian noise (AWGN)

channels experience deteriorating performance in fading channels [8].
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CHAPTER 1. INTRODUCTION

Moreover, with the advent of the ultra-dense internet-of-things (IoT) and wireless sen-

sor network (WSN), reducing the energy requirement has become pivotal, and employ-

ment of ultra-short block codes has gained considerable traction in industrial application,

especially for small devices.

Designing optimum BCM for short block lengths with high transmission rates remains

a challenging problem, which becomes even more complicated under fading channels,

such as Rayleigh block fading (RBF) channels. This is because the BCM design is closely

tied to the sphere packing problem, which presents three significant challenges. Firstly,

the maximum number of codewords increases exponentially with the number of bits (k)

as 2k, and the problem of fitting these 2k codewords in 2n-dimensional space (where (n)

denotes the block length) becomes complicated. Secondly, it is challenging to determine

the number of neighbors for each codeword optimally. Lastly, the bit-labeling of the de-

signed codewords in 2n-dimensional space remains unsolved. Although, the existence of

the optimum random short BCM design in 2n-dimensional space is well established [9].

Still, no method exists to obtain these optimum random BCM designs, even for binary

AWGN channels. Under a fading channel, such as RBF channels, the BCMs are designed

with channel state information (CSI) knowledge. However, the CSI estimation increases

the feedback overhead, especially with the advent of IoT networks, the feedback overhead

will manifold exponentially. Further, IoT network imposes ultra-reliable and low-latency

requirements. Thus, it is also pivotal to design the differential BCM (d-BCM) without the

CSI knowledge. This thesis focuses on RBF channels and strives to answer the problem.

“What can be accomplished by performing BCM and d-BCM designs with a focus on

the ultra-short block-length (n) regime with higher transmission rates (R)?”

This inquest is also of the latest interest to IoT devices, usually communicating peri-

odic and short messages with low-latency requirements.

Recently, the information and communication technologies (ICT) sector envisioned

in [10], [11] that the applications of machine learning (ML) and deep learning (DL) in the

physical layer will have a paradigm shift from an enhancement to a foundational block via

the self-organizing transmitter and receiver architectures performing end-to-end learning,

also known as autoencoder (AE) architectures, as introduced by O’Shea in 2017 in the

seminal work [12]. The AE framework for wireless communication networks (also called

“Channel AE”) is inspired by the traditional DL-based AE frameworks employed in the

Vision community, hereby referred to as “Vision AE.” The difference is that the Vision

AE framework aims to compress the input data by removing its redundancy. At the same

time, the Channel AE of the communication networks often adds redundancy to the input

data, such that the encoded data becomes robust to propagation channel and hardware

impairments.

The main advantage of employing the Channel AE frameworks is that we do not
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require detailed waveform design, constellation mapping, and/or reference signals. By

performing end-to-end training between the input signal at the neural network (NN) of

the transmitter and decoded signal from the NN of the receiver, the AE framework can

learn to determine the best parameters. Thus, this thesis aims to solve

“How can we perform the BCM and d-BCM designs using the Channel AE frame-

works under a fading channel?”

Moreover, the current signal processing algorithms are mathematically tractable, with

a solid information theory background. However, a practical system faces multiple distor-

tions because of the non-linear elements and hardware imperfections that a conventional

algorithm cannot capture [13]. For example, in-phase (I) and quadrature-phase (Q) imbal-

ance (IQI), power amplifier non-linearities, and phase noise, leading to undesirable effects

such as crosstalks, an added image signal, frequency interference, etc. At the same time,

the NNs employed in DL algorithms are universal function approximators that are highly

parallelized and do not require exact data [14]. Thus, extensive data employed during the

training of the AE framework will directly include hardware imperfections that the NNs

can learn at the transmitter and receiver. Thus, this thesis also aims to determine

“What will be the role of the Channel AE-based BCM and d-BCM designs in removing

the deteriorating impacts of the hardware impairments?”

In general, the DL-based AE frameworks (both Channel and Vision AEs) are con-

sidered the “black box”, where the insights to the obtained solutions almost remain non-

existent. Several pioneering works [12], [15], [16] have started focusing on opening the

black-box of the Channel AEs. Moreover, in the seminal work of 1991 [9], Oliveira in-

vestigated random short BCM design in 2n-dimensional space using the MSED metric.

Nevertheless, the Channel AE-based BCM and d-BCM designs remain a black box. Thus,

in this thesis, we also aim to answer

“How can we open the black-box of the Channel AE-based BCM and d-BCM de-

signs?”

Lastly, we focus on the capabilities of the Vision AE framework for reducing the high-

dimensional data to a minimal number of compressed features. In summary, we aim to

understand the potential benefits of AE frameworks (both Channel and Vision AEs) in the

learning-based communication system design.

1.1 Summary of Specific Contributions

This thesis focuses on the learning-based communication system design by employing

AE frameworks. We study the traditional Vision AE framework for high-dimensional

feature compression utilized in ML-based mm-wave path-loss (PL) predictions in Chap-

ter 9, and the Channel AE framework for high-dimensional BCM and d-BCM designs in
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Chapters 2–8, for high transmission rates R = k/n [bits/channel-reuse] and short block

lengths (n). Please note for the sake of readability, we refer to the Vision and Channel

AEs as simply “AE” hereafter. The most important contributions are summarized below.

We begin by studying the AE-based frameworks in point-to-point (P2P) communica-

tion networks in Chapter 2. Firstly, we conduct an in-depth literature survey and analyze

the shortcomings of the state-of-the-art literature. Secondly, based on the number of neu-

rons in the dense layers and input-output bits (k) of the AE, we classify the AE frame-

works as Fixed AE and Variable AE frameworks. Then, we propose both of these AE

frameworks performing BCM and d-BCM designs for high rate transmission and short

block lengths. Later, we compare the proposed AE frameworks in terms of the BER per-

formance, optimized parameters, memory usage, and time-complexity to determine the

best possible NN architecture designing method for varying transmission rates. Thirdly,

we focus on the convergence of the training of both the proposed AE frameworks – (i) we

analyze the convergence of the proposed AE frameworks by estimating the mutual infor-

mation (MI) between the input-output of the AE for varying signal-to-noise-ratio (SNR)

levels, and (ii) we provide the necessary conditions for AE’s convergence concerning the

training samples and minimized cross-entropy (CE) loss. Lastly, we focus on opening the

black-box of the AE-based BCM and d-BCM designs by revealing the distinct proper-

ties of codewords designed in higher-dimensional space by the proposed AE frameworks.

Specifically, we utilize the minimum Euclidean distance, packing density, and Kurtosis to

understand the designed codewords’ properties. Furthermore, we compare the properties

of the AE-based BCM and d-BCM designs.

Relay networks have appeared as an innovative technology in the past decade owing to

their potential of increasing network coverage, reliability, and capacity [17], [18]. More-

over, amplify-and-forward (AF) relaying is adopted practically because of its low imple-

mentation complexity. In Chapter 3, we study the AE-based AF relaying network. Unlike

the literature that employs a neural network (NN)-based relay node with full CSI knowl-

edge, we consider a conventional relay node that only amplifies the received signal using

CSI gains. We propose and compare the symbol-wise and bit-wise AE frameworks by

minimizing categorical and binary CE loss that maximizes the symbol-wise and bit-wise

MI, respectively. Furthermore, we determine the estimated MI and examine the conver-

gence of both AE frameworks with SNR. For both these AE frameworks, we design BCM

and d-BCM designs that obtains codewords in higher-dimensional space. To explain the

properties of the codewords designed by bit-wise and symbol-wise AE frameworks, we

utilize various metrics like minimum Euclidean distance, normalized second-order and

fourth-order moments, and constellation figures of merit. For the d-BCM designs – (i) we

also propose and investigate the impact of an NN-based radio transformer network (RTN)

on the training and bit-error-rate (BER) performance of the network, and (ii) we employ
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power normalization-based amplification that normalizes the transmission power of each

block of symbols to the block length.

In practice, any communication system is compromised by the IQI, deteriorating the

network performance [19]. Apart from the IQI that has a multiplicative effect on the

signal, tackling the other additional hardware impairments (AHI) (also referred to as

residual hardware impairments) that have an additive effect on the signal is of notable

importance [13]. In Chapter 4, we propose a novel Average AE-based AF relay network

impacted by the multiplicative IQI and additive AHI, where the source and destination

nodes are equipped with an NN-based encoder and decoder. Also, we consider a con-

ventional AF relay node that assists the transmission. The average AE employs multiple

small NN-based decoders at the destination node, each decoding a soft probabilistic out-

put that is averaged to obtain the final soft probabilistic output at the destination node.

By considering multiple small NN decoders, we reduce the implementation complexity

significantly while improving the performance compared to the AE with a single large

NN-based decoder. Within this Average AE framework, we propose a BCM design with

zero-forcing (ZF)-based IQI compensation that considers the CSI and IQI knowledge

availability. However, the IQI and CSI need to be estimated separately. Thus, we also

propose a BCM design with no IQI compensation that requires only the CSI knowledge.

Finally, we propose a d-BCM design that removes the necessity of both the CSI and IQI

knowledge. Under low signal-to-interference-and-noise-ratio (SINR) regimes, we show

that the proposed Average AE framework outperforms the optimal maximum likelihood

detector (MLD) by a considerable margin, even without the IQI parameters information,

reducing the feedback overhead.

A two-way (TW) relay network overcomes the drawbacks of the half-duplex one-

way (OW) relay network by utilizing the spectrum resources more efficiently [20, 21, 22,

23]. In particular, in a TW relay network, both the source and destination nodes, widely

referred to as terminal nodes, communicate with each other in two transmission phases,

thereby improving the spectral efficiency (SE) by 100% compared to an OW relay network

proposed in Chapters 3, 4. In Chapter 5, we propose AE-based TW-AF relay networks in

the presence of IQI at the terminal nodes. We consider an NN-based terminal node and

a conventional TW-AF relay node to maintain the minimal implementation cost at the

relay node. Specifically, we jointly perform BCM design in higher dimensional space for

both the terminal nodes to tackle the interference from simultaneously received signals

at the TWAF relay node and the deteriorating impacts of the IQI at the terminal nodes.

Further, we determine the best pre-processing technique at the NN decoder to remove

the self-interference and decode the signals. We utilize various performance metrics for

higher interpretability in the BCM designs, such as minimum Euclidean distance, second-

and fourth-order moments, and constellation figures of merit. Lastly, we determine the
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CHAPTER 1. INTRODUCTION

optimal location for the TW-AF relay in an AE framework under the presence of path-loss

and shadow fading effects.

Recently, the full-duplex (FD) mode is recognized as an enabling technology to re-

alize the expected gains in the future networks, as it can double the SE by establishing

concurrent transmission and reception on the same temporal and spectral resources [24].

Although, the superior self-interference cancellation (SIC) methods have attested to the

facilitation of FD transmission. However, even with multiple SIC techniques, a residual

self-interference (RSI) is always present in the system, deteriorating the FD performance.

In Chapter 6, we study AE-based FD-AF relay networks under the presence of RSI for

high transmission rates (R). In particular, we design an NN-based encoder and decoder

at the source and destination nodes, respectively, with a conventional FD-AF relay node

assisting the transmission. Depending on the availability of the CSI knowledge, we pro-

pose AE-based BCM or d-BCM. We also investigate the performance of the proposed

AE-based BCMs under the imperfect CSI knowledge. Moreover, we analyze the training

convergence of the proposed AE frameworks by determining the estimated MI between

the input-output of the AE. We show that for any given hyper-parameter settings, the AE

converges when the NN encoder at the source node has designed 2k codewords, and the

CE loss is converged. Furthermore, we reveal five distinct properties of the codewords

designed by the proposed AE framework in the higher-dimensional space by analyzing

Euclidean distance, packing density, Hamming distance, and Kurtosis of the designed

codewords. Lastly, we also show that the proposed AE frameworks are highly repro-

ducible even with different training samples and weight initialization.

Although the AF relay provides low complexity re-transmission of the amplified sig-

nal, it also amplifies the noise at the relay node [25]. Traditionally, to remove the noise

amplification, decode-and-forward (DF) relay is adopted, which has added advantage of

using different coding designs at the source and relay nodes. In Chapter 7, we propose

a stacked AE-based DF relay network in the presence of IQI at all the nodes. In par-

ticular, we propose a stacked AE-based BCM and d-BCM designs for both the one-way

DF (OW-DF) and two-way DF (TW-DF) relay networks with IQI. For the OW-DF relay

networks, we propose a stacked bit-wise AE and a novel bit-wise denoising AE-based

BCM and d-BCM designs. Furthermore, we propose a new training policy for the bit-

wise denoising AE framework with a two-step training approach. Moreover, we propose

a novel single-step training policy for the TW-DF relay networks. Specifically, we pro-

pose to train bit-wise AE-based BCM and d-BCM designs for P2P networks and employ

a trained bit-wise P2P AE framework in a novel stacked form to design the TW-DF relay

networks. For both the OW-DF and TW-DF relay networks, we design a single stacked

AE framework that can generalize well on varying levels of IQI and signal-to-noise ra-

tio (SNR). We also remove the impact of IQI, even without utilizing the IQI parameters

6



CHAPTER 1. INTRODUCTION

information, reducing the feedback overhead.

Designing a multiple access technique is one of the requisite notions of improving

the system capacity. In Chapter 8, we study an AE-based framework for downlink multi-

user networks considering the non-orthogonal multiple access (NOMA) networks as the

benchmark. First, we utilize an individual decoder for each downlink user, whereas the

base station (BS) has single or multiple encoders to superpose the signals. Therefore,

based on the number of encoders employed at the BS, we design two architectures - single

encoder multiple decoders (SEMD) and multiple encoders multiple decoders (MEMD).

Second, we design the AE frameworks to remove the necessity of performing the power

allocation factor-based signal superposition at the BS and successive interference can-

cellation (SIC) at strong users, unlike conventional NOMA. Thirdly, both the AE-based

SEMD and MEMD frameworks perform BCM and d-BCM design. As a result, we can

decode the received signal at each user without using the CSI knowledge, unlike the con-

ventional NOMA, where CSI remains mandatory for the successful implementation of

the SIC. Further, we analyze the bit mapping obtained by the AE to investigate the gains

achieved by the proposed AE frameworks. Lastly, we show that our proposed frameworks

perform better with the increasing number of multiplexed users and modulation order.

Until now, in this thesis, we focused on designing solutions for limited bandwidth

scenarios. However, Large bandwidth and worldwide spectrum availability at cm/mm-

wave bands have shown excellent potential for 5G and beyond, but the high path loss

(PL) and significant scattering/absorption loss from various street clutter make link budget

challenging. Highly accurate and site-specific PL prediction is fundamental for cm/mm-

wave network planning and optimization, but existing methods such as empirical slope-

intercept models and deterministic ray-tracing fall short in capturing the sizeable street-

by-street variation seen in urban cities. Machine learning (ML)-based PL prediction for

cm/mm-wave bands is promising but faces three key challenges: 1) reliability due to lack

of measurement data; 2) generalizability due to lack of extrapolation; 3) interpretabil-

ity due to complex ML models. In Chapter 9, we propose an ML-based PL prediction

model based on extensive 28 GHz measurements from Manhattan street canyons where

street clutters such as foliage, trees, and lampposts are modeled via a LiDAR point cloud

dataset, and the buildings are modeled by a mesh-grid building dataset. We extract expert

knowledge-driven features from the point cloud to improve interpretability and compress

3D building information using a novel convolutional NN (CNN)-based AE framework

to reduce overfitting. Simple linear and non-linear ML methods are trained using these

features based on a new street-by-street training and testing procedure to enforce general-

izability such that the trained ML methods could predict PL on a never-measured street.

We show that the proposed model achieves a prediction error (RMSE) of 4.8 ± 1.0 dB

compared to 11.1± 4.5 dB and 6.6± 2.1 dB for 3GPP LOS and slope-intercept fit, where

7
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the standard deviation indicates the street-by-street variation.

1.2 Thesis Layout

The thesis is organized as follows:

Chapter 1 provides the motivation of research in this thesis as well as a brief overview

of the research and structure of the thesis.

In Chapter 2, we study the AE-based BCM and d-BCM designs for a P2P communi-

cation network. Firstly, we present a literature review. Then, we propose and compare the

Fixed and Variable AE frameworks. Also, we analyze the training convergence of the AE

frameworks and the distinct properties of the AE-based BCM and d-BCM designs.

In Chapter 3, we investigate the AE-based BCM and d-BCM designs for an AF relay

network. We also propose and compare the bit-wise and symbol-wise AE frameworks.

Finally, we also evaluate the benefits of the RTN in a d-BCM design.

In Chapter 4, we consider the AE-based BCM and d-BCM designs for an AF relay

network impacted by the hardware impairments (IQI and/or AHI). First, we introduce a

novel Average AE framework with multiple small NN decoders. Then, we propose BCM

and d-BCM designs to remove the necessity of IQI parameter information.

In Chapter 5, we study the AE-based BCM design for a TW-AF relay network im-

pacted by the hardware impairments (IQI). We analyze the importance of performing

complex domain operations in the Lambda layer and the optimal relay location.

In Chapter 6, we investigate the AE-based BCM and d-BCM designs for an FD-AF

relay network in the presence of the RSI. We analyze the BCM designs with channel

estimation error. We also investigate the reproducibility of the AE frameworks. Finally,

we also analyze the training convergence and properties of the AE-based BCM design.

In Chapter 7, we consider the AE-based BCM and d-BCM designs for the OW-DF

and TW-DF relay networks impacted by the hardware impairments (multiplicative IQI).

First, we propose a Stacked AE framework-based approach. Second, we also propose a

bit-wise denoising AE framework and its training policy. Finally, we propose BCM and

d-BCM designs to remove the necessity of IQI parameter information.

In Chapter 8, we study the AE-based BCM and d-BCM designs for a multi-user down-

link network. First, we propose AE-based SEMD and MEMD frameworks. Then, we

consider the conventional NOMA as a benchmark and remove its drawbacks. Lastly, we

investigate the bit-labeling of the designed codewords.

In Chapter 9, we design expert features with physical meaning from the LiDAR point

cloud dataset. We also propose a novel CNN AE-based building feature compression.

Lastly, we propose an ML-based PL prediction model for mm-wave propagation in an

urban street canyon using these feature sets and a new training-testing policy.

8
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Finally, in Chapter 10, we provide conclusions of this thesis and suggest possible

research extensions and directions.
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Chapter 2

AE-based Point-to-Point Networks

2.1 Introduction

From information theory perspective, we can define the rate as follows:

Definition 1 (Rate (R) [26]) The rate R can be defined as the number of bits transmitted

(denoted by k) divided by the number of channel uses (denoted by n), given by

R = k/n [bits/channel reuse] (2.1)

The autoencoder (AE)1 frameworks have appeared as a potential solution for performing

data-driven designs by end-to-end learning of the neural network (NN)-based source and

destination nodes together, for any transmission rate (R) [12]. The bit-decoding problem

in the wireless communication network is considered a classification problem in the AE

framework. Thus, the AE framework is optimized by minimizing the cross-entropy (CE)

loss between the input at the NN encoder and output at the NN decoder. Depending on

the input-output of the AE, we can broadly classify the AE frameworks as follows:

Definition 2 (Symbol-wise AE [12]) Herein, the NN encoder’s input and the NN de-

coder’s ground-truth output is a 2k one-hot vector representation of the k bits, wherein

only one element is unity at a time, indicating one of the possible symbols. Thus, the NN

decoder employs Softmax activation function in its last layer, and the symbol-wise AE

framework is optimized by minimizing the categorical CE loss.

Definition 3 (Bit-wise AE [27]) Herein, the NN encoder’s input and the NN decoder’s

ground-truth output are k bits. Thus, the NN decoder employs Sigmoid activation function

1As detailed in Chapter 1, the Channel AE framework for wireless communication networks is inspired
from the traditional deep-learning (DL)-based Vision AE frameworks as detailed in Appendix 2.A. We
focus on Channel AEs in this Chapter.
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in its last layer, and the bit-wise AE framework is optimized by minimizing the binary CE

loss.

As shown in Table 2.1, the symbol-wise AE frameworks have been widely investi-

gated for point-to-point (P2P) communication networks [12, 28, 29, 30, 31, 32, 33, 34],

for the multi-user networks [35], and for relay networks [36, 37]. However, as the symbol-

wise AE’s input and output are in the form of symbols, bit-labeling has to be done

separately either by exhaustively searching through the 2k! combinations or by heuris-

tic search method, leading to the sub-optimal bit-labelings and bit-error-rate (BER) per-

formance [27]. Recently the bit-wise AE framework has been proposed for P2P net-

works [27], and relay networks [38, 39]. Although the bit-wise AEs seem like a trivial

modification of the symbol-wise AEs, we obtain automatic bit-labeling by providing the

bit-wise AE’s input and output in the form of bits. Further, a comparison of bit-wise

and symbol-wise AEs-based 2-dimensional (I and Q) modulation design showed that the

symbol-wise AE-based trained constellation improves the symbol-error-rate (SER), it de-

grades the BER in comparison to the bit-wise AE in a P2P network. This is because

symbol-wise AE aims to maximize the symbol-wise mutual information (MI). In con-

trast, bit-wise AE aims to maximize the bit-wise MI [27].

Analyzing the current literature in Table 2.1, we find that the NNs employed in the

AE frameworks are usually comprised of the dense layers2. Also, two methods have

appeared to design the NN architectures of the AE framework employed in the physical

layer, which we broadly define as Fixed AE and Variable AE, for the first time in this

chapter, depending on the number of neurons (δl) in the lth dense layer of the AE, detailed

as follows:

Definition 4 (Variable AE) In this AE framework, we consider that the number of neu-

rons in each of the lth dense layer (δl) in the NN is directly dependent on the number of

input-output bits (k) or the rate R = k/n. In particular, we keep δl = 2k.

Definition 5 (Fixed AE) In this AE framework, we decide a fixed number of neurons in

each of the lth dense layer (δl) in the NN, such that it can handle various combinations of

input-output bits (k) or the rate R = k/n. In particular, δl remains constant for any rate

R.

Moreover, the AE frameworks are also called end-to-end learning-based frameworks

because all the components at the source and destination nodes are optimized together in

an end-to-end manner. While, the AE is trained by minimizing the CE loss between the

input and output of the AE at the source and destination nodes, respectively.
2Wherein the neurons of any dense layer are fully connected with the neurons of the previous and next

dense layer. This results in the formation of the weight matrices utilized for mapping and de-mapping in
the NN-based encoder and decoder at the source and destination nodes.
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As a result of the end-to-end training in an AE-based communication network, the

NN encoder at the source node learns a mapping function (f) to perform joint block

channel coding and modulation design together with the NN decoder at the destination

node learning a de-mapping function (g) to perform joint block channel decoding and

demodulation design, also referred to as AE-based block coded modulation (BCM) de-

signs [12]. However, the perfect estimation of channel state information (CSI) knowl-

edge remains a challenging task; even estimation of CSI knowledge increases feedback

overhead. Furthermore, with the advent of internet-of-things (IoT) and wireless sensor

networks (WSNs) small devices, it becomes important to reduce latency and the feedback

overhead for CSI estimatiion will manifold exponentially. Thus the BCM design using the

AE frameworks in the absence of the CSI knowledge have also motivated the AE-based

differential BCM (d-BCM) designs [12].

As detailed in Table 2.1, until now, only a handful of works have focussed on AE-

based (differential) block coded-modulation designs using only a ‘symbol-wise AE’ frame-

work – (i) under additive white Gaussian noise (AWGN) channels: for rates R = 2/7, 4/7,

6/7 in [12], [28], [29], (ii) under Rayleigh block fading (RBF) channels: for rate R = 4/8

in [12], rate R = 4/7 in [36]. Moreover, although the NN-based AE frameworks pro-

vide us a methodology to obtain these BCMs, they are still treated as a “black-box”.

Furthermore, these works have considered low rate transmission while showing signif-

icant BER performance gains of the AE frameworks over the BPSK or differential (d)-

BPSK modulation-demodulation and (7, 4) Hamming code as baseline channel-coding

technique. Thus, it becomes pivotal to develop AE frameworks for (differential) block

coded-modulation designs that cater to the high rate requirements of future IoT and WSNs

for short block lengths requiring low memory and implementation complexity.

Later, in Chapter 3, we focus on comparing the bit-wise and symbol-wise AE-based

BCM and d-BCM design, wherein we show that the bit-wise AE outperforms the symbol-

wise AE-based BCM and d-BCM designs. Thus, we consider a bit-wise AE in this chap-

ter, and the major contributions of this chapter are detailed below.

• We propose both the ‘Fixed and Variable bit-wise AE’ frameworks for P2P com-

munication networks under an RBF channel for short block length (n = 7), per-

forming:

– BCM designs for higher rates such as R = 4/7, 8/7, 16/7, in comparison to

the conventional BPSK, QPSK, and 16-QAM modulations with (7, 4) Ham-

ming code as baseline error correction code.

– d-BCM designs for higher rates such as R = 4/7, 8/7, 12/7, in comparison

to the conventional d-BPSK, d-QPSK, and d-PSK-8 modulations with (7, 4)

Hamming code as baseline error correction code.
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We compare the proposed Fixed AE and Variable AE frameworks in terms of the

BER performance, the number of optimized parameters, memory usage, and time-

complexity to determine the best possible NN architecture designing method for

varying transmission rates.

• Focussing on the convergence of the training of the proposed Fixed and Variable

AE frameworks – (i) we analyze the convergence of the proposed AE frameworks

by estimating the MI between the input-output of the AE for varying signal-to-

noise-ratio (SNR) levels, and (ii) we provide the necessary conditions for AE’s

convergence by showing that once the validation CE loss has converged and the

NN encoder of AE designs 2k codewords during the training, the AE frameworks

have converged to their maximum potential of decoding the signal.

• To open the black-box of the AE-based BCM and d-BCM designs, we reveal the

distinct observations of 2k codewords designed in 2n-dimensional space by the pro-

posed end-to-end training of the Fixed AE framework. Specifically, we utilize the

minimum Euclidean distance, packing density, and Kurtosis to understand the de-

signed codewords’ observations at the source node’s NN encoder. The minimum

Euclidean distance tells us how far the symbols, representing the codewords, are

mapped in the 2n-dimensional space. The packing density helps us in analyzing

how well the symbols are packed in the 2n-dimensional space. The Kurtosis helps

us in analyzing the shape of the packed symbols. These metrics reveal interest-

ing observations of the block-coded modulations designed by the AE framework.

Further, providing us a way to compare the designed codewords with the conven-

tional coding scheme, opening the black box of the AE framework. Furthermore,

we compare the observations of the AE-based BCM and d-BCM designs.

Please note throughout this chapter; we also define some important notations as Def-

initions because they will be used throughout this thesis in the explanation of the AE

frameworks.

2.2 Designing AE Framework for the P2P Networks

In Fig. 2.1, we depict an AE framework for the P2P networks that comprises of L fully-

connected (dense) layers, wherein the output of the lth ∈ {1, ..., L} dense layer ωl ∈ Rδl

can be given as

ωl = σl (Wlxl + bl) (2.2)

14



CHAPTER 2. AE-BASED POINT-TO-POINT NETWORKS

Figure 2.1: An illustration of the DL-based AE frameworks for P2P networks.

where for the the lth dense layer, the ωl indicates the dense layer’s output, xl ∈ Rδl

denotes the input, Wl ∈ Rδl−1×δl represents the weight matrix between the (l − 1)th

and lth dense layers, bl ∈ Rδl is bias vector, and σl represents the activation function.

For simplicity, we denote all the weight and bias terms of the L layers in the NN using

θ = {W,b} and refer it as NN’s “optimization parameters” collectively.

2.2.1 Designing of NN Encoder

The source node comprises of a NN-based encoder that takes k bits as input us ∈ {0, 1}k

and maps it to n complex baseband symbols xs ∈ Cn. Thereby performing joint block

channel-coding and modulation design. In particular, the encoder designs a NN-based

mapping function fθs (us,xs) : us → xs where θs represents the optimization parameters

including weights and bias terms of the M dense layers in the NN encoder. Thus, we can

define the following

Definition 6 (NN-based mapping function) The notation fθs (us,xs) represents an en-

coder mapping function f at the source node, that takes us ∈ [0, 1]k bits as input to give

xs ∈ Cn complex baseband symbols as output using the optimization parameter θs.

Now, we can represent the mapping function at the NN encoder of the source node as

fθs (us,xs) = PN (σM (WMσM−1 (WM−1σM−2 (...σ1 (W1us + b1) ...)+

bM−1) + bM)) (2.3)

wherein, PN denotes the power normalization layer, defined as follows:

Definition 7 (Power normalization layer PN) The power normalization layer mandates

that the average block power remains n, without employing any trainable NN optimiza-
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tion parameters, given as

PN (x) : ||x||22 = n (2.4)

where x denotes the 2n outputs of the last layer of the NN encoder. Thus, the power

normalization layer PN ensures ||fθs (us,xs)||22 = n or simply ||xs||22 = n. Please note

that if we remove the power normalization layer, the NN encoder will learn to send the

symbols at extremely high power to reduce the reconstruction errors between the input

and output of the encoder and decoder, respectively. Thus, it becomes pivotal to include

the power normalization layer for an accurate representation of a transmitter node in a

communication network.

Also, note that the output of the power normalization layer is the output of the source

node’s NN encoder, i.e., xs ∈ R2n. As NN can support only real values, thus we have

2n real-valued outputs, where {1, ...., n} outputs denote the real part and {n + 1, ..., 2n}
outputs denote the imaginary part of the n complex baseband symbols.

2.2.2 Signal Transmission

We now perform symbol-by-symbol transmission–reception between the source and des-

tination nodes. For each symbol in the block length (n), the signal received by the desti-

nation node is given as

yd = hsd xs + nd (2.5)

where hsd denotes the Rayleigh block fading (RBF) channel3 between source and desti-

nation node with zero mean and unit variance, hsd ∼ CN (0, 1), and nd is the AWGN at

the destination node with zero mean and σ2
d variance, nd ∼ CN (0, σ2

d).

2.2.3 Designing of NN Decoder

Once the n complex baseband symbols are received by the destination node, represented

as yd ∈ Cn, it performs block-by-block decoding. In particular, the NN-based de-

coder at the destination node aims to de-map the received n complex symbols to k soft-

probabilistic outputs, denoted by p̃dθd (u
m
s |yd) ∈ [0, 1], for all m = {1, ..., k}. For the

sake of clarity, we explicitly define the notation of soft-probabilistic output below:

3In wireless communication, when the channel between the transmitter and receiver remains the same
for several symbol intervals, it is referred to as a block fading channel. Moreover, the channel experiences
fading effect widely modelled as Rayleigh fading. Thus, a RBF channel is a Rayleigh fading channel that
remains the same for a block of symbols.
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Definition 8 (Soft-probabilistic outputs notation p̃dθd (u
m
s |yd)) For a given block of n

complex baseband symbols yd, the probability of decoding source node’s each input bit

um
s (for all m) at the NN decoder of the destination node with the optimization parameters

θd, is represented by p̃dθd (u
m
s |yd) , ∀m, or, p̃dθd (us|yd).

Thus, NN decoder is performing joint channel decoding and demodulation design. In

particular, the decoder designs a NN-based de-mapping function gθd

(
yd, p̃dθd (us|yd)

)
:

yd → p̃dθd (us|yd), where θd represents the trainable parameters including weights and

bias terms of the NN-based decoder of N = L −M dense layers in the decoder. Thus,

we can define the following

Definition 9 (NN-based de-mapping function) The notation gθd

(
yd, p̃dθd (us|yd)

)
rep-

resents a decoder de-mapping function g at the destination node, that takes yd ∈ Cn com-

plex baseband symbols as input to give p̃dθd (us|yd) ∈ [0, 1]k soft-probabilities as output

using the optimization parameter θd.

We can represent the de-mapping function at the NN decoder of the destination node as

gθd

(
yd, p̃dθd (us|yd)

)
= σN (WNσN−1 (WN−1σN−2 (...σ1 (W1LL (yd)+

b1) ...) + bN−1) + bN) (2.6)

where LL denotes the Lambda layers, defined as:

Definition 10 (Lambda layer LL) The Lambda layer is a NN layer in the AE framework,

which unlike the other layers in the NN, have no NN optimization parameters.

Please note the Lambda layer is used to perform signal processing operations, such as

performing channel equalization, adding hardware impairments, etc., which can not be

done in a NN directly. Further, the power normalization layer, detailed in Definition 7, is

a special type of Lambda layer that specifically performs the normalization of the signal’s

block power.

Note the last layer of the NN decoder has a Sigmoid activation function that outputs

soft-probabilities p̃dθd (u
m
s |yd) , ∀m, corresponding to the log-likelihood ratios (LLRs) [27],

for p̃dθd (u
m
s = 1|yd) = σ(lml ), as below

LLRm := log
1− p̃dθd (u

m
s = 0|yd)

p̃dθd (u
m
s = 0|yd)

= lml , ∀m (2.7)

These LLRs can be employed directly in an outer code of the powerful long block length

decoders, such as LDPC and Turbo codes.
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2.3 AE-based BCM and d-BCM Designs

Throughout this thesis, the proposed AE framework performs the BCM designs with the

perfect CSI knowledge, and the d-BCM designs without any form of CSI knowledge.

Further, in this thesis, we always aim to create a generalizable NN architecture that can

perform either BCM or d-BCM designs with minimal changes in the NN architecture.

Thus, we employ the CSI knowledge in the Lambda layer LL of the NN decoders to

differentiate in the NN architectures of the AE frameworks for performing BCM or d-

BCM designs. Hence, throughout this thesis, only the Lambda layer LL is modified in

the NN architecture for performing BCM and d-BCM design in the AE framework as

follows:

• BCM design – Herein we assume perfect CSI knowledge at the NN decoder of

the destination node. Thus, we directly implement channel hsd equalization in the

Lambda layer LL.

• d-BCM design – Herein we assume we do not have any form of CSI knowledge

at the NN decoder of the destination node. Thus, we propose to employ a radio

transformer network (RTN) in the Lambda layer LL. The RTN was first introduced

in [12], which enables the decoder to decode the signals efficiently in the absence of

CSI knowledge. An RTN consists of two parts – (i) a learned parameter estimator

dφ : R2n → Rz which computes a parameter vector φ ∈ Rz from its input yd ∈ R2n,

(ii) a layer that combines the output of parameter estimator and input signal, before

passing it to the NN decoder.

Since there is no fixed way to determine an optimal RTN architecture for different sce-

nario such as varying rate, users, and nodes in the communication network, we design

and develop near-optimal RTN for different scenarios in the rest of the thesis. Moreover,

the first part outputs z values; usually, it is of length 2n denoting the input signal length.

However, we find that depending on the scenario the z output values can be either of

length 2 indicating the channel hsr or 2n indicating the signal, as will be seen in later

Chapters of this thesis. Moreover, the second part that combines the output of the param-

eter estimator and input signal can either perform concatenation, addition, division, or any

other operation depending on the scenario. Thus, designing a suitable RTN for removing

the channel impairments is pivotal for d-BCM designs. We further investigate the benefits

and limitations of employing an RTN in Chapter 3 of this thesis.

18



CHAPTER 2. AE-BASED POINT-TO-POINT NETWORKS

2.4 Training Loss Optimization

The fundamental distinction between the (differential) block-coded modulation design by

the proposed AE framework and the conventional networks is that the AE aims to design

the block codes using a learning-based approach by updating the NN weights. In contrast,

the conventional network aims to employ channel codes such as Hamming codes. Design-

ing optimal block-coded modulations becomes a challenging task in the presence of noise

and channel impairments. In fact, it becomes NP-hard to obtain (differential) coded mod-

ulation designs for large input-output bits k because the number of codewords increases

exponentially as 2k. Furthermore, determining different (differential) coded modulation

designs for different channel characteristics and communication scenarios such as users

or nodes in the networks with different interference or noise levels is another significant

problem when using the generic conventional codes. For sake of clarity, we define fol-

lowing for, any (n, k) block or rate R = k/n as follows:

Definition 11 (Symbol) A complex baseband symbol is defined as a complex number

indicating the symbol transmitted or received at various nodes in the network.

Definition 12 (Codeword) A codeword is a collection of n complex baseband symbols

together, representing one of the possible signal point in 2n-dimensional space.

As the input-output to the AE is k bits, thus we can formulate the proposed AE frame-

work as a multi-label binary classification problem, where each of the label represents

different bits and each bit can take binary value, that aims to solve the following opti-

mization problem:

(
θAE
s ,θAE

d

)
= arg min

θs,θd
J (θs,θd) (2.8)

= arg min
θs,θd

k∑
m=1

L (θs (u
m
s ) ,θd (θs (u

m
s ) |yd))

Wherein, we utilize the binary CE loss [41] to quantify the de-mapping error at the desti-

nation node, given as follows:

Definition 13 (Binary CE loss) The binary CE loss determines the error between the

input bits us at the source node and the bit-wise soft probabilities p̃dθd (us|yd) decoded

at the destination node, given as follows:

J (θs,θd) := L
(
us, p̃dθd (us|yd)

)
=

k∑
m=1

−(1− um
s ) log2(p̃dθd (u

m
s |yd))− um

s log2(1− p̃dθd (u
m
s |yd)) (2.9)
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A similar optimization problem occurs in the conventional networks (CN) where en-

coder maps the k bits to 2k possible codewords and a decoder that de-maps the n received

symbols yd to obtain intended k bits, as shown below,

(
θCN
s ,θCN

d

)
= arg min

θs,θd
π (n, k) (2.10)

= arg min
θs,θd

P [θd(yd) ̸= um
s |θe(u

m
s ),yd] , ∀m

Thus, inspired by the Theorem 1 in [15] for symbol-wise AE P2P networks that only

considers coded-modulation designs while bit-labelling has to be performed heuristically

solving a 2k! combinatorial problem. We propose the following theorem which addition-

ally deals with automatic bit-labelling with coded-modulation design for bit-wise AE-

based networks.

Remark 1 The optimization problems of the proposed AE framework in (2.8) and the

communication networks in (2.10) for the P2P network obtain the same encoder-decoder

and bit-labelling when the AE is trained with bits as input-output, sigmoid activation at

the last layer of the decoder and binary CE loss is optimized.

Proof: Please refer Appendix 2.B.

Thus, the Remark 1 states the existence of an AE framework for the P2P networks

that can be employed to obtain optimum channel codes for any block length with opti-

mum bit-labelling. Until now no tool was known that can obtain optimum block codes

with automatic bit-labelling as a result of mathematical modeling of the communication

system. In fact, the Shannon’s coding theorem only states the existence of a good code

without specificity, and only for infinite block lengths [41], [15]. Thus, proposed AE

framework can in principle be used for any P2P scenarios to determine the optimum error

correction codes with automatic bit-labelling, even for short block length.

For sake of completion, similar to [38], we can show that the generalized mutual

information (GMI) of a conventional networks can be given as

GMI = 1− Eus,ll [log2 (1 + exp(−(−1)usll))] (2.11)

where ll ∈ Rk denotes the LLRs in (5.13). Rearranging the binary CE loss in (2.9), we

get

L
(
us, p̃dθd (us|yd)

)
= Eus,L [log2 (1 + exp(−(−1)usL))] (2.12)

where L ∈ Rk denotes the output of the AE’s decoder prior to applying the sigmoid

activation function, i.e. p̃dθd (u
m
s |yd) = 1

1+e−Lm , ∀m [41]. Thus, equating (2.11) and
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Figure 2.2: Illustration of the training of the proposed AE framework.

(2.12), we have

L
(
us, p̃dθd (us|yd)

)
= 1− GMI (2.13)

This shows that minimizing the binary CE loss also leads to the maximization of GMI [38].

2.5 Training and Testing Procedure

In this section, we detail the training and testing procedure of the AE framework. Let us

consider a dataset Z ∈ [0, 1]S×k with S total samples divided as {Strain, Stest} training and

testing samples, where each sample contains k bits of data.

2.5.1 Training Procedure

We train the proposed AE framework by estimating the expected loss in (2.9) using the

mini-batch training [41] as follows:

J (θs,θd) =
1

Bs

Q∑
q=1

Bs∑
bs=1

k∑
m=1

L
(
u(q×bs,m)
s , p̃dθd

(
u(q×bs,m)
s |y(q×bs)

d

))
(2.14)

where Bs denotes the batch size and Q = Strain/B
s denoting the number of samples in

a batch. The weights and bias terms in the NN-based AE framework is updated using

the Adam optimizer via the back-propagation method [41]. Let us denote all the NN

optimization parameters as Θ = {θs,θd}, then the update rule can be given as follows.

We update the weights using the Adam optimizer [42] as detailed below. Let η be the
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learning rate, β1, β2 ∈ [0, 1) be the exponential decay rates for the moment estimates,

J (Θ) be the stochastic objective function with the NN parameters Θ, Θ0 be the initial

NN parameter, m0 = 0 be the first moment vector, v0 = 0 be the second moment vector,

and t be the time step. Then, the Adam optimizer implements the following until the NN

parameter Θt is converged [42]:

• Update the time step: t← t+ 1.

• Get the gradients w.r.t. to the loss function at time step t: gt ← ∇ΘJ (Θt−1).

• Update biased first moment estimate: mt ← β1 ·mt−1 + (1− β1) · gt.

• Update biased second raw moment estimate: vt ← β2 · vt−1 + (1− β2) · g2t .

• Determine the bias-corrected first moment estimate: m̂t ← mt/(1− βt
1).

• Determine the bias-corrected second raw moment estimate: v̂t ← vt/(1− βt
2).

• Update the parameters: Θt ← Θt−1 − α · m̂t/(
√
v̂t + ϵ).

We summarize the training process of the proposed AE framework in Fig. 6.4.1, that

aims to maximize the chances of reconstruction of the intended signal us at the destination

node by learning the NN optimization parameter Θ.

2.5.2 Testing Procedure

For each rth = {1, ..., Stest} testing sample, we employ the trained AE framework with

optimization parameter Θ and obtain the soft probabilistic outputs p̃dθd

(
u
(r,m)
s |y(r)

d

)
,

∀ r,m. While, the output bits at the destination node can be predicted as û(r,m)
s by keeping

a hard-decision threshold such as 0.5 on the p̃dθd

(
u
(r,m)
s |y(r)

d

)
, as follows:

û(r,m)
s =

0, if p̃dθd

(
u
(r,m)
s |y(r)

d

)
< 0.5,

1, if p̃dθd

(
u
(r,m)
s |y(r)

d

)
≥ 0.5,

∀ r,m. (2.15)

2.6 Variable AE versus Fixed AE

In this section, we design and evaluate the Variable and Fixed AE frameworks.

2.6.1 Designing of Variable and Fixed AE Frameworks

Now, we detail various aspects of designing and developing the Variable and Fixed AE

frameworks below:
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Table 2.2: NN architecture of Variable AE.

Node Layer No. (l) Nodes (δl) Remarks

Encoder

l = 0 k Input (x)
l = 1 2k σ1 = Tanh
l = 2 2n σ2 = Linear
l = 3 2n Power Normalization (PN)
l = 4 2n Output (xs)

Channel l = 5 2n RBF channel
Noise l = 6 2n AWGN

Decoder

l = 7 2n Input (yd)
l = 8 2n Lambda layer LL

l = 9 2k σ9 = Tanh
l = 10 k σ10 = Sigmoid
l = 11 k Output (x̂)

Table 2.3: NN architecture of Fixed AE.

Node Layer No. (l) Nodes (δl) Remarks

Encoder

l = 0 k Input (x)
l = 1 28 σ1 = Tanh
l = 2 27 σ2 = Tanh
l = 3 26 σ3 = Tanh
l = 4 2n σ4 = Linear
l = 5 2n Power Normalization (PN)
l = 6 2n Output (xs)

Channel l = 7 2n RBF channel
Noise l = 8 2n AWGN

Decoder

l = 9 2n Input (yd)
l = 10 2n Lambda layer LL

l = 11 29 σ11 = Tanh
l = 12 28 σ12 = Tanh
l = 13 26 σ13 = Tanh
l = 14 k σ14 = Sigmoid
l = 15 k Output (x̂)
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Table 2.4: NN architecture of RTN.

Node Layer No. (l) Nodes (δl) Remarks

RTN

l = 0 2n Input (yd)
l = 1 28 σ1 = Tanh
l = 2 26 σ3 = Tanh
l = 3 2n σ3 = Linear
l = 4 [2n, 2n] Concatenate output of l = 3 and yd

Table 2.5: Training hyper-parameters setting.

Parameters BCM w/ CSI d-BCM w/o CSI
Batch-size (B) 6000

Epochs (E) 300 200
Optimizer Adam
Initializer Glorot

Training Eb/N0 (from set S) [3, 8, 13, 25] dB
Testing Eb/N0 −4 dB to 20 dB

Blocks of Training Samples per Eb/N0 3× 104

Blocks of Testing Samples per Eb/N0 105

Parameters for step-decay learning-rate
Initial learning-rate (τ0) 10−3

Drop (η) 0.5
Drop epochs (DE) 30 20

Minimum learning-rate (τmin) 10−5

Parameters for early-stopping
Monitor Validation loss

Minimum change 10−4

Patience 10

• NN Architectures – Firstly, we detail the NN architecture for the Variable AE and

Fixed AE in Table 2.2 and Table 2.3, respectively. As can be seen, in Fixed AE the

number of neurons is independent of k, unlike the Variable AE framework. Now,

we detail about the Lambda layers LL (l = 8 in variable AE and l = 10 in Fixed

AE). As discussed in Sec. 2.3, in case of BCM we perform channel equalization

in the Lambda layers LL and in case of d-BCM we apply an RTN in the Lambda

layers LL. We detail the NN architecture for the RTN in Table 2.4. Please note we

use same RTN in both the Fixed and Variable AE frameworks for d-BCM design.

• Training and Testing Dataset Creation – Throughout this thesis, we aim to create an

AE framework that remains unaffected of the testing Eb/N0, where Eb/N0 denotes

energy per bit Eb to noise spectral density N0 ratio. Throughout this thesis, we

create the training and testing dataset, comprising of transmitted bits, fading chan-

nels, and noise with different Eb/N0, in the MATLAB. While we implement the AE

framework in python using Keras [43] with TensorFlow [44] as backend. We train

the AE framework using the training dataset created in MATLAB. Specifically, we

create a single training dataset of multiple Eb/N0 values (represented by set S) and

train a single AE framework on the same. Then, we test the trained AE framework

on various testing Eb/N0. We report the training and testing Eb/N0 in Table 2.5.
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Figure 2.3: Performance evaluation for Fixed AE and Variable AE for varying rates (R).
In Fig. (a), (c), (e) we analyze BCM designs and in Fig. (b), (d), (f) we analyze d-BCM
designs.

• Hyper-Parameter Setting – To train the proposed AE frameworks we utilize SGD

with Adam optimizer [42], where the weights are initialized using Glorot initial-

izer [45]. We utilize step-decay4 method to update the learning rate. In particular,

we start with an initial learning-rate τ0 for the first epoch and then drop the learning

rate by η after every DE epochs (we also constraint the minimum learning rate to

be τmin). We also utilize early stopping [46] to stop the training of the proposed AE

framework if no significant update is made to the validation loss during the train-

ing process. We summarize all the training hyper-parameter settings in Table 2.5,

that remains same for both the Fixed and Variable AE frameworks, for any (n, k)

or rate R. Please note that in case of (n, k) = (7, 16) Variable AE framework,

4Step Decay is a learning rate schedule that drops the learning rate by a factor every few epochs, where
the number of epochs is a hyperparameter.
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we note that it is best to train the Variable AE framework without updating the

learning rate using step-decay and without early stopping. Specifically, we train the

(n, k) = (7, 16) Variable AE framework for 100 epochs with 256 batch size and a

fixed 10−3 learning-rate.

2.6.2 Numerical Results

With the advent of internet-of-things (IoT) and ultra-reliable low-latency communication

(URRLC), reducing energy consumption while satisfying the low-latency requirements

has become pivotal. Thus, the employment of short block codes has gained considerable

traction in industrial applications. For example, recent works [47] propose to employ

shorter codes with block size of at most 128 sizes. However, conventional codes below

this block size are not able to produce effective coding gains for reliable communica-

tions. Moreover, even shorter block sizes are required for meeting the ultra-reliability

constraints of the upcoming URLLC networks, especially for the wireless sensor nodes.

Further, recent studies [48] show that apart from polar codes, the generalized low-density

parity-check (G-LDPC) codes are a much stronger candidate for the URLLC networks.

In contrast to the LDPC codes, the G-LDPC codes replace the single parity-check bits

with (7,4) Hamming codes. Thus, we focus on (7,4) Hamming codes as the baseline

for the proposed AE framework. Further, another advantage of considering such small

block codes is that we can consider an outer powerful code such as LDPC with AE-based

designed codes for (7,4) as the inner code, and we can achieve similar or greater perfor-

mance gains. A similar technique is employed in satellite communications for improving

decoding performance. Please see Sec. 4.5.9 for further details. Thus, designing codes for

smaller block lengths provide us with the flexibility to use these codes directly for small

sensor devices, etc, with limited processing capabilities, or, be utilized in the powerful

codes such as G-LDPC, or, be combined with outer powerful codes for designing longer

block codes for wireless communications.

Throughout this chapter, we consider RBF channels, such that it remains constant for

a transmission block n = 7 and changes thereafter. We consider AWGN at the destination

node with fixed variance σ2 = (2REb/N0)
−1. Moreover, for the conventional scenario,

we utilize traditional modulation techniques and (7, 4) Hamming code with the maximum

likelihood decoding (MLD). Also, we utilize the notation (n, k) to denote k bits and n

block length, but also for representing rate R = k/n.

Now, we evaluate the performance of the proposed Fixed AE and Variable AE frame-

works for the scenarios – BCM for (n, k) = {(7, 4), (7, 8), (7, 16)} and d-BCM for

(n, k) = {(7, 4), (7, 8), (7, 12)}. For the sake of fair comparison, we utilize BPSK for

(n, k) = (7, 4), QPSK for (n, k) = (7, 8), PSK-8 for (n, k) = (7, 12), and QAM-16 for

(n, k) = (7, 16) in conventional scenarios. We show differential modulation schemes by

26



CHAPTER 2. AE-BASED POINT-TO-POINT NETWORKS

Table 2.6: Number of optimized parameters and time-cost analysis. Training and testing
time is shown in seconds. Testing time is shown for a total of 105 blocks of (n, k) data.
The number of optimized parameters in RTN is 21, 198.

(n, k) AE
CSI No. of opt. Training Testing

knowl. parameters time (in sec.) time (in sec.)

(7, 4)
Fixed ✓ 199, 058 25.53 4.61

Variable ✓ 626 32.62 4.26

(7, 8)
Fixed ✓ 200, 342 35.19 4.50

Variable ✓ 11, 798 29.07 4.31

(7, 16)
Fixed ✓ 202, 910 32.44 4.54

Variable ✓ 4, 063, 262 406.16 4.77

(7, 4)
Fixed ✗ 227, 424 24.22 3.77

Variable ✗ 22, 048 20.31 3.41

(7, 8)
Fixed ✗ 228, 708 27.28 3.79

Variable ✗ 36, 580 16.69 3.47

(7, 12)
Fixed ✗ 229, 992 28.20 3.65

Variable ✗ 299, 752 12.33 3.50

using (d-), such as d-BPSK, d-QPSK and d-PSK-8.

• BER Analysis – Firstly, in Fig. 2.3, we can see that the proposed Fixed AE and

Variable AE framework outperforms the conventional modulation with (7, 4) Ham-

ming code technique for all the Eb/N0 and varying rates or (n, k). This suggests the

advantages of using AE framework over the conventional methods. Also, we can

see that BER performance gains of the AE increases with the rate R. Besides, BER

performance gains of the AE-based d-BCM design is greater than AE-based BCM

design. This shows that RTN is helping in designing differential coded-modulations

by learning the impairments due to RBF channels effectively. Secondly, in Fig. 2.3e,

for (n, k) = (7, 16), we note that Fixed AE outperforms the Variable AE frame-

work. This is because the Variable AE framework has a single dense layer with

216 neurons in the encoder and decoder, which are a humongous amount of neu-

rons, whereas the Fixed AE has small number of neurons in multiple dense layers.

Thereby the number of parameters that needs to be optimized for Variable AE is

4, 063, 262 and for Fixed AE is 202, 910. Thus, as the size of k increases to a large

value (greater than 12) it becomes better both in terms of BER and optimizing pa-

rameters to have multiple dense layers with less neurons than to have a single dense

layer with 2k neurons.

• Number of Optimized Parameters – We can see in Table 2.6 that number of opti-

mized parameters remains ≈ 200, 000 for Fixed AE for any (n, k) but the number

of optimized parameters for Variable AE increases exponentially with input-output

bits k. Thus, it is cost-effective to employ Variable AEs for smaller input-output bits

k ≤ 12 but it becomes cost-effective to employ Fixed AEs for larger input-output
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bits k > 12.

• Time-Cost Analysis (in Table 2.6) – Since we are using early stopping to stop the

training once the validation CE loss has converged, instead of fixed number of

epochs for training, the training time does not directly depend of the number of

optimized parameters. However, in case of Variable AE for (7, 16) the number of

optimizing parameters are so high it leads to 10× training time compared to Fixed

AE for (7, 16). Further, testing time is more for BCM design compared to d-BCM

design because in scenarios with CSI knowledge we utilize Lambda layers in the

decoders for channel equalization whereas we use RTN in scenarios without CSI

knowledge. Thus, RTN is faster than Lambda layers making the testing time lower

for AE frameworks without CSI knowledge.

Thus, we can conclude that Variable AE is good for low rate R ≤ 8/7, however when

the rate becomes high R > 8/7 then it becomes advantageous to employ the Fixed AE

as the number of optimization parameters in the AE reduces, but also for higher rates

R > 12/7 in terms of the BER performance. Also, the BER performance gains of the AE

increases with the rate R. Besides, BER performance gains of the AE frameworks without

the CSI knowledge is greater than AE frameworks with the CSI knowledge, compared to

the conventional networks.

Also, Fixed AE enables us to design a single NN architecture for AE frameworks that

can be employed for varying rates R [bits/channel-reuse]. In practical deployment, the

re-training of the AE frameworks with varying environmental conditions is inevitable.

In such scenarios, employing a Fixed AE framework becomes advantageous because we

have a single fixed weight matrix size at the encoder and decoder that needs to be updated.

2.7 Information-Theoretic View of Convergence of the Pro-

posed AE Frameworks

In this section, we demonstrate the impact of varying Eb/N0 levels and designing of

BCM/d-BCM designs in the presence/absence of CSI knowledge on the convergence of

the training (detailed in Sec. 2.5.1) of the proposed Fixed and Variable AE frameworks,

by giving the following Remarks.

Remark 2 For a sufficiently large block length (n), the training of Fixed AE framework

converges to a global minima above a minimum required Eb/N0.

Remark 3 For a sufficiently large block length (n), the training of Fixed AE framework

converges faster than the Variable AE framework.
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Remark 4 The CSI knowledge is helpful to reach near to the global minima faster, i.e.

the convergence of the training of AE performing BCM designs with CSI knowledge is

faster than AE performing d-BCM designs without CSI knowledge.

Proof: For any received block of (n) complex baseband symbols, yd, the binary CE loss

in (2.9) can also be represented as

J (θs,θd) = H
(
psθs (us|yd), p̃dθd (us|yd)

)
(2.16)

where H
(
psθs (us|yd), p̃dθd (us|yd)

)
denotes the binary CE loss between the true dis-

tribution psθs (us|yd) at the NN encoder of the source node and the learnt distribution

p̃dθd (us|yd) at the NN decoder of the destination node, with parameters θs and θd, re-

spectively. Now, we firstly derive the binary CE loss by taking the expectation of (2.16)

with respect to yd, as follows:

J (θs,θd) :
(a)
= Eyd

[
H
(
psθs (us|yd), p̃dθd (us|yd)

)]
:
(b)
= −Eyd

[
k∑

m=1

psθs (u
m
s |yd) log p̃dθd (u

m
s |yd)

]

:
(c)
= −

k∑
m=1

∫
yd

p(yd)psθs (u
m
s |yd) log p̃dθd (u

m
s |yd) dyd

(d)
=

k∑
m=1

∫
yd

psθs (u
m
s ,yd) log

[
psθs (u

m
s |yd)

psθs (u
m
s |yd)p̃dθd (u

m
s |yd)

]
dyd

(e)
=

k∑
m=1

∫
yd

psθs (u
m
s ,yd) log

[
psθs (u

m
s |yd)

p̃dθd (u
m
s |yd)

]
dyd

−
k∑

m=1

∫
yd

psθs (u
m
s ,yd) log psθs (u

m
s ,yd) dyd

(f)
= DKL

(
psθs (us|yd)||p̃dθd (us|yd)

)
+Hsθs

(us|yd)

(g)
= DKL

(
psθs (us|yd)||p̃dθd (us|yd)

)
+H(us)− Isθs (us;yd) (2.17)

where DKL

(
psθs (us|yd)||p̃dθd (us|yd)

)
denotes the Kullback-Leibler (KL)-divergence loss

between the true distribution psθs (us|yd) at the NN encoder of the source node and the

learnt distribution p̃dθd (us|yd) at the NN decoder of the destination node, with parameters

θs and θd, respectively, H(us) denotes entropy of the input bits us at the source node, and

Isθs (us;yd) is the MI between the input bits us and the received signal at the destination

node yd with parameters θs.

Moreover, the (2.17) is derived using the following steps: (a) is obtained by the taking

expectation over yd, (b) comes from the definition of binary CE loss, in (c) we open
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the expectation, in (d) we multiply and divide by psθs (u
m
s ,yd), in (e) we open the log

function, (f) comes from the definition of KL divergence loss and conditional entropy,

and (g) utilizes the identity H(a|b) = H(a)− I(a; b) [49].

We can now obtain the estimated MI [36], which we define as follows:

Definition 14 (Estimated MI) The estimated MI, represented by (I), is defined as the MI

between the input bits and received symbols, subtracted by the relative entropy between

the learnt distributions at the NN encoder and decoder pair.

According to this definition, the estimated MI can be given as follows:

I := Isθs (us;yd)−DKL

(
psθs (ud|yd)||p̃dθd (ûs|yd)

)
(2.18)

Now, using (2.17), the estimated MI in (2.18) becomes

I := H(us)− J (θs,θd) (2.19)

Since the first term on R.H.S, H(us) in (2.19), remains a constant, thus the changes in the

estimated MI in (2.18) only depends on the binary CE loss term J (θs,θd).

Lastly, by simulations, we analyze the convergence of the training of proposed Fixed

and Variable AE frameworks. In particular, we train a separate Fixed (or Variable) AE

for each Eb/N0 (in dB) level using the NN architecture and hyper-parameter settings as

described in Sec. 2.6.1. Once the Fixed (or Variable) AE is trained we note the validation

CE loss (J (θs,θd)) at the last epoch before early stopping the training, and obtain the

estimated MI (I) as described in (2.19).

In Fig. 2.4, we show the estimated MI for the BCM and d-BCM designs using the

Fixed and Variable AE frameworks for varying rates R = k/n [bits/channel reuse]. Also,

we keep block size n = 7 to have sufficiently large block length for encoding of up to 16

bits. Please note that we will discuss in detail about block length in next Section.

In Fig. 2.4, we can see that as the Eb/N0 (in dB) increases the estimated MI (I)
increases for the BCM and d-BCM designs by the Fixed and Variable AE frameworks.

This is because the binary CE loss reduces while training at higher Eb/N0. Moreover,

we can see that in Fig. 2.4, very evidently in Fig. 2.4c, the estimated MI of the Fixed AE

increases until it reaches the upper bound of k, while the estimated MI of the Variable AE

is either reaching the upper bound of k slower than Fixed AE or is unable to reach the

upper bound of k. Directly from (2.19), it suggests that KL-divergence loss approaches

0 making Isθs (us;yd) = H(us) for the Fixed AE, and sometimes for the Variable AE.

Thus, the training of Fixed AE-based P2P networks converges near to a global minima

above a minimum required Eb/N0, and also the training convergence of Fixed AE is much

better than the Variable AE. In Fig. 2.4, we can also see that the BCM designs with the
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Figure 2.4: Estimated MI for BCM and d-BCM designs using the Fixed and Variable AE
frameworks for varying rates R.

CSI knowledge converge to the upper bound of k at a lower Eb/N0 compared to the d-

BCM designs without the CSI knowledge for both the Fixed and Variable AE frameworks.

Thus, CSI knowledge is helpful to reach near to the global minima faster. It is important

to note that we can’t find the global minima of the NN parameters with respect to the

binary CE loss. But, surprisingly we don’t need to find the global minima. Empirically,

the authors in [50, 51] found that despite the non-convexity, the local minima’s are rare

and they are all very similar to each other and the global minima. Interested readers,

please refer to the theoretical insights presented in [50, 51].
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2.8 Necessary Conditions for AE Framework’s Conver-

gence

The process of training the NN-based AE frameworks include determining hyper param-

eter settings [41], such as weight initialization, activation functions, learning-rate, batch

size, etc, for example as also performed in Section 2.5.1. Although the training pro-

cess of NNs have seen advancements, yet no universal technique exists to optimize these

hyper-parameter settings, leading to suboptimal choices, forcing the AE to get stuck in

a local minima while minimizing the CE loss in (2.8) (c.f. [52, 53]). Thus, in existing

literature [12]–[40], hyper-parameter settings are obtained sub-optimally by hit-and-trial

method. Which includes training an AE framework with various hyper-parameter set-

tings, monitoring the validation5 CE loss and picking the hyper-parameter settings that

give the minimum validation CE loss during the training. However from coded modu-

lation perspective, a major problem with determining the AE’s convergence by simply

monitoring the validation CE loss is that the validation CE loss for most of the non-

optimal hyper-parameter settings also reduces with training epochs and thus we can not

surely determine if the AE performing the BCM and d-BCM designs are converged by

only monitoring the validation CE loss. Thus, for any given hyper-parameter settings,

we need to determine the relationship between the BCM or d-BCM designs performed by

the AE, which can indicate if the trained AE has converged to its maximum potential of

decoding.

Remark 5 For any given hyper-parameter settings and rate R = k/n, with sufficiently

large block length (n), the two necessary conditions for the convergence of training of the

AE frameworks performing BCM or d-BCM designs are detailed as follows:

C1: The validation CE loss of the AE framework has converged.

C2: The NN encoder of the AE designs 2k codewords.

Remark 6 For any given hyper-parameter settings and rate R = k/n, with sufficiently

large block length (n), the BER performance of the AE framework performing BCM de-

sign converge with at least 2k+1 training samples, while that for d-BCM design converge

with at least 2k+5 training samples.

Proof: In this work, we are solving a bit-decoding problem formulated as a multi-label

classification problem by minimizing the binary CE loss of the designed AE framework.
5Typically, a training dataset is divided into a 4 : 1 ratio of ’new’ training set and validation set. Where

NN is trained on the ’new’ training set and tested on a validation set, during training, to gauge the NN’s
potential testing performance in future. The CE loss calculated on new training set is referred to as ‘training
CE loss’ and the CE loss calculate on validation set is referred to as ‘validation CE loss’.
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The AE frameworks are based on neural networks (NNs). A general method of training

the NN-based architectures is to monitor the validation loss, once it is converged, we

can say the NN is trained. Thus, we can say that the training of the AE framework

is converged when the validation CE loss cannot be improved further. For any given

AE framework with fixed hyper-parameter settings, the convergence of the validation CE

loss depends on two factors – (1) if the validation CE loss is converged concerning the

training epochs, i.e., training the AE for a larger number of epochs does not lead to any

improvement in minimizing the validation CE loss, and (2) if the validation CE loss is

converged concerning the training dataset size, i.e., training the AE for a larger training

dataset does not lead to any improvement in minimizing the validation CE loss. Thus, the

C1 in Remark 4 has two parts. Firstly, training of the AE with respect to the number of

epochs, for a given training samples. A NN-based model is defined to be underfitting the

training data when the model performs poorly on the training data, whereas overfitting

the training data when the model performs well on the training data but does not perform

well on the validation data. There are well-known techniques like early stopping, which

we utilized in the training of the AE (detailed in Sec. 2.5.1), to stop the training of an

AE once the validation CE loss starts to increase, as any more training of the AE will

reduce its generalizability. This is because the early stopping on the gradient descent

creates generalizable NN frameworks, that also remains robust to corrupted labels [46,

Theorem 2.2]. Thus the first part of C1 is easily satisfied [46]. Secondly, training of AE

with respect to number of training samples. Since the proposed AE learns the BCM and

d-BCM design in the presence of fading channels and noise, thus the AE framework must

be trained with enough samples to be generalizable in the future testing phase. Thus,

second part of C1 states that the training of the proposed AE is converged if increasing

the training samples does not help in further reducing the validation CE loss of the AE

frameworks.

Now, we focus on C2 in Remark 4. In this chapter, we model the problem of designing

the BCM and/or d-BCM using the AE frameworks. The proposed AE framework is mod-

elled as a multi-label binary classification problem (please see Sec. 2.4). In particular, k

input-output bits represent k labels, with each label taking binary 0/1 values, thus there

exist 2k possible classes for the proposed AE framework. Thus, the AE framework aims to

design 2k possible codewords each representing a different class in a higher-dimensional

space. For any given hyper-parameter settings, once these codewords are designed the AE

framework converges because we can not improve the performance any further. Thus, C2

is naturally satisfied.

Since we have already shown in Section 2.7 that the proposed AE converges above

a minimum required Eb/N0. Thus, we focus on showing the relationship between the

convergence of the AE frameworks with the training samples below.
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Figure 2.5: Proof of the C1 (second part) and C2 in Remarks 4 and 5 using the Fixed AE
framework for varying rates R.

We now empirically prove the conditions C1 (second part) and C2 in Remark 4 below,

by considering Fixed AE framework (while similar observations were made for Variable

AE framework). For example, we train AE framework performing BCM design with

R = 16/7 in Fig. 2.5a, 2.5b for varying training data size STrain = {213, ..., 223} of fixed

SNR Eb/N0 = 25 dB. Also, we train AE framework performing d-BCM design with

R = 12/7 in Fig. 2.5c, 2.5d for varying training data size STrain = {213, ..., 223} of fixed

SNR Eb/N0 = 25 dB. During the training process, we divide the STrain training samples

into 4 : 1 ratio of ‘new’ training set ST and validation set SV . Then, we train separate AE

frameworks on each of the ST , and determine the number of codewords formed by the

NN encoder and the binary CE loss at the last epoch (during early stopping) on ST and

SV . Lastly, we determine the BER using the testing samples STest.

In Fig. 2.5a, 2.5c, we can see that as the training dataset increases, the number of

codewords formed by the NN encoder of the trained AE on the training and validation
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sets increase until it becomes 216 codewords for R = 16/7 (in Fig. 2.5a) and 212 code-

words for R = 12/7 (in Fig. 2.5c), each representing one of the possible 2k possible

combination, where k = 16 for BCM designs and k = 12 for d-BCM designs. Moreover,

the NN encoder forms these 2k codewords on the 2k+2 and 2k+5 training samples using

the training and validation sets, respectively. Furthermore, in Fig. 2.5a, 2.5c, we can see

that the binary CE loss, noted at the last epoch of training, reduces as the training dataset

increases and converges for training and validation sets at 219 training samples.

In Fig. 2.5b, 2.5d, we can see that as the training dataset increases the performance

of the proposed AE on the unseen testing samples improves, whereas when the training

dataset size starts becoming greater than 2k+1 for BCM design (in Fig. 2.5b) and 2k+5

for d-BCM design (in Fig. 2.5d), then the performance improvement of the proposed AE

starts converging because 2k codewords are created by the NN encoder of the AE on

the training set ST . The reason the AE framework performing BCM requires 24× less

training samples than while performing d-BCM is because – while the d-BCM design the

AE also needs to learn to estimate and remove the CSI knowledge effectively.

Thus, for any given hyper-parameter settings, we at least need 2k+1 STrain samples

for BCM design and 2k+5 STrain samples for d-BCM design, to ensure the AE creates 2k

codewords, the validation CE loss has converged, and the AE’s performance converges to

its maximum potential of decoding the 2k possible classes.

Remark 7 As can be seen in the Proof of Remark 4, 5 the number of training samples

increases exponentially with input-output bits (k), with at least 2k+1 samples required,

for the convergence of the AE frameworks with the CSI knowledge. However, these train-

ing samples are required only in the offline training phase, where we need to train the

AE framework extensively such that it learns the BCM or d-BCM designs to tackle the

deteriorating impacts of the fading channel and noise. Once trained, the proposed AE

framework can be deployed to predict in online settings.

2.9 Observations of AE-based BCM and d-BCM Designs

In this section, we perform extensive simulations to analyze the observations of the AE-

based BCM and d-BCM designs. The t-stochastic neighbour embedding (t-SNE) [54] is a

widely adopted metric in the machine learning (ML) wireless community [12] for insights

into the AE-based designed codewords in higher dimensional space, defined as follows:

Definition 15 (t-Stochastic Neighbour Embedding (t-SNE)) In essence the t-SNE helps

us to visualize the 2n-dimensional data in 2 dimensions. This happens by transforming the
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Figure 2.6: t-SNE representation of the codewords formed in the BCM and d-BCM de-
signs using the Fixed and Variable AE frameworks.

36



CHAPTER 2. AE-BASED POINT-TO-POINT NETWORKS

similarities among data points to joint probabilities to decrease the KL divergence loss

within the joint probabilities of the 2-dimensional embedding and the 2n-dimensional

codeword design.

For obtaining the AE-based designed codewords, we follow the below procedure. We

first train the Fixed and Variable AE frameworks using the NN architecture and hyper-

parameter settings as described in Sec. 2.6.1, and until convergence using Remark 4. Once

trained, the NN encoder of the Fixed and Variable AE frameworks becomes deterministic.

Thus, if we input any k bits to the NN encoder of the trained Fixed and Variable AE

frameworks, we obtain the same n complex baseband symbols (Definition 11) as output

every time, representing a codeword (Definition 12) for the k input bits. Now, we can

obtain all the possible codewords from the NN encoder of the Fixed and Variable AE

frameworks using all the possible combinations of k input bits.

In Fig. 2.6, we plot the t-SNE of the codewords obtained for the BCM and d-BCM

designs by the Fixed and Variable AE frameworks for varying rates R = k/n. We can see

that approximately 2k clusters are formed in the 2-dimensional space for all the varying

rates R using the Fixed and Variable AE frameworks, indicating that approximately 2k

codewords are formed while designing (differential) block-coded modulation for the k

bits. Apart from this, we can not obtain any further intuition. Thus, we will focus on the

other metrics hereafter.

Since the Fixed AE outperforms the Variable AE in various aspects, in this section, we

reveal distinct observations of the Fixed AE-based designed BCM and d-BCM designs.

However, a similar analysis can be directly done for the Variable AE framework as well.

Throughout this section, we train the proposed Fixed AE framework for various rates

R = k/n or combinations of (n, k), where n ∈ N = {1, 3, 5, 7, 10} and k ∈ K =

{1, 4, 8, 12, 16}, and follow the procedure mentioned above to obtain the Fixed AE-based

designed codewords.

In particular, the proposed Fixed AE-based BCM and d-BCM designs exhibit the

following distinct observations, for any (n, k) or rate R, as:

Observation – 1: Fixed AE framework designs 2k codewords in 2n-dimensional

space.

Proof: In Proof of Remark 4, we have already shown that the training of the Fixed

AE converges after designing of 2k codewords. Directly, as the NN encoder outputs 2n

real values for each of the 2k codewords, i.e. each of the 2k codewords are represented

by unique n complex baseband symbols, thus 2k codewords are being designed in 2n-

dimensional space.
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Observation – 2: The minimum Euclidean distance between any of the possible code-

words, dEmin
, increases as the rate R decreases. This directly means that

• For any given k bits, the minimum Euclidean distance between any of the pos-

sible codewords, dEmin
, increases as the block length (n) increases.

• For any given block length (n), the minimum Euclidean distance between any

of the possible codewords, dEmin
, increases as the number of bits (k) decreases.

Observation – 3: The minimum Euclidean distance between any of the possible code-

words, dEmin
, is greater for BCM design with the CSI knowledge compared to the

d-BCM design without the CSI knowledge.

Observation – 4: For unit block length (n = 1), the scenario of only AE-based mod-

ulation design, the minimum Euclidean distance between any of the possible code-

words, dEmin
, reduces to zero for the d-BCM designs without the CSI knowledge.

Observation – 5: The AE-based designed BCM and d-BCM reaches its maximum

potential of decoding (in terms of BER performance) when n = ⌈k/2⌉ and n =

⌈(k + 1)/2⌉, respectively, where ⌈·⌉ denotes ceil function.

Definition 16 (Minimum Euclidean distance (dEmin
)) The minimum Euclidean distance

between any of the possible 2k codewords is given as

dEmin
= min

a
daE, ∀ a ∈ {1, ..., 2k} (2.20)

where, we determine the minimum Euclidean distance [55] between each ath = {1, ..., 2k}
codeword and its closest vth codeword, as follows:

daE = min
v∈{1,...,2k} and v ̸=a

||xa − xv||2 , ∀ a (2.21)

where 2k denotes the number of possible codewords and {xa,xv} denotes the vector com-

prising n complex values representing the (·)th codeword of the 2k possible codewords in

the 2n-dimensional space.

Proof: For analyzing the Observations 2–5, we trained the proposed Fixed AE frame-

work performing BCM and d-BCM designs for (n ∈ N , k ∈ K). Then, using (2.20)

we determine the minimum Euclidean distance (dEmin
) between all the 2k designed code-
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Figure 2.7: Analyzing the minimum Euclidean distance dEmin
for varying (n, k) in a BCM

design.

words in a BCM design (in Fig. 2.7) and a d-BCM design (in Fig. 2.8). We can see that

as the block length (n) increases the dEmin
increases and as the number of input bits (k)

increases the dEmin
decreases, thus the dEmin

is inversely proportional to the rate R. This

is because the 2k codewords are being designed in 2n-dimensional space.

Further, comparing the minimum Euclidean distance (dEmin
) for BCM design in Fig. 2.7

and d-BCM design in Fig. 2.8, we can say that for any given rate (R), the dEmin
is greater

for the BCM design in contrast to the d-BCM design. This is because BCM are designed

using the CSI knowledge, while d-BCM are designed without the CSI knowledge. More-

over, in Fig. 2.8 we see that for unit block length (n = 1), the dEmin
≈ 0 for the d-BCM

design. This shows that the AE framework is unable to perform differential demodulation

with only one symbol, which is very similar to the conventional differential demodulation

techniques.

Now, in Fig. 2.9, 2.10, we analyze the BER performance for BCM and d-BCM designs

for varying rates R = k/n or combinations of (n, k). Clearly as the Eb/N0 increases the

BER reduces. Further, in Fig. 2.9 for BCM designs and in Fig. 2.10 for d-BCM designs,

we can see the direct impact of increasing minimum Euclidean distance dEmin
on the BER

performance of the proposed AE framework. Especially, for d-BCM design we can see

that for n = 1, the AE is unable to decode the signals. This shows that the minimum

Euclidean distance dEmin
has a direct impact on the BER performance. Moreover, we can

see that once the block length (n) becomes sufficiently large there is no BER improvement
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Figure 2.8: Analyzing the minimum Euclidean distance dEmin
for varying (n, k) in a d-

BCM design.
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Figure 2.9: Analyzing the BER for varying (n, k) in a BCM design.
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Figure 2.10: Analyzing the BER for varying (n, k) in a d-BCM design.

even with the increasing block length (n). In particular, when the block length becomes

half the input bits (k), i.e. n = ⌈k/2⌉, the BER of the BCM design doesn’t improve even

with increasing n. Similarly, when the block length becomes n = ⌈(k + 1)/2⌉, the BER

of the d-BCM design doesn’t improve even with increasing n. This shows that the AE-

based designed BCM and d-BCM reaches its maximum potential of decoding (in terms

of BER performance) when n = ⌈k/2⌉ and n = ⌈(k + 1)/2⌉, respectively. This may be

because the AE’s decoder is unable to decode the signal properly and provide the block

length gains.

Observation – 6: The minimum Euclidean distance between any of the two closest

codewords, daE , varies largely for the d-BCM design than for the BCM design, where

a = {1, ..., 2k}.

Observation – 7: When the number of codewords becomes extremely large, the min-

imum Euclidean distance between any of the two closest codewords, daE , follows a

Gaussian distribution for sufficiently large block length (n), where a = {1, ..., 2k}.

Observation – 8: As the block length increases, the Euclidean distance between the

any of the two closest codewords, daE , concentrate to the average Euclidean distance,

where a = {1, ..., 2k}.
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Proof: For analyzing the Observations 6–8, we trained the proposed Fixed AE frame-

work performing BCM and d-BCM designs for (n ∈ N , k ∈ K). Then, using (2.21)

(in Definition 16) we determine the minimum Euclidean distance between each ath code-

word and its closest vth codeword, to form the dE = {d1E, ...., d2
k

E } for BCM and d-BCM

designs. Lastly, we plot histograms of the dE for varying rate R in Fig. 2.11 for BCM

design and in Fig. 2.12 for d-BCM design.

Interestingly, the spread of the histogram is greater for the codewords in the d-BCM

design without the CSI knowledge (in Fig. 2.12), compared to the codewords in the BCM

design with the CSI knowledge (in Fig. 2.11). For example, for (n = 5, k = 8), the

histograms spreads from 1.54 to 1.58 for BCM design and from 1.1 to 1.3 for d-BCM

design.

Moreover, for the scenarios where number of codewords formed are very large and

block length is very small, the dEmin
approaches zeros (Fig. 2.7, 2.8) and minimum Eu-

clidean distance between each codeword to its closest codeword is also zero (marked in

red in Fig. 2.11, 2.12), thus AE is unable to decode the signal (Fig. 2.9, 2.10). For exam-

ple, in scenarios like (n = 1, k = 12), (n = 3, k = 16), etc. In such scenarios, the AE

learns to cheat by placing the 2k codeword on top of each other because of small space

to place the large amount of codewords. The presence or absence of the CSI knowledge

also plays a role in determining if the AE will fall for this cheating behaviour, as we can

see with n = 3, k = 12 in Fig. 2.11, 2.12, the AE is able to design the BCM but is unable

to design the d-BCM and thus tries to cheat.

Moreover, in Fig. 2.11 for BCM design and in Fig. 2.12 for d-BCM design, when the

block length (n) increases, the mean of histogram also increases because the minimum

Euclidean distance dEmin
increases. This indicates that as the block length increases, the

spacing between any two closest codewords also increases.

Moreover, in Fig. 2.11 for BCM design and in Fig. 2.12 for d-BCM design, when

number of codewords becomes extremely high (for k ≥ 8) and the block length is suffi-

ciently large (for n ≥ 5), we note the following:

• Although the overall minimum Euclidean distance dEmin
(obtained using (2.20)) is

small (Fig. 2.7, 2.8), but the minimum Euclidean distance dE between each ath

codeword and its closest vth codeword is competitively large for almost all the

codewords and follows a Gaussian distribution (marked in green in Fig. 2.11, 2.12),

as a consequence of the central limit theorem (CLT). Specifically, the CLT states

that, for sufficiently large sample size, the sampling distribution of the mean for

a variable will approximate a normal distribution. This shows that the codewords

designed by the NN encoder of the AE follows a normal distribution, making ran-
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dom block coded modulations automatically. It is important to note that designing

random coded modulations in higher dimensional space using any conventional

method was not possible earlier, remaining limited to only 2-dimensional space.

• As the block length increases the standard deviation (spread) of the Gaussian distri-

bution decreases, indicating that the Euclidean distance of the codewords concen-

trates to the average Euclidean distance, as a consequence of the CLT. As detailed

above, the codewords designed by the NN encoder of the AE have minimum Eu-

clidean distance between nearest codewords following a normal distribution. Thus,

the CLT states that as the sample size (i.e., the number of codewords) increases, the

standard deviation of the sampling distribution (i.e., the minimum Euclidean dis-

tance between nearest codewords) becomes smaller because the square root of the

sample size (i.e., 2k) is in the denominator.

These observations resemble the desired theoretical observations of coded-modulation

designs discussed in [9]. Therefore, we claim that the proposed AE framework can design

random BCM and d-BCM designs to achieve the best possible distance observations for

sufficiently large block length (n) for any given input bits (k).

Observation – 9: The packing density improves as the rate R decreases.

• For any given k bits, the packing density improves as the block length (n) in-

creases.

• For any given block length (n), the packing density improves as the number of

bits (k) decreases.

Observation – 10: The packing density of the BCM design with the CSI knowledge

is better than d-BCM design without the CSI knowledge.

Observation – 11: For sufficiently large block length (n), the packing density of the

BCM and d-BCM designs converges.

Definition 17 (Normalized second-order moment) We can define the normalized second-

order moment (En) as the average squared Euclidean distance between a point in the

packing and the origin of the coordinate system, normalized by the square of the mini-

mum Euclidean distance, given as

En =
1

2kd2Emin

2k∑
a=1

||xa||2 (2.22)
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Figure 2.13: Normalized second order moment for varying (n, k) in a BCM design.
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Figure 2.14: Normalized second order moment for varying (n, k) in a d-BCM design.
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This metric remains indifferent to scaling thus pivotal to differentiate the packing densities

of the designed codewords.

Proof: In Fig. 2.13 and Fig. 2.14 we analyze the packing densities using the normal-

ized second order moment En of the BCM design and d-BCM design, respectively, for

varying rates R = k/n. Please note that lower the En the better the packing density. We

can see that the packing density improves for the AE-based BCM and d-BCM designs as

the block-length (n) increases or the input bits (k) decreases, for all (n ∈ N , k ∈ K),
because the 2k codewords are being designed in the 2n-dimensional space. This shows

that the packing density improves as the rate R decreases until it starts converging for

sufficiently large block length (n).

Also, comparing the packing density of the BCM design in Fig. 2.13 and d-BCM

design in Fig. 2.14, we see that, for the same rate R, the packing density of the codewords

in the BCM design is better than the d-BCM design, because of the presence of the CSI

knowledge in the BCM designs, we almost remove the impact of the fading channels.

Observation – 12: The codewords designed by the AE framework are spherical

codes.

Definition 18 (Normalized fourth-order moment or Kurtosis) It measures the varia-

tion of the squared Euclidean norm among the codewords, defined as

χ =
1

E2
nd

4
Emin

2k

2k∑
a=1

||xa||4 (2.23)

The χ = 1 denotes that a spherical code is created with equal norm for all codewords

which is an optimal sphere packing if the number of points per dimension is small enough.

Proof: By simulations, we find that the proposed AE creates ‘Spherical codes’ with

χ = 1, i.e. equal norm for all the 2k codewords for all the varying (n ∈ N , k ∈ K)
scenarios, for both the BCM and d-BCM designs. This is because we impose an block

power constraint on the NN encoder of the AE using the power normalization layer (PN).

2.10 Conclusion

In this chapter, we studied AE-based P2P communication networks. We conducted an in-

depth literature survey and focussed on notations and definitions of the AE frameworks

47



CHAPTER 2. AE-BASED POINT-TO-POINT NETWORKS

that will also be utilized extensively in the rest of this thesis. In particular, we classify

the AE frameworks as Fixed and Variable AE if the number of neurons remains inde-

pendent and dependent on the input-output bits, respectively. Further, we propose both

the Fixed and Variable bit-wise AE frameworks under an RBF channel for short block

lengths (n = 7), performing BCM design with the CSI knowledge and d-BCM design

without the CSI knowledge, for high transmission rate R. The training dataset comprises

of the RBF channel and multiple transmit SNR values. Also, the end-to-end training

is performed by minimizing the binary CE loss, while utilizing step-decay learning rate

scheduler and early stopping based on the validation CE loss. We show that the Variable

AE is good for low rate R ≤ 8/7 [bits/channel-reuse], however when the rate becomes

high R > 8/7 [bits/channel-reuse] then it becomes advantageous to employ the Fixed

AE as the number of optimization parameters in the AE reduces, but also for higher rates

R > 12/7 [bits/channel-reuse] in terms of the BER performance. Also, the BER per-

formance gains of the AE increases with the rate R. Besides, BER performance gains

of the AE frameworks without the CSI knowledge is greater than AE frameworks with

the CSI knowledge, compared to the conventional networks. Also, Fixed AE has another

advantage that it enables us to design a single NN architecture for AE frameworks that

can be employed for varying rates R [bits/channel-reuse]. Thus, we will employ a Fixed

AE framework in the rest of this thesis.

With a focus on interpretability, we determine the estimated MI of the proposed AE

frameworks for varying Eb/N0 levels. We show that both the AE converges above a min-

imum required Eb/N0 depending on the transmission rate and CSI availability. Further-

more, we provide the necessary conditions for AE’s training convergence by showing that

once the binary cross-entropy validation loss has converged and the NN encoder of AE

designs 2k codewords during the training phase, the AE has converged to its maximum po-

tential of decoding the signal. Lastly, by analyzing the Fixed AE-based BCM and d-BCM

designs, we determine distinct observations of the designed codewords in 2n-dimensional

space, utilizing the metrics such as the minimum Euclidean distance, packing density, and

Kurtosis. In the Chapter 3, we will focus on the bit-wise and symbol-wise AE-based BCM

and d-BCM designs in a relay network.
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Appendix

2.A Autoencoders

Typically, a DL-based Autoencoder (AE) framework comprises of an NN-based encoder

and decoder pair, where input data at the NN encoder is aimed to be reconstructed at the

NN decoder using the compressed representation, as depicted in Fig. 2.A.1. The NN-

based architecture at the encoder is designed such that the input data is compressed to

fewer dimensions by removing redundancy from the input data. We also refer to this

encoded data as latent space. The NN-based decoder takes the encoded data and aims

to reconstruct the input data at the NN encoder. The AE is trained by minimizing the

loss between the input data and reconstructed data at the NN encoder and NN decoder,

respectively. Since the input data can be either continuous or discrete values, thus the DL-

based AE can be designed for regression and classification purposes. Thus, the DL-based

AE framework finds applications in compression tasks for varying types of inputs such as

for image, video, and speech in Vision community.

2.B Proof of Remark 1

Generally speaking, the optimization problem for the conventional networks (CNs) in

(2.10) is considered in two parts, where first we solve the detection problem of 2nR possi-

ble codewords that minimizes the symbol-error-rate (SER) and secondly the bit-mapping

of 2nR codewords is performed that minimizes the bit-error-rate (BER). In particular,

by employing a maximum likelihood detector (MLD) we can obtain the optimum linear

block codes that gives us minimum symbol error probability in decoding at the decoder

as follows:

πML (n, k) = min
θe,θd

π1 (n, k) (2.24)

= min
θs,θd
P [θd(yd) ̸= v|θs(v),yd] , ∀ v = {1, ..., 2k}

where θs and θd denotes the encoding and decoding operation rules for MLD. We can

solve (2.10) using (2.24) by exhaustively searching all the possible 2nR codewords. Also,
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Figure 2.A.1: An illustration of DL-based Autoencoders.

by determining the optimal bit-labelling we can reduce the BER in decoding the m =

{1, ..., k} bits as

πBL (n, k) = min
θ

π2 (n, k) (2.25)

= min
θ
P
[
θ(π1 (n, k)) ̸= um

s

]
, ∀m = {1, ..., k}

where θ denotes the optimal bit-labelling matrix obtained after solving the 2k! combina-

torial problem. Moreover, (2.24) and (2.25) becomes NP-hard to solve for large values of

k. If θCN1
s = θe,θ

CN1
d = θd, and θCN2 = θ then we can directly say that

π (n, k) = πBL (πML (n, k)) (2.26)

Now, we only need to prove that minimizing the binary CE loss function of the proposed

AE in (2.9) by solving (2.8) gives us same θCN1
e ,θCN1

d ,θCN2 .

Now, let us examine the proposed bit-wise AE framework that takes k bits as input-

output as a vector us ∈ {0, 1}k. Where, we utilize a Sigmoid activation function σ(x) =
1

1+e−x on each of the k logits to obtain the probabilities p̃dθd (u
m
s |yd). Using these def-

initions, we employ the binary CE loss to train the AE as in (2.9). Directly, for the

mth = {1, ..., k} bit (or label) we can say that

L
(
um
s , p̃dθd (u

m
s |yd)

)
=

− log
(
p̃dθd (u

m
s |yd)

)
, if um

s = 1,

− log
(
1− p̃dθd (u

m
s |yd)

)
, if um

s = 0
(2.27)
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It is straightforward to say thatL
(
um
s , p̃dθd (u

m
s |yd)

)
in (2.27) is minimized whenP

[
θAE
d

(yd) = um
s |θAE

s (us),yd

]
is maximized, or equivalently P

[
θAE
d (yd) ̸= um

s |θAE
s (us),yd

]
is

minimized. Thus, we are basically solving the following optimization problem in AE

frameworks

(
θAE
s ,θAE

d

)
=arg min

θAE
s ,θAE

d

P
[
θAE
d (yd) ̸=us|θAE

s (us),yd

]
(2.28)

Whereas, using (2.26) the optimal conventional networks frameworks’ solution can be

given as

(
θCN1
s ,θCN1

d ,θCN2
)
= arg min

θ
CN1
s ,θ

CN1
d ,θCN2

P
[
θCN2

(
P
[
θCN1
d (yd) ̸= v|θCN1

s (v),yd

])
̸= um

s

]
,

= arg min
θ

CN1
s ,θ

CN1
d ,θCN2

P
[
θCN2

(
θCN1
d (yd)

)
̸= us

∣∣θCN2
(
θCN1
s (us)

)
,yd

]
(2.29)

Directly, by mapping (2.28) and (2.29), we can say that in the proposed bit-wise AE

framework the NN-based encoder is performing coded-modulation design and automatic-

bit labelling, whereas the NN-based decoder is performing coded-demodulation for a

given NN encoder. Hence, by mapping (2.28) and (2.29), we can say that optimizing(
θAE
s ,θAE

d

)
in AE-framework is equivalent to designing

(
θCN1
s ,θCN1

d ,θCN2
)

for the con-

ventional communication networks. Hence proved.
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Chapter 3

AE-based Amplify-and-Forward Relay
Networks

3.1 Introduction

Relay networks have appeared as an innovative technology in the past decade owing to

their potential of increasing network coverage, reliability, and capacity [17], [18]. The

relaying network can be broadly classified as amplify-and-forward (AF) [25], [24] and

decode-and-forward (DF) [22], [56] depending on the decoding complexity of the relay-

ing node. The AF relaying is employed practically because it provides low implemen-

tation complexity, and the signal is received, amplified, and re-transmitted in the ana-

log domain. Thus in this chapter, we extend the autoencoder (AE)-based point-to-point

(P2P) networks (discussed in Chapter 2) by focussing on an end-to-end learning-based

AE framework for the AF relay network.

In general, for any rate R = k/n [bits/channel-reuse], the AE frameworks can be

broadly classified as the Symbol-wise AE [12] and Bit-wise AE [27], as discussed in

Sec. 2.1. The AE-based block coded modulation (BCM) design and differential BCM (d-

BCM) design in the presence and absence of the channel state information (CSI) knowl-

edge, respectively, has been investigated using a symbol-wise AE framework for P2P

and relay networks only in a handful of works [12, 28, 29, 36]. While in Chapter 2, we

introduced the bit-wise AE-based BCM and d-BCM designs even for a P2P network.

Recently, we proposed symbol-wise AE-based AF relay networks by employing NN-

based multiple dense layers at the AF relay node [57]. Specifically, we proposed d-BCM

designs using a symbol-wise AE framework for R = 4/7 [bits/channel-reuse] comparing

with BPSK modulation and (7, 4) Hamming code [57]. We show the benefits of AE-

based d-BCM over the conventional networks with almost 3 dB BER gains. However,

conventionally AF scheme is designed to have lower complexity at the relay node, with

just the amplification operation. In contrast, the NN-based processing by using dense
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layers at the relay node contradicts the low implementation complexity intended for the

AF scheme. Furthermore, we also considered full CSI knowledge at the AF relay node

in the AE framework. However, conventionally the AF relay node only has the infor-

mation about the channel gain knowledge, thereby providing an inherent advantage of

utilizing the phase information at the AE-based framework over the conventional AF re-

lay networks. Thus, we summarize the major contributions of this chapter, overcoming

the drawbacks of our work [57], below.

• We propose an end-to-end learning-based AF relay network using the AE frame-

works. Specifically, we propose to employ NNs consisting of dense layers at the

source and destination nodes that constitute the AE framework and employ a con-

ventional AF relay node to minimize the implementation cost and maintain a fair

CSI requirement between the proposed and conventional relay networks.

• We design both the symbol-wise AE (detailed in Def. 2) and bit-wise AE (de-

tailed in Def. 3) frameworks for the AF relay assisted network and show that these

frameworks are optimized by maximizing the bit-wise mutual information (MI) and

symbol-wise MI of an AF relaying network, respectively, while minimizing the rel-

ative entropy between the posterior distributions at the encoder and decoder. Later,

we formulate the AF relay-assisted AE-based framework as a multilabel (multi-

class) classification task for the bit-wise (symbol-wise) AEs.

• For both the AE frameworks, we design BCM and d-BCM designs, depending upon

the availability of CSI at the destination node.

• We remove the need for CSI knowledge and noise variances of the links for the

proposed AE-based frameworks, even without the NN-based processing at the relay

node by performing the d-BCM design in 2n-dimensional space. We also propose

and investigate the impact of an NN-based radio transformer network (RTN) on the

d-BCM design in a dual-hop AF relaying network.

• Further, without CSI knowledge, the amplification factor for the conventional AF

relay node becomes a fixed value depending on the second-order statistics of the

channel between the source to relay node and noise variances [58, 59, 60, 61, 62,

63, 64]. However, the fixed amplification factor is a sub-optimal approach for the

AF scheme. Thus, we also show that by utilizing a power normalization layer (PN)

(as defined in Definition 7) at the AF relay node, we can improve the process of

deciding the amplification factor while keeping the signal transmission reception in

the analog domain and removing the requirement of second-order channel statistics

and noise variances at the relay and CSI knowledge at the destination node.
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Figure 3.2.1: System model for AF relay networks.

• We focus on interpretability and explain the properties of the 2n-dimensional de-

signs by utilizing various metrics like minimum Euclidean distance, normalized

second-order and fourth-order moments, and constellation figures of merit. For

greater insights, we compare the cross-entropy (CE) loss functions from an infor-

mation theoretic perspective and the estimated MI to analyze the convergence of

the proposed AE frameworks.

3.2 System Model

In this section, we present the conventional AF relay networks, where the source node

(S) wants to exchange its intended signal with the destination node (D) by employing an

AF relay node (R) in two-phases, as shown in Fig. 3.2.1. Each of the nodes has a single

antenna and the direct link between the S and D nodes is strongly attenuated because

of severe path-loss and shadowing, and the communication can take place only via the

AF relay node (R). We consider block-by-block encoding and decoding operation at the

source and destination nodes, whereas the signal transmission in each phase takes place

as symbol-by-symbol. The encoder at the source node takes k bits as input and converts it

to j bits via channel coding and then transmit the modulated n symbols to the destination

node via 2n independent channel reuse in two-phases, then the destination node takes n

symbols demodulates it to j bits and then perform channel decoding to get the k intended

bits. Thus rate for the AF relay network becomes R = k/2n [bits/channel use]. For the

sake of clarity in explanation, we consider n = 1 in this subsection. We also consider

independent and identically distributed (i.i.d.) Rayleigh block fading (RBF) channels

∼ CN (0, 1), such that it remains constant for the n transmissions (block length) in each

phase, while changes randomly in each phase and with time.

In the first phase, the source node transmits us ∈ {0, 1}k bits by mapping us to

a complex baseband symbol xs = gm(us) 7→ C, where gm(·) denotes the modulation

process, such that E {|xs|2} = 1. The signal received by the AF relay node (R) can be

given by

yr =
√
Pshsrxs + nr (3.1)
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where Ps represents the source transmission power, hsr denotes the channel in the first

phase transmission, and nr is the additive white Gaussian noise (AWGN) at the AF relay

node with nr ∼ CN (0, σ2
r).

In the second phase, the relay node performs symbol-wise amplification with the am-

plification factor represented as

α =
(
Ps|hsr|2 + σ2

r

)−1/2 (3.2)

And re-transmit the amplified signal to the destination node (D), given by

yd =
√

Prhrdαyr + nd

=
√

PsPrhrdhsrαxs︸ ︷︷ ︸
Intended Signal

+
√
PsPrhrdhsrαnr + nd︸ ︷︷ ︸

Noise

(3.3)

where Pr is the transmission power of the relay node, hrd denotes the channel in the

second phase transmission, and nd is the AWGN with nd ∼ CN (0, σ2
d). The destination

node decodes the intended signal us by using the optimal maximum-likelihood detector

(MLD), given as follows:

ûs = argmin
x∈C

∣∣∣∣∣∣yd −√PsPrhrdhsrαx
∣∣∣∣∣∣2 (3.4)

where C denotes all the possible alphabets, for example ±
√

1/2 ±
√
1/2i (for QPSK),

etc.

In the differential scenario, i.e. without the CSI knowledge, we utilize traditional

differential modulation and demodulation techniques at the source and destination node,

such as differential QPSK (d-QPSK) and MLD decoding. The traditional differential

schemes are near optimal because there is no selection combining or cooperative diversity

at the destination nodes [58, 59, 60, 61, 62, 63, 64]. However, the amplification factor

designed in (3.2) utilizes the channel gain information and noise variances. In the case of

absence of the CSI knowledge, there are two distinct ways proposed in literature to design

the amplification factor, as detailed below:

• Transmit power-based amplification factor (TP-based α) – This approach decides

the amplification factor on the basis of only the transmission power of the source

node [58, 59], as follows:

α = (Ps + 1)−1/2 (3.5)

• Channel statistics-based amplification factor (CS-based α) – This approach uti-

lizes the second-order statistics of the first hop channel between the source and
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Figure 3.3.1: Symbol-wise autoencoder (SWAE) framework for AF relay networks.

relay node σ2
sr = E{|hsr|2} and noise variance at the relay node to determine the

amplification factor [60, 61, 62, 63, 64], given by

α =
(
Psσ

2
sr + σ2

r

)−1/2 (3.6)

3.3 Proposed AE Frameworks for AF Relay Networks

In this section, we propose the end-to-end learning-based symbol-wise and bit-wise AE

frameworks for AF relay network, as detailed in Fig. 3.3.1 and Fig. 3.3.2, respectively.

3.3.1 Symbol-Wise AE (SWAE) Framework for AF Relay Networks

The source node’s input message is a one-hot representation vector 1s ∈ {1, ..., 2k} of

the 2k possible symbols of which only one of the element is 1 while the rest are ze-

ros. The source node aims to map the one-hot encoded vector to a complex baseband

symbol xs ∈ C, by a mapping function fθs(1s, xs) : 1s 7→ xs, where fθs is the train-

able parameters of the NN encoder with weights and bias terms, similar to the Defini-

tion 6. We impose a power normalization constraint on the output of the encoder, such

that ||fθs(1s, xs)||22 = 1, as detailed in Definition 7. The signal received by the relay

node can be given as yr =
√
Pshsrfθs(1s, xs) + nr. The relay node is a conventional

AF relay node, thus the received signal is amplified as xr = αyr. The amplified signal

is re-transmitted over the second phase and the signal received by the destination node

is given as yd =
√
Prhrdxr + nd. The destination node implements the de-mapping

gθd(yd, p̃gθd (1s|yd)) : yd ∈ C 7→ p̃gθd (1s|yd) ∈ R2k , where gθd denotes the trainable

parameters of the NN decoder, similar to the Definition 9, and the 2k outputs represent

the decoded one-hot vector representation, also referred as logits [41]. These outputs

are then passed through a Softmax function, σ(x)m′ = exm′
/∑2k

m′=1 e
xm′ to obtain the

probabilities over the 2k output message denoted by p̃gθd (1s|yd) ∈ [0, 1]2
k , such that∑2k

m′=1 p̃gθd (1
m′
s |yd) = 1. Now, we utilize the categorical CE loss to train the symbol-

wise AE, defined as follows:

Definition 19 (Categorical CE loss [49, 41]) The categorical CE loss determines the er-
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Figure 3.3.2: Bit-wise autoencoder (BWAE) framework for AF relay networks.

ror between the input one-hot vector 1s at the source node and the symbol-wise soft prob-

abilities p̃gθd (1s|yd), such that , as

J (θs,θd) := L
(
1s, p̃gθd (1s|yd)

)
= −

2k∑
m′=1

1m
′

s log2

(
p̃gθd

(
1m

′

s |yd
))

(3.7)

Once the symbol-wise AE is trained with the input-output of the network as a one-hot

vector 1s representing the 2k possible symbol for the k bits. We can obtain the symbol

with highest probability as the decoded symbol at the destination node. However, we need

to perform bit-labelling separately on the AE-based designed constellation to map the 1̂s

vector to ûs bit vector. But, bit-labelling remains a challenging task, especially as the

modulation order increases, or while designing AE-based block coded modulation in 2n-

dimensional space. Because in such scenarios, the AE-based designed modulation might

not form grids as conventional QAM, leading to 2k! possible combinatorial problem to be

solved [27].

3.3.2 Bit-Wise AE (BWAE) Framework for AF Relay Networks

The source node takes bits as input, given by us ∈ {0, 1}k, and maps it to a symbol xs ∈
C, by mapping function fθs(us, xs) : us 7→ xs, as detailed in Definition 6. We impose a

power normalization constraint on the output of the encoder, such that ||fθs(us, xs)||22 = 1,

as detailed in Definition 7, and the signal received by the relay node can be given as yr =√
Pshsrfθs(us, xs) + nr. We consider a conventional relay node, thus the received signal

is amplified as xr = αyr. The amplified signal is re-transmitted over the second phase

channel and the signal received by the destination node is given as yd =
√
Prhrdxr + nd.

The destination node implements the demapping gθd(yd, l) : yd ∈ C 7→ l ∈ Rk, as

detailed in Definition 9. The destination node outputs k logits (one per bit) given by

l ∈ Rk. Then we apply a Sigmoid activation function σ(x) = 1
1+e−x [41] on each of the k

logits, to obtain the probabilities p̃gθd (u
m
s |yd), m = 1, ..., k. We train the bit-wise AE by

57



CHAPTER 3. AE-BASED AMPLIFY-AND-FORWARD RELAY NETWORKS

Figure 3.3.3: Block diagram of training for the proposed bit-wise AE-based end-to-end
learning system.

minimizing the binary CE loss, as detailed in Definition 13, by keeping n = 1.

Once the bit-wise AE is trained with the bits as its input-output, we can directly obtain

the bit-labelling for designed complex baseband symbols xs. We will later show that the

bit-wise AE produces gray coded bit-labelling automatically. Thus, bit-wise AE removes

the 2k! complexity of bit-labelling required in the symbol-wise AE.

In contrast to the previous bit-wise AE works on P2P networks in [27] where the SNR

information was required to train an AE, and two-way AF relay networks in [38] where a

separate NN was created for each SNR, we also remove the necessity to acquire the SNR

information for correctly encoding or decoding the signals. In fact, we create a single

bit-wise or symbol-wise AE framework that can be tested on a range of SNRs reducing

the floating parameters in the NN by 95% [57]. Please note we maintain these advantages

for designing bit-wise AE in the rest of the thesis as well.

3.4 Implementation of Autoencoder Framework – Param-

eters and Training

As the output of the bit-wise AE are bits and that of symbol-wise AE are symbols. We

can formulate the proposed AF relay assisted AE-based framework as a multilabel (mul-

ticlass) classification task for the bit-wise (symbol-wise) AEs. The optimal metric for

designing codewords in channel coding is the maximization of the minimum Hamming

distance between the codewords. The optimal metric for placing the symbols in the con-
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Table 3.4.1: NN architecture of encoder.

Layer No. (l) Nodes (δel ) Remarks
l = 0 δ0 Input (ei)
l = 1 64 σ1 = Tanh
l = 2 32 σ2 = Tanh
l = 3 16 σ3 = Tanh
l = 4 2n σ4 = Linear
l = 5 2n Power normalization (PN)

stellation is the maximization of the minimum Euclidean distance between the symbols.

However, we perform joint channel coding and modulation design. Thus, optimizing

the bit-wise and symbol-wise AE frameworks by maximizing the minimum Euclidean

distance between the constellation points, is not an optimal metric for designing channel-

coding [65, 66]. More specifically, optimizing the binary CE and categorical CE losses are

better metrics, as they directly optimize the AE frameworks by maximizing the bit-wise

MI and symbol-wise MI, respectively [65, 66]. The minimization of the binary CE loss

directly leads to the maximization of the generalized MI (as detailed in Chapter 2). It is

well known that the maximization of the generalized MI encompasses both the maximiza-

tion of the minimum Euclidean distance and the maximization of the minimum Hamming

distance between the codewords by also including the bit-labeling. Thus, throughout this

thesis, we train the AE framework by minimizing the CE loss. Now, we detail the NN

architectures for the encoder and decoder, and the process of training the AE frameworks

for different CE losses below.

For the sake of brevity, in Fig. 3.3.3 we show the block diagram for the training of the

proposed bit-wise AE framework for the AF relay networks, and a similar representation

can be done for the symbol-wise AE framework. In this chapter, we utilize L fully-

connected (dense) layers, wherein the output of the lth ∈ {1, ..., L} dense layer ωl ∈ Rδl

can be given as (2.2).

3.4.1 Designing Neural Network-based Encoder

The source node is equipped with its own NN-based encoder that performs block-by-

block encoding, wherein k bits (or 2k symbols) are modulated to n symbols. Since we

perform joint channel coding and modulation design, this can be referred as NN-based

block coded modulation design. The NN encoder consists of M + 1 layers with M dense

layers and a power normalization (PN) layer, where its NN mapping function fθs(es,xs)

is represented similar to Definition 6, and given as

fθs(es,xs) = PN (σM (WMσM−1 (...σ1 (W1es + b1) ...) + bM)) (3.8)
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where es represents the input to the encoder and PN denotes the power normalization

layer, as detailed in Definition 7, with no trainable parameters, mandating that the trans-

mission power is ||fθs(es,xs)||22 = n. For the case of symbol-wise AE the input to the

encoder becomes symbols, whereas the input to the encoder is bits for the bit-wise AE.

Thus, the input to the encoder with the number of input nodes can be given as follows:

{es, δ0} =

{1s, 2
k}, for Symbol-wise AE

{us, k}, for Bit-wise AE
(3.9)

For the sake of fair comparison between symbol-wise and bit-wise AE frameworks, we

keep the encoder’s NN architecture same for all the scenarios, as summarized in Ta-

ble 3.4.1. Note that, although the NN encoder performs block-by-block encoding, the

signal transmission takes place symbol-by-symbol.

3.4.2 Designing AF Relay Node

The relay node is deigned on the basis of the presence or absence of the CSI knowledge,

as follows:

• With the CSI Knowledge – In this case, we use a conventional AF relay node that

amplifies the received signal using the amplification factor in (3.2) and re-transmits

the signal to the destination node. The process of signal transmission–reception

remains the same as conventional scenario for both the bit-wise and symbol-wise

AEs, as shown in Table 6.2.1. Where, in the first time-slot the source node transmits

the signal to the relay node while the relay node remains silent, and in the second

time-slot the relay transmits the signal to the destination node while the source node

remains silent.

• Without the CSI Knowledge – In this case, we propose two approaches as detailed

below:

– Using Conventional AF Relay – In this case, we use a conventional AF relay

node that amplifies the received signal using the amplification factor in (3.5)

or (3.6) depending if the amplification factor is determined using TP-based

α or CS-based α method. Further, the process of signal transmission and

reception remains the same as conventional scenario for both the bit-wise and

symbol-wise AEs, as shown in Table 6.2.1.

– Using Power Normalized AF Relay (PN at relay) – In this case, we mod-

ify the signal transmission and reception process, as detailed in Table 3.4.3.

Herein, the source node transmits the complete block of data comprising n
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Table 3.4.2: Process of signal transmission–reception of a block of data (block length n)
for conventional AF relay network, and AE-based scenarios – with CSI knowledge and
without CSI knowledge using conventional AF relay.

Time-instants [κ] [1] [2] [3] [4] · · · · · · [2n− 1] [2n]
Symbol Tx by S xs[1] − xs[2] − · · · · · · xs[n] −
Symbol Rx by R yr[1] − yr[2] − · · · · · · yr[n] −
Symbol Tx by R − xr[1] − xr[2] · · · · · · − xr[n]
Symbol Rx by D − yd[1] − yd[2] · · · · · · − yd[n]

Table 3.4.3: Process of signal transmission–reception of a block of data (block length n)
for AE-based scenarios without CSI knowledge using power normalized AF relay.

Time-instants [κ] [1] [2] · · · · · · [n] [n+ 1] [n+ 2] · · · · · · [2n− 1] [2n]
Symbol Tx by S xs[1] xs[2] · · · · · · xs[n] − − · · · · · · − −
Symbol Rx by R yr[1] yr[2] · · · · · · yr[n] − − · · · · · · − −
Symbol Tx by R − − · · · · · · − xr[1] xr[2] · · · · · · xr[n− 1] xr[n]
Symbol Rx by D − − · · · · · · − yd[1] yd[2] · · · · · · yd[n− 1] yd[n]

symbols to the relay node in the first n time-slots, while the relay node re-

mains silent. Then the relay node performs amplification by normalizing the

power of n symbols using the power normalization layer PN, as defined in

Definition 7, with no trainable parameters, mandating that the transmission

power is ||xr||22 = n. Then in the next n time slots, the relay node performs

symbol-by-symbol transmission, while the source node remains silent.

3.4.3 Designing Neural Network-based Decoder

The symbols re-transmitted by the AF relay node are decoded by the destination node.

The decoder performs block-by-block decoding, where n symbols are demodulated to k

bits. Since we perform joint channel decoding and demodulation it can also be referred as

NN-based block coded demodulation design. The decoder at the destination node consists

of N dense layers, where its NN de-mapping function gθd(yd, p̃gθd (es|yd)) is represented

similar to Definition 9, and given as

gθd(yd, p̃gθd (es|yd)) = σN (WNσN−1 (...σ1 (W1LL (yd) + b1) ...) + bN) (3.10)

where LL denotes the Lambda layers with no trainable parameters, as defined in Defini-

tion 10. Please note that the first lambda layer takes received symbols as input and the

output of the last lambda layer forms the input to the NN decoder. The Lambda layers

changes depending on the presence or absence of the CSI knowledge, thus detailed sepa-

rately in Section 3.6. For the sake of fair comparison between symbol-wise and bit-wise

AE frameworks, we keep the decoder’s NN architecture same for all the scenarios, as

summarized in Table 3.4.4.
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Table 3.4.4: NN architecture of decoder.

Layer No. (l) Nodes (δl) Remarks
l = 0 2n Input (Output of LL)
l = 1 256 σ1 = Tanh
l = 2 128 σ2 = Tanh
l = 3 64 σ3 = Tanh
l = 4 32 σ4 = Tanh

l = 5 δ0
σ5 = Softmax (for SWAE) or
σ5 = Sigmoid (for BWAE)

3.4.4 Model Training and Updates

The input to the NN encoder at the source node is bits (for BWAE) or symbols (for

SWAE), whereas the input to the NN decoder at the destination node is the amplified

signal by the AF relay node, distorted in two-phase relay transmission. We train this AE

framework, such that it becomes unaffected by testing SNR and can handle the two-hop

fading channels effectively. Besides, we are using a conventional AF relay node, thus we

do not need to perform explicit training at the AF relay node, unlike the works in [57, 38].

Once trained, we deploy the NN weights at the source and destination nodes for future

predictions. Later in this AE-framework, the NN-based source node communicates with

the NN-based destination node via an AF relay node.

The expected loss for AE-based AF relay network is given by J (θs,θd). Depending

on the constructed symbol-wise or bit-wise AE the loss can be categorical or binary CE

loss as shown later in (3.15g) and (3.17), respectively. Similar to the process mentioned

in Sec. 2.5.1, we train the AE frameworks to obtain the parameters θs,θd by minimizing

the categorical and binary CE losses for BWAE and SWAE frameworks, respectively. Let

there be {STrain, STest} training and testing samples, then by mini-batch training [41] we

can estimate the expected categorical or binary CE loss as

J (θs,θd) =
1

Bs

Q∑
q=1

Bs∑
bs=1

δ0∑
m=1

L
(
e(q×bs,m)
s , p̃dθd

(
e(q×bs,m)
s |y(q×bs)

d

))
(3.11)

where Bs denotes the batch size and Q = Strain/B
s represents the number of training

samples in a batch. Let us denote the NN optimization parameters as Θ = {θs,θd}, then

we update the weights using the Adam optimizer as detailed in Sec. 2.5.1.

3.4.5 Predictions

The process of predicting (testing) the STest testing samples vary depending on the de-

signed bit-wise or symbol-wise AE frameworks as:

• For Bit-Wise Autoencoders (BWAE) – We have Sigmoid activation at the last layer
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of the decoder, giving us soft probabilistic outputs p̃gθd (u
m
s |yd),∀m = {1, ..., k}.

Thus, the prediction procedure remains the same as Section 2.5.2 to obtain û
(r,m)
s ,

for each rth = {1, ..., STest} testing sample.

• For Symbol-Wise Autoencoders (SWAE) – We have Softmax activation at the last

layer of the decoder, giving us output p̃gθd (1s|yd) ∈ [0, 1]2
k . Then for each oth =

{1, ..., STrain} training sample, we determine the symbol so with the largest proba-

bility, as follows:

so = arg max
m′=1,...,2k

(
1(m

′,o)
s

)
, ∀ o. (3.12)

Now, we have to perform bit-labelling, for the 2k symbols. As detailed earlier bit-

labelling can become a 2k! combinatorial problem. Thus, we employ a heuristic

approach to label the symbols, wherein we map the symbols to bits sq 7→ ûq
s ac-

cording to the Gray codes. For example, for QPSK modulation, i.e. (n, k) = (1, 2),

we have 4 symbols as output, we label the symbols as s1 7→ {0, 0}, s2 7→ {0, 1},
s3 7→ {1, 1}, and s4 7→ {1, 0}, respectively. Then for each rth testing sample we

find the symbol sr with the largest probability, as

sr = arg max
m′=1,...,2k

(
1(m

′,r)
s

)
, ∀ r. (3.13)

And utilize the bit-labelling done for the training dataset to map ûr
s from sr.

Then, we calculate the bit-error-rate (BER) between the true bits intended to be transmit-

ted (ur
s) and predicted bits decoded at the receiver (ûr

s).

3.5 An Information-Theoretic View of Convergence of the

Proposed AE Frameworks

In this section, we demonstrate the impact of varying transmit SNR Eb/N0 and the con-

vergence of training of the proposed symbol-wise and bit-wise AE frameworks, by giving

following Propositions.

Proposition 1 For a sufficiently large block length (n), the training of the bit-wise and

symbol-wise AE frameworks converge to a global minima above a minimum required

SNR.

Proposition 2 For a sufficiently large block length (n), the training of the bit-wise AE

framework converges faster than the symbol-wise AE framework.
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Proof: We follow similar steps as the Proof of Propositions 2–4. For any received

block of complex baseband symbols, yd, the categorical CE loss in (3.7) for the symbol-

wise AE can also be represented as

J SWAE (θs,θd) = H
(
psθs (1s|yd), p̃dθd (1s|yd)

)
(3.14)

where H
(
psθs (1s|yd), p̃dθd (1s|yd)

)
denotes the categorical CE loss between the true dis-

tribution psθs (1s|yd) at the NN encoder of the source node and the learnt distribution

p̃dθd (1s|yd) at the NN decoder of the destination node, with parameters θs and θd, respec-

tively. Now, we firstly derive the categorical CE loss for the symbol-wise AE by taking

the expectation of (3.14) with respect to yd, as follows:

J SWAE(θs,θd) : = Eyd

[
H
(
pfθs (1s|yd), p̃gθd (1s|yd)

)]
(3.15a)

= −Eyd

 2k∑
m′=1

pfθs (1
m′

s |yd) log p̃gθd (1
m′

s |yd)

 (3.15b)

= −
2k∑

m′=1

∫
yd

p(yd)pfθs (1
m′

s |yd) log p̃gθd (1
m′

s |yd) dyd (3.15c)

=
2k∑

m′=1

∫
yd

pfθs (1
m′

s ,yd) log

[
pfθs (1

m′
s |yd)

pfθs (1
m′
s |yd)p̃gθd (1

m′
s |yd)

]
dyd (3.15d)

=
2k∑

m′=1

∫
yd

pfθs (1
m′

s ,yd) log

[
pfθs (1

m′
s |yd)

p̃gθd (1
m′
s |yd)

]
dyd

−
2k∑

m′=1

∫
yd

pfθs (1
m′

s ,yd) log pfθs (1
m′

s |yd) dyd (3.15e)

= DKL

(
pfθs (1s|yd)||p̃gθd (1s|yd)

)
+Hfθs

(1s|yd) (3.15f)

= DKL

(
pfθs (1s|yd)||p̃gθd (1s|yd)

)
+H(1s)− Ifθs (1s;yd) (3.15g)

where DKL

(
pfθs (1s|yd)||p̃gθd (1s|yd)

)
denotes the Kullback-Leibler (KL) divergence

loss between the true distribution pfθs (1s|yd) at the encoder and the learnt distribution

p̃gθd (1s|yd) at the decoder with parameters fθs and gθd , respectively, H(1s) denotes en-

tropy of the input symbol-vector 1s at the source node, and Ifθs (1s;yd) is the MI between

the input symbol-vector 1s and the received signal at the destination node yd with param-

eters fθs .

In (3.15g), the (3.15a) defines the categorical CE, (3.15b) comes from the definition

of CE, (3.15c) opens the expectation along yd, in (3.15d) we multiply and divide by

pfθs (1
m′
s |yd), in (3.15e) we open the log function, (3.15f) comes from the definition of KL

divergence and entropy, and (3.15g) utilizes the identity H(a|b) = H(a)− I(a; b) [49].
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By minimizing the categorical CE loss in (3.15g), we are optimizing the symbol-

wise AE framework to maximize the symbol-wise MI between input symbol vector at the

source node and received signal at the destination node Ifθs (1s;yd), while minimizing

the KL-divergence DKL

(
pfθs (1s|yd)||p̃gθd (1s|yd)

)
between the posterior distributions

learned at the encoder and the prior distribution learned at the decoder. Further, the en-

tropy of the one-hot vector H(1s) remains constant.

We can now obtain the estimated MI as detailed in Definition 14. Please note that

for the AF relay network, the estimated MI will be divided by 2 because the transmission

takes place in two time-slots or two-phases. Thus estimated MI for symbol-wise AE

becomes ISWAE = ĨSWAE(1s;yd)
/
2. By rearranging the terms in (3.15g) we have

ĨSWAE
fθs

(1s;yd) ≜ Ifθs (1s;yd)−DKL

(
pfθs (1s;yd)||p̃gθd (1s;yd)

)
= H(1s)− J SWAE(θs,θd) (3.16)

Since the first term in (3.16) remains a constant, we can see that the changes in the esti-

mated MI of a symbol-wise AE depends on the changes in the categorical CE loss only.

In the bit-wise AE framework, we minimize the binary CE loss, thus we can directly

utilize the Proof of Propositions 2–4 here. For the sake of brevity, herein we show the final

results. We firstly derive the binary CE loss for the bit-wise AE by taking the expectation

of (2.16) with respect to yd, as follows:

J BWAE(θs,θd) :=
k∑

m=1

Eyd

[
H
(
pfθs (u

m
s |yd), p̃gθd (u

m
s |yd)

)]
≜ DKL

(
pfθs (us|yd)||p̃gθd (us|yd)

)
+H(us)− Ifθs (us;yd) (3.17)

Next, we determine the estimated MI for the bit-wise AE for the AF relay network, given

as IBWAE = ĨBWAE(1s;Yd)
/
2, divided by 2 because of dual-hop transmission, where

ĨBWAE(1s;yd) = H(us)− J BWAE(θs,θd) (3.18)

Similar to the symbol-wise AE’s estimated MI, the changes in the estimated MI of a bit-

wise AE depends on the changes in the binary CE loss only.

Lastly, by simulations, we analyze the convergence of the training of proposed symbol-

wise and bit-wise AE frameworks. In particular, we train a separate symbol-wise (or

bit-wise) AE for each Eb/N0 (in dB) level. Once the symbol-wise and bit-wise AEs are

trained we note the validation CE loss J SWAE (θs,θd) and J BWAE (θs,θd) at the last epoch

of the training, and obtain the estimated MIs ISWAE and ISWAE, respectively.

We now compare the estimated MI for the symbol-wise and bit-wise AE for the AF

relay networks in Fig. 3.5.1. We keep (n, k) = {(1, 2), (2, 4), (4, 8)} under AWGN chan-
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Figure 3.5.1: Estimated MI versus transmit SNR Eb/N0.

nels. As the transmit SNR increases the estimated MI increases, until it reaches the upper

bound k/2. This suggests the KL-divergence loss approaches 0 as Eb/N0 increases indi-

cating that the proposed AE frameworks can well approximate at a moderate Eb/N0, but

bit-wise AE shows ≈ 6 dB improvement in estimated MI at Eb/N0 = 0 dB for AE-based

modulation design (n = 1). The improvement of bit-wise AE further increased with AE-

based block modulation design (n > 1) where we see that bit-wise AE shows ≈ 10 dB

improvement in estimated MI at Eb/N0 = 0 dB. As the entropy term in (3.16) and (3.18)

is equal, the estimated MI depends only on the classification errors (or the CE losses)

calculated across the 2k input-output for the symbol-wise AE compared to k input-output

in the bit-wise AE, and the low SNR regime leads to more classification errors in AE

training with the additional (2k − k) number of classes in a symbol-wise AE.

Thus, minimizing the binary CE loss for the bit-wise AE leads to faster convergence

of the AE to global minima compared to the minimization of the categorical CE loss for

the symbol-wise AE, while both the AEs converge to a global minima at a moderate SNR.

3.6 Numerical Results

In this section, we evaluate the proposed bit-wise and symbol-wise AE frameworks for

the AF relay networks with practical SNR values. We utilize QPSK modulation similar

to [36]. To train the proposed architectures we utilize SGD with Adam optimizer [42],

where the weights of the dense layers are initialized with the Glorot initializer [45]. We

keep the learning rate τ = 0.00125, batch size B = 6000, number of training epochs as

50, and transmission power of each node Ps = Pr = 1. We create the training and testing

dataset, comprising of transmitted bits, fading channels, and noise with different Eb/N0,

in the MATLAB. While we implement the proposed AE framework using Keras [43]

with Tensorflow [44] as back-end. We train the AE framework using the training dataset
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created in MATLAB. We show the performance for AWGN and RBF channels, where

the channel remains constant during a transmission block of n symbols and then changes

randomly. For the conventional scenarios, we utilize the optimal MLD in (6.5) at the

destination node.

We have created the bit-wise and symbol-wise AE for the AF relay networks such that

it remains unaffected of testing SNR values. In other words, we create a single AE model

that can be deployed for any testing SNR. Thus, unlike the previous works in [27, 38],

our proposed symbol-wise and bit-wise AE frameworks do not need the SNR value for

prediction. For this, we create a training dataset of 105 samples for each of the SNR

values in S, and we test the designed models on the unseen testing dataset of 105 samples.

For AWGN channels, we keep the S = {4} dB and for the RBF channels, we keep the

S = {3, 10, 23, 28, 38, 42} dB. We note that for AWGN channels, only one SNR point

brings the best AE performance, in particular, a low SNR point, intuitively this is because

in the presence of large AWGN the AE learns to map the constellation points as far away

as possible. For the RBF channels, we need multiple SNR points to obtain the best AE

performance, ranging from low SNR to high SNR points, intuitively this is because the

AE needs to learn to map constellation in the presence of both RBF channels in two-hop

transmission and AWGN at the relay and destination node, thus when training only a

low SNR point the AE observes only noise and thereby is not able to learn to map the

constellation optimally leading to the stagnation in BER curves, especially in differential

scenarios.

3.6.1 AE-based Modulation Design of the AF relay Network under
AWGN channels

In this subsection, we evaluate the proposed AE-based modulation design, i.e. we keep

the number of channels reused n = 1. Particularly we keep (n, k) = (1, 2) and for sake

of clarity, we utilize AWGN channels by considering h(·) = 1, this assumption holds as

there is no direct link between the source and destination link. Also, there are no Lambda

layer at the decoders.

We show the transmit SNR (Eb/N0) versus the BER performance in Fig. 3.6.1a. As

the SNR increases the BER reduces. As we know that MLD is optimal for AWGN chan-

nels, we can see that the proposed bit-wise AE achieves performance similar to the op-

timal MLD of the conventional AF relay networks. Whereas the proposed symbol-wise

AE performs ≈ 1 dB worse than the optimal MLD. This can be understood by the con-

stellation learnt by the AEs in Fig. 3.6.1b. The constellation learned by the encoder of the

source node in both the proposed bit-wise and symbol-wise AEs are four symbols for four

possible combinations of bits (k = 2). Thus, the NN-based encoder forms 2k symbols for
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Figure 3.6.1: Performance evaluation for the AE-based modulation design, with (n, k) =
(1, 2), for the AF relay networks.

k input bits in both the bit-wise and symbol-wise AE. Further, bit-wise AE is leading to an

automatic bit-labeling in Gray coding format, whereas bit-labeling for symbol-wise AE is

done heuristically as detailed in Section 3.4.5. Furthermore, bit-wise AE leads to optimal

rotation and translation leading to the performance gains, compared to symbol-wise AE.
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(c) BWAE + PN
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(d) BWAE + PN + RTN
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(e) BWAE + RTN.
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(f) [57].

Figure 3.6.2: t-SNE representation in 2 dimensions.

3.6.2 AE-based d-BCM Design under RBF channels

In this subsection, we evaluate the performance of the proposed bit-wise and symbol-wise

AE-based d-BCM design, i.e. we keep the number of channels reused n > 1, in particular,

we keep (n, k) = (7, 8), under RBF channels. Herein we consider a differential scenario,

thus none of the (S, R, D) nodes has the CSI knowledge or noise variance information

for any links. We perform AE-based d-BCM designs. For the conventional scenarios, we

consider (7, 4) Hamming coding, along with differential QPSK and MLD decoding. We

utilize TP-based α in (3.5) and CS-based α in (3.6) for the conventional and the proposed

AE frameworks. Note that we do not have any Lambda layers at the decoder.

The t-SNE [54] is a widely adopted metric in the ML wireless community [12], [57],

[67] for insights into the AE-based designed constellations in higher dimensional space,

defined as Definition 15. From Fig. 3.6.2, we can see that approximately 256 = 28 clusters

are formed in the 2-dimensional space for all the proposed AE models, indicating that

approximately 2k codewords are formed while designing block coded modulation for k

bits in bit-wise AE and 2k symbols in symbol-wise AE frameworks. Apart from this, we

can not obtain any further intuition (similar to Chapter 2). Thus, we will focus on the

other metrics hereafter.

For greater insights, we propose to evaluate the following metrics generally used for

sphere packing1 to characterize the optimality of designed (differential) block coded-

1We can define the problem of sphere packing as the packing of M points in a 2n-dimensional space,
with each point considered as the center of a 2n-dimensional hypersphere of a given diameter and the aim
remains to pack each of these spheres as densely as possible without overlapping, such that the Euclidean
distance between any two points is above a defined value. Generally speaking, the problem of sphere
packing increases with increase in n dimensions and becomes infeasible for large values of n. Whereas, the
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modulation in 2n-dimensions [55]: minimum Euclidean distance dEmin
(see Definition 16),

normalized second order moment En (see Definition 17), normalized fourth order moment

or Kurtosis χ (see Definition 18), and

Definition 20 (Constellation figure of merit) This metric is the most suitable energy met-

ric as the modulation constructions are being analyzed at the identical bandwidth, given

as

CFM = n
/
En (3.19)

Conventional versus Proposed AE Frameworks

We compare the performance of conventional (d-QPSK + (7, 4) Hamming coded) and

proposed AE frameworks using TP-based α in (3.5), in Fig. 3.6.32. From Table 3.6.1, we

can see that the minimum Euclidean distance for the designed symbol-wise AE is 1.30

compared to only 0.76 in the conventional scenario, still the symbol-wise AE performs

≈ 0.8 dB worse than the conventional scenario. This can be explained by Remark 8 below.

Remark 8 From Table 3.6.1 we have χ = 1 indicating that a symbol-wise AE performs d-

BCM design as spherical codes in 2n = 14-dimensional space. Which is not of the form

of a grid, thereby leading to a 28! combinatorial-problem for bit-labeling the designed

codewords in the 2n-dimensional space. Although we utilize a heuristic method to label

the bits in codewords as the gray-coding format, it is still sub-optimal leading to the

performance degradation of the symbol-wise AE.

In Fig. 3.6.3, we can see that the bit-wise AE performs ≈ 3.5 dB better than the conven-

tional scenario. This can be explained by the following Remark 9.

Remark 9 Firstly, we utilize the minimization of the binary CE loss which is equiva-

lent to maximizing the generalized mutual information (GMI) of the relay network (see

Chapter 2). Secondly, we have shown in (3.17) that by minimizing the binary CE loss

we maximize the bit-wise MI, which is closely related to achievable rate by the bit-metric

decoding (BMD) [27]. Thirdly, we are performing d-BCM design, thus the constellation

design is taking place in 2n-dimensional space, which from the modulation perspective,

is leading to the maximization of the minimum Euclidean distance and minimization of

packing density of the points to 1.32 and 3.9 in bit-wise compared to the 0.76 and 12.1 in

AE-based methods provide us an easy solution to learn the mappings in higher dimensional space.
2Please note that we see similar performance gains by using CS-based α in (3.6), thus for the sake of

brevity, we show the performance with only TP-based α in Fig. 3.6.3.
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Figure 3.6.3: Conventional versus Proposed AE Frameworks.

Table 3.6.1: Insights using other metrics for d-BCM design

Model
Minimum Euclidean Normalized second Normalized fourth Constellation Figure

Distance moment moment of Merit
dEmin

(↑ better) En (↓ better) χ CFM (↑ better)

Conventional Diff. QPSK
0.76 12.1 1 0.6+ Hamming Code

State-of-the-art [57] 0.9 8.6 1 0.8
Symbol-wise AE 1.30 4.1 1 1.7

Bit-wise AE 1.32 3.9 1 1.8
Bit-wise AE + PN at relay 1.30 4.1 1 1.7
Bit-wise AE + RTN at dest. 1.27 4.3 1 1.6

Bit-wise AE + PN at
1.31 4.1 1 1.7relay + RTN at dest.

conventional scenarios, as seen in Table 3.6.1; and from the coding perspective, is lead-

ing to the maximization of the minimum Hamming distance between the codewords. This

is because we have already seen in AWGN channels that bit-wise AE learns bit-labeling

in Gray coded format, thus the maximum error between two adjacent points is 1 bit. In

contrast, the conventional d-QPSK is taking place in only 2-dimensions with the addition

of parity check bits using Hamming codes. Thus, end-to-end learning models can learn

the d-BCM designs in n times higher dimensional space, such that no CSI knowledge is

required at the NN decoder in the destination node to decode the signal.

We can compare the performance of the bit-wise and symbol-wise AE framework with

the following Remark 10.

Remark 10 In Table 3.6.1, we can see that the minimum Euclidean distance, packing

density, and constellation figure of merit of the points designed by the symbol-wise AE and

bit-wise AE becomes {1.30, 4.1, 1.7} and {1.32, 3.9, 1.8}, respectively, both of which are

very close to each other. Thus, minimizing the binary CE in bit-wise AE and categorical

CE in symbol-wise AE almost forms similar d-BCM design as a spherical code (since
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Figure 3.6.4: Bit-wise AE with power normalization (PN) at relay node.

χ = 1 in both the cases). The major difference in the BER performance (≈ 5 dB as seen

in Fig. 3.6.3) comes from the fact that automatic bit-labeling is done in almost a gray

coded format in bit-wise AE.

Using Power Normalized AF Relay Node

We know that as the transmit SNR increases the noise power at the relay node decreases,

thus the amplification factor defined as (3.2) will increase. But as we do not have CSI

knowledge or noise variance of the links in the TP-based α in (3.5), we obtain the constant

amplification factor of α = 0.707, which remains sub-optimal in low SNR regimes but

remains not accurate for high SNR regimes. However, CS-based α in (3.6) utilizes the

second-order channel statistics and noise variance to determine the amplification factor.

As a result, in Fig. 3.6.4 we can see that the knowledge of channel statistics and noise

variance at the relay node helps in designing more accurate amplification factor, leading

to ≈ 2 dB gain with CS-based α in BER performance compared to the TP-based α. As

now, we have understood the importance of determining the accurate amplification factor,

we wanted to create an amplification factor that satisfies the following constraints – (1)

does not include any deep learning layers at the relay node, and (2) does not require

noise variance or CSI knowledge or even second order channel statistics. Both of these

conditions will be satisfied if we utilize a power normalization layer. Hence, we replace

the process of constant amplification with a PN layer as discussed in Section 3.4.2. In

Fig. 3.6.4, we can see that inclusion of the PN layer brings performance improvement

of ≈ 8.5 dB over the conventional scenario with TP-based α. This is because the PN

layer is helping in normalizing the n symbols’ power to n, proving extremely beneficial

especially for higher SNR regimes. Interestingly, in Table 3.6.1 we can see that bit-wise
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Figure 3.6.5: Radio transformer network (RTN)

AE with power normalization layer at relay forms spherical codes with χ = 1 and slightly

worsen the AE-based d-BCM design by reducing dEmin
and increasing En compared to

conventional relay-based bit-wise AE. This indicates that the performance improvement

by adding PN layer is only because the PN layer is creating a better amplification factor

at the relay node than designed with the CS or TP-based α.

Including an Additional RTN in Lambda Layers at the Destination Node

We propose a RTN (detailed in Section 2.3) as shown in Fig. 3.6.5, and evaluate the

impact of including an RTN with the NN decoder in a bit-wise AE for the AF relaying

(having cascaded channels) in Fig. 3.6.6. In particular, we include RTN in Lambda layers

in the NN decoder in Table 3.4.4. Including an RTN in the decoder of the proposed bit-

wise AE gives the same BER performance as without an RTN in the decoder. Intuitively,

this might be because we have cascaded channels from two-hops in AF relaying that

needs to be decoded together, but also because even without RTN the decoder was able to

decode the signals with higher accuracy so including an RTN is not helpful to improve the

performance in AF relaying networks. In fact, from Table 3.6.1, we can see that including

an RTN at the destination node slightly worsen the AE-based d-BCM design.

We check the convergence of the training accuracy of the bit-wise AE with and with-

out an RTN in the decoder in Fig. 3.6.7. The RTN in decoder starts with higher accuracy

(or lower CE loss), and starts converging in 2 epochs, whereas if we do not have an RTN

in decoder it starts with lower accuracy and needs approximately 7 epochs for conver-

gence. We can see that including RTN will give the same accuracy as without RTN once

15 epochs are reached. Thus, RTN in destination node for the AF relay networks can

be helpful in scenarios where re-training time plays an important role in deciding the de-

ployment of the AE network in real-world scenarios, but at the expense of slightly worse

AE-based d-BCM design.
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Figure 3.6.6: RTN network in decoders and comparison with [57].
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Comparison of Proposed BWAE with [57]

All prior works on the AE-based relay networks focus on either the two-way AF re-

lay networks performing physical network coding [38] or the decode-and-forward relay

networks [37, 39, 36, 67]. Specifically, both relaying networks assume processing capa-

bilities in the relay node, which are replaced by the NN-based architecture. However,

in practice, the one-way AF relaying networks are employed widely because of their

low implementation complexity. This is because all the operations, i.e., signal reception,

amplification, and re-transmission, take place in the analog domain. However, in the

absence of the NN-based processing at the relay node, thus removal of noise amplifica-

tion cannot take place, and all the burden of the performance improvement comes to the

coded-modulation designed (decoded) at the source (destination) node. In our prelimi-

nary work [57] for a one-way AF relay network, we considered the NN-based processing

at the relay node. However, in this work, for the first time, we consider that the re-

lay node does not have any NN like the conventional scenario. Thus, we compare the

proposed bit-wise AE with the state-of-the-art symbol-wise AE-based AF relay network

in [57] in Fig. 3.6.6. The authors in [57] utilized a NN-based relay node. In the pro-

posed bit-wise AE, we utilize a conventional relay node with TP-based α in (3.5). Still,

the proposed bit-wise AE with constant amplification factor performs better than [57] for

up to Eb/N0 ≤ 17 dB and BER performance remains close thereafter. Further, if we

utilize a power-normalization layer at the relay node, the proposed bit-wise AE always

outperforms [57]. This is because in Table 3.6.1 we can see that the minimum Euclidean

distance, second order moment and CFM of the proposed bit-wise and symbol-wise AE

frameworks is {(1.32, 3.9, 1.8), (1.30, 4.1, 1.7)} which is much better compared to the

symbol-wise AE framework designed in [57] {0.9, 8.6, 0.8}. Thus, utilizing a conven-

tional relay node with a power normalization layer is better than utilizing NN-based relay

node, but also utilizing conventional AF relay node with TP-based α gives better per-

formance compared to NN-based relay node up to moderate SNR, without utilizing any

channel statistics or noise variance at the relay node. However, if we utilize CS-based α

then a conventional AF relay node always outperforms the NN-based relay node.

3.6.3 AE-based BCM Design under RBF channels

A major concern with previous works in [57, 38] was that the AF relay node had the

unfair advantage of knowing the full CSI knowledge (thus additional phase information)

and presence of deep learning layers (thus additional processing-power) at the relay node.

In this subsection, we consider that the relay node only knows channel gains and noise

variance information, and has no deep learning layers. Also, destination node has full CSI

knowledge. We keep (n, k) = (7, 8). For the conventional scenario, we consider (7, 4)
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Figure 3.6.8: AF relay networks with CSI knowledge.

Hamming coding, along with QPSK modulation-demodulation and MLD decoding. We

first detail the configuration of two Lambda layers for the decoder (in destination node) of

the bit-wise AE with CSI knowledge – (1) in the first lambda layer, we perform channel

equalization for the first-hop channel hsr on received signal yd, (2) in the second lambda

layer, we perform channel equalization for the second-hop channel hrd on the output of

first lambda layer. Now the output after the second step is processed output of Lambda

layers LL, given to the decoder in the destination node to predict the output es.

In Fig. 3.6.8, we see that as Eb/N0 increases the BER reduces. Again, similar to the

reasons mentioned in Remark 9, bit-wise AE-based BCM design performs better than the

conventional scenario by ≈ 3 dB. We also evaluated the performance of the proposed

bit-wise AE-based BCM design with a power-normalization layer, instead of the ampli-

fication factor, at the AF relay node. Unlike, the differential scenario in Fig. 3.6.6, we

see that BER performance remains the same with the PN relay, this is because we have

varying amplification factor as detailed in (3.2) for conventional AF relays. Furthermore,

in Table 3.6.2 we can see that spherical codes are formed (χ = 1). Also, the bit-wise AE

with conventional relay node obtains the superior d-BCM design compared to the relay

node with a power normalization layer, similar to the differential scenario in Table 3.6.1.

Lastly, for sake of comparison to the differential scenario shown in Fig. 3.6.6, we can see

that even without CSI knowledge the proposed bit-wise AE with a power-normalization

layer performs only 1 dB worse than conventional with CSI knowledge. Also, comparing

the AE-based d-BCM design and BCM design using the Table 3.6.1 and Table 3.6.2, we

can say that by using the CSI knowledge AE can design the BCM by reducing the packing

density to 2.3 compared to 3.9 in the d-BCM, whereas the AE-based d-BCM is only short

of 0.4 packing density compared to the conventional scenario with CSI knowledge.
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Table 3.6.2: Insights for BCM design with CSI knowledge.

Metrics
Conventional QPSK Bit-wise AE Bit-wise AE
+ Hamming Code + PN at relay

Minimum Euclidean Distance
1.4 1.8 1.7

dEmin
(↑ better)

Normalized second moment
3.5 2.3 2.5

En (↓ better)
Normalized fourth moment

1 1 1
χ

Constellation Figure of Merit
2 3.1 2.9CFM (↑ better)

Table 3.6.3: Total parameters in the NN-based encoder, decoder and RTN.

NN Node Total Parameters
BWAE SWAE

NN-based Encoder 3, 422 19, 294
NN-based Decoder 47, 336 55, 520

NN-based RTN 3, 488 3, 488

3.6.4 Computational Complexity and Time-Cost Analysis

In this subsection, we detail the computational complexity and time-cost analysis for the

BCM and d-BCM designs for all the proposed AE-based end-to-end learning frameworks

below

• Total Number of Parameters – We consider dense layers in this chapter, which have

associated weights Wl ∈ Rδl−1×δl and bias rl ∈ Rδl terms as optimization pa-

rameters for each lth dense layers. The total number of parameters in each of the

proposed NN-based encoder, decoder and RTN (for both the BWAE and SWAE)

can be given as

P =
J∑

l=0

δl × δl+1 +
J∑

l=1

δl (3.20)

where for the NN-based encoder we have J = 4, δ0 = k in BWAE, δ0 = 2k in

SWAE; for the NN-based decoder we have J = 5, δ5 = k in BWAE, δ5 = 2k in

SWAE; and for the NN-based RTN we have J = 4, δ0 = 2n, respectively. Further-

more, the power normalization layer and Lambda layer in the proposed AE-based

frameworks does not have any optimization parameters. For sake of summary, we

provide the total parameters in the NN-based encoder, decoder and RTN in Ta-

ble 3.6.3.

Directly, the total number of optimization parameters in BWAE and SWAE can be
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Table 3.6.4: Time-cost analysis.

Scenario AE-based Model Training Cost Testing Cost
(in sec.) (in ×10−5 sec.)

d-BCM BWAE (TP-based α) 33.2 3.7
d-BCM BWAE (CS-based α) 33.2 3.7
d-BCM BWAE + PN at relay 33.2 3.7
d-BCM BWAE + RTN at dest 39.4 4.2
d-BCM BWAE + PN at relay + RTN at dest 39.7 4.2

d-BCM SWAE (TP-based α) 49.6 4.7

d-BCM [57] 251.4 6.1

BCM BWAE 137.3 4.8
BCM BWAE + PN at relay 137.2 4.8

calculated as the sum of individual optimization parameters in Table 3.6.3, which is

much less, especially for a BWAE, than the AE-based AF relay network proposed

in [57] where the total number of parameters are 114, 286.

• Memory Space – The memory space of the proposed AE-based frameworks directly

depends on the total optimization parameters in the NN (detailed above). However

in this chapter, we propose to utilize either a conventional or a PN-based AF relay

node. As detailed in Table 6.2.1, the conventional AF relay does not require a mem-

ory buffer since it amplifies and re-transmit the received signal at each time-instant.

However as detailed in Table 3.4.3, the PN-based AF relay requires a memory buffer

to store n symbols to perform power normalization. Thus, utilizing a PN-based AF

relay has a higher memory cost compared to the conventional AF relay node.

• Training and Testing Cost – In this chapter, we utilize an Intel Core i7-6700 CPU,

with a GeForce RTX 2080 Ti GPU of 11 GB RAM on an Ubuntu 18.04.4 LTS OS to

run our simulations both during the training and testing phase. We detail the training

and testing time-cost for the d-BCM and BCM designs in Table 3.6.4, wherein we

utilize ≈ 41% and ≈ 36% of the GPU during training and testing, respectively. In

Table 3.6.4, we can make the following observations:

– The training and testing cost of AEs performing d-BCM design is lesser com-

pared to AEs performing BCM design, this is because in the BCM design the

proposed AE-based frameworks additionally include Lambda layers at the NN

decoder that performs the channel equalization.

– BWAE takes lesser training time in comparison to the SWAE (even though

they both have the same NN architectures) this is because BWAE has k input-

output compared to 2k input-output in SWAE leading to a larger number of

parameters (as detailed in Table 3.6.3) in SWAE.
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– BWAE takes lesser testing time in comparison to the SWAE this is because

we have an additional step of performing heuristic-bit labeling in the SWAE.

– Including a PN layer at the relay node does not impact on training-testing time

cost of the AE-based frameworks.

– In the d-BCM design, the RTN at the destination node increases the NN pa-

rameters in the AE (as detailed in Table 3.6.3) thereby increasing the training

and testing time cost.

– The proposed AE frameworks take almost 6.6× lesser training time and 39%

lesser testing time in comparison to the AE-based AF relay networks in [57].

3.7 Conclusion

In this chapter, we propose end-to-end learning-based BCM and d-BCM designs in 2n-

dimensional space using the bit-wise and symbol-wise AE frameworks for the AF re-

laying network. Also, in this chapter we propose to employ a conventional AF relay

node instead of an NN-based relay node to minimize the implementation complexity and

also improve BER performance compared to NN-based AF relay node in our previous

work [57]. Furthermore, the proposed bit-wise AE frameworks take almost 6.6× lesser

training time and 39% lesser testing time in comparison to [57]. Thus, in the Chapter 4

on AF relay networks of this thesis, we propose to utilize a conventional AF relay node.

We create a single AE model trained on multiple values of SNRs, that can be deployed

for any testing SNR, without the need of the SNR value for prediction. We show that the

NN-based encoder forms 2k codewords as a spherical code for both symbol-wise or bit-

wise AE frameworks. Also, we show that minimizing the binary CE loss in bit-wise AE

and categorical CE loss in symbol-wise AE almost forms a similar coded-modulation de-

sign as a spherical code. The major difference in the BER performance ≈ 5 dB comes

from the fact that automatic bit-labeling is done in a gray-coded format in bit-wise AE,

whereas we need to perform the bit-labeling in symbol-wise AE by solving a 2k! combi-

natorial problem. We show that minimizing the binary CE loss for the bit-wise AE instead

of the categorical CE loss for the symbol-wise AE leads to faster convergence of train-

ing at low SNR regimes, while both the AEs converge to the upper bound of estimated

MI at a similar moderate SNR. Furthermore, we show that the bit-wise AE takes lesser

training and testing time in comparison to the symbol-wise AE because of automatic bit-

labeling and reduced input-output dimensions. Thus, in the rest of this thesis, we utilize

the bit-wise AE framework for different communication networks.

The proposed AE frameworks (by performing d-BCM designs) are capable of decod-

ing the signal without the CSI knowledge and noise variances of any links. Also, the
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traditional AF relay network is outperformed by the proposed AE by 3 dB. Moreover,

including a power normalization layer at the relay node, that normalizes the n transmit

symbols’ power to n helps us to improve our performance by additional 5 dB. Further,

including an RTN in the decoder of the proposed bit-wise AE gives the same BER perfor-

mance as without an RTN in the decoder, but can be helpful in scenarios where re-training

time plays an important role in deciding the deployment of the AE network. Thus, in the

rest of the thesis we include RTN while performing AE-based d-BCM designs for differ-

ent communication networks. However, the design of RTN is changed in each scenario

for obtaining optimal solutions.

Furthermore, utilizing a conventional relay node with a power normalization layer

is better than utilizing deep learning layers (or NN) at the relay node, but also utilizing a

conventional AF relay node gives similar performance as the relay node with a NN. Lastly,

we show that AE-based BCM design increases the packing density by 1.5 compared to

the AE-based d-BCM designs.
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Chapter 4

AE-based Amplify-and-Forward Relay
Networks with Hardware Impairments

4.1 Introduction

Until now, most of the autoencoder (AE) frameworks employ multiple dense layers in

their neural network (NN) architectures [12]–[40] (as also detailed in Table 2.1). These

dense layers form a weight matrix with the optimization parameters learned by end-to-end

training of the AE by minimizing the cross-entropy (CE) loss. However, as the number

of neurons in a dense layer increases, the number of optimization parameters in the NN

increases exponentially (please see Example 1 in Sec. 4.3 for details). Thus, the AE

frameworks employing large dense layers-based NNs [12]–[40] have a drawback of opti-

mizing a humongous amount of optimization parameters, at the same time, using smaller

dense layers-based NNs reduces the learning capabilities of the AE framework. However,

with the advent of internet-of-thing (IoT) and wireless sensor networks (WSNs) devices,

reducing the optimization complexity of the AE frameworks without sacrificing the AE’s

performance becomes pivotal for the practical realization of AE frameworks in small de-

vices of the future networks.

Furthermore, all the AE-based frameworks consider an ideal network without any

hardware impairments [12]–[40]. In practice, any communication systems, such as re-

laying networks, are compromised by the hardware impairments, e.g., in-phase (I) and

quadrature-phase (Q) imbalance (IQI), power amplifier non-linearities, and phase noise,

leading to undesirable effects such as crosstalks, added image signal, frequency interfer-

ence, etc, deteriorating the network performance [19, 68, 69, 13, 70, 71].

In an ideal case of I/Q matching, the maximum signal-to-interference-and-noise-ratio1

(SINRmax) becomes infinity, while even for small 5◦ phase and 1 dB amplitude offsets can

1The maximum SINR (SINRmax) is calculated by considering IQI and additional hardware impairments
(that has an additional noise effect), without considering any noise at the AF relay and destination nodes.
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deteriorate the maximum SINR to 25 dB and 20 dB, respectively [19]. To counter such

extreme SINR degradation, the zero-forcing (ZF)-based IQI compensation and optimal

maximum likelihood detector (MLD) have been designed for an amplify-and-forward

(AF) relaying network impacted by IQI under a moderate and high SINR regimes [19].

Apart from the IQI that have a multiplicative effect on the signal, tackling the other

additional hardware impairments (AHI) (also reffered as residual hardware impairments)

that have an additive effect on the signal is of notable importance [13]. In the seminal

work [70] the outage probability for both AF and decode-and-forward (DF) relaying is

investigated by considering AHI at the source and relay nodes. While both the multi-

plicative IQI and additive AHI (IQI-AHI) for AF relaying is emphasized in [71] with

optimum MLDs for IQI-AHI compensation.

However, any IQI compensation algorithm such as ZF-based or optimal MLDs [19],

[71] requires the information about IQI parameters, which needs to be estimated sepa-

rately based on the estimation of the effective channel that comprises the IQI parame-

ters [72]. Thereby, IQI estimation leads to increased feedback overhead.

Furthermore, the channel state information (CSI) knowledge of the source-relay- des-

tination channels at the destination node remains a prerequisite for designing IQI com-

pensation algorithms [19, 68, 69, 13, 70, 71, 72]. Thus, differential modulation designs

remains limited to an ideal AF relay network with no hardware impairments [63].

Extending the AE-based AF relay network studied for an in ideal scenario with no

hardware impairments in Chapter 3. In this chapter, we propose an AE-based AF relay

network with NN-based source and destination nodes impacted by the hardware impair-

ments (IQI and/or AHI), with an ideal (without any hardware impairments) AF relay node

assisting the transmission. We propose the amplification factor for the AF relay in the ab-

sence of the CSI knowledge. We also analyze the destructive effects of the IQI and/or AHI

on the received SINR at the destination node. The major contributions of this chapter are

detailed as follows:

• In contrast to the traditional AE frameworks in [12]–[40] wherein a ‘single large’

NN decoder is considered at the destination node, hereby referred as ‘Single AE’,

we propose a novel Average AE with ‘three small’ NN decoders (d1, d2, d3) at the

destination node. Each of these three decoders obtain soft probabilistic outputs,

which are averaged to get the final soft output from the decoder. The benefits of the

proposed Average AE are – (i) the number of combined optimization parameters

of three small NN decoders remain significantly less compared to the number of

parameters in a single large NN decoder, and (ii) the averaging from three soft

outputs help in improving the BER performance compared to Single AE.

• We propose an Average AE-based block coded modulation (BCM) design with CSI
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Figure 4.2.1: AF relay network with I/Q imbalance and aggregate hardware impairments.

knowledge and differential BCM (d-BCM) design without CSI knowledge for the

AF relay networks in the presence of IQI and/or AHI. Within this Average AE

framework, we firstly propose the BCM design with the IQI parameters and CSI

knowledge, wherein we perform ZF-based IQI compensation while the NN de-

coders in Average AE aims to learn removal of the residual IQI and/or AHI. Sec-

ondly, we remove the necessity of the IQI parameters, by proposing BCM design

with CSI knowledge and no IQI compensation, such that the Average AE aims to

directly learn the removal of IQI and/or AHI. Thirdly, we remove the necessity of

both the IQI parameters and CSI knowledge, by proposing d-BCM design, wherein

we also design a radio transformer network (RTN) that helps in removing the im-

pacts of channel and hardware impairments from the received signal.

• For a low SINR regime (SINRmax ranging from 2.6 − 6.6 dB) we consider the

AF relay network in the presence of – (i) only IQI, (ii) only AHI, (iii) both IQI-

AHI, our performance results show that the Average AE-based BCM designs and

d-BCM designs outperform the optimal MLD with IQI and/or AHI shifting the error

floors by extraordinary margins, even outperforming ideal relay networks with no

hardware impairments (IQI and/or AHI).

4.2 System Model

In this section, we detail the system model for a dual-hop AF relay network, where a

source node (S) communicates with a destination node (D) using an AF relay node (R)

in the presence of IQI-AHI at the source and destination nodes, as depicted in Fig. 4.2.1.

All three nodes are assumed to have a single antenna. The direct link between the source

and destination nodes is assumed to be highly attenuated because of large-scale path-loss

or shadowing effects.

4.2.1 Modelling I/Q Imbalance

We detail the IQI at the radio frequency front-ends of the source (transmitter (Tx) side)

and destination (receiver (Rx) side) nodes, while we assume the ideal AF relay transmis-

sion with no IQI [19]. Acknowledging the IQI effects, the complex local oscillator (LO)
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signals at Tx and Rx side can be given as [19]:

zT (t) = cos (ωLt) + jξT sin (ωLt+ ϕT )

= G1e
jωLt +G2e

−jωLt (4.1)

zR(t) = cos (ωLt) + jξR sin (ωLt+ ϕR)

= K1e
−jωLt +K2e

jωLt (4.2)

where ωL = 2πfL, while fL denotes the frequency of the LO; {ξT , ϕT} and {ξR, ϕR}
represent the total effective amplitude and phase imbalances of the source and destination

nodes, respectively. By using (4.1), (4.2) we can obtain the IQI parameters of the source

node (G1, G2) and destination node (K1, K2) as follows:

G1 =
1

2

(
1 + ξT e

jϕT
)
, G2 =

1

2

(
1− ξT e

−jϕT
)
, (4.3)

K1 =
1

2

(
1 + ξRe

−jϕR
)
, K2 =

1

2

(
1− ξRe

jϕR
)

(4.4)

Please note that in the ideal case of I/Q matching, IQI parameters reduce to ξT = ξR = 1

and ϕT = ϕR = 0◦. Thus, in the ideal case, we have G1 = K1 = 1 and G2 = K2 = 0.

4.2.2 Signal Transmission Model

In the first phase, the source node takes k bits as input, represented as us ∈ {0, 1}k, and

maps it to a complex baseband symbol xs ∈ C, such that E {|xs|2} = 1. The up-converted

signal in the presence of Tx side IQI-AHI at the source node [71] becomes

xIQ
s = G1xs +G⋆

2x
⋆
s + ds (4.5)

where (·)⋆ denotes the conjugate operation, and ds is a complex Gaussian random variable

with zero mean, variance E{|ds|2} = σ2
hw and pseudo-variance E{d2s} = 0. The received

baseband signal by the relay node can be given as

yr =
√

Pshsrx
IQ
s + nr (4.6)

where Ps denotes the source transmission power, hsr ∼ CN (0, 1) is the first-hop channel

and nr is the additive white Gaussian noise (AWGN) at the relay node with zero mean

and σ2
r variance. In second phase, the relay node amplifies the received signal with am-

plification factor, given as

α = (Ps |hsr|2 E{|xIQ
s |2}+ σ2

r)
−1/2 (4.7)

84



CHAPTER 4. AE-BASED AMPLIFY-AND-FORWARD RELAY NETWORKS WITH
HARDWARE IMPAIRMENTS

The amplified signal xr = αyr is re-transmitted and the signal received by the destination

node is represented as

yd =
√

Prαhrdxr + nd (4.8)

where Pr is the relay transmission power, hrd ∼ CN (0, 1) is the second-hop channel and

nd ∼ CN (0, σ2
d) is the AWGN at the destination node. Considering the Rx side IQI effect,

we have

yIQd = K1yd +K2y
⋆
d (4.9)

=
√

PsPrα (K1G1hsrhrd +K2G2h
⋆
srh

⋆
rd)xs︸ ︷︷ ︸

Desired signal

+

√
PsPrα (K1G

⋆
2hsrhrd +K2G

⋆
1h

⋆
srh

⋆
rd)x

⋆
s︸ ︷︷ ︸

Self-interference signal with IQI

+

√
PsPrα (K1hsrhrdds +K2h

⋆
srh

⋆
rdd

⋆
s)︸ ︷︷ ︸

AHI noise with IQI

+

√
Prα (K1hrdnr +K2h

⋆
rdn

⋆
r) +K1nd +K2n

⋆
d︸ ︷︷ ︸

Noise with IQI

= (Λxs + Ωx⋆
s) + ñds + ñrd (4.10)

where

Λ =
√

PsPrα (K1G1hsrhrd +K2G2h
⋆
srh

⋆
rd)

Ω =
√
PsPrα (K1G

⋆
2hsrhrd +K2G

⋆
1h

⋆
srh

⋆
rd)

ñds =
√
PsPrα (K1hsrhrdds +K2h

⋆
srh

⋆
rdd

⋆
s)

ñrd =
√
Prα (K1hrdnr +K2h

⋆
rdn

⋆
r) +K1nd +K2n

⋆
d

In the received signal (4.10), we can see that IQI leads to signal distortion, Λxs, and

causes self-interference, Ωx⋆
s, while the AHI introduces additional noise ñds , each of

which even individually deteriorates the performance of the AF relay network signifi-

cantly.

Remark 11 Please note that the benefit of the considered system model is that it encom-

passes all the possible scenarios for modelling the hardware impairments in an AF relay

network, detailed as follows:

1. AF relay networks with IQI-AHI (c.f. [71]) – As proposed above.

2. AF relay networks with only IQI (c.f. [19], [68], [69]) – Herein, we consider only

the impact of IQI, by keeping ds = 0 in the proposed system model.
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3. AF relay networks with only AHI (c.f. [13, 70]) – Herein, we consider only the

impact of AHI, by keeping G1 = K1 = 1 and G2 = K2 = 0 in the proposed system

model.

4. Ideal AF relay networks – Herein, we consider no hardware impairments (no IQI

and/or AHI), by keeping G1 = K1 = 1, G2 = K2 = 0 and ds = 0 in the proposed

system model.

4.2.3 Without the CSI knowledge

In the case of the absence of the CSI knowledge, we propose to employ traditional differ-

ential modulation-demodulation techniques at the source and destination nodes with the

signal transmission-reception process as Sec. 4.2.2. While, we modify the amplification

factor in (4.7) as

α = (Psσ
2
srE{|xIQ

s |2}+ σ2
r)

−1/2 (4.11)

where σ2
sr = E{|hsr|2} is the long term expectation of the first hop channel. Note a

similar amplification has been adopted for an Ideal AF relay networks with no hardware

impairments (IQI and/or AHI) in [63].

4.2.4 Signal-to-interference-and-noise-ratio (SINR) at the Destina-
tion node

Now, we evaluate the destructive effect of the hardware impairments (IQI and/or AHI)

on the AF relay networks. Let us assume that the transmitted symbol power is unity and

Ps = Pr = 1. Then, using (4.10) we can determine the SINR (in dB) at destination node

as follows:

SINR =
E {|Λxs|2}

E {|Ωx⋆
s|2 + |ñds|2 + |ñrd|2}

(4.12)

=
|K1|2|G1|2 + |K2|2|G2|2

|K1|2|G2|2 + |K2|2|G1|2 + (σ2
hw + σ2

r + σ2
d) (|K1|2 + |K2|2)

(4.13)

Now, we can determine the maximum SINR (SINRmax) (in dB) at the destination node

for proposed AF relay network with IQI and/or AHI by considering there are ‘no’ noise

terms at the relay and destination nodes (σ2
r = 0, σ2

d = 0), detailed as follows:

SINRmax = SINR
(
σ2
r = 0, σ2

d = 0
)

(4.14)

=
|K1|2|G1|2 + |K2|2|G2|2

|K1|2|G2|2 + |K2|2|G1|2 + σ2
hw (|K1|2 + |K2|2)

(4.15)
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In Fig. 4.2.2, by assuming same IQI at the source and destination nodes, i.e., ϕT =

ϕR = ϕ and ξT = ξR = ξ, we analyze the impact of IQI and/or AHI on the maximum

SINR (SINRmax) (in dB) at the destination node of an AF relay network, obtained using

(4.15). In Fig. 4.2.2a, 4.2.2c, 4.2.2e, we can see that the maximum SINR for the Ideal AF

relay networks is SINRmax =∞.

We also analyze the AF relay networks with only IQI in Fig. 4.2.2a, 4.2.2c, wherein

we see that even a small amplitude offset ξ = 0.8 can make SINRmax = 40 dB and a

minor phase offset ϕ = 15◦ can make SINRmax = 30 dB. Moreover, we analyze the AF

relay networks with only AHI in Fig. 4.2.2e, where we can see that even a negligible AHI

σ2
hw = 0.05 can make SINRmax = 20 dB.

In Fig. 4.2.2b, 4.2.2d, 4.2.2f, we consider the impact of both IQI-AHI on the AF relay

networks. As seen in Fig. 4.2.2b, 4.2.2d, even with no IQI (ξ = 1, ϕ = 0◦) the maximum

SINR is limited to only 10 dB. While comparing Fig. 4.2.2e and Fig. 4.2.2f, we see that

combined IQI-AHI deteriorates the maximum SINR dramatically, limiting it to only 6 dB.

Therefore, it becomes pivotal to develop novel techniques for AF relay networks that can

help in the successful transmission of signals in the presence of hardware impairments

(IQI and/or AHI) under such low SINR regimes.

4.3 Proposed Average AE-based Framework for AF Re-

lay Networks with IQI-AHI

In this section, we propose a novel Average AE-based framework for the AF relay network

with the IQI and/or AHI, as shown in Fig. 4.3.1. We consider block-by-block encoding

and decoding at the source and destination nodes, respectively, while the signal transmis-

sion in each phase takes place symbol-by-symbol as detailed in Section 4.2.2, herein n

denotes the block length.

Until now, most of the AE works employ multiple dense layers in their NN architec-

tures [12]–[40]. Please note that the simplest NN is composed of two dense layers, say of

size X and Y neurons, which will form a weight matrix of X×Y optimization parameters

(stored in a weight matrix W).

For example (Example 1), if we have two NNs (NN-1, NN-2) each comprising of two

dense layers, with {X1, Y1} = {512, 256} neurons and {X2, Y2} = {64, 16} neurons,

then the number of optimization parameters in NN-1 and NN-2 becomes 131, 072 and

1024, respectively. Thus, the smaller size of dense layers in NN-2 helps in reducing the

number of optimization parameters exponentially, but also naturally have less processing

capabilities compared to large dense layers-based NN-1.

Thus, in this chapter, we counter the reduced processing capabilities of a single small
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Figure 4.2.2: Impact of IQI and/or AHI on the maximum SINR SINRmax (in dB).
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NN decoder, by considering a collection of multiple small NN decoders. In particular, we

propose that in the NN-based bit-wise AE framework, multiple small NN decoders can

be learned at the same time, wherein each decoder will naturally learn different sets of

weights, thereby producing different probabilistic outputs for the same input, which can

be averaged to get the final output.

In particular, in contrast to the traditional AE frameworks in [12]–[40] wherein a

‘single large’ NN decoder is considered at the destination node, hereby referred as Single

AE frameworks, we propose the Average bit-wise AE framework comprising of ‘three

small’ NN decoders (d1, d2, d3) at the destination node. We input the received signal to

each of these three decoders separately. Since each of the three decoders (d1, d2, d3) learn

separate weight matrices, represented by Wi, i = {1, 2, 3}, we obtain three individual

soft probabilistic outputs from (d1, d2, d3), which are averaged to get the final soft output

from the decoder. Then, we perform end-to-end training between the input bits at the

encoder and the final soft output at the decoder to optimize the weight matrices at the NN

encoder and decoders at the source and destination nodes, respectively.

The distinct advantages of the proposed Average AE over the Single AE in [12]–

[40] are two-folds. Firstly, the small number of neurons in dense layers leads to smaller

weight matrices, even with the collection of all the weights
3∑

i=1

Wi still the number of

optimization parameters is dramatically lessened compared to a single large NN-based

Single AE (please see Example 1 above). Secondly, the averaging from three different

decoders’ soft probabilistic outputs enhances the decoding prowess improving the BER

performance (please see Example 2 below).

For example (Example 2), as shown in Fig. 4.3.1, let us consider encoding-decoding

of 8 bits, where the encoder inputs 0 and 0 at its 5th and 6th bit locations. However, the

decoder d2 predicts it as 0.6 and 0.6, which in case of only a single decoder that learn

weights W2 (similar to the decoder d2) would have decoded it as 1 and 1, as in the single

decoder-based Single AE in prior works [12]–[40]. But since we introduce the concept of

three small decoders and taking the mean of their soft probabilistic outputs, the average

soft probabilistic output becomes 0.3 and 0.4 which are decoded as 0 and 0. Naturally,

averaging soft probabilistic outputs becomes even more valuable when these soft outputs

lie close to the hard decision threshold of 0.5.

In this chapter, we utilize L fully-connected (dense) layers, wherein the output of the

lth ∈ {1, ..., L} dense layer ωl ∈ Rδl can be given as (2.2). Now, we present the details of

the proposed Average AE framework below.
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Figure 4.3.1: Proposed Average AE framework-based AF relay networks with IQI-AHI.
Note the Example 2’s 5th and 6th bits are shown in a green box.
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4.3.1 Designing of the Encoder at the Source Node

The source node takes k bits us ∈ {0, 1}k as input and maps it to n complex base-

band symbols xs ∈ Cn (performing block-by-block encoding), by a mapping function

fθs(us,xs), where θs is the NN encoder’s parameters of the M dense layers, detailed in

Definition 6 and given as (2.3). Now, the baseband representation of the up-converted

signal in the presence of Tx IQI and AHI at the source node becomes xIQ
s ∈ Cn, given as

xIQ
s = G1fθs(us,xs) +G⋆

2 (fθs(us,xs))
⋆ + ds (4.16)

4.3.2 Designing of the AF Relay Node

The signal received at the AF relay is given by (4.6). Similar to Chapter 3, we propose

to utilize the conventional AF relay node because of its low implementation complexity.

Thus, the received signal is amplified as xr = αyr, using the amplification factor given

in, (4.7) in the presence of CSI knowledge and (4.11) in absence of the CSI knowledge.

4.3.3 Designing of the Decoder at the Destination Node

The relay re-transmits the amplified signal to the destination node, which receives the

signal yIQd as (4.10) considering the Rx side IQI effect at the destination node. Once the

decoder receives n symbols, the decoder implements block-by-block decoding in each of

the small decoders (d1, d2, d3), such that yIQ
d ∈ Cn symbols are demodulated to three soft

probabilistic outputs p̃gθdi (u
m
s |y

IQ
d ), ∀,m = 1, ..., k and i = 1, ..., 3, by three de-mapping

functions gθdi (y
IQ
d , p̃gθdi

(us|yIQ
d )), ∀ i, where θdi denotes the weights (Wi) and bias (bi)

terms of N dense layers in the ith NN decoder (di), represented as follows:

gθdi (y
IQ
d , p̃gθdi

(us|yIQ
d )) = σi

N(W
i
Nσ

i
N−1(W

i
N−1σ

i
N−2(...σ

i
1(W

i
1LL(y

IQ
d ) + bi

1)...)+

bi
N−1) + bi

N), ∀ i (4.17)

where LL denotes the Lambda layer with no trainable parameters, as detailed in Def-

inition 10. Now, we take the average of the three probabilistic outputs from the three

decoders which becomes the final (actual) output from the NN decoder, given by

p̃gθd (us|yIQ
d ) = µ

(
p̃gθdi

(us|yIQ
d ), ∀ i

)
(4.18)

where µ(·) denotes element-by-element mean operation. For the sake of brevity, we can

also collectively show all the learning parameters and de-mapping functions in the three

NN decoders as θd = {θd1 ,θd2 ,θd3} and gθd = {gθd1 , gθd2 , gθd3}, respectively.
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4.3.4 Proposed Average AE-based BCM design and d-BCM design
Methodologies

We propose the Average AE-based BCM design with CSI knowledge and d-BCM design

without CSI knowledge by designing the Lambda layers in the three small decoders, as

detailed below:

• We propose two approaches for the BCM design depending on the availability of

IQI parameters:

– BCM design: ZF IQIC – The ZF-based IQI compensation is a popular tech-

nique [19]. Herein, we aim to cancel the self interference term in (4.10) and

detect the transmitted signal xs. This is achieved by concatenating the received

signal yIQd and its conjugate yIQ
⋆

d in a matrix form, as[
yIQd

yIQ
⋆

d

]
=

[
Λ Ω

Ω⋆ Λ⋆

][
xs

x⋆
s

]
+
√

PsPrα

[
K1hsrhrd K2h

⋆
srh

⋆
rd

K⋆
2hsrhrd K⋆

1h
⋆
srhrd

][
ds

d⋆s

]
+

√
Prα

[
K1hrd K2h

⋆
rd

K⋆
2hrd K⋆

1hrd

][
nr

n⋆
r

]
+

[
K1 K2

K⋆
2 K⋆

1

][
nd

n⋆
d

]
y = Axs +Bds +Cnr +Dnd (4.19)

Using (7.8) we can obtain the multiplication factor A =

[
Λ Ω

Ω⋆ Λ⋆

]
. Then, we

propose to perform ZF-based IQI compensation as ŷIQd = A−1 × yIQd in the

Lambda layer LL for all the n received symbols. Thereby, each of the three

small NN decoders of the proposed Average AE framework basically aims to

learn the removal of residual IQI and/or AHI.

– BCM design: No IQIC – The ZF-based IQI compensation assumes the knowl-

edge of IQI parameters, but in practice, we have to estimate it separately. Thus

to remove the necessity of estimating IQI parameters we let the decoders of

the Average AE directly learn the removal of IQI and/or AHI. Hence, we only

perform channel equalization of dual-hop channels (hsr, hrd) in the Lambda

layer LL of three small NN decoders.

• We propose Average AE-based d-BCM design, wherein we remove the necessity of

both CSI knowledge and IQI parameters by considering an NN-based radio trans-

former network (RTN) (detailed in Section 2.3) in the Lambda layers LL of each

the three small NN decoders. Until now we investigated RTN to remove the chan-

nel impairments (Chapters 2, 3), in this chapter, we propose an RTN that helps in

removing the dual-hop channel as well as hardware impairments (IQI and/or AHI)
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Table 4.4.1: NN architectures at different nodes in the proposed Average AE framework.

NN Encoder ith NN Decoder RTN in Lambda layer

Neurons Remark Neurons Remark Neurons Remark

δ1 = k Input (us) δ1 = 2n Input (yIQ
d ) δ1 = 2n Input (yIQ

d )

δ2 = 32 σ1 = Tanh δ2 = 2n Lambda layer (LL) δ2 = 128 σ1 = Tanh
δ3 = 16 σ2 = Tanh δ3 = 64 σ1 = Tanh δ3 = 32 σ2 = Tanh
δ4 = 2n σ3 = Linear δ4 = 16 σ2 = Tanh δ4 = 2n σ3 = Linear
δ5 = 2n Power normalization (PN) δ5 = k σ3 = Sigmoid

δ5 = [2n, 2n]

Concatenate 2n Input

δ6 = 2n Output (xs) δ6 = k
Soft output and 2n output

(p̃gθdi
(us|yIQ

d )) of previous layer

from the received signal at the destination node. Further, we consider each of the

three small NN decoders consists of a separate NN-based RTN because each of

these three RTNs will be trained with different weights, helping in a better averag-

ing of the soft probabilistic outputs.

Remark 12 Please note the output of the Lambda layers LL for the three small NN de-

coders remains the same in BCM design and becomes different in d-BCM design because

we only perform mathematical operations in BCM design and employ NNs in d-BCM

design, respectively.

4.4 Training of the Proposed Average AE-based Frame-

work

Please note that we design the NN architecture at encoder-decoder, training dataset cre-

ation methodology, and hyper-parameter settings to be generalizable for both the Average

AE-based BCM design and d-BCM design.

4.4.1 Neural Network Architecture

We detail NN architecture of the proposed Average AE in Table 7.3.1. Please note for the

Average AE-based d-BCM design the output of RTN is 4n values which becomes output

of the Lambda layer (LL) in the ith NN decoder, ∀ i. All the NNs in the proposed Average

AE are implemented in Keras [43] with TensorFlow [44] as backend.

4.4.2 Training and Testing Dataset Creation

We detail the training and testing dataset creation. For simplicity, we assume ξ = ξT =

ξR, ϕ = ϕT = ϕR, and Ps = Pr = 1. Let {Strain, Stest} denote the training and testing sam-

ples. We create a training dataset such that trained Average AE framework can generalize
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well on all the varying testing SNRs and phase offsets / amplitude offsets / AHI / both

IQI-AHI during the predictions. In particular, we keep {Strain, Stest} = {3, 5}×104 blocks

of data. Further, Strain training samples are generated for each of S = {3, 8, 13, 23, 33, 43,
53, 63} dB transmit SNR. For better generalization of the Average AE over testing SNRs

and phase offsets or amplitude offsets or AHI or both IQI-AHI, we fix {ξ, σ2
hw} = {0.7, 0}

or {ϕ, σ2
hw} = {15◦, 0} or {ϕ, ξ} = {0◦, 1} or {ϕ, ξ} = {25◦, 0.4} and vary ϕ =

{15◦, 30◦} or ξ = {0.4, 0.7} or σ2
hw = {0.15, 0.25} or σ2

hw = {0.1, 0.2}, respectively,

and for each SNR in S we generate Strain training samples to create the training datasets.

Then, we train Average AE frameworks using each of these training datasets and test

for unseen Stest = 5 × 105 blocks of data samples of varying SNRs and phase offsets /

amplitude offsets / AHI / IQI-AHI.

4.4.3 Training-Testing Process and Hyper-parameter Settings

The training process of the Average AE-based AF relay network is shown in Fig. 4.3.1,

which aims to maximize the chances of reconstruction of the intended signal us by learn-

ing the mapping and demapping parameters (θs,θd) at the source and destination nodes,

respectively. We train the proposed Average AE by minimizing the binary cross-entropy

(CE) loss, as detailed in Definition 13, between the input bits us at the encoder and aver-

age soft output p̃gθd (us|yIQ
d ) at the decoder. In particular, similar to the process mentioned

in Sec. 2.5.1, we train the Average AE frameworks by minimizing the binary CE loss to

obtain the parameters {fθs , gθd}. To train the proposed Average AE we utilize SGD with

Adam [42] optimizer, where the weights are initialized using Glorot initializer [45]. We

utilize step-decay to update the learning rate. In particular, we start the training with

an initial learning rate τ0 = 0.002 for the first epoch and then drop the learning rate by

η = 0.5 after every DE = 25 epochs (we also constraint the minimum learning rate to

be τmin = 10−5). We also utilize early stopping [46] by keeping the minimum update in

validation accuracy as 10−4 and patience to stop as 17.

Further, the testing process remains the same as Section 2.5.2 to obtain hard decision

bits ûs from soft probabilistic outputs.

4.5 Numerical Results

In this section, we evaluate the proposed Average AE framework for the AF relay net-

works with hardware impairments (IQI and/or AHI). We utilize Rayleigh block fading

channels with (n, k) = (7, 8) or rate R = 8/7 [bits/channel reuse], where the channel

remains constant for n = 7 symbols and then changes randomly. Specifically, we evalu-

ate the performance on the low SINR regime by considering the Cases A–E, I as shown
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Table 4.5.1: Performance evaluation Cases A–E, I.

Case
AF relay net- Phase Amplitude AHI Max. SINR

Remarks
works Scenario Offset (ϕ) Offset (ξ) (σ2

hw) (SINRmax)

A With only IQI 30◦ 0.7 0 4.9 dB Very high phase offset
B With only IQI 15◦ 0.4 0 2.6 dB Very high amplitude offset
C With IQI-AHI 25◦ 0.7 0.1 3.1 dB Both IQI-AHI
D With only AHI 0◦ 1 0.15 6.6 dB High AHI
E With only AHI 0◦ 1 0.25 4.0 dB Very high AHI
I Ideal 0◦ 1 0 ∞ No IQI and/or AHI

in Table 4.5.1. Please note for readability, we show the performance with transmit SNR

(Eb/N0), as the received SINR (as indicated by the maximum SINR (SINRmax) calcu-

lated using (4.15)) becomes extremely low because of the presence of IQI and/or AHI.

The performance evaluation section can be divided into two parts – (1) Section 4.5.1

to 4.5.2 wherein we focus on evaluating the merits of proposed Average AE in contrast

to Single AEs in [12]–[40], and (2) Section 4.5.3 to 4.5.9 wherein we focus on evaluating

the proposed Average AE-based BCM and d-BCM designs with hardware impairments.

4.5.1 Comparison of the Proposed Average AE Framework with Bench-
mark AE Frameworks

In Fig. 4.5.1 we compare the Average AE-based CMD with following AE benchmarks

designed for the AF relay networks [32], [73]:

• Single AE [73] – We use the single large NN decoder given in [73] for the Sin-

gle AE-based AF relay networks, while the NN encoder is kept same as proposed

Average AE framework.

• CNN AE [32] – We consider convolutional neural network (CNN)-based AE archi-

tecture proposed in [32], comprising of 1D convolutional, batch normalization, and

activation layers in both the NN encoder and NN decoder of the AE framework.

• Iterative decoding – Instead of considering (d1, d2, d3) connected parallel together

as in the proposed Average AE, we consider iterative (serial) decoding with yIQd →
d1 → d2 → d3, where input of d2 and d3 becomes k soft probabilistic outputs of d1
and d2, respectively, and output of d3 becomes the final soft probabilistic output.

For fair comparison in AF relaying network, we consider training process and hyper-

parameter settings for all the AE frameworks same as Sec. 4.4.3. In Fig. 4.5.1, we can

see that as SNR increases BER reduces, except the iterative decoding that cannot decode
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Figure 4.5.1: Comparison of the Average AE Framework with Benchmark AE Frame-
works.

the signal. We observe that in the iterative decoding the first decoder performs the sub-

optimal decoding because of lower NN parameters, while the later decoders are worsening

the previously soft decoded outputs. Further, the Single AE [73] and Average AE based

on Dense layers outperforms the CNN AE [32] based on the 1D convolutional layers.

Moreover, CNN AE [32] employs a symbol-wise AE, which additionally requires solving

2k! combinatorial problem for bit-labelling, compared to proposed bit-wise Average AE

framework. The proposed Average AE starts performing better than the Single AE for the

SNR Eb/N0 ≥ 10 dB. We compare the computational complexity later.

4.5.2 Higher Rate Scenario

In Fig. 4.5.1, we also consider the higher rate scenario of (n, k) = (7, 16) and compare the

Average AE with Single AE [73]. For higher computational prowess in Single AE [73],

we also double its number of neurons in NN encoder and decoder compared to (n, k) =

(7, 8). We can see that as the rate R = k/2n (where 2 is because of dual-hop) increases

from R = 8/14 to R = 16/14 the BER performance gains achieved by the proposed

Average AE over the Single AE further improves. Also, the computational complexity

for R = 16/7 reduces by a factor of 14.6.

4.5.3 Comparison of the Proposed Average AE Framework with Bench-
mark AE Frameworks

In Fig. 4.5.2 for Case C, we compare the Average AE-based BCM design with following

AE benchmarks designed for the AF relay networks [27], [57], [73] (all w/ CSI knowl-

96



CHAPTER 4. AE-BASED AMPLIFY-AND-FORWARD RELAY NETWORKS WITH
HARDWARE IMPAIRMENTS

0 5 10 15 20 25 30 35 40 45 50

E
b
/N

0
 [dB]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R
[57]

[73]

AE-Arch-[27]

Average AE: No IQIC

Average AE: ZF IQIC

17 dB

5 dB

3 dB
12 dB

Figure 4.5.2: Comparison of the Proposed Average AE Framework with benchmark AE
frameworks [27], [57], [73] (in Case C).

edge):

• [57] – A symbol-wise AE-based BCM design is designed for an ideal AF relay

networks with NN-based AF relay node.

• [73] – A bit-wise AE-based BCM design is designed for an ideal AF relay network

with conventional AF relay node.

• AE architecture of [27] (AE-Arch-[27]) – Herein, we utilize the bit-wise AE ar-

chitecture proposed for P2P networks in [27] for modulation design and perform

(7, 4) Hamming code separately on the designed modulations, while also providing

SNR information to the encoder-decoder of the AE. As [27] focussed on the P2P

network; for a fair comparison, for the AF relay network, we perform training using

our training dataset and hyper-parameter settings.

BER Evaluation

In Fig. 4.5.2, we compare the proposed Average AE with [27], [57], [73]. The AE-Arch-

[27] performs channel coding and AE-based modulation design separately thus it per-

forms the worst even with additional SNR information (compared to Average AE, [57],

[73]). Although, [57] outperforms AE-Arch-[27] because it performs joint coded modu-

lation design. But, [57] performs the second worst because it employs a symbol-wise AE

framework which requires heuristically solving a 2k! combinatorial problem to obtain the

bit-labels, and [57] also considers NN-based processing at AF relay node which wors-

ens the decoding at the destination node. Moreover, the [73] overcomes the drawbacks

of [57] by considering a conventional AF relay node and a bit-wise AE framework with
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automatic bit-labeling, thereby [73] outperforms [57]. However, [73] performs 3− 12 dB

worse than the proposed Average AE without IQI compensation because [73] considers a

single large NN decoder, while the Average AE considers the average of soft probabilis-

tic output from the three small NN decoders. Furthermore, we also propose Average AE

with ZF-based IQI compensation, as IQI compensation has never been performed in [27],

[57], [73], we can see that ZF-based IQI compensation leads to more than 17 dB gains

compared to [73] at high SNR, with the knowledge of IQI parameters.

Computational Complexity Analysis

The total number of optimization parameters in the AE (encoder + decoder(s)) for – (i)

[57] is 114, 286 (9, 200 + 105, 086), (ii) [73] is 50, 758 (3, 422 + 47, 336), (iii) AE-Arch-

[27] is 17, 376 (88+17, 288), and (iv) proposed Average AE: No IQIC is 7, 462 (1, 054+

6, 408). Thus, the proposed Average AE with three small NN decoders reduces the com-

putational complexity by a factor of 15.3, 6.8, 2.3 compared to [57], [73] and AE-Arch-

[27]2 each using a single large NN decoder, respectively. Please note even for proposed

Average AE-based BCM design with ZF-based IQI compensation the number of opti-

mization parameters remains the same because we perform ZF-based IQI compensation

in Lambda layer with no trainable parameters, and the proposed Average AE-based d-

BCM design has additional RTN in each of the three small NN decoders, with 3, 032

optimization parameters in each RTN.

4.5.4 Benchmark Algorithms for Conventional AF Relay Networks
with IQI-AHI

For the conventional scenarios, in the presence of CSI knowledge, we utilize QPSK with

(7, 4) Hamming codes and consider the following as benchmarks:

• Optimal MLD w/ CSI – The optimal MLD in [19] performs only IQI compensa-

tion by modelling it as improper Gaussian noise. Using a similar approach, we

straightforwardly obtain the optimal MLD performing IQI-AHI compensation.

• MLD w/ CSI – Herein, we assume we do not have the IQI parameters, thus, we use

a traditional MLD without any IQI compensation.

• Ideal MLD w/ CSI – Herein, we consider the Case I (ideal AF relay network). As

there are no hardware impairments we directly employ a traditional MLD.

2Although AE-Arch-[27] has the reduced complexity but it needs to predict n complex symbols in n
times separately because it performs AE-based demodulation and channel decoding separately, leading to
expensive prediction costs.
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Please note for both MLD w/ CSI and Ideal MLD w/ CSI, we assume the information

about the CSI knowledge (hsr, hrd), noise variances (σ2
r , σ

2
d) and amplification factor (α).

While the Optimal MLD w/ CSI additionally assumes the knowledge of IQI parameters

(K(·), G(·)) and AHI variance (σ2
hw).

For the conventional scenario without the CSI knowledge, we utilize d-QPSK with

(7, 4) Hamming codes and consider the following as benchmarks:

• MLD w/o CSI – Herein, we employ the traditional MLD without any IQI compen-

sation.

• Ideal MLD w/o CSI – Herein, we consider the Case I (ideal AF relay network). As

there are no hardware impairments we directly employ the traditional MLD.

Please note for both the MLD w/o CSI and Ideal MLD w/o CSI, we assume we do not have

any information, neither IQI parameters nor CSI knowledge nor noise or AHI variances.

4.5.5 Average AE-based BCM design with No IQI Compensation

In Fig. 4.5.3, for Cases A–C, we analyze the proposed Average AE-based BCM design

w/ CSI and without any IQI compensation (Average AE BCM design: No IQIC) and

consider the benchmark MLD w/ CSI without any IQI compensation (MLD: No IQIC).

We can see that the MLD can decode the signals in presence of high phase offset (Case

A) but is unable to decode the signals with high amplitude offset (Case B) or for both IQI-

AHI (Case C). This is because, with the presence of IQI and/or AHI, the maximum SINR

(SINRmax) reduces dramatically as seen in Table 4.5.1. However, the Average AE-based

BCM design can decode the signals in the presence of high amplitude/phase/IQI-AHI,

even outperforming the Ideal MLD with no hardware impairments for all the Cases A, B,

and C up to Eb/N0 as 45, 30, and 25 dB, respectively. Furthermore, compared to MLD,

the proposed Average AE exceptionally improves the error floor, such as from 10−0.8 to

10−4.2 (in Case B) and 10−1.8 to 10−3.8 (in Case C). The performance gains of the Average

AE-based BCM design can be explained by the following Remark 13:

Remark 13 The Average AE forms 2k codewords in the 2n-dimensional space, which

have the normalized fourth-order moment as 1, indicating that the Spherical codes are

formed. We also know that spherical codes are optimal for a small block length (n) [74].

From the modulation perspective, Average AE leads to the maximization of the minimum

Euclidean distance from 1.4 in QPSK to 1.6 − 1.7 for the 2k designed codewords by the

Average AE. From the coding perspective, Average AE leads to the maximization of the

minimum Hamming distance. Thereby, the proposed Average AE can remove the deterio-

rating effects of the hardware impairments (IQI and/or AHI) efficiently, even without the

knowledge of IQI parameters and compensation.
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Figure 4.5.3: Average AE-based BCM design with no IQI compensation (and with CSI
knowledge).

4.5.6 Average AE-based BCM design with ZF-based IQI Compensa-
tion

In Fig. 4.5.4, for Cases A–C, we analyze the proposed Average AE-based BCM design

with ZF-based IQI compensation (Average AE BCM design: ZF IQIC) and consider the

benchmark Optimal MLD w/ CSI performing optimal IQI-AHI compensation. Although,

Optimal MLD has additional information about noise and AHI variance (σ2
r , σ

2
d, σ

2
hw) and

amplification factor (α) compared to Average AE, but still the Optimal MLD achieves

error floor around 10−2.5 BER in the presence of both IQI-AHI (Case C). In contrast, due

to similar reasons as Remark 13 the Average AE-based BCM design is able to decode the

signals in Case C achieving the error floor around 10−4.7 BER, even outperforming the

Ideal MLD with no hardware impairments (IQI and/or AHI) for Cases A, B (consisting

only IQI) for all SNR range and up to Eb/N0 = 40 dB for Case C (consisting both IQI-

AHI). Thus, we do not achieve an error floor for Cases A, B.

Furthermore, comparing the BCM design using the proposed Average AE with no IQI

compensation (in Fig. 4.5.3) and with ZF-based IQI compensation (in Fig. 4.5.4), we can

see that ZF-based IQI compensation helps the Average AE to improve the performance

by more than 5 dB, and also helps in removing the error floor for the Cases A, B. Thereby,

indicating that Average AE is even able to completely remove the residual IQI after the

proposed ZF-based IQI compensation.
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Figure 4.5.4: Average AE-based BCM design with ZF-based IQI compensation (and with
CSI knowledge).

4.5.7 Average AE-based d-BCM design with No IQI Compensation

In Fig. 4.5.5, for Cases A–C, we analyze the proposed Average AE-based d-BCM design

and consider the benchmark MLD w/o CSI, while both Average AE and MLD neither

have CSI knowledge nor IQI parameters. We can see that the MLD is unable to decode

the signals because we are operating under an extremely low SINR regime, and the CSI

knowledge and IQI parameters is absent, thus the error floor is reached around 10−1 BER.

However, the proposed Average AE-based d-BCM design can outperform the Ideal MLD

with no hardware impairments (IQI and/or AHI) up to Eb/N0 = 40, 36, 30 dB for Cases

A, B, C, respectively, while reaching the error floor between 10−2 to 10−3 BER. The gains

achieved by the Average AE can be understood from Remark 13, with the exception that

in the absence of the CSI knowledge the minimum Euclidean distance increases from

0.76 for d-QPSK to 1.1 − 1.2 for 2k codewords designed by the proposed Average AE

framework in the 2n-dimensional space.

4.5.8 Average AE-based BCM design and d-BCM design in the pres-
ence of only AHI

In Fig. 4.5.6, we consider only the presence of AHI (Cases D, E), and analyze the pro-

posed Average AE-based BCM design w/ CSI3 and d-BCM design w/o CSI, while we

utilize the MLD w/ CSI and MLD w/o CSI as benchmarks, respectively. Directly, as the

AHI increases the error floor increases, and the CSI knowledge helps in improving the

3Please note as no IQI is present in Cases D, E, thus we consider Average AE-based BCM design without
IQI compensation.
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Figure 4.5.5: Average AE-based d-BCM design with no IQI compensation (and without
CSI knowledge).

error floor and BER performance. Further, the presence of AHI or residual hardware im-

pairment (Cases C–E) is becoming the determining factor for the error floor achieved by

the Average AE. Also, the Average AE’s error floor outperforms the MLD’s error floor by

a very high margin. Only when σ2
hw = 0.15 (Case D) the error floor for both the Average

AE and MLD coincides, still the proposed Average AE outperforms the MLD in the low

transmit SNRs (Eb/N0) by 4 dB. Please note the noise floor achieved by the Average AE

also indicates that it is not overfitting the training data by learning the noise in the training

data, because of the considered training schedules, such as early stopping, step decay, etc

(detailed in Sec. 4.4.3).

Comparing the high AHI in Cases D, E (Fig. 4.5.6) to moderate AHI in Case C

(Fig. 4.5.3-4.5.5), we can also say that Average AE can remove the deteriorating impact

of the AHI (or residual hardware impairments) by designing BCM design and d-BCM

design intelligently (Remark 13) such that it can almost completely remove its impact up

to moderate AHI σ2
hw ≤ 0.1 and provide significant gains for very high AHI σ2

hw > 0.1,

compared to the traditional MLD.

4.5.9 Average AE-based (d-) BCM design with Outer LDPC Codes

Until now, we have considered designing BCM design and d-BCM design for short block

lengths (n = 7). In the recent 5G-NR standards, the outer low-density parity-check

(LDPC) codes are proposed to be employed for promoting parallel implementation to sat-

isfy the low-latency plus high-throughput conditions in 5G networks. Thus, we utilize
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Figure 4.5.6: Average AE-based BCM design and d-BCM design in presence of only
AHI.

5G-NR LDPC codes with base graph 2 (BG2)4 and rate5 1/5 as outer codes [75]. Specif-

ically, we consider a block segment of (n = 2560) for designing the LDPC codes with

36 filler bits. Thus, we consider Case C in Fig. 4.5.7, we employ 5G-NR LDPC codes

as outer codes for the proposed Average AE-based BCM design and d-BCM design with

R = 8/7 [bits/channel reuse], and for the conventional scenario we consider QPSK and

d-QPSK in the presence and absence of the CSI knowledge with (7, 4) Hamming codes

and MLD detector while also employing the 5G-NR LDPC codes as outer codes. In

Fig. 4.5.7, we can see that the gains achieved by the BCM design and d-BCM design over

the MLDs for short block lengths are translated and even improved by using the outer

LDPC codes, as follows:

• In Fig. 4.5.7a, we can see that the proposed Average AE-based BCM design with

no IQI compensation outperforms the MLD with CSI knowledge by 8.5 dB at 10−4

BER.

• In Fig. 4.5.7b, we can see that the proposed Average AE-based BCM design with

ZF-based IQI compensation outperforms the Optimal MLD with CSI knowledge

by 7.1 dB at 10−4 BER.

• In Fig. 4.5.7c, we can see that the proposed Average AE-based d-BCM design with-

out CSI knowledge or IQI parameter outperforms the MLD without CSI knowledge

or IQI parameter by an extraordinary 22.1 dB at 10−4 BER.
4BG2 is employed when the information bits are in the range of 40 and 3840, while the rate lies between

1/5 and 2/3 [75].
5Please note a smaller rate gives the best chance of improving the performance for conventional MLD

and reduce the performance gaps between the conventional MLD and proposed Average AE. Moreover,
such smaller rates are also applied in ultra-reliable low-latency communications [76]–[77].
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Figure 4.5.7: Comparison of Average AE-based (d-) BCM design and MLD with (7, 4)
Hamming code by using LDPC as outer codes (in Case C).

This shows the significantly improved decoding capabilities by the proposed Average AE-

based BCM design and d-BCM design, even when utilized for the long block lengths with

the help of an outer code.

4.6 Conclusion

In this chapter, we study an AF relay network impacted by hardware impairments (mul-

tiplicative IQI and/or additive AHI). For the conventional AF relay networks we propose

the amplification factor in the absence of the CSI knowledge and analyze the destructive

effects of the IQI and/or AHI on the maximum received SINR at the destination nodes.

We show that even individually the (IQI and/or AHI) hardware impairments dramatically

reduce the maximum SINR, thereby, we focus on low SINR regimes where the maximum

SINR (SINRmax) at the destination node remains in the range of 2.6 dB and 6.6 dB.

Further, we propose a novel Average bit-wise AE framework with three small NN

decoders instead of a single large NN decoder as in a Single AE framework. As a direct

benefit the Average AE improves the BER performance by up to 3 dB while reducing

the NN decoder’s complexity by a factor of 7.3 in contrast to the Single AE frameworks

in [12]–[40], for an ideal AF relay network with no hardware impairments. We also com-

pare the proposed Average AE with Single AE benchmarks [27], [57], [73] in the presence

of IQI-AHI. In comparison to previous best [73], the proposed Average AE outperforms

by 3−12 dB without IQI compensation and more than 17 dB with the proposed ZF-based

IQI compensation, while reducing the implementation complexity by a factor of 6.8.
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Within the Average AE framework, we propose BCM design with CSI knowledge and

ZF-based IQI compensation. Then, we show that the proposed Average AE-based BCM

design effectively learns the removal of the residual IQI which helps to remove the error

floors entirely, thereby also outperforming the ideal AF relay networks with no hardware

impairments up to 40 dB transmit SNR. Also, in the scenarios with both IQI-AHI, the

Average AE-based BCM design shifts the error floor from 10−2.5 BER in optimal MLD

with IQI-AHI compensation to 10−4.7 BER, and even completely removing the error floor

in the presence of only IQI impairment.

However, IQI parameter estimation is required for ZF-based IQI compensation. Thus,

we remove the need for IQI parameters by proposing Average AE-based BCM design with

CSI knowledge and no IQI compensation. We show that although the MLD is unable to

decode the signals reaching error floor around 10−1 BER because of no IQI and/or AHI

compensation, however, the Average AE-based BCM design can learn the IQI and/or

AHI compensation without their knowledge and bring the error floor down to around

10−4 BER, while also outperforming the ideal MLD with no hardware impairments up to

30 dB transmit SNR.

Furthermore, to remove the necessity of both the CSI knowledge and IQI parameter

information, we propose the Average AE-based d-BCM design without CSI knowledge

and IQI parameter information and also design an RTN to help the Average AE to effec-

tively estimate and remove the hardware and channel impairments. Although the tradi-

tional MLD is unable to decode the signals reaching error floors lying around 10−1 BER,

the proposed Average AE-based d-BCM design is also able to outperform the ideal AF

relay networks without IQI and/or AHI up to 30 dB transmit SNR and bring the error floor

down to 10−3 BER.

Lastly, we consider 5G-NR LDPC codes as outer codes for the Average AE-based

BCM design and can see extraordinary BER performance gains from 7.1 dB to 22.1 dB.

We focus on one-way DF relaying networks with hardware impairments in Chapter 7.
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Chapter 5

AE-based Two-Way
Amplify-and-Forward Relay Networks
with Hardware Impairments

5.1 Introduction

We studied amplify-and-forward (AF) relay networks in Chapters 3, 4, where the source

node (S) transmits a signal to the destination node (D) with the help of an AF relay node

(R) in two transmission phases. Such types of relaying networks are also known as one-

way (OW) AF (OW-AF) relay networks. Thus, if both the nodes want to communicate

with each other, it will require four transmission phases [25, 24, 78, 79, 56, 80, 81].

However, a two-way (TW) relay network overcomes the drawbacks of the half-duplex

OW relay network by utilizing the spectrum resources more efficiently. In particular, in a

TW relay network, both the source and destination nodes, widely referred to as terminal

nodes, communicate with each other in two transmission phases, thereby improving the

spectral efficiency by 100% compared to a OW relay network [20, 21, 22, 23]. For the

sake of clarity, we utilize the naming of source or destination nodes in OW relay networks

as terminal nodes (A and B) and summarize the signal transmission reception between

terminal nodes in OW-AF and TW-AF relay networks in Fig. 5.1.1.

In a TW-AF relay network, both the terminal nodes transmit their data simultaneously

to the AF relay node, which then amplifies and re-transmit the amplified signal to the

terminal nodes. Although each terminal node can perform self-interference cancellation

(SIC) to remove its signal, the major challenge of a TW-AF relay network is managing

the interference of simultaneously received signals at the TW-AF relay node and noise

amplification with the amplification of the received signals. Thus, physical network cod-

ing techniques such as denoise-and-forward (DNF) are proposed in [65]. In the DNF

technique, the relay node implements a maximum likelihood detector (MLD) on the re-

106



CHAPTER 5. AE-BASED TWO-WAY AMPLIFY-AND-FORWARD RELAY
NETWORKS WITH HARDWARE IMPAIRMENTS

(a) OW-AF relay networks. (b) TW-AF relay networks.

Figure 5.1.1: An illustration of OW-AF and TW-AF relay networks implementing the
signal transmission–reception between terminal nodes A and B.

ceived signals from both the terminal nodes, which is followed by a denoising mapper that

generates the network-coded data and a constellation mapper that modulates the signals.

However, since the signals from both the terminal nodes are received by the TW-AF relay

node concurrently, the MLD’s accuracy becomes very low. Moreover, the implementa-

tion complexity at the relay node also increases as the size of denoising and constellation

mapper increases.

Recently, the autoencoder (AE)-based TW-AF relay networks has appeared as a po-

tential solution to this problem [57] (our recent work), [38], [82]. The authors in [57],

[38] perform AE-based block coded modulation design in fading channels, while the au-

thors in [82] focus on only modulation design in additive white Gaussian noise (AWGN)

channels. Further, [57], [38] proposed to employ dense layer-based neural network (NN)

architectures, while [82] proposed a residual network-based convolutional neural network

architecture. All the prior works [57, 38, 82] focus on the physical network coding where

the TW-AF relay node has NN-based processing power, while none of the prior works

have focussed on analog network coding, where a conventional TW-AF relay node is

employed, that brings challenges of noise amplification and signal ambiguity.

As detailed in Chapter 4, in practice, relaying systems are compromised by the hard-

ware impairments, e.g., in-phase (I) and quadrature-phase (Q) imbalance (IQI), power

amplifier non-linearity, and phase noise, leading to undesirable effects such as cross-talks,

an added image signal, frequency interference, etc., deteriorating the network perfor-

mance [19, 68, 69, 13, 70, 71, 72]. In traditional TW-AF relay networks, the impact

of IQI on a TW-AF relay network is investigated widely by considering the IQI at the ter-

minal nodes [69], and by considering IQI at the TW-AF relay node [68]. However, none

of the prior works [57, 38, 82] consider hardware impairments in their AE frameworks.
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The major contributions of this chapter with specific distinctions from existing litera-

ture [38], [82] and our recent work [57] are as follows:

• We propose a Fixed bit-wise AE-based TW-AF relay network performing analog

network coding impacted by IQI by jointly maximizing the bit-wise mutual in-

formation (MI) for both the terminal nodes and study the cross-entropy (CE) loss

function by determining the estimated MI. We employ NN-based terminal nodes

and a conventional TW-AF relay node to maintain minimal implementation cost at

the relay node while having similar CSI requirements as conventional methods.

• We design an AE-based block coded-modulation (BCM) design for both the ter-

minal nodes jointly in a 2n-dimensional space (n denotes block length) to tackle

the interference from simultaneously received signals at the TW-AF relay node and

remove the deteriorating impacts of IQI at the terminal nodes. For higher inter-

pretability, similar to chapter 3, we study the AE-based BCM designs by using var-

ious performance metrics, such as minimum Euclidean distance, normalized second

and fourth-order moments, and constellation figures of merit.

• As the NN is primarily intended for real-value processing [83], we determine the

best pre-processing technique for complex-valued signals received at the NN de-

coder to remove the self-interference, IQI, and decode the signals.

• We consider small-scale fading with path-loss and log-normal shadow fading and

determine the optimal location of the TW-AF relay node in an AE framework.

5.2 System Model

In this section, we describe the TW-AF relay network with IQI as shown in Fig. 5.2.1,

where Γth = {A,B} terminal node wants to communicate with the Υth = {A,B},Γ ̸= Υ

terminal node with the help of a TW-AF relay node (R), under the presence of both

transmitter (Tx) and receiver (Rx) IQI at each of the terminal nodes. All the nodes have

a single antenna, and a direct link between the terminal nodes is absent because of large-

scale shadow fading and path loss effect. The rate for a TW-AF relay network is defined

as R = 2k/2n = k/n [bits/channel use], in contrast to R = k/2n in a OW-AF relay

network (in Chapters 3, 4). For the sake of clarity, we keep the block size n = 1 in this

section. Further, the modeling of the Tx and Rx side IQI remains same as Section 4.2.1.

5.2.1 Signal Transmission Model

In the first transmission phase, each Γth terminal node transmits uΓ ∈ {0, 1}k bits by

mapping uΓ to a complex baseband symbol xΓ = gm(uΓ) 7→ C, where gm(·) denotes the
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Figure 5.2.1: TW-AF Relay Network with Tx and Rx side I/Q Imbalance at the terminal
nodes {Γ,Υ} = {A,B}, where Γ ̸= Υ.

modulation process, such that E {|xΓ|2} = 1. The up-converted signal in the presence of

Tx side IQI is given as

xIQ
Γ = G1xΓ +G⋆

2x
⋆
Γ, ∀Γ. (5.1)

where (·)⋆ denotes the conjugate operation. Please note that both the terminal nodes

transmit their signals to the relay node together. Thus, received signal at the relay node is

given by

yr =
√
PAhArx

IQ
A +

√
PBhBrx

IQ
B + nr (5.2)

where PΓ is the transmission power of the Γth terminal node, hΓr ∼ CN (0, 1) is the

channel between the Γth terminal node and relay node in the first transmission phase, and

nr is the additive white Gaussian noise (AWGN) at the relay node.

In the second transmission phase, the relay node amplifies the received signal with the

amplification factor given as

α =

√
1

(|G1|2 + |G2|2)(PA|hAr|2 + PB|hBr|2) + σ2
r

(5.3)

The amplified signal is broadcast to both the terminal nodes, where the signal received by

the Γth terminal node is given by

yΓ =
√
PrhrΓαyr + nΓ, ∀Γ (5.4)

where Pr is relay node’s transmission power, hrΓ ∼ CN (0, 1) is the channel between the

relay node and Γth terminal node in second transmission phase and nΓ ∼ CN (0, σ2
Γ) is
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the AWGN at the Γth terminal node. Considering the Rx side IQI effect on the received

signal at the Γth terminal node, we have yIQΓ as follows

yIQΓ = K1yΓ +K2y
⋆
Γ

=
√

PΓPrα (K1G1hΓrhrΓ +K2G2h
⋆
Γrh

⋆
rΓ)xΓ︸ ︷︷ ︸

Own Signal with IQI

+

√
PΓPrα (K1G

⋆
2hΓrhrΓ +K2G

⋆
1h

⋆
Γrh

⋆
rΓ)x

⋆
Γ︸ ︷︷ ︸

Self-Interference of Own Signal with IQI

+

√
PΥPrα (K1G1hΥrhrΓ +K2G2h

⋆
Υrh

⋆
rΓ)xΥ︸ ︷︷ ︸

Desired Signal

+

√
PΥPrα (K1G

⋆
2hΥrhrΓ +K2G

⋆
1h

⋆
Υrh

⋆
rΓ)x

⋆
Υ︸ ︷︷ ︸

Self-interference of Desired Signal with IQI

+

√
Prα (K1hrΓnr +K2h

⋆
rΓn

⋆
r) +K1nΓ +K2n

⋆
Γ︸ ︷︷ ︸

Noise with IQI

(5.5)

In (5.5), we can see that apart from desired signal and noise terms, each terminal node

has its own signal, and self-interference from the own and desired signal terms with IQI.

Thus, the terminal node Γ with the knowledge of PΓ and xΓ, also obtains the knowledge of

hΓr, hrΓ, α, Pr, and IQI parameters (K1, G1, K2, G2). And then perform self-interference

cancellation by subtracting its own signal to obtain ȳIQΓ , as follows

ȳIQΓ = yIQΓ −
√

PΓPrα [(K1G1hΓrhrΓ +K2G2h
⋆
Γrh

⋆
rΓ)xΓ+

(K1G
⋆
2hΓrhrΓ +K2G

⋆
1h

⋆
Γrh

⋆
rΓ)x

⋆
Γ]

=
√
PΥPrα (K1G1hΥrhrΓ +K2G2h

⋆
Υrh

⋆
rΓ)xΥ +

√
PΥPrα (K1G

⋆
2hΥrhrΓ+

K2G
⋆
1h

⋆
Υrh

⋆
rΓ)x

⋆
Υ +

√
Prα (K1hrΓnr +K2h

⋆
rΓn

⋆
r) +K1nΓ +K2n

⋆
Γ

= (ΛΥΓxΥ + ΩΥΓx
⋆
Υ) + ñΓ (5.6)

where

ΛΥΓ =
√
PΥPrα (K1G1hΥrhrΓ +K2G2h

⋆
Υrh

⋆
rΓ)

ΩΥΓ =
√

PΥPrα (K1G
⋆
2hΥrhrΓ +K2G

⋆
1h

⋆
Υrh

⋆
rΓ)

ñΓ =
√
Prα (K1hrΓnr +K2h

⋆
rΓn

⋆
r) +K1nΓ +K2n

⋆
Γ

In (5.6), we can see that IQI leads to signal distortion, ΛΥΓxΥ, and causes self-

interference, ΩΥΓx
⋆
Υ, which deteriorates the performance of the TW-AF relay network

significantly.

Remark 14 Please note that the benefit of the considered system model is that we can

also model an Ideal TW-AF relay networks with no hardware impairments (no IQI), by
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Figure 5.2.2: SIR (in dB) versus phase and amplitude offset for Γth terminal node with
(ξT = ξR = ξ, ϕT = ϕR = ϕ).

keeping G1 = K1 = 1 and G2 = K2 = 0 in the proposed system model.

5.2.2 Impact of IQI on TW-AF relay networks

Now, we asses the destructive effect of the SI term in (5.6), assuming that symbols have

unit energy, and there is no noise, i.e. nr = nΓ = 0, then the signal-to-interference-ratio

(SIR) at the Γth terminal node SIRΓ can be given as follows

SIRΓ =
E
{∣∣√PΥPrα (K1G1hΥrhrΓ +K2G2h

⋆
Υrh

⋆
rΓ)
∣∣2}

E
{∣∣√PΥPrα (K1G⋆

2hΥrhrΓ +K2G⋆
1h

⋆
Υrh

⋆
rΓ)
∣∣2}

=
|K1|2|G1|2 + |K2|2|G2|2

|K1|2|G2|2 + |K2|2|G1|2
(5.7)

In Fig. 5.2.2, we analyze the impact of phase and amplitude offsets on a TW-AF relay

network after the SIC from the received signal, by assuming same IQI at the terminal

nodes, i.e., ϕT = ϕR = ϕ and ξT = ξR = ξ. Similar to chapter 4, in the case of perfect

I/Q matching, SIRΓ reach the ideal value of SIRΓ =∞ which is in accordance with (5.7).

Also, as the phase or amplitude offset increases the SIRΓ reduces drastically. In particular,

we can see a drop of 35 dB in SIRΓ as the amplitude offset increases from 0.8 to 0.6 for no

phase-offset (ϕ = 0◦) and a drop of 45 dB in SIRΓ as the phase offset increases from 10◦ to

20◦ for no amplitude offset (ξ = 1). Thus, even after SIC the IQI has detrimental impacts

on the SIR of the received signal at the terminal nodes in the TW-AF relay networks.

5.2.3 Designing Detector at the Terminal Node

We design the MLD with zero-forcing (ZF)-based IQI compensation (ZF-based MLD)

for the Γth terminal node, that aims to decode the Υth node’s signal xΥ by removing the
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self interference terms in (5.6). Similar to Chapter 4, this is achieved by concatenating

the received signal ȳIQΓ and its conjugate ȳIQ
⋆

Γ in a matrix form as[
ȳIQΓ

ȳIQ
⋆

Γ

]
=

[
ΛΥΓ ΩΥΓ

Ω⋆
ΥΓ Λ⋆

ΥΓ

][
xΥ

x⋆
Υ

]
+
√

Prα

[
K1hrΓ K2h

⋆
rΓ

K⋆
2hrΓ K⋆

1hrΓ

][
nr

n⋆
r

]
+

[
K1 K2

K⋆
2 K⋆

1

][
nΓ

n⋆
Γ

]
ȳIQ
Γ = AΥΓxΥ +BΓnr +CnΓ (5.8)

Then we determine the factor A−1
ΥΓ and obtain yIQ

Γ = A−1
ΥΓ × ȳIQ

Γ = xΥ + nΓ, shown as[
yIQΓ

yIQ
⋆

Γ

]
=

[
xΥ

x⋆
Υ

]
+

[
nΓ

n⋆
Γ

]
(5.9)

where nΓ = A−1
ΥΓ (BΓnr +CnΓ). Then, the MLD with ZF-based IQI compensation

(ZF-based MLD) for the Γth terminal node is given as

ûΥ = argmin
x∈C

{∣∣∣yIQΓ − x
∣∣∣2} (5.10)

where C denotes all the possible alphabets taken by x, for example,±
√

1/2±
√

1/2i (for

QPSK), etc.

5.3 Proposed AE-based TW-AF Relay Network with IQI

In this section, we propose an AE-based TW-AF relay network with IQI at both the termi-

nal nodes Tx and Rx sides as shown in Fig. 5.3.1. The first main element of the proposed

AE framework is that we consider the IQI effect in the signal transmission reception. The

second main element is we do not utilize any NN-based processing at the TW-AF relay

node and keep the CSI requirements precisely the same as the conventional scenario. It

appears as a trivial modification at first glance. However, it helps us to maintain the min-

imal complexity at TW-AF relays and does not have any advantage by using additional

phase knowledge of the channels, unlike [57], [38].

In this chapter, we utilize L fully-connected (dense) layers, wherein the output of the

lth ∈ {1, ..., L} dense layer ωl ∈ Rδl can be given as (2.2).

Remark 15 Please note since we consider a TW-AF relay network in this chapter. Thus,

we have a NN-based encoder and decoder pair at each terminal node. In previous Chap-

ters 2–4, we represented the NN-based optimization parameters by θName of the node, but if

we use the same notation here, it will lead to ambiguity if θ represents the NN parameter

at the encoder or decoder of the node. Thus for the sake of clarity, we utilize an addi-

tional subscript Tx and Rx with the θName of the node to denote the encoder and decoder,
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Figure 5.3.1: Proposed AE-based TW-AF relay network with IQI at both the terminal
nodes Tx and Rx sides.

respectively, throughout this chapter.

5.3.1 NN-based Encoder at the Γth Terminal Node

The terminal node Γ takes k bits uΓ ∈ {0, 1}k as input and performs block-by-block

encoding by mapping uΓ to n complex baseband symbols xΓ ∈ Cn using the mapping

function fθΓTx
(uΓ,xΓ), where θΓTx

is the weight and bias terms of constituent M dense

layers, similar to detailed in Definition 6, and given by

fθΓTx
(uΓ,xΓ) = PN (σM (WMσM−1 (...σ1 (W1uΓ + b1) ...) + bM)) (5.11)

wherein, PN denotes the power normalization layer, detailed in Definition 7, that man-

dates ||xΓ||22 = n.

The up-converted signal in the presence of Tx IQI is given as (5.1), and both the

terminal node performs symbol-by-symbol transmission.

5.3.2 Conventional TW-AF Relay Node

The signal received by the TW-AF relay node from both the terminal nodes is given by

(5.2). We propose to utilize conventional TW-AF relay node, that amplifies the received

signal symbol-by-symbol using the amplification factor in (5.3) as xr = αyr and re-

transmits the signal to the terminal nodes.
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5.3.3 NN-based Decoder at the Γth Terminal Node

The signal received by the Γth terminal node in the presence of Rx side IQI is given by

(5.5). We consider that the NN-based decoder at the Γth terminal node performs block-by-

block decoding operation, thereby it takes n symbols as input (yIQ
Γ ∈ Cn) and transforms

it to k soft probabilistic outputs p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ) ∈ [0, 1]k of the intended signal of Υth

terminal node Υ ̸= Γ, using a de-mapping function gθΓRx
(yIQ

Γ ,xΓ; p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ)),

where θΓRx
denotes the weights and bias terms of constituent N dense layers at the Γth

terminal node’s NN decoder, given as

gθΓRx
(yIQ

Γ ,xΓ; p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ)) = σN (WNσN−1 (WN−1σN−2 (...σ1 (W1

LL

(
yIQ
Γ ,xΓ

)
+ b1

)
...
)
+ bN−1

)
+ bN

)
(5.12)

where LL denotes the Lambda layer as defined in Definition 10, with two inputs
(
yIQ
Γ ,xΓ

)
.

We will elaborate more about Lambda layer in Section 5.4. Also, please note the nota-

tion gθΓRx
(yIQ

Γ ,xΓ; p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ)) represents a decoder de-mapping function g at

the Γth terminal node, that takes yIQ
Γ ∈ Cn complex baseband symbols and its own com-

plex baseband symbols xΓ ∈ Cn as two inputs to give p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ) ∈ [0, 1]k

soft-probabilities as output using the optimization parameter θΓRx
.

The activation function of the N th layer, σN , is a Sigmoid activation function σN(x) =
1

1+e−x on each of the k logits to procure the probabilities p̃gθΓRx
(um

Υ |y
IQ
Γ ,xΓ), m = 1, ..., k

that corresponds to the log-likelihood ratios (LLRs) as:

LLRm
Γ = log

1− p̃gθΓRx
(um

Υ = 0|yIQ
Γ ,xΓ)

p̃gθΓRx
(um

Υ = 0|yIQ
Γ ,xΓ)

= lmΓ , ∀Γ,m (5.13)

where, p̃gθΓRx
(um

Υ = 1|yIQ
Γ ,xΓ) = σN(l

m
Γ ).

5.3.4 Process of Creating Training and Testing Datasets

Let us consider that there are {Strain, Stest} training and testing samples. We elaborate on

the process of creating the training-testing datasets below:

• For ideal scenario – We create single AE framework trained on 105 samples of

multiple SNR values S = {3, 10, 23, 28, 38, 42} dB, that can be deployed for any

testing SNR.

• To check the impact of phase offset – We create a training dataset such that the

AE framework generalizes well for all testing SNR and phase offset. We fix ξT =

ξR = 0.8 and create 3× 104 samples of {3, 10, 23, 28, 42} dB for each ϕT = ϕR =
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{0◦, 10◦, 20◦} to create a training dataset. We train a single AE framework using

this training dataset and test it for an unseen dataset of 5×105 samples with varying

transmit SNR and phase offsets.

• To check the impact of amplitude offset – We create a training dataset such that the

AE framework generalizes well for all testing SNR and amplitude offset. We firstly

fix ϕT = ϕR = 10◦ and create 3 × 104 samples of {3, 10, 23, 28, 42} dB for each

ξT = ξR = {0.6, 0.8, 1}. We train a single AE framework using this training dataset

and test it for unseen datasets of 5 × 105 samples with varying tansmit SNR and

amplitude offsets.

5.3.5 Training and Testing Procedure

We train the proposed AE-based framework by minimizing the total binary cross-entropy

(CE) loss [41] for both the terminal nodes Γ→ R→ Υ and Υ→ R→ Γ together, where

{Γ,Υ} = {A,B} and Γ ̸= Υ as follows:

J (θATx
,θBTx

,θARx
,θBRx

) =
1

2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

LΥRΓ

(
uΥ, p̃gθΓRx

(uΥ|yIQ
Γ ,xΓ)

)
(5.14)

where 2 is because we are taking combined binary CE losses for transmission between

Γ→ R → Υ and Υ→ R → Γ nodes, and the notation LΥRΓ

(
uΥ, p̃gθΓRx

(uΥ|yIQ
Γ ,xΓ)

)
represents the binary CE loss term, as defined in Definition 13, for uΥ signal transmitted

by Υ terminal node and the decoded soft probability p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ) by Γ terminal

node. Now, we can estimate the total binary CE loss in (5.14) via mini-batch sampling,

as follows

J (θATx
,θBTx

,θARx
,θBRx

) =
1

2Bs

Q∑
q=1

Bs∑
bs=1

k∑
m=1

∑
{Γ,Υ}={A,B},

Γ ̸=Υ

LΥRΓ

(
u
(q×bs,m)
Υ ,

p̃gθΓRx
(u

(q×bs,m)
Υ |yIQ(q×bs)

Γ ,x
(q×bs)
Γ )

)
(5.15)

where B denotes the batch size and Q = Strain
B

denotes the number of training samples in

a batch. The weights and bias terms in the NN are updated using the stochastic gradient

descent (SGD) method using back-propagation [41]. Let us denote the NN optimization

parameters as Θ = {θATx
,θBTx

,θARx
,θBRx

}, then we update the weights using the Adam

optimizer as detailed in Sec. 2.5.1.

For the trained AE, we perform predictions on the testing set to obtain soft probabilis-

tic outputs p̃gθΓRx
(uΥ|yIQ

Γ ,xΓ) for both the terminal nodes, where {Γ,Υ} = {A,B} and

Γ ̸= Υ. Similar to Section 2.5.2, we then perform hard decision decoding by keeping a
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threshold of 0.5 to obtain the decoded bits at both the terminal nodes A and B.

5.3.6 Hyper-Parameter Setting and NN Architectures

In this chapter, we assume the same quality-of-service (QoS) requirement for both ter-

minal nodes. Thus we keep the NN architectures the same for both the terminal nodes.

Further, we employ the same NN architecture for the encoder and decoder as proposed

for the bit-wise AE (BWAE) in Chapter 3. This also shows the advantage of the proposed

NN architecture, which efficiently handles both the OW-AF and TW-AF relay networks

scenarios. In particular, the NN architectures for encoder and decoder is detailed in Ta-

ble 3.4.1 and Table 3.4.3, respectively. To train the proposed AE network, we utilize SGD

with Adam optimizer [42], where the weights of the dense layers are initialized with the

Glorot initializer [45]. We keep the learning rate τ = 0.00125, batch size B = 6000 and

number of training epochs E = 50. Our proposed AE framework does not need the SNR

value for predicting unseen testing datasets.

5.4 Simulation Results

In this section, we evaluate the performance of the AE-based framework for the TW-AF

relay networks with/without I/Q imbalance. The performance evaluation is divided into

two parts – (1) we consider an ideal TW-AF relay networks with no IQI in Section 5.4.1,

and (2) we consider TW-AF relay networks with IQI in Section 5.4.2.

5.4.1 Ideal TW-AF Relay Networks with no IQI

In this subsection, we present the performance evaluation for an ideal TW-AF relay net-

works with no hardware impairments (no IQI). For the conventional scenarios, we utilize

QPSK modulation and the optimal MLD at the terminal nodes.

AE-based Modulation Design under AWGN Channels

Now, we evaluate the performance under AWGN channels by considering h(·) = 1, where

(·) = {Γr, rΓ}. Please note that this assumption holds because no direct link exists

between the terminal nodes. For AWGN scenario we propose to pre-process the received

signal at the NN-based decoder of each Γth terminal node using three Lambda layers,

given by LL

(
yIQ
Γ ,xΓ

)
= L3

(
L2
(
L1
(
yIQ
Γ ,xΓ

)))
, detailed as follows:

L1: Each Γth decoder removes its own signal from the received signal yΓ as ȳΓ =

yΓ − α× xΓ.
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Figure 5.4.1: Comparison of Proposed BWAE v/s [38].

L2: Each Γth decoder has a Concatenate Layer CC , concatenating [yΓ, ȳΓ, α]. This helps

us to concatenate the received signal, signal left after removing the self interference

signal, and amplification factor.

L3: Each Γth decoder has a Batch-normalization (BN)1 layer BN as its last lambda layer.

In [38], the authors studied AE-based TW-AF relay networks with NN-based AF relay

node. They have utilized achievable sum-rate (ASR) as the performance metric given by

ASR = 2ς (1− E (J (θATx
,θBTx

,θARx
,θBRx

))) [bps/Hz] (5.16)

where ς denotes number of bits per symbol and 2 is because there are two terminal nodes.

We compare the performance of the proposed AE framework with [38] for (n, k) = (1, 2)

in Fig. 5.4.1. Where we directly utilize the Fig. 3 from [38] to plot the AE network

performance of [38] and the ideal AE network performance for TW-AF relay networks.

In [38] the “Ideal AE Network [38]” is assessed as an upper-bound benchmark. Herein,

the relay node is considered NN-based with decoding and re-encoding power. Further,

apart from the received signal, the NN relay node has information about the transmitted

bits of both the terminal node (uA,uB), the complex baseband symbols designed by the

NN encoder of both the terminal node (xA,xB), and the perfect CSI knowledge of both

transmission hops.

1In the BN layer, mean (µB) and variance (σ2
B) of the samples in input batch are used to normalise the

input tensor with the calculated statistics as ω(l) = ω(l) − µB

/√
σ2
B − ϵ. Finally scaled and shifted as

ω(l) = γω(l) + ζ, where {γ, ζ} are hyper-parameters learned during the training phase.
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Figure 5.4.2: Estimated Mutual Information versus Eb/N0 [dB].

For the proposed AE, we calculate the expected lossJ (θATx
,θBTx

,θARx
,θBRx

) using

(5.14) for each transmit SNR point and calculate the ASR using (5.16). Clearly, the

proposed AE performs only 2 dB worse than the ideal AE network performance (which

includes an ideal NN relay node decoding the signals perfectly) and outperform the AE-

network proposed in [38] for all the SNR range by 3 dB. This suggests the potential

benefits of utilizing conventional TW-AF relay node over NN-based relay node, while

having the benefits of lower implementation complexity and signal transmission-reception

in analog-domain.

Estimated Mutual Information under RBF channels

The estimated MI is defined as Definition 14. For the TW-AF relay networks, the total es-

timated MI will be the summation of the MI terms for the information exchange between

the terminal nodes, which takes place in two transmission hops, given by (5.24) (in Ap-

pendix 5.A). We now compare the estimated MI for the AE with (n, k) = {(1, 2), (2, 4),
(4, 8)} in Fig. 5.4.2. As the transmit SNR increases, the estimated MI increases until it

reaches the upper bound k. This suggests that the KL-divergence loss approached 0 as

Eb/N0 increases, and proposed AE can well approximate at a moderate Eb/N0. Further-

more, for any given rate R (in Fig. 5.4.2 R = 2), we can see that the block size (n) does

not have any impact on the convergence of the estimated MI. Moreover, in chapter 2, Sec-

tion 2.7, we saw that the rate number of input bits also does not have any impact on the

convergence of the estimated MI. Thus, if we have enough training samples, it ensures

that the estimated MI always converges on the ‘same’ moderate SNR regime, showing the
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Figure 5.4.3: Comparison of proposed AE framework with different Lambda layers
(Cases A–C) in the NN decoder of the terminal nodes.

merits of Remarks 5, 6.

AE-based BCM Design under RBF Channels

For the conventional scenario, we consider QPSK modulation with (7, 4) Hamming cod-

ing. We consider (n, k) = (7, 8) under Rayleigh block fading (RBF) channels such that

channel remains constant for n = 7 and then changes randomly. We analyze the three

possible ways of designing the Lambda layers in the NN decoder of the AE framework

below:

• Case A: Subtract own signal at the decoder – This scenario is inspired by the pro-

cess of decoding used in the conventional method, where a terminal node first

subtract its own transmitted signal and then perform channel equalization. For

this scenario, we propose to pre-process the received signal at the NN-based de-

coder of each Γth terminal node’s decoder using two Lambda layers, given by

LL

(
yIQ
Γ ,xΓ

)
= L5

(
L4
(
yIQ
Γ ,xΓ

))
, detailed as follows:

L4: Each Γth terminal node’s decoder removes its own signal from the received

signal yΓ as ȳΓ = yΓ − αhΓrhrΓxΓ.

L5: Each Γth terminal node’s decoder performs two-step channel equalization on

ȳΓ by utilizing first-hop and second-hop channels of the intended signal, i.e.

hΥr and hrΓ.

• Case B: Concatenate all information at the decoder – This scenario is inspired
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Table 5.4.1: Insights for AE-based BCM design for the TW-AF relay networks.

Model

Minimum Eucli- Normalized Normalized Constellation fig-
dean distance second moment fourth moment ure of merit
dEmin

(↑ better) En (↓ better) χ CFM (↑ better)
A B A B A B A B

Conventional QPSK
1.41 1.41 3.5 3.5 1 1 2 2

+ Hamming Code
AE – Case A 0.3 0.3 76 76 1.004 1.004 0.1 0.1
AE – Case B 0.2 0.05 145 2847 1 1 0.05 0.003
AE – Case C 1.62 1.61 2.7 2.7 1 1 2.6 2.6

AE proposed in [57] 0.94 1.39 7.83 3.62 1 1 0.9 1.9

by the general thinking that NN should be given all the raw information and al-

lowed to learn on its own. For this scenario, we propose to pre-process the received

signal at the NN-based decoder of each Γth using two Lambda layers, given by

LL

(
yIQ
Γ ,xΓ

)
= L7

(
L6
(
yIQ
Γ ,xΓ

))
, detailed as follows:

L6: Each Γth terminal node’s decoder has a Concatenate Layer, which concate-

nates all the raw information – (i) received signal at Γth terminal node’s de-

coder, (ii) own transmitted signal by Γth terminal node’s encoder, (iii) ampli-

fication factor, and (iv) all the necessary channel information (hΓr, hrΓ, hΥr).

L7: The output of the concatenated layer is passed through a Batch-normalization

Layer BN .

• Case C: Subtract own signal + Concatenate all the information at the decoder –

This scenario combines the Lambda layers in Case A and Case B in order. For this

scenario, we propose to pre-process the received signal at the NN-based decoder of

each Γth terminal node’s decoder using four Lambda layers (defined above), given

by LL

(
yIQ
Γ ,xΓ

)
= L7

(
L6
(
L5
(
L4
(
yIQ
Γ ,xΓ

))))
.

The processed output of Lambda layers LL is given to the NN decoder in each terminal

to predict the output bits uΥ at the Γth terminal node.

Now, we design three AE frameworks utilizing the three cases Cases A–C, and evalu-

ate the BER versus transmit SNR (Eb/N0) performance in Fig. 5.4.3. For greater insights

into the optimality of designed BCM in 2n-dimensional space, we propose to employ var-

ious metrics such as, minimum Euclidean distance dEmin
(see Definition 16), normalized

second-order moment En (see Definition 17), normalized fourth-order moment or Kur-

tosis χ (see Definition 18), and constellation figure of merit (CFM) (see Definition 20),

detailed in Table 5.4.1. In Fig. 5.4.3, Case B performs the worst because the proposed

NN decoders are not designed to handle complex numbers; thus, by giving all the raw

information, the NN decoder is not able to infer that its own signal needs to be subtracted
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Figure 5.4.4: Proposed BWAE v/s Conventional v/s [57].

and channel equalization needs to be performed. This problem becomes even more vis-

ible at higher SNR regimes, where noise is minimal. For the Case A where the decoder

subtracts its own signal and performs channel equalization, BER reduces with increasing

SNR. Suggesting that until complex-valued NN [83] is utilized, it is best to perform all

the complex domain mathematical operations in Lambda layers. The Case C performs

the best because we first perform all the complex domain mathematical operations in the

Lambda layer followed by concatenating all the raw information. In Table 5.4.1, normal-

ized fourth moment χ = 1 in all three cases indicating always spherical codes are formed

in 2n-dimensional space.

Now, we compare the transmit SNR versus BER performance in Fig. 5.4.4. In the pro-

posed bit-wise AE framework, we keep the Lambda layers according to Case C (due to the

reasons detailed above). We can see that the proposed bit-wise AE framework outperform

the symbol-wise AE proposed in [57] by 11 dB and conventional QPSK modulation with

(7, 4) Hamming code by 3 dB. This is because (as seen in Table 5.4.1) the BCM designed

by the proposed AE has a minimum Euclidean distance for terminal nodes as {1.62, 1.61},
while that for the symbol-wise AE in [57] remains {0.94, 1.39} and {1.41, 1.41} in the

conventional QPSK modulation. As the minimum Euclidean distance is same for both

terminal nodes in the proposed bit-wise AE framework, thus it is also ensuring that both

the terminal nodes have the similar QoS, while we cannot see it in the symbol-wise AE

framework. Further, the major reason for such performance gains over [57] is because

of two reasons – (1) we employ a bit-wise AE that performs automatic bit-labeling pos-

sibly in a Gray coded format, while bit labeling in the symbol-wise AE in [57] needs

to be performed heuristically solving a 2k! combinatorial problem, and (2) we utilize a
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Figure 5.4.5: Optimal TW-AF relay location for proposed AE framework – Small-scale
fading + Path-loss (No shadow fading).

conventional TW-AF relay node that simply amplifies and re-transmit the signal, over the

NN-based relay node in [57].

Optimal TW-AF Relay Location for Proposed AE Framework

Now, we determine the optimal TW-AF relay location for the proposed AE framework.

Let the distance between terminal A,B to relay node be given by lAr, lBr. Let ϑAr, ϑBr

capture the shadow fading in the A ⇔ R and B ⇔ R transmissions, assumed to be

log-normal random variables with zero mean and standard deviation σAr and σBr, respec-

tively [84], [85]. Let β denotes the path-loss exponent [84]. Then, the signals received at

the relay node and destination node are given as:

yr =

√
PAϑArl

−β
Ar hArxA +

√
PBϑBrl

−β
BrhBrxB + nr (5.17)

yΓ =

√
PrϑΓrl

−β
Γr hrΓαyr + nΓ (5.18)

ȳΓ = yΓ −
√

PΓϑΓrl
−β
Γr hrΓαhΓrxΓ (5.19)

α =
(
PAϑArl

−β
Ar |hAr|2 + PBϑBrl

−β
Br |hBr|2 + σ2

r

)−1/2

(5.20)

We utilize the AE framework with Case C Lambda layers and keep β = 3. For the sake

of simplicity, we keep the reference distance between the terminal nodes as lAr+ lBr = 1.

In Fig. 5.4.5, we vary lΓr = {0.1, 0.2, ..., 0.9} to train and test a AE for each distance.
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Figure 5.4.6: Optimal TW-AF relay location for proposed AE framework – Small-scale
fading + Path-loss + Shadow fading.

Throughout this section, we denote the transmit SNR of both the terminal node as γT in

the first phase transmission and transmit SNR of the relay node as γR in the second phase

transmission. Our proposed AE outperforms the conventional method for all the relay

locations. We show optimal distance by dopt.

In Fig. 5.4.5, we consider no shadow fading in the wireless links, and then the optimal

relay location is always in the center, i.e., dopt = 0.5 because the terminal nodes have a

distance of lAr and (1 − lAr) from the relay node, and same transmit SNRs, thus if we

keep the TW-AF relay node closer to terminal A, the signal of the terminal B deteriorates

and vice-versa.

In Fig. 5.4.6, we vary shadow fading with fixed transmit SNR γT = γR = 15 dB.

Naturally, when the link quality between a terminal node and a TW-AF relay node is

worse, then the optimal relay location is closer to that terminal node. Thus, we see that

when ϑAr > ϑBr then the optimal TW-AF relay location is dopt = 0.3 (closer to terminal

A) and vice-versa.

5.4.2 TW-AF Relay Networks with I/Q Imbalance

In this subsection, we evaluate the performance of AE-based BCM design for the TW-AF

relay networks with I/Q imbalance. For the conventional scenario, we consider QPSK

modulation with (7, 4) Hamming coding and perform ZF-based IQI compensation with

MLD decoding (ZF-based MLD). Also, we evaluate the conventional TW-AF relay net-
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(b) ϕ = 0◦ for fixed amplitude offset ξ =
0.8.
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(c) ξ = 0.8 for fixed phase offset ϕ = 10◦.
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(d) ϕ = 10◦ for fixed amplitude offset ξ =
0.8.
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(e) ξ = 1 for fixed phase offset ϕ = 10◦.
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Figure 5.4.7: BER performance for TW-AF relay networks with I/Q-Imbalance.
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work with no IQI, i.e., ξ = 1, ϕ = 0◦ with MLD and label it as ‘MLD (no IQI).’ We

consider (n, k) = (7, 8) under RBF channels such that the channel remains constant for

n = 7 and then changes randomly. For sake of simplicity, we assume ξT = ξR = ξ and

ϕT = ϕR = ϕ throughout this section.

Furthermore, in Section 5.4.1, we see that performing all complex domain operations

in Lambda layer followed by concatenating raw information is the best approach to max-

imize the decoding performance (in terms of BER performance) of the NN decoders at

each terminal node. Thus, for the TW-AF relay network with IQI, we propose to pre-

process the received signal at the NN-based decoder using four Lambda layers, detailed

as: LL

(
yIQ
Γ ,xΓ

)
= L11

(
L10

(
L9
(
L8
(
yIQ
Γ ,xΓ

))))
, as:

L8: Each Γth terminal node’s decoder removes its own signal and SI from own signal

from the received signal yIQ
Γ similar to (5.6).

L9: Each Γth terminal node’s decoder multiplies the obtained signal with A−1 described

in (5.8) to obtain ŷIQ
Γ similar to (5.9).

L10: Each Γth terminal node’s decoder has a Concatenate Layer CC(·), which concate-

nates all the raw information – (i) received signal at Γth terminal node’s decoder,

(ii) own transmitted signal by Γth terminal node’s encoder, (iii) amplification factor,

(iv) all the necessary channel information (hΓr, hrΓ, hΥr), (v) ΛΥΓ and ΩΥΓ (defined

in (5.6)), and (vi) (K1G1hΓrhrΓ +K2G2 h⋆
Γrh

⋆
rΓ), (K1G

⋆
2hΓrhrΓ +K2G

⋆
1h

⋆
Γrh

⋆
rΓ)

L11: The output of the concatenated layer is passed through a batch-normalization layer

BN .

In particular, L8,L9 helps to perform complex-domain operations on the received signals

(SIC and ZF-based IQI compensation), and L10,L11 helps to concatenate all the raw

information as real values so that the dense layers in the NN decoder can decode the

signal efficiently, by forming valuable representations.

In Fig. 5.4.7, we analyze the BER performance by varying the amplitude offset (in

Fig. 5.4.7a, 5.4.7c, 5.4.7e) and phase offset (in Fig. 5.4.7b, 5.4.7d, 5.4.7f). Clearly, the

proposed AE-based BCM designs outperform the TW-AF relay network with ZF-based

MLD. Moreover, the proposed AE-based BCM designs remains unaffected of the phase

and amplitude offsets, thereby outperforming MLD with no IQI. The aforementioned

gains can be attributed to the fact that we are performing BCM designs in 2n-dimensional

space, leading to the design of 2k codewords as a spherical code in a Gray-coded for-

mat. This is possibly leading to the maximization of the minimum Euclidean distance

and minimum Hamming distance between the codewords. But also, because of the pre-

processing of the received signals using the four lambda layers at the NN decoders, the

terminal nodes are removing the SI from their own signals, minimizing the effects of IQI
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and concatenating all raw information to make NN decoder learn good representations in

2n-dimensional space to decode the signal efficiently.

In Fig. 5.4.7, we can see that as the amplitude or phase offset increases, the BER

performance gains of the proposed AE-based BCM design increase in comparison to ZF-

based MLD and remains constant in contrast to MLD with no IQI. This is because the

AE-based BCM design can altogether remove the deteriorating impacts of IQI, whereas

the ZF-based MLD’s performance deteriorates with increasing IQI.

5.5 Conclusion

In this chapter, we proposed an AE-based BCM design for the TW-AF relay network im-

pacted by IQI. We also propose to utilize a conventional TW-AF relay node. The proposed

AE framework outperform the BER performance in [57] by 11 dB and ASR performance

in [38] by 3.5 dB. These gains are analyzed using various coded-modulation metrics,

similar to Chapter 3. Further, we show that until complex-valued NN [83] are utilized,

it is best to perform complex domain operations in Lambda layers and concatenate raw

information together. This also affirms the benefits of employing ZF-based SIC in Chap-

ter 4. Also, by determining estimated MI, we show that (1) AE is well approximated at

moderate SNR values, similar to Chapter 3, and (2) proposed bit-wise AE is ensuring

similar QoS by designing similar BCM designs for both the terminal nodes, unlike the

symbol-wise AE, showing an additional advantage of a bit-wise AE over symbol-wise

AE framework.

Also, we show that the optimal relay location in an AE framework is in the center in

case of no shadow fading and close to the terminal node with higher shadow fading.

Furthermore, we show that the proposed AE-based BCM designs for the TW-AF relay

network can altogether remove the deteriorating impacts of IQI at the terminal nodes,

outperforming the MLD with no IQI by 3 dB. This shows that the BCM designs are even

able to remove the residual errors after the ZF-based removal of IQI. We focus on two-way

DF relaying networks with hardware impairments in Chapter 7.
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Appendix

5.A Derivation of Binary CE Loss and Estimated MI for

TW-AF Relay networks with IQI

As shown in (5.14), we train the proposed AE-based framework by minimizing the total

binary cross-entropy (CE) loss for both the terminal nodes Γ → R → Υ and Υ → R →
Γ together, where {Γ,Υ} = {A,B} and Γ ̸= Υ. For any received block of complex

baseband symbols, yΓ, the total binary CE loss in (5.14) can also be represented as

J (θATx
,θBTx

,θARx
,θBRx

) =
1

2

∑
{Γ,Υ}={A,B},

Γ ̸=Υ

H
(
pθΥTx

(uΥ|yIQ
Γ ), p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
(5.21)

where H
(
pθΥTx

(uΥ|yIQ
Γ ), p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
denotes the binary CE loss for the trans-

mission between Υ → R → Γ. Specifically, it denotes the binary CE loss between the

true distribution pθΥTx
(uΥ|yIQ

Γ ) at the NN encoder of the Υth terminal node and the learnt

distribution p̃θΓRx
(uΥ|yIQ

Γ ,xΓ) at the NN decoder of the Γth terminal node. Please note

all the parameters θΓTx
and θΥRx

, where {Γ,Υ} = {A,B} and Γ ̸= Υ are learned “to-

gether”. Now, we firstly derive the binary CE loss by taking the expectation of (5.21) with
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respect to yIQ
Γ and xΓ, as follows

J (θATx
,θBTx

,θARx
,θBRx

)

(a)
=

1

2

∑
{Γ,Υ}={A,B},

Γ ̸=Υ

EyΓ,xΓ

[
H
(
pθΥTx

(uΥ|yIQ
Γ ), p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)]

(b)
=

1

2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

k∑
m=1

EyΓ,xΓ

[
H
(
pθΥTx

(um
Υ |y

IQ
Γ ), p̃θΓRx

(um
Υ |y

IQ
Γ ,xΓ)

)]

(c)
=
−1
2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

k∑
m=1

EyΓ,xΓ

[
pθΥTx

(um
Υ |y

IQ
Γ ) log p̃θΓRx

(um
Υ |y

IQ
Γ ,xΓ)

]

(d)
=
−1
2

∑
{Γ,Υ}={A,B},

Γ ̸=Υ

k∑
m=1

∫
yΓ

∫
xΓ

p(yIQ
Γ ,xΓ)pθΥTx

(um
Υ |y

IQ
Γ ) log p̃θΓRx

(um
Υ |y

IQ
Γ ,xΓ) dyΓ dxΓ

(e)
=
−1
2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

k∑
m=1

∫
yΓ

∫
xΓ

p(yIQ
Γ ,xΓ)pθΥTx

(um
Υ |y

IQ
Γ )

log

[
pθΥTx

(um
Υ |y

IQ
Γ )p̃θΓRx

(um
Υ |y

IQ
Γ ,xΓ)

pθΥTx
(um

Υ |y
IQ
Γ )

]
dyΓ dxΓ

(f)
=

1

2

∑
{Γ,Υ}={A,B},

Γ ̸=Υ

k∑
m=1

∫
yΓ

∫
xΓ

p(yIQ
Γ ,xΓ)pθΥTx

(um
Υ |y

IQ
Γ ) log

[
pθΥTx

(um
Υ |y

IQ
Γ )

p̃θΓRx
(um

Υ |y
IQ
Γ ,xΓ)

]
dyΓ dxΓ

−1
2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

k∑
m=1

∫
yΓ

∫
xΓ

p(yIQ
Γ ,xΓ)pθΥTx

(um
Υ |y

IQ
Γ ) log

[
pθΥTx

(um
Υ |y

IQ
Γ )
]
dyΓ dxΓ

(g)
=

1

2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

DKL

(
pθΥTx

(uΥ|yIQ
Γ )||p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
+HθΥTx

(uΥ|yIQ
Γ )

(h)
=

1

2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

DKL

(
pθΥTx

(uΥ|yIQ
Γ )||p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
+H(uΥ)− IθΥTx

(uΥ;y
IQ
Γ )

(5.22)

where DKL

(
pθΥTx

(uΥ|yIQ
Γ )||p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
denotes the Kullback-Leibler (KL)-

divergence loss between the true distribution pθΥTx
(uΥ|yIQ

Γ ) at the NN encoder of the

Υth terminal node and the learnt distribution p̃θΓRx
(uΥ|yIQ

Γ ,xΓ) at the NN decoder of the

Γth terminal node. Please note all the parameters θΓTx
and θΥRx

, where {Γ,Υ} = {A,B}
and Γ ̸= Υ are learned “together”. H(uΥ) denotes entropy of the input bits uΥ at the Υth

terminal node, and IθΥTx
(uΥ;y

IQ
Γ ) is the MI between the input bits uΥ and the received
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signal at the Γth terminal node yIQ
Γ with parameters θΥTx

.

Moreover, the (5.22) is derived using the following steps: (a), (b) is obtained by the

taking expectation over yIQ
Γ and xΓ, (c) comes from the definition of binary CE loss, in

(d) we open the expectation, in (e) we multiply and divide by pθΥTx
(um

Υ |y
IQ
Γ ), in (f) we

open the log function, (g) comes from the definition of KL divergence loss and conditional

entropy, and (h) utilizes the identity H(a|b) = H(a)− I(a; b) [49].

The estimated MI is defined in Definition 14. Thus, for TW-AF the estimated MI (I)
can be given as follows

I :=
1

2

∑
{Γ,Υ}={A,B},

Γ̸=Υ

IθΥTx
(uΥ;y

IQ
Γ )−DKL

(
pθΥTx

(uΥ|yIQ
Γ )||p̃θΓRx

(uΥ|yIQ
Γ ,xΓ)

)
(5.23)

Now, using (5.22), the estimated MI in (5.23) becomes

I :=
H(uA) +H(uB)

2
− J (θATx

,θBTx
,θARx

,θBRx
) (5.24)

Since the first term on R.H.S,
H(uA) +H(uB)

2
in (5.24), remains a constant, thus the

changes in the estimated MI in (5.23) only depends on the total binary CE loss term

J (θATx
,θBTx

,θARx
,θBRx

).
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Chapter 6

AE-based Full Duplex
Amplify-and-Forward Relay Networks

6.1 Introduction

As seen in previous chapters 2–5, the autoencoder (AE)-based wireless communica-

tion networks in half-duplex (HD) transmission mode has appeared as a promising so-

lution to achieve significant bit-error-rate (BER) performance gains for a rate R = k/n

[bits/channel-reuse]. However, all of these chapters and previous works [12]–[40] focus

on designing AE-based block coded modulation (BCM) and differential BCM (d-BCM)

designs for HD transmission mode.

Recently, the full-duplex (FD) mode is recognized as an enabling technology to re-

alize the expected gains in the future networks, as it can double the spectral efficiency

by establishing concurrent transmission and reception on the same temporal and spectral

resources [24, 80, 86, 87, 88, 89, 90, 91, 92]. However, the self-interference (SI) leak-

ing from the signal transmitted by the relay node interferes with the signal received at

the relay node, limiting spectral efficiency gains. Recently, the superior self-interference

cancellation (SIC) methods have attested to the facilitation of FD transmission [24, 80,

86, 87, 88, 89, 90, 91, 92, 93]. In particular, the SIC can be done efficiently by employing

multiple techniques, such as antenna isolation, which eliminates the self-interference from

−50 dB to −100 dB, analog-domain suppression, which reduces the self-interference by

about−50 dB, and digital-domain suppression, which reduces the self-interference almost

−60 dB [94]. However, even with multiple SIC techniques, a residual self-interference

(RSI) is always present in the system, deteriorating the FD performance. Thus, tackling

the RSI is pivotal to realize the double spectral efficiency promised in a FD mode.

The analysis and optimization of FD amplify-and-forward (FD-AF) relaying in the

presence of RSI has been studied widely [95, 96, 97], wherein, the relay’s function is to

multiply the received signal in the presence of the RSI with a variable gain, also referred
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to as amplification factor, and re-transmit the signal to the destination node. The relays

may need full or partial channel state information (CSI) of the source to relay link and

channel gains of the SI channel for determining the amplification factor. Besides, the

destination node would need the CSI of the overall channel of source-relay-destination

and sometimes the channel gains of the SI channel. To avoid channel estimation at the

relay and destination nodes of an AF relay network, operating in HD mode, the differential

modulation techniques are usually applied while utilizing only the second-order statistics

of the channels at the relays for signal amplification [62], [63]. Designing differential

modulations for FD mode still remains an open research problem.

In this chapter, for the first time, we propose an AE-based framework for FD-AF relay

network with RSI at the relay node. We now summarize the major contributions of this

chapter below.

• We propose a bit-wise AE-based FD-AF relay network, where we consider NN-

based encoder-decoder at the source and destination nodes, and the conventional

FD-AF relay node1 operating in the presence of RSI. Depending on the availability

of the CSI knowledge, we consider three scenarios. Firstly, we propose a BCM

design for the FD-AF relay networks in the presence of perfect CSI knowledge.

Secondly, we also analyze the proposed BCM design for the FD-AF relay networks

with imperfect CSI knowledge. Thirdly, we completely remove the necessity of

CSI knowledge by proposing differential FD-AF relay networks – (i) we design the

amplification factor for conventional FD-AF relay node by including the second-

order channel statistics of the RSI, and (ii) we propose the d-BCM design.

• Focussing on the convergence of the training of the proposed AE framework – (i) we

analyze the convergence of the AE frameworks by estimating the MI between the

input-output of the AE for varying RSI and signal-to-noise-ratio (SNR) levels, and

(ii) we provide the necessary conditions for AE’s convergence by showing that once

the validation loss has converged and the NN encoder of AE designs 2k codewords

during the training, the AE has converged to its maximum potential of decoding the

signal.

• With the aim to open the black-box of the AE-based BCM design, we reveal the

five distinct observations of 2k codewords designed in 2n-dimensional space by

the proposed end-to-end training of the AE frameworks. Specifically, we utilize

the minimum Euclidean distance, packing density, average Hamming distance, and

Kurtosis to understand the designed codewords’ observations at the source node’s

NN encoder.
1We do not employ any neural network at the FD-AF relay node.
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Figure 6.1.1: System model for full-duplex amplify-and-forward relay networks.

• We design a single Fixed AE framework that can efficiently handle varying rates.

We train the AE framework to remain highly generalizable of the testing signal-

to-noise-ratio (SNR) or RSI levels. Lastly, we also show that the proposed AE

frameworks are highly reproducible even with different training samples and weight

initialization.

6.2 System Model

We consider an FD-AF relay network as shown in Fig. 6.1.1, consisting of a source

node (S) that wants to transmit its signal to the destination node (D), with the aid of an

FD-AF relay node (R). Each of the source and destination nodes has a single antenna

for transmission and reception, respectively. The relay node has two antennas, one for

the reception and the other for transmission. We assume that the direct link between

the source and destination node is strongly attenuated because of severe path-loss and

shadowing effects.

6.2.1 Signal Transmission – Reception Process

In this chapter, we assume K blocks of symbols, each of length n, is transmitted from

source node to destination node with the aid of the FD-AF relay node in κ = {1, ...., K(n+

1)} time-instants. Specifically, we consider block-by-block encoding and decoding of k

bits at the source and destination nodes, respectively, where n denotes the block length,

while the signal transmission takes place as symbol-by-symbol. Thus, the transmission

rate becomes R = k/n [bits/channel use], which is double the transmission rate compared

to HD AF relay networks (in Chapter 3, 4). In each time-instant (κ), the source node

transmits the intended signal to the FD-AF relay node, which re-transmits the amplified

signal (received at (κ − 1) time-instant) to the destination node at the same time-instant

(κ). We summarize the signal transmission and reception process in Table 6.2.1 for each

ith ∈ U := {1, ..., K} block of data, where the relay node operates in HD mode for only

the first and last time-instants and in FD mode otherwise.
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Table 6.2.1: Process of signal transmission and reception of ith ∈ U block of data.

Time-instants [κ] [1] [2] [3] · · · [n] [n+ 1]
Symbol Tx by S xs[1] xs[2] xs[3] · · · xs[n] −

Symbol Rx by R after SIC yr[1] yr[2] yr[3] · · · yr[n] −
Symbol Tx by R − xr[1] xr[2] · · · xr[n− 1] xr[n]
Symbol Rx by D − yd[1] yd[2] · · · yd[n− 1] yd[n]

Duplexing mode at R HD FD FD · · · FD HD

6.2.2 Modelling Residual Self Interference (RSI)

The RSI at the FD-AF relay node (R) can be modeled in two ways – (1) the complex

Gaussian random model, where the RSI is modeled as the independent and identically

distributed (i.i.d.) complex Gaussian random variables, having a similar effect as the

noise and aims at emphasizing the effect of RSI on the performance [98], and (2) the

general fading effect model, where the RSI is modeled as a statistical fading distribution,

such as i.i.d. Rician/Rayleigh fading to model the RSI channel effectively [99]. In this

chapter, we utilize the general fading effect model for RSI to characterize the RSI channel

at the relay node R effectively. In particular, RSI is modeled by i.i.d. Rayleigh block-

fading (RBF) channel hrr ∼ CN (0, σ2
rr) [95], [96], such that it remains constant for n

transmissions [97].

6.2.3 Signal Transmission Model and MLD Decoding

The source node (S) intends to transmit us ∈ {0, 1}k bits, thus it first perform channel

encoding x̄s = gc(us) to obtain {0, 1}j bits that are modulated to n complex baseband

symbols xs = gm(x̄s) ∈ Cn, such that ||xs||22 = n, where gc and gm denote the channel-

coding and modulation functions. Then source node perform symbol-by-symbol trans-

mission, and the signal received by the relay node after the SIC or under the presence of

the RSI, at time-instant κ, is given by

yr[κ] =
√

Ps[κ]hsr[κ]xs[κ] + hrr[κ]xr[κ]︸ ︷︷ ︸
RSI

+nr[κ] (6.1)

where Ps denotes the transmission power of source node, hsr is the i.i.d. RBF channel

with hsr ∼ CN
(
0, σ2

hsr
= 1
)
, nr is the additive white Gaussian noise (AWGN) at the

relay node with nr ∼ CN (0, σ2
r), and xr is the amplified signal transmitted by the FD-

AF relay node at the same time-instant κ, given by

xr[κ] =
√
Pr[κ]α[κ− 1]yr[κ− 1] (6.2)
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where Pr denotes relay’s transmission power and the amplification factor α is given as

α[κ] =
(
Ps[κ]|hsr[κ]|2 + Pr[κ]|hrr[κ]|2 + σ2

r

)−1/2 (6.3)

Now, the signal received by the destination node (D) is represented as

yd[κ] = hrd[κ]xr[κ] + nd[κ] = hrd[κ]
√
Pr[κ]α[κ− 1]yr[κ− 1] + nd[κ]

=
√
Ps[κ− 1]Pr[κ]α[κ− 1]hsr[κ− 1]hrd[κ]xs[κ− 1]︸ ︷︷ ︸

Desired Signal

(6.4)

+
√

Pr[κ]α[κ− 1]hrr[κ− 1]hrd[κ]xr[κ− 1]︸ ︷︷ ︸
RSI Signal

+
√

Pr[κ]α[κ− 1]hrd[κ]nr[κ− 1] + nd[κ]︸ ︷︷ ︸
Noise

where hrd ∼ CN (0, 1) is the i.i.d. RBF channel in second-hop and nd is AWGN at the

destination node with nd ∼ CN (0, σ2
d). The destination node performs optimal maximum

likelihood decoding (MLD), as follows:

x̂d = argmin
x∈C

∣∣∣∣∣∣yd[κ]−√Ps[κ− 1]Pr[κ]α[κ− 1]hsr[κ− 1]hrd[κ]x
∣∣∣∣∣∣2 (6.5)

where C denotes all the possible alphabets. The decoder performs block-by-block channel-

decoding using gcd function, to obtain ûs = gcd(x̂d), where x̂d ∈ {0, 1}j and ûs ∈ {0, 1}k.

6.2.4 Differential FD-AF Relay Networks - Without CSI

In the absence of the CSI knowledge, we propose to utilize traditional differential modula-

tion and demodulation techniques at the source and destination nodes. For such scenarios,

we propose to design the amplification factor for the FD-AF relay node by utilizing the

second-order channel statistics of the first-hop channel between the source and relay node,

and the RSI channel as

α[κ] =
(
σ2
hsr

+ σ2
rr + σ2

r

)−1/2 (6.6)

where the second-order channel statistics {σ2
hsr

, σ2
rr, σ

2
r} can be obtained via long-term av-

erage of the received signals. Similar approximations have been employed for the HD-AF

relays network in [62], [63]. To include the impact of RSI in FD scenarios we introduce

the second-order channel statistics of the RSI channel in (6.6).
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Figure 6.2.1: Proposed AE-based FD-AF relay networks.

Figure 6.2.2: Signal transmission-reception of ith block of data for the AE-based FD-AF
relay network.

6.3 Proposed Autoencoder-based FD-AF Relay Networks

We propose a bit-wise fixed AE-based FD-AF relay networks as shown in Fig. 6.2.1, by

considering NN-based source and destination nodes that performs joint BCM or d-BCM

design and automatic bit-labelling of designed codewords. In this chapter, we utilize

L fully-connected (dense) layers in the NN encoder-decoder pair of the AE framework,

wherein the output of the lth ∈ {1, ..., L} dense layer ωl ∈ Rδl can be given as (2.2).

6.3.1 Designing of NN Encoder at the Source Node

The source node takes k bits us ∈ {0, 1}k as input and maps it to n complex base-

band symbols xs ∈ Cn (performing block-by-block encoding), by a mapping function

fθs(us,xs), where θs is the NN encoder’s parameters of the M dense layers, detailed in
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Definition 6 and given as (2.3). We now perform symbol-by-symbol transmission and at

any time-instant κ the symbol received by the FD-AF relay node, in the presence of RSI

can be given as

yr[κ] = hsr[κ]fθs(us,xs)[κ] + hrr[κ]xr[κ] + nr[κ] (6.7)

6.3.2 Designing of FD-AF Relay Node

Traditionally, the AF relaying scheme is designed to have minimal implementation com-

plexity by receiving, amplifying, and re-transmitting the signal. Similar to Chapter 3 for

HD-AF relay networks, we propose to utilize a conventional FD-AF relay node in this

chapter. This is because NN-based processing at the FD-AF relay node, in the presence

of RSI, worsens the decoding performance at the destination node (as detailed in Ap-

pendix 6.A). Thus, the signal transmitted by the FD-AF relay node becomes (6.2), where

we utilize the amplification factor given in (6.3) and (6.6) for the BCM and d-BCM de-

signs, respectively. Further, the process of signal-transmission reception remains the same

as Section 6.2.1, and is summarized in Fig. 6.2.2.

6.3.3 Designing NN Decoder at the Destination Node

The signal received by the destination node is given as (6.4). Also, the designing of the

NN decoder at the destination node remains the same as Section 2.2.3.

6.4 Training of Proposed AE Framework with Hyper-

Parameter Setting

The training process of the AE-based FD-AF relay network is shown in Fig. 6.4.1, which

aims to maximize the chances of reconstruction of the intended signal us by learning the

NN’s optimization parameters (θs,θd).

Please note we train the proposed AE framework using binary CE loss and the training

loss optimization remains the same as Section 2.4. Also, the training and testing procedure

remains the same as Section 2.5.1 and Section 2.5.2, respectively,

6.4.1 Training and Testing – Dataset Creation and Methodology

In contrast to training dataset creation methods for AE frameworks in [12]–[40] or pre-

vious Chapters 2–5, where HD transmission mode is considered with no training dataset

creation methodology in the presence of RSI for a FD network. In this chapter, we de-
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Figure 6.4.1: Block diagram of training for the proposed AE-based end-to-end learning
system.

sign a single training dataset such that the AE framework can generalize well for varying

testing RSI or SNR values, detailed as follows:

• For Varying RSI – For any given rate R or (n, k), we create a training dataset with

STrain samples with fixed transmit SNR Eb/N0 = 30 dB and multiple RSI levels

σ2
rr = {−60,−20, 0, 20} dB. Then we train a single AE framework until the con-

vergence as detailed in Remark 19 later. Then, we test the trained AE framework

for varying RSI levels σ2
rr = [−60, 20] dB.

• For Varying Transmit SNR – For any given rate R or (n, k), we create a training

dataset with STrain samples with fixed RSI σ2
rr = 0 dB and multiple transmit SNR

Eb/N0 = {3, 10, 23, 28, 38} dB. Then we train a single AE framework until the

convergence as detailed in Remark 19 later. Then, we test the trained AE framework

for varying transmit SNRs Eb/N0 = [0, 30] dB.

6.4.2 NN Architectures

For generalizability, in this chapter, we propose the same NN architecture for both AE-

based BCM and d-BCM designs as shown in Table 6.4.1 with only difference in the

Lambda layers LL(yd) at the NN decoder. In general, the radio transformer network

(RTN) networks are used for d-BCM designs as a means to estimate the channel [12],

as also considered in previous Chapters 2–4 performing AE-based d-BCM design in HD

transmission mode. But, by experiments, we find that due to the presence of RSI at the

FD-AF relay node, the proposed RTN is improving the AE’s performance for BCM design
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Table 6.4.1: NN architectures at different nodes in the proposed AE framework.

NN Encoder NN Decoder RTN in Lambda layer
Neurons Remark Neurons Remark Neurons Remark
δ1 = k Input (us) δ1 = 2n Input (yd) δ1 = 2n Input (yd)

δ2 = 256 σ1 = Tanh δ2 = 2n Lambda layer (LL) δ2 = 2n Channel hsr equalization
δ3 = 128 σ2 = Tanh δ3 = 1024 σ1 = Tanh δ3 = 2n Channel hrd equalization
δ4 = 64 σ2 = Tanh δ4 = 512 σ2 = Tanh δ4 = 16 σ1 = Tanh
δ5 = 2n σ3 = Linear δ4 = 256 σ3 = Tanh δ5 = 2n σ2 = Linear

δ6 = 2n Power normalization (PN)
δ5 = 64 σ4 = Tanh

δ6 = 2n
Add 2n Input (yd)

δ6 = k σ5 = Sigmoid and 2n output

δ7 = 2n Output (xs) δ7 = k
Soft output of previous layer

(p̃gθd
(us|yd))

instead of the d-BCM design. Thus, in contrast to the Chapters 2–4 performing BCM

and d-BCM designs for HD transmissions without and with RTN in the NN decoder,

respectively. In this chapter, for the FD mode transmission, we employ an RTN in the

Lambda layers as proposed in Table 6.4.1 for the AE-based BCM design, and for the AE-

based d-BCM design, we consider no RTN or Lambda layers in the NN decoder, i.e., yd

directly becomes the input to the NN decoder. Please see details in Appendix 6.B.

6.4.3 Hyper-Parameter Settings

The AE framework is implemented in Keras [43] with TensorFlow [44] as backend. For

training we utilize SGD with Adam optimizer [42], where the weights are initialized using

Glorot initializer [45]. We consider Strain = 3 × 105 training samples, Stest = 105 testing

samples and τ = 0.001 learning rate. Also, by parameter searching, we note that smaller

batch-size (B) and fewer epochs (E) leads to better performance for BCM design in

comparison to d-BCM design. Thus, we keep B = 128, E = 15 for performing BCM

design and B = 6000, E = 60 for performing d-BCM design. This is because while

performing the d-BCM design in the absence of CSI knowledge, large batch size provides

the AE framework with sufficient samples at low probability region and more epochs

helps the AE framework in estimating and removing the channel impairments.

6.5 Convergence of the Proposed AE Frameworks for FD-

AF Relay Networks

In Chapter 2 and Chapter 3, we investigated the convergence of the training of the AE

frameworks for P2P and relay networks operating in HD transmission mode, respectively.

In this section, we build on the same method by analyzing the convergence of proposed

AE frameworks operating in an FD transmission mode in the presence of RSI.

138



CHAPTER 6. AE-BASED FULL DUPLEX AMPLIFY-AND-FORWARD RELAY
NETWORKS

6.5.1 Information-Theoretic View of Convergence of Proposed AE
Frameworks

We demonstrate the impact of varying SNR and RSI levels and the presence/absence of

CSI knowledge on the convergence of the training of the proposed AE framework for the

FD-AF relay networks by giving the following Propositions.

Remark 16 The training of the AE framework, of sufficiently large block length (n), con-

verges to a global minima above a minimum required SNR and below a maximum RSI

level.

Remark 17 The CSI knowledge is helpful to reach near to the global minima faster, i.e.

the convergence of the training of AE while performing BCM design is faster than per-

forming d-BCM design. Please note this remark remains the same as Remark 4 for AE-

based BCM and d-BCM designs in a P2P network.

Proof: Please note the Proof of Remark 16 and Remark 17 remains the same as the Proof

of Propositions 2–4. This is because we are minimizing the same binary CE loss and thus

the process of obtaining the estimated MI in (2.19) will also remain the same. However,

herein we aim to analyze the impact of the RSI on the training convergence of the AE

framework. Thus, we provide a brief Proof below.

For the sake of clarity, we summarize the estimated MI (I) for the FD-AF relay net-

work below

I := Isθs (us;yd)−DKL

(
psθs (us|yd)||p̃dθd (us|yd)

)
= H(us)− J (θs,θd) (6.8)

where Isθs (us;yd) is the MI between the input bits us and the received signal at the desti-

nation node yd with parameters θs, DKL

(
psθs (us|yd)||p̃dθd (us|yd)

)
denotes the Kullback-

Leibler (KL)-divergence loss between the true distribution psθs (us|yd) at the NN encoder

of the source node and the learnt distribution p̃dθd (us|yd) at the NN decoder of the desti-

nation node, with parameters θs and θd, respectively, H(us) is entropy of the input bits us

at the source node, and J (θs,θd) is the binary CE loss with NN optimization parameters

θs and θd.

Similar to (2.19) (in Chapter 2), since the first term on R.H.S, H(us) in (6.8), remains

a constant, thus the changes in the estimated MI in (6.8) only depends on the binary CE

loss term J (θe,θd).

Now, by simulations, we analyze the convergence of the training of AE frameworks

performing BCM and d-BCM design in a FD transmission mode. In particular, we train

a separate AE performing BCM and d-BCM design for each SNR or RSI level using

the NN architecture and hyper-parameter settings as described in Sec. 6.4, once the AE
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Figure 6.5.1: Estimated mutual information for proposed AE-based BCM and d-BCM de-
signs, indicating the convergence of the AE frameworks for varying RSI and SNR levels.

is trained we note the validation CE loss (J (θe,θd)) at the last epoch, and obtain the

estimated MI (I) as described in (6.8). Specifically, we train the proposed AE for fixed

SNR Eb/N0 = 30 dB and varying RSI in Fig. 6.5.1a, and for fixed RSI σ2
rr = −20 dB and

varying SNR (Eb/N0) in Fig. 6.5.1b. For greater insights, we also vary the rate R = k/n

[bits/channel reuse] and keep block size sufficiently large, n = 7. We will discuss on

block size in detail later in Section 6.6.

In Fig. 6.5.1, we can see that as the RSI decreases or SNR increases, the estimated

MI increases until it reaches the upper bound of k. Directly from (6.8), it suggests that

KL-divergence loss approaches 0 making Isθs (us;yd) = H(us). Thus, the training of

AE-based FD-AF relay networks converges to a global minima above a minimum re-

quired SNR (in Fig. 6.5.1b) and below a maximum RSI level (in Fig. 6.5.1a). Further,

the estimated MI of the AE framework performing d-BCM design converges to the upper

140



CHAPTER 6. AE-BASED FULL DUPLEX AMPLIFY-AND-FORWARD RELAY
NETWORKS

bound at a higher transmit SNR and lower RSI levels. Thus, CSI knowledge is helpful

to reach near to the global minima faster (in Fig. 6.5.1). In other words, AE perform-

ing BCM design converges faster near to global minima compared to the AE performing

d-BCM design. It is important to note that we can’t find the global minima of the NN

parameters with respect to the binary CE loss. But, surprisingly we don’t need to find the

global minima. Empirically, the authors in [50, 51] found that despite the non-convexity,

the local minima’s are rare and they are all very similar to each other and the global min-

ima. Interested readers, please refer to the theoretical insights presented in [50, 51].

Remark 18 As seen in Remark 16 and Remark 17, the proposed AE converges above

a minimum SNR and below a maximum RSI. For this, we need to train a different AE

framework for each SNR and/or RSI level, which is impractical. For practical purposes,

we propose to train a single AE framework on varying SNR or RSI levels (in Sec. 6.4.1),

such that the proposed AE can generalize well for the varying SNR and RSI levels. As a

result, although the AE’s estimated MI never reaches the upper bound because of training

on low SNR or high RSI, it enables the AE to generalize well in varying testing scenarios.

6.5.2 Necessary Conditions for AE Framework’s Convergence

In Section 2.8, we investigated the necessary conditions for the AE framework’s conver-

gence in a P2P network operating in an HD mode. In this section, we analyze the same

necessary conditions for the AE framework’s convergence in an AF relay network oper-

ating in the FD mode in the presence of the RSI. For the sake of clarity, we detail the

Remark 5 as Remark 19, below

Remark 19 For any given hyper-parameter settings and rate R = k/n, for sufficiently

large block length (n), the two necessary conditions for the convergence of training of the

AE frameworks performing BCM designs are detailed as follows:

C1: The validation CE loss of the AE framework has converged.

C2: The NN encoder of the AE designs 2k codewords.

Remark 20 For any given hyper-parameter settings and rate R = k/n, with sufficiently

large block length (n), the BER performance of the AE framework performing BCM de-

sign converge with double training samples because of RSI in a FD transmission mode as

compared to the HD transmission mode.
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Figure 6.5.2: Proof of the C1 (second part) and C2 that AE converges once it designs 2k

codewords.

Proof: Please note the Proof of Remark 19 and Remark 20 remains the same as

the Proof of Remark 5, 6. Moreover, we have already shown in Section 6.5.1 that the

proposed AE converges above a minimum required SNR and below a maximum RSI

level. Thus, we focus on showing the relationship between the convergence of the AE

frameworks with the training samples below.

Please note that the condition C1 in Remark 12 comprises of two parts, detailed in

Remark 5. We now empirically prove the conditions C1 (second part) and C2 below. For

example, we train an AE performing BCM design for R = 16/7 in Fig. 6.5.2 for varying

training data size STrain = {213, ..., 223} of fixed SNR Eb/N0 = 30 dB. Specifically, we

divide the STrain training samples into 4 : 1 ratio of training set ST and validation set SV .

Then, we train the AE on ST and determine the number of codewords formed by the NN

encoder and the binary CE loss at the last epoch (15th epoch) on ST and SV . Lastly, we
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determine the BER using the testing samples STest.

In Fig. 6.5.2a, we can see that as the training dataset increases, the number of code-

words formed by the NN encoder of the trained AE on the training and validation sets

increases until it becomes 216 codewords, each representing one of the possible 216 combi-

nations. Moreover, the NN encoder forms these 216 codewords on the 218 and 221 training

samples using the training and validation sets, respectively. Furthermore, in Fig. 6.5.2a,

we can see that the binary CE loss, noted at the last (15th) epoch of training, reduces as

the training dataset increases and converges for training and validation sets at 221 training

samples.

In Fig. 6.5.2b, we can see that as the training dataset increases, the performance of

the proposed AE on the unseen testing samples improves. In contrast, when the training

dataset size starts becoming greater than 218, then the performance improvement of the

proposed AE starts converging because 216 codewords are created by the NN encoder of

the AE on the training set ST .

Thus, for any given hyper-parameter settings, we at least need 2k+2 training samples to

ensure the AE creates 2k codewords, the validation CE loss has converged, and the AE’s

performance converges to its maximum potential of decoding the 2k possible classes, and

no more training samples can help in improving the BER performance.

Please note that in Remark 6 for P2P network in HD transmission mode, we found that

the AE framework performing BCM design converge with at least 2k+1 training samples.

However, in the FD transmission mode, the BER performance of the AE framework per-

forming BCM design converges with at least 2k+2 training samples. This shows that RSI

leads to doubling the number of training samples required for the AE’s BER performance

convergence.

6.6 Analyzing the Observations of AE-based Block Coded

Modulation

To understand the generalizability of the observations detailed in Section 2.9, we analyzed

the distinct observations of AE-based BCM and d-BCM for P2P networks operating in

HD mode. Employing the same methodology, we analyze the AE-based BCM for AF

relay networks operating in FD mode. Please note for brevity, we only consider BCM

by AE frameworks because, as shown in Section 2.9, both the BCM and d-BCM exhibit

similar trends. Throughout this section, we train the proposed AE frameworks for various

rates R = k/n or combinations of (n, k), where n ∈ N = {1, 3, 5, 7, 10} and k ∈ K =

{1, 4, 8, 12, 16} using the training settings in Section 6.4 and until convergence using
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Remark 19. Once trained, the NN encoder becomes deterministic. Thus, if we input any

k bits to the NN encoder of the trained AE, we obtain the same n complex baseband

symbols as output every time, representing a codeword for the k input bits. Now, we can

obtain all the possible codeword from the NN encoder using all the possible combinations

of k input bits.

For example, we analyze the applicability of Observations – 1, 2, 7, 8, 9, 12 detailed

for the BCM design in P2P network as Remarks below. In particular, the BCM design by

the proposed AE-based FD-AF relay networks exhibit the following five distinct proper-

ties, noted as remarks below, for any (n, k), as:

Remark 21 AE framework designs 2k codewords in 2n-dimensional space.

This property remains straightforward and similar to Observation – 1 of the P2P networks.

Remark 22 1. As the block, length increases the minimum Euclidean distance be-

tween any of the possible codewords increases.

2. When the number of codewords becomes extremely large, the minimum Euclidean

distance between any two codewords follows a Gaussian distribution for a suffi-

ciently large block length (n).

3. As the block length increases, the Euclidean distance between the codewords con-

centrate to the average Euclidean distance2.

We evaluate the minimum Euclidean distance3-based Observations – 2, 7, 8 for the

HD P2P networks proposed in Sec. 2.9 as the aforementioned Remark 22 for the FD AF

relay networks in presence of the RSI. We follow the similar process as HD P2P networks

to obtain – (i) the minimum Euclidean distance between all the 2k designed codewords

(dEmin
) in Fig. 6.6.1, (ii) the impact of increasing minimum Euclidean distance dEmin

on the BER performance of the proposed AE framework in Fig. 6.6.2, and (iii) plot a

histogram of the minimum Euclidean distance between each ath codeword and its closest

vth codeword for varying (n ∈ N , k ∈ K) in Fig. 6.6.3. In Fig. 6.6.1–6.6.3 for FD-

AF relay networks, we see similar trends for the designed BCM as HD P2P networks.

Thus, proving that the minimum Euclidean distance-based observations proposed for P2P

networks also hold for complicated scenarios, such as FD relaying networks.

Remark 23 The codes designed by the AE framework are spherical codes.

2Please note the average Euclidean distance is the mean of the minimum Euclidean distance between
any codeword and its closest codeword.

3As detailed in Definition 16.
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Figure 6.6.1: Minimum Euclidean distance dEmin
for varying (n, k).
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Figure 6.6.4: Packing density.

By simulations, we find that the proposed AE creates BCM design with fourth-order

moment or Kurtosis (as detailed in Definition 18) being equal to 1, i.e., ‘Spherical codes’

are being created as χ = 1, i.e. all the 2k codewords for all the varying (n ∈ N , k ∈ K)
scenarios have equal norm, which is again similar to the Observation - 12 for the HD P2P

networks.

Remark 24 The packing density improves as the rate R decreases.

In Fig. 6.6.4 we analyze the packing density En (as detailed in Definition 17) with

varying rate R = k/n. We can see that the packing density improves for the AE-based

BCM as the block-length (n) increases or the input bits (k) decreases, for all (n ∈ N , k ∈
K), which is again similar to the Observation - 9 for the HD P2P networks, showing the

merits of observations proposed in Chapter 2.

Observation – 13: As the block-length increases the average Hamming distance be-

tween codewords increases.

Proof: Determining the Hamming distance between the two closest codewords is a

simple task if the symbols representing the codewords in a constellation diagram form

a grid like structure with equal Euclidean distance, such as conventional QPSK modu-

lation. We can simply utilize the Euclidean distance to determine the closest points and

determine the Hamming distance for any symbol. However, the AE framework does not

design codewords in an exact grid like structure with equal Euclidean distance between

the codewords. Specifically, using the Observation - 2, we know that the 2k codewords

are being designed in the 2n-dimensional space that have the minimum Euclidean dis-

tance between the ath codeword and its closest vth codeword as Gaussian distributed,

where {a, v} = {1, ..., 2k} and v ̸= a. Thus, the distance between any two codewords
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Figure 6.6.5: Average Hamming distance.

is different and does not follow a grid-like structure, hence we cannot directly utilize

the minimum Euclidean distance to determine the Hamming distance between two clos-

est codewords, and we utilize the average Hamming distance as the metric. Hence in

this chapter, we firstly determine the minimum Euclidean distance dEmin
of the 2k code-

words using (2.20). Then, for each ath codeword, we determine all the codewords within

the sphere with radius given by the minimum Euclidean distance da ≤ dEmin
+ ξ, such

that ξ ≥ 0 and represent these codewords by a set Sf . We then determine the average

Hamming distance4 for each ath codeword and all the codewords in its corresponding set

Sa [100, 101], as

davg,a
H =

∑
v∈Sa

dH(a, v)

|Sa|
(6.9)

where dH(a, v) denotes the Hamming distance between codeword a and v, and |Sa| is
the cardinality of the set Sa. Now, we can determine the average Hamming distance for

all the a ∈ {1, ..., 2k} codewords as

davg
H =

1

|davg,a
H > 0|

2k∑
a=1

davg,a
H (6.10)

where |davg,a
H > 0| is the number of non-zero elements in davg

H . For fixed input bits k = 8,

we determine the average Hamming distance in (6.10) for varying block lengths n ∈ N
and varying ξ = {0, 0.5, 1, 1.5, 2} in Fig. 6.6.5. As expected, as the radius of the sphere

(dEmin
+ξ) to determine the codeword set Sa increases the average Hamming distance davg

H

increases. Interestingly, as the block-length (n) increases the average Hamming distance

4Please note the average Hamming distance is the mean of the Hamming distance between any codeword
and its closest codeword in the set Sf .
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davg
H also increases, because in Fig. 6.6.1 we see that as the block-length (n) increases the

minimum Euclidean distance between the codewords dEmin
is also increasing.

6.7 Numerical Results

In this section, we evaluate the performance of the proposed AE-based BCM and d-BCM

designs for FD-AF relay networks and conventional HD-AF and FD-AF relay networks.

As this is the first time NN-based AE framework is proposed in the context of FD net-

works, for a fair comparison, we consider the conventional FD-AF relay networks as a

benchmark, wherein we utilize traditional modulation techniques and (7, 4) Hamming

code as a baseline error correction code, with the MLD decoding detailed in (6.5). Also,

we utilize RBF channels such that it remains constant for n = 7 transmissions only. For

the sake of clarity, we show the performance gains of employing – (i) conventional FD-

AF relay node over a NN-based relay node in Appendix 6.A and (ii) inclusion of an RTN

in BCM design instead of d-BCM design in Appendix 6.B.

6.7.1 AE-based d-BCM Design

In Fig. 6.7.1, we analyze the BER of the proposed AE-based d-BCM without the CSI

knowledge. In Fig. 6.7.1a, 6.7.1c, 6.7.1e, we fixed transmit SNR Eb/N0 = 30 dB and

vary the RSI, for varying input bits (k)5. We can see that for small RSI (σ2
rr ≤ −30 dB)

the BER performance of – (i) conventional FD-AF and HD-AF relay networks’ becomes

same and (ii) proposed AE-based d-BCM converges, because the RSI becomes negligible

to impact the signal at the FD-AF relay node. Furthermore, the proposed AE-based d-

BCM design outperforms the conventional FD-AF relay networks for all varying rates

(R) and RSI levels. In Fig. 6.7.1b, 6.7.1d, 6.7.1f, we fixed the RSI at σ2
rr = 0 dB and

vary the transmit SNR, for varying (k)3. The conventional FD-AF relay networks is not

able to decode the signals even for Eb/N0 = 30 dB as the RSI is high (σ2
rr = 0 dB), but

the proposed AE-based d-BCM is able to decode the signals and the BER reduces with

increasing SNR.

We explain the reasons for the gains achieved by the AE-based d-BCM as follows –

the proposed AE can design 2k codewords in 2n-dimensional space with automatic bit-

labeling by maximizing the bit-wise MI. Furthermore, the AE aims to learn these d-BCM

designs to remove the deteriorating impacts of RSI, RBF channels, and AWGN at the

nodes by the proposed end-to-end training until convergence using Remark 19. This leads

to the maximization of the minimum Euclidean distance and minimum average Hamming
5For fixed n = 7, we keep k as 4, 8, and 12, that corresponds to d-BPSK, d-QPSK and d-8PSK modu-

lations designs in conventional networks with (7, 4) Hamming coding.
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Figure 6.7.1: Performance evaluation for AE-based d-BCM for FD-AF relay networks.
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distance as detailed in Sec. 6.6 for the designed codewords and thus achieve improvement

in the BER performance.

In Fig. 6.7.1a, 6.7.1c, 6.7.1e, the proposed AE is able to design the d-BCM for 2k

codewords in 2n-dimensional space with the observations detailed in Sec. 6.6, leading to

the BER performance for proposed AE almost similar for any rate R ≤ 12/7. Thus, as the

modulation order or rate increases the proposed AE can even outperform the conventional

HD-AF relay networks even for higher RSI, i.e. at −10 dB (for k = 8) and −5 dB (for

k = 12) for n = 7. Due to similar reasons, in Fig. 6.7.1b, 6.7.1d, 6.7.1f, the AE’s BER

performance becomes closer to the conventional HD-AF relay networks as the modulation

order or rate increases, indicating that the proposed AE almost removes the impact of the

RSI even in the absence of CSI and very high RSI levels.

6.7.2 AE-based BCM Design – Perfect CSI Knowledge

In Fig. 6.7.2, we analyze the BER performance of the proposed AE-based BCM with per-

fect CSI knowledge. For varying (k)6, in Fig. 6.7.2a, 6.7.2c, 6.7.2e we fix transmit SNR

Eb/N0 = 30 dB and vary the RSI, and in Fig. 6.7.2b, 6.7.2d, 6.7.2f we fix σ2
rr = 0 dB and

vary the SNR. We see similar BER performance trends for BCM as d-BCM in Sec. 6.7.1.

Except for low RSI σ2
rr ≤ −30 dB, the AE-based d-BCM design outperformed the HD-

AF relay networks. Also, unlike AE-based d-BCM design, the proposed AE-based BCM

design’s BER performance tends to deteriorate with increasing modulation order or rate

due to the following reasons – in the presence of perfect CSI, the BER performance of the

conventional FD-AF and HD-AF relay networks is already very good. Although for the

AE-based frameworks, many codewords are being packed together as a spherical code,

the advantage the AE-based d-BCM had in tackling the RBF channels effectively than

conventional differential schemes is not present here because of the availability of the

perfect CSI knowledge. Due to similar reasons, we can see in Fig. 6.7.2b, 6.7.2d, 6.7.2f

that BER performance of the proposed AE-based BCM design tends to deteriorate with

increasing modulation order or rate.

6.7.3 AE-based BCM Design - Imperfect CSI Knowledge

Now, we analyze the AE’s performance in the presence of the channel estimation er-

ror. We utilize the linear minimum mean squared error (LMMSE) based channel esti-

mation [102] denoted by hω
(·) ∈ CN (0, σ2

hω) where the error in channel estimation is

e(·) ∈ CN (0, σ2
e) for both the hops (·) = {sr, rd}. From the orthogonality principle of

the LMMSE we know that the errors in the channel estimation remains mutually indepen-

6For fixed n = 7, we keep k as 4, 8, and 16, that corresponds to BPSK, QPSK and QAM-16 modulations
designs in conventional networks with (7, 4) Hamming coding.
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Figure 6.7.2: Performance evaluation for AE-based BCM for FD-AF relay networks.
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Figure 6.7.3: Impact of the CEQ (ς) on FD-AF relay networks for rate R = 8/7.

dent of the estimated channel, thus, we have

hω
(·) = h(·) + e(·), ∀ (·) = {sr, rd} (6.11)

We denote the channel estimation quality (CEQ) by ς and assume that the error variance

depends on the SNR denoted by γ, such that σ2
e =

σ2
h

1+ςγσ2
h
≈ 1

1+ςγ
and σ2

hω =
ςγσ2

h

1+ςγσ2
h
≈

ςγ
1+ςγ

[102].

In Fig. 6.7.3 we analyze the impact of CEQ (ς) on the proposed AE-based BCM de-

sign and conventional QPSK + (7, 4) Hamming code for rate R = 8/7 and transmit SNR

Eb/N0 = 30 dB. Please note ς = 0 indicates completely erroneous channel whereas

ς = ∞ denotes perfect channel estimation. To create an AE that remains unaffected

of the varying channel estimation errors, we train a single AE framework consisting of

Strain samples from varying ς = {0.1, 0.5, 1,∞} until the convergence as detailed in Re-

mark 19 and test on unseen Stest samples of varying CEQs (ς). The proposed AE-based

BCM designs outperform the conventional FD-AF relay networks for all the CEQs due

to similar reasons as Sec. 6.7.1. The BER performance of the proposed AE framework

with almost fully erroneous channel estimation ς = 0.1 is better than conventional FD-AF

relay networks with perfect channel estimation ς = ∞. As the RSI increases, the BER

performance improvement by the proposed AE increases. This is because the proposed

AE-based BCM is designing 2k codewords in 2n-dimensional space with observations in

Sec. 6.6 such that it can handle the impacts of RSI and channel estimation errors effec-

tively.
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Figure 6.7.4: Reproducibility of AE-based BCM results for R = 16/7 and AE-based
d-BCM results for R = 12/7.

6.7.4 Reproducibility of Proposed AE and d-AE Frameworks

Definition 21 (Reproducibility of AE) An AE is defined to be reproducible, for a given

hyper-parameter setting PS , if and only if we can reproduce any trained AE modelM(θ)

with a very high probability, such that it does not lead to large variations in BER for

different training weight initialization and training-validation samples of the AE.

We analyze the reproducibility by varying training-validation data and weight ini-

tialization for training each of the AE performing BCM and d-BCM designs 25 times

and reporting the standard deviation and mean of BER in testing data in Fig. 6.7.4. In

particular, we evaluate the reproducibility of the BER results obtained for the proposed

AE-based BCM and d-BCM for different RSI levels, while we fix rate R = 16/7 in AE-

based BCM design and fix rate R = 12/7 in AE-based d-BCM design, with transmitting

SNR Eb/N0 = 30 dB. We can see that the proposed AE frameworks are highly repro-

ducible because their standard deviation of 25 BER obtained from 25 different runs lies

in the range 10−2 − 10−4. This is because we train the AE until the convergence using

Remark 19. Also, as the RSI increases, the variations in BER increases by a factor of

two, showing that higher RSI levels negatively impact the reproducibility of the trained

AE frameworks in an FD-AF relay network.
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6.8 Conclusion

In this chapter, we propose end-to-end learning-based FD-AF relay networks in the pres-

ence of the RSI using the AE framework for high transmission rates R = k/n. We

propose (n, k) AE-based BCM and d-BCM designs depending upon the availability of

the CSI knowledge. Further counter-intuitively, in the presence of the RSI in the FD-AF

relay networks, we propose to utilize a radio transformer network for the BCM design

to improve the NN-based decoding and BER performance. We design a single fixed AE

framework that can generalize well on varying testing SNR or RSI levels, outperform-

ing the conventional FD-AF relay networks with remarkable gains and the half-duplex

AF relay networks in the absence of CSI knowledge. We analyze the AE’s performance

in the presence of channel estimation error. We note that the proposed AE framework

with almost entirely erroneous channel estimation for moderate RSI still outperforms the

conventional FD-AF relay networks with perfect channel estimation. Moreover, we show

that the proposed AE framework is highly reproducible for varying training weight initial-

ization and training sample sets as the BER for 25 different training varies by a standard

deviation of 10−2 − 10−4 depending on RSI levels in the FD-AF relay node.

With a focus on interpretability, similar to Chapter 2 on HD P2P networks, we deter-

mine the estimated mutual information of the proposed AE frameworks for varying SNR

and RSI levels. We show that the AE converges above a minimum required SNR and

below a maximum RSI, depending on the transmission rate and CSI availability. Further-

more, we provide the necessary conditions for AE’s convergence by showing that once

the binary cross-entropy validation loss has converged, the NN encoder of AE designs

2k codewords during the training phase, the AE has converged to its maximum potential

of decoding the signal. Lastly, by analyzing the AE-based BCM designs, we determine

distinct observations of the designed codewords in 2n-dimensional space – (i) AE forms

2k codewords in 2n-dimensional space, (ii) as the block length increases the minimum

Euclidean distance between any of the possible codewords increases, and for sufficiently

large block length (n) when the number of codewords becomes extremely large, the min-

imum Euclidean distance between any two codewords follows a Gaussian distribution

and the Euclidean distance between the codewords concentrate to the average Euclidean

distance, (iii) the packing density improves as the rate R decreases, (iv) the codewords

designed by the AE framework are spherical codes, and (v) as the block-length increases

the average Hamming distance between codewords increases. Thereby, also showing that

the observations of AE-based BCM and d-BCM designs for simple P2P HD transmission

mode proposed in Chapter 2 also holds true for complicated dual hop AF relay networks,

operating in FD mode. We also introduced a new property relating to average Hamming

distance.
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Appendix

6.A Conventional FD-AF Relay versus NN-based FD-AF

Relay

In this chapter, we propose to utilize conventional FD-AF relay node in the AE frame-

work. In this Appendix, we compare the BER performance of proposed AE framework

designed using the conventional FD-AF relay node and AE framework designed using an

NN-based FD-AF relay node. In AE works for HD-AF relay networks [38], [57] a NN-

based HD-AF relay node is employed, thus we compare three different NN-based FD-AF

relay nodes with input as xr, by varying the layers and activation functions, detailed as

follows:

• NN Relay-1: 2 (Input: xr)→ 2 (Tanh)→ 2 (Linear)→ 2 (PN )

• NN Relay-2: 2 (Input: xr)→ 2n (Tanh)→ 2 (Linear)→ 2 (PN )

• NN Relay-3: 2 (Input: xr)→ 2n (Tanh)→ 2n (Tanh)→ 2 (Linear)→ 2 (PN )

where X(Y ) indicates there are X neurons in the dense layer and Y denotes activation

function. Also, the PN denotes the power normalization layer, defined as Definition 7,

which ensures the symbol power remains 1. In Fig. 6.A.1, we analyze the BER perfor-

mance of proposed conventional FD-AF relay-based AE and NN-based FD-AF relay-

based AE frameworks for (n, k) = (7, 8), Eb/N0 = 30 dB and varying RSI. Clearly, the

proposed AE (with conventional FD-AF relay node) outperforms the NN-based FD-AF

relay node-based AEs, while having no optimization parameters because there is no NN,

thereby also reducing the implementation complexity.

6.B Impact of Including RTN in AE Frameworks

In AE works for the HD-AF relay network (please see Chapter 3), an RTN is included

in the d-BCM design and excluded in the BCM design. In Fig. 6.B.1, we analyze the

impact of including an RTN in the NN decoder of the proposed AE frameworks for

(n, k) = (7, 4), Eb/N0 = 30 dB and varying RSI. We can see that including an RTN
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Figure 6.A.1: Comparing proposed conventional v/s NN-based FD-AF relay-based AE
frameworks.
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in AE performing BCM design helps to improve the BER performance by at least 5 dB

for lower RSI (σ2
rr ≤ −20 dB), whereas including an RTN in AE performing d-BCM de-

sign worsens the BER performance by at least 1.8 dB for higher RSI (σ2
rr ≥ 0 dB). Thus

in this chapter, in contrast to Chapters 2–4, we have included an RTN in our proposed AE

framework while performing BCM design and do not include an RTN in our proposed

AE framework while performing d-BCM design.
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Chapter 7

AE-based Decode-and-Forward Relay
Networks with Hardware Impairments

7.1 Introduction

Although the amplify-and-forward (AF) relay provides low complexity re-transmission

of the amplified signal, it also amplifies the noise at the relay node [25], [24]. Thus, in

previous chapters 3–6, we focused on autoencoder (AE)-based block coded modulation

(BCM) and differential BCM (d-BCM) designs (for rate R = k/n [bits/channel-reuse]) to

minimize the deteriorating impacts of the noise amplification. Traditionally, to remove the

noise amplification, decode-and-forward (DF) relay is adopted [22], [56]. In the DF relay

protocol, the relay node decodes the received signal, re-encodes the decoded signal, and

transmits the encoded signal to the destination node [79, 56, 80, 81, 22, 23]. Moreover,

the DF protocol outperforms the AF protocol when the source to relay channel is good

enough and has added advantage of using different coding designs at the source and relay

nodes. For the sake of clarity, we summarize the one-way DF (OW-DF) and two-way DF

(TW-DF) relay networks below

• One-way decode-and-forward (OW-DF) relay networks [79, 56, 80, 81] – As shown

in Fig. 7.1.1a, in the first phase, terminal node A sends the signal to the relay node.

In the second phase, the relay node decodes the received signal and re-encodes the

decoded signal (digital-to-digital domain) before re-transmission to terminal node

B, which decodes the intended signal.

• Two-way decode-and-forward (TW-DF) relay networks [22, 23] – As shown in

Fig. 7.1.1b, in the first phase, terminal node A sends its signal to the relay node,

which decodes the terminal node A’s intended signal. Similarly, terminal node B

sends its signal in the second phase, which is decoded by the relay node. Finally, in

the third phase, the relay node combines the decoded signals and broadcasts the re-
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(a) Two phase OW-DF relay networks. (b) Three phase TW-DF relay networks.

Figure 7.1.1: An illustration of OW-DF and TW-DF relay networks implementing the
signal transmission–reception between terminal nodes A and B in two and three phase
transmissions.

encoded combined signal to the terminal nodes, each removing its signal, decoding

the intended signal from the other terminal node. For the third phase transmission–

reception, the two widely employed techniques are detailed as

– Denoise and superposition forward (DSF) technique [103] – Herein, the relay

node superposes the decoded signals using a factor α ∈ (0, 1), while the ter-

minal nodes subtract its signal with the knowledge of α to decode the signal

of the other terminal node.

– Decode and XOR forward (DXF) technique [104] – Herein, the relay node

performs bit-wise XOR operation on the decoded signals before re-encoding

the signal, while the terminal node performs bit-wise XOR on the decoded

signal and its signal to obtain the signal of the other terminal node.

Recently, the AE-based end-to-end learning frameworks have been designed for the

OW-DF relaying networks, showing promising bit-error-rate (BER) performance gains [37,

39, 36], our recent work [67], wherein the terminal node A transmits its signal to the ter-

minal node B employing an OW-DF relay node. The first phase has a different AE frame-

work, wherein an NN-based encoder at terminal node A encodes the signal and trans-

mits it to the OW-DF relay node, which decodes the signal using an NN-based decoder.

Also, the second phase has a different AE framework, wherein the NN-based encoder

at the relay node encodes the signal and transmits it to the terminal node B, which de-

codes the signal using an NN-based decoder. The OW-DF relay network is investigated

using a symbol-wise AE framework [37, 36], [67] and a bit-wise AE framework for a

cooperative non-orthogonal multiple access, wherein terminal node A operates as a base

station, the near user operates as OW-DF relay node, and far user operates as terminal

node B [39]. Moreover, a two-step iteratively training policy is proposed in [67] where

the AE frameworks in the first and second phases are trained iteratively, while a two-step
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training policy by removing the iterative loop is proposed in [67] with an information-

theoretic perspective. Moreover, the focus on AE-based OW-DF relay network was to

perform modulation design [37, 39, 36], while the a symbol-wise AE-based differential

block coded modulation (d-BCM) design is considered in [36, 67] for transmission rate

R = 4/14 [bits/channel-reuse] considering (7, 4) Hamming code as baseline error correc-

tion code and BPSK modulation, where 14 is because of two-phase transmission of n = 7

symbols.

In our recent work [67], we analyzed symbol-wise AE-based two-way DF (TW-DF)

relay networks, wherein the terminal nodes A and B communicate with each other em-

ploying a TW-DF relay node, thereby increasing the spectral efficiency by 33% (c.f. [22],

[56]) in comparison to AE-based OW-DF relay networks [37, 39, 36], [67]. In particular,

the first phase has a different AE framework, wherein an NN-based encoder at terminal

node A encodes the signal and transmits it to the TW-DF relay node, which decodes the

signal using the first NN-based decoder. The second phase has a different AE framework,

wherein an NN-based encoder at terminal node B encodes the signal and transmits it to

the TW-DF relay node, which decodes the signal using the second NN-based decoder.

Thus, the TW-DF relay node employs two separate NN-based decoders, the output of

both of which are concatenated and passed as input to the AE in the third phase. The

third phase employs an NN-based encoder which encodes both the signals together and

broadcasts it to both the terminal nodes A and B, which employ separate NN-based de-

coders to decode the signal of the other terminal node. We proposed to train the three AE

frameworks in an iterative three-step training policy. Moreover, we considered a symbol-

wise AE-based block coded modulation (BCM) design for transmission rate R = 8/21

[bits/channel-reuse] considering (7, 4) Hamming code as baseline error correction code

and BPSK modulation, where 21 is because of three-phase transmission of n = 7 symbols

and 8 is because both terminal nodes communicate with each other, for k = 4 bits.

Furthermore, as detailed in Chapter 4, in practice, relaying systems are compromised

by in-phase (I) and quadrature-phase (Q) imbalance (IQI) deteriorating the network per-

formance [19]–[71]. Furthermore, the removal of the IQI requires the channel state in-

formation (CSI) knowledge and estimation of the IQI parameters and CSI separately.

Thereby leading to increased feedback overhead.

Thus, in contrast to the existing literature, as shown in Table 7.1.1, the major contri-

butions of this chapter are as follows:

• We propose a stacked bit-wise AE-based OW-DF relay network in the presence of

IQI at all the nodes. We propose to employ two different AE frameworks in two

phases of the transmission, train these two AEs separately and stack them together

for predictions. Specifically, we propose a stacked bit-wise AE and denoising bit-

wise AE frameworks in the first and second phases of transmission, respectively. We
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Table 7.1.1: Comparison of proposed Chapter versus state-of-the-art AE literature of DF
relay networks [37, 39, 36], [67].

Relay Ref Bit-wise BCM d-BCM I/Q Im- Rate
Network No. AE design design balance R

OW-DF

[36] ✗ ✗ ✓ ✗ 4/14

[37] ✗ ✗ ✗ ✗ N/A
Our previous [67] ✗ ✗ ✓ ✗ 4/14

[39] ✓ ✗ ✗ ✗ N/A
This Chapter ✓ ✓ ✓ ✓ 8/14

TW-DF
Our previous [67] ✗ ✓ ✗ ✗ 8/21

This chapter ✓ ✓ ✓ ✓ 16/21

utilize the benefits of soft-decision decoding by the bit-wise AE in the first phase by

passing it directly as input to the denoising bit-wise AE in the second phase. Also,

we propose a new two-step training scheme for training the proposed stacked AE

frameworks.

• We propose a stacked bit-wise point-to-point (P2P) AE-based TW-DF relay net-

work in the presence of IQI at all the nodes. Furthermore, we propose employing a

bit-wise AE framework of a P2P network to design a bit-wise AE-based TW-DF re-

lay network. Specifically, we firstly train a bit-wise AE framework (in a single-step

training policy) for a P2P network. Secondly, we stack the NN-based encoder-

decoder of the trained P2P AE framework to design an AE-based TW-DF relay

network. Lastly, we utilize the benefits of conventional bit-wise XOR-based encod-

ing at the relay node and decoding at the terminal nodes to remove each terminal’s

own bits.

• For both the OW-DF and TW-DF relay networks, we propose AE-based BCM

and d-BCM designs such that the need for IQI parameter information is removed,

thereby reducing the feedback overhead.

• For both the OW-DF and TW-DF relay networks, we propose a training dataset

creation policy such that a single trained AE framework-based BCM and d-BCM

designs can generalize well on any levels of testing IQI and signal-to-noise-ratio

(SNR).

7.2 System Model

In this section, we detail the conventional DF relay networks, wherein the terminal nodes

(A and B) communicate using a DF relay node (R), and each node is impacted by the

IQI. Each node has a single antenna, and the direct link between the terminal nodes
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Figure 7.2.1: Signal transmission between the Tx node (Γ) and the Rx node (Υ) with IQI.

is absent because of large-scale path-loss and shadowing effects. The terminal nodes

perform block-by-block encoding-decoding, while the signal transmission in each phase

takes place as symbol-by-symbol. For ease of explanation, we keep the block length n as

unity in this section. Further, the modeling of the IQI remains the same as Section 4.2.1.

7.2.1 Signal Transmission–Reception between any Two Nodes

For sake of brevity, we enlist the steps for signal transmission–reception between a Tx

node Γ = {A,B,R} and a Rx node Υ = {A,B,R}, where Γ ̸= Υ, as shown in Fig. 7.2.1,

to be utilized later on in this section, as below

1. At the Tx node: The Tx node Γ intends to transmit uΓ ∈ {0, 1}k bits by mapping

uΓ to a complex baseband symbol xΓ =M(uΓ) ∈ C using theM(·) modulation

function, such that E
{
|xΓ|2

}
= 1. The up-converted signal in presence of Tx IQI

becomes xIQ
Γ , given by

xIQ
Γ = G1xΓ +G⋆

2x
⋆
Γ (7.1)

where (·)⋆ denotes conjugate operation.

2. Signal transmission between Tx and Rx node: Let the signal received at the Rx node

Υ be yΥ, given by

yΥ =
√
PΓhΓΥx

IQ
Γ + nΥ (7.2)

where PΓ denotes the transmission power of Tx node Γ, hΓΥ represents the fading

channel between the Tx node Γ and Rx node Υ, such that hΓΥ ∼ CN (0, 1), and

nΥ is the additive white Gaussian noise (AWGN) at the Rx node Υ such that nΥ ∼
CN (0, σ2

Υ).
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3. At the Rx node: Considering the Rx side IQI effect, we obtain yIQΥ , given by

yIQΥ = K1yΥ +K2y
⋆
Υ (7.3)

=
√

PΓ (K1G1hΓΥ +K2G2h
⋆
ΓΥ)xΓ︸ ︷︷ ︸

Desired signal

+

√
PΓ (K1G

⋆
2hΓΥ +K2G

⋆
1h

⋆
ΓΥ)x

⋆
Γ︸ ︷︷ ︸

Self-interference signal

+K1nΥ +K2n
⋆
Υ︸ ︷︷ ︸

Noise

= Λ(Γ,Υ)xΓ + Ω(Γ,Υ)x⋆
Γ + ñΥ(Γ,Υ) (7.4)

where

Λ(Γ,Υ) =
√
PΓ (K1G1hΓΥ +K2G2h

⋆
ΓΥ) (7.5)

Ω(Γ,Υ) =
√

PΓ (K1G
⋆
2hΓΥ +K2G

⋆
1h

⋆
ΓΥ) (7.6)

ñΥ(Γ,Υ) = K1nΥ +K2n
⋆
Υ (7.7)

Remark 25 Please note in (7.4) we can see that the IQI leads to signal distortion, Λ(Γ,Υ)xΓ,

and causes self-interference, Ω(Γ,Υ)x⋆
Γ, thereby deteriorating the network performance.

4. ZF-based IQI compensation at the Rx node: Assuming the Rx node (Υ) has the

IQI parameters (G(·), K(·)) information the ZF-based IQI compensation can be per-

formed to remove the IQI. Wherein, we aim to cancel the self interference term in

(7.4) and detect the transmitted signal xΓ. Similar to Chapters 4, 5, this is achieved

by concatenating the received signal yIQΥ and its conjugate yIQ
⋆

Υ in a matrix form as

follows: [
yIQΥ

yIQ
⋆

Υ

]
=

[
Λ(Γ,Υ) Ω(Γ,Υ)

Ω(Γ,Υ)⋆ Λ(Γ,Υ)⋆

][
xΓ

x⋆
Γ

]
+

[
K1 K2

K⋆
2 K⋆

1

][
nΥ

n⋆
Υ

]
yIQ
Υ = A(Γ,Υ)xΓ +B(Γ,Υ)nΥ (7.8)

We perform ZF-based IQI compensation to get ŷIQΥ , as[
ŷIQΥ , ŷIQ

⋆

Υ

]
= (A(Γ,Υ))−1 × yIQ

Υ (7.9)

Remark 26 Please note in ZF-based IQI compensation, we assume IQI parameters in-

formation, that needs to be estimated separately, thus in the absence of IQI parameter

information, i.e. no IQI compensation, Step 4 is omitted and ŷIQΥ = yIQΥ .

5. MLD at the Rx node: Assuming the Rx node Υ has the CSI knowledge (hΓΥ) and
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Figure 7.2.2: One-way decode-and-forward relay networks with IQI.

transmission power (PΓ) information, the Rx node performs optimal MLD as

ûΓ = argmin
x∈C

∣∣∣∣∣∣ŷIQΥ −√PΓhΓΥx
∣∣∣∣∣∣2 (7.10)

where C denotes all the possible symbols and ûΓ is decoded bits of size k intended

by the Tx node (Γ).

7.2.2 One-Way Decode-and-Forward Relay Networks with IQI

As shown in Fig. 7.2.2, we consider an OW-DF relay network with IQI at all the nodes,

where a terminal node A transmits the signals to the terminal node B with the aid of an

OW-DF relay node R, with an effective transmission rate R = k/2n [bits/channel reuse],

where 2 is because transmission takes place in two phases.

In the first phase, the terminal node A transmits uA = {0, 1}k bits to the relay node R

using the signal transmission-reception procedure in Sec. 7.2.1 with Γ = A and Υ = R,

to obtain the decoded k bits ûA at the relay node R. In the second phase, the relay node

R re-transmits uR = ûA to the terminal node B using the signal transmission-reception

procedure in Sec. 7.2.1 with Γ = R and Υ = B, to obtain the decoded k bits ûA intended

by the terminal node A.

7.2.3 Two-Way Decode-and-Forward Relay Networks with IQI

As shown in Fig. 7.2.3, we consider a TW-DF relay network with IQI at all the nodes,

where a terminal node A communicates with the terminal node B (and vice-versa) with the

aid of a TW-DF relay node R, with an effective transmission rate R = 2k/3n [bits/channel

reuse], where 2 and 3 are because both the terminal communicate with each other and

transmission takes place in three phases, respectively.

In the first phase, the terminal node A transmits uA = {0, 1}k bits to the relay node R
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Figure 7.2.3: Two-way decode-and-forward relay networks with IQI.

using the signal transmission-reception procedure in Sec. 7.2.1 with Γ = A and Υ = R, to

obtain the decoded k bits uA
R = ûA at the relay node R. In the second phase, the terminal

node B transmits uB = {0, 1}k bits to the relay node R using the signal transmission-

reception procedure in Sec. 7.2.1 with Γ = B and Υ = R, to obtain the decoded k bits

uB
R = ûB at the relay node R. For the third phase, we detail the signal transmission-

reception procedure using Steps 1-5 mentioned in Sec. 7.2.1, as follows:

• The relay node R performs bit-wise XOR operation on the decoded bits in the first

and second phases, as follows:

uR = uA
R ⊕ uB

R (7.11)

where ⊕ denotes the bit-wise XOR operation.

• Similar to Step 1 (in Sec. 7.2.1), the relay node obtains the up-converted signal xIQ
R

by keeping Γ = R.

• Then similar to Steps 2 and 3 (in Sec. 7.2.1), the relay node broadcasts the signal

to the terminal nodes A and B by keeping Γ = R,Υ = A and Γ = R,Υ = B,

respectively.

• Now using Steps 4 and 5 (in Sec. 7.2.1) the terminal nodes A and B decode the k bits

ûR transmitted by the relay node by keeping Γ = R,Υ = A and Γ = R,Υ = B,
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Figure 7.2.4: Impact of IQI on the SIR (in dB) in OW-DF and TW-DF relay networks.

respectively.

• Since each terminal node has its own information bits (i.e. terminal node A and B

has information about uA and uB, respectively), it can now perform bit-wise XOR

on the decoded bits and its own bits to decode the other terminal node’s bits (i.e.

terminal node A and B decodes ûB and ûA, respectively), as follows:

At terminal node A : ûB = ûR ⊕ uA (7.12)

At terminal node B : ûA = ûR ⊕ uB (7.13)

7.2.4 Impact of IQI on OW-DF and TW-DF Relay Networks

We analyze the destructive effects of the IQI on the OW-DF and TW-DF relay networks.

For simplicity, we assume the transmission power of each node PΓ = 1 where Γ =

{A,B,R} and we have equal Tx and Rx side IQI at each node, ξT = ξR = ξ and ϕT =

ϕR = ϕ, throughout this Chapter.

Considering there are no noise terms nΓ = 0, we can determine the signal-to-interference-

ratio (SIR in dB) for the OW-DF and TW-DF relay networks1 using (7.4) as follows:

SIR =
E
{
|Λ(Γ,Υ)xΓ|2

}
E
{
|Ω(Γ,Υ)x⋆

Γ|
2} =

|K1|2|G1|2+|K2|2|G2|2

|K1|2|G2|2+|K2|2|G1|2
(7.14)

In Fig. 7.2.4, we analyze the impact of varying phase and amplitude offsets on the SIR

in (7.14). In the ideal scenario with no IQI, the SIR becomes infinity. Whereas, even a

small phase offset ϕ = 15◦ or amplitude offset ϕ = 0.8 can deteriorate the SIR to 30 dB

or 40 dB, respectively. Furthermore, in the scenarios with larger phase offsets ϕ ≥ 30◦

or amplitude offsets ξ ≤ 0.6, the SIR remains less than 8 dB. Thus, even smaller IQI can
1The SIR (in dB) remains the same in each hop for OW-DF and TW-DF relay networks because we

consider same Tx and Rx side IQI at each node and the relay node performs in DF mode.
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Figure 7.3.1: Training of proposed stacked bit-wise AE and bit-wise denoising AE frame-
works for OW-DF relay networks with IQI.

deteriorate the SIR significantly. Hence it becomes pivotal to develop novel techniques

for OW-DF and TW-DF relay networks that can help in the successful transmission of

signals in the presence of IQI under such low SIR regimes.

7.3 Proposed Stacked Bit-wise AE and Denosising AE-

based OW-DF Relay Networks with IQI

In this section, we propose stacked AEs-based BCM and d-BCM designs for the OW-DF

relay network with IQI at all the nodes.

As detailed in Sec. 7.2, we assume the direct link between the terminal nodes is absent,
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and the relay node operates in DF mode. Thus, the two-phase transmissions in an OW-DF

relay network can be considered as two separate P2P transmissions. Hence, we consider

two different AE frameworks in each phase. In this chapter, we propose to employ the

bit-wise AE frameworks that decode k soft probabilistic outputs at their NN decoders.

Specifically, in the first phase, we employ a bit-wise AE framework with its NN encoder

at the terminal node A and its NN decoder at the relay node R. The bit-wise AE is trained

in an end-to-end manner, as shown in Fig. 7.3.1: ‘Training of the bit-wise AE in Phase 1’,

with its input as k bits and output as k soft probabilities.

Now, for the first time, we introduce the concept of bit-wise denoising AE framework,

defined as follows:

Definition 22 (Bit-wise denoising Autoencoder) A bit-wise denoising AE is a bit-wise

AE framework, with the difference that the input at the NN encoder is the soft probabilistic

values lying between [0, 1] instead of bits {0, 1}.

Remark 27 Please note that the bit-wise denoising AE framework also employs a Sig-

moid activation in the last layer of the NN decoder to retrieve soft probabilistic outputs

and is optimized by minimizing the binary CE loss.

In the second phase, we propose to employ a bit-wise denoising AE framework with

its NN encoder at the relay node R and its NN decoder at the terminal node B. This is

because the NN decoder (of bit-wise AE) at the relay node R (in the first phase) produces

soft probabilistic outputs, which can be directly fed as an input to the NN encoder of the

bit-wise denoising AE framework.

Now, we propose a new end-to-end training for the proposed bit-wise denoising AE,

as shown in Fig. 7.3.1 – ‘Training of the bit-wise denoising AE in Phase 2’. Specifically,

we perform end-to-end training between the k input bits of the NN encoder of the bit-wise

AE in the first phase transmission and k soft probabilistic outputs of the NN decoder of

the bit-wise denoising AE framework in the second phase transmission.

A direct advantage of employing the bit-wise denoising AE is that we remove the

hard decision decoding (HDD) on the soft outputs of the NN decoder of the bit-wise AE

framework in the first phase. This is because the probability of decoding the bits erro-

neously is highest for the soft probabilistic outputs lying close to the HDD threshold due

to the ambiguity in making the decisions. Suppose a soft probability lies close to the HDD

threshold, then the HDD-based bit results can not be trusted completely. Furthermore, in

a DF relaying network where the output of the NN decoder of the bit-wise AE in the first

phase is fed into the NN encoder of the bit-wise denoising AE in the second phase, the

chances of error propagation increase with HDD-based bit results because of ambiguous

decoding near HDD threshold. Instead, if we directly utilize the soft probabilistic outputs

of the first phase’s bit-wise AE’s NN decoder as the input to the second phase’s bit-wise
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Figure 7.3.2: Testing of proposed stacked bit-wise AE and bit-wise denoising AE frame-
works for OW-DF relay networks with IQI.

denoising AE and employ the aforementioned technique to train the bit-wise denoising

AE framework. Then the bit-wise denoising AE can learn to decode the soft probabilities

lying close to the HDD threshold correctly.

Once both the bit-wise AE and bit-wise denoising AE frameworks are trained, we

propose to stack these trained AE frameworks for the two-phase transmissions to form a

stacked AEs-based OW-DF relay network, as shown in Fig. 7.3.2.

7.3.1 Designing of the Bit-wise AE for Phase 1

In this chapter, we utilize L fully-connected (dense) layers, wherein the output of the

lth ∈ {1, ..., L} dense layer ωl ∈ Rδl can be given as (2.2). It is also important to note the

Remark 15 here for understanding the notations.

The terminal node A takes k bits uA ∈ {0, 1}k as input and performs block-by-block

encoding by mapping uA to n complex baseband symbols xA ∈ Cn using the mapping

function fθATx
(uA,xA), where θATx

is the weight and bias terms of constituent M dense

layers, similar to detailed in Definition 6, and given by

fθATx
(uA,xA) = PN (σM (WMσM−1 (WM−1

σM−2 (...σ1 (W1uA + b1) ...) + bM−1) + bM)) (7.15)

wherein, PN denotes the power normalization layer, detailed in Definition 7, that man-

dates ||xA||22 = n.

Then, the symbol-by-symbol transmission reception takes place between the terminal

node A and relay node R. In particular, first the symbol is up-converted in presence of Tx

IQI to become xIQ
A using (7.1) with Γ = A. Then, the signal received by the relay node R

becomes yR using (7.2) with Γ = A and Υ = R. Lastly, by considering the Rx side IQI,
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the received signal yR at the relay node R becomes yIQR using (7.4) with Υ = R.

Once the NN decoder at the relay node R receives these n symbols, given by yIQ
R ∈

Cn, it performs block-by-block decoding by de-mapping yIQ
R to k soft probabilistic out-

puts p̃gθRRx
(uA|yIQ

R ) ∈ [0, 1]k, as detailed in Definition 8, using the de-mapping function

gθRRx
(yIQ

R , p̃gθRRx
(uA|yIQ

R )), where θRRx
is weight and bias terms of constituent N dense

layers, as detailed in Definition 9, given by

gθRRx

(
yIQ
R , p̃gθRRx

(
uA|yIQ

R

))
= σN (WNσN−1 (...σ1 (W1

LL(y
IQ
R ) + b1

)
...
)
+ bN

)
(7.16)

where LL denotes the Lambda layer detailed in Definition 10.

7.3.2 Designing of the Bit-wise Denoising AE for Phase 2

The relay node R takes the k soft probabilistic outputs p̃gθRRx
(uA|yIQ

R ) ∈ [0, 1]k obtained

from the NN decoder of trained bit-wise AE (in first phase) as input and performs block-

by-block encoding by mapping p̃gθRRx
(uA|yIQ

R ) to n complex baseband symbols xR ∈ Cn

using mapping function fθRTx
(p̃gθRRx

(uA|yIQ
R ),xR), where θRTx

is weight and bias terms

of constituent M dense layers given by

fθRTx

(
p̃gθRRx

(
uA|yIQ

R

)
,xR

)
= PN (σM (WMσM−1 (...σ1 (W1

p̃gθRRx

(
uA|yIQ

R

)
+ b1

)
...
)
+ bM

))
(7.17)

where power normalization layer (PN) ensures ||xR||22 = n. Then, the symbol-by-symbol

transmission reception takes place between the relay node R and terminal node B. In

particular, first the symbol is up-converted in presence of Tx IQI to become xIQ
R using

(7.1) with Γ = R. Then, the signal received by the terminal node B becomes yB using

(7.2) with Γ = R and Υ = B. Lastly, by considering the Rx side IQI, the received signal

yB at the terminal node B becomes yIQB using (7.4) with Υ = B.

Once NN decoder at terminal node B receives n symbols, given by yIQ
B ∈ Cn, it

performs block-by-block decoding by de-mapping yIQ
B to k soft probabilistic outputs

p̃gθBRx
(smA |y

IQ
B ) ∈ [0, 1], for all m, as detailed in Definition 8, using de-mapping func-

tion gθBRx
(yIQ

B , p̃gθBRx
(uA|yIQ

B )), where θBRx
is weight and bias terms of constituent N

dense layers, given by

gθBRx

(
yIQ
B , p̃gθBRx

(
uA|yIQ

B

))
= σM (WNσN−1 (...σ1 (W1

LL(y
IQ
B ) + b1

)
...
)
bN

)
(7.18)
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Remark 28 Please note, as shown in Fig. 7.3.1 – ‘Training of the bit-wise denoising

AE in Phase 2’, we propose end-to-end training between the input bits of the NN en-

coder of the bit-wise AE (in the first phase) and soft outputs of NN decoder of the bit-

wise denoising AE. Thus, NN decoder of bit-wise denoising AE learns the distribution

p̃gθBRx
(uA|yIQ

B ), learning the soft probabilistic outputs for input bits at terminal node A.

If end-to-end training between the input-output of the bit-wise denoising AE have been

performed, then the NN decoder of bit-wise denoising AE would have learnt the dis-

tribution p̃gθBRx
(p̃gθRRx

(uA|yIQ
R )|yIQ

B ), learning the soft probabilistic outputs of the NN

decoder of bit-wise AE in first phase. Thereby showing the merits of proposed training of

bit-wise denoising AE framework (discussed in Sec. 7.3.5).

7.3.3 Proposed AE-based BCM and d-BCM Designs

Similar to Chapter 2, we propose block-by-block encoding and decoding at the NN en-

coders and decoders, respectively, while the proposed AE-based BCM with CSI knowl-

edge and d-BCM without CSI is determined on the basis of the designed Lambda layer

(LL) in the NN decoders, detailed as follows:

• BCM – Herein, we assume the CSI knowledge and perform channel equalization in

Lambda layer for the hΓΥ between the transmitter node Γ and receiver node Υ.

• d-BCM – Herein, we assume we do not have the CSI knowledge and propose to

employ a radio transformer network (RTN). The RTN has been widely employed

to estimate the CSI knowledge [12]; however, similar to Chapter 4, we propose an

RTN that also helps in removing the IQI from the received signal at the receiver

(decoder) node Υ.

Please note, unlike the conventional networks considering ZF-based IQI compensation (as

discussed in Step 4 in Sec. 7.2.1), with the knowledge of IQI parameters, our proposed

AE framework do not require the IQI parameter information in BCM or d-BCM designs.

Thus, removing the feedback overhead for IQI estimation.

7.3.4 Loss Optimization

The proposed bit-wise AE and bit-wise denoising AE frameworks are optimized by solv-

ing the multi-label binary classification problem, by minimizing the binary CE losses

LAR

(
uA, p̃gθRRx

(
uA|yIQ

R

))
andLRB

(
uA, p̃gθBRx

(
uA|yIQ

B

))
for first and second trans-

mission phases, respectively, each of which is defined similar to the Definition 13.
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Table 7.3.1: NN architectures at different nodes for any of the proposed AE frameworks.

NN Encoder NN Decoder RTN in Lambda layer

Neurons Remark Neurons Remark Neurons Remark

δ1 = k Input δ1 = 2n Input δ1 = 2n Input
δ2 = 128 σ1 = Tanh δ2 = 2n Lambda layer (LL) δ2 = 128 σ1 = Tanh
δ3 = 64 σ2 = Tanh δ3 = 256 σ1 = Tanh δ3 = 32 σ2 = Tanh
δ4 = 32 σ3 = Tanh δ4 = 128 σ2 = Tanh δ4 = 2 σ3 = Linear
δ5 = 2n σ3 = Linear δ5 = 64 σ2 = Tanh

δ5 = 2n

Equalize 2n Input
δ6 = 2n Power normalization (PN) δ6 = k σ3 = Sigmoid by estimated channel
δ7 = 2n Output δ7 = k Soft output 2 output of previous layer

7.3.5 Training Procedure

Following the procedure in Section 2.5.1, we first train the bit-wise AE in the first phase

transmission by minimizing the binary CE loss LAR

(
uA, p̃gθRRx

(
uA|yIQ

R

))
also repre-

sented as JAR (θATx
,θRRx

) to obtain the trained parameters θATx
,θRRx

of the bit-wise

AE. For the trained bit-wise AE (in first phase) we perform predictions on the training

set to obtain soft probabilistic outputs p̃gθRRx
(smA |y

IQ
R ), which are passed as input to the

NN encoder of the bit-wise denoising AE (in second phase). Then we train the bit-wise

denoising AE by minimizing the binary CE loss LRB

(
uA, p̃gθBRx

(
uA|yIQ

B

))
also rep-

resented as JRB (θRTx
,θBRx

) to obtain the trained parameters θRTx
,θBRx

of the bit-wise

denoising AE.

7.3.6 NN Architecture

We create a single NN architecture for the encoder, decoder, and RTN to be generalizable

for all the proposed AE frameworks, as summarized in Table 7.3.1. We implement all the

NNs in Keras [43] with TensorFlow [44] as backend.

7.3.7 Training and Testing Dataset Creation

As detailed in Sec. 7.2.4, we assume PΓ = 1, Γ = {A,B,R} and ξT = ξR = ξ and

ϕT = ϕR = ϕ. We now detail the training dataset creation policy – The Eb/N0 are

taken from the set S = {3, 8, 13, 23, 33, 43, 53, 63} dB, the phase offsets ϕ are taken

from the set P = {25◦, 35◦, 40◦, 45◦} and the amplitude offsets are taken from the set

A = {0.4, 0.5, 0.6, 0.7}. In previous Chapters 4, 5, we utilized a separate training dataset

for each phase or amplitude offset, overcoming that drawback, in this chapter we create a

single training dataset, where we make Qtrain = 2k+2 blocks of data for each combinations

of Eb/N0 (in dB), phase offsets and amplitude offsets from the sets [S,P ,A].
We train a single stacked AE framework on the training dataset and test the trained

AE framework for Qtest = 105 blocks of unseen data for varying Eb/N0 and IQI levels.
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Figure 7.3.3: Separate AE frameworks for each transmission phase in the TW-DF relay
networks.

Please note a direct advantage of proposed training is that we create a single training

dataset such that a single trained stacked AE framework can generalize well for varying

levels of testing Eb/N0, phase and amplitude offset (IQI). Also, the training set creation

policy remains the same for both the OW-DF and TW-DF AE frameworks for generaliz-

ability.

7.3.8 Hyper-Parameter Settings

For all the AE frameworks, we employ SGD with Adam [42] optimizer and initialize

the weights using Glorot initializer [45]. We keep the batch size B = 6000. We utilize

the step-decay method [41] to update the learning rate. Specifically, we start the training

with an initial learning rate τ0 = 0.002 for the first epoch and then drop the learning rate

by η = 0.5 after every DE = 25 epochs (we constraint the minimum learning rate to be

τmin = 10−5). We utilize early stopping [46] to stop the training of the AE if no significant

update is made to the validation accuracy during the training procedure. In particular, we

keep the minimum update in validation accuracy as 10−4 and patience to stop as 17.

7.3.9 Testing or Prediction Phase

During testing, we stack the trained bit-wise AE and bit-wise denoising AE to form the

OW-DF relay networks, as shown in Fig. 7.3.2. For the trained bit-wise AE, we perform

predictions on the testing set to obtain soft probabilistic outputs p̃gθRRx
(uA|yIQ

R ), that are

passed as input to the bit-wise denoising AE, where we again perform predictions on the

testing set to obtain soft probabilistic outputs p̃gθBRx
(uA|yIQ

B ). Similar to Section 2.5.2,

we then perform hard decision decoding by keeping a threshold of 0.5 to obtain the de-

coded bits at the terminal node B.
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7.4 Proposed Stacked P2P AE-based TW-DF Relay Net-

works with IQI

In this section, we propose a stacked bit-wise P2P AE-based BCM and d-BCM designs

for the TW-DF relay network with IQI at all the nodes.

In our previous work [67], a separate symbol-wise AE is trained for each of the three-

phase transmissions in the TW-DF relay networks (as detailed in Sec. 7.1). Directly,

employing three bit-wise AEs for each transmission phase, as shown in Fig. 7.3.3, can

help in improving the performance over [67]. However, we encounter two main problems

of employing separate AEs in each phase, as detailed below, even with the bit-wise AE

frameworks.

Problem 1: As detailed in Sec. 7.2, in conventional scenarios’ third phase transmis-

sion, the TW-DF relay node takes advantage of the terminal nodes knowing their infor-

mation bits by additionally performing bit-wise XOR-based encoding and decoding at the

relay and terminal nodes, respectively. However, in Fig. 7.3.3, the NN encoder at the re-

lay node encodes the concatenated signal of both terminal nodes’ decoded in the first two

phases. Thus the NN decoder at each terminal node ends up decoding the signal for both

the terminal nodes. As a result, the NN encoder at relay encodes 2k bits in n symbols,

while the NN decoders at each terminal node decode 2k bits from the n received symbols.

Thus, effective transmission rate in third phase becomes R = 2k/n [bits/channel-reuse].

Solution 1: We can resolve the Problem 1 by additionally performing the bit-wise

XOR-based encoding-decoding similar to the conventional scenario. Thus, the NN en-

coder at the relay node encodes k bits to n symbols. The NN decoders at each terminal

node decode k bits from n symbols. Hence, the effective transmission rate in the third

phase becomes R = k/n.

Advatage 1: We improve the transmission rate in the third phase by a factor of two;

thus, smaller NN architectures can be employed and it becomes easier to decode signals.

Problem 2: In Fig. 7.3.3, we need to optimize seven different NN architectures of

encoder and decoder pairs for three AEs in three transmission phases. Also, as proposed

in [67], we need to perform iterative training to optimize these three AEs.

Solution 2: We can resolve the Problem 2 by training a single bit-wise P2P AE and

re-utilizing it to form a stacked AE-based TW-DF relay network. Specifically, as detailed

in Sec. 7.2, we assume the direct link between the terminal nodes is absent, and the

relay node operates in DF mode. Thus, the three-phase transmissions in a TW-DF relay

network can be considered as four separate P2P transmissions, where the first two P2P

transmissions are in the first two phases. In comparison, the third phase’s multi-user

downlink transmission can be considered as two simultaneous P2P transmissions between

the relay and terminal nodes.
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Figure 7.4.1: Training of proposed bit-wise P2P AE framework with IQI.

Advatage 2: We remove the necessity of training seven NN architectures iteratively to

only one-time learning of P2P AE.

The aforementioned discussion motivates us to train a single bit-wise AE framework

for the P2P network that takes k bits as input at the NN encoder and decodes k soft

probabilistic outputs at the NN decoder as shown in Fig. 7.4.1. Then, we propose to

re-utilize the trained NN encoder and decoder pair of P2P bit-wise AE in all the nodes

(A, B, R) for encoding and decoding purposes in a TW-DF relay network, as depicted in

Fig. 7.4.2, and employ the below steps for three-phase transmissions, detailed as follows:

• In the first and second transmission phases, the NN encoder at terminal nodes A and

B encodes the signal and transmits it to the relay node’s NN decoder that obtains

soft probabilistic outputs, which are converted to uA
R and uB

R bits by hard decision

decoding, respectively.

• In the third transmission phase, we propose to employ bit-wise XOR-based encod-

ing of the signal as uR = uA
R ⊕ uB

R , these encoded bits are passed through the NN

encoder at the relay node R. While each terminal node decodes the transmitted bits

uR using its NN decoder and applying hard decision decoding. Then, each terminal

node performs a bit-wise XOR operation with its bits to obtain the decoded bits of

the other terminal node.

7.4.1 Designing of Bit-wise P2P AE Framework

We design the bit-wise P2P AE comprising a source node S and destination node D with

IQI at both the Tx and Rx sides. The source node S takes k bits us ∈ {0, 1}k as input

and performs block-by-block encoding by mapping us to n complex baseband symbols

xs ∈ Cn using the mapping function fθs (us,xs), where θs is the weight and bias terms

of constituent M dense layers, detailed as Definition 6 and given by (2.3).
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Then, the symbol-by-symbol transmission reception takes place between the source

node S and destination node D. In particular, first the symbol is up-converted in presence

of Tx IQI to become xIQ
s using (7.1) with Γ = s. Then, the signal received by the

destination node D becomes yd using (7.2) with Γ = s and Υ = d. Lastly, by considering

the Rx side IQI, the received signal yd at the destination node D becomes yIQd using (7.4)

with Υ = d.

Once the NN decoder at the destination node D receives n symbols, given by yIQ
d ∈

Cn, it performs block-by-block decoding by de-mapping yIQ
d to k soft probabilistic out-

puts p̃gθd (us|yIQ
d ) ∈ [0, 1]k, using the de-mapping function gθd(y

IQ
D , p̃gθd (us|yIQ

d )), where

θd is weight and bias terms of constituent N dense layers, given by

gθd

(
yIQ
d , p̃gθd

(
us|yIQ

d

))
= σM (WNσN−1(

...σ1

(
W1LL(y

IQ
d ) + b1

)
...
)
+ bN

)
(7.19)

Please note herein, similar to Sec. 7.3.3 for the OW-DF relay networks, we utilize the

same methodology for BCM and d-BCM design in the Lambda layer (LL) of the NN

decoders. Specifically, we employ channel equalization in BCM designs and NN-based

RTN in d-BCM designs. Also, unlike conventional scenarios, we do not use IQI parameter

information, reducing the feedback overhead for IQI estimation.

7.4.2 Loss Optimization and Training Procedure

Since we propose a bit-wise P2P AE, the process of loss optimization and training remains

the same as the P2P networks proposed in Section 2.5.1.

Please note the following for the proposed bit-wise P2P AE – (1) the NN archi-

tecture employed in the bit-wise P2P AE remains the same as Sec. 7.3.6, (2) the pro-

cess of creating training and testing dataset remains the same as Sec. 7.3.7, and (3) the

hyper-parameter settings for the training the bit-wise P2P AE also remains the same as

Sec. 7.3.8. Please note herein, we also have the following advantage, we create a single

training dataset such that a single trained bit-wise P2P AE framework, when employed in

a stacked form to create a TW-DF relay network, can generalize well for varying levels

of testing Eb/N0 and IQI levels.

7.4.3 Testing Phase

We construct an AE-based TW-DF relay network by employing the trained NN encoder

and decoder of the bit-wise P2P AE framework at all the nodes (A, B, R) in the TW-DF

relay network. For predictions, we follow the below steps:

• In the first phase, the terminal node A takes the k bits uA ∈ {0, 1}k as input and
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Figure 7.4.2: Testing of proposed stacked bit-wise P2P AE framework for TW-DF relay
networks with IQI.

performs block-by-block encoding by mapping uA to n complex baseband symbols

xA ∈ Cn using the mapping function of the trained NN encoder of the bit-wise P2P

AE fθs(us,xs), where us,xs = uA,xA. Then, the symbol-by-symbol transmission

reception takes place between the terminal node A and relay node R. In particular,

first the symbol is up-converted in presence of Tx IQI to become xIQ
A using (7.1)

with Γ = A. Then, the signal received by the relay node R becomes yR using (7.2)

with Γ = A and Υ = R. Lastly, by considering the Rx side IQI, the received

signal yR at the relay node R becomes yIQR using (7.4) with Υ = R. Once the

NN decoder at the relay node R receives n symbols, given by yIQ
R ∈ Cn. Then

the NN decoder performs block-by-block decoding by de-mapping yIQ
R to k soft

probabilistic outputs p̃gθd (uA|yIQ
R ) ∈ [0, 1]k, using de-mapping function of trained

NN decoder of bit-wise P2P AE at relay node R, given by gθd(y
IQ
d , p̃gθd (us|yIQ

d )),

where us,y
IQ
d = uA,y

IQ
R . Then, soft probabilisitic outputs p̃gθd (uA|yIQ

R ) ∈ [0, 1]k

are converted to k bits given by uA
R using hard decision decoding.

• Similar to the first phase, in the second phase, the signal transmission-reception and

encoding-decoding using the trained NN encoder and decoder of the bit-wise P2P

AE takes place between terminal node B and relay node R, to obtain the k decoded

bits uB
R at the relay node.
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• In the third phase, we propose to employ bit-wise XOR-based encoding of the two

decoded signals as

uR = uA
R ⊕ uB

R (7.20)

The relay node R takes k bits uR ∈ {0, 1}k as input and performs block-by-block

encoding by mapping uR to n complex baseband symbols xR ∈ Cn using the

mapping function of trained NN encoder of bit-wise P2P AE fθs(us,xs), where

us,xs = uR,xR. Then relay node broadcasts the signal xR symbol-by-symbol,

while the signal received at the terminal node A and B in the presence of Tx IQI at

relay node and Rx IQI at the terminal nodes A and B can be given by (7.1)–(7.4)

with Γ = R,Υ = A and Γ = R,Υ = B, respectively. Once the NN decoder at

the terminal nodes Γ = {A,B} receives n symbols, given by yIQ
Γ ∈ Cn. Then the

NN decoder at each of the terminal node Γ performs block-by-block decoding by

de-mapping yIQ
Γ to k soft probabilistic outputs p̃gθd (uR|yIQ

Γ ) ∈ [0, 1]k, by using the

de-mapping function of the trained NN decoder of bit-wise P2P AE at each terminal

node Γ, given by gθd(y
IQ
d , p̃gθd (us|yIQ

d )), where us,y
IQ
d = uR,y

IQ
Γ . Then, at each

terminal node Γ the soft probabilisitic outputs p̃gθd (uR|yIQ
Γ ) ∈ [0, 1]k are converted

to k bits, given by ûR, using hard decision decoding. Since each terminal node has

its information bits, it can now perform bit-wise XOR on the decoded bits and its

bits to decode the other terminal node’s bits, as follows:

At terminal node A : ûB = ûR ⊕ uA (7.21)

At terminal node B : ûA = ûR ⊕ uB (7.22)

7.5 Performance Evaluation

In this section, we evaluate the proposed stacked AE frameworks for the OW-DF and TW-

DF relay networks with IQI. We utilize Rayleigh block fading channels with (n, k) =

(7, 8), i.e., rate R = 8/14 (for OW-DF) and rate R = 16/21 (for TW-DF), where the

channel remains constant for n = 7 symbols and then changes randomly. For the conven-

tional scenarios, we utilize QPSK (in the presence of CSI) and d-QPSK (in the absence

of CSI) with (7, 4) Hamming codes and consider the following as benchmarks:

• MLD: No IQIC – Herein, we consider the absence of IQI parameters information

and use the MLD.

• MLD: ZF IQIC – Herein, we consider perfect knowledge of IQI parameters; thus,

we perform ZF-based IQI compensation and use the MLD, as detailed in Sec. 7.2.
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Figure 7.5.1: Comparison of proposed stacked AE frameworks with state-of-the-art AE
frameworks in [36], [67] in an ideal scenario.

• Ideal MLD (no IQI) – Herein, we consider an ideal relay network with no IQI, and

use the MLD.

7.5.1 Comparison of Proposed Stacked AE-based frameworks with
State-of-The-Art AE works

In Fig. 7.5.1, we compare the proposed staked AE frameworks with state-of-the-art AE

works in [36], [67] for OW-DF and in [67] for TW-DF relay networks. Moreover, we

consider ideal OW-DF and TW-DF relay networks without IQI. This will remove all the

additional gains achieved by the proposed AE frameworks designed to mitigate the IQI.

The authors in [36] and [67] proposed a symbol-wise AE-based d-BCM for the OW-

DF relay networks using an iterative two-step training policy and two-step training policy,

respectively. In Fig. 7.5.1, we compare the proposed stacked bit-wise AE and bit-wise

denoising AE framework-based d-BCM with the d-BCM proposed in [36], [67]. Clearly,

the proposed stacked bit-wise AE framework is able to decode the signal with increasing

Eb/N0 and outperform [36], [67], while the performance of [36], [67] reaches error floor

around 10−2.5.

The authors in [67] proposed a symbol-wise AE-based BCM for TW-DF relay net-

works using an iterative three-step training policy for separate symbol-wise AEs in each

transmission phase. In Fig. 7.5.1, we compare the proposed stacked bit-wise P2P AE

framework-based BCM with the BCM proposed in [67] for the TW-DF relay networks.

Clearly, the proposed stacked bit-wise P2P AE outperforms the [67] by 5 dB, without
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(a) Analyzing BCM designs for different amplitude offsets and fixed phase offset ϕ = 25◦.
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Figure 7.5.2: Stacked bit-wise AE and denoising bit-wise AE-based BCM designs for
OW-DF relay networks with IQI.
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using separate AE training in each phase by only re-utilizing the bit-wise P2P AE frame-

works, also reducing the computational complexity and training time-cost.

In general, these gains are achieved because of the proposed stacked bit-wise AE

frameworks performing the automatic bit-labeling and maximization of the bit-wise mu-

tual information (MI). In contrast, the symbol-wise AE performs heuristic bit-labeling by

solving the 2k! combinatorial problem and maximization of the symbol-wise MI. Thereby

showing the merits of proposed stacked bit-wise AE frameworks for OW-DF and TW-DF

relay networks.

7.5.2 BER Evaluation for the BCM and d-BCM Designs for the OW-
DF Relay Networks with IQI

In Fig. 7.5.2a, 7.5.2b, we train a single proposed stacked bit-wise AE and bit-wise de-

noising AE-based BCM designs with CSI knowledge for the OW-DF relay networks, and

analyze by varying the amplitude offsets (in Fig. 7.5.2a) and phase offsets (in Fig. 7.5.2b).

The MLD with ZF-based IQI compensation is always able to decode the signals because

of the presence of IQI parameters information. Moreover, when the amplitude offset is

low ξ = 0.6 (in Fig. 7.5.2a) or phase offset is low ϕ = 35◦ (in Fig. 7.5.2b) the MLD

without any IQI compensation (MLD: No IQIC) is able to decode the signals because

SIR still remains 4.5 dB and 3.9 dB, respectively. However, when the amplitude offset is

high ξ = 0.4 (in Fig. 7.5.2a) or phase offset is high ϕ = 45◦ (in Fig. 7.5.2b) the MLD

without any IQI compensation (MLD: No IQIC) is unable to decode the signals because

SIR becomes 2.2 dB and 2.6 dB, respectively. Thus, when the SIR becomes lower than

3 dB MLD is unable to decode the signals because IQI becomes too high.

In Fig. 7.5.2a, 7.5.2b, we can see that the proposed stacked AE-based BCM design

is always able to decode the signal even for SIR ≤ 3 dB, even without utilizing the IQI

parameters information. The proposed stacked AE-based BCM design performs similar

to MLD for an ideal OW-DF relay network without IQI (Ideal MLD), indicating that

the proposed BCM designs almost completely remove the IQI without utilizing the IQI

parameters information, even under low SIR regimes.

In Fig. 7.5.3a, 7.5.3b, we train a single proposed stacked bit-wise AE and bit-wise

denoising AE-based d-BCM designs without the CSI knowledge for the OW-DF relay

networks, and analyze by varying the amplitude offsets (in Fig. 7.5.3a) and phase offsets

(in Fig. 7.5.3b). Similar to BCM design when the amplitude offset or phase offset is low

ξ = 0.7 and ϕ = 20◦ in Fig. 7.5.3a and Fig. 7.5.3b, respectively, the MLD is able to

decode the signals because SIR is still high 12.9 dB and 11.5 dB, respectively. However,

when the amplitude offset or phase offset is high ξ = 0.5 and ϕ = 30◦ in Fig. 7.5.3a

and Fig. 7.5.3b, respectively, the MLD is unable to decode the signals because SIR be-
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Figure 7.5.3: Stacked bit-wise AE and denoising bit-wise AE-based d-BCM designs for
OW-DF relay networks with IQI.
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(a) For BCM designs.
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(b) For d-BCM designs.

Figure 7.5.4: t-SNE plots for NN encoder at the relay node in bit-wise denoising AE
framework of OW-DF relay network.

comes low as 4.3 dB and 5.9 dB, respectively. Thus, when the SIR becomes lower than

6 dB MLD is unable to decode the signals because IQI becomes too high, and the IQI

parameters information and CSI knowledge is absent.

In Fig. 7.5.3a, 7.5.3b, we can see that the proposed stacked AE-based d-BCM design

is always able to decode the signal even for SIR ≤ 6 dB, without utilizing IQI parameter

information and CSI knowledge. The proposed stacked AE-based d-BCM designs per-

form similar to the MLD for an ideal OW-DF relay network without IQI (Ideal MLD),

indicating that the proposed stacked bit-wise AE-based d-BCM almost completely re-

moves the IQI without utilizing the IQI parameters information and CSI knowledge, even

under low SIR regimes.

Please note in Fig. 7.5.2, 7.5.3, the proposed AE-based BCM and d-BCM designs

almost completely remove the IQI, without IQI parameters information, this is because of

the following reasons:

• In a conventional scenario, we employ QPSK and d-QPSK modulations with a

minimum Euclidean distance between symbols as 1.4 and 0.76, respectively. Also,

we employ the (7, 4) Hamming code since k = 8 thus it provides up to 2 bits of

error correction capabilities.

• Now, we focus on the bit-wise AE employed in the first phase transmission of the

OW-DF relay networks. We see that the bit-wise AE forms 2k codewords for each

of the possible codewords because we formulate the optimization problem as a

multi-label binary classification problem with k labels each having a possible 0/1

binary value. These 2k codewords are designed in the 2n-dimensional space be-

cause the NN encoder has the last dense layer that outputs 2n real values. Also, we

note that these 2k designed codewords have the normalized fourth-order moment as
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(a) Analyzing BCM designs for different amplitude offsets and fixed phase offset ϕ = 25◦.
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(b) Analyzing BCM designs for different phase offsets and fixed amplitude offset ξ = 0.7.

Figure 7.5.5: Stacked bit-wise P2P AE-based BCM designs for the TW-DF relay networks
with IQI.
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(a) Analyzing d-BCM designs for different amplitude offsets and fixed phase offset ϕ =
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Figure 7.5.6: Stacked bit-wise P2P AE-based d-BCM designs for the TW-DF relay net-
works with IQI.
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1, indicating that Spherical codes are formed. We also know that spherical codes

are optimal for a small block length (n) [74]. From the modulation perspective,

bit-wise AE leads to the maximization of the minimum Euclidean distance between

codewords to 1.5 and 1.2 for BCM and d-BCM designs, respectively. From the cod-

ing perspective, bit-wise AE leads to the maximization of the minimum Hamming

distance between the codewords in the 2n-dimensional space.

• Now, we focus on the bit-wise denoising AE employed in the second phase trans-

mission of the OW-DF relay networks. Since the bit-wise denoising AE input is

soft probabilistic outputs of the first hop’s bit-wise AE, the NN encoder of the bit-

wise denoising AE does not form 2k codewords, instead almost a slightly different

codeword is learned for different soft probabilistic outputs. This possibly helps

the bit-wise denoising AE remove the noise in the input soft probabilistic outputs

while decoding the signal at Terminal B’s NN decoder. In Fig. 7.5.4, we show the

t-stochastic neighbor embedding (t-SNE) diagrams (as detailed in Definition 15) to

visualize the codewords designed by the bit-wise denoising AE-based BCM and

d-BCM designs in 2n-dimensional space.

Thus, by intelligent BCM or d-BCM designs, a single proposed stacked bit-wise AE and

bit-wise denoising AE framework can remove all the varying levels of IQI in an OW-DF

relay network almost wholly, without IQI parameters information and/or CSI knowledge.

7.5.3 BER Evaluation for the BCM and d-BCM Designs for the TW-
DF Relay Networks with IQI

In Fig. 7.5.5a, 7.5.5b, we train a single proposed stacked bit-wise P2P AE-based BCM

design with CSI knowledge for the TW-DF relay networks, and analyze by varying am-

plitude offsets (in Fig. 7.5.5a) and phase offsets (in Fig. 7.5.5b).

Also, in Fig. 7.5.6a, 7.5.6b, we train a single proposed bit-wise P2P AE-based d-

BCM designs without the CSI knowledge for the TW-DF relay networks, and analyze by

varying amplitude offsets (in Fig. 7.5.6a) and phase offsets (in Fig. 7.5.6b).

In Fig. 7.5.5,7.5.6, we see exactly similar trends for the performance improvements as

the BCM and d-BCM designs for the OW-DF relay networks in Fig. 7.5.2, 7.5.3. Please

note since IQI settings remain same as Fig. 7.5.2, 7.5.3, thus SIR levels also remain the

same. In summary, the MLD is unable to decode the signals when SIR ≤ 3 dB (in the

presence of CSI) and SIR ≤ 6 dB (in the absence of CSI), while the proposed stacked

bit-wise P2P AE-based BCM and d-BCM can perform similar to ideal TW-DF relay net-

works, indicating that the proposed stacked bit-wise P2P AE can completely remove the

deteriorating impacts of IQI, without utilizing the IQI parameters information and/or CSI

knowledge, even in extremely low SIR regimes.
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Please note that since we train a single bit-wise P2P AE and employ it in a stacked

form to make a TW-DF relay network, the explanation of performance gains remains the

same as the bit-wise AE in the first phase transmission of the OW-DF relay networks

detailed in Sec. 7.5.2. Furthermore, please note since we employ the bit-wise P2P AE

in stacked form, this explanation remains the same for the NN encoders at all the nodes

(A, R, B) in the TW-DF relay networks. Thus, by intelligent BCM or d-BCM designs, a

single proposed stacked bit-wise P2P AE framework can remove all the varying levels of

IQI in a TW-DF relay network almost wholly, without IQI parameters information and/or

CSI knowledge.

7.6 Conclusion

In this chapter, firstly, we propose a stacked AE-based BCM and d-BCM designs for the

OW-DF relay network in the presence of IQI at all the nodes. We propose to employ

bit-wise AE in the first transmission phase and introduce a bit-wise denoising AE for

second phase transmission. We also propose a new training policy for bit-wise denoising

AE. Secondly, we propose a stacked AE-based BCM and d-BCM designs for the TW-DF

relay network in the presence of IQI at all the nodes. We propose to employ a bit-wise P2P

AE framework in a stacked form to make a TW-DF relay network and utilize the benefits

of conventional bit-wise XOR-based encoding-decoding. For both the stacked AE-based

OW-DF and TW-DF relay networks, we propose a single trained AE framework-based

BCM and d-BCM designs that can generalize well on any levels of testing IQI and signal-

to-noise-ratio (SNR). We remove the need for IQI parameter information to decode the

signals even in extremely low SIR regimes and high transmission rates for both the stacked

AE-based OW-DF and TW-DF relay networks. Thereby reducing the feedback overhead

while achieving remarkable BER performance gains.
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Chapter 8

AE-based Multi-User Downlink
Networks

8.1 Introduction

Designing an appropriate multiple access technique is one of the requisite notions of im-

proving the system capacity. We can broadly categorize the multiple access schemes as

– orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA), as

shown in Fig. 8.1.1. In the OMA scheme, different signals from different users remain or-

thogonal to each other, enabling a perfect receiver to remove all the unwanted signals. Its

typical example includes time-division multiple access and orthogonal frequency division

multiple access. On the other hand, in the NOMA scheme, various users are served in

orthogonal resource blocks by multiplexing the signals in the power, code, or frequency

domain. In other words, NOMA enables numerous users to be served on one frequency

channel simultaneously within the same cell. In contrast to OMA, NOMA offers signif-

icant advantages – improved spectral efficiency (SE), higher cell-edge throughput, and

low latency communication [105]. Broadly, NOMA can be classified into two major cat-

egories, power-domain NOMA (PD-NOMA) and code-domain NOMA (CD-NOMA). In

this chapter, consider the PD-NOMA as the benchmark, for readability hereby referred

to as conventional NOMA, wherein the signal of the strong user is allocated lesser power

than the signal of the weak user and superposed before transmission. Later, a weak user

decodes its signal directly. In contrast, the strong user has to perform successive interfer-

ence cancellation (SIC) to decode and remove the weaker user’s signal before decoding

its signal [105], [106].

Remark 29 Please note that although the abbreviation SIC represented the self-interference

cancellation in previous Chapters 5, 7. In this chapter, the abbreviation SIC represents

the “successive interference cancellation”.
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Figure 8.1.1: An illustration of signal transmission–reception in non-orthogonal multiple
access and orthogonal multiple access networks.

Despite the proven benefits of NOMA, there are certain practical challenges for its

deployment [106], as detailed below

• The first challenge is its high sensitivity to the users’ channel state information

(CSI) knowledge. The base station (BS) receives the CSI gains of the users and then

decides the power allocation factor (PAF) for each user, which should be optimal

for achieving the SE gains of NOMA.

• Secondly, the paired users need to be informed of the SIC order and the PAF; this

leads to the lapse of some time slots, resulting in data rate degradation.

• Thirdly, the minimum SNR gap between the strong and weak users should be

approximately 8 dB (at least 3 dB) for satisfactory implementation of SIC at the

stronger users [107].

• Lastly, SIC requires additional implementation complexity. Also, intuitively, if

multiple users are served in a cluster using NOMA, then the stronger users will im-

plement multiple SICs serially removing each of the weaker users’ signals, thereby

increasing the chances of error propagation because of imperfect SICs.

Therefore, in this chapter, we aim to utilize the end-to-end learning-based data-driven

autoencoder (AE) frameworks for tackling these limitations of the PD-NOMA network in

a multi-user downlink network.

The optimal constellation designs by optimizing the PAF have been widely investi-

gated for realizing the full potential of NOMA networks. However, the PAF is deter-
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mined using the signal-to-noise ratio (SNR) of all the downlink users. Recently, an op-

timal inter-constellation rotation was proposed using the minimum distance criterion for

an uplink PD-NOMA network that enabled SNR independent system formulation [108].

Moreover, for the CD-NOMA networks, the block coded modulation (BCM) design by

optimizing the codewords with multi-user detection has shown promising performance

gains [109]. Furthermore, optimal coded constellation design for two-user PD-NOMA

is analyzed in [110] by utilizing the gradient relationship between the mutual informa-

tion (MI) and minimum mean squared error. Constellation rotation-based design for PD-

NOMA in simultaneous wireless information and power transfer systems has also been

shown to efficiently increase the harvested energy without incurring additional symbol

detection errors [111]. In summary, the optimal constellation rotation and BCM designs

have appeared promising solutions for realizing the full potential of the NOMA networks.

In previous Chapters 2–7, we have shown the potential benefits of employing an AE-

based framework for performing BCM and differential BCM (d-BCM) designs for rate

R = k/n [bits/channel-reuse], leading to significant bit-error-rate (BER) performance

gains. Recently, AE frameworks have also been shown to improve the performance of the

CD-NOMA networks [112, 113, 114, 115] and PD-NOMA networks [116, 117, 118, 39].

The AE-based PD-NOMA network is proposed using a bit-wise AE [116, 39] and symbol-

wise AE [118, 117] frameworks. Within the AE framework, the input bits at the BS have

been superposed using a single neural network (NN)-based encoder [116, 117, 39], and

using multiple NN-based encoders (one for each user) [118].

Further, the recent works [116, 117, 118, 39] focussed on the AE-based 2-dimensional

modulation designs for a two-user downlink scenario for the PD-NOMA networks. How-

ever, the complexity in optimal constellation design increases with the number of users [108,

109, 110, 111, 119]. Therefore it becomes critical, especially for IoT applications, to de-

velop frameworks that can design optimal constellations for a more significant number of

users. Moreover, similar to conventional PD-NOMA, recent AE frameworks assume an

SNR gap of 3 dB between the multiplexed users [116, 118, 39] (which remains a sim-

ilar to the implementation of SIC in conventional networks)=. At the same time, [117]

focuses on broadcast channels. Therefore, it is crucial to develop an AE framework that

remains unaffected by the SNR gaps between the users, improving the BER performance

even when all the users have the same receiving SNR.

While [117, 116, 118] focussed on the AE framework for the additive white Gaus-

sian noise (AWGN) channel, and the fading channels are investigated in [39]. All these

works require channel (signal) powers (of each user) at the BS to optimize and use the

PAF for signal superposition, respectively. Thus the feedback overhead in their designed

network remains the same as conventional PD-NOMA. Additionally, the optimization for

determining the PAF needs to be performed separately at the BS.
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In this chapter, we propose a bit-wise Fixed AE-based framework for multi-user down-

link networks. We broadly classify the proposed AE framework as follows:

Definition 23 (Single encoder multiple decoders (SEMD)) Within the SEMD-based AE

framework, we employ a single NN-based encoder at the base station that takes all the

downlink user’s information bits together as input and generates superposed complex

baseband symbol(s) as output. While each downlink user has an individual NN-based

decoder, decoding its information bits.

Definition 24 (Multiple encoders multiple decoders (MEMD)) Within the MEMD-based

AE framework, at the base station, we employ a separate NN-based encoder for encoding

each user’s information bits to complex baseband symbol(s), which are superposed simply

by addition before transmission. While each downlink user has an individual NN-based

decoder, decoding its information bits.

The major contributions of this chapter, in contrast to the existing literature (as detailed

in Table 8.1.1), are summarized below

• We propose a bit-wise AE-based SEMD and MEMD frameworks for downlink

multi-user networks. With SEMD and MEMD frameworks, we remove the uti-

lization of PAF at BS and the multiple SIC at strong users while operating under

fading channels. Thereby removing the need to feedback channel gains to the BS,

PAF optimization, error propagation due to multiple SIC, and the need to send the

SIC ordering information to the users.

• We impose the equal QoS constraint for each user, removing the concept of strong

and weak users. Thus, our proposed AE frameworks remain unaffected by the SNR

gaps between the users and we can decode the superposed signal of multiple users

on the same SNR. We present the analysis when the SNR gap between the users is

{0, 6} dB. For practical purposes, we consider Rayleigh fading channels. We also

show that the performance gains of the proposed AE frameworks increase with the

number of users.

• We design a generalizable NN-based decoder for the multi-user scenario, such that

it remains the same for all the users, even if the number of users increases, but also

for both the AE-based SEMD and MEMD frameworks.

• For both the SEMD and MEMD frameworks, we propose an AE-based 2-dimensional

modulation design under Rayleigh block fading (RBF) channels for two, three, and

four users’ scenarios. For greater insights, we analyze the constellation design and

bit-labeling obtained at the NN encoder of the BS. Specifically, we compare the
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Table 8.1.1: Comparison of our chapter with state-of-the-art works [116, 117, 118, 39].

Ref Encoders Channel
PAF re- Decoding DL-mod- AE-BCM CSI No. of SNR bit ma-

quired decision ulation AE-d-BCM required users gap pping

[116] Single AWGN ✓ Soft ✓ ✗ N/A 2 ≥ 3 ✗

[118] Multiple AWGN ✓ Hard ✓ ✗ N/A 2 ≥ 3 ✗

[117] Single AWGN ✗ Hard ✓ ✗ N/A 2 0 ✗

[39] Single Rayleigh ✓ Soft ✓ ✗ ✓ 2 ≥ 3 ✗

Ours
Single;

Rayleigh ✗ Soft ✓ ✓
No for 2, 0;

✓
Multiple d-BCM 3, 4 6

minimum squared Euclidean distances establishing the reasons for user fairness

and performance gains.

• For both the AE-based SEMD and MEMD frameworks, we propose an AE-based

BCM design with the CSI knowledge. In contrast to conventional NOMA, where

CSI is ‘mandatory’ to decode the multiplexed signals at the users, we altogether

remove the CSI requirement by proposing AE-based d-BCM designs for both the

SEMD and MEMD frameworks. For greater insights in the BCM and d-BCM de-

signs, we utilize the t-stochastic neighbor embedding (t-SNE) to convert the code-

words in 2n-dimensional space to 2-dimensional space and utilize k-medoids clus-

tering to map the symbols and analyze the encoding at the BS.

• Lastly, we analyze higher modulation scenarios, i.e., QPSK+QPSK, QPSK+BPSK,

and 16QAM+BPSK, and evince the performance gains of the proposed AE-based

frameworks.

8.2 Conventional Power-Domain Downlink NOMA

We consider a J-user downlink NOMA network as shown in Fig. 8.2.1, wherein the BS

wants to transmit the superposed signal to the J users using the PD-NOMA. Thus, the

BS performs superposition of the signals of the J downlink users. In particular, the in-

formation bits uj = {0, 1}k of each jth downlink user, where j = {1, ..., J}, are mapped

to a complex baseband symbol xj = gm(uj) ∈ C, where gm(·) denotes the modulation

process.

Let us denote the RBF channel between the BS and each jth downlink user by hj ∈
CN (0, 1) and nj ∈ CN (0, σ2

j ) represent the AWGN at each jth downlink user. Let P

denote the total transmission power of the BS and αP
j represent the power allocation

factor for the jth downlink user, such that
J∑

j=1

αP
j = 1. For the sake of simplicity, we

assume that the receiving SNR of the J downlink users are in a descending order i.e.
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Figure 8.2.1: Conventional power-domain downlink NOMA for multi-user scenario

|h1|2

σ2
1

> ... >
|hJ |2

σ2
J

, thus the superposed signal is given by

xs =
J∑

j=1

√
PαP

j xj (8.1)

where the PAF for the jth user remains αP
1 < αP

2 < ... < αP
J . Moreover, the superposed

symbol is normalized such that E[|xs|2] = 1. The superposed symbol is broadcasted to

all the J users, and the received signal at the jth downlink user is given by

yj = hjxs + nj, ∀ j

=
√
PαP

j hjxj︸ ︷︷ ︸
Own signal

+
J∑

i=1,i ̸=j

√
PαP

i hjxi︸ ︷︷ ︸
Other users signal

+ nj︸︷︷︸
Noise

(8.2)

Without loss of generality, the J th downlink user is assigned the maximum power by

maximizing αP
J , such that it can decode its signal treating all the other J − 1 user’s

signals as noise, whereas all the other users first implement SIC to decode and subtract

the signals of the users with higher receiving SNR, and then they decode their signals.

Thus, for instance, user 2 will decode and subtract the signals from user 3 to user J (by

implementing J − 2 SICs in total) and then decode its signal. Therefore, the total number

of SICs that need to be performed increases exponentially with the number of multiplexed

users in a downlink PD-NOMA network.
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8.3 Proposed AE-based Multi-user Downlink Network

In this section, we propose an AE-based multi-user downlink network. Specifically, we

propose NN-based encoder(s) at the BS that superposes the kj , for all j = {1, ..., J},
bits of J users to form n complex baseband symbols. Then BS performs symbol-by-

symbol broadcasting to all the J downlink users (simultaneously). While each user is

proposed to have an individual NN-based decoder that helps in decoding its respective kj

bits. Thus, the rate, as detailed in Definition 1, of the J user downlink network becomes

R =
∑J

j=1 kj
/
n [bits/channel-reuse].

In this chapter, we utilize L fully-connected (dense) layers in the NN encoder-decoder

pair of the AE framework, wherein the output of the lth ∈ {1, ..., L} dense layer ωl ∈ Rδl

can be given as (2.2). We also utilize L′ batch-normalization layers BN [120] in the

NN decoder(s) of the AE framework. In the l′th ∈ {1, ..., L′} BN layer, mean (µB) and

variance (σ2
B) of the samples in input batch are used to normalise the input tensor with

the calculated statistics, which is then scaled and shifted, where the output of BN layer is

given as follows:

BN (ωl′) := ωl′ = φ

(
ωl′ −

µB√
σ2
B − ϵ

)
+ ϱ (8.3)

where the notation := is ‘represents’, and φ and ϱ are hyper-parameters learned during

the training phase. Please note that the dense layers help us in extracting the non-linear

relationships with the help of activation functions, while the BN layer helps us in decreas-

ing the covariance shift of the hidden nodes, thereby maintaining the statistical variance

of the training phase in the testing phase as well. Now, we elaborate on designing the

proposed AE-based SEMD and MEMD frameworks in detail below.

8.3.1 Single Encoder Multiple Decoders (SEMD)

In this subsection, we detail the AE-based SEMD framework for multi-user downlink

network, as shown in Fig. 8.3.1.

Designing of a Single NN-based Encoder at the BS

The base station comprises of a NN-based encoder that takes the concatenated bits of all

the J users as input, given by us = [u1, ...,uJ ] ∈ {0, 1}
∑J

j=1 kj , where uj ∈ {0, 1}kj , for

each jth downlink user, and maps it to n complex baseband symbols xs ∈ Cn. Thereby,

performing joint block channel-coding, modulation design, and signal superposition. In

particular, the encoder designs a NN-based mapping function fθs (us,xs) : us → xs

where θs represents the optimization parameters including weights and bias terms of the

194



CHAPTER 8. AE-BASED MULTI-USER DOWNLINK NETWORKS

Figure 8.3.1: Proposed AE-based single encoder multiple decoder (SEMD) framework.

M dense layers in the NN encoder, detailed as Definition 6, and given as

fθs (us,xs) = PN (σM (WMσM−1 (WM−1σM−2 (...σ1 (W1us + b1) ...)+

bM−1) + bM)) (8.4)

where PN denotes the power normalization layer, defined as Definition 7, that mandates

||xs||22 = n. Now, the BS perform symbol-by-symbol broadcasting to all the J users

simultaneously, where the signal received by the jth user is given by (8.2).

Designing of NN-based Multiple Decoders for Downlink Users

Each of the J users have a separate NN-based decoder. Once the n complex baseband

symbols are received by the jth downlink user, represented as yj ∈ Cn, it performs block-

by-block decoding. In particular, the NN-based decoder at each of the jth downlink user

aims to de-map the received n complex symbols to k soft-probabilistic outputs, denoted

by p̃jθjRx

(
um
j |yj

)
∈ [0, 1], for all m = {1, ..., k}. For the sake of clarity, we explicitly

define the notation of soft-probabilistic output below

Definition 25 (Soft-probabilistic output notation p̃jθjRx

(
um
j |yj

)
) For a given block of

n complex baseband symbols yj received by the jth user, the probability of decoding the

intended bits of the jth user transmitted by the BS, represented as um
j (for all m), at

the NN decoder of the jth user with the optimization parameters θjRx
, is represented by

p̃jθjRx

(
um
j |yj

)
, ∀m, or, p̃jθjRx

(uj|yj).
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Thus, NN-based decoder is jointly performing channel decoding, demodulation design

and interference removal of other users’ signal. In particular, the decoder designs a

NN-based de-mapping function gθjRx

(
yj, p̃jθjRx

(uj|yj)
)
: yj → p̃jθjRx

(uj|yj), where

θjRx
represents the trainable parameters including weights and bias terms of the NN-

based decoder of N dense layers in the decoder of the jth user. Please note the notation

gθjRx

(
yj, p̃jθjRx

(uj|yj)
)

represents a decoder de-mapping function g at the jth user, that

takes yj ∈ Cn complex baseband symbols as input to give p̃jθjRx
(uj|yj) ∈ [0, 1]kj soft-

probabilities as output using the optimization parameter θjRx
, represented as

gθjRx

(
yj, p̃jθjRx

(uj|yj)
)
= σN (WNBN (σN−1 (WN−1BN (σN−2 (...BN (σ1 (W1

BN (LL (yj)) + b1) ...) + bN−1) + bN) (8.5)

where BN denotes the batch normalization layer, as given by (8.3), and LL denotes the

Lambda layer, as detailed in Definition 10. Note the last layer of each jth NN decoder

has a Sigmoid activation function that outputs soft-probabilities p̃jθjRx

(
um
j |yj

)
, ∀m,

corresponding to the log-likelihood ratios (LLRs), for p̃jθjRx

(
um
j = 1|yj

)
= σ(lmlj ), as

LLRm
j := log

1− p̃jθjRx

(
um
j = 0|yj

)
p̃jθjRx

(
um
j = 0|yj

) = lmlj , ∀m (8.6)

These LLR can also be employed directly in an outer code of the powerful long block

length decoders, such as LDPC and Turbo codes.

8.3.2 Multiple Encoders Multiple Decoders (MEMD)

In this subsection, we detail the AE-based MEMD framework for multi-user downlink

network, as shown in Fig. 8.3.2.

Designing of a Multiple NN-based Encoders at the BS

The BS have J separate NN-based encoders for each of the J users. Where the jth NN-

based encoder takes the input bit uj ∈ {0, 1}kj of the jth user, and maps it to n com-

plex baseband symbols xj
s ∈ Cn. Thereby, performing joint block channel-coding and

modulation design. In particular, the jth encoder designs a NN-based mapping function

fθjTx
(uj,x

j
s) : uj → xj

s, where θjTx
represents the optimization parameters including

weights and bias terms of the M dense layers in the jth NN encoder, detailed as Defini-
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Figure 8.3.2: Proposed AE-based multiple encoder multiple decoder (MEMD) frame-
work.

tion 6, and given as

fθjTx

(
uj,x

j
s

)
= σj

M

(
Wj

Mσj
M−1

(
Wj

M−1σ
j
M−2

(
...σj

1

(
Wj

1uj + bj
1

)
...
)
+

bj
M−1

)
+ bj

M

)
(8.7)

where, Wj
l and bj

l denotes the weight and bias terms of the lth dense layer in a jth NN

encoder designed for jth downlink user. To superpose these J complex baseband symbols

xj
s ∈ Cn generated by J NN encoders, we simply add all the 2n outputs of the J NN-based

encoders (without using the PAF) and perform power normalization to obtain superposed

n complex baseband symbols xs ∈ Cn given as

xs = PN

(
x1
s + x2

s + ...+ xN
s

)
(8.8)

where PN denotes the power normalization layer, defined as Definition 7, that mandates

||xs||22 = n. Now, the BS perform symbol-by-symbol broadcasting to all the J users

simultaneously, where the signal received by the jth user is given by (8.2).

Please note the designing of the NN-based multiple decoders for the downlink users

remains the same as SEMD (in Section 8.3.1).

8.3.3 Loss Optimization with QoS Constraint

We train the proposed AE-based SEMD and MEMD frameworks by minimizing the total

binary cross-entropy (CE) losses for all the J users together. Naturally, while minimizing
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the total binary CE loss of all the users together, the users with higher SNR or lower noise

variances will easily reconstruct their signals. Thus, the binary CE loss of the users with

higher SNR will become zero quickly compared to the users with lower SNR. Hence,

NN decoders of the users with higher SNRs will be trained for only high SNR, making

them stronger users and vice-versa. To remove the concept of strong and weak users, we

introduce a scaling factor that imposes a QoS constraint on the binary CE loss of each

user. As a result, the end-to-end training of the proposed AE-based SEMD and MEMD

frameworks ensures that each user maintains a similar QoS requirement for decoding its

signal. Now, the total binary CE losses for the proposed AE-based SEMD framework

(J SEMD) and MEMD framework (J MEMD) can be given as follows:

J SEMD (θs,θ1Rx
, ...,θJRx

) =
J∑

j=1

ζjLj

(
uj, p̃jθjRx

(uj|yj)
)

(8.9)

J MEMD (θ1Tx
, ...,θJTx

,θ1Rx
, ...,θJRx

) =
J∑

j=1

ζjLj

(
uj, p̃jθjRx

(uj|yj)
)

(8.10)

where the QoS constraint is imposed by ζj , which is a scaling factor for the jth downlink

user multiplied to the binary CE loss Lj (·) of the jth downlink user, to make each of the J

downlink users have almost similar impact while minimizing the total binary CE loss for

the SEMD and MEMD frameworks. We will detail more about updating of this scaling

factor in next subsection. Moreover, the notation Lj

(
uj, p̃jθjRx

(uj|yj)
)

represents the

binary CE loss term, as defined in Definition 13, for the jth downlink user’s input bits uj

at the NN encoder and soft probabilistic output p̃jθjRx
(uj|yj) at its NN decoder.

8.3.4 Training and Testing Procedure

Now, we can estimate the total binary CE loss for the AE-based SEMD and MEMD

frameworks in (8.9) and (8.10) via mini-batch sampling [41] as follows:

J SEMD (θs,θ1Rx
, ...,θJRx

) =
1

Bs

Q∑
q=1

Bs∑
bs=1

J∑
j=1

k∑
m=1

ζjLj

(
u
(q×bs,m)
j ,

p̃jθjRx

(
u
(q×bs,m)
j |y(q×bs)

j

))
(8.11)

J MEMD (θ1Tx
, ...,θJTx

,θ1Rx
, ...,θJRx

) =
1

Bs

Q∑
q=1

Bs∑
bs=1

J∑
j=1

k∑
m=1

ζiLj

(
u
(q×bs,m)
j ,

p̃jθjRx

(
u
(q×bs,m)
j |y(q×bs)

j

))
(8.12)

where B denotes the batch size and Q = Strain
B

, where Strain denotes the total number

of training samples. The weights and bias terms in the NN of the AE frameworks are
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updated using the stochastic gradient descent (SGD) method using back-propagation [41].

Let us denote the NN optimization parameters for the AE-based SEMD framework as

Θ = {θs,θ1Rx
, ...,θJRx

} and similarly the NN optimization parameters for the AE-based

MEMD framework can be represented as Θ = {θ1Tx
, ...,θJTx

,θ1Rx
, ...,θJRx

}, then we

update the weights using the Adam optimizer as detailed in Sec. 2.5.1.

Please note in (8.9) and (8.10), we impose the QoS constraint on each of the J users

using the scaling factor ζj , with the aim that the end-to-end training makes all the user’s

have equal importance in decoding their respective signals correctly. Thus, we propose

to update the scaling factor for each of the jth user after each epoch t. Where the scaling

factor ζj for the epoch (t) can be defined as the binary CE loss of the jth user at epoch

(t − 1) divided by the total binary CE loss of all the users at epoch (t − 1), respectively.

Now, we give the update rule for the scaling factor for the tth epoch below

ζ
(t)
j =

L(t−1)
j

(
uj, p̃jθjRx

(uj|yj)
)

J∑
j=1

L(t−1)
j

(
uj, p̃jθjRx

(uj|yj)
) , ∀ j, t (8.13)

Please note that for the first epoch at t = 1, we initialize the scaling factor as ζ(t=1)
j = 1/J

for all j = {1, ..., J}. This means that we impose a similar QoS requirement even in the

first epoch. Let us consider a simple two-user downlink scenario and study the training

process of the proposed AE framework, suppose at t = 5th epoch, the binary CE loss

for a j = 1 user becomes 0.5 and j = 2 user becomes 0.1. Then after this epoch, we

update the scaling factor using (8.13) which becomes ζ1 = 0.1/0.6 = 0.167 for j = 1

user and ζ2 = 0.5/0.6 = 0.833 for j = 2 user. Thus using (8.9), (8.10), in the next

epoch, i.e. t = 6th epoch, the minimization of the binary CE loss of the j = 2 user will

be given more importance compared to the j = 1 user. Hence, following the update rule

for scaling factor in (8.13), at each epoch, we evaluate the binary CE losses for each user

and give more importance to minimizing the binary CE loss of the user with higher binary

CE losses in the next epoch. Hence, with each training epoch, the AE framework tries to

make the binary CE loss of each user equally minimum, thereby inherently imposing the

same QoS constraint for all the J downlink users. Please note that we can also simply

modify the QoS constraint to impose strong and weak user constraint by multiplying a

user’s binary CE loss with an additional factor.

For the trained AE-based SEMD and MEMD frameworks, we perform predictions on

the testing set to obtain soft probabilistic outputs p̃jθjRx
(uj|yj) for all the J users. Similar

to Section 2.5.2, we then perform hard decision decoding by keeping a threshold of 0.5 to

obtain the decoded bits of each downlink user.
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Table 8.3.1: NN Architectures for AE-based Modulation designs.

DL Network Layout For Input layer Layer-1 Layer-2 Layer-3 Layer-4 Layer-5
SEMD Encoder {k1, ..., kJ} 512 (L) 256 (L) 64 (L) 2 (L) 2 (PN)

MEMD Encoderj kj 512 (L) 256 (L) 64 (L) 2j (L) −
Symbol Add + PN {21, ..., 2J} 2 (AD) 2 (PN) − − −

SEMD, MEMD Decoderj 2
2 (CD) 256 (L) 128 (R) 32 (R)

kj (S)+ BN + BN + BN + BN

8.3.5 AE-based (SEMD and MEMD Frameworks) Modulation, BCM
and d-BCM Designs

In this work, we focus on fading channels and propose AE-based SEMD and MEMD

frameworks-based modulation, BCM, and d-BCM designs, by designing the Lambda lay-

ers (LL) in each of the jth NN-based decoder, as follows:

• Modulation Design – Herein, we assume perfect CSI knowledge of all the users and

perform channel equalization of each user’s channel hj in the Lambda layer.

• BCM Design – Herein, we assume perfect CSI knowledge of all the users and per-

form channel equalization of each user’s channel hj in the Lambda layer.

• d-BCM Design – Herein, we assume we do not have any form of CSI knowledge

of any of the J users. Unlike the previous chapters 2–5, where we employ a radio

transformer network (RTN) to estimate and remove the fading channel. Herein,

similar to chapter 6, we do not consider any RTN in the Lambda Layer of the

NN decoder of any user. Thus, the n received complex baseband symbols directly

become the NN decoder’s input, without any Lambda layer-based pre-processing.

8.3.6 NN Architectures of the AE-based SEMD and MEMD Frame-
works

We provide the NN architectures for the proposed AE-based SEMD and MEMD frame-

works in Table 8.3.1 for modulation design and in Table 8.3.2 for BCM and d-BCM

design. Please note in Tables 8.3.1, 8.3.2, the notation X(Y ) denotes X number of neu-

rons in the layer. The Y = L, R, S indicates a dense layer is employed, where Y = L, R, S

denotes the Linear, ReLU, and Sigmoid activation functions employed in the dense layer,

respectively. The Y = PN, AD, CD indicates a Lambda layer LL is employed, where PN

denotes power normalization layer, CD denotes complex channel divide, and AD denotes

symbol addition. Also, BN denotes the batch normalization layer as defined in (8.3).

Please note, every layer in the NN decoder of each of the J downlink users is followed

by a BN layer, as shown in (8.5). We now elaborate the advantages of the proposed NN

architecture below
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Table 8.3.2: NN Architectures for AE-based BCM and d-BCM designs.

DL Network Layout For Input layer Layer-1 Layer-2 Layer-3 Layer-4 Layer-5 Layer-6
SEMD Encoder {k1, ..., kJ} 1024 (L) 512 (L) 256 (L) 64 (L) 2n (L) 2n (PN)

MEMD Encoderj kj 1024 (L) 512 (L) 256 (L) 64 (L) 2nj (L) -
Symbol Add + PN {2n1, ..., 2nJ} 2n (AD) 2n (PN) − − − −

SEMD Decoderj (for d-BCM) 2n
512 (L) 256 (R) 128 (R) 64 (R)

kj (S) -
& + BN + BN + BN + BN -

MEMD Decoderj (for BCM) 2n
2n (CD) 512 (L) 256 (R) 128 (R) 64 (R)

kj (S)+ BN + BN + BN + BN + BN

• We employ a Fixed bit-wise AE framework, offering the advantages of bit-wise AE

and Fixed AE frameworks, detailed in Chapter 2.

• We create a generalizable NN architecture for the decoders at the downlink users,

that remains the same for all the downlink users, in both the SEMD and MEMD

frameworks. The benefits of this is two folds. Firstly, the same NN architecture

of the decoder can be directly employed to support the increasing number of mul-

tiplexed users in the proposed frameworks. Secondly, since each user has same

decoding prowess (because of same number of optimization parameters), thus we

remove the concept of stronger (near) user with high decoding complexity because

of multiple SICs or weaker (far) with low decoding complexity because of no or

minimum SICs. As a result, we are able to create an AE framework that can per-

form well for varying SNR gaps (∆SNR) between the users, even for the case when

∆SNR = 0 dB, i.e., all the users have the same receiving SNR.

• We create a generalizable NN architecture of the encoder that remains the same in

both the SEMD and MEMD frameworks. Thus at the BS, the SEMD framework

has J times lesser complexity than the MEMD framework.

8.3.7 Hyper-Parameter Settings

We consider Strain = 3 × 105 training samples, Stest = 105 testing samples. For AE-

based modulation design we generate Strain samples at the SNR in the set S = {5} dB,

and for AE-based BCM and d-BCM designs we generate Strain samples at the SNRs in

the set S = {3, 23, 28} dB. Thus, we observe that training on a single SNR point is

sufficient for modulation designs. However, we need multiple SNR points to train the

BCM and d-BCM designs. This may be because we are designing the AE-based modu-

lations in 2-dimensional space while designing the AE-based BCM and d-BCM designs

in 2n-dimensional space. Further, the AE-based SEMD and MEMD frameworks are im-

plemented in Keras [43] with TensorFlow [44] as backend. For training, we utilize SGD

with Adam optimizer [42], where the weights are initialized using Glorot initializer [45].

We keep the training epochs (E) as 50. For the AE-based modulation design, we keep the
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learning rate as τ = 0.000125. In contrast for the AE-based BCM and d-BCM designs,

we keep the learning rate as τ = 0.00125. We also utilize early stopping; in particular, we

monitor the validation CE loss and keep the patience as 20 and minimum change in the

loss as 0.075 while training the proposed AE frameworks.

8.3.8 Advantages of the proposed AE framework over NOMA

We now summarize the advantages of the proposed AE-based SEMD and MEMD frame-

works for multi-user downlink networks over the conventional NOMA networks below

• In conventional NOMA, each user informs the BS of its channel gain, and the BS

then optimizes the PAF depending upon the channel gains to superpose the symbols,

whose complexity increases exponentially with the number of users in the network.

With the proposed AE frameworks, we remove the utilization of PAF at BS while

operating under i.i.d. Rayleigh fading channels. Thereby removing the need to

feedback channel gains to the BS and optimizing the PAF, thus saving multiple

time-slots (increasing the sum rate) and reducing the complexity (required for PAF

optimization).

• In conventional NOMA, the BS needs to inform the users of the PAF and SIC (or

user) ordering. With proposed AE frameworks, we remove SIC from all the users.

Thus, removing the necessity to transmit the PAF and SIC ordering information

to the users, saving multiple time-slots (increasing the sum rate). Moreover, we

remove the concept of strong or weak users. Thus we can decode the users even on

the same receiving SNR, thereby making our design methodology independent of

the SNR gap (∆SNR) between the multiplexed users.

• In conventional NOMA, as the number of multiplexed users increases, the total

number of SICs performed increases exponentially. Notably, we need to perform
J(J−1)

2
SICs to decode the signals of all the J multiplexed users. Therefore, the

chances of error propagation and decoding complexity increase for the stronger

users. With the proposed AE frameworks, we remove the necessity of SIC. Thus

all the users have the same decoding complexity, and the error propagation due to

multiple SICs is also removed.

• In the proposed AE framework, we impose an equal QoS constraint on each of the

J users, such that the BER performance of each user depends on the receiving SNR

only.

• Most importantly, we proposed AE-based d-BCM designs which can decode the

signals without the CSI knowledge. In contrast, conventional NOMA can not de-

code the signals without the CSI knowledge.
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8.4 Performance Evaluation

In this section, we analyze the performance of the proposed AE-based SEMD and MEMD

frameworks performing modulation design and BCM or d-BCM design for multi-user

downlink networks. We consider an RBF channel and assume that the channel remains

constant for n symbol transmissions and changes thereafter. We consider the conventional

downlink PD-NOMA as a benchmark. We consider J = {2, 3, 4} in this section.

8.4.1 AE-based Modulation Design

In this subsection, we analyze the performance of the proposed AE-based SEMD and

MEMD frameworks performing the modulation designs by keeping n = 1 for multi-user

downlink networks. We consider the conventional downlink PD-NOMA utilizing the

maximum likelihood detector (MLD) as a benchmark. We operate under i.i.d. fast fading

Rayleigh channels, i.e., we have a different complex channel coefficient for each trans-

mitted symbol. Moreover, we keep (n, kj) = (1, 1) for all j = {1, ..., J}. For the sake of

fair comparison, we consider the presence of the CSI knowledge for the conventional and

proposed AE frameworks.

Traditional Modulation Designs – Signal Superposition

Since k = 1, we utilize BPSK modulation for conventional NOMA. As shown in Fig.

8.4.1, we consider two cases, (1) without rotation - here all the symbols are on the I-axis

only, before superposition and after superposition, and (2) rotated - here we rotate the

symbols of the users before superposition, in particular, each user is rotated by an addi-

tional 90◦, 60◦, 45◦ for two, three and four user case, before superposition as shown in

Fig. 8.4.1d-8.4.1f respectively. We superpose the symbols of the user by utilizing the op-

timal PAF (αP
j ), and after superposition we get the superposed symbols as shown in Fig.

8.4.1a-8.4.1c for the without rotation scenario. Also, after superposition of the rotated

symbols in Fig. 8.4.1d-8.4.1f using the PAF we get the superposed symbols as shown in

Fig. 8.4.1g-8.4.1i for the rotated scenario. Clearly, optimal rotation becomes difficult as

the number of users increases, such that after superposition it leads to maximization of

the minimum Euclidean distance, as seen in Fig. 8.4.1i.

AE-based Modulation Designs – Signal Superposition

Now, we evaluate the constellation designed by the proposed AE-based SEMD and MEMD

frameworks in Fig. 8.4.2. To obtain the constellation points, we input the bits to the en-

coder at the BS, and obtain the complex baseband symbols as output. The constellation

obtained by the proposed AE frameworks are rotated for two, three and four users, thereby
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Figure 8.4.1: Constellation mapping for conventional and rotated NOMA (n, kj) = (1, 1)
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Figure 8.4.2: Constellation mapping obtained for proposed SEMD & MEMD models
(n, kj) = (1, 1)
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Table 8.4.1: Minimum squared Euclidean distance of each user (n, kj) = (1, 1)

No. of User Conventional Rotated SEMD MEMD
users index ∆SNR = 0 dB ∆SNR = 6 dB ∆SNR = 0 dB ∆SNR = 6 dB

2 d2min,U1 0.80 0.80 1.98 1.31 1.98 1.33

d2min,U2 0.80 3.19 2.01 2.70 2.01 2.67

3
d2min,U1 0.087 0.279 0.866 0.328 0.672 0.329

d2min,U2 0.087 0.523 0.866 0.975 0.672 0.904

d2min,U3 0.151 1.203 0.645 1.186 0.649 1.269

4

d2min,U1 0.025 0.040 0.504 0.123 0.272 0.124

d2min,U2 0.025 1.141 0.209 0.271 0.321 0.277

d2min,U3 0.025 0.297 0.232 0.549 0.478 0.589

d2min,U4 0.025 0.926 0.506 0.957 0.564 0.871

increasing the minimum Euclidean distance compared to the conventional (non-rotated)

and rotated constellation in Fig. 8.4.1a-8.4.1c and Fig. 8.4.1g-8.4.1i. Moreover, most

of the symbols in the obtained constellation are automatically arranged in a Gray-coded

format1. Furthermore, for three users scenario, when the SNR gap between the users

(∆SNR = 0 dB) becomes same, the symbols are arranged in a circular format. Whereas

for the four users scenario, a rotated 16-QAM like constellation is designed by the pro-

posed AE frameworks. Also, in three and four users scenario, multiple symbols are de-

signed with similar I-Q values for the same bit mapping. This is because we have an extra

degree of freedom to elongate the symbols, possibly leading to constructive interference

at the users.

For the constellation obtained for the four users in Fig. 8.4.2c, Fig. 8.4.2f, Fig. 8.4.2i

and Fig. 8.4.2l, we can see that the two least significant bits for any symbol in a quadrant

is same, except for the SEMD at ∆SNR = 0 dB. This denotes that for SEMD (∆SNR = 0

dB) and MEMD each quadrant is describing the third and fourth users and within each

quadrant we have first and second user.

Now, we calculate the square of minimum Euclidean distance, defined in Defini-

tion 16, between each superposed user in Table 8.4.1 with the aim to analyze and com-

pare the user fairness achieved by conventional NOMA and proposed AE frameworks.

We denote these distances in Fig. 8.4.1, 8.4.2 with dU1, dU2, dU3, dU4 denoting the sym-

bols where the first, second, third and fourth user will have minimum squared Euclidean

distance (MSED), respectively.

Remark 30 Let us consider the two-user case in Table 8.4.1. The MSED for the su-

perposition of the conventional constellation is small for both the users. In contrast, the

superposition of the rotated constellation leads to increased MSED for the second user. In

contrast, the first user has the same MSED as without rotation scenario. However, for the

AE-based SEMD and MEMD frameworks, the MSED between two users is comparable.

1However, we need to investigate further why some symbols are not arranged in gray-coded format and
are left for future works.
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Whereas when the SNR gap between the users is the same, i.e., ∆SNR = 0 dB, then the

MSED is almost exactly the same. This shows that we are achieving exceptional user fair-

ness compared to the conventional modulation rotations etc. Interestingly, as the SNR gap

between the users’ increases, i.e., ∆SNR = 6 dB, then the user with higher receiving SNR

(second user in this case) will have a higher MSED compared to the first user because we

are designing the constellation by training the AE framework in an end-to-end manner by

minimizing the total binary CE loss as shown in (8.9), (8.10). Using the QoS constraint

ensures fairness in optimizing the binary CE loss for both users. However, AWGN at the

user becomes a limiting factor in improving the constellations after a certain point. Thus,

the AE framework is deciding to place the user’s symbols with higher receiving SNR as

far apart as possible to decode it more accurately. A similar trend can be seen for three

and four users in Table 8.4.1.

BER Evaluation

We evaluate the BER performance of the PD-NOMA using the conventional and ro-

tated modulation designs and the proposed AE-based SEMD and MEMD frameworks

in Fig. 8.4.3, 8.4.4. As the SNR increases, the BER reduces. Moreover, both the pro-

posed AE-based SEMD and MEMD frameworks outperform the PD-NOMA for vary-

ing SNR gaps and the number of users. We summarize these performance gains at the

Eb/N0 = 10 dB for farthest user in Table 8.4.2. These BER performance gains can be

explained by the Remark 31 below.

Remark 31 The end-to-end learning-based AE design leads to optimal signal superpo-

sition with optimal constellation rotation and translation at the BS. This is because we

are minimizing the binary CE loss, which is a better metric. After all, it maximizes the

bit-wise MI or the generalized MI (detailed in Chapter 2), thereby directly maximizing the

MSED between superposed symbols at the BS. Also, we remove the SIC from the stronger

users; thus, the error propagation due to multiple SICs at the stronger users is removed.

In Fig. 8.4.3, 8.4.4 and Table 8.4.2, we can see that the proposed AE frameworks

achieve higher BER performance gains with reducing SNR gap (∆SNR) between the

users, and this can be explained by the Remark 32 below.

Remark 32 For ∆SNR = 0 dB, i.e., all the users are on same receiving SNR, the optimal

PAF (αP
j ) will be 1/J . Thus, in this case, the signal interference at each user will become

very high because of the other users, making decoding the signals at any of the downlink

users almost impossible. Thus we consider unequal PAF for the users. However still, this

lowers the decoding capability of all the users equally because SICs is not performing

well. In contrast, the proposed AE-based framework design has a QoS constraint for all
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Figure 8.4.3: Performance evaluation for AE-based SEMD framework performing mod-
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Figure 8.4.4: Performance evaluation for AE-based MEMD framework performing mod-
ulation designs with (n, kj) = (1, 1)
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Table 8.4.2: Performance gains of the proposed AE-based SEMD and MEMD frame-
works performing modulation designs over the PD-NOMA with conventional and rotated
modulation designs, for Eb/N0 = 10 dB at the farthest user.

No. of SEMD MEMD
downlink ∆SNR = 0 dB ∆SNR = 6 dB ∆SNR = 0 dB ∆SNR = 6 dB

users Conv. Rotated Conv. Rotated Conv. Rotated Conv. Rotated
2 4 dB 1.8 dB 2.8 dB 0.5 dB 3.9 dB 1.8 dB 2.7 dB 0.2 dB
3 6.2 dB 1.7 dB 6 dB 1 dB 6.1 dB 1.7 dB 5.9 dB 0.9 dB
4 8 dB 3.5 dB 7 dB 2 dB 8 dB 3.5 dB 7.4 dB 1.9 dB

users. No user is treated as a stronger or weaker user. Thus the AE framework aims to

minimize the BER of all the users equally by designing optimal constellations. Moreover,

when the SNR gap increases ∆SNR = 6 dB, then in the conventional methods, SICs at

stronger users are minimally affected. Thus the conventional methods are also able to

decode the signals properly. Thus, we see lower performance gains with an increasing

SNR gap between the users.

In Fig. 8.4.3, 8.4.4 and Table 8.4.2, the proposed AE frameworks achieve higher BER

performance gains in comparison to NOMA with conventional modulation design, as

compared to NOMA with rotated modulation design. This is because the MSED between

the superposed symbols increases in the rotated modulation designs, as shown in Table

8.4.1, leading to better BER performance compared to conventional modulation designs.

In Fig. 8.4.3, 8.4.4 and Table 8.4.2, we see that as the number of users increases

the BER performance gains of the proposed AE frameworks over the NOMA increases,

explained by the Remark 33 below.

Remark 33 In conventional PD-NOMA, multiple SICs are implemented at the stronger

users; in fact, the total number of SICs performed in the PD-NOMA is J(J−1)
2

. Thereby,

the chances of error propagation increase exponentially with an increasing number of

users. In contrast, each user decodes its signal directly in the proposed AE frameworks

without performing any SIC.

In Table 8.4.2, we can see that both the AE-based SEMD and MEMD frameworks per-

form equally well for varying SNR gaps and increasing number of users. This is because

both the proposed frameworks can design optimal constellations (shown in Fig. 8.4.2),

which leads to almost the same minimum Euclidean distance between the multiplexed

users (as shown in Table 8.4.1), leading to similar BER performance gains.

Achieved user fairness

In Fig. 8.4.5, we analyze the user fairness achieved by the proposed AE-based SEMD

and MEMD frameworks and conventional PD-NOMA using conventional and rotated
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Figure 8.4.5: BER of each downlink user for Eb/N0 = 10 dB at the farthest user for
(n, kj) = (1, 1) (modulation designs).

modulation designs for Eb/N0 = 10 dB at the farthest user. For users at the same receiving

SNR, i.e., ∆SNR = 0 dB, we observe smaller BER for weaker users compared to the

stronger user in the conventional NOMA. The optimal PAF (αP
j ) should be 1/J , but if we

use this PAF, the stronger users can not perform the SICs. Thus, we gave the highest power

to the J th user and the least power to the 1st user while superposing the signal. Thereby,

it becomes easier for the J th user to decode its signal compared to the 1st user, which

also has the burden to implement J − 1 SICs. Moreover, when the SNR gap between the

users is high, i.e., ∆SNR = 6 dB, the conventional NOMA tries to achieve user fairness

because of the chosen PAF values. Moreover, user fairness is almost achieved in rotated

NOMA because of the optimal constellation design due to the chosen PAF. Also, a higher

SNR gap between the users allows proper implementation of SICs at the stronger users.

Again, this can be understood with the MSED achieved between multiplexed users for all

the schemes detailed in Table 8.4.1 and Remark 30, respectively.

Moreover, in Fig. 8.4.5, the AE-based SEMD and MEMD frameworks completely

achieve user fairness. This is because of the included QoS constraint with the scaling

factor ζj while minimizing the total binary CE loss. The scaling factor scales the jth user’s

binary CE loss at each epoch, depending on the binary CE losses of all the other users.

In other words, with each training epoch, the AE-based SEMD and MEMD frameworks

try to make the scaling factor ζj ≈ 1/N such that each user is given equal importance

in decoding the signal. Thus, we can also see that when the SNR gap between the users’

increases, i.e., ∆SNR = 6 dB, all the users except for the farthest user approximately

have the same BER, while the last user’s BER is slightly more than that of other user’s
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because of the higher noise levels compared to the nearer users.

8.4.2 AE-based BCM and d-BCM Designs

In this subsection, we analyze the performance of the proposed AE-based SEMD and

MEMD frameworks performing the BCM and d-BCM designs by keeping n = 7 for

multi-user downlink networks. We consider the conventional downlink PD-NOMA is

utilizing the BPSK or d-BPSK modulation and (7, 4) Hamming code with the MLD as a

benchmark. We operate under i.i.d. RBF channels, such that the channel remains constant

for n = 7 transmissions. Moreover, we keep (n, kj) = (7, 4).

AE-based d-BCM Design

In Fig. 8.4.6, 8.4.7, we can see that the PD-NOMA is unable to decode the signals. This

is because we require the CSI knowledge to implement the SIC. Thus we can not decode

the signals at the stronger users (implementing multiple SICs) and only decode the signal

of the farthest user that does not implement SIC by considering other users’ signals as

noise. Thus, the average BER for all the users increases with the increasing number of

multiplexed users. Moreover, there is a slight improvement in the BER performance with

rotated modulations over conventional modulations.

In Fig. 8.4.6, 8.4.7, we can see that both the AE-based SEMD and MEMD frame-

works’ average BER reduces with SNR due to similar reasons as Remark 31. Also, we

can decode the signal without utilizing CSI knowledge. This can be explained by Re-

mark 34 below.

Remark 34 Firstly, we minimize the binary CE by maximizing the bit-wise MI of all the

multiple users together in the downlink network. From a modulation perspective, the

constellation design takes place in 2n-dimensional space, possibly leading to the max-

imization of the minimum euclidean distance between the constellation points. From a

channel-coding perspective, AE performs the d-BCM designs to maximize the minimum

Hamming distance between the codewords. Thus, the proposed AE frameworks can learn

the codeword design in higher dimensional space, such that no CSI knowledge is required

to decode any of the users.

As expected, with the increasing number of users, the average BER performance gains

of the proposed AE-based frameworks reduce the packing space for a larger number

of codewords because of the multiple users in the network utilizing the same higher-

dimensional space. Further, the AE-based SEMD framework performs better than the

AE-based MEMD framework, especially when the number of multiplexed downlink users

increases, even though the SEMD framework has J times less complexity than the MEMD

framework. This can be explained by the Remark 35 below.
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Figure 8.4.6: Performance evaluation for AE-based SEMD framework performing d-
BCM design with (n, kj) = (7, 4).
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Figure 8.4.7: Performance evaluation for AE-based MEMD framework performing d-
BCM design with (n, kj) = (7, 4).
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Table 8.4.3: Performance gains of the proposed AE-based SEMD and MEMD frame-
works performing BCM designs over the PD-NOMA with conventional and rotated mod-
ulation designs with (7, 4) Hamming code, for Eb/N0 = 5 dB at the farthest user.

No. of SEMD MEMD
downlink ∆SNR = 0 dB ∆SNR = 6 dB ∆SNR = 0 dB ∆SNR = 6 dB

users Conv. Rotated Conv. Rotated Conv. Rotated Conv. Rotated
2 4.5 dB 3 dB 3.5 dB 2 dB 4 dB 2 dB 3 dB 1.5 dB
3 8.2 dB 5 dB 6.5 dB 3 dB 7.5 dB 4 dB 3 dB 0 dB
4 11 dB 8 dB 7 dB 4 dB 9 dB 6 dB 4.2 dB 1.8 dB

Remark 35 Interestingly the lower complexity of the SEMD framework is serving as an

advantage, this is because the SEMD framework takes a concatenated bit information of

all the users together and designs a single NN-based mapping function that performs joint

block channel-coding, modulation design, and signal superposition, as seen in (8.4). In

contrast, the MEMD framework is performing the joint block channel-coding and modu-

lation design. However, it performs the signal superposition separately, as seen in (8.7).

This shows that with multiple NN-based encoders at the BS, each of the encoders gener-

ates its symbols optimally, but the lack of proper superposition of these designed symbols

leads to the lower performance gains compared to jointly superposing the symbols using

a single NN-based encoder in the SEMD framework.

AE-based BCM Design

In Fig. 8.4.8, 8.4.9 we can see that both the PD-NOMA and proposed AE-based frame-

works can decode the signals because of the presence of the CSI knowledge. Also, the

average BER is improved with the SNR due to similar reasons as Remark 31. Moreover,

both the proposed AE-based SEMD and MEMD frameworks outperform the conventional

NOMA for varying SNR gaps between the users due to similar reasons as Remark 34.

We compare the BER performance gains achieved by the proposed AE-based BCM

designs using the SEMD and MEMD frameworks over the conventional NOMA in Fig. 8.4.8,

8.4.9, while summarizing the BER gains in Table 8.4.3 for Eb/N0 = 5 dB at the farthest

user. As the number of multiplexed users increases, the BER performance gains achieved

by the proposed AE-based BCM design also increase due to similar reasons as Remark 33.

Moreover, the proposed AE-based BCM design is obtaining higher gains as the SNR gap

between the users reduces, explained similar to Remark 31.

In Fig. 8.4.9a, 8.4.9b, we can see that the BER performance gains of the AE-based

MEMD framework performing BCM design reduces with the increasing number of users

and becomes the same or worse than NOMA employing rotated modulations with (7, 4)

Hamming code. This is due to similar reasons as in Remark 35.
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Figure 8.4.8: Performance evaluation for AE-based SEMD framework performing BCM
design with (n, kj) = (7, 4).
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Figure 8.4.9: Performance evaluation for AE-based MEMD framework performing BCM
design with (n, kj) = (7, 4).
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(b) SEMD-based BCM, ∆SNR = 6 dB
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(c) MEMD-based d-BCM, ∆SNR = 6 dB
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Figure 8.4.10: Bit mapping for AE-based SEMD and MEMD frameworks performing
BCM and d-BCM designs with (n, kj) = (7, 4).
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Table 8.4.4: Bit-mapping table for the codewords designed using AE-based SEMD frame-
work.

class Bit-5 Bit-6 Bit-7 Bit-8
1 0 0 1 0
2 0 1 1 0
3 0 1 0 0
4 0 0 1 1
5 0 1 1 1
6 0 1 0 1
7 0 0 0 1
8 0 0 0 0
9 1 0 0 0
10 1 0 0 1
11 1 0 1 0
12 1 1 1 0
13 1 1 0 0
14 1 0 1 1
15 1 1 1 1
16 1 1 0 1

Insights for the Codewords Designed by the NN-based Encoder of the AE Frame-
works

We now bring insights to the codewords designed by the AE-based SEMD and MEMD

frameworks performing BCM and d-BCM designs. Once the AE framework is trained,

the NN encoder of the AE-based SEMD and MEMD frameworks becomes deterministic.

Thus, if we input any kj bits of the J users to the NN encoder of the trained AE, we

obtain the same n complex baseband symbols as output every time, representing a super-

posed codeword for the kj input bits of the J users. Now, we can obtain all the possible

codewords from the NN encoders of the SEMD and MEMD framework using all the pos-

sible combinations of kj input bits of the J users. We obtain 2
∑J

j=1 kj codewords in the

2n-dimensional space.

As our first step, we utilize the t-SNE algorithm, as detailed in Definition 15, to visual-

ize this 2n-dimensional data in 2-dimensional space. Secondly, we utilize the k-medoids

[121] to cluster the t-SNE results into k subsets or clusters so that the subsets minimize

the sum of distances between the t-SNE results and a center of the t-SNE result’s cluster,

where k becomes a hyper-parameter2. We decide this k to be 16 for the SEMD framework

and 32 for MEMD after the visualization of the t-SNE results. Lastly, we map the bits

transmitted with each cluster to obtain the codeword mapping.

In Fig. 8.4.10, we show the t-SNE plots, wherein we analyze the codewords’ mapping

obtained for (n, kj) = (7, 4) for the AE-based d-BCM and BCM designs, while each of

the marked cluster of codewords (also called it’s class) is described in Table 8.4.5. In this
2Please note k indicates the number of clusters obtained using the k-mediods method, while kj repre-

sents the input bits of the jth user.
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Table 8.4.5: Bit mapping table for the codewords designed using the AE-based MEMD
Framework, where X represents the Bit-1 (for the d-BCM design) and Bit-3 (for the BCM
design).

class X Bit-5 Bit-6 Bit-7 Bit-8
1 1 1 0 0 1
2 0 1 0 0 1
3 1 1 0 0 0
4 0 1 0 0 0
5 0 0 0 0 0
6 1 0 0 0 0
7 1 0 0 0 1
8 0 0 0 0 1
9 0 1 1 0 0
10 1 1 1 0 0
11 0 1 1 0 1
12 1 1 1 0 1
13 0 0 1 0 1
14 1 0 1 0 1
15 0 0 1 0 0
16 1 0 1 0 0

class X Bit-5 Bit-6 Bit-7 Bit-8
17 0 1 0 1 1
18 1 1 0 1 1
19 0 1 0 1 0
20 1 1 0 1 0
21 0 0 0 1 0
22 1 0 0 1 0
23 0 0 0 1 1
24 1 0 0 1 1
25 0 0 1 1 0
26 1 1 1 1 0
27 1 1 1 1 1
28 0 1 1 1 1
29 0 1 1 1 0
30 1 0 1 1 0
31 0 0 1 1 1
32 1 0 1 1 1

subsection, we consider a two-user scenario. Thus we are transmitting 8 bits in total. The

bits 1 − 4 belong to the first user (with lower receiving SNR), and bits 5 − 8 belongs to

the second user (with ∆SNR dB higher receiving SNR).

For a higher SNR gap between the users, i.e., ∆SNR = 6 dB in Fig. 8.4.10, we

can see that the clusters of data in t-SNE representation are sparsely packed. It can be

seen that AE-based joint coding and modulation is making 16 clusters for SEMD and 16

main clusters (with two smaller clusters within) for MEMD, each representing the bits of

the second user. This signifies that since the receiving SNR of the second user is high,

the AE-based framework is designing a policy to easily differentiate between the second

user’s symbols. Moreover, for SEMD, the bits of the first user (i.e., bits 1− 4) lie within

each of the 16 clusters. In contrast, MEMD can make 2 smaller clusters within each of

the 16 clusters, based on 1st bit (in case of d-BCM design) and 3rd bit (in case of BCM

design) while the other bits of the first user lies within each cluster. Moreover, the AE-

based method can design a policy of placing the codewords even when the receiving SNR

is low and when ∆SNR = 0 dB. However, the clusters are very randomly packed, and

no direct mapping is obtained. Thereby making its analysis difficult, left for our future

works.

Further, for BCM design, the performance gains for the proposed AE frameworks over

the conventional NOMA reduces with increasing SNR gaps as can be seen in Fig. 8.4.8,

8.4.9 because of reasons elaborated in Remark 31. However for d-BCM design, the per-

formance gains for the proposed AE frameworks over conventional NOMA increases

when the SNR gap between the users increases from ∆SNR = 0 dB to ∆SNR = 6 dB as

depicted in Fig. 8.4.6, 8.4.7. This is because the conventional NOMA is unable to decode
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the signals of the users, whereas the AE-based framework is able to design the codewords

in 2n-dimension as can be seen in Fig. 8.4.10, where the second user is properly separated

for ∆SNR = 6 dB.

Moreover, in Table 8.4.4, 8.4.5, we can see that the codewords (clusters or classes)

obtained in t-SNE visualization are arranged in a Gray-coded format. This shows that the

AE-based framework is placing the clusters with minimum Hamming distance close to

each other to improve the BER performance of the multi-user downlink network.

8.4.3 Higher transmission rates

In this subsection, we evaluate the proposed AE-based SEMD and MEMD frameworks

performing BCM designs for higher transmission rates, under i.i.d. RBF channels. We

consider a two downlink users scenario with near user operating at higher or similar mod-

ulation as far user. Also, the PAF (αP
j ) is find to be optimal as 0.2 for the conventional

NOMA, where we utilize BPSK + BPSK (k1 = k2 = 4), QPSK + BPSK (k1 = 8, k2 = 4),

QPSK + QPSK (k1 = 8, k2 = 8) and 16-QAM + BPSK (k1 = 16, k2 = 4) modulation at

the near and far users, with (7, 4) Hamming codes. Corresponding to the same (n = 7, kj)

we perform BCM design using the proposed AE-based SEMD and MEMD frameworks.

In Fig. 8.4.11, 8.4.12 we can see that the average BER reduces with the receiving

SNR. Moreover, we obtain high BER performance gains for the BCM design using the

proposed AE-based SEMD and MEMD frameworks, even for varying SNR gaps, over the

conventional NOMA. This can be explained by Remark 31 and Remark 34.

Further, we summarize the performance gains achieved by the proposed models over

the conventional methods in Fig. 8.4.11, 8.4.12 for Eb/N0 = 10 dB at the far user in

Table 8.4.6. Clearly, as the transmission rates for the user increase, the BER performance

gains of the BCM design by the proposed SEMD and MEMD frameworks over the con-

ventional NOMA increase. As the transmission rates increase, the number of codewords

to be packed in the 2n-dimensional space (for proposed AE) and 2-dimensional space

(for conventional NOMA) also increases. Further reasoning can be understood from Re-

mark 34. Also, we can see that as the SNR gap between the users’ increases, the BER

performance gains of the proposed AE-based frameworks reduce due to similar reasons

as Remark 31.

Moreover, in Fig. 8.4.13 we consider 16QAM + BPSK (k1 = 16, k2 = 4) scenario,

and we can see that BCM design by the proposed SEMD framework outperforms the con-

ventional NOMA, whereas the BCM design by the proposed MEMD framework is un-

able to outperform the conventional NOMA. This shows that the MEMD framework has

a problem in determining the optimal location for the codewords in the 2n-dimensional

space, even with J times higher complexity at the NN-based encoder of the BS. How-

ever, the BCM design by the SEMD framework outperforms the conventional NOMA
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Figure 8.4.11: Autoencoder-based end-to-end learning for higher rates, n = 7
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Figure 8.4.12: Autoencoder-based end-to-end learning for higher modulation order, n = 7
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Table 8.4.6: Performance gains of the proposed over the conventional models for n = 7
at received SNR of 10 dB at the far user for higher transmission rates.

Modulation SEMD MEMD
(Near + Far user) ∆SNR = 0 dB ∆SNR = 6 dB ∆SNR = 0 dB ∆SNR = 6 dB

BPSK + BPSK 4.5 dB 3.5 dB 3.5 dB 3 dB
QPSK + BPSK 5 dB 3.5 dB 4 dB 2.8 dB
QPSK + QPSK 6.5 dB 6 dB 5.2 dB 5 dB
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Figure 8.4.13: 16 QAM + BPSK

by 4 dB for users at same SNR (∆SNR = 0 dB) and 2 dB for users at different SNRs

(∆SNR = 6 dB) at Eb/N0 = 25 dB for the far user, respectively. Thus, we can say that

the proposed SEMD framework outperforms the proposed MEMD framework when the

number of users increases, transmission rates increases, and channel reuse increases due

to similar reasons as Remark 35.

8.5 Conclusion

In this chapter, we proposed two end-to-end learning-based bit-wise Fixed AE frame-

works for multi-user downlink networks - single encoder multiple decoders (SEMD) and

multiple encoders multiple decoders (MEMD), under Rayleigh fading channels. We op-

timize the AE frameworks by maximizing the total bit-wise MI of all the multiple users

in the downlink network. Furthermore, for the AE-based modulation design, we remove
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the SIC at the strong users and the requirement of the PAF at the BS. Thereby removing

the need to feedback channel gains to the BS, PAF optimization, error propagation due to

multiple SIC, and the need to send the SIC ordering and PAF information to the multiple

downlink users. Moreover, since the proposed AE frameworks remove the SIC thus, we

can decode the superposed signal of two users on the same SNR, removing the necessity

of users to have a minimum of 3 − 8 dB of SNR gap for the successful implementation

of SIC. Further, we analyzed the minimum squared Euclidean distances for the constel-

lation obtained by the proposed AE frameworks to infer the reasons behind the BER

performance gains and user fairness achieved by the proposed QoS constraint in the AE

frameworks. Furthermore, as the number of users increases, we show that the BER per-

formance gains of the proposed AE frameworks increase over the conventional NOMA.

Apart from achieving these benefits, for the AE-based BCM and d-BCM design, we show

that we can decode all the multiplexed users’ signals using the proposed AE frameworks

even without the CSI knowledge at the receivers, which remains mandatory to implement

SIC in conventional NOMA. Furthermore, we utilized t-SNE and k-medoids to under-

stand the bit-mapping of the codewords designed in the 2n-dimensional space. We also

show that our proposed AE frameworks perform better with increasing transmission rates.

Lastly, we show that the AE-based SEMD framework outperforms the AE-based MEMD

framework when the number of users increases, transmission rates increases, and channel

reuse increases, even with J times lower complexity at the BS.
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Chapter 9

AE-based Feature Compression and
Machine Learning (ML)-based
Mm-Wave PL Prediction

9.1 Introduction

The 5th generation of mobile networks (5G) has adopted a much broader spectrum at

higher frequency bands, such as mm-wave bands, that promises very high data rates. To

unleash the full potential of mm-wave communications, highly accurate channel mod-

eling and path loss (PL) prediction are essential in foretelling cell coverage, planning

deployment of the base stations (BSs), and optimizing network performance [122]. How-

ever, high bands come with the challenge of higher free-space, scattering, and diffraction

losses from the propagation environment. For example, in a typical urban street, buildings

and street clutter like scaffolding, vehicles, and tree canopies can significantly impact PL

compared to lower frequency bands (wavelength of tens of cm). Although accurate PL

estimation by employing fast and straightforward models is pivotal in network planning

and optimization, they are yet to be fully understood in mm-wave frequencies at various

propagation environments.

Numerous PL prediction models have been established in the literature, which can

be classified into three major categories: statistical [123, 124, 125, 126, 127, 128], de-

terministic [129], [130], and learning-based models [131, 132, 133, 134, 135, 136, 137,

138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150]. Statistical models such

as [123] provide a computationally efficient method by fitting particular equations to mea-

surements obtained in different propagation environments [123, 124, 125, 126, 127, 128].

The most widely adopted heuristic channel models, referred to as slope-intercept model

hereafter, apply a linear fit to the measured PL data against the logarithm of the Eu-

clidean distance between the transmitter and the receiver. Deterministic models such as
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ray-tracing, on the other hand, are established based on the principles of physics using

complex set of user-specified simulation parameter settings, and its performance relies on

an accurate description of the propagation environment [129, 130]. Field measurements

at 28 GHz [128] have shown that ignoring street clutter leads to 10 dB underestimation of

PL in urban street canyons. However, the level of detail in the environment description,

including both shape and material property, required at mm-wave bands are challenging to

characterize using conventional statistical or deterministic modeling. Therefore, machine

learning (ML) based techniques have appeared as a promising alternative.

9.1.1 Previous Works

PL prediction can be considered as a regression problem in ML, where the features ex-

tracted from the propagation environment become its input and PL as a continuous vari-

able output. We summarize some of the ML-based approaches for propagation environ-

ment modeling and PL prediction [131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148, 149, 150] in Table 9.1.1, highlighting the propagation

environment, frequency, key features, training and testing procedures, PL data source, and

ML tools such as artificial neural networks (ANNs), random forest (RF), convolutional

neural network (CNNs), autoencoder (AE), and support vector regression (SVR). These

works showcased the capability of ML-based methods and their potential in improving

PL prediction accuracy. A more comprehensive review on ML-based PL prediction can

be found in [151].

Many of the ML-based approaches [131, 132, 133, 134, 135, 136, 137, 138, 139,

140, 141, 142, 143, 149] focus on prediction for nearby links (i.e., interpolation). For

studies ([144, 145, 146, 147, 148, 150]) that do predict PL for new streets/areas (i.e.,

extrapolation), the influence of street clutter such as trees and street furniture on PL is

either minimal or non-existent. Besides, in most previous works, complex ML models

are adopted as a black-box, making it hard to interpret the connection between features

and PL prediction. These complex ML models also make PL prediction vulnerable to

overfitting since the training data size from measurements is usually too small compared

to adjustable parameters in ML models.

Compared to studies such as [131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148] that are dedicated to the sub-6 GHz bands, ML-based

PL prediction for mm-wave bands requires a much finer level of details in the environ-

ment description as scattering by small objects (tenths of wavelength) and material ab-

sorption loss are more significant for mm-wave signals. For example, about 30 dB street-

by-street variation in median PL has been observed from field measurements in urban

street canyons at 28 GHz [128]. To capture street specific features, 2D-collapsed images

of 3D-building data have been used in [149] for PL prediction using CNN-based model.
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In [150] building height, terrain height, tree foliage height, and LOS indication have been

used as input images to the CNN-based U-Net image segmentation model. Both models

in [149] and [150] are trained by minimizing the difference between predicted PL and

ray-tracing PL. However, simulated data from ray-tracing has been found to be unreli-

able (over 10 dB underestimation of PL) in urban street canyons at 28 GHz [128] when

street clutter is ignored1. Therefore, high quality PL training data collected from field

measurements (which is time and resource consuming) is crucial to establish reliable PL

prediction models.

9.1.2 Our Contributions

We address three key challenges in ML-based PL prediction for mm-wave bands: 1) relia-

bility due to no/insufficient measurement data; 2) generalizability due to weak/no capabil-

ity of extrapolation; 3) interpretability due to complex ML models and high dimensional

features.

Reliability

We utilize a large-scale dataset from 28 GHz field measurements [128] in urban street

canyons, consisting of 1028 continuous-wave links from 13 streets in Manhattan from

multiple roof top sites co-located with commercial BS. The street clutter information

such as tree canopies and lampposts is obtained from the open-source LiDAR point cloud

dataset [152], and the building information is obtained from the open-source 3D mesh-

grid [153], which includes building height, façade shape, separation between the build-

ings, roads, elevation information, etc.

Generalizability

We address it from three aspects:

• Street-by-street training and testing policy: 13 independent training-testing combi-

nations are created by choosing one street at a time for testing and the rest 12 streets

for training. Such policy would test extrapolation of trained models to “never seen”

streets.

• Aggressive street clutter and building feature compression: For each link, the high-

resolution point cloud raw data is compressed to two numbers using heuristic ap-

proaches devised from expert-knowledge in wave propagation, and the 3D building

1Improving the accuracy of ray-tracing for mm-wave in presence of street clutter is a challenging prob-
lem by itself.
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Figure 9.1.1: Methodology adopted in this work.

information is compressed to a length-12 vector using CNN-based autoencoders to

preserve the spatial characteristics.

• Reducing adjustable parameters for PL prediction: Simple ML based regression

algorithms such as Lasso, Elastic-net, random forest, and SVR are adopted to miti-

gate over-fitting.

Interpretability

We adopt human-friendly environment features and quantify the significance of each fea-

ture in the PL prediction. We define only seven expert-knowledge driven propagation

environment features, referred as Clutter features hereafter, where each feature has a

physical meaning attached. We quantify the importance of each Clutter feature by Lasso

weight analysis and by comparing the PL prediction accuracy when only one feature is

excluded.

To the best of our knowledge, this is the first time both street clutter and building in-

formation are used collectively for mm-wave PL prediction using a large-scale real-world

propagation measurement at 28 GHz in urban streets. We show that our proposed model

achieves root mean square error (RMSE) of 4.8 dB averaged over all 13 streets with 1.1 dB

standard deviation that reflects street-by-street variation. By only using the top four most

influential features, our model achieves prediction RMSE of 5.5± 1.1 dB (mean±std). In

contrast, the heuristic slope-intercept method and the 3GPP LOS model based prediction

have RMSE of 6.5± 2.0 dB and 10.6± 4.4 dB, respectively. For the first time, we show

that the ML assisted PL predictions are more accurate than measurement based slope-

intercept model with much smaller street-by-street variation. The methodology adopted

in this work is summarized in Fig. 9.1.1.
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Figure 9.2.1: Manhattan measurement data (different color per street).

9.2 PL Data Collection and Feature Sets Preprocessing

In this section, we present an overview of the PL measurement in Manhattan and prepro-

cessing of the point cloud dataset and the 3D building mesh grid dataset.

9.2.1 28 GHz PL Measurement in Manhattan

The measurement campaign [128] is designed to mimic urban street canyon coverage

from roof edge mounted BS (i.e., urban macro) to UEs (1.5 m high) in the center of a

sidewalk along the street. No attempt was made to incorporate or eliminate blockage

due to street clutter, such as trees, vehicles, pedestrians, scaffolding. The purpose is to

resemble coverage of the street in the presence of such obstructions. Measurements were

performed from 7 building rooftops with height ranging from 15 to 48 m, covering 13

streets with Tx-Rx distance ranging from 35 to 500 m. In total, 1028 links were measured

with over 10 million individual power measurements, which were locally averaged per
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link to eliminate small scale fading.

In Fig. 9.2.1a we show the measured links and the slope-intercept fit2 to PL versus

logarithmic Euclidean distance (d), given by

P = A+ 10n log10(d) +N (0, σ2), (9.1)

where A=46.9 dB is the 1 m-intercept, n=3.1 represents the slope, σ=6.3 dB is the

RMSE between fitted and actual values and N (·) is the normal distribution representing

shadow fading. Comparing our data against standard PL models such as 3GPP UMa LOS

and NLOS [154] leads to RMSE of 11.3 dB and 18.1 dB, respectively. Fig. 9.2.1b depicts

the distributions of PL for individual streets, with median spanning over a range about

30 dB.

The presence of street clutter may be the cause for about 10 dB excess loss com-

pared to the UMa LOS model in Fig. 9.2.1a and the large street-by-street variations in

Fig. 9.2.1b. This is due to the short wavelengths of mm-wave signals, approximately

1 cm at 28 GHz, making them more susceptible to intense diffused scattering and poorer

rough surface reflection [155]. Further, mm-wave has a tighter first Fresnel zone directly

proportional to its wavelength, causing objects as small as tens of centimeters to appear

to be substantial in impairing link quality [156]. This motivates us to capture detailed

environment features such as street clutter and 3D-building.

9.2.2 Street Clutter Modeling using LiDAR Point Cloud Dataset

Let us consider the measurements done from the same rooftop for two Manhattan streets,

the 7th Avenue with a handful of young trees and the W 11th Street with many tall tree

canopies, as shown in Fig. 9.2.2a, and Fig. 9.2.2b, respectively. Measured PL and their

slope-intercept fits are shown in Fig. 9.2.2c. The distance exponent of the W 11th Street is

significantly higher, 8.7, compared to 3.4 on the 7th Avenue, with a 23 dB gap in average

PL at 500 m. Therefore, street clutter information, which includes tree canopies, cars,

lamppost, etc., plays a crucial role in PL prediction.

To capture the street clutter, we use the USGS CMGP LiDAR point cloud reposi-

tory [152], where each object is described by a set of points on its external surfaces

acquired at 1 cm resolution. For each street, we change the origin to the ground loca-

tion of the Rx position and align X-axis with the street along which the Tx is moving,

Y -axis along the width of the street, and Z-axis pointing to the Rx placed at the top of

the building. We also utilize a k-nearest neighbor based point cloud denoising [157]. The

processed point cloud representing the street clutter for the 7th Avenue and the W 11th

2Path gain, instead of path loss, is displayed in Fig. 9.2.1a to emphasize the deteriorating link quality as
distance increases.
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(a) 7th Avenue, Man-
hattan

(b) W 11th Street,
Manhattan
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(c) Comparison of measured PL

(d) Point cloud for 7th Avenue. (e) Point cloud for W 11th Street.

Figure 9.2.2: Two streets covered from the same roof top with diverse street clutter den-
sity.

Street are shown in Fig. 9.2.2d, and Fig. 9.2.2e, respectively.

9.2.3 3D-Building Mesh Grid

Reflection and scattering from urban buildings can be significant and impose wave-guiding

effect on the signals. We extract the 3D building mesh grid from the Cadmapper [153].

The aerial-view of the W 11th Street is shown in Fig. 9.2.3 and the extracted 3D build-

ings are in Fig. 9.2.4a. We first convert the high dimensional mesh grid into a Euclidean

space by assigning each 1× 1× 1 m cube a value 1/0 indicating the presence/absence of

a mesh grid. We then reposition the origin such that Rx is at (0, 0,Rx height) and align

the X-axis along the street and Y -axis along street width (i.e., align the coordinates with

those used for point cloud). To reduce the dimensionality of the dataset while preserving

height information, we collapse it along the Z-axis into 2D grids (of 1× 1 m) and assign

the entry of each grid the height of building at that location (0 if there is no building), as

shown in Fig. 9.2.4b for the W 11th Street where the color bar indicates height.

9.3 Street Clutter Feature Extraction from Point Cloud

The LiDAR point cloud dataset [152] contains massive amount of data that can’t be di-

rectly used for training or interpretation. Thus, we focus on expert-knowledge driven
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Figure 9.2.3: Aerial-view of W 11th Street.

(a) 3D building (mesh grid) acquired for the W 11th Street.

(b) 2D collapse for the W 11th Street mesh grid buildings.

Figure 9.2.4: Example of 3D building mesh grid data

feature extraction from the point cloud dataset for modeling the street clutter. From ex-

pert knowledge, we know that log 3D-distance and 1D-distance between the transmitter

and receiver, street width, and the base station height are important parameters, widely

used in the 3GPP standard for the PL prediction. Further, due to the tight first Fresnel

zone, we know that the maximum signal should come from the LOS direction, while the

overall street clutter can help in providing guidance for general characteristics of the clut-

ter in the street. Using this expert knowledge, we obtain the most relevant features from

the point cloud data as below.
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Figure 9.3.1: Illustration of point cloud based Clutter features 1, 2, 5, 7.

9.3.1 Street Clutter Feature Compression

We compress all the LiDAR point cloud information for each link into two numbers using

heuristic approaches devised from expert-knowledge in wave propagation, where each

number simply equals the count of data points in a 3D volume:

• a string of contiguous 1 × 1 × 1 m cubes from Tx to Rx along the direct path

(3D-info)

• a street-wide cuboid as high as the BS connecting Rx and the furthest Tx (0D-info)

The 3D-info represents the accumulated clutter density along the direct path within

the first Fresnel zone (about or smaller than the 1 m ×1 m cross-section) and thus may be

interpreted as a blockage indicator of the direct path for each link. The 0D-info represents

the overall clutter density of the entire street and remains the same for all links from the

same street.

9.3.2 Point Cloud based Expert Street Clutter Features (Clutter)

The following seven expert street clutter features are defined for PL prediction:

• Clutter 1: log-3D distance - Euclidean distance (log-scale) between the Tx and Rx.

• Clutter 2: log-1D distance - Along-the-street distance (log-scale) between the Tx

and Rx.

• Clutter 3, 4: 0D-info and 3D-info - Clutter density information as defined in Sec. 9.3.1.

• Clutter 5: Street width - Spans from 15 to 38 m.

• Clutter 6: Buildings on both sides - Indication of guiding effect from street canyon.

• Clutter 7: Rx height - Spans from 15 to 48 m.
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Figure 9.3.2: Proposed CNN-based autoencoder for building feature compression.

Among the defined seven Clutter features, four of them (Clutter 1, 2, 5, 7) have been

used in different 3GPP models: 1D distance (d1D), 3D distance (d3D), street width, and

the base station or Rx height (h), as shown in Fig. 9.3.1. Such features provide us a direct

means to interpret the trained models and compare them against the 3GPP and slope-

intercept models. The other three features (Clutter 3, 4, 6) capture street-specific (0D-info)

and link-specific (3D-info) clutter information as well as the street canyon information

(building on both sides of the street).

We summarize the defined expert features in Table 9.3.1, wherein we omit Log-3D

distance, Log-1D distance, and 3D clutter information because they have a separate entry

for each link. Besides, we report the range of measurement distances with number of

measurement links on each street and the diverse nature of the streets by “street descrip-

tion” (that points to 30 dB street-by-street variation seen in Fig. 9.2.1b), that is coarsely

captured by the designed seven Clutter features. We standardize the defined Clutter fea-

tures before training and testing: for feature f we compute its mean µ and variance σ2 on

the training dataset; then, we rescale the feature in both the training and testing dataset as

f̂ = (f − µ)/σ.

9.4 Autoencoder based Feature Extraction from Build-

ing Dataset

Although we have converted the 3D building mesh grid to a 2D matrix representation, as

explained in Sec. 9.2.3, the building features are still much richer than the PL data. We

further reduce the 2D collapse of buildings to size of (500, 40) by removing buildings

beyond the maximum measurement distance 500 m and by including the building façade

only (taking grids 20 m from the center of the street on each side). As the Tx-Rx distance

increases, the number of 2D grids in between the two also increases. We append zero to
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(a) Architecture of CNN-based encoder of AE.

(b) Architecture of CNN-based decoder of AE.

Figure 9.4.1: Neural network architectures for the proposed CNN-based autoencoder.

the 2D matrix representation at shorter distances to preserve the distance dependency and

avoid information loss by downsampling.

We then use CNN based AE to compress the extensive building façade data to a few

most relevant features for PL prediction. CNN captures the spatial dependencies with the

helps of kernels and filters, and AE learns an efficient encoder (for feature compression)

and a matching decoder (to reproduce the original input signal) in an unsupervised man-

ner. Therefore, a combination of CNN and AE, as shown in Fig. 9.3.2, can help us to

reduce the massive feature dimension of the building data to 12 features while preserving

the spatial characteristics.

The encoder in the CNN-based AE, as shown in Fig. 9.4.1a, takes 2D-buildings I ∈
R(500,40) as input and reduces it to compressed features X ∈ R(12). This is achieved

by the convolutional and max-pooling layers that help to reduce the dimension while

preserving the spatial characteristics, whereas the dense layers extract compressed non-

linear features. After the first max-pooling layer we perform grouped convolutions –

convolutions in parallel, wherein two identical CNNs (Conv-Net-1 and Conv-Net-2) are

processed in parallel before their addition.

Then the decoder in the CNN-based AE, as shown in Fig. 9.4.1b, takes X as its input

to reconstruct the 2D buildings Y ∈ R(500,40). This is achieved by the dense layers that
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decodes information from the compressed feature representation, and the convolutional

and upsampling layers that reverts the building information to its original form.

We design a loss function L(·) based on the Log-cosh loss instead of MSE to in-

crease its robustness against outliers in the building data and also reduces the impact of

appended zeros in the input I. Note that the values in 2D matrix representation is stan-

dardized between 0 and 1 before feeding to the AE. For a grid (a, b), we find the maximum

and minimum values for that grid in all the training data and denote it by max(a, b) and

min(a, b). Then we rescale all the values in the training and testing data for the (a, b)th

grid as (value in (a,b)−min(a, b))/(max(a, b)−min(a, b)). The details of the designed

loss function L(·) and the CNN-based AE architecture can be found in Appendix 9.A.

We implement the AE in Keras [43] with TensorFlow as a backend. We keep the

learning rate of 0.0012, batch size 16, and the total number of epochs 100. We train the

network end-to-end using the Adam optimizer [42] over the time, to reconstruct the input

2D collapse of the building at the output of the decoder. Once the AE is converged3, we

utilize the encoder to design compressed Building features X ∈ R(12) and then feed them

to PL prediction.

9.5 ML-based Models and Training-Testing Methodology

We utilize the extracted Clutter and compressed Building features and compare the fol-

lowing regularized-linear and non-linear ML algorithms [41] for PL prediction using a

street-by-street training and testing methodology to emphasize generalizability.

9.5.1 ML-based models for PL prediction

Let P denotes the true PL value, F(·) represents the input feature vector, and w indicates

the designed weight matrix. The following ML algorithms are used for PL prediction.

1. Lasso regression (Lasso) optimizes the regression weights by minimizing the least-

square error including a supplementary l1-norm penalty on the regression coeffi-

cients (weights),

min
w

(1/2nsamples)× ||F(·)w − P ||22 + αl1||w||1 (9.2)

where nsamples is the sample size and αl1 > 0 imposes the l1 penalty on the weights.

2. Elastic-net regression (Elastic-net) imposes both l1- and l2-norm penalties on the

weights, where the convex combination of l1, l2 penalties is controlled by the pa-

3The designed AE with parallel Conv-nets (CNNs) converges after 50 epochs and has better repro-
ducibility than using a single or two serially concatenated Conv-nets, shown in Appendix 9.B.
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rameter αl12 ,

min
w

(1/2nsamples)× ||F(·)w − P ||22 + αl1αl12||w||1 + (αl1(1− αl12)/2)× ||w||22
(9.3)

3. Random forest (RF) is an ensemble learning method, where multiple decision trees’

average is utilized to predict the PL. We consider 20 estimators with maximum tree

depth of 25.

4. Support vector regression (SVR) solves the following primal problem

min
w,b,ζ

(wTw)/2 + Csvr
∑T

n=1
ζn (9.4)

s.t. Pn(w
Tϕ(F(·)n)+b) ≥ 1−ζn,

ζn ≥ 0, ∀ n ∈ [1, T ]

where Csvr denotes the penalty term, ζn indicates the distance of nth sample from

the decision boundary, b represents the bias term and ϕ(F(·)n) mapsF(·)n to a higher

dimensional space. We train the SVR with an radial bias function (RBF) kernel,

given by exp(−γ||F(·)i −F(·)j ||2) for any two samples i and j, and γ > 0.

All the PL prediction methods are implemented using scikit-learn [158]. We use grid

search with 5-fold cross validation [41] over the training set to obtain the best parameters.

In particular, the hyper-parameter αl1 in Lasso and Elastic-net and Csvr, γ in SVR is grid-

searched from {10−4, 10−3, ..., 103, 104} during the training and best fitted-parameter is

used for testing.

9.5.2 Feature vectors

Point cloud-based expert street clutter features (Clutter) only

It consists of the seven expert features extracted from the street clutter information (in

Sec. 9.3.2), represented as

FClutter = {log-3D distance, log-1D distance, 0D-info,

3D-info, street width, buildings on both sides, Rx height} (9.5)

Combination of Clutter and Building Features (Clutter + Building)

Herein we first use the encoder of the trained AE (proposed in Sec. 9.4) to obtain com-

pressed features X ∈ R(12), and concatenate with the Clutter in (9.5), denoted by
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Algorithm 1 Links-shuffle-split training and testing procedure
Require: F(·) and P for 1028 PL measurements. ▷ Collection of all the measurements from 13

streets.
Ensure: D = [x := F(·),y := P]. ▷ This symbolises our total dataset.

1: for i = 1 to iterations do ▷ Loop for varying shuffle and split of dataset.
2: Randomly shuffle and split D in 4 : 1 ratio to form [xi

train,y
i
train] and [xi

test,y
i
test].

3: Train ML-based PL models (detailed in Section 9.5.1), using [xi
train,y

i
train] to obtain trained

modelMi.
4: Test modelMi using xi

test to predict PL yi
pred.

5: Calculate RMSEi in PL between ground-truth PL yi
test and predicted PL yi

pred.
6: end for
7: Mean RMSE := µ(RMSE{1,2,...,iterations}) and std. deviation :=

σ(RMSE{1,2,...,iterations}).

Algorithm 2 Street-by-street training and testing procedure

Require: F{1,...,13}
(·) and P{1,...,13} for each of the 13 streets.

1: for k = 1 to 13 do ▷ Loop for each of the 13 streets as testing.
2: Testing Street := kth street, Training streets := All the 13 streets except kth street :=
{1, ..., 13} − {k}.

3: xtest := Fk
(·), xtrain := F{1,...,13}−{k}

(·) , ytest := Pk and ytrain := P{1,...,13}−{k} ▷ Mea-

surements of kth street becomes testing data, while all the other measurements form training
data.

4: Train ML-based PL models (detailed in Section 9.5.1), using [xtrain,ytrain] to obtain trained
modelMk.

5: Test modelMk using xtest to predict PL ypred.
6: Calculate RMSEk in PL between ground-truth PL ytest and predicted PL ypred for kth

testing street.
7: end for
8: Mean RMSE := µ(RMSE{1,2,...,13}) and std. deviation := σ(RMSE{1,2,...,13}).

FClutter Building = [FClutter,X] (9.6)

9.5.3 Training and Testing Methodology

In conventional ML-based training-testing, the 1028 PL measurements (collection of all

the measurements from 13 streets) dataset is randomly shuffled and divided into 4 : 1

ratio for training and testing sets. We refer to it as links-shuffle-split training and testing,

briefly described in Algorithm 1. To capture the impact of random shuffling and splitting,

we perform the process multiple times and obtain mean RMSE and standard deviation

in RMSE due to random shuffling and splitting of the dataset. Data in the testing set

is statistically similar to those in the training set, and the focus of trained models is on

interpolation. Since links that are close to each other have similar PL values, shuffling the

data impacts negatively on the generalizability of the model given the limited amount of

241



CHAPTER 9. AE-BASED FEATURE COMPRESSION AND MACHINE LEARNING
(ML)-BASED MM-WAVE PL PREDICTION

PL measurements.

Motivated by the large street-by-street variation of measured PL observed from Man-

hattan measurements [128], we propose a new way of training-testing referred to as street-

by-street training and testing, focusing on the extrapolation capabilities. We group the

measurement links based on streets where they are collected and formulate 13 groups,

one for each street. We then create 13 train-test combinations, wherein for each combi-

nation, one street is selected for testing and the rest for training. A model is trained and

tested 13 times, using the 13 train-test combinations independently, producing 13 RMSE

values. We summarize the procedure briefly in Algorithm 2.

Remark – In Algorithm 2 the street-by-street variation in prediction is quantified by

the standard deviation in RMSE of the 13 tested streets. It is the metric chosen to measure

the generalizability to unseen streets. Thus, the lower the standard deviation, the better is

the generalizability of the proposed model to the unseen environment.

9.6 Performance Evaluation and Analysis

In this section, we evaluate the performance of the proposed PL prediction models using

the street-by-street training and testing. The key performance metric is the mean and

standard deviation of the 13 RMSE values obtained in street-by-street PL prediction. Our

benchmarks are the 3GPP UMa LOS prediction model (P = 28.0 + 22 log10 d3D + 20

log10 fc), 3GPP UMi NLOS prediction model (P = 22.4 + 35.3 log10 d3D + 21.3 log10 fc),

where fc=28 denotes carrier frequency (in GHz), as well as the slope-intercept model de-

scribed in (9.1) where the slope and intercept parameters are obtained using the same

training data subsets as used by the ML-based methods. All of the three models only

use the 3D Tx-Rx Euclidean distance d3D as the input feature and their performance are

evaluated using the same testing data subsets as used by ML-based methods.

9.6.1 PL Prediction Accuracy (RMSE)

We summarize in Table 9.5.1 the RMSE in PL prediction of linear and non-linear ML al-

gorithms proposed in Sec. 9.5.1 with street-by-street training-testing methodology (shown

in Algorithm 2), where the standard deviation of RMSE represents robustness against

street-by-street variation over all 13 training-testing combinations.

The 3GPP UMi NLOS and 3GPP UMa LOS channel models have mean RMSE of

18.0 and 10.6 dB, respectively, not suitable for describing street canyon channels with

clutters. The slope-intercept model produces a mean RMSE of 6.5 dB with a standard

deviation of 2.0 dB across different testing streets. With the Clutter feature set (FClutter),

both regularized linear Elastic-net model and the non-linear SVR model simultaneously
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Figure 9.6.1: Street-by-street variation of the average RMSE over 25 runs using Clutter +
Building.

reduce the mean RMSE by about 1.1 dB and street-by-street standard deviation by about

0.7 dB, creating a more generalizable model with better PL prediction accuracy.

The PL prediction performance can be further improved using the FClutter Building fea-

ture set. Unlike the Clutter feature set which is deterministic, the FClutter Building feature set

contains compressed building features extracted from a CNN-based AE, which is inher-

ently a random process and the resulting performance can change significantly [159]. We

run the AE 25 times and generate 25 unique FClutter Building feature sets. For each of the 25

feature sets, we test the ML algorithms using the street-by-street testing, reporting both

the best4 and the average over all 25 runs. Street-by-street variation of the average RMSE

over all 25 runs are reported in Fig. 9.6.1 using a box plot, where the average RMSE over

25 runs for each testing street is represented as a color-coded o symbol. The median and

mean over 13 streets are given by line inside each box and the red + symbol, respectively,

and the edges of the box mark the quartiles, with whiskers extending outside the box in-

dicating the minimum and maximum over all 13 testing streets. By searching for a better

AE out of 25 runs for each testing street, the mean RMSE can be further reduced by about

0.6 dB and street-by-street standard deviation by about 0.2 dB for both Elastic-net and

SVR. The gain of Random Forest-based prediction over slope-intercept model is small,

which is likely because it is not good at extrapolation when the statistics of the training

and testing sets differ [160].

To verify and compare the capability of interpolation of various prediction models,

we also run the classical links-shuffle-split training and testing approach detailed in Algo-

4Both the mean and standard deviation of the best RMSE converge within 25 runs as shown in Ap-
pendix 9.B.
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Figure 9.6.2: Street-by-street variation.

rithm 1 with iterations=25, i.e., randomly shuffle-and-split 25 times. The results are also

shown in Table 9.5.1, where the 0.2 dB standard deviation in RMSE for Clutter + Building

comes from both the inherent randomness of shuffling-splitting the dataset and AE com-

pression out of 25 independent runs. The best result out of 25 runs for all the proposed

ML-based PL prediction achieved over 1.7 dB reduction in mean RMSE as compared to

the slope-intercept prediction, and over 0.4 dB reduction compared to the street-by-street

testing. However, caution has to be taken to differentiate extrapolation and interpolation

for site-specific PL prediction given limited measurement datasets.

9.6.2 Robustness Against Street-by-Street Variation and Distance

We evaluate the robustness of PL prediction against street-by-street variation in Fig. 9.6.2

using Elastic-net-based prediction for both the Clutter feature set and the best Clutter +

Building (FClutter Building) feature set out of the 25 options. Compared to the two 3GPP

models and the classical slope-intercept model, the two ML-based PL prediction mod-

els reduce both the mean RMSE as well as the street-by-street variability. This clearly

demonstrates the importance of incorporating street-specific features such as street clutter

and building into PL prediction models and the robustness of linear ML-based models in

extrapolation to unseen streets.

The mean RMSE in PL prediction as a function of the 3D distance is shown in

Fig. 9.6.3. All the links are grouped into 100 m intervals and within each interval we

calculate the mean RMSE for street-by-street testing. Herein, X-axis denotes the ending
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Figure 9.6.3: Mean RMSE versus distance.

position of an interval (e.g., 200 m denotes the interval spanning from 100 to 200 m). Our

proposed models outperform the slope-intercept model for all the distance ranges. The

improvement in mean RMSE is about 1.2 to 2.7 dB using Clutter + Building feature set

compared to the classical slope-intercept model.

9.6.3 Feature Importance for the Point cloud-based Street Clutter
Features

The Lasso regression imposes an l1-norm penalty that minimizes the weights of least

relevant features to improve the accuracy, and therefore the relative magnitude of the re-

sulting weights can be interpreted as the feature importance in PL prediction. We perform

Lasso regression on the Clutter feature set with street-by-street training-testing method-

ology and present the obtained weights in Fig. 9.6.4, where each bar represents the mean

value of the weights corresponding to each feature. The error bar indicates the minimum

and maximum weight value obtained for that specific feature when tested separately for

13 streets. The amplitude of each weight indicates the importance of that feature, and

the opposite signs (in amplitude) of the weights help balance the Clutter features in PL

prediction. As expected, the 3D distance has the highest weight, followed by the 0d-info,

which quantifies how cluttered each street is based on the normalized point cloud den-

sities of the whole street. The ‘Build. on both sides’ binary indicator and the 3d-info

which quantifies accumulated clutter density along the direct path also have notable im-
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Figure 9.6.4: Average feature importance for Clutter feature set using Lasso regression in
street-by-street testing, where the error bars indicate the minimum-maximum range over
13 streets.

Table 9.6.1: Training and testing complexity of PL prediction algorithms.

Algorithm Training Complexity Testing Complexity
3GPP − O (1)

Slope-intercept O (n)

Lasso O
(
Tp2n+ p3

)
O (p)

Elastic-Net O
(
Tp2n+ p3

)
Random forest O (n log(n)pntnd) O (ntnd)

Support Vector O
(
n2p+ n3

)
O (nsvp)

portance. This aligns with the understanding that reflection from buildings on both sides

of the canyon increases signal strength, and that clutter intruded into the direct path has

adversarial effect on propagation.

Feature importance can also be observed by comparing the change of prediction ac-

curacy when each Clutter feature is excluded individually from prediction, as shown in

Appendix 9.C using Elastic-net regression, where the same top four most important fea-

tures are identified (in descending order): 0D-info, 3D distance, 3D-info, and building on

both sides.

By only using the top four most influential features, RMSE of 5.5 ± 1.1 dB can be

achieved using Elastic-net regression. For almost all the ML-based prediction results

using the reduced Clutter feature set, both the mean RMSE and standard deviations are

within 0.2 dB from the results shown in Table 9.5.1 obtained using all the seven Clutter

features. See Appendix 9.C for details.
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9.6.4 Computational Complexity

Let us denote the number of training samples by n, number of features by p, number of

trees by nt and depth of the tree by nd, and number of support vectors by nsv, the training

and testing complexity can be summarized as in Table IV where T is the number of outer

iterations used in the coordinate descent solver. Given the low dimensionality of the fea-

tures (7 in Clutter and 12 in Building) used in our PL prediction models, the PL prediction

is very fast. The prediction time per link is less than 3 µs for Lasso and Elastic-net and

less than 40 µs for RF and SVR when implemented using scikit-learn [158] running with

Intel Core i7–6700 CPU with 64 GB RAM and Ubuntu 18.04.4 LTS OS.

9.7 Conclusions

We have proposed a ML-based PL prediction model for urban street canyon using the

28 GHz measurement data collected from Manhattan. The feature set contains street

clutter obtained from LiDAR point cloud and buildings from 3D mesh-grid. The PL

dataset has 1028 PL measurement links from 13 streets. Although the PL dataset is mas-

sive for the classical slope-intercept PL modeling, it is small for ML-based approaches

when compared to massive point cloud and 3D building feature sets and parameters in

AE and learning algorithms. To mitigate the risk of overfitting, we defined seven expert

features with physical meaning from the point cloud. We also compressed 3D building

features to a length-12 vector for each link using CNN-based AE. Instead of interpolation

to nearby links, we focused on the extrapolation by introducing a street-by-street train-

ing and testing approach. Using linear ML algorithms for PL prediction, we achieved

RMSE of 4.8 ± 1.1 dB compared to 10.6 ± 4.4 dB and 6.5 ± 2.0 dB for 3GPP LOS and

slope-intercept prediction, respectively, which demonstrates the superior capability of our

model in extrapolation.

Intuitive interpretation of feature importance was obtained using Lasso regression-

based analysis and feature-exclusion analysis. By only using the top four most influential

features, namely, distance, street clutter density (0D- and 3D-info), and street canyon

indication (building on both sides), RMSE of 5.5± 1.1 dB can be achieved using Elastic-

net regression.

Among the four learning algorithms used in this paper, the non-linear Random Forest

regression has achieved the worst prediction performance under street-by-street testing

but is the best under links-shuffle-split testing. This may be attributed to the reduced sim-

ilarity in statistics between training and testing sets in street-by-street testing compared to

the links-shuffle-split testing, and the lack of extrapolation capabilities of Random Forest

regressions. Regularized linear Elastic-net regression has the best performance, which is

in line with the intuition that regularization on linear algorithms is more robust against
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overfitting with limited training dataset. The non-linear Support Vector Regression with

radial bias function kernel performs well (second best) for both links-shuffle-split testing

and street-by-street testing, at the cost of higher computational complexity.
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Appendix

9.A CNN-based Autoencoder design to Compress Build-

ing Features

We design CNN-based AE for feature extraction from the building dataset, as described in

Fig. 9.3.2, where an encoder e(·) compresses the input 2D building collapse I ∈ R(500,40)

to an representation X ∈ R(12), which is then fed to the decoder d(·) to reconstruct original

input 2D building collapse I. We briefly describe below the network layers shown in

Fig. 9.4.1.

1. 1D-convolutional layer (Conv 1D) - It employs various kernels to convolve the 2D-

image, preserving the spatial characteristics of the input image while extracting

relevant features.

2. 1D-max-pooling layer (Max-Pooling 1D) - Pooling is a sample-based discretiza-

tion process utilized to downsample the input image by making assumptions in the

binned sub-region. In max-pooling, we take the maximum value in the binned sub-

region.

3. 1D-upsampling layer (Up-Sampling 1D) - Upsampling layer has no weights, which

helps increase the input dimensions when followed by a convolutional layer.

4. Fully connected layer (Dense) - The non-linear processing is performed via dense

layers wherein each neuron is fully connected to all the neurons in the previous

layer.

Please note that 1D in the above layers means we have kernels (in Conv layer) and factor

(for upsampling and downsampling) [41] in only one-dimension.

9.A.1 Designing the Encoder

The input to our network is 2D collapse of buildings given by I ∈ R(500,40), which is

normalized between 0 and 1. Let e(I|θe) be the mapping from the input buildings to
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Figure 9.A.1: Convergence of CNN-based AE for 13 testing streets.

compressed representation when the parametric transformation of encoder is given by θe,

which denotes the weight, filters, and bias terms. Thus the encoder can be denoted as

X = e(I|θe) = eLe

(
...(e2 (e1 (I|θe1) |θe2) ...|θeLe

)
(9.7)

where Le denotes the number of layers in the encoder. For the convolutional layers, the

operation of the lth layer can be represented as follows:

Xl = el(Il|θel) = h (Wl ⊗ Il + bl) , θel = [Wl, bl] (9.8)

where ⊗ indicates the convolutional process, Wl represents the 1D kernels used for fea-

ture extraction, bl denotes the bias vector, h(·) is the activation function, Il=Xl−1 comes

from layer concatenation and I1 equals the 2D building matrix I.

We apply several Max-Pooling 1D layers in between for improving the region cov-

ered by the following receptive fields. Moreover, as shown in Fig. 9.4.1a, we introduce

grouped convolutions in the encoder, wherein we take the output of the first Max-Pooling

1D and make two branches of it, with separate Conv 1D and Max-Pooling 1D layers,

and then add the output of both branches (inspired by AlexNet [41]). The convolutional

layer’s output is then flattened to K and used as input of several stacked dense layers,

where the first dense layer in the encoder can be given by

Xl = el(Il|θel) = h (WlK+ bl) , θel = [Wl, bl] (9.9)
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9.A.2 Designing the Decoder

The input to our decoder is the output of the encoder given by X ∈ R(12). Let d(X|θd) be

the mapping from the compressed representation to input buildings when the parametric

transformation of decoder is given by θd, which denotes its weight, filters, and bias terms.

The decoder can be represented as follows:

Y = d(X|θd) = dLd

(
...(d2 (d1 (X|θd1) |θd2) |θdLd

)
(9.10)

where Ld denotes the number of layers in the decoder. It performs a reverse operation of

encoder here to generate the output Y ∈ R(500,40) of the same size as the input I.

As shown in Fig. 9.4.1, we use the Tanh activation function tanh(x) = ex−e−x

ex+e−x for all

the layers because Tanh activation function performed the best compared to the other non–

linear activation functions, except for the last layer, where we used the ReLU activation

function ReLU(x) = max(0, x) to ensure a positive real-value output. Moreover, a×b on

each Conv 1D layer indicates the filters and kernel size. The value on each Max-Pooling

1D and Up-sampling 1D denotes the factor by which downsampling and upsampling are

performed on the first dimension. Also, value on each Dense layer indicates the number

of neurons considered in that layer. The symbol + indicates the addition of the outputs of

two previous layers.

9.A.3 Designing the Loss Function

We use log-cosh loss, which is the logarithm of the prediction error’s hyperbolic cosine.

Also, we have I as the input to the encoder in the AE as well as the ground truth to be

predicted from the decoder and Y as the predicted output of the AE. Thus the difference

between the input and output of the AE can be given by φi,j = Yi,j − Ii,j, ∀ (i, j), where

i = {1, ..., 500} and j = {1, ..., 40} denotes the length and width of the streets (with

building facades). We choose log-cosh loss to help stabilize the training performance

with fewer epochs (iterations) because the outliers minimally impact the log-cosh loss

compared to the MSE loss [41]. Also, since we have appended zeros in the input I,

there have many zeros appended for shorter distances, which makes it difficult for the AE

network to learn non-zeros values in closer distance ranges. Thus, we introduce a matrix

Ŷ ∈ R(500,40), where for the nth training sample, given by

Ŷn
i,j =

0, if Ini,j = 0

Yn
i,j, otherwise

, ∀ (i, j) (9.11)
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Figure 9.B.1: Evaluation of grouped CNNs and iterations needed for reproducibility.

Then the combined loss function for the nth training sample can be given by

L = µ
(
log
(
cosh

(
Ŷn − In

)))
+

0.1× µ (log (cosh (Yn − In))) (9.12)

where µ(·) is the mean. The loss function has two parts, the first part focuses on the

reconstruction error of the non-zero values. The second part focuses on the reconstruction

error of all the values, whereas the weight 0.1 helps us in reducing the impact of the

appended zeros.

9.B Loss Convergence and Reproducibility of the Pro-

posed CNN-based AE

We utilize the designed AE to extract the compressed feature vector X ∈ R(12) from the

2d collapse I ∈ R(500,40) of the 3D building dataset. Then we train the AE in an end-to-

end manner by minimizing the designed loss in (9.12). The convergence of the training

and validation losses for 13 models created for street-by-street training and testing are

shown in Fig. 9.A.1, wherein the loss converges within 50 epochs (iterations utilized by

Adam optimizer to converge).

In Fig. 9.B.1, we evaluate the compressed features (X) by making three types of AEs,

wherein only the grouped CNNs in the encoder as proposed in Fig. 9.4.1a is replaced by:

(1) Grouped Conv-Nets – as proposed, (2) Single Conv-Net – remove Conv-Net-2 from
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Figure 9.C.1: Importance of each feature in Elastic-net-based PL prediction model.

the encoder, and (3) Concatenate Conv-Nets – concatenate Conv-Net-1 and Conv-Net-2

serially, to obtain their respective feature set FClutter Building. Further, we show the best

RMSE performance achieved by the Elastic-net regression to predict the PL, with a vary-

ing number of iterations. Grouped CNNs perform the best with smoother convergence

compared to others. Furthermore, Fig. 9.B.1 also shows that with 25 iterations we can

achieve the reproducibility for the best PL prediction RMSE performance.

9.C Analyzing the importance of designed Clutter in PL

Predictions

In Fig. 9.6.4, we utilized l1-norm based Lasso regression to determine the importance

of the individual Clutter feature if all the Clutter features (1 to 7) are provided for the

PL prediction. The importance of features, as quantified by their Lasso weights, in the

descending order is given as: log 3D-distance, 0D-info, building on both sides, 3D-info,

Rx height, street width, and log 1D-distance.

Feature importance can also be observed by comparing the change of prediction accu-

racy when each Clutter feature is excluded individually from prediction. This approach

works for all ML-based prediction algorithms and thus provides an alternative way of

assessing feature importance.

In Fig. 9.C.1, we remove one feature at a time from the 7 Clutter features and de-

termine the RMSE in Elastic-net based PL prediction using street-by-street testing in
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Algorithm 2. Removing the 0D-info feature has the strongest consequence, degrading

the mean RMSE by as much as 1.3 dB. Therefore, based on the degradation of mean

RMSE, the importance of the features5 in the descending order can be given as: 0D-info,

log 3D-distance, 3D-info, building on both sides, street width, log 1D-distance, and Rx

height.

Based on observations from Fig. 9.6.4 and Fig. 9.C.1, we conclude that the most im-

portant features are the log-3D-distance, street-clutter information given by 0D-info and

3D-info, and canyon status (buildings on both sides), referred as Clutter4. We analyze

the RMSE in PL prediction using Clutter4 for both street-by-street and shuffle-split test-

ing, shown in Table 9.A.1. By only using the top four most influential features, RMSE

of 5.5 ± 1.1 dB can be achieved. When using Clutter4, both the mean RMSE and stan-

dard deviations of almost all the ML-based predictions are within 0.2 dB from the results

where all the 7 clutter features are used.

5The potential correlation among multiple features may underestimate the importance of a feature if it
has high correlation with others.
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Chapter 10

Conclusions and Future Directions

10.1 Summary

This work focused on the learning-based communication system design by employing

autoencoder (AE) frameworks.

10.1.1 Summary of Various Proposed AE frameworks

We summarize various kinds of AE frameworks proposed in this work in Fig. 10.1.1.

In particular, we studied the Channel AE framework (that adds redundancy) for high-

dimensional block coded modulation (BCM) design with the channel state information

(CSI) knowledge and differential BCM (d-BCM) design without the CSI knowledge

in Chapters 2–8, for high transmission rates R = k/n [bits/channel-reuse] and short

block lengths (n), and the Vision AE framework (that removes redundancy) for high-

dimensional feature compression for machine learning (ML)-based mm-wave path-loss

(PL) predictions in Chapter 9.

This work began by studying the AE-based BCM and d-BCM design in point-to-

point (P2P) communication networks in Chapter 2. We classify the AE frameworks as

Fixed AE and Variable AE, depending on if the number of neurons in the dense layers

remains independent and dependent on the input-output bits (k), respectively. Based on

the number of optimized parameters and bit-error-rate (BER) performance, we showed

that the Variable AE and Fixed AE frameworks are suitable for low rate R ≤ 8/7 and

high rate R > 8/7, respectively. Moreover, the Fixed AE facilitates designing a single

neural network (NN) architecture for varying rates R. Thus, the Fixed AE framework is

employed in this thesis.

Then, we studied the AE-based BCM and d-BCM designs for the amplify-and-forward

(AF) relaying networks in Chapter 3–6. In Chapter 3, depending on the input-output of

the AE and minimized cross-entropy (CE) loss, we classified the AE frameworks as the
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Figure 10.1.1: Summary of various kinds of AE frameworks proposed in this work.
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bit-wise AE and symbol-wise AE frameworks. We show that although the bit-wise and

symbol-wise AEs almost forms similar (differential) block-coded modulation designs.

However, the bit-wise AE showed three distinct advantages over the symbol-wise AE –

(1) automatic bit-labeling, possibly in a Gray-coded format, (2) faster training conver-

gence at low signal-to-noise-ratio (SNR) regimes, and (3) reduced training–testing time

and implementation complexity. Thus, we proposed to employ a bit-wise AE framework

in this thesis. Furthermore, in Chapter 7, we propose a novel bit-wise denoising AE for the

BCM and d-BCM design in a decode-and-forward (DF) relaying network. In particular,

the bit-wise denoising AE takes soft-probabilistic values as input at the encoder side (in-

stead of bits as in the bit-wise AE framework) and aims to denoise these soft probabilities

to intended bits at the decoder side, by utilizing a novel proposed training policy.

In Chapter 4, based on the number of neural networks (NNs) in the decoder of the AE

framework, we propose a novel Average AE framework with three small NN decoders

instead of a Single AE, as proposed in the rest of the thesis that employs a single large NN

decoder. The key benefits of the proposed Average AE over Single AE are two folds – (1)

significantly reduced optimization parameters in the NN decoder, and (2) the averaging

from multiple soft outputs helps improve the bit-error-rate (BER) performance.

We studied AE-based BCM and d-BCM designs in a DF relaying network in Chap-

ter 7. We proposed a novel stacked AE framework with new training policies. In par-

ticular, we propose a stacked AE-based BCM and d-BCM designs for the one-way DF

(OW-DF) and two-way DF (TW-DF) relay networks. For the AE-based OW-DF relay

network, we propose to employ a bit-wise AE in the first transmission phase and stack

a bit-wise denoising AE for the second phase transmission. For the AE-based TW-DF

relay networks, we propose to employ a bit-wise AE framework trained for the P2P net-

works, in a stacked form to make a TW-DF relay network. We show that the stacked

AE framework provides a method to train the AE framework for DF relaying protocol

and also reduces the NN optimization parameters drastically while improving the BER

performance.

In Chapter 8, we studied AE-based BCM and d-BCM designs for a downlink multi-

user network, where a base station (BS) intends to communicate with multiple users by

multiplexing them together on the same resource block in the power domain. Each user

has a separate NN-based decoder, while based on the number of NN encoders at the BS

we classify the AE frameworks as single encoder multiple decoders (SEMD) and mul-

tiple encoders multiple decoders (MEMD) frameworks. We showed that the SEMD AE

outperforms the MEMD AE framework even with reduced NN optimization parameters,

because of the optimal superposition of signals of multiple users.
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10.1.2 Special Notes for Channel AE frameworks

Loss Optimization

In this thesis, we perform end-to-end training while minimizing the total binary CE loss

for all the nodes ‘together’ in an AE framework by solving a multi-label binary classifica-

tion problem. For example, in Chapter 5, we minimize the total binary CE losses of both

the terminal nodes together, which enabled us to tackle the interference (at the relay node)

and remove the deteriorating impacts of hardware impairments. Moreover, in Chapter 8,

we minimize the total binary CE losses of all the multiple downlink users together, which

enables us to tackle the interference from multiple users.

Furthermore, in Chapter 8, we also propose a novel methodology to impose the quality-

of-service (QoS) constraints in the AE frameworks. Specifically, we propose to employ a

scaling factor in the loss minimization that enables to impose of the QoS constraints and

propose a scaling factor updating policy. This is especially advantageous for internet-of-

things (IoT) networks where we need to impose strict QoS constraints.

We show that the optimization problems of the proposed AE framework and the tradi-

tional communication networks obtain the same encoder-decoder and bit-labeling when

the AE is trained with bits as input-output, Sigmoid activation at the last layer of the

decoder, and binary CE loss is optimized.

Also, we show that by minimizing the binary CE loss we are inherently maximizing

the bit-wise mutual information (MI) for all the nodes together and the generalized MI of

the network.

Training Convergence

We focus on the training convergence of the proposed AE frameworks from an information-

theoretic perspective, as follows:

• We analyze the convergence of the proposed AE frameworks by estimating the mu-

tual information (MI) between the input-output of the AE framework, specifically

– We analyze the convergence for varying SNR levels and/or RSI levels (in a

full-duplex network). We show that, for a sufficiently large block length, the

training of the AE framework converges to a global minima above a minimum

required SNR levels and/or below a maximum RSI level.

– We compare the convergence of the AE-based BCM and d-BCM designs. We

show that the CSI knowledge is helpful to reach the global minima faster.

– We compare the convergence of various AE frameworks, such as the Fixed

and Variable AEs, or the symbol-wise and bit-wise AE frameworks.
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• For any given hyper-parameter settings and rate R = k/n, with sufficiently large

block length (n), we provided the two necessary conditions for the training con-

vergence of the AE frameworks performing BCM or d-BCM designs, detailed as

follows:

– The validation CE loss of the AE framework has converged.

– The NN encoder of the AE designs 2k codewords.

• We show that the BER performance of the AE framework performing BCM de-

sign converges with at least 2k+1 training samples, while that for d-BCM design

converges with at least 2k+5 training samples. Also, we show that the full-duplex

transmission mode requires double training samples for the convergence of the BER

performance of the AE framework as compared to the half-duplex transmission

mode because of the RSI.

NN Architecture Designs

In this thesis, we always aim to create a generalizable NN architecture that can perform

either BCM or d-BCM designs with minimal changes in the NN architecture. Thus, we

employ the CSI knowledge in the Lambda layer LL of the NN decoders to differentiate

in the NN architectures of the AE frameworks for performing BCM or d-BCM designs.

Hence, throughout this thesis, only the Lambda layer LL is modified in the NN architec-

ture for performing BCM and d-BCM design in the AE framework.

We design and develop the NN-based radio transformer network (RTN) in the Lambda

layer LL of the NN-based decoder. Moreover, we note that RTN can have either 2 out-

puts representing the equivalent channel or 2n outputs representing the equalized output

by the NN. In Chapter 3, we showed that including an RTN in the NN-based decoder

doesn’t impact the BER performance but helps in the faster training convergence of the

AE frameworks. Furthermore, we showed that the RTN helps in AE-based d-BCM design

for half-duplex networks1 and AE-based BCM design in the full-duplex networks2.

In Chapter 5, we showed that until complex-valued NNs are utilized, it is (always)

best to perform complex domain operations in Lambda layers and is also (sometimes)

suitable to concatenate the complex-values information as real-valued together. Thus in

this thesis, for the AE-based BCM designs, we always perform channel equalization and

zero-forcing (ZF)-based in-phase and quadrature-phase imbalance (IQI) compensation in

the Lambda layers.

In the NN architecture designs of the AE frameworks, we note that the dense layers

are beneficial than the CNN layers, the Tanh activation function is better in the dense

1Chapters 2, 3, 4, 5, 7, and 8.
2Chapter 6.
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layers, and the use of step-decay learning rate scheduler and early stopping improves the

AE’s performance and reduces the overfitting.

Generalizability

In this thesis, we create a single AE framework performing BCM or d-BCM design that

can be deployed for any testing SNR. For this, we proposed to create a training dataset of

a large number of block samples for each of the SNR values. We show that for additive

white Gaussian noise (AWGN) channels, training only one low SNR point brings the best

AE performance, and for the Rayleigh block fading (RBF) channels, we need multiple

SNR points for training the AE framework to obtain its best performance, ranging from

low SNR to high SNR points. Furthermore, we note that for AE-based modulation design,

training on a single low SNR point also brings the best AE performance in RBF channels.

In Chapters 4, 5, 7, we proposed AE frameworks with IQI at various nodes. In addition

to generalizability towards testing SNR, we note that the generalizable AE frameworks

can be trained for removing the deteriorating impacts of various amplitude offsets or phase

offsets in Chapters 4, 5. Furthermore, in Chapter 7, we show that we can train a single

AE framework that can be generalizable to all the varying testing SNR and phase offsets

and amplitude offsets together. For this, we create a training dataset of a large number of

block samples for multiple SNR values (as detailed above). Further, for each of the SNR

values, we also include training samples from high phase and amplitude offsets to low

phase and amplitude offsets. This helps the training dataset to encompass all the high and

low IQI for each SNR in the training of the AE, making a single trained AE framework

robust to varying SNR and IQI.

Similarly, in Chapter 6, we design a single AE framework that can generalize well on

varying testing SNR or residual self-interference (RSI) levels in the full-duplex amplify-

and-forward (FD-AF) relay networks.

The aforementioned method of creating a training dataset leading to this generalizabil-

ity is not limited to a single user scenario but is also applicable to multiple user scenarios

as detailed in Chapter 8.

Reproduciblity

We analyzed the reproducibility of the AE framework by varying training-validation data

and weight initialization for training each of the AE performing BCM and d-BCM designs

25 times and reporting the standard deviation and mean of BER in testing data. We note

that the proposed AE frameworks are highly reproducible because their standard deviation

of 25 BER obtained from 25 different runs lies in the range 10−2 − 10−4, depending on

the distortion levels in the communication networks.
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Interpretability

In this thesis, we focus on the interpretability of the AE-based BCM and d-BCM de-

signs. In Chapter 2, we propose the distinct properties of the AE-based BCM and d-BCM

designs for (n, k) block or rate (R), detailed as follows:

1. Fixed AE framework designs 2k codewords in 2n-dimensional space.

2. The minimum Euclidean distance between any of the possible codewords increases

as the rate decreases.

3. The minimum Euclidean distance between any of the possible codewords is greater

for BCM design with the CSI knowledge compared to the d-BCM design without

the CSI knowledge.

4. For unit block length, the scenario of only AE-based modulation design, the mini-

mum Euclidean distance between any of the possible codewords reduces to zero for

the d-BCM designs without the CSI knowledge.

5. The AE-based designed BCM and d-BCM reaches its maximum potential of de-

coding (in terms of BER performance) when n = ⌈k/2⌉ and n = ⌈(k + 1)/2⌉,
respectively.

6. The minimum Euclidean distance between any of the two closest codewords varies

largely for the d-BCM design than for the BCM design.

7. When the number of codewords becomes extremely large, the minimum Euclidean

distance between any of the two closest codewords follows a Gaussian distribution

for sufficiently large block length.

8. As the block length increases, the Euclidean distance between any of the two closest

codewords concentrates to the average Euclidean distance.

9. The packing density improves as the rate decreases.

10. The packing density of the BCM design with the CSI knowledge is better than the

d-BCM design without the CSI knowledge.

11. For sufficiently large block length, the packing density of the BCM and d-BCM

designs converge.

12. The codewords designed by the AE framework are spherical codes.

We also evince the applicability of the aforementioned properties of the AE-based frame-

work in a much complicated full-duplex relaying network in Chapter 6.
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In Chapter 8, we analyze the multi-user codeword mapping. Specifically, we utilize

the t-stochastic neighbor embedding (t-SNE) algorithm to visualize this 2n-dimensional

data in 2-dimensional space, and then we utilize the k-medoids to cluster the t-SNE results

into k subsets and finally map the bits transmitted with each cluster to obtain the codeword

mapping.

Throughout the thesis, we propose to utilize metrics such as minimum Euclidean dis-

tance, normalized second-order and fourth-order moments, and constellation figures of

merit to analyze the BER performance gains achieved by the proposed AE-based frame-

work over the traditional methods.

AE’s Performance

In this thesis, we performed AE-based BCM and d-BCM design for short block length

(n = 7) and high transmission rates R. For a conventional network, we consider conven-

tional (differential) modulation techniques with maximum likelihood decoding (MLD),

and also (7, 4) Hamming code as baseline error-correction codes. We show that the pro-

posed AE-based BCM and d-BCM designs outperform the conventional networks and

note the following two key observations:

• The BER performance gains of the AE frameworks increase with the rate R.

• The BER performance gains of the AE-based d-BCM designs (without the CSI

knowledge) is greater than AE-based BCM designs (with the CSI knowledge), com-

pared to the conventional networks.

Interestingly, we note that as the complexity of the communication network increases,

the BER performance gains of the proposed AE-based BCM and d-BCM designs in-

creases. This is because the traditional modulation and error correction techniques are not

designed optimally and specifically for the complex communication networks, further, in

scenarios such as with hardware impairments, channel estimation errors, and residual in-

terference, because of the lack of mathematical models in traditional methods. This can

be seen in multiple chapters, detailed as follows:

• In Chapters 4, 5, 7, we proposed AE frameworks with hardware impairments (IQI)

at various nodes. Within the proposed AE frameworks, we propose a BCM design

with ZF-based IQI compensation that considers the availability of the CSI and IQI

knowledge. However, the IQI and CSI need to be estimated separately, increasing

the feedback overhead. Thus, we also propose a BCM design with no IQI compen-

sation that requires only the CSI knowledge. Finally, we propose a d-BCM design

that removes the necessity of both the CSI and IQI knowledge. Further, we ana-

lyze the performance under low signal-to-interference-and-noise-ratio regimes and
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show that proposed AE frameworks can almost completely remove the IQI, thereby

completely removing the error floor and outperforming the MLD of the traditional

networks with no hardware impairments (IQI). Thus, the proposed AE framework

reduces the feedback overhead in IQI/CSI estimation and improves the BER per-

formance gains extraordinarily, especially for differential scenarios.

• In Chapter 6, we proposed AE-based BCM and d-BCM design for the full-duplex

AF (FD-AF) relay networks in the presence of the residual self-interference (RSI).

We show that as the modulation order increases the proposed AE can even outper-

form the conventional half-duplex AF relay networks even for higher RSI. Further-

more, although the traditional FD-AF relay networks can not decode the signals in

the presence of high RSI, the proposed AE frameworks can decode the signals for

any RSI, showing remarkable BER performance gains.

• We analyze the AE’s performance in the presence of channel estimation error. We

note that the proposed AE framework with almost entirely erroneous channel esti-

mation still outperforms the conventional networks with perfect channel estimation.

This is because we train the single AE framework on various channel estimation er-

rors, such that it can generalize well on varying channel estimation qualities.

Thus, as the imperfections in the communication networks increase the BER perfor-

mance gains of the proposed AE frameworks increases. This shows the capabilities of the

AE framework in designing future networks and tackling the non-linear distortions and

imperfections in IoT devices.

As the number of users increases in the network, traditionally it becomes increasingly

difficult to perform the BCM design and unsolvable to perform d-BCM design. In Chap-

ter 8, we design AE-based BCM and d-BCM design for downlink multi-user networks,

considering the conventional non-orthogonal multiple access (NOMA) as a benchmark.

In contrast to the NOMA, we remove the successive interference cancellation (SIC) at the

strong users and the requirement of the power allocation factor (PAF) at the BS. Thereby

removing the need to feedback channel gains to the BS, PAF optimization, error propa-

gation due to multiple SIC, and the need to send the SIC ordering and PAF information

to the multiple downlink users. Moreover, since the proposed AE frameworks remove the

SIC thus, we can decode the superposed signal of two users on the same SNR, removing

the necessity of users to have a minimum of 3 − 8 dB of SNR gap for the successful

implementation of SIC. Apart from achieving these benefits, for the AE-based BCM and

d-BCM design, we show that we can decode all the multiplexed users’ signals using the

proposed AE frameworks even without the CSI knowledge at the receivers, which re-

mains mandatory to implement SIC in conventional NOMA. Furthermore, as the number

of downlink users increases the BER performance gains also increases. This shows the
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capabilities of the AE framework in handling a large number of small IoT devices in

future networks.

The AE framework’s NN decoders give soft probabilistic outputs which we have

shown to correspond to log-likelihood ratios (LLRs). Thus for the AE-based designed

inner shortcodes, we utilize 5G-NR low-density parity-check (LDPC) codes with base

graph 2 (BG2) and rate 1/5 as outer codes. In Chapter 8, we note that the BER perfor-

mance gains achieved by the AE-based BCM and d-BCM designs over the MLDs for

short block lengths are even improved significantly by using the outer LDPC codes.

10.1.3 Special Notes Vision AE frameworks

In Chapter 9, we proposed an ML-based PL prediction model for urban street canyon

using the 28 GHz measurement data collected from Manhattan. The feature set contains

street clutter obtained from LiDAR point cloud and buildings from 3D mesh-grid. To mit-

igate the risk of overfitting, we defined seven expert features with physical meaning from

the point cloud. We also compressed 3D building features to a length-12 vector for each

link using convolutional NN-based AE. Instead of interpolation to nearby links, we fo-

cused on the extrapolation by introducing a street-by-street training and testing approach.

Using linear ML algorithms for PL prediction, we achieved the superior PL prediction

capability of our model in extrapolation. An intuitive interpretation of feature importance

was also obtained using Lasso regression-based analysis and feature-exclusion analysis.

10.2 Future Works

In this section, we detail the future works of the proposed thesis.

In our recent collaborative work [161] with NOKIA Bell Labs, we designed an ultra-

long-haul transmission of a new four-dimensional (4D) modulation format using AE

frameworks. My contributions were specifically in the designing of AE-based BCM de-

signs for the optical network while including the non-linear constraints in the designed

framework3. The AE framework was practically demonstrated to significantly improve

transmission distance and low generalized MI gap to Shannon limits. We proposed the

AE framework in this thesis for wireless communication networks. We aimed to extend

this work on a practical testbed developed in our lab.

Further, the AE works have recently been extended for MIMO communication net-

works [16] under fading channels for AE-based modulation-demodulation designs. How-

ever, AE-based BCM and d-BCM designs for MIMO networks still need to be investi-

gated. Further, in Chapter 8, we proposed AE-based BCM and d-BCM designs for multi-
3Please note that due to the business secrets, we can not disclose the AE framework; thus, this work is

not included in the thesis.
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user downlink networks. Finally, in Chapter 9, we investigated ML-based PL prediction

for mm-wave propagation in an urban street canyon with real-world measurements. In

the future, we aim to consider Manhattan Street canyons with real-world mm-wave prop-

agation for multiple downlink NOMA users. Specifically, we aim to extend this thesis by

proposing an AE-based framework for the BCM and d-BCM for the downlink multi-user

MIMO networks operating at the mm-wave frequencies.

We also aim to address the upcoming challenges of re-training the AE framework in

different propagation conditions, using techniques like transfer learning [162].
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