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Abstract 

Heart failure (HF) is an international public health priority and a focus of the NHS Long Term 

Plan. There is a particular need in primary care for screening and early detection of heart failure with 

reduced ejection fraction (HFrEF) – the most common and serious HF subtype, and the only one 

with an abundant evidence base for effective therapies. Digital health technologies (DHTs) integrating 

artificial intelligence (AI) could improve diagnosis of HFrEF. Specifically, through a convergence of 

DHTs and AI, a single-lead electrocardiogram (ECG) can be recorded by a smart stethoscope and 

interrogated by AI (AI-ECG) to potentially serve as a point-of-care HFrEF test. However, there are 

concerning evidence gaps for such DHTs applying AI; across intersecting clinical, health economic, 

and ethical considerations. My thesis therefore investigates hypotheses that AI-ECG is 1.) Reliable, 

accurate, unbiased, and can be patient self-administered, 2.) Of justifiable health economic impact for 

primary care deployment, and 3.) Appropriate across ethical domains for deployment as a tool for 

patient self-administered screening.  

The theoretical basis for this work is presented in the Introduction (Chapter 1). Chapter 2 

describes the first large-scale, multi-centre independent external validation study of AI-ECG, 

prospectively recruiting 1,050 patients and highlighting impressive performance: area under the curve, 

sensitivity, and specificity up to 0·91 (95% confidence interval: 0·88–0·95), 91·9% (78·1–98·3), and 

80·2% (75·5–84·3) respectively; and absence of bias by age, sex, and ethnicity. Performance was 

independent of operator, and usability of the tool extended to patients being able to self-examine. 

Chapter 3 presents a clinical and health economic outcomes analysis using a contemporary digital 

repository of 2.5 million NHS patient records. A propensity-matched cohort was derived using all 

patients diagnosed with HF from 2015-2020 (n = 34,208). Novel findings included the unacceptable 

reality that 70% of index HF diagnoses are made through hospitalisation; where index diagnosis 
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through primary care conferred a medium-term survival advantage and long-term cost saving (£2,500 

per patient). This underpins a health economic model for the deployment of AI-ECG across primary 

care. Chapter 4 approaches a normative ethical analysis focusing on equity, agency, data rights, and 

responsibility for safe, effective, and trustworthy implementation of an unprecedented at-home patient 

self-administered AI-ECG screening programme. I propose approaches to mitigating any potential 

harms, towards preserving and promoting trust, patient engagement, and public health.  

Collectively, this thesis marks novel work highlighting AI-ECG as tool with the potential to 

address major cardiovascular public health priorities. Scrutiny through complimentary clinical, health 

economic, and ethical considerations can directly serve patients and health systems by blueprinting 

best-practice for the evaluation and implementation of DHTs integrating AI – building the conviction 

needed to realise the full potential of such technologies. 
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SD   Standard deviation  
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1 Introduction 
 

This chapter outlines the public health, scientific, ethical, legal, and regulatory background relevant to addressing 

screening for heart failure with point-of-care artificial intelligence – specifically through use of a single-lead 

electrocardiogram acquired with a smart stethoscope. Throughout, I emphasise the evidence gaps that, if addressed, could 

contribute to underpinning system-wide deployment of such technology. I conclude with an outline of my PhD’s aims and 

hypotheses for empirical chapters, designed to contribute towards addressing the outlined evidence gaps.  
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1.1 Overview of Heart Failure  
 

1.1.1 Definition 
 

Heart failure (HF) is not a single pathological diagnosis, but a clinical syndrome typified by 

cardinal symptoms – classically breathlessness, ankle swelling, and fatigue – that may be accompanied 

by signs on examination (e.g. pulmonary crackles, elevated jugular venous pressure, and peripheral 

oedema). It is due to a functional and/or structural abnormality of the cardiac tissues that results in 

elevated intracardiac pressures and/or inadequate cardiac output.1 Identification of the causal 

mechanism of cardiac dysfunction is an essential component in the diagnosis of HF, since the specific 

pathology informs subsequent treatment approaches. Myocardial dysfunction (disorder of the heart 

muscle itself) is the most common cause – this can be either diastolic (during cardiac filling), systolic 

(during cardiac emptying), or both.  However, commonly pathology of the endocardium, heart 

rhythm, conduction, and valves, can also precipitate or contribute to HF.2  

 

1.1.2 Heart Failure Subtypes 
 

HF has traditionally been segmented into distinct phenotypes based on the measurement of 

left ventricular ejection fraction (LVEF), most-commonly calculated through ultrasound-based 

echocardiography (echo). This rationale is underpinned by foundational trials for HF treatment, 

which demonstrated significantly improved outcomes in patients with LVEF≤40%.3  

Summarised in figure 1.1, the latest European Society of Cardiology (ESC) guidelines (2021) 

therefore classifies HF into three categories by LVEF: heart failure with preserved ejection fraction 

(HFpEF, LVEF ≥50%), heart failure with moderately reduced ejection fraction (HFmrEF, LVEF 41-

49%), and heart failure with reduced ejection fraction (HFrEF, LVEF ≤40%). Across these subtypes, 
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there is substantial variation across patient characteristics, outcomes, and available guideline-directed 

therapies. HFrEF is the most common subtype.4 HFrEF also has the worst symptom burden and 

clinical outcomes, but notably is the only subtype with an abundant evidence base for prognostically-

beneficial drug therapies, implanted cardiac devices, and rehabilitation programmes.5-7 For patients 

with HFrEF, there is strong evidence to show that pharmacological therapy with beta-blockers, 

angiotensin converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB) or angiotensin 

receptor neprilysin inhibitors (ARNi), mineralocorticoid receptor antagonists (MRAs), and more-

recently, sodium-glucose co-transporter 2 inhibitors (SGLT2i) can greatly reduce mortality, 

hospitalisation, and improve quality of life.8-12 Early initiation of these therapies through prompt 

diagnosis improves prognosis.13 To date, no trials have convincingly shown that these medications 

reduce mortality in patients with HFpEF, though some may reduce hospitalisations. Drug studies 

specifically targeted at patients with HFmrEF are lacking. Instead, most guideline recommendations 

are drawn from sub-group analyses of larger trials which suggest some possible reduction in mortality.1  

Unlike the more straightforward diagnosis of HFrEF, where LVEF≤40% observed on 

echocardiography is sufficient, HFmrEF generally requires four features to be present: (i) symptoms 

with or without signs of HF, (ii) LVEF of 41-49%. (iii) elevated natriuretic peptides, and (iiii) relevant 

structural heart disease (left ventricle hypertrophy or left atrial enlargement).14 HFpEF poses similar 

diagnostic challenges, requiring elevated natriuretic peptides and specific echo criteria in the presence 

of normal (preserved) LVEF>50%.15  
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1.1.4 Heart Failure Health Economic Burden  
 

The increasing burden of HF is estimated to cost the UK National Health Service (NHS) 

approximately £2 billion per year, consuming over 2% of its annual budget. Projections indicate that 

these figures are likely to rise by 50% over the next 25 years.22  A systematic review conducted from 

2004 to 2016 identified cost-of-illness studies and estimated a lifetime cost for HF at $126,819 per 

patient. Studies included in this review showed large variations in methodological approaches and 

therefore ultimately wide variations in cost estimates, highlighting a need for more robust research 

measuring the health economic consequences of HF. 23  This is particularly necessary for framing 

evaluations of interventions intended to mitigate the far-reaching challenges that HF poses to health 

systems. Though it is the main driver of cost, interpreting the health economic burden of HF 

principally through units of hospitalisation has limitations. Studies have shown that post-HF diagnosis, 

there is an average of one hospital admission per year, of which two-thirds are attributable to non-

cardiovascular comorbidities.24-26 The complex and common picture of multimorbidity within HF 

therefore forms part of the need for more holistic approaches to measuring cost, where consideration 

of patient experience and the life-course cost implications of a HF diagnosis would better serve policy 

makers.  

 

1.1.5 Heart Failure as Priority for the NHS Long Term Plan 
 

The NHS Long Term Plan, published in 2019, was drawn up by frontline staff, patient groups, 

and national experts to define key challenges and set an ambitious but realistic vision for the next ten 

years of health and social care in the UK.27 The Plan highlights HF as an explicit priority area, 

prompted by a UK-wide study of place of index diagnosis of HF between 2010-2013 by Bottle et al. 

These authors found that “80% of new HF diagnoses were made in a hospital setting, despite 41% of 
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these patients having been seen in primary care exhibiting symptoms of heart failure within the 

previous five years.”28 This highlights a substantial missed opportunity for early detection, and a clear 

failing of the established approach to a diagnostic pathway for HF. 

 

1.1.6 Heart Failure Diagnostic Pathway in NHS primary care 
 

The National Institute for Health and Care Excellence (NICE) clinical guidelines for the 

management of HF recommend that all patients with symptoms are screened using a brain natriuretic 

peptide (BNP) or N-terminal pro-brain natriuretic peptide (NT-proBNP) blood test22, with the latter 

increasingly preferred due to more frequent use during monitoring studies.29 Patients may undergo 

additional investigations including chest X-rays and 12-lead electrocardiogram (ECG). Based on the 

level of natriuretic peptide, patients are triaged to referral for specialist assessment and 

echocardiogram, either within 6 weeks, or 2 weeks if highly elevated (figure 1.2).  

 

Figure 1.2 Current NICE pathway for HF diagnosis. 
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1.1.7 Limitations of natriuretic peptides 
 

Use of natriuretic peptide as a screening tool for suspected HF has limitations, including 

requiring an invasive blood draw. Results are not instantly available, and each test costs around £15-

30, which may deter use unless clinical suspicion is strong.30 Depending on the chosen threshold/cut-

off, natriuretic peptide testing for acute HF has generally shown sensitivity above 90%, but with 

consistently inferior specificity closer to 78%.30 The lower specificity can in part be explained by 

natriuretic peptide levels also being raised in atrial fibrillation (AF), chronic kidney disease (CKD), and 

increasing age, leading to challenges in interpreting the result.1 Conversely, concentrations may be 

disproportionately low in obese patients.31  

Synthesis of criteria considered by UK National Screening Committee 

The screening programme should respond to a recognised need 

The objectives of screening should be defined at the outset. 

There should be a defined target population 

There should be scientific evidence of screening programme effectiveness. 

The programme should integrate education, testing, clinical services, and programme management. 

There should be quality assurance, with mechanisms to minimize potential risks of screening. 

The programme should ensure informed choice, confidentiality, and respect for autonomy. 

The programme should promote equity and access to screening for the entire target population. 

Programme evaluation should be planned from the outset. 

The overall benefits of screening should outweigh the harm. 

 

Table 1.1 Criteria considered by the National Screening Committee. From Andermann et al. 
(2008). 

 

Based on these observations, natriuretic peptides have fallen short in assessment of their 

potential use as part of national general screening programmes for HF.32 Despite the overwhelming 
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public health burden, there has yet to be a screening test developed that can meet the stringent criteria 

of the UK National Screening Committee33 in a way that would justify exploration of a programmatic 

approach for increasing the detection of HF. The Screening Committee’s criteria draw on a synthesis 

of screening criteria proposed over the last 50 years (table 1.1), building on the “classic” screening 

criteria first proposed by Wilson and Jungner.34 

 

1.1.8 Challenges in diagnosing HF in primary care 
 

Diagnosis and management of HF in primary care has been criticised based on evidence of 

underdiagnosis35,36 and no improvement in survival over nearly 15 years.37 Healthcare professionals 

may fail to follow guidelines and lack confidence in initiating downstream investigations and 

treatments.38 This is reported to have remained unchanged despite new guidelines and incentivisation. 

The reality remains that identification, diagnosis, and management of HF in primary care poses 

substantial challenges.39 The condition manifests in myriad ways, with patients varying in their health-

seeking behaviours and thus receiving variable primary care intervention.  From the general 

practitioner (GP) perspective, the diagnosis is made more difficult by the lack of specificity of HF 

symptoms; there is confusion with respiratory conditions (up to a third have chronic obstructive 

pulmonary disease), limited time per appointment, and limited access to investigations and low 

confidence in interpreting results of these. While clinical guidelines exist, perceived information 

overload, as well as a belief that they do not apply to all patients, means that GPs do not always use 

them and not all will be aware of them.38 The ESC updated their HF guidelines in 2021 with a new 

recommendation to refer patients directly for echocardiography if clinical suspicion for HF is 

sufficiently high i.e., to not delay on account of waiting for blood test results and other investigations. 

Though this recommendation is intended to increase the number of patients receiving the gold 
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standard diagnostic test for HF in good time (and  maximise benefit from prompt commencement of 

therapies), this clashes against the reality of a nationwide shortage of echocardiographers and stands 

to compound subsequently long waiting lists.40 Notably, echocardiography is also an imperfect test, 

requiring substantial technical skill and relying on often subjective, visual estimation of parameters 

such as LVEF. Such measurements are therefore well-established to exhibit inter- and intra-operator 

variability.41 

Considering all these challenges, it is perhaps unsurprising but nonetheless striking that 80% 

of HF is diagnosed through hospital admission despite frequently preceding symptomatic primary care 

encounters. Only 24% of patients who do present to their GP with HF symptoms follow the NICE 

recommended pathway – with only 4% completing their diagnostic odyssey to time and target.28 This 

cements HF’s status as one of the major public health priorities of this decade, with policymakers, 

health systems, and patient groups all advocating for the need to apply innovative solutions where 

other approaches have thus far failed. Among the potential solutions, “digital transformation” is 

emphasised as one of the core pillars of the NHS Long Term Plan, set to underpin innovative 

approaches to care and anchored in a broad set of deliverables, including “providing digital services 

and tools to give people more control over their own health and the care they receive from the NHS.”  

Specifically for HF, these solutions collectively fall within the realm of digital health technologies 

(DHTs).  
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1.2 Digital Health Technologies for Heart Failure 
 

1.2.1 Policy Priorities for DHTs and Evidence Gaps 
 

Broadly defined, digital health technologies (DHTs) encompass apps, programs, and software, 

which may be standalone or combined with other products such as medical devices (hardware).42 

DHTs commonly generate high volumes of data, which unlocks the opportunity to apply artificial 

intelligence (AI). The NHS Long Term Plan singles out DHTs with AI as a key driver for digital 

transformation. Specifically, “use of decision support and AI to help clinicians in applying best 

practice, eliminate unwarranted variation across the whole pathway of care, and support patients in 

managing their health and conditions.” However, for the most part, widespread implementation of 

such DHTs is currently limited by unaddressed evidence gaps. Particularly for DHTs with an AI 

component, there is an expressed need for large-scale external clinical validation studies43,44; 

demonstration of a compelling health economic upside45,46; and scrutiny of the wider, unique ethical 

implications posed by use of these types of technologies.47,48 Importantly, proven efficacy across these 

domains alone will not necessarily translate to high uptake and usage by health systems, highlighting 

the need to also understand the usability and acceptability of such DHTs across healthcare 

professionals and patients – and specifically how to operationalise these tools within clinical 

pathways.49 NICE has generated an Evidence Standards Framework intended to provide a 

standardised approach to guiding developers and commissioners on the levels of evidence needed for 

the clinical and health economic evaluation of DHTs by health and care systems.50 Validation of any 

such framework is reliant on practical, real-world application. Given the accumulating number of 

DHTs using AI for application to HF and cardiovascular disease more broadly, this disease area 

represents opportunities for focused evidence generation that could blueprint best practices for use 

of DHTs in other settings and disease areas. 
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1.2.2 Overview of Artificial Intelligence in Medicine 
 

DHTs have enabled the opportunity to collect low-cost data, often passively and at massive 

scale across populations. The subsequent datasets qualify as ‘big data’, characterised as high volume, 

high velocity and/or high variety information assets that require new forms of processing to enable 

enhanced discovery, insight, decision-making, and process optimisation.51 Following several decades 

of dormancy, the combination of massive amounts of data alongside advances in computing power 

triggered a resurgence and evolution of AI methods that can now analyse big data to confer previously 

inaccessible insights.  

AI itself is a broad term that encompasses machine-based data processing to achieve objectives 

that typically require human-level cognitive function, such as recognising images. Broadly speaking, 

building an AI model takes an approach that first presents a “training” dataset from which specific 

patterns can be learned. Models require subsequent validation and testing of whether appropriate 

learning has occurred by processing further independent input data.  

This last decade has seen significant AI breakthroughs using machine learning (ML) and, more 

specifically, deep learning. Deep learning is a subfield of ML that uses neural networks – a computing 

architecture inspired by biological brains – with many layers (hence ‘deep’) to learn a function between 

a set of inputs and outputs.52 The training of neural networks can be achieved by presenting a set of 

input data with corresponding output labels – so-called “supervised” machine learning. The model 

then learns certain rules by applying and adjusting the network weights to minimise an error function 

until the model outputs are as close as possible to the actual data values. The strength of deep neural 

networks lies in using their ability to identify novel relationships in the data independent of features 

selected by a human. Ultimately, ML aims to learn from data to correctly answer a question, which is 
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different from conventional computer programming; that is, hardcoding the answer into the system. 

Complex datasets can now be mined with the potential to identify patterns and novel representations 

of data beyond direct human capability.  

Through AI and ML, paradigms across all sectors of society are being disrupted. In medicine, 

some of the most high-profile early AI research has been across ophthalmology53, dermatology54, 

radiology55, intensive care56, and mental health.57 Many of these studies focus on algorithm-enhanced 

risk prediction, diagnosis, and treatment selection, but there is also substantial enthusiasm for AI 

potentially liberating clinical staff from tedious administrative tasks to spend more time with patients. 

Thought leaders in AI as applied to medicine argue that it will “make healthcare human again” through 

increasing automation of any process that prevents clinical staff from working at the top of their 

license.58 

 

1.2.3 Evidence gaps and concerns for AI in medicine 
 

Though enthusiasm for AI in medicine abounds, among the major reservations around 

widescale deployment of AI technology in health and social care is the current lack of a standardised 

and proven approach to mitigating unique pitfalls posed by this technology. For example, algorithmic 

bias remains a principal concern for the safe and ethical deployment of AI. Indeed, there has been a 

recent shift in emphasis from reporting impressive performance results to active investigation of 

algorithmic errors and failure modes.59-61 The trade-off for using powerful ML approaches to solving 

complex challenges is the so-called “black box” problem. Particularly for deep learning, these AI 

models establish complex and opaque mathematical relationships between the input data and the 

output predictions, with little to no human control over how predictions are generated. Although this 

enables powerful learning patterns from the data, there is also a risk of learning spurious correlations: 
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relationships that appear useful in training but prove unreliable when applied to real-world datasets. 

For example, a deep learning system might learn to detect surgical skin markings to diagnose skin 

cancer, rather than looking for features related to the lesion itself.61  

Perhaps more seriously, there is societal concerns that use of AI risks creating both new and 

deepening of existing inequities.62 For medical practice, this is on a background of established, 

persistent bias against racial and ethnic minority groups, leading to unequal access to care and unequal 

health. Much of this discriminatory behaviour is already encoded in the medical datasets that form the 

substrate for building AI algorithms.63 An AI system could easily learn to perpetuate such racial biases, 

which could lead to the underdiagnosis of disease or less frequent treatment recommendations in 

racial and ethnic minority groups.64 This is a particular worry for applications of AI within 

cardiovascular disease, given the pronounced sociodemographic gradient that already persists: patients 

with minority ethnic status, lower income, and lower educational attainment all suffer 

disproportionately – including with HF.65,66   

Beyond the immediate risks of algorithmic bias, there are wider concerns around the 

implementation of AI tools in how they are operationalised. As a DHT, AI algorithms are usually built 

as part of a wider software programme, which may itself be built into a platform have has an element 

of hardware e.g. integrating sensors that collectively form the “product” as a whole. Such technology 

is inherently highly connected; to the internet, to cloud-based infrastructure, via Bluetooth, and 

therefore potentially across a wide variety of end-user devices. This poses a potential vulnerability and 

a new frontier of challenges for ensuring delivery of safe healthcare. The NHS continues to be heavily 

targeted by cyber attacks67-69, but robust standards and recommendations for mitigating DHTs being 

associated with security and data breaches, for example, through cyber threat modelling70,71, are yet to 

be defined. Further still, AI can itself be harnessed to serve as nefarious malware. For example, an AI 
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model has been shown to be able to either remove cancerous nodules from a CT scan of a patient's 

lungs or insert cancerous nodules into images of healthy lungs – fooling radiologists to make incorrect 

diagnoses in nearly 100% of cases.72 

In the presence of readily available, ostensibly accurate and safe AI technology for healthcare 

applications, concerns have also been raised about the preparedness of the NHS’ workforce to use 

these. To address this, the Department of Health and Social Care Commissioned the Topol Review, 

broadly framed to address “preparing the healthcare workforce to deliver the digital future” of the 

NHS.73 Among its many recommendations, the Review advocates for medical staff to receive 

education on the foundations of AI technologies as part of their training. Lastly and perhaps most 

importantly, given some of the challenges described, concern for AI technology also extends to 

whether patients and the wider public are willing to accept and trust in its use as part of decision-

making for their health. Asymmetric uptake of AI across patient populations risks adding a new 

dimension of inequity to the already existing “digital divide”74,75, where certain groups with protected 

characteristics risk being left behind – originally by not being able to, but here by not being willing to 

participate in clinical care where optimal outcomes are heavily reliant on AI technology. 

Overall, consideration of these pitfalls for DHTs using AI highlights the need for robust, 

holistic evaluation of such technologies before pursuing large-scale deployment. These deployments 

pose a specific form of “ethical debt”; the reality that some ethical problems with AI DHTs will only 

manifest and be detected after they are deployed.76 Scrutiny therefore needs to be sustained after 

deployment. Ethical debt relates to the problem of “drift” with AI algorithms. ML algorithms use data 

describing historical episodes to make ahead-of-time predictions of clinical outcomes. However, 

clinical settings are dynamic environments and the underlying data distributions characterising 
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episodes can change with time (data drift), and so can the relationship between episode characteristics 

and associated clinical outcomes (concept drift).77  

By definition, the AI drift problem is one that occurs over time, typically in the range of 

months or years. Drift is detected after the AI solution has made faulty determinations – and 

individuals are wrongly flagged or not flagged. Likewise, problems with fairness are associated with 

trend analysis – which requires a substantial amount of deployment data. The impact on unsuspecting 

individuals can range from relatively innocuous, such as waiting longer for a routine appointment, to 

potentially harmful, such as receiving the wrong diagnosis or being denied essential treatment. 

Practically, this means deployed AI technologies need robust frameworks for sustained monitoring to 

ensure their safety.78  

 

1.2.4 Regulatory requirements for AI in medicine 
 

From a regulatory perspective in the UK, the Medicines and Healthcare products Regulatory 

Agency (MHRA) is responsible for ensuring that medicines and medical devices work and are 

acceptably safe within the scope of their labelled indications. Medical “products” that draw on the 

output of an AI algorithm to deliver their intended purpose are commonly referred to as “software as 

a medical device” (SaMD). The MHRA grants SaMDs authorisation for UK market entry in a similar 

fashion to the European Medicines Agency for the European Union, and the Food and Drug 

Administration (FDA) in the United States. Post-Brexit, the UK has moved away from Conformitè 

Europëenne marking, instead requiring UK Conformity Assessed (UKCA) for new products, though 

the underlying risk-based classification system remains similar to international counterparts.79 In 

practice, most technology with an AI component would be considered relatively low-risk if the focus 

is diagnostic, with treatment applications, especially invasive/implantable technology, or those that 
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are explicitly life-sustaining, considered highest risk. One implication of this risk tiering is that unlike 

a new implanted cardiac device such as a novel pacemaker or coronary stent, diagnostic technology 

generally would not be expected to demonstrate safety and effectiveness prior to legal marketing 

through a large trial with hard clinical endpoints.  

The speed at which SaMD technologies with an AI component are being developed has left 

regulators struggling to keep pace.80 Accordingly, responsible regulatory bodies in the UK, US, 

Europe, and beyond are all embarking on defining new frameworks for evaluating the safety of AI-

driven medical products. For example, the current benchmark for approval requires developers to 

demonstrate good model performance on a varied dataset, and in a real-world setting, but with no 

explicit definition of what constitutes the parameters of optimum validation data.81 Under most 

current regulation, once an AI algorithm is approved, the model will remain fixed – defeating the 

distinguishing advantage of many algorithms in their ability to ‘learn’ (improve) throughout their 

lifecycle. This current inflexibility not only restricts clinical utility but can also infringe on patient 

safety. For instance, an algorithm trained in 2019 to recognize pneumonia on a chest radiograph will 

not be able to differentiate it from SARS-CoV-2 virus (Covid-19) infection (an example related to AI 

drift).  

 

1.2.5 AI for Cardiovascular Disease 
 

For the most part, AI technologies have focused on tasks that humans can already do, with 

the principal aim of performing at the level of experts or, where possible, surpassing them. There are 

still relatively few AI technologies that go to the next level and yield previously unimaginable, novel, 

and clinically actionable insight beyond human capability using forms of routinely available clinical 
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data. However, cardiovascular disease is starting to accumulate examples of AI overcoming confines 

of conventional scientific inquiry.82-84  

Multiple aetiological factors, complex disease mechanisms, and heterogeneity in clinical 

presentations make cardiovascular disease detection and prognostication a daunting task. However, 

this disease area has benefitted from being at the forefront of generating and utilising complex high-

dimensional data that results from integration of multi-modal data, including electronic medical 

records, mobile health devices, waveform signals, and imaging data – collectively offering extensive 

opportunities for data-driven discovery and research. Although traditional statistical approaches for 

risk stratification have been developed and are well established for cardiovascular disease, many of 

these models show limitations when practically applied for individualised risk prediction. Newer 

approaches using ML have emerged as a potential solution to addressing this.85 In terms of 

cardiovascular data inputs to achieve this purpose, the electrocardiogram (ECG) continues to 

distinguish itself as a rich “digital biomarker” – defined here as a “physiological or behavioural measure 

collected through connected digital tools.”86  

 

1.3 AI applied to the Electrocardiogram 
 

1.3.1 Electrocardiogram as a Universal Tool 
 

The ECG is a ubiquitous tool in clinical practice, having been used by clinicians for decades. 

The established standard in clinical practice is the 12-lead ECG, requiring attachment of ten electrodes 

to a patient's chest and limbs to create a total of 12 vectors, which can subsequently be displayed 

(usually on a paper printout) as 12 ECG traces that collectively represent a comprehensive picture of 

the heart’s electrical activity across key anatomical structures. This informs on the structural and 
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physiological condition of the heart, as well as lending actionable diagnostic clues for systemic 

conditions (e.g. toxic drug effects, electrolyte imbalances). The ECG offers the advantage of being a 

relatively simple, low-cost, and quick test that is available in most health systems. More recently, DHTs 

that offer the ability to record single- and increasingly multiple-lead ECGs have entered the consumer 

market in the form of watches, on-body patches, or hand-held devices.87  

The protocol for recording ECGs is well-established, but human interpretation is highly 

subjective and dependent on experience and expertise. To mitigate this, interpretation by computer 

algorithms has existed in clinical practice for several years. Such interpretations draw on prespecified 

rules and algorithms that require manual pattern or feature recognition. Such automation is not a new 

concept in cardiology; first attempts at automated ECG interpretation date back to the 1970s.88 

However, these algorithms are incapable of capturing the rich complexity and nuances within ECGs. 

More recently, the ECG has been one of the stand-out inputs for ML research that has rapidly taken 

novel technology from bench to bedside – and further towards now being increasingly common within 

consumer wearable health technology.89  

Application of AI to the ECG most commonly uses convolutional neural networks (CNNs), 

a form of deep learning already widely applied to image processing, speech recognition, and computer 

vision. CNNs can readily analyse routine ECG waveforms with far greater accuracy than previous, 

more basic, traditional rule-based computer interpretation approaches. Fully automated CNNs often 

surpass human-level performance at ECG interpretation.84 The increasing number of useful 

applications of AI to the ECG stem from this being an ideal substrate for AI models with deep-

learning architecture. As well as being widely used, and therefore offering large datasets, ECG 

waveforms yield raw data that can be reproduced, and stored and transferred in digitised format. This 

has resulted in an increasing number of institutions and health systems worldwide amassing vast 
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databanks of ECGs. In combination with wider clinical datasets and coupled with computational 

power, this unlocks the utility of AI-enhanced interpretation of ECG (henceforth referred to as AI–

ECG) as a tool for superhuman detection of ECG signatures and patterns that elucidate specific 

pathologies. Among these, to give two prominent examples, AI-ECG algorithms have been developed 

for AF and hypertrophic cardiomyopathy (HCM).90,91  

More recently, application of AI-ECG has been extended to detect a reduction in LVEF.92 

Considering the gold-standard incumbents of natriuretic peptide testing and echocardiography, the 

traditional 12-lead ECG should also form an early part of investigation for HF. Here, AI-ECG poses 

a potentially quick, cheap, and scalable screening test for reduced LVEF.  The foundational research 

for developing this technology was conducted by teams at the Mayo Clinic (Rochester, Minnesota, 

US). This research institution and healthcare provider has been digitising ECGs for several decades, 

having since amassed one of the world’s largest data vaults of ECG waveforms. Such datasets are 

further enriched by extensive additional variables (labels) across clinical and other categories. AI-ECG 

for detection of reduced LVEF highlights an application of AI that yields “superhuman” insights; 

some of the best-known applications of AI to the ECG, such as detection of heart rhythm 

abnormality, can be matched by the well-trained human eye.93 Conversely, accurately detecting reduced 

LVEF from just a 12-lead ECG is beyond human capability.  

 

1.3.2 Development of AI-ECG for Reduced LVEF 
 

Previous studies have applied deep learning methods to highlight the 12-lead ECG as an 

accurate digital biomarker for changes in LVEF. Most of these studies relate to the Mayo Clinic's AI-

ECG machine learning algorithm for detecting low LVEF from 12-lead ECGs. Since its invention 

and publication in 2019, this algorithm has been through further clinical validation and initial real-
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world deployment, as summarised in figure 1.3. This AI-ECG algorithm uses a CNN, trained on 

35,970 independent pairings of 12-lead ECGs and corresponding echocardiograms from the 

proprietary Mayo Clinic digital data vault.92 Following initial development and validation, performance 

of the algorithm has been further validated with 12-lead ECGs (with paired echocardiography results 

for LVEF ground truth) from further US and Russian cohorts.94,95  

Generalisability remains an important consideration prior to clinical application of AI-ECG; 

is the model’s diagnostic performance consistent across various populations? There is the potential 

for AI-ECG to reflect, perpetuate, and even exacerbate racial and ethnic disparities already well 

established in current cardiovascular clinical care.96 Overall, the impact of race and ethnicity on ECG 

analysis via machine learning remains largely unknown. AI-ECG therefore needs to be validated in 

diverse populations to ensure their diagnostic performance is maintained across racial and ethnic 

subgroups. Most recently, AI-ECG was deployed and evaluated through a pragmatic cluster 

randomised trial within Mayo Clinic primary care practices. This highlighted an increased rate of LVEF 

≤50% detection in the intervention group vs control group (2.1% vs. 1.6%; odds ratio [OR] 1.31 

[1.01–1.61]).97 Though AI-ECG for detection of reduced LVEF from 12-lead ECG has had 

substantially more external clinical validation than comparable technologies, these studies have been 

in largely ethnically White populations. Indeed, the original training dataset of over 35,970 patients 

was drawn from a >90% White population living in the Midwest of the US.98 
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Figure 1.3 Development of AI-ECG for detection of reduced LVEF from 12-lead ECGs. 

AUC: Area Under Curve; ECG: Electrocardiogram; TTE: Transthoracic echo; Sens: Sensitivity; Spec: Specificity. 
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1.3.3 Limitations of 12-lead ECG 
 

Though a universally familiar tool in clinical practice, access to 12-lead ECG is far from 

universal. Some studies suggest that in lower income countries only 10% of clinics offer this service 

to patients.99 The cost of a 12-lead ECG machine can run to several thousands of pounds. Even in 

the NHS GP practice setting, where this tool is commonly available, its use relies on machine 

maintenance, competence in applying the electrodes and performing the test, and expertise in 

interpreting the 12-lead trace output. Given the reality of primary care appointments in the NHS being 

mostly curtailed to less than ten-minute timeslots100, patients often need to return to have their ECG 

recorded in a separate encounter, possibly at another facility. This introduces clinical risk through 

delays in clinical decision making, as well as inconveniencing patients and clinicians alike.  

 

1.3.4 Single-Lead ECG Devices 
 

Given some of the outlined potential shortcomings of 12-lead ECG, the development of 

simple, quick, and accurate single-lead ECG tools has resulted in these now being increasingly 

commonplace in clinical practice. Among the most popular devices has been the Kardia Mobile 

(AliveCor, US), the latest version of which is credit-card sized, with two electrodes for placement of 

fingers from right and left hand.101 This creates a vector mirroring lead I of a standard 12-lead ECG. 

Though useful for inferring rhythm disturbances and elucidating potentially worrisome ECG 

morphologies, the obvious limitation is that these devices provide a less comprehensive picture of the 

heart’s electrical activity than 12-lead ECG. Though notably, a newer model from Alivecor (Kardia 

6L), features three electrodes, two on the front and one on the back, with the latter rested on the 

patient’s knee – creating sufficient vectors to output a six-lead ECG.102  
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1.3.5 Adoption Challenges of Single-lead ECG Technology 
 

The increasing evidence generation and traction for single-lead ECG use in the detection of 

heart rhythm disturbances resulted in NICE recommending Kardia as a personal ECG device to 

support at-home monitoring and detection of AF.103 However, evidence for impact of such readily 

available technologies at the primary care interface has been mixed. One programme led by England’s 

Academic Health Science Networks (AHSNs) was born out of a drive for system-wide procurement 

of mobile ECG solutions. NHS England, the central government organisation responsible for health 

and social care in England, identified £500,000 to purchase a large volume of Kardia devices (>6,000) 

for large-scale deployment. A subsequent evaluation of this programme highlighted the need to 

mitigate against early abandonment of the technology. Around two thirds of participating health 

professionals were low users (<25 recordings in 14 months) and had negative perceptions of the 

programme overall. Doctors were most likely to abandon use early compared with other staff 

groups.104 

The variable success of this AHSN project illustrates some of the key challenges around non-

adoption, abandonment, and scaling up, spreading, and sustaining use of DHTs.105 The track record 

of DHT implementation programmes, especially those that require major changes in organisations or 

the wider care system, is poor. This highlights the importance of prioritising the understanding the 

clinical workflow and how a DHT fits into “business as usual.”106,107 Particularly in primary care, 

consultations are highly time pressured such that any additional new process that creates extra work 

and deviates from familiar workflows is likely to suffer from low uptake and poor adherence. This 

may extend to performing a thirty second ECG with a Kardia-like device, realistically taking several 

minutes to perform end-to-end. In considering this workflow challenge, some manufacturers have 

sought to integrate and overlay single-lead ECG capability within tools that are already universal to 
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routine clinical practice. For example, every clinician, particularly in primary care, owns and uses a 

stethoscope. Through the convergence of sophisticated hardware, software, and connectivity, a new 

category of DHTs in the form of “smart” stethoscopes has emerged, now capable of recording digital 

biomarkers including single-lead ECG.  

 

1.4 Evolution of the Stethoscope 
 

1.4.1 A brief history  
 

René Laennec (1781–1826) was a French physician credited with inventing the stethoscope in 

1816.108 In the intervening two hundred years, the fundamental design has changed little, still relying 

on noise conduction from a small diaphragm within a bell-shaped end piece along tubing and into the 

user’s ears via earpieces. Recent rapid innovation both in terms of the quality and miniturisation of 

sensors technologies has led to the development of smart stethoscopes that retain the same form 

factor as the original but are enhanced with technology that provides substantial additional insights 

during clinical examination.  

On example of such a technology, the Eko DUO (Eko Health, Berkeley, CA, US), features 

both a digital microphone for recording of phonocardiograms (PGC, or heart sounds) as well as two 

electrodes for single-lead ECG capture. Both waveforms can be captured upon application of the 

device to a patient’s chest e.g. such as during the universal, clinically familiar auscultation over the 

aortic, pulmonary, tricuspid, and mitral values as part of a standard cardio-respiratory examination. 

Connectivity via Bluetooth enables ECG and PPG waveforms to be displayed for real-time clinical 

insight on the user’s smartphone or tablet. Further connectivity to the internet allows operation of a 

cloud-based platform for live-streaming of waveform examination. Furthermore, AI algorithms can 
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be operationalised within such cloud-based architecture and interrogate waveforms for diseases of 

interest (figure 1.4).  

 

 

Figure 1.4 Evolution of the stethoscope.  

Left, drawing of 19th century stethoscope, with fundamental engineering unchanged in most stethoscopes in current use. 

Right of this, the Eko DUO smart stethoscope with digital microphone and two electrodes for capture of single-lead 

ECG; waveforms are transmitted to users’ smartphones and onward to the Cloud for interrogation by AI algorithms.  

 

1.4.2 Patient Self-Administered Stethoscope Examination 
 

The connectivity of such technology highlights the opportunity for decentralised clinical 

examination, where a patient could avoid the need to attend for an in-person exam at all but instead 

hold a device to their chest under remote supervision via telemedicine. A playbook for this has already 

been established for single-lead ECG by market-leading technologies such as the Kardia. A device 

positioned as a stethoscope with in-built single-lead ECG capability poses a tool for more 

comprehensive remote cardio-respiratory assessment, joining other well-established investigations 

initiated by patients in their own home, such as measurement of blood pressure.109 However, 

deployment of a home-based screening tool combining hardware, AI, and a cloud-based digital 
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platform for administration – and all anchored in patient self-administration – raises distinct clinical, 

health economic, and ethical challenges for safe, effective, and trustworthy implementation.110,111 

 

1.5 Point-of-Care AI-ECG for Reduced LVEF Using Single-Lead 
ECG: Opportunity and Evidence Gaps 

 

The systematic recording, streaming, and storage of cardiac waveforms within cloud-based 

infrastructure by devices such as the Eko DUO also brings the opportunity for interrogating these 

recordings with AI algorithms. Neural networks such as AI-ECG for reduced LVEF can readily 

operate within cloud-based architecture and return interpretations to the end-user – subject to 

adequate connectivity – instantaneously.   

The key limitation is whether AI-ECG, originally designed for and thus far only validated and 

applied to 12-lead ECG, can sustain adequate, clinically useful performance through interpretation of 

only a single-lead ECG input. If this were proven to be the case, collectively the Eko DUO with AI-

ECG would represent a compelling point of care test for reduced LVEF that would be quick to 

perform, non-invasive, and relatively cheap. By executing the test as part of a stethoscope examination, 

this test draws on a cornerstone of the routine clinician-patient encounter without creating additional 

work. 

Addressing the evidence gap for this context carries substantial complexity due to the 

performance of AI-ECG being reliant on several important factors. These include whether the Eko 

DUO’s single-lead ECG recording is of sufficient signal quality to even attempt AI-ECG 

interpretation, as well as the question of which position a recording should be taken from, given the 

device’s ability to record ECG waveforms from placement anywhere on the patient’s chest (or indeed 
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handheld by emulating use of a Kardia device). Considering potential barriers to uptake, use of such 

a device would ideally be investigated for ease-of-use across different healthcare professionals. This 

ought to extend further to evaluating use by lay persons, given the outlined opportunity for such tools 

to facilitate decentralised, self-administered examination by patients themselves. Scrutiny of the 

outlined concerns around performance biases in AI potentially driving up health inequities would 

require a sufficiently large number of patient participants from diverse socioeconomic and ethnic 

backgrounds to reassure potential users.  

From the perspective of NHS funders, a novel tool, regardless of its putative effectiveness, 

will generally struggle to achieve large-scale commissioning in the absence of a strong clinical case 

being matched by a persuasive health economic argument. Given the outlined need to increase 

detection of HF in primary care, any tool’s ability to deliver this would ideally be framed against a 

contemporary picture of the health economic benefits for achieving index diagnosis through primary 

care vs. the currently dominating mode of hospital admission.  

Lastly, real-world use of point-of-care AI-ECG for reduced LVEF using single-lead ECG 

raises untested assumptions around ethical challenges. Particularly in the absence of precedent, any 

NHS stewardship of a novel clinical pathway enabling patient self-administered screening with AI-

ECG would require guardrails that preserve and promote trust, patient engagement, and public health. 
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1.6 Chapter Summary 
 

This introductory chapter detailed the clinical background, health economic challenges, and 

health policy priorities around HF, focusing specifically on the substantial opportunity to increase 

detection at the primary care interface. I detailed the emergence of DHTs using AI to target 

cardiovascular disease as potential solutions and described the development of AI applied to the ECG 

(AI-ECG). This carries the opportunity for an impactful point-of-care test through integration with a 

routinely used clinical tool such as a smart, ECG-enabled stethoscope. The chapter ended by 

expanding on the evidence gaps around clinical validity, health economic impact, and ethical 

acceptability, concluding that these need to be addressed to maximise the uptake and impact of such 

a tool.  
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1.7 Scope of Thesis, Aims, and Hypotheses 
 

Based on the outlined Introduction, the principal aim of this thesis is to investigate the potential 

application of AI-ECG for detection of HFrEF using single-lead ECG – towards highlighting a 

potential tool for mitigating the public health burden posed by HF. Establishing meaningful uptake 

and large-scale impact of such technologies requires synergistic investigation across the outlined 

clinical, health economic, and ethical evidence gaps. Subsequently, this thesis tests the following 

specific, intersecting aims and hypotheses, all anchored in AI-ECG applied to single-lead ECG 

recorded during a smart stethoscope examination.  

 

1.7.1 Aims  
 

1. To conduct a large-scale independent, prospective, external validation study of AI-ECG for 

reduced LVEF (≤40%) applied to single-lead ECG, recorded during a smart stethoscope 

examination with NHS patients attending for echocardiography (ground truth for comparing 

performance of AI-ECG). 

2. To measure the contemporary clinical and health economic implications of HF by the route 

to index diagnosis (through primary care or hospital admission) and estimate the potential cost 

savings of increasing rates of diagnosis through point-of-care AI-ECG deployment in primary 

care. 

3. To evaluate the ethical implication of extending this technology to patient self-administered 

screening and specific policy recommendations to blueprint best practice. 
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1.7.2 Hypotheses 
 

1. Detection of reduced LVEF using AI-ECG applied to single-lead ECG recorded by a smart 

stethoscope is reliable, accurate, operator-independent, unbiased, and suitable for patient self-

administration. 

2. The mechanism for index diagnosis of HF remains dominated by hospital admission, with 

worse long-term clinical and health economic outcomes compared to patients first diagnosed 

in primary care – to sufficiently justify the cost of deploying point-of-care AI-ECG 

3. Patient self-administration of AI-ECG raises ethical challenges including considerations of 

equity, agency, data rights, and ultimately responsibility for safe, effective, and trustworthy 

implementation. 

 

Each of these aims and hypotheses is addressed in the ensuing empirical chapters. Each has its 

own discrete and detailed sub-section on materials and methods, rather than a standalone chapter for 

this, to avoid repetition. This thesis concludes with a synthesis of the results from the ensuing chapters 

and sets out a roadmap for future work.  
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2 Point-of-care screening for heart failure with 
reduced ejection fraction using artificial 
intelligence during AI-ECG stethoscope 
examination: prospective, observational, 
multicentre, external validation study 

 

This chapter describes the results of my 1,050-patient prospective external validation study for the detection of 

HFrEF using AI-ECG applied to single-lead ECG recorded by a smart stethoscope. This is the first study of its kind, 

highlighting that AI-ECG is accurate, reliable, operator-independent, and unbiased. Results presented in this chapter 

have also been published in The Lancet Digital Health (Bachtiger et al., 2022) and are reproduced here under a Creative 

Commons BY 4.0 license.  
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2.1 Abstract 
 

2.1.1 Background  
 

Most patients who have heart failure with reduced ejection fraction (HFrEF), when left 

ventricular ejection fraction (LVEF) is 40% or lower, are diagnosed in hospital. This is despite prior 

presentations to primary care with symptoms. In this study, I aimed to test an artificial intelligence 

(AI) algorithm applied to a single-lead ECG (AI-ECG), recorded during an ECG-enabled stethoscope 

examination to validate a potential point-of-care screening tool for LVEF≤40%. 

 

2.1.2 Methods   
 

I conducted a prospective, observational, multicentre study of a convolutional neural network 

(AI-ECG) that was previously validated for the detection of reduced LVEF using 12-lead-ECG as 

input. I used AI-ECG re-trained to interpret single-lead ECG input alone. Patients aged ≥18 years 

attending for transthoracic echocardiogram (TTE) in London (UK) were recruited. All participants 

had 15 s of supine, single-lead ECG recorded at the four standard anatomical positions for cardiac 

auscultation, plus one handheld position, using a single-lead ECG-enabled stethoscope. TTE-derived 

percentage LVEF was used as ground truth. The primary outcome was performance of AI-ECG at 

classifying reduced LVEF (LVEF ≤40%), measured using metrics including the area under the 

receiver operating characteristic curve (AUC), sensitivity, and specificity, with two-sided 95% CIs. 

Secondary outcome measures included algorithmic bias, operator independence, and feasibility of 

patient self-administered examination. The primary outcome was reported for each position 

individually and with an optimal combination of AI-ECG outputs (interval range 0–1) from two 
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positions using a rule-based approach and the best of several classification models. This study is 

registered with ClinicalTrials.gov, NCT04601415. 

 

2.1.3 Results 
 

Between Feb 6, 2021, and May 27, 2021, my study prospectively recruited 1,050 patients (mean 

age 62 years [SD 17·4], 535 [51%] male, 432 [41%] non-White). 945 (90%) had an ejection fraction of 

at least 40%, and 105 (10%) had LVEF≤40%. Across all positions, single-lead ECGs were most 

frequently of adequate quality for AI-ECG interpretation at the pulmonary position (979 [93·3%] of 

1,050). Quality was lowest for the aortic position (846 [80·6%]). AI-ECG performed best at the 

pulmonary valve position (p=0·02), with an AUC of 0·85 (95% CI 0·81–0·89), sensitivity of 84·8% 

(76·2–91·3), and specificity of 69·5% (66·4–72·5). Diagnostic odds ratios did not differ by age, sex, 

or non-White ethnicity. Taking the optimal combination of two positions (pulmonary and handheld 

positions, the rule-based approach resulted in an AUC of 0·85 (0·81–0·89), sensitivity of 82·7% (72·7–

90·2), and specificity of 79·9% (77·0–82·6). Using AI-ECG outputs from these two positions, a 

weighted logistic regression model with l2 regularisation resulted in an AUC of 0·91 (0·88–0·95), 

sensitivity of 91·9% (78·1–98·3), and specificity of 80·2% (75·5–84·3). There was no observed 

algorithmic bias or operator dependence. Results from clinician and patient self-administered 

recordings were strongly correlated (intraclass correlation coefficient >0.8).  

 

2.1.4 Conclusion 
 

A deep learning system applied to single-lead ECGs acquired during a routine examination 

with an ECG-enabled stethoscope can detect LVEF≤40%. These findings highlight the potential for 
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inexpensive, non-invasive, workflow-adapted, point-of-care screening. This may translate to earlier 

diagnosis and benefits through early commencement of prognostically beneficial treatment. The 

primary care interface poses a compelling area for deployment, with the possibility of further 

decentralising use of the technology through patient self-administered examination.  
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2.2 Introduction  
 

The escalating worldwide burden of heart failure (HF) is compounded by late diagnosis, which 

both worsens patients’ prognoses and increases costs for health systems, primarily through avoidable 

hospital admissions.28,112,113 In the UK, the National Health Service (NHS) Long Term Plan emphasises 

this shortcoming in care, highlighting that “80% of heart failure is currently diagnosed in hospital, 

despite 40% of patients having symptoms that should have triggered an earlier assessment”.27 Among 

these patients, over 50% have heart failure with reduced ejection fraction (HFrEF), designated by an 

echocardiography derived left ventricular ejection fraction (LVEF) of 40% or lower.114 The prognosis 

for patients with an LVEF≤40% continues to improve with advancements in cost-effective drug and 

device therapies, where timely commencement maximises benefits.6-8 There is, therefore, an important 

unmet need for inexpensive and practical point-of-care screening for an LVEF≤40%. Nearly half of 

patients diagnosed with HF through hospital admission have previously seen their primary care 

physician with HF symptoms, therefore the outlined tool would be particularly compelling for 

deployment in the primary care setting.  

Through the application of AI, the 12-lead ECG has been described as an accurate digital 

biomarker for the stages of LVEF compromise. Previous research by the Mayo Clinic showed that a 

convolutional neural network (CNN), trained on 12-lead ECGs labelled with corresponding ECG-

derived LVEF, could detect LVEF of 35% or lower with 86·3% sensitivity and 85·7% specificity.92 

This AI-ECG model has since been externally validated with 12-lead ECGs in further Midwestern 

(US) cohorts94, and in a Russian population (sensitivity 80·8% and specificity 67·3%).95 Most recently, 

a cluster randomised controlled trial made AI-ECG accessible for 12-lead ECG interpretation in a 

cohort of Mayo Clinic primary care practices, highlighting an increase in the diagnosis of LVEF of 

50% or lower (odds ratio [OR] 1·32 (1·01–1·61).97 
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The emergence of ECG-enabled stethoscopes, capable of recording single-lead ECGs during 

contact for routine auscultation, highlights an opportunity to apply AI-ECG for rapid, easy point-of-

care screening. Beyond accuracy of the algorithm when using single-lead ECG alone, this is contingent 

on these inputs being easy to record and being consistently of adequate quality for attempting AI-

ECG interpretation. Secondarily, translation into clinical practice requires scrutiny for algorithmic bias 

and operator independence. As an ostensibly easy-to-perform test, there is also the opportunity to 

evaluate whether patients can perform the test on themselves (self-examination), thereby highlighting 

an opportunity for decentralised screening.  

I therefore aimed to investigate whether AI-ECG, retrained to use single-lead ECG as input, 

could interpret recordings from an AI-ECG stethoscope at anatomical sites established within routine 

clinical examination, and whether LVEF≤40% could be detected in a previously untested, diverse 

population. My study tested the principal hypothesis that LVEF≤40% could be detected at or above 

the clinically meaningful accuracy of previous 12-lead ECG studies (sensitivity >81% and specificity 

>67%), demonstrating that a universal cornerstone of patient encounters – the stethoscope 

examination – could provide a point-of-care screening opportunity. 
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2.3 Methods  
 

2.3.1 Study design, participants, and ethical approval 
 

I designed a prospective, multicentre external validation study, where patients were recruited 

across seven NHS sites, including hospitals and community health centres (table 2.1), that performed 

transthoracic echocardiography (TTE) in London, UK. Patients were recruited by 15 operators (six 

clinicians, six sonographers, and three senior medical students), all of whom received the same 

training. All adult (aged ≥18 years) patients attending for TTE were eligible to participate (inpatients 

and outpatients).  

Patients were attending for TTE as part of their routine clinical care, having been referred by 

clinicians for various standard TTE indications, such as investigation of symptoms (e.g., 

breathlessness, peripheral oedema, fatigue, and chest pain) and screening (e.g., due to hypertension, 

arrhythmia, stroke, or suspected valve disease). Patients were not excluded based on any reason for 

TTE referral or patient clinical characteristics. Written informed consent was obtained from all 

participants before enrolment and a patient information sheet was offered (consent form and patient 

information sheet included in supplementary appendix). This study was approved by the UK Health 

Research Authority (reference 21/LO/0051). This study is registered with ClinicalTrials.org 

(NCT04601415). 
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Study Site (London, UK) Setting Patient group 

Hammersmith Hospital  Hospital Inpatient and outpatient 

St. Mary’s Hospital Hospital Inpatient and outpatient 

Charing Cross Hospital Hospital Inpatient and outpatient 

Maida Vale Heart Health Centre Community Outpatient 

Hanwell Community Clinic Community Outpatient 

Parkview Medical Centre Community Outpatient 

St Charles Community Hospital Community Outpatient 

 

Table 2.1 Hospital and community recruitment sites across London 

 

2.3.2 AI-ECG algorithm architecture 
 

The AI model design for 12-lead AI-ECG has been previously described.9 To summarise, the 

model uses a CNN, trained on 35,970 independent pairings of 12-lead-ECG and echocardiograms 

from the proprietary Mayo Clinic digital data vault (figure in 1.3 in Introduction). CNN’s, which are 

commonly applied to images, operate such that the convolutions can be used to extract very subtle 

patterns in a data set. Each 12-lead ECG was considered a 12×5,000 (that is, 12 leads by 10-s duration 

sampled at 500Hz) matrix, where the first dimension represents a spatial dimension and the second 

represents a temporal one.115 ECG analysis is mostly a visual task. While the signal is a time series, it 

is pseudocyclical, and its main features are morphologic.116-118 To enable detection of patterns in these 

features, AI-ECG uses architectures that were based on convolutional layers for feature extraction. 

For my study, I tested the Mayo Clinic’s single-lead ECG version of AI-ECG, which uses the same 

CNN model architecture as the original 12-lead model but this time retrained with each single-lead 

ECG, extracted from the original, 35,970 12-lead patient dataset. This study is enabled by the AI-ECG 

model having been licensed for research to Eko Health (Berkeley, CA, US), who manufactures the 
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produce a prediction, regardless of the position or orientation from which the single-lead ECG is 

being recorded by the Eko DUO (figure 2.1, panel B). 

 

2.3.5 Regulatory status of Eko DUO and AI-ECG 
 

The Eko DUO smart stethoscope is a Class IIa CE marked medical device. AI-ECG falls 

under the regulatory category of software as a medical device (SaMD) and currently does not have 

regulatory approval. The data generated through this study would be admissible as part of a regulatory 

submission to the UK MHRA. 
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Figure 2.1 Eko DUO recordings of single-lead ECG interrogated by AI-ECG. 

Panel A: Recording positions and orientation of the Eko DUO across aortic, pulmonary, tricuspid, and mitral positions 

for cardiac auscultation, with additional hand-held position. Panel B: Eko DUO patient-facing side with sensors, where 

ECG waveforms are transmitted to app on smartphone via Bluetooth, and onwards via internet connectivity for cloud-

based interpretation by AI-ECG. Modified from Bachtiger et al. 2022.  
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2.3.6 Main Study Protocol  
 

Patient recruitment started on Feb 6, 2021. All participants had 15 seconds of supine, single-

lead ECG recorded via the two electrodes on the patient-facing side of the Eko DUO (figure 2.1, 

panel A). All recordings were made within 24 hours of TTE; almost all were recorded during the same 

clinical encounter. Members of the research team were unaware of participants’ LVEF at the time of 

recording and remained blinded to these results for the duration of the study. 

The AI-ECG stethoscope has two electrodes on the patient-facing side of the device. 

Placement on a patient’s chest (or handheld) creates a vector for recording ECGs. For simplicity and 

following a familiar clinical workflow, positions were recorded in sequence at standard anatomical 

landmarks for auscultation of the aortic, pulmonary, tricuspid, and mitral valves, and at one handheld 

position. The single, fixed angulation specified for each position was reached via clinical consensus of 

what was most intuitive and captured various vectors across the five positions. Aortic and pulmonary 

positions were recorded holding the device angled to the left, with the tricuspid position in a vertical 

and mitral position in a horizontal orientation (figure 1, panel A). Although precordial placement is 

not identical to electrode positioning for 12-lead ECG, the vectors explored were similar. For example, 

the pulmonary valve position most closely resembles lead II of a 12-lead ECG. Heart sounds 

(phonocardiograms [PCG]) were automatically recorded at the same time but did not serve as inputs 

for AI-ECG. For the handheld position, patients were asked to place a thumb on each of the two 

electrodes, with the left thumb on the exploring electrode, such that this represented Lead 1 of a 

standard 12-lead ECG. 
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2.3.7 Reproducibility of clinician recording vs. patient self-recording 
 

To investigate whether patients could perform a self-recording over the pulmonary position 

(selected due to this representing commonly-used lead II rhythm strip), an unselected, opportunistic 

subset of participants (target n = 50) was also recruited. Participants were asked to follow simple 

instructions (included in supplementary material 10.4) to place the device on their chest in the 

pulmonary position and record three fifteen second single-lead ECG traces, lifting the device off their 

chest between each recording and placing it anew. Following this, a clinician (same individual each for 

all) would similarly perform three such recordings on the same patient. Patients would always go first 

to avoid bias of them copying the positioning of the physician.  
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Figure 2.2 Member of the clinical research team examining a patient recruited for the study using 

an Eko DUO. 

Written informed consent to show image received from both patient and member of research team. 
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Figure 2.3 Eko app display on smartphone. 

Panel A: electrocardiogram (ECG) and phonocardiogram (PCG) waveforms being recorded with a 15 second 

countdown, bottom left red-amber-green dial indicates signal quality; Panel B: noisy, uninterpretable ECG and PCG 

waveforms; Panel C: normal ECG and PCG waveforms; Panel D: ECG waveform suggestive of “low ejection 

fraction” at arbitrary starting threshold of 0.5 (note separate AI algorithm unrelated to this study also suggested 

presence of murmur).  
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2.3.8 Eko DUO App, dashboard, and study database 
 

The AI-ECG stethoscope (Eko DUO) transmits single-lead ECG recordings via Bluetooth 

for visualisation via an Android or iOS smartphone app (Eko App, Eko Health). The app notified the 

operator when the ECG signal was of adequate or inadequate quality for attempting interpretation by 

the algorithm, using a red-amber-green dial (figure 2.3, panel A). Only one recording attempt was 

allowed for each position within the protocol, where maintaining the dial at the “green” level 

maximised the likelihood of adequate signal quality.  

The ECG waveform data were analysed in real-time by AI-ECG via a cloud-based CNN, 

hosted by the device manufacturer using protocols compliant with the Health Insurance Portability 

and Accountability Act and General Data Protection Regulation. No information was stored on 

individual users’ smartphones. Overall, the full examination took approximately 2 minutes per patient.  

As an arbitrary starting point, the app displayed the result of AI-ECG on the basis of an 

arbitrary starting threshold of 0.5 – where any AI-ECG prediction above this would display as “low 

ejection fraction” (figure 2.3, panel C). All operators received the same training and education on the 

scientific background for AI-ECG and were aware that the results displayed in the app were subject 

to threshold optimisation and therefore did not confer any clinical utility (and could not be used for 

this purpose anyway given the still non-regulatory approved nature of AI-ECG). Raw AI-ECG 

predictions (numbers between 0 and 1) for each single-lead ECG were retrieved from the stethoscope 

manufacturer’s online dashboard (figure 2.4) and combined with a secure, de-identified database 

containing relevant demographic and clinical variables for each participant. Patients’ ethnicity was self-

reported from a list of 18 options drawn from the UK Office of National Statistics Census for 

England.119 
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Figure 2.4 Eko web dashboard. 

Top: dashboarded list of patients recruited during the study. Bottom: close-up view of an individual patient’s ECG and 

PCG waveform recordings. 
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2.3.9 Outcomes  
 

The primary outcome was the identification of patients with an LVEF≤40% from single-lead 

ECG recordings obtained by the ECG-enabled stethoscope. For diagnostic accuracy assessment, the 

gold standard was percentage LVEF as measured on a 2D transthoracic echocardiogram (TTE) 

acquired by echocardiographers accredited by the British Society for Echocardiography.120 LVEF was 

recorded in line with the same approach taken by the Mayo Clinic for labelling the ground-truth 

training dataset for AI-ECG. Namely, the first LVEF available from a standard hierarchical sequence: 

a biplane approach using the Simpson method, a 2D method, or M-mode and, in the absence of any 

of the preceding, the reported visually estimated LVEF. Where LVEF was reported as a range, the 

midpoint value was used.  

Secondary outcomes included scrutiny for bias by age, sex, and non-White ethnicity. I also 

aimed to compare the performance of AI-ECG across the three most high-volume recruiting 

operators. Lastly, I evaluated differences in the consistency of AI-ECG predictions from clinician vs. 

patient self-administered recordings.    

 

2.3.10 Sample size 
 

This study was not comparing the impact of an invention between groups, therefore a 

conventional sample size and power calculation was not indicated. However, in order to inform what 

would be an impactful number of recruited participants, I anchored a sample size calculation with the 

aim of testing a hypothesis that AI-ECG could detect EF≤40% at or above the clinically meaningful 

accuracy of previous external validation studies using 12-lead ECG.95 Specifically, with expectation of 

a minimum sensitivity of 81% (one-sided 95% CI, given low prevalence of LVEF≤40% and therefore 
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fewer anticipated ‘positive’ cases) and specificity of 67% (two-sided 95% CI). Setting the lower limits 

of confidence intervals for sensitivity and specificity at 70% and 60%, respectively, I calculated the 

need to recruit 371 patients with EF>40%, and 94 with EF≤40%, to have 80% power to detect a 

difference at the 0.05 level of significance. Given the unselected nature of the approach to recruitment 

(pre-test LVEF was unknown) combined with the low prevalence of LVEF≤40%, the study would 

continue recruiting patients until the requisite number of these patients had been achieved; with the 

expectation of a large majority sample consisting of patients with LVEF>40%.  

 

2.3.11 Statistical analysis  
 

Demographic and clinical variables were summarised for the overall cohort using means and 

standard deviations. I compared groups stratified by LVEF (>40 vs ≤40%) using Student’s t tests for 

continuous variables or Pearson's χ² test for categorical variables, as appropriate, with p<0·05 

considered statistically significant. The 18 possible options for ethnicity were grouped into White, 

Black, Asian, mixed, and other for presentation in the main demographics table. 

Using outputs from the AI-ECG model in the interval range of 0–1, performance at classifying 

LVEF (>40% vs ≤40%) was measured for each position by calculating the area under the receiver 

operating characteristic curve (AUC), using a reference standard of TTE-derived percentage LVEF. I 

tested the AUC results between the best and second best performing single position using the Delong 

test for significance.17 For each position, sensitivity, specificity, negative and positive predictive value, 

and F1 score was reported at (1) the optimal threshold maximising the sum of sensitivity and specificity 

(i.e., Youden's index, also usually the point closest to the top left of the corner of the plot), and (2) a 

restricted threshold that would maximise the sum of sensitivity and specificity, with a minimum 
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sensitivity of 81% and (where possible) a minimum specificity of 67%. 95% CIs are reported using 

the latter restriction.  

Using the single-best performing position and compared with the overall population, I also 

report diagnostic ORs stratified by sex for two age bands (age 18–69 years and ≥70 years) and by non-

White ethnicity. Diagnostic OR is the ratio of positive likelihood ratio (sensitivity / [1 – specificity]) 

to the negative likelihood ratio ([1 – sensitivity] / specificity). I applied the Breslow-Day test for 

homogeneity to test for significant (p<0·05) variation in performance.121 Performance is reported 

using only ECG recordings of adequate quality to attempt AI-ECG analysis. 

Expanding beyond the single-best position alone, performance is also reported when 

considering the best combination of two positions when using a rule-based approach, where either 

position predicting LVEF≤40% was considered a positive test result. Using the dataset of 0–1 values 

for AI-ECG model predictions from each of the two optimally combined positions as inputs, several 

classification models (including logistic regression) were tested for predicting LVEF≤40%. These 

models used 60% of the dataset for training and 40% for testing, and consisted of equal proportions 

of patients with each LVEF status (>40% vs ≤40%; randomly allocated). The best model was selected 

using five-fold cross validation. 

Using predictions from the AI-ECG neural network in the interval range 0–1 for each single-

lead ECG, receiver operating characteristic curves were plotted to display performance across a full 

range of thresholds. I generated a receiver operating characteristic curve summarising the single-best 

position, rule-based optimal combination of two positions, and best overall classification model. 

Confusion matrices are presented using the restricted threshold. 

Lastly, reproducibility of recording results (AI-ECG number 0-1) between clinical researcher 

and patient self-examination was measured by calculating Intraclass Correlation Coefficients (ICCs) 
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within each of these users, and between them (informed by three sequential recordings). I considered 

an ICC of 0.75 to represent ‘good’ reproducibility.122 AI-ECG data from patient and clinician 

recordings were also visualized using a linear distribution plot and a Bland Altman plot. All analyses 

were done in R (version 3.6.1) and Python (version 3.7.6).   

 

2.3.12 Role of the funding source  
 

This study was funded by the National Institute for Health and Care Research (NIHR) 

Artificial Intelligence in Health Award (ref. AI_AWARD01849). I was a co-applicant and led on 

writing the grant proposal and research protocol. The funder had no role in the study design, data 

collection, data analysis, data interpretation of data, or writing of the report. Eko Health and the Mayo 

Clinic were not involved in funding the study or in the design of the study protocol or analysis.  
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2.4 Results  
 

 

Figure 2.5 Study recruitment flow diagram. 

TTE, transthoracic echocardiogram; ECG, electrocardiogram; LVEF, left ventricular ejection fraction. Adapted 

from Bachtiger et al., 2022. 

 

2.4.1 Participant cohort profile 
 

Between February 6th, 2021, and May 27th, 2021, 1,050 patients were recruited (figure 2.5), of 

whom 105 (10%) had an LVEF≤40% and 945 (90%) had an LVEF of at least 40% (table 2.2). Overall, 

the mean age was 62 years (17·4); 535 (51%) patients were male and 432 (41%) were non-White. Full 

ethnicity breakdown is available in table 2.3. Compared with the normal LVEF group (LVEF >40%), 

the reduced LVEF group (LVEF ≤40%) was older (mean age 62 years [SD 17·5] vs 67 years [15·3]) 

and had fewer female participants (36 [34%] of 105 vs 479 [51%] of 945; table 1). Most comorbidities 

were more prevalent among the reduced LVEF group. 
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Characteristic 

Total, 

N = 1,0501 

LVEF>40%,  

N = 9451 

LVEF≤40%,  

N = 1051 p-value2 

Age, years    62 (17.4)    62 (17.5) 67 (15.3) <0.001 

Age Groups  .. .. .. 0.034 

18 - 69 636 (61%) 583 (62%) 53 (50%) .. 

70+ 414 (39%) 362 (38%) 52 (50%) .. 

Male, n 535 (51%) 466 (49%) 69 (66%) 0.002 

TTE LVEF % 54 (10.3) 57 (5.8) 30 (8.2) <0.001 

Ethnicity, n .. .. .. 0.4 

Asian 199 (19%) 176 (19%) 23 (22%) .. 

Black 95 (9.0%) 84 (8.9%) 11 (10%) .. 

Mixed 22 (2.1%) 18 (1.9%) <5 .. 

Other 116 (11%) 102 (11%) 14 (13%) .. 

White 618 (59%) 565 (60%) 53 (50%) .. 

Hypertension 395 (38%) 338 (36%) 57 (54%) <0.001 

Myocardial Infarction 102 (9.7%) 62 (6.6%) 40 (38%) <0.001 

Atrial Fibrillation 173 (16%) 146 (15%) 27 (26%) 0.011 

Pacemaker 59 (5.6%) 43 (4.6%) 16 (15%) <0.001 

Diabetes 224 (21%) 181 (19%) 43 (41%) <0.001 

Stroke/TIA 100 (9.5%) 85 (9.0%) 15 (14%) 0.11 

Chronic Kidney Disease 98 (9.3%) 74 (7.8%) 24 (23%) <0.001 

Smoking 148 (14%) 132 (14%) 16 (15%) 0.8 

Alcohol excess 26 (2.5%) 25 (2.6%) <5 0.5 

Hypercholesterolaemia 188 (18%) 159 (17%) 29 (28%) 0.009 

Pregnancy 21 (2.0%) 21 (2.2%) 0 (0%) 0.2 

COPD 57 (5.4%) 48 (5.1%) 9 (8.6%) 0.2 

 .. 
1 Mean (sd); n (%)  2 t test; Pearson's Chi-squared test  

Table 2.2 Baseline characteristics of study participants. 

TTE LVEF, transthoracic echo left ventricular ejection fraction; TIA, transient ischaemic attack; COPD, chronic 

obstructive pulmonary disease; IQR, interquartile range. Numbers below 5 suppressed and displayed as <5. 
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Race/ethnicity, total n = 1,050 LVEF>40%,  

N = 945 

LVEF≤40%, 

N = 105 

Overall 

African 31 (3.3%) 3 (2.9%) 34 (3.2%) 

Any other Black/ African/Caribbean background 27 (2.8%) 6 (5.7%) 33 (3.1%) 

Any other ethnic group 83 (8.7%) 13 (12%) 96 (9.1%) 

Any other Mixed/Multiple ethnic background 7 (0.7%) 2 (1.9%) 9 (0.9%) 

Any other White background 118 (12%) 12 (11%) 130 (12%) 

Arab 20 (2.1%) 1 (1.0%) 21 (2.0%) 

Bangladeshi 3 (0.3%) 0 (0%) 3 (0.3%) 

Caribbean 26 (2.7%) 2 (1.9%) 467 (44%) 

Chinese 9 (0.9%) 1 (1.0%) 28 (2.7%) 

English/Welsh/Scottish/N Irish/ British 429 (45%) 38 (36%) 10 (0.9%) 

Indian 59 (6.2%) 11 (10%) 70 (6.6%) 

Irish 21 (2.2%) 3 (2.9%) 24 (2.3%) 

Other Asian background 94 (9.9%) 7 (6.7%) 101 (9.6%) 

Pakistani 11 (1.2%) 4 (3.8%) 15 (1.4%) 

White and Asian 2 (0.2%) 1 (1.0%) 3 (0.3%) 

White and Black African 6 (0.6%) 0 (0%) 6 (0.6%) 

White and Black Caribbean 3 (0.3%) 1 (1.0%) 4 (0.4%) 

 
Table 2.3 Full breakdown of self-reported race/ethnicity according to ONS Census list for 
England. 

 
 

2.4.2 Performance of ECG-enabled smart stethoscope 
 

Single-lead ECG recordings were attempted at all precordial positions in 1045 (99·5%) of 

1,050 participants. For the handheld position, this was 1006 (95·8%); reasons for not attempting ECG 

recording included patients being unable to hold the device (e.g., due to grip weakness from previous 

stroke). Recording of a 15 second ECG of adequate signal quality for attempting AI-ECG 

interpretation varied across positions, with the aortic (846 [80·6%] of 1,050) and pulmonary (979 
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[93·2%]) positions performing worst and best, respectively (table 2.4). Taking position 2 as an 

example, baseline characteristics for age and sex did not differ between those who did and did not 

have adequate quality recordings (p>0·05). 

 

2.4.3 Performance of AI-ECG 
 

The performance of the AI-ECG algorithm is summarised in table 2.4. ROC curves are 

displayed in figure 2.6. The single best performing position was over the pulmonary valve, with an 

AUC of 0·85 (95% CI 0·81–0·89), sensitivity of 84·8% (76·2–91·3), and specificity of 69·5% (66·4–

72·6). For this position, table 2.5 shows confusion matrices and table 2.6 shows differences in model 

performance among the three operators who recruited the most patients. The second-best position 

was handheld, with an AUC of 0·79 (0.74 - 0.84); p=0·02).  

The pulmonary and handheld positions performed best when combined using a rule-based 

approach: either one or both predicting LVEF≤40% being considered a positive test. For this analysis, 

864 (82·3%) of 1050 patients had adequate quality single-lead ECG for attempted AI-ECG prediction 

at both positions. The resultant AUROC was 0·85 (95% CI 0·81–0·89), with 82·7% (72·7–90·2) 

sensitivity and 79·9% (77·0-82·6) specificity. 

The model with the best performance used weighted logistic regression with l2 regularisation. 

Data from 864 patients (number of patients with adequate ECG recordings at both pulmonary and 

handheld positions) was used; 518 (60%) for training and 346 (40%) for testing. Using AI-ECG 

outputs from these two positions, a weighted logistic regression with l2 regularisation resulted in an 

AUC of 0·91 (0·88–0·95), sensitivity of 91·9% (78·1–98·3), and specificity of 80·2% (75·5–84·3. 
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      Maximising sensitivity and specificity equally 
(Youden index) 

Maximising sensitivity and specificity with 
rule Se>81, Sp>67; or Se>81, maximising Sp 

P
o
s 

Adequate 
ECG 

(n, %) 

AUC T Se Sp PPV NPV F1 T Se Sp PPV NPV F1 

1 846/1,050 
(80.6) 

0.75 0.37 77.1 60.7 17.3 95.9 0.28 0.35 81.9 53.3 15.8 96.2 0.26 

2 979/1,050  
(93.2) 

0.85 0.43 71.7 86.5 37.0 96.3 0.49 0.34 84.8 69.5 23.6 97.4 0.37 

3 946/1,050  
(90.1) 

0.78 0.49 68.1 77.4 24.7 95.5 0.36 0.28 81.9 55.2 16.6 96.3 0.28 

4 968/1,050  
(92.2) 

0.78 0.42 62.9 80.6 26.2 95.0 0.37 0.31 81.4 58.4 17.7 96.4 0.29 

5 916/1,050  
(87.2) 

0.79 0.42 62.8 83.4 27.7 95.5 0.39 0.30 81.4 60.1 17.5 96.8 0.29 

2
+
5 

864/1,050 
(82.3)* 

0.85 0.45 82.7 79.9 29.9 87.8 0.44 0.45 82.7 79.9 29.9 87.8 0.44 

2
+
5 
lr 

346** 0.91 0.49 91.9 80.2 35.1 98.4 0.50 0.50 91.9 80.2 35.1 98.4 0.50 

Table 2.4 Performance characteristics of AI-ECG. 

Performance shown across all five individual positions, rule-based approach, and logistic regression model. Pos, position; 

AUC, area under curve; 1, aortic; 2, pulmonary; 3, tricuspid; 4, mitral; 5, hand-held; lr, logistic regression; T, threshold; 

Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; F1, F1 score. 

*Number of patients who had adequate recordings at both position 2 and 5, where ‘positive’ AI-ECG as per threshold 

was considered a positive test. 

**Representing 40% testing dataset from the original 864 participants with both position 2 and 5 recordings. 

Adapted from Bachtiger et al., 2022. 
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Position 2 

N = 979 LVEF≤40%, n = 99 LVEF>40,  n =  880 

AI-ECG positive, n = 352 84 268 

AI-ECG negative, n = 627 15 612 

Positions 2 + 5 (rule-based) 

N = 864 LVEF≤40%, n = 81 LVEF>40,  n =  783 

AI-ECG positive, n = 224 67 157 

AI-ECG negative, n = 640 14 626 

Positions 2 + 5 (LR) 

N = 346 LVEF≤40%, n = 37 EF>40,  n =  309 

AI-ECG positive, n = 95 34 61 

AI-ECG negative, n = 251 3 248 

 

Table 2.5 Confusion matrices. 

Displayed according to the restricted threshold for maximising sensitivity and specificity, with rule Se>81, Sp>67; or 

Se>81, maximising Sp. Adapted from Bachtiger et al., 2022. 
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 Position 2 
(pulmonary) 

 Maximising sensitivity and specificity with rule 
Se>81, Sp>67; or Se>81, maximising Sp 

Op. Adequate 
recording 

AUC (CI) Se Sp PPV NPV F1 

1 198/218 
(90.7%) 

0.80  

(0.70-0.88) 

77.8  

(52.3-96.6) 

67.4  

(60.0-74.2) 

19.4 96.8 0.31 

2 192/197 
(97.4%) 

0.87  

(0.77-0.94) 

85.0  

(62.1-96.7) 

75.6 

(68.3-82.0) 

29.8 97.6 0.44 

3 182/204 
(89.1%) 

0.88  

(0.78-0.96) 

78.6  

(48.2-9.3) 

72.9  

(65.4-79.4) 

19.6 97.6 0.31 

 

Table 2.6 Differences in model performance among the three operators who recruited the most 
patients. 

Adapted from Bachtiger et al., 2022. 

 

 

2.4.4 False positive results 
 

When considering the restricted threshold for recordings over the pulmonary valve, the 

number of false positive results was higher in the LVEF 41–50% range (47 [43%] of 109) than in 

those with a normal LVEF of 50–70% (215 [26·2%] of 820, p=0·01) (table 2.7).  Figure 2.7 shows the 

distribution of AI-ECG results.  
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Group LVEF 41-50% LVEF 50-70% Total 

Positive AI-ECG 47 (43.1%) 215 (26.2%)  262 

Negative AI-ECG 62 (56.9%) 605 (73.8%) 667 

Total 109 820 929 

 

Table 2.7 Comparison of false positive rates in LVEF 41-50% vs. LVEF 50-70% group. 

 

 

 

Figure 2.7 Distribution of AI-ECG results. 

Plot shows raw AI-ECG outputs (number from 0-1) plotted against %LVEF. AI-ECG results are from pulmonary 

recording position (position 2). The threshold of 0.34 represents the threshold maximising sensitivity and specificity with 

rule Se>81, Sp>67; or Se>81, maximising Sp. 
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2.4.6 Reproducibility of AI-ECG across clinical and patient operators 
 

I found good inter-operator reproducibility between and within and between patient and 

clinician AI-ECG results (table 2.8). Figure 2.9 shows the distribution of all AI-ECG values from 

clinician recordings and patient self-recordings. The Bland Altman plot in figure 2.10 displays a mean 

error of -0.01 (-0.21-0.18), with no obvious systematic error. There was good intra-operator 

reproducibility for both patients (ICC = 0.82, 95% CI) and clinician (ICC 0.8, 95% CI).  

 

Operator Intraclass Correlation Coefficient 95% CI 

Patient 0.82 0.72, 0.89 

Clinician 0.89 0.83, 0.93 

Patient vs. Clinician 0.84  0.77, 0.89 

 

Table 2.8 Intraclass correlation coefficients for AI-ECG recordings within and between patients (n 

= 50) and clinician.  
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Figure 2.9 AI-ECG reproducibility with three recordings each for physician and patient 
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Figure 2.10 Bland Altman plot for difference in clinician recorded vs. patient self-recorded AI-
ECG. 

Using the mean value of the three recordings taken by clinician and patient. Clinician recording taken as gold 

standard.  
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2.5 Discussion  
 

2.5.1 Summary of Results 
 

This independent observational, prospective, multicentre study showed for the first time the 

performance of AI-ECG for detecting LVEF≤40% using only single-lead ECGs recorded during an 

ECG-enabled stethoscope examination. My study of 1,050 patients undergoing TTE found that a 

single-best position, two best positions combined, and an exploratory logistic regression model 

attained AUCs of 0·85, 0·85, and 0·91, respectively. As well as being accurate, results generation was 

reliable, operator-independent, and AI-ECG proved unbiased across age, sex, and ethnicity. These 

results suggest that the (smart) stethoscope examination, a universal component of the clinician–

patient interaction, can be used as a screening tool for LVEF≤40% by combining ECG recording and 

AI at the point of care. Furthermore, the ease with which the examination can be performed extends 

to the opportunity for patient self-administered testing.  

 

2.5.2 AI-ECG Stethoscope for HFrEF Screening 
 

From a public health perspective, combining AI with an ECG-enabled stethoscope 

examination for low-cost screening for reduced LVEF fulfils key criteria for a screening programme; 

including the underlying condition being a public health priority,123 involving a latent or early 

symptomatic phase,124 and for which evidence-based therapies are available. Further evaluation of the 

potential cost-effectiveness and effects on patient outcomes will be needed, especially in conjunction 

with established screening tests for HF, such as natriuretic peptide blood tests, which could further 

improve predictive capability. Easily available clinical tabular variables, such as age, sex, blood 

pressure, or the presence of comorbid illness, might further improve the model output and aid in the 
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identification of systolic dysfunction. In the clinic, pre-test probability is likely to be greatest among 

those with HFrEF symptoms (eg, breathlessness, ankle oedema, and fatigue). However, these are non-

specific and can result in a host of other acute or chronic conditions being investigated first. Here, 

where a stethoscope examination would always be indicated, delays to diagnosis might be avoided by 

flagging the possibility of HFrEF early. Given the substantial expense of echocardiography and the 

NHS-wide shortage of echocardiographers40, the high negative predictive value (97%) could also 

enable resource prioritisation. 

 

2.5.3 Interpretability of AI-ECG  
 

Successful system-wide adoption of any AI tool will require trust from patients and clinicians, 

and behavioural change in the latter to both adopt and follow recommendations from algorithms.21,22 

The unknown, ‘black box’ nature of the neural network means that the specific ECG features that 

determine individuals' classification of LVEF status are not obvious, although it likely draws on 

established pathological effects of reduction in LVEF on the ECG.125-127  

Previous screening programmes and surveys of patients with suspected HF suggest that 

between 1 and 10% of patients with reduced ejection fraction will have an ostensibly “normal” ECG 

i.e. nearly all patients with HFrEF will have some ECG abnormalities.128 One such study analysed data 

from 6,664 participants who were free of cardiovascular disease at baseline. Authors used a competing 

risks analysis to compare the association of several baseline ECG predictors with HFrEF and HFpEF 

detected during a median follow-up of 12.1 years. In a multivariable adjusted model, prolonged QRS 

duration, left-axis deviation, right-axis deviation, delayed intrinsicoid deflection, prolonged QT 

interval, abnormal QRS-T axis, ST/T-wave abnormalities, left ventricular hypertrophy, and left 
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bundle-branch block were associated with HFrEF. In contrast, higher resting heart rate, abnormal P-

wave axis, and abnormal QRS-T axis were associated with HFpEF.126 

These ECG features are all readily detectable by the human eye – but weighing up the ECG 

in its full richness of temporal and spatial features to accurately predict presence of reduced ejection 

fraction is beyond human skill. My study therefore highlights use of AI to interrogate a widely available 

digital biomarker and glean previously inaccessible, clinically useful insight. A similar example might 

be the application of neural networks for predicting coronary artery disease from retinal imaging.129 

To further illustrate this point, I include examples of single-lead ECGs at the pulmonary position 

classified by the optimised threshold as true positive, false positive, and false negative, for visual 

inspection in figure 2.9.   
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Patient 1

True Negative

0.34 [threshold for Sensitivity >80%, maximizing Specificity]

A.

True Positive

0.34 [threshold for Sensitivity >80%, maximizing Specificity]

B.
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True Positive

0.34 [threshold for Sensitivity >80%, maximizing Specificity]

C.

True Negative

0.34 [threshold for Sensitivity >80%, maximizing Specificity]

D.
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Figure 2.11 Examples of single-lead ECG recordings and associated AI-ECG predictions. 

 

Single-lead ECG recordings from position 2 (pulmonary valve, angled). Recordings were categorised as true 

positive, false positive, true negative, and false negative based on the raw AI-ECG output (between 0 and 1), relative 

to an optimum classification threshold of 0.341 (achieving minimum sensitivity and specificity of 81% and 67%, 

respectively). ECGs displayed at recording calibration of 25mm/second, 10mm/mV. 

 

 

 

 

 

False Negative

0.34 [threshold for Sensitivity >80%, maximizing Specificity]

E.
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take multiple recordings or manually input data into a further model, which may be avoidable through 

automation and considered user experience design.  

Compared with a positive/negative test output for a particular LVEF cut-off, displaying 

percentage LVEF predicted as a continuous variable might empower individual clinician choice on 

the appropriate threshold for ordering further investigations on a case-by-case basis; however, as a 

decision aid for non-specialists, this feature might be less desirable.  

 

2.5.6 Can AI-ECG predict risk of reduced LVEF? 
 

The original internal validation study of AI-ECG (for 12-lead ECGs) identified a four-times 

increased risk of developing an LVEF<35% or lower in subsequent years if AI-ECG predicted 

LVEF<35%, but TTE-derived LVEF was above 35%. This finding highlights the possibility that 

ECG changes might predate deterioration in LVEF detectable by echocardiography. Accordingly, to 

test this hypothesis, the Health Research Authority has granted ethical approval for those participants 

in my study who had a “positive” AI-ECG result for LVEF≤40% but TTE finding of LVEF>40% 

to be followed up longitudinally. “False positives” in the study cohort may need to be reframed in if 

AI-ECG shows ability to predict future LVEF≤40%, and in doing so could propose a cohort for 

surveillance. 

 

2.5.7 Patient self-administered AI-ECG screening 
 

My study took a practical and pragmatic approach to inform whether patients could perform 

a self-examination with an Eko DUO and obtain AI-ECG predictions comparable to those obtained 

by a clinician. The high intraclass correlation coefficients (ICCs all >0.8) reassure on the important 
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question of adequate reproducibility, and in doing so highlights affirms the opportunity for patient 

self-administered examination. The only abundant existing use case for cardiovascular disease 

screening using DHTs integrating AI involves detection of AF using medical and consumer 

technologies, both with a regulatory approved AI algorithm (software as a medical device) for over-

read and flagging of an irregular heart rhythm. As consumer technologies with single-lead ECG 

become cheaper and more accessible, AI-ECG for tracking LVEF may become part of a future suite 

of algorithms for individual cardiovascular disease monitoring.  

 

2.5.8 Strengths of Study 
 

Given substantial concerns and criticisms of validation studies of health-related AI tools,130-132  

my study design has several strengths. First, data were collected prospectively across multiple real-

world settings and by many operators. Second, my research team and I were independent of the groups 

who developed both the AI-ECG and the AI-ECG stethoscope. Third, my study population was 

unrelated to the training cohort, and our sample’s ethnic diversity (41% non-White) is unmatched by 

previous, retrospective external validations studies of AI-ECG (which were <10% non-White). 

Fourth, beyond testing the performance of AI-ECG alone, I evaluated a form factor and workflow 

for frontline clinical delivery that has several advantages over 12-lead ECGs. Namely, the recording 

of ECGs during auscultation over the single best (pulmonary) position achieved adequate recordings 

to attempt prediction in at least 93% of patients (versus 87% for handheld position); taking 15 seconds 

to complete and requiring minimal training. Fifth, use of AI and an AI-ECG stethoscope upgrades a 

familiar tool already in daily clinical use. This potentially overcomes barriers, such as maintained use 

by clinicians, previously identified as a challenge for other devices capable of recording single-lead 

ECGs.133  
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Such a tool could be particularly impactful in the busy primary care setting, given that, among 

the 80% of patients diagnosed with HF in hospital, 40% have had a recent primary care encounter 

with symptoms of HF that would have warranted a stethoscope examination. This approach would 

also be of value in low-income countries with health systems where access to cardiological care and 

imaging is scarce.134  

Finally, beyond the scope of this thesis, the dual acquisition of precordial ECG and 

phonocardiogram (heart sounds) highlights an opportunity to also screen for further priority 

cardiovascular diseases, such as valvular heart pathology, using AI-enabled phonocardiography.135 

Similarly, the 15 s single-lead ECG offers an opportunity for the detection of atrial fibrillation, either 

by visual inspection, or also supported by AI.136,137 Improvements in accuracy for predicting reduced 

LVEF might be achievable by combined AI analysis of synchronous ECG and PCG waveforms. 

 

2.5.9 Limitations 
 

The results of this study are best interpreted in the context of its limitations. First, the patient 

cohort is not fully representative of a screening population, where lower prevalence of LVEF≤40%  

could influence performance characteristics. Here it is particularly important to consider that PPV and 

NPV are impacted by the underlying prevalence in the population being screened. Considering my 

study’s sample of – beyond attending for echocardiography – largely unselected, sequential participant 

pool attending, the prevalence of HFrEF was 10%. At best, my study observed a PPV of 35% i.e. 

taking 100 patients with positive tests in this population, 35 of them will truly have HFrEF. Consider 

a different setting, such as the primary care interface, the prevalence of HFrEF will be much lower. 

Here, the real-world use of an ECG-enabled stethoscope could (should) be as routine as that of a 

traditional stethoscope. Assuming a 2% underlying prevalence of HF (not further defined by subtype) 
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prevalence, a hypothetical prediction that 5% of patients examined with a stethoscope in primary care 

have HFrEF, despite an impressive sensitivity and specificity of 92% and 80% respectively, PPV 

would drop to 19.5%.; while NPV would increase further to 99.5%  Perception of a one in five “hit 

rate” for referral to echocardiography should be tempered by the transformative impact of a HFrEF 

diagnosis and the opportunities unlocked by prompt commencement of evidence-based therapies. 

Ultimately the artificial scarcity of echocardiography in the NHS may require stricter referral criteria 

that increases PPV and justifies any prioritisation of patients with positive AI-ECG. Further 

investigation of real-world application of such a tool may also address the current paucity of data 

describing prevalence of asymptomatic disease.  

Second, without comprehensive access to all participant’s electronic health records to 

determine any previously normal LVEF, I am unable to precisely characterise how many participants 

were flagged as positive by AI-ECG as part of an index diagnosis of HFrEF. Third, there is established 

inter-operator variability in measurement of LVEF from echocardiography, giving rise to the 

possibility that some participants close to the LVEF 40% borderline were misclassified. Further 

studies with a higher number of operators across the wider clinical workforce will be required to 

determine if the device really is universally easy to use.  
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2.6 Chapter Conclusion 
 

This chapter described my study that found AI-ECG could identify patients with reduced 

LVEF (≤40%) from single-lead ECG inputs. Through use of an AI-ECG stethoscope, I highlight an 

AI algorithm embedded in a familiar clinical tool that fits into routine and universal clinical workflows. 

Given the frequent clinical encounters of undiagnosed patients before index hospital admission for 

HF, the stethoscope examination has the potential to be a point-of-care screening opportunity, and 

through further AI algorithms, to become a tool for comprehensive detection of cardiovascular 

disease. The feasibility of patient self-examination with this technology highlights and opportunity for 

expanded access through decentralisation – meeting the screening needs of patients wherever they 

are.  
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3 Survival and Health Economic Outcomes in 
Heart Failure by Place of Index Diagnosis: A 
Propensity-Matched Analysis 

 

This chapter presents results from a study of HF diagnosis across North West London’s 2.5 million patient 

population. Specifically, taking data from 2015-2020, I present the contemporary reality for routes to index HF 

diagnosis – community vs. hospital pathways – and use a propensity score matched population to highlight worse early 

clinical outcomes and increased long-term costs in patients first diagnosed through hospital admission. These findings 

are framed against the substantial national challenge of HF diagnosis and poses an early health economic model for the 

impact of a point-of-care screening technology: AI-ECG within an ECG-enabled stethoscope.  
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3.1 Abstract 
 
3.1.1 Background 
 

This observational cohort study aimed to quantify the clinical and health economic impacts of 

index HF diagnosis made through hospital admission versus community settings. This is framed 

against the burden of undiagnosed HF, and collectively informs a health economic model for the 

potential impact of a point-of-care AI screening tool. 

 

3.1.2 Methods 
 

I examined records from 34,208 patients receiving an index diagnosis of HF between January 

2015 and December 2020 across North West London (NWL), UK. A propensity-score-matched 

(PSM) cohort was identified to adjust for differences in socioeconomic status, cardiovascular risk 

factors, and pre-diagnosis health resource utilisation cost. Outcomes were stratified by two pathways 

to index HF diagnosis: a ‘hospital pathway’ was defined by diagnosis following hospital admission; 

and a ‘community pathway’ by diagnosis via a primary care physician or outpatient services. The 

primary clinical and health economic endpoints were all-cause mortality and cost-consequence 

differential, respectively.  An open-source data repository of predicted vs. expected HF cases was used 

to measure the burden of underdiagnosis in NWL and nationally. Collectively, these results were used 

to construct a health economic model for the potential impact of deploying a point-of-care AI 

screening tool for HF in primary care.  
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3.1.3 Results 
 

In the overall cohort, 23,273 (68.2%) patients were diagnosed via hospital pathway, compared 

with 10,885 (31.8%) via community pathway. The PSM cohort consisted of 17,174  patients (8,582 in 

each group). The ratio of deaths per person-months at 24 months comparing community vs. hospital 

diagnosis was 0.780 (95% CI 0.722 - 0.841, p<0.0001), changing to 0.960 (0.905 -1.020, p = 0.18) by 

72 months. Diagnosis via hospital pathway incurred an overall extra longitudinal cost of £2,485 per 

patient. In the context of nearly 50% of HF in NWL being undiagnosed, a point of care screening 

tool using AI-ECG could offer the sector conservative net savings close to £1.5 million. 

 

3.1.4 Conclusion 
 

Index diagnosis of HF through hospital admission continues to dominate and is associated 

with a significantly greater short-term risk of mortality and substantially increased long-term costs than 

if first diagnosed in the community. My study highlights that efforts to increase community diagnosis 

may provide opportunities for improved clinical and health-economic outcomes, and that in the 

context of substantial under-diagnosis, an AI-based intervention to increase detection through 

community pathways may carry a strong health economic justification.   
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3.2 Introduction 
 

 Heart failure (HF) affects 5% of the population aged 75 years or older, with 60,000 new cases 

annually in the United Kingdom.27,138 There are multiple evidence-based therapies that improve 

survival and quality of life 139,140, with early dose optimisation associated with better clinical and health 

economic outcomes.141,142  

Detection of HF via primary care is a priority in the United Kingdom NHS Long Term Plan, 

recognising that between 2011-2013, 80% of all new (index) diagnoses of HF were made via hospital 

admission.27  Hospitalisation with chronic HF is associated with increased hazard of death, repeat and 

prolonged hospitalisation143, and the unit cost of such a hospital admission can exceed £10,000.144 

Despite several initiatives to improve community-based detection of HF145, only 4% of eligible patients 

complete the diagnostic pathway recommended by the National Institute for Health and Care 

Excellence (NICE) to time and target – with overall minimal change in survival over the last decade.146 

Alarmingly, the gap in underdiagnosis of major cardiovascular risk factors remains persistent and 

extends such that a substantial portion of HF in the community remains subsequently undetected.147 

Part of the challenge is a lack of screening tools that are quick, reliable, and accurate. Even in the 

presence of a tool that fulfils these criteria, those in charge of healthcare budgets require a robust 

health economic justification for any capital outlay on a novel instrument. This requires an up-to-date 

understanding of the health economic burden of HF to help model any potential cost savings.  

Although hospitalisation around the time of HF diagnosis and time-to-diagnosis may adversely 

affect survival,148 the underlying assumption that diagnosis through community pathways confers 

clinical and health economic benefits has not been tested. Testing this assumption poses substantial 

methodologic challenges. Importantly, given the continually changing healthcare landscape, 

contemporary estimates of both survival and health economic burdens based on place-of-diagnosis 
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are essential for shaping health policy interventions. This is now possible through linkage of 

contemporary, granular, real-world primary and secondary care clinical and cost data. The objective 

of this study was therefore to measure the combined prognostic and health economic impacts of 

different routes to index HF diagnosis, and to combine these observations to inform a health 

economic model for a novel point-of-care screening tool intended to increase detection of HF in 

primary care. 
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3.3 Methods 
 

3.3.1 Study Design and Data sources 
 

I used a cohort study design following STROBE149 and RECORD150 checklists for reporting  

observational research in routinely collected health data. The study required interrogation of the 

Whole Systems Integrated Care dataset within the Discover-NOW Trusted Research Environment. 

This pools de-identified, contemporary, linked primary and secondary care electronic patient records 

from over 2.5 million patients in North West London (NWL). In addition to comprehensive 

demographic and clinical data, the dataset also captures health service utilisation and associated cost.151  

To describe the burden of undiagnosed HF – or ‘detection gap’ – across all eight NHS Clinical 

Commissioning Groups (CCGs) in NWL, I also examined and extracted data from the open-source 

Heart Failure Dashboard developed by Imperial College Health Partners (ICHP) in collaboration with 

Novartis. The detection gap is defined as the difference between predicted number of patients with 

HF in the population and the observed number of HF patients. To estimate the predicted population, 

the dashboard applies an established HF prevalence model for small populations152, in this case 

applying the model to Public Health England’s Public Health Profiles. The observed population was 

defined as all registered patients with HF collected through routine data collection as part of the NHS 

Quality and Outcomes Framework (QOF 2019-20).153 

 

3.3.2 Inclusion and exclusion criteria  
 

I included patients aged over 18 years old, with HF diagnosed between 1st January 2015 and 

31st December 2020 (Figure 1). Patients aged 18 or under were excluded; as well as those diagnosed 

with HF before 1st January 2015; and those who left the North West London area during the study 
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period. Specific codes for HF were considered, in accordance with previous literature6,7,9 and by expert 

clinical consensus. For primary care data, HF labels were selected from an inclusive list of established 

read codes (table 3.1). This was similarly performed using ICD-10 codes for hospital data (table 3.2). 

The clinical activity of the cohort was examined by identifying the first coded diagnosis of HF in the 

study period (index date) for each unique patient, and then mapping the health care resource utilisation 

of each unique patient in the course of the study period. Two all-encompassing strata for routes to 

diagnosis were considered: 

 

1. The ‘community pathway’ reflected HF diagnoses first coded within primary care records. This 

included patients diagnosed through specialist outpatient settings via primary care referral. We 

considered this the preferred route to HF diagnosis, in line with National Institute for Health 

and Care Excellence (NICE) guidance.22 

 

2. The ‘hospital pathway’ reflected HF diagnoses made via an inpatient hospital admission. Such 

admissions were either non-elective (acute/emergency) or elective (e.g. planned procedure). 

For both, we included those patients where, upon discharge, HF diagnostic codes were listed 

as either a primary or secondary diagnosis. This was informed by clinical consensus, since 

inconsistencies in clinical coding results in predominantly non-hierarchical coding of primary 

and secondary diagnoses.  
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Read 
Code Read Code Preferred Term 

Read 
Code Read Code Preferred Term 

G58.. Heart failure G583. Heart failure with normal ejection fraction 

662g. New York Heart Association classification - class II G580. Congestive heart failure 

662h. New York Heart Association classification - class III SP111 Cardiac insufficiency as a complication of care 

G5yy9 Left ventricular systolic dysfunction G581. Left ventricular failure 

G580. Congestive heart failure 1O1.. Heart failure confirmed 

585f. Echocardiogram shows left ventricular systolic dysfunction G1yz1 Rheumatic left ventricular failure 

662f. New York Heart Association classification - class I G232. Hypertensive heart & renal dis with (congestive) heart failure 

G581. Left ventricular failure G234. Hypertension heart & renal failure 

G58z. Heart failure NOS G580. Congestive cardiac failure 

G5802 Decompensated cardiac failure G580. Right heart failure 

G5yyC Diastolic dysfunction G580. Right ventricular failure 

G580. Congestive heart failure G580. Biventricular failure 

G5yyA Left ventricular diastolic dysfunction G581. Asthma - cardiac 

585g. Echocardiogram shows left ventricular diastolic dysfunction G581. Impaired left ventricular function 

G5801 Chronic congestive heart failure G58z. Cardiac failure NOS 

G5800 Acute congestive heart failure 14A6. H/O: heart failure 

G583. Heart failure with normal ejection fraction 14AM. H/O: Heart failure in last year 

G58.. Cardiac failure SP111 Heart failure as a complication of care 

G581. Left ventricular failure 662i. New York Heart Association classification - class IV 

G582. Acute heart failure G58z. Weak heart 

G580. Congestive heart failure G5y4z Post cardiac operation heart failure NOS 

G58.. Heart failure 1J60. suspected heart failure 

G584. Right ventricular failure 388D. new york heart assoc classification heart failure symptoms 

G581. Left ventricular failure G210. malignant hypertensive heart disease 

G5810 Acute left ventricular failure G2101 malignant hypertensive heart disease with ccf 

G5804 Congestive heart failure due to valvular disease G2111 benign hypertensive heart disease with ccf 

21264 Heart failure resolved G21z1 hypertensive heart disease nos with ccf 

G581. Left ventricular failure G230. malignant hypertensive heart and renal disease 

G58z. Heart failure NOS G41z. chronic cor pulmonale 

G5yyB Right ventricular diastolic dysfunction G5540 congestive cardiomyopathy 

G5803 Compensated cardiac failure G5540 congestive obstructive cardiomyopathy 

 

Table 3.1 Read codes from primary care records included for patients considered to be diagnosed 
with HF. 
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ICD-10 codes 

I500 - Congestive heart failure I420 - Dilated cardiomyopathy 

I501 - Left ventricular failure I255 - Ischaemic cardiomyopathy 

I509 - Heart failure, unspecified I110 - Hypertensive heart disease with (congestive) heart failure 

I429 - Cardiomyopathy, unspecified - 

 

Table 3.2 ICD-10 codes for possible HF labels in hospital electronic health records. 

 

3.3.3 Cost data within Discover 
 

Primary care costs described a combination of General Medical Services, Personal Medical 

services, and Alternative Personal Medical Services contracts commissioned by NHS England and 

locally commissioned Clinical Commissioning Group (CCG) schemes such as Local Improvement 

Schemes, Local Enhanced Services, and Out of Hours Services. These costs reflected the actual 

outturn costs for historic years. 

GP practice level costs were apportioned across age groups based on historic analysis of 

appointment utilisation and then to patients, based on the number of recorded daily contacts that 

patients had with the practice. The cost allocation assumes that all patient contacts for the specified 

age group consume the same resource so all contacts will have the same unit price. This reflects the 

way contracts are commissioned by NHS England and locally-commissioned schemes for GPs and 

hence recorded for charging purposes.  

Hospital costs are based on actual activity and costs (i.e. primarily cost per case) as reported 

by NHS Trust-issued patient-level service-level agreement monitoring reports. Some contractual 

adjustments e.g. Emergency Threshold adjustments, re-admission and other contractual penalties were 

applied retrospectively at the patient level.   
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3.3.4 Patient characteristics 
 

Age, sex, and ethnicity were extracted for each patient. Comorbidities of interest identified for 

inclusion included chronic obstructive pulmonary disease (COPD), atrial fibrillation (AF), chronic 

kidney disease (CKD), ischaemic heart disease (IHD), stroke, type 2 diabetes mellitus (T2DM) and 

hypertension.  

 

3.3.5 Endpoints 
 

The primary outcome was all-cause mortality. Secondary outcome focused on the cost 

consequence associated with diagnosis of HF, again by hospital vs. community pathway to diagnosis. 

Additionally, a HF detection gap was modelled in order to frame and potential cost-savings from a 

tool such as AI-ECG applied using an ECG-enabled stethoscope.  

 

3.3.6 Data extraction, Propensity Score Matching, and Statistical analysis 
 

In collaboration with fellow researchers at Imperial College Health Partners, I interrogated the 

Discover dataset through the Discover-NOW Health Data Research Hub for Real World Evidence. 

For the overall cohort and to facilitate comparisons between patients within each pre-specified strata, 

continuous variables are expressed as mean ± SD and categorical variables as percentages. I used chi-

squared tests to examine differences in baseline clinical characteristics between patient pathways.  

Time from diagnosis-to-death was captured for patients who died after the index date. Patient survival 

curves for mortality were constructed according to the Kaplan-Meier method for each pathway and 

compared by Fleming-Harrington weighted log-rank test, allowing for early, middle and late 
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differences through the class of weights, proven to be more efficient when the proportional hazards 

assumption does not hold.154  

I a priori assumed that there would be important differences and therefore potential 

confounders between the main analytic groups. I chose to use a propensity score matched (PSM) 

approach since this would allow independent characterisation of how route to diagnosis impacts the 

two main outcomes of interest (survival and cost-consequence), while adjusting for confounders 

between the community and hospital groups. Additionally, this method avoids the less easily 

interpretable and presentable approach using different multivariate models. Lastly, a PSM approach 

makes no assumption about the relationships between covariates and an outcome of interest.  

Therefore, a propensity score was calculated using a logistic regression model to adjust for 

baseline differences in patient characteristics. This incorporated available predisposing covariates for 

HF, including age, male gender, ethnicity, index of multiple deprivation (IMD) rank, hypertension, 

AF, IHD, CKD and T2DM. Additionally, differences in cost (health service utilisation) before HF 

diagnosis was also included in the PSM model. This served as a holistic means of accounting for 

differences between the two groups that would not be captured by individual codes, for example, 

high-cost, complex conditions such as cancer. I performed a 1:1 comparison between nearest 

matching neighbours, using a caliper width of 0.2, aligning with similar previous studies.155,156  

Cost-consequence analysis is highlighted by the UK Government157 as a preferred tool in the 

economic evaluation of clinical pathways, highlighting advantages including the output of a simple 

broken-down (disaggregated) summary of costs and effects that allows policymakers to choose the 

combination of costs and effects that are most relevant to their context, and apply their own weighting 

to the effects. For cost-consequence analysis in my study, healthcare utilisation cost was extracted 

from the index HF diagnosis date to the end of the study period, and included primary care contacts, 

outpatient appointments, elective and non-elective admissions, and, where relevant, non-elective 
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readmissions at 30 days. Patient level costs refer to the indicative spend calculated separately for each 

patient for each healthcare sector. A P-value of < 0.05 was considered statistically significant. Analyses 

were performed using R Studio (version 1.4.1717). 

To represent undiagnosed HF burden, data from the HF Dashboard were converted into a 

heat map of NHS Clinical Commissioning Groups (CCGs), highlighting both the predicted percentage 

of undiagnosed HF cases, as well as the predicted absolute number of undiagnosed patients per CCG. 

The overall trend across all CCGs in England is displayed for comparison.  

Lastly, informed by the cost consequence analysis and HF detection gap, I constructed a health 

economic model to inform on the potential impact of an AI-ECG tool hypothesised to increase the 

rates of HF detection through community pathways. Given that this model was derived from the core 

results, I present this as part of the chapter Discussion, rather than a standalone results item.  

 

3.3.7 Ethical approval 
 

My collaborators among the Discover-NOW team at ICHP have secured Health Research 

Authority approval until 2023 to use the Discover Research Platform for research purposes of studies 

submitted to the NWL Data Access Committee. Favourable ethical opinion was secured from the 

NHS Health Research Authority in October 2018. The REC reference is 18/WM/0323 and the IRAS 

project ID is 253449.  
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3.4 Results 
 

 

 
Figure 3.1 Flow diagram for selection of patients with HF for inclusion in the PSM analysis. 
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3.4.1 Patient Characteristics  
 

Between 1st January 2015 and 31st December 2020, 34,208 patients received a diagnosis of HF. 

23,323 (68.2%) had this first recorded during a hospital admission (hospital pathway), and 10,885 

(31.8%) in primary care (community pathway). Patient characteristics are summarised in (table 3.2). 

The cohort diagnosed through hospital admission was older, had a higher representation of male sex, 

and were more deprived.  31,062 (91.3%) of patients had at least one comorbidity at the time of HF 

diagnosis. Table 3.3 lists the most frequent HF-associated diagnostic codes in the community pathway; 

similarly, tables 3.4 shows this for the hospital pathway.  In the hospital pathway, 4,686 (20.1%) were 

recorded as having HF as their primary diagnosis. The remainder recorded HF as a secondary 

diagnosis (table 3.5). 2,738 (25.2%) of patients in the community pathway had at least one HF 

symptom recorded in primary care prior to the index date, compared to 4,975 (21.5%) of patients in 

the hospital pathway (p<0.05) (table 3.6). 

 

Propensity Score Matched Cohorts 

Prior to matching, the cohorts were unbalanced across most variables. Following PSM, the 

hospital and community pathway cohorts were well-matched across all variables of interest. The 

cohort consisted of 17,174  patients (8,582 in each group) (table 3.2).  
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 Total population (n = 34,208 ) Propensity-matched cohort (n = 17,212) 

 Community  Hospital  p  Community Hospital  p  

Total 10,885 (31.8%) 23,323 (68.2%) - 8,582 8,582  

Age (SD) 72.26 ± 13.50 73.84 ± (13.33)  <0.0001 73.53± 12.18 73.61 ± 12.62 0.66 

Male gender (%) 5,007 (0.46) 11,895 (0.51) <0.0001 4644 (54.1) 4626 (53.9) 0.79 

IMD (SD) 

5.02 ± 2.30 4.83 ± 2.31 <0.0001 6.63 ± 2.28 6.68  ± 2.31 0.13 

Ethnicity 

- - <0.0001 - - 0.92 

Asian or Asian 

British (%) 

2994 (27.5) 5913 (25.4) - 2591 (30.2) 2567 (29.9) - 

Black or Black 

British (%) 

948 (8.7) 1961 (8.4) - 787 (9.2) 807 (9.4) - 

Mixed (%) 

181 (1.7) 433 (1.9) - 148 (1.7) 136 (1.6) - 

Other ethnic groups   

(%)    

456 (4.2) 912 (3.9) - 363 (4.2) 367 (4.3) - 

White (%) 

5,539 (50.9) 12,000  (51.5) - 4693 (54.7)  4705 (54.8) - 

Unknown ethnicity 

(%) 

767 (7.1)  2104 (9.0) - - - - 

COPD (%) 

1633 (15.0) 4234 (18.2) < 0.0001  1470 (17.1)  1440 (16.8) 0.56 

AF (%) 

3592 (33.0) 7763 (33.3) .601851 2498 (29.1) 2571 (30.0) 0.23 

CKD (%) 

2939 (27.0) 6822 (29.3) <0.0001 2338 (27.2) 2323 (27.1) 0.81 

IHD (%) 

4027 (37.0) 8704 (37.3) .564231 3862 (45.0) 3935 (45.9) 0.27 

Stroke (%)   1,013 (9.3)   2,733 (11.7) 
<0.0001 899 (10.5)  889 (10.4) 0.82 

Ventricular 

arrhythmia (%) 
130 (1.2) 

281 (1.2) .933738 104 (1.2) 105 (1.2)  1.00 

  

T2DM (%) 

3592 (33.0) 8233 (35.3) <0.0001 3099 (36.1) 3040 (35.4) 0.36 

Hypertension (%) 

7293 (67.0) 15055 (64.6) <0.0001 7001 (81.6) 6994 (81.5) 0.91 

Figure 3.2 Demographics and comorbidities of HF population before and after propensity score 
matching.  
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ReadCode Term Number of patients % of patients 

Heart failure 3,487 32% 

Congestive heart failure 996 9% 

Diastolic dysfunction 679 6% 

Left ventricular failure 607 6% 

Left ventricular systolic dysfunction 461 4% 

Left ventricul systol dysfunc 452 4% 

Left ventric diastolic dysfunc 359 3% 

Echocardiogram shows left ventricular systolic dys 333 3% 

Suspected heart failure 323 3% 

Echocardiogram shows LVSDF 301 3% 

Heart failure NOS 278 3% 

Echocardiogram shows left ventricular diastolic dy 227 2% 

Echocardiogram shows LVDDF 220 2% 

Biventricular failure 178 2% 

Chronic congestive heart failure 151 1% 

Heart failure with normal ejection fraction 149 1% 

Left ventricular diastolic dysfunction 145 1% 

Heart failure annual review 110 1% 

Heart failure review completed 103 1% 

New York Heart Association classification - class  88 1% 

Other 1,238 11% 

Grand Total 10,885 100% 

 

Table 3.3 Distribution of ReadCodes for patients receiving index HF diagnosis through 
community pathway. 
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ICD10 diagnosis Number of patients % of patients 

I500 - Congestive heart failure 2911 62% 

I501 - Left ventricular failure 1180 25% 

I509 - Heart failure, unspecified 464 10% 

I420 - Dilated cardiomyopathy 60 1% 

I255 - Ischaemic cardiomyopathy 26 1% 

I110 - Hypertensive heart disease with (congestive) heart failure 23 0% 

I429 - Cardiomyopathy, unspecified 22 0% 

Grand total with HF code listed as primary diagnosis 4,686 (20.1% total) 100% 

 

Table 3.4 Distribution of ICD-10 codes for patients receiving index HF diagnosis through hospital 
pathway. 
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ICD-10 diagnosis Number of 
patients 

% of patients 

J181 - Lobar pneumonia, unspecified 1261 7% 

I214 - Acute subendocardial myocardial infarction 759 4% 

I251 - Atherosclerotic heart disease 676 4% 

J189 - Pneumonia, unspecified 639 3% 

I489 - Atrial fibrillation and atrial flutter, unspecified 538 3% 

A419 - Sepsis, unspecified 420 2% 

N390 - Urinary tract infection, site not specified 335 2% 

J440 - Chronic obstructive pulmonary disease with acute lower respiratory infection 310 2% 

I249 - Acute ischaemic heart disease, unspecified 301 2% 

R074 - Chest pain, unspecified 280 1% 

J22X - Unspecified acute lower respiratory infection 277 1% 

I210 - Acute transmural myocardial infarction of anterior wall 272 1% 

N179 - Acute renal failure, unspecified 252 1% 

J690 - Pneumonitis due to food and vomit 196 1% 

R296 - Tendency to fall, not elsewhere classified 184 1% 

I48X - Atrial fibrillation and flutter 177 1% 

L031 - Cellulitis of other parts of limb 175 1% 

U071 - Emergency use of U07.1 173 1% 

I211 - Acute transmural myocardial infarction of inferior wall 172 1% 

R060 - Dyspnoea 163 1% 

Other 11,278 60% 

Grand total patients with index HF listed as a secondary ICD-10 code 18,838 (80.1%) 100% 

 

Table 3.5 Primary diagnosis during hospital admission that also made index HF diagnosis 
(hospital pathways) 
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Pathway 

Number of 
patients 

with at least 
one 

symptom 

Patients 
with no 

symptoms 
recorded 

SOB Ankle 
swelling 

SOB 

Ankle 
swelling 

Fatigue 
SOB 

Fatigue 

Ankle 
swelling 
Fatigue 

 
SOB 

Ankle 
swelling  
Fatigue 

Community 
n = 10,873 

 

2,738  

(25.2%) 

8,135  

(74.8%) 

1,996 

(18.3%)  

434  

(4.0%) 

215  

(2.0%) 

51  

(<1.0%) 

25  

(<1.0%) 

8  

(<1.0%) 

9  

(<1.0%) 

Hospital  

n = 23,272 

4,975 

(21.5%) 

18,170 

(78.5%) 

4,043 

(17.5% 

538 

(2.3%) 

276 

(1.2%) 

67 

(<1%) 

44 

(<1%) 

4 

(<1%) 

3 

(<1%) 

 

Table 3.6 Presence of HF symptoms prior to index diagnosis of HF. 

 

3.4.2 All cause mortality 
 

The median follow up period was 29 months overall; 29 months for the hospital pathway, and 

30 months for the community pathway. At 24 months, the event rate for all-cause mortality in the 

hospital pathway cohort was 0.0094 per person-month, versus 0.0073 in the community pathway 

cohort (Figure 2). Comparing community vs. hospital diagnosis, the ratio of deaths per person-month 

at 24 months was 0.780 (95% CI 0.722 - 0.841, p<0.0001). At 72 months, the event rate for all-cause 

mortality in the hospital pathway cohort was 0.0082 per person-month, versus 0.0079 in the 

community pathway (inter-pathway event ratio 0.960 [95% CI 0.905 -1.020, p = 0.18] (Table 3.7). 

 

 

 

  





 124 

 

 

 

 

 Community Pathway Hospital Pathway - 

Month Patients 

at risk*  

Death/ person 

months 

Patients at 

risk*  

Death/ person 

months 

Rate ratio Community:Hospital, 

95% CI 

P value  

24 5,224 0.0073  

(1,215/166,255) 

5,040 0.0094   

(1,507/160,881) 

0.780  

(0.722 - 0.841) 

<0.0001 

  

48  2,316 0.0076  

(1,920/252,467) 

2,145 0.0081  

(1,978/243,533)  

0.936  

(0.879 - 0.998) 

0.04 

72 254 0.0079   

(2,220/280,584) 

223 0.0082 

(2,214/268,890) 

0.960   

(0.905 -1.020) 

0.18 

 

Table 3.7 Differences in death at 24, 48, and 72 months comparing community and hospital 
pathways. 
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3.4.3 Cost-consequence analysis 
 

Table 3.8 displays cost-consequence analysis for the propensity matched cohorts. Overall, 

across all available metrics of health service utilisation, there was a £2,485 longitudinal difference in 

cost associated with a HF  diagnosis made through a community pathway versus hospital admission.  

 

 Costs £ (Mean ± SD) for PSM cohorts 

Category Non-elective Elective ED Cost  Outpatient  Primary Care  Total cost Difference 

Community 

£ 8714  ± 16409 3755 ± 11344 419 ± 686 4901 ±7772 9508 ± 20240 

27298  ± 

29470 - 

Hospital £ 

10804  ± 

17719 4407 ±  14628 472 ± 753 5341 ± 8565 8759 ± 20954 29783 ± 32264 + 2,485   

 

Table 3.8 Cost-consequence differential in PSM matched cohort. 

Table 1. Demographics and comorbidities for patients across total patient population diagnosed with heart failure in 

NWL in 2015-2020 (n = 34,208) and PSM cohort (n = 8,582 for each of hospital and community pathway) 

 
3.4.4 Heart failure detection gap in NWL and England 
 

Using data extracted from the ICHP HF Dashboard, figure 3.4 visualises the detection gap in 

NWL, with patient numbers described in table 3.9. Figure 3.5 expands on this with an impression of 

the England-wide burden of undetected HF.  
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Figure 3.4 Detection gap in the 8 Clinical Commissioning Groups in North West London. 

Numbers within each CCG represent predicted number of patients with undiagnosed HF. Image rendered in 

Photoshop (Adobe, US).  

 

CCG HF Patient Population  Predicted Undetected Patients Cumulative Detectable Patients 
Brent  3164  775  775 

Central London  1685 615  1390 

Ealing  3373 617 2007 

Hammersmith and Fulham 2054 985 2992 

Harrow  2695 781 3773 

Hillingdon  3049 1094 4867 

Hounslow  2487 558 5425 

West London  1970 826 6251 

 

Table 3.9 Detection gap for in the 8 Clinical Commissioning Groups in North West London. 

Informed by data extracted by Imperial College Healthcare Heart Heart Failure Dashboard.  



 127 

 

Figure 3.5 Map of detection gap in CCGs across England.  

Image rendered in Photoshop (Adobe, US). 
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3.5 Discussion 
 

3.5.1 Summary of main results 
 

My study of a large propensity-score-matched population of NHS patients with HF 

demonstrates that across a six-year year period, index diagnosis of HF via hospital versus community 

pathway was associated with an increased rate of death in the first 24 months, with no difference 

between groups by 72 months. I found a substantial longitudinal cost saving (£2,500) following index 

HF diagnosis taking place through community pathways. Increasing rates of community-based HF 

diagnosis may therefore represent a substantial cost saving opportunity, particularly given the 

possibility that in some regions nearly 50% of patients with HF are undiagnosed.  

 

3.5.2 Routes to diagnosis 
 

Across the overall population of nearly 35,000 patients diagnosed with HF in NWL from 

2015-2020, 70% were first diagnosed via hospital pathways. The overall balance of this differential is 

consistent with findings reported by Bottle et al. (cited in the NHS Long Term Plan), that between 

2010 and 2013, 80% of HF diagnoses were first documented in hospital records.28 My findings using 

data from 2015-2020 indicate that intervening efforts to improve community-based detection of HF 

have, at best, had modest impact.  

A substantial portion of HF is precipitated by acute disease e.g. following severe myocardial 

infarction, requiring urgent hospitalisation.158 Such cases should not be counted as missed 

opportunities. However, previous studies found that among those diagnosed in hospital, the vast 

majority of patients had also seen a GP in the previous year, with 37% having documented symptoms 

of HF.28 Notably, in our overall HF population there was no difference in the number of primary care 
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encounters between the hospital and community pathway cohorts, with similar documented rates of 

HF symptoms prior to diagnosis. This may represent heterogeneity in awareness of HF within primary 

care services, but may also highlight the non-specific nature of cardinal HF symptoms, which overlap 

with other common cardio-respiratory pathologies (e.g. COPD159) – a diagnostic challenge discussed 

in recent international guidelines.139 This is reflected in the unmatched study population, where 

multimorbidity (the presence of 2 or more long term conditions) was more pronounced amongst 

patients in the hospital pathway.  

 

3.5.3 Prognostic association of route to diagnosis 
 

My study observed an early survival advantage associated with community pathway-based 

diagnosis to 24 months, which was not sustained at 72 months when compared with hospital pathway-

based diagnosis. Translating the long-term protective effects observed in clinical trials requires dose 

optimisation, monitoring, and patient concordance. It is possible that patients diagnosed via the 

community pathway were earlier in their HF disease course, and therefore more likely to realise the 

benefits of early initiation of prognostically beneficial therapies.142 If so, the waning protective effect 

by 24 months may reflect real-world estimates of adherence to gold standard therapy. These are low, 

with the most optimistic ranging from 40-60%, and worryingly declining most as HF progresses.160,161 

The mortality associated with HF is estimated to be between 53-67% five years after 

diagnosis146, with hospitalisation a known adverse prognostic marker in established HF. Consequently, 

the convergence of survival curves by 72 months may take contribution from a ‘regression to the 

mean’ effect associated with heterogeneous adherence to gold standard therapy in both cohorts over 

a sustained period.    
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My study’s findings are consistent with Taylor et al., who examined data from 2000-2017 to 

identify a patient’s first coded instance of a HF diagnosis in primary care records, and reported that 

those without hospital admission three months before or after diagnosis had better survival.37 A study 

reporting on data from 1997-2010 found significantly worse outcomes among patients where HF was 

only ever coded in hospital records and never registered in the primary care record.162 

 

3.5.4 Cost of Heart Failure 
 

Across all health systems, the costs associated with HF are rising. However, detailed 

contemporary estimates on a per-patient level are lacking. To my knowledge, this is the first study to 

quantify the health economic opportunity of diagnosis through community pathways vs. hospital 

pathways.    

Hospitalisation is the main driver of cost for HF. 22 As might be expected, I found non-elective 

admission costs accounted for the majority (84%) of the long-term increased costs of patients in the 

hospital pathway. However, understanding the health economic burden of HF through units of 

hospitalisation has substantial limitations. Studies have shown that post-HF diagnosis, there is an 

average of one hospital admission per year, of which two thirds are attributable to non-cardiovascular 

comorbidities.163 However, I have shown that index HF diagnosis through hospital admission is 

unlikely to be coded hierarchically i.e. the primary diagnosis may be listed as common mimics and 

exacerbating conditions (e.g. COPD, pneumonia) with new HF listed among the secondary diagnoses. 

Teasing apart the contribution of HF to the cost of each hospital admission is therefore challenging.  

More pragmatically, my study highlights that a community pathway-based diagnosis of HF 

offers an overall longitudinal cost-saving of £2500 per patient. This offers a compelling variable for 
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cost modelling and an intelligible, robust metric for policymakers. Realising even a fractional increase 

in community diagnosis could release substantial cost savings and return on investment.  

 

3.5.5 Strengths 
 

The population of NWL represents a wide spectrum of sociodemographic inequality, and 

includes the areas of highest ethnic diversity in the UK (as also reflected in results described in 

previous chapter).164 To my knowledge, this is the first study to quantify the per-patient cost 

implications of route to index diagnosis of HF, adding a compelling health economic argument to the 

more established clinical rationale for investing in community diagnostic services28. Notably, this study 

accounted for a period of 6 years ending in 2020, and thus offers a contemporary picture of HF care, 

across a large population. This has been enabled by using real-world primary care, secondary care, and 

cost data within the Discover-NOW dataset, which more broadly takes advantage of now routine 

systematic sharing of hospital discharge summaries to improve fidelity between primary and secondary 

care coding.  

Not only was I able to extensively match on demographic and comorbidity profiles, but also 

cost before HF diagnosis. This will have controlled for potential biases introduced by patients with 

extreme rates of service utilisation or rare/high-cost conditions; specifically mitigating over-estimation 

of the benefits of community-based diagnosis due to the hospital cohort having higher costs before 

HF diagnosis.  

 

3.5.6 Comparison with other real-world datasets 
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Discover is one of the largest linked longitudinal datasets in Europe, but other databases exist 

where the same protocol could be applied to glean a more national picture. Among the most notable 

is the Clinical Practice Research Datalink (CPRD), which collects anonymised patient data from a 

network of GP practices across the UK, encompassing 18 million registered patients. A recent 

comparison of CPRD with Discover demonstrated that the population of the latter dataset matches 

the age and sex distribution of the UK population, but is more ethnically diverse than the CPRD 

dataset. Rates of chronic disease prevalence in Discover are comparable to those reported nationally. 

Discover also carries the advantage of including the ability to identify care organisations and 

postcodes, which allow for linkage to healthcare providers as well as social, community and mental 

health providers. On a practical note, the high-level consideration cost of database access/licensing 

may favour Discover (e.g. £35k vs £60k for commercially funded studies).165 

 

3.5.7 Limitations 
 

The results of my study are best interpreted in the context of its limitations. Despite extensive 

propensity-score-matching across demographic, clinical, and cost variables, some residual 

confounding is likely to remain and tempers my conclusions. The examination of real-world data is 

universally limited by the inconsistency and variable fidelity of medical coding in capturing variables 

of interest. HF is rarely coded with a granularity that describes preserved, moderately reduced, or 

reduced ejection fraction. One previous study using data from the ESC HF Long-Term Registry 

suggested HFrEF, HFmrEF, and HFpEF respectively account for 53%, 18%, and 29% of HF hospital 

admission – where HFrEF is more severe and has greater in-hospital mortality and post-discharge 

cardiovascular risk.166 This may be addressed by future improvements in the coding of 

echocardiography results. Though this study interrogated granular clinical and cost data, sub-strata 
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important to understanding a patient’s HF management were not available e.g., specific doses of 

disease modifying drugs that would have allowed inference beyond whether a patient was prescribed 

a HF-related medication, to whether this was optimised. Similarly, HF-specific quality of life metrics 

were not available for this cohort. Collectively this means I have likely been unable to fully account 

for differences in HF severity, where a degree of over-representation of severe disease in the hospital 

pathway may have skewed my observations. Lastly, though diverse in most other ways, the population 

of NWL does not encompass any rural/remote communities, whose experience of community versus 

hospital care may not be represented by our study. Reassuringly, the granularity of clinical coding 

continues to improve and future studies will likely be able to overcome this limitation. 

 

3.5.8 Opportunities 
 

A recent study by Kahn et al. searched primary care EHRs to identify a missed cohort of 

patients with HF, inviting them to a primary-care-based HF service that enabled optimisation of 

prognostic medication and an increase in device prescription.167  Future research could quantify the 

clinical and health economic impact of invited and/or opportunistic screening of an at-risk population 

identified through analysis of population-wide linked datasets. Emerging point-of-care testing 

technologies168 could underpin a programme comparable to the NHS Diabetes Prevention 

Programme and the NHS Health Check.  Ultimately, despite progress in therapies and evidence for 

best-practice, the outlook for HF remains bleak, and community pathways may be best positioned to 

address this if powered by disruptive innovations that leverage integrated data and technology. 

 

3.5.9 Health economic model for AI-ECG  
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Many patients have primary care encounters before their index HF diagnosis, with the 

expectation that most would have had a stethoscope examination, prompted by symptoms such as 

breathlessness. In the context of the findings described in the previous chapter – that AI-ECG applied 

to single-lead ECG recorded by the Eko DUO poses a quick, accurate, and reliable point-of-care 

screening test for HFrEF – the findings from this chapter enable the generation of a health economic 

model to inform whether investment in this technology would be a good use of NHS funding. My 

choice of a cost-consequence analysis was informed by this already being a UK government 

recommended tool for such evaluation of DHTs.157  

For this health economic model, I consider an example cohort of 6,000 patients, close to the 

number of patients diagnosed with HF every 12 months in NWL. My study would suggest that the 

following: 

-  70% (4,200) can be expected to be diagnosed through hospital admission;  

- 30% (1,800) will be diagnosed through community pathways. 

Next, I assume a conservative price-point for the hardware and AI-ECG license and further 

considerations around amortization, as follows: 

- Eko DUO hardware at full published list price =£320per unit (before any bulk discount) 

-  Access to AI-ECG software at a subscription price of £600 per license, per annum, per 

primary care network (consortia of geographically close GPs working together and sharing 

resource and facilities). 

- There are 400 GP practices in NWL, split into 49 primary care networks (i.e., multiple GP 

practices can use the same license) 

- 3 year lifespan of hardware 
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Given the above variables, table 3.10 outlines a conservative health economic model anchored in 

AI-ECG yielding a 10% reduction in index diagnosis being made through hospital admission.  

Health economic model for AI-ECG with Eko DUO in context of 6,000 HF cases p/a in NWL 

400 (GP practices in NWL) x 2 devices per practice = 800 devices @ £320 per device = £256,000 

Expense year Cost 70:30 split 60:40 split Cost differential 

Year 1 £256,000 (one-off hardware cost) 

£29,000 (license) 

––––––––––––– 

£285,000 total 

4,200 x £2,500 

 

 

= £10,500,000 

3,600 x £2,500 

 

 

= £9,000,000 

 

 

 

 

10,500,000 - 9,000,000 = £1,500,000 

- 285,000 (Y1 cost) 
 

= £1,215,000 NET SAVING 

 

Year 2, 3, 4... 

 

 

£29,000 (license) 

4,200 x £2,500 

 

= £10,500,000 

3,600 x £2,500 

 

= £9,000,000 

£1,500,000 

- £29,000 
-  

= £1,471,000 NET SAVING 

 

Table 3.10 Health economic model for deployment of AI-ECG in North West London primary 
care. 

 

Importantly, though conservative, this model makes several assumptions and has several 

limitations. First, despite being a putatively quick, accurate, and easy-to-use tool, it remains uncertain 

how many patients at risk of HF seen in primary care where an Eko DUO is available would receive 

an examination with this. Second, though impressive, the performance and accuracy of the tool is not 

perfect. Third, currently the tool is tuned to specifically detect HFrEF; though as discussed, these 

patients account for a disproportionate amount of the HF cost burden.  Finally, there will be 

unanticipated downstream costs e.g. unnecessary investigation of patients who had a false positive AI-

ECG result. However, even when taking an even more conservative approach focused on “breaking 

even”, the health economic case remains compelling. Considering the Year 1 outlay of £285,000 for 
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hardware, offsetting this cost would require an increase of only 114 patients (in a 2.5 million 

population) diagnosed through community pathways in 12 months. This represents a shift in the ratio 

of hospital to community pathway diagnoses from 70:30 to 68:32 i.e. breaking even requires only a 

2% increase in the detection of HF cases through community pathways. Overall, and particularly given 

my study’s finding that this pathway also unlocks a significant early survival benefit, the outlined health 

economic model for AI-ECG with Eko DUO forms the foundation of an argument that this DHT 

could offer substantial value for money.  
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3.6 Chapter Conclusion 
 

Index diagnosis of HF through inpatient hospital admission continues to predominate and is 

associated with a significantly increased short-term risk of mortality and substantially higher long-term 

cost compared with community pathways. The results from this chapter highlight the need and 

opportunity for new approaches to increase community-based diagnoses, which may unlock longer, 

healthier lives for patients while substantially reducing NHS cost burden. AI-ECG with the Eko DUO 

offers a potentially cost-effective solution towards achieving this.  
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4 Patient Self-administered Screening for 
Cardiovascular Disease Using Artificial 
Intelligence in the Home 

 

Previous chapters described evidence for the clinical and health economic potential of AI-ECG administered by a 

device such as an ECG-enabled stethoscope. Findings also included strong correlation between AI-ECG results obtained 

directly by clinical operators and patients during self-examination. This poses an opportunity for a new clinical screening 

pathway: decentralised, patient self-administered screening for cardiovascular disease using AI. However, such an 

approach poses unprecedented ethical questions, which are addressed in this chapter through a normative ethical analysis. 

This work draws on my book chapter edited by Harvard Law School, in press with Cambridge University Press.  
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4.1 Abstract 
 

The UK government recently committed £250M across the National Health Service (NHS) 

towards the deployment of technologies that leverage artificial intelligence (AI). Many since funded 

technologies focused on home-based diagnosis. One particularly compelling exploratory use case 

involves patient-recorded cardiac waveforms that are interpreted real-time by AI to predict the 

presence of common, clinically actionable cardiovascular diseases. In this case, both 

electrocardiograms (ECG) and phonocardiograms (heart sounds) are recorded by a handheld device 

applied by the patient in a self-administered stethoscope examination, communicating via smartphone, 

with subsequent AI interpretation of waveforms.  

Previous studies suggest the accuracy of this technology is commensurate with or superior to 

many of the established national screening programmes for other diseases. However, deployment of 

such a home-based screening programme combining hardware, AI, and a cloud-based digital platform 

for administration – all anchored in patient self-administration – raises ethical challenges including 

considerations of equity, agency, data rights, and ultimately responsibility for safe, effective, and 

trustworthy implementation of this powerful but novel diagnostic pathway. For example, the NHS 

cares for patients across disparate geographies and sociodemographic backgrounds, therefore 

successful deployment depends on universal smartphone access, internet connection, and sufficient 

digital literacy. Variability across these metrics may exacerbate existing disparities in health care access 

and outcomes. Moreover, meaningful use of these devices without direct clinician involvement 

ultimately offloads responsibility for conducting a diagnostic test with potentially life-threatening 

consequences onto the patient. Use of patients’ own smartphones and internet connections should 

also meet the data security standards expected of NHS activity. Additional complexity arises from 

rapidly evolving questions around data ‘ownership’, by European law a term applicable only to the 
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patient from whom the data originate, when ‘controllership’ of patient data falls to commercial entities. 

Clarifying the appropriate consent mechanism – and the data usage to which it extends – requires 

reconciliation of commercial, patient, and health system rights and obligations.  

Oriented to this real-world clinical setting, I evaluate the ethical considerations of extending 

home-based, self-administered AI diagnostics in the NHS. I discuss the complex field of stakeholders, 

including patients, academia, and industry, all ultimately beholden to governmental entities. I propose 

a multi-agency approach to balance permissive regulation and deployment (to align with the speed of 

innovation) against ethical and statutory obligations to safeguard public health. I further argue that a 

strong centralised approach to carefully evaluating and integrating home-based AI diagnostics is 

necessary to balance the ethical considerations outlined above. I conclude with specific policy 

recommendations applicable to NHS stewardship of this novel diagnostic pathway in a manner that 

preserves and promotes trust, patient engagement, and public health. 
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4.2 Introduction 
 

The United Kingdom (UK) government has committed £250M across the National Health 

Service (NHS) towards the deployment of technologies that leverage artificial intelligence (AI). Many 

since-funded technologies focus on evidence generation for home-based diagnosis.169 One compelling 

potential use case, as detailed in previous chapters, involves patient-recorded cardiac waveforms that 

are interpreted real-time by AI to predict the presence of common, clinically actionable cardiovascular 

diseases. In this case, both electrocardiograms (ECG) and phonocardiograms (heart sounds) are 

recorded by a handheld device applied by the patient in a self-administered stethoscope examination, 

communicating via smartphone with subsequent AI interpretation of waveforms. Validation studies 

suggest the accuracy of this technology approaches or exceeds many established national screening 

programmes for other diseases.168 More broadly, the combination of a new device (a modified 

handheld stethoscope), novel AI algorithms, and communication via smartphone coalesce into a 

technology for delivering a distinct clinical care pathway that may become increasingly prevalent across 

multiple disease areas. 

However, deployment of a home-based screening programme combining hardware, AI, and a 

cloud-based digital platform for administration – all anchored in patient self-administration – raises 

distinct ethical challenges for safe, effective, and trustworthy implementation. This chapter approaches 

these concerns in five parts. First, I briefly outline the organisational structure of the NHS and 

associated regulatory bodies responsible for evaluating efficacy and safety of digital health technologies 

(DHTs). Second, I highlight NHS’ plans to prioritise digital health and the specific role of AI in 

advancing this goal, with a focus on cardiovascular disease. Third, I review the clinical imperative for 

early diagnosis of heart failure (HF) in community settings, and the established clinical evidence 

supporting the use of a novel AI-ECG based tool to do so. Fourth, I examine the ethical concerns 
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with the AI-ECG diagnostic pathway according to considerations of equity, agency, and data rights 

across key stakeholders. Lastly, I propose a multi-agency strategy anchored in a purposefully 

centralised view of this novel diagnostic pathway – with the goal of preserving and promoting trust, 

patient engagement, and public health. 

 

4.2.1 The UK National Health Service and Responsible Agencies 
 

The UK NHS is an exemplar of a government-funded health system where the payor is also 

the provider of services. The NHS continues to operate on three founding principles: 1. To meet the 

needs of everyone, 2. To be free at the point of delivery, 3. To be based on clinical need, not ability 

to pay. The NHS is funded through general taxation, and every decade since its inception has brought 

challenges through shifts in policy, clinical priorities, and subsequently, size and distribution of budget. 

The UK government has devolved responsibility for the NHS to the Scottish Government, Welsh 

Government, and Northern Irish Assembly; accordingly, NHS England, NHS Wales, NHS Scotland, 

and Northern Ireland Health and Social Care Services provide health services in the UK. For the 

purposes of this chapter, I focus on England, where NHS England and NHS Improvement are the 

responsible government entities for delivery of healthcare.  

Similar to health systems globally, the NHS has been slow to catch up with the momentum of 

technological adoption seen in non-health industries.170,171 The increasing societal and political 

pressure to modernise the NHS in this way led to formation of agencies tasked with this specific 

mandate, each of which plays a key role in evaluating and deploying the technology at issue in this 

chapter. Since re-integrated into NHS England, “NHSX” was founded as its own entity in 2019, with 

the aim of setting national policy and developing best practice across technology, digital and data, 

including data sharing and transparency. Closely related, NHS Digital (established in 2016) is the 
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national provider of information, data and IT systems for commissioners, analysts and clinicians in 

health and social care in England. Additionally, the NHS Accelerated Access Collaborative works to 

bring together industry, government, regulators, patients, and the NHS to remove barriers and 

accelerate the introduction of innovative new treatments and diagnostics capable of transforming care 

delivery. 

From a regulatory perspective, the Medicines and Healthcare products Regulatory Agency 

(MHRA) is responsible for ensuring that medicines and medical devices (including software) work 

and are acceptably safe within the scope of their labelled indications. The MHRA grants authorisation 

for UK market entry in a similar fashion to the European Medicines Agency for the European Union, 

and the Food and Drug Administration in the United States. Post-Brexit, the UK has moved away 

from Conformitè Europëenne marking, instead requiring UK Conformity Assessed for new products, 

though the underlying risk-based classification system remains similar to international counterparts.  

In practice, most diagnostic technology (including ECG machines, stethoscopes, and similar) 

would be considered relatively low-risk devices compared with invasive/implantable technology, or 

those that are explicitly life-sustaining. One implication of this risk tiering is that unlike a new 

implanted cardiac device such as a novel pacemaker or coronary stent, diagnostic technology 

(including AI-ECG) would not be expected to demonstrate safety and effectiveness prior to legal 

marketing through a large trial with hard clinical endpoints.  

Once a medical device receives regulatory authorization from the MHRA, the UK takes 

additional steps to determine whether and what the NHS should pay for the service at issue. The 

National Institute for Health and Clinical Excellence (NICE) evaluates the clinical and cost-

effectiveness of drugs, health technologies and clinical practice for the NHS. Rather than negotiate 

prices, NICE makes recommendations for system-wide funding, and therefore, deployment, 
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principally informed by tools such as quality adjusted life years. In response to the increasing number 

and complexity of DHTs, NICE partnered with NHS England to develop standards that aim to ensure 

new digital health technologies are clinically effective and offer economic value. The subsequent 

evidence standards framework for digital health technologies aims to inform digital health innovators 

on NHS decision making, support NHS commissioners (executors of local funding) in exacting 

appropriate evidence, and be dynamic and value driven, with a focus on offering maximal value to 

patients.42 This backdrop informed the methodological approach for the health economic modelling 

of AI-ECG and an ECG-enabled stethoscope outlined in the previous chapter.  

 Summing the role of the bodies above, as applied to a novel AI-ECG device, I observe the 

following: Manufacturers seeking marketing authority for new digital health tools primarily focused 

on diagnosis rather than treatment of a specific condition (like HF), must meet the safety and 

effectiveness standards of the MHRA – but this does not necessarily (or likely) require a dedicated 

clinical trial illustrating real-world clinical value. By contrast, convincing the NHS to pay for the 

technology may require more comprehensive evidence sufficient to sway NICE, which is empowered 

to take a more holistic view of the costs and potential benefits of novel health tools – including digital 

health tools increasingly supported by NHS sub-agencies tasked with advancing evidence generation 

and implementation.  

 

4.2.2 Policy Prioritisation Towards a Digital NHS 
 

 The NHS Long Term Plan, published in 2019, was drawn up by frontline staff, patient groups, 

and national experts to define key challenges and set an ambitious but realistic vision for the next ten 

years of health and social care in the UK.27 “Digital transformation” is one of the core pillars of the 

Plan, outlining a broad set of deliverables, including “providing digital services and tools to give people 
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more control over their own health and the care they receive from the NHS.”  The Plan singles out 

AI as a key driver for digital transformation. Specifically, “use of decision support and AI to help 

clinicians in applying best practice, eliminate unwarranted variation across the whole pathway of care, 

and support patients in managing their health and condition.” Here I already note implicit ethical 

principles: reducing unjustified variability in care (as a consideration of justice); and promoting patient 

autonomy by disseminating diagnostic capabilities that otherwise may be accessible only behind layers 

of clinical or administrative gatekeeping. In this chapter I further discuss whether either of these or 

other ethical targets are, on balance, advanced by AI-ECG. 

Although well-known proponents of AI such as Dr Eric Topol argue that it will “help make 

healthcare human again”58, including through liberating staff of tedious administrative tasks, this shift 

towards increasing use of AI in the NHS may pose challenges to an unprepared workforce, including 

uncertainty about real-world use and outcomes associated with AI-driven diagnostics.73 Thus, at its 

inception in 2019, NHSX allocated £250 million towards the NHS AI Lab, with over half of this 

funding marked for deployment to support the testing, evaluation, and scaling of promising AI-driven 

technologies through the AI in Health and Care Award (AI Award). With a mission statement to 

“drive the digital transformation of the NHS and social care”, the AI Award sought to fund 

technologies specifically addressing public health priorities outlined in the NHS Long Term Plan. To 

date, only a handful of such AI technologies has achieved both MHRA approval and NICE 

endorsement, therefore widespread use remains limited to a few examples, with important ethical 

considerations still lacking exploration through empirical data. Among the most prominent successful 

deployments of a DHT using AI, HeartFlow’s (HeartFlow Inc., California, US) technology uses 

computed tomography images to create a personalised 3D model of the heart that shows how blood 

is flowing around it, allowing blockages due to coronary artery disease to be characterised non-

invasively – without the need for a comparatively more expensive angiogram procedure.172  
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  Within the broad remit to pursue “digital transformation”, cardiovascular disease is 

emphasised throughout the Long Term Plan as a priority target for public health interventions. There 

is a particular focus on HF. The symptomatic burden and mortality risks of HF remain worse than 

many common, serious cancers. Among all chronic conditions, HF has the greatest impact on quality 

of life173, and costs the National Health Service (NHS) over £625 million per year – 4% of its annual 

budget174, with HF-related hospital admissions and related demand for social care expected to increase 

by 50% by 2040.4  

 It is critical to emphasise that HF is a syndrome made by clinical diagnosis, and not clearly 

established by any single diagnostic test.1 While the exact combination of data will vary by context, a 

clinical diagnosis of HF may include integration of patients’ symptoms, physical exam (including 

traditional stethoscope auscultation of the heart and lungs), measurement of peripheral blood pressure 

and intracardiac chamber pressure (either invasively or though other techniques), plasma biomarkers, 

ECG findings, radiographs, and cardiac ultrasound data. Individually, compared with a clinical 

diagnosis gold standard, the test characteristics of each modality above vary widely, with sensitivity 

generally higher than specificity.175,176 

Traditionally, HF has been divided into distinct phenotypes based on the measurement of left 

ventricular ejection fraction (LVEF), a normally distributed variable. This is observed and typically 

estimated visually on ultrasound (echocardiography), though other imaging modalities such as nuclear 

tracer technology, magnetic resonance, direct ventricular angiography, or computed tomography may 

also be used to calculate LVEF. HF spans the range of LVEF, where LVEF ≤40% is the most 

clinically severe – while also being the only subtype of heart failure with multiple proven therapies for 

improving prognosis.177 
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Similar to most chronic diseases in high-income countries, the burden of HF is greatest in 

those most deprived and tends to have an earlier age of onset in minority ethnic groups, who 

experience worse HF related outcomes.178 Therefore HF generally and the LVEF ≤40% subtype in 

particularly present attractive targets for disseminated technology with the potential to speed up 

diagnosis and direct patients towards proven therapies, particularly if this mitigates the social 

determinants of health driving observed disparities in care. 

 

IV. AI-ECG for Community Diagnosis of Heart Failure 

The NHS Long Term Plan states that “80% of heart failure is currently diagnosed in hospital, 

despite 40% of patients having symptoms that should have triggered an earlier assessment.” The 

previous chapter analysed contemporary data and concluded that this imbalance persists. Subsequently 

the Plan’s advocacy for “using a proactive population health approach focused on … earlier detection 

and intervention to treat undiagnosed disorders, such as heart failure” remains relevant.27 Given the 

epidemiology of the problem (including its disparate impact across communities) and imperative for 

practical screening, a tool supporting community-based diagnosis of HF has the potential to be both 

clinically impactful and economically attractive. The myriad diagnostics applicable to HF described 

above, however, variously require phlebotomy, specialty imaging, and clinical interpretation tying 

together signs and symptoms into a clinical syndrome. AI-supported diagnosis may overcome these 

limitations. 

As broadly defined previously, AI is the ability of computer algorithms to interpret data at 

human- or super-human levels of performance.51 Enabled in the last decade through the convergence 

of increased computing power, massive ‘big’ datasets, and improved data science techniques for 

machine learning, this decade continues the trend for accelerated development of AI-driven 
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technologies with health-related applications. The near ubiquity of ECGs in well-phenotyped 

cardiology cohorts supports the training and testing of AI algorithms among tens of thousands of 

patients, with additional opportunities for external validation. This has resulted in both clinical and, 

increasingly, consumer-facing applications, where AI can interrogate ECGs and accurately identify the 

presence, for example, of heart rhythm disturbances, demographic details, and – as discovered recently 

– findings suggestive of HF.97,137  

To recapitulate, the standard 12-lead ECG waveforms (requiring attachment of multiple 

electrodes to the patient) have been described as an accurate digital biomarker for the stages of heart 

failure. Previous research by the Mayo Clinic showed that an AI algorithm (AI-ECG) could detect 

LVEF of 35% or lower with 86% sensitivity and 86% specificity.92 This AI-ECG model has since 

been validated further in cohorts in the United States and Russia.94,95 More recently (2021), a cluster 

randomised controlled trial made AI-ECG accessible for 12-lead ECG interpretation in a cohort of 

Mayo Clinic primary care practices, highlighting an increased rate of detection of HF.97 However, 

access to 12-lead ECG machines is limited by factors including cost and expertise.  

The emergence of ECG-enabled stethoscopes, capable of recording single-lead ECGs during 

contact for routine auscultation (listening), highlighted an opportunity to apply AI-ECG for point-of-

care screening. The Eko DUO (Eko Health, Oakland, CA, US) is one example of such an ECG-

enabled stethoscope, taking the traditional form factor of earpieces connected to tubing that plugs 

into a device at the end (the “bell”). Detaching the tubing leaves a small mobile-phone-sized device 

embedded with sensors for recording both ECG (electrodes) and phonocardiogram (heart sounds, 

using in-built microphone). Connectivity via Bluetooth allows subsequent live streaming of both ECG 

and phonocardiographic waveforms to a user's smartphone and the Eko app, and further onwards 

transmission to any remote recipient via a telemedicine dashboard. Waveforms can also be recorded 
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and transmitted to cloud-based infrastructure, allowing them to be analysed by cloud-based AI 

algorithms, such as AI-ECG.  

Though single-lead ECG-enabled stethoscopes offer advantages over 12-lead recordings, 

including reduced cost, remote connectivity, ease-of-use, speed, and adaptation to workflow, the utility 

of AI depends on single-lead ECG input alone being adequate. Chapter 2 described results of my 

study that recruited over 1,000 patients attending for echocardiography, where the echo LVEF result 

was used as the ‘ground truth’ against which AI-ECG performance was compared. This study 

demonstrated incremental accuracy of the AI-ECG algorithm when just one 15s ECG recording 

(sensitivity 85%, specificity 70%) was increased further with two (sensitivity 92%, specificity 80%). 

Importantly, the study showed there was no observed difference in performance of AI-ECG across 

15 operators with varying clinical experience, with no apparent impact of the subtle variation in the 

exact positioning of the device.168 Lastly, excellent consistency (reproducibility) between clinical user 

and patient self-administered recordings was also observed. 

While the current programmatic focus of the Long Term Plan is on driving up community 

HF diagnoses (as supported by results from Chapter 3), AI can in theory also be applied to ECG and 

phonocardiographic waveforms (heart sounds) to inform on the presence of two further public health 

priorities within cardiovascular disease: atrial fibrillation (AF), a common irregular heart rhythm; and 

valvular heart disease, typified by presence of heart murmurs. Both of these conditions can be both 

causes and effects of HF.179,180 Therefore, with ECG and PCG recorded in combination, a 15-second 

examination with an ECG-enabled smart stethoscope may offer a three-in-one screening test for 

substantial drivers of cardiovascular morbidity and mortality and systemically important drivers of 

health care costs.  
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The proposed approach for embarking on the first stage of deploying such a screening 

pathway would be to anchor in primary care, given the high rates of undiagnosed HF (as outlined in 

Chapter 3) and further cardiovascular disease (including AF and valvular disease) in communities 

across England.181 The early stages of this pathway could build on successful approaches that have 

interrogated NHS general practitioner electronic health records, with application of search logic to 

identify those at risk for HF (e.g. risk factors such as hypertension, diabetes, previous myocardial 

infarction). This would generate a list of patients, who are subsequently contacted to be offered at-

home screening. Informed by existing screening programmes in the NHS, those patients agreeing to 

participate would be posted a small parcel containing an ECG-enabled stethoscope (Eko DUO), a 4G 

connected smartphone with pre-installed app for AI-ECG (Eko App), and a simple instruction leaflet 

on how to perform self-recording (similar to supplementary material 10.4). It would also be possible 

for patients to download the appropriate app directly to their own phone and conduct the recording 

this way instead, with all data stored on a cloud-based server (the expectation would be that no data 

is stored on any phone). Results of AI interpretation would be reviewed centrally by a team of 

clinicians. Patients whose data, as interpreted by AI, suggests the presence of HF, AF, or valvular 

heart disease would be invited for further investigation in line with established NICE clinical pathways 

(figure 4.1).  
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Figure 4.1 Outline for proposed patient self-administered screening pathway using AI-ECG and 

ECG-enabled smart stethoscope. 

 

This scenario sets the scene for a novel population health intervention that would draw on a 

technology-driven screening test, initiated in the patient’s home, by the patient themselves. The 

current focus on common and costly cardiovascular conditions serendipitously combines available 
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technology and clinical expertise and compelling expected benefits; however, more opportunities for 

similar decentralised, patient-activated screening with digital diagnostics will surely follow if AI-ECG 

proves tractable. Notably, here I have described what I believe to be the first application of “super-

human” AI – accurately inferring the presence of HF from single-lead ECG was previously thought 

impossible – with the potential for meeting a major unmet need through a clinical pathway that scales 

access to this potentially transformative diagnostic.   

 

4.3 Ethical Considerations for Self-Administered Cardiovascular 
Disease Screening at Home 

 

 The widespread enthusiasm for community, patient-driven cardiovascular screening reflects 

not just clinical expediency but recognition that this pathway may support normative public health 

goals, particularly around equity and patient empowerment. Despite these good-faith expectations, 

deployment of such a home-based screening programme combining hardware, AI, and a cloud-based 

digital platform for administration – all hinging on patient self-administration – raises distinct ethical 

challenges. In this section, I explore the ethical arguments in favour of a patient self-administered AI-

ECG programme, as well its potential pitfalls.  

 

4.3.1 Equity 
 

 One durable and compelling argument supporting AI-ECG arises from well-known disparities 

in cardiovascular disease and treatment. Cardiovascular disease follows a social gradient; the most 

disadvantaged are the most affected, where inequitable access to health services is a substantial driver 

of poor outcomes. This is particularly pronounced for HF, where under-diagnosis in England is most 
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severe in the poorest geographies (e.g. Chapter 3, figure 3.5). Consistent with this observation, Chapter 

3 highlighted those receiving an index diagnosis of HF through emergency hospital admission rather 

than through primary care were more likely to be socioeconomically deprived. Some of this can be 

attributed to the persistence in the NHS of the “inverse care law”, where communities most in need 

of good healthcare are those least likely to receive it e.g. the best hospitals are in the wealthiest cities. 

As a key social determinant of health, nearly a million people in England (2%) have poor English 

language skills, related to lower uptake of preventative healthcare and subsequently worse health 

outcomes.182 Community deployment of AI-ECG potentially attenuates these disparities in several 

ways. First, targeted screening based on risk factors (such as high blood pressure and diabetes) will, 

based on epidemiologic trends, necessarily and fruitfully be enriched for vulnerable patient groups in 

which these conditions are more prevalent.167 These same patients may also be less able to access 

traditional facility-based cardiac testing, which by definition requires ease of transport, schedule 

flexibility (including forgiving work and childcare arrangements), and availability of translation services 

– all established barriers to accessing healthcare.183-185 AI-ECG may overcome these concerns for the 

patients most in need. 

Second, AI-ECG administered as proposed explicitly transfers a key gatekeeping diagnostic 

screen away from the cognitive biases of traditional bedside medicine. Cross-cultural challenges in 

subjective diagnosis and treatment escalation are well documented, including in HF across a spectrum 

of disease severity ranging from outpatient symptoms ascertainment to referral for advanced cardiac 

therapies and even transplant.96,186 AI-ECG may overcome the biases embedded even in traditional 

screening by binarizing complex syndromic diagnoses into an objective, accessible, and clearly 

documented test finding that is programmatically entwined with subsequent specialist referral.  
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 These supporting arguments grounded in equity may be balanced by equally salient concerns. 

Even a charitable interpretation of the proposed AI-ECG pathway assumes a relatively savvy, engaged, 

and motivated patient. The ability to post an AI-ECG screening package widely to homes is just the 

first step in a series of necessary steps: opening and setting up the screening kit, including the phone 

and ECG-enabled stethoscope, successfully activating the device, and recording a high-quality tracing 

that is then processed centrally without data loss. While the early experience using this technology in 

various settings has been reassuring (including successful training of non-physicians and high 

reproducibility and correlation with patient’s self-recordings), it remains uncertain whether the 

established digital divide will complicate equitable application of AI-ECG screening. Assuming equal 

(or even favourably targeted) access to the technology, are patients able to use it, and do they want to? 

The last point is critical: in the UK as well as the United States, trust in health care varies considerably 

and (broadly speaking) tracks unfortunately and inversely with clinical need.187,188 Importantly, certain 

characteristics traditionally associated with the digital divide such as older age should not pre-empt a 

patient’s inclination to participate.189,190 I have limited data to anchor expectations that all affected 

patient communities will eagerly pursue this screening option. Some optimism may be drawn from 

the study described in Chapter 2, where only 26 out of 1,050 – 2.5% – of patients approached and 

informed of the AI-ECG study declined to participate, in an overall highly ethnically diverse cohort.  

Indeed, one well-grounded reason for suspicion recalls another problem for equity-driven 

enthusiasm for AI-ECG, which is the training and validation of AI algorithms themselves. The “black 

box” nature of some forms of AI, where the reasons for model prediction cannot easily be inferred, 

has appropriately led to concerns over insidious algorithmic bias and subsequent reservations around 

deploying these tools for patient care.191,192 Even low-tech HF screening confronts this same problem, 

as, for example, the most widely-used biomarker for HF diagnosis (natriuretic peptide blood test) has 

well-known performance variability according to age, sex, ethnicity, patient weight, renal function, and 
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clinical comorbidities.1 Conversely, results described in Chapter 2 suggest that AI-ECG for HF 

detection does not exhibit similar biases. It may still be the case that biases exist, but that they require 

further large-scale deployment to manifest.  The proposed clinical pathway would likely accumulate a 

specific form of “ethical debt”, precipitated by the reality that some ethical problems with AI DHTs 

will only be detected after they are deployed.76 Who pays for ethical debt in AI? The immediate 

argument would seem to favour that any agency opting to design, develop, and deploy and AI 

technology without proactively identifying potential ethical concerns should bear responsibility for 

untoward consequences. Further problems may arise through the risk of “drift” with AI algorithms. 

ML algorithms use data describing historical episodes, variables, and data formats to make ahead-of-

time predictions of clinical outcomes. However, clinical settings are dynamic environments and the 

underlying nature of data and data distributions characterising episodes can change with time (data 

drift), and so can the relationship between episode characteristics and associated clinical outcomes 

(concept drift). This can in part be summed up by a quote on the Covid-19 pandemic’s impact on AI: 

“Machine-learning models trained on normal human behaviour are now finding that normal has 

changed, and some are no longer working as they should.”193  

 To address these concerns, I propose several programmatic features as essential and 

intentional for reinforcing the potential of wide-scale screening to promote equity. First, it is 

imperative on programme managers to prominently collect self-identified race, ethnicity, and other 

socioeconomic data (e.g., language, education) among all participants at each level of outreach – 

screened, invited, agreed, successfully tested, identified as “positive”, referred for specialist evaluation, 

and downstream clinical results. Disproportionate representation at each level, and differential drop-

out at each step, must be explored but can only begin with high-quality patient-level data to inform 

analyses and programme refinement. The Discover NOW dataset used for analysis in Chapter 3 
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exemplifies the type of data infrastructure required – granular, updating real-time, and curated for 

efficient analyses.  

An important overlapping point of data capture might include assessment of digital literacy 

via survey, establishing the baseline capabilities of each patient, and developing appropriate mitigation 

strategies. Overall, instruction materials and technology components such as the app should be made 

available in multiple languages and font sizes (for those with visual impairments), with emphasis on 

using simple language and preferentially using clear figures/graphics. Conveying simplicity and ease-

of-use through such user-centred design assuages a patient’s potentially low confidence in self-

administration and, beyond uptake alone, helps maximise collection of adequate quality data to inform 

a patient’s screening outcome.194,195 Trust in AI-ECG may be further buttressed in several ways, 

recognising the resource limitations available for screening programmes generally. One option may be 

providing accommodation to sceptical patients in a way that still provides suitable opportunity to 

participate through alternative means. This could simply be attending for an in-person appointment 

to have the AI-ECG examination performed by a healthcare professional, or the be given the 

opportunity to nominate an individual e.g. a family member or friend to apply the screening test to 

the patient.  

 The centralised administration of NHS screening programmes by NHS England paired with 

NHS Digital’s repository data on uptake of screening offers granular insights to anticipate and plan 

for geographies and groups at risk of low uptake. I therefore propose enshrining a data monitoring 

module into the at-home AI-ECG screening protocol, with prespecified targets for uptake and defined 

mitigation strategies – importantly, if needed, with available funding to deploy this. This monitoring 

is feasible due to the inherent connectivity of the technology driving AI-ECG, drawing on 

dashboarded reports of summary metadata that can highlight disparities in access. However, a more 
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proactive approach to targeting individuals within a population with certain characteristics needs to 

be balanced against the risk of stigmatisation196,197, and ultimately potential loss of trust that may 

further worsen the cardiovascular outcomes seeking to be improved. 

 Lastly, equity concerns around algorithmic performance are necessarily empirical questions 

that will also benefit from patient-level data collection. I acknowledge that moving from research in 

the form of prospective validation studies (Chapter 2) to deployment for patient care requires 

judgment in the absence of clear consensus, within the NHS or more globally, around the minimum 

established scrutiny for bias. To avoid these potentially impactful innovations remaining in the domain 

of research, and to anticipate wide-reaching implications of a deployment found to exhibit bias 

retrospectively, one possible solution would be to, by design, prospectively monitor for inconsistent 

test performance. False positives can be measured through linkage to primary care EHR data for 

outcomes of downstream NICE investigations for HF, atrial fibrillation, or valvular heart disease – 

comparing to the “ground truth”. For false negatives, this may require a more expansive approach in 

the form of inviting a small sample of patients with negative AI screening tests for “quality control” 

next-step investigations (echocardiogram or 12-lead ECG). All of this risks adding complexity and 

therefore cost to a pathway seeking to simplify and save money. However, given this proposed 

programme’s position at the vanguard of AI deployments for health, a permissive approach balanced 

with rigorous checkpoints for the pitfalls of AI technology may yield lessons to help blueprint best-

practice and build confidence for further applications.  

 

4.3.2 Agency 
 

 Another positive argument for AI-ECG screening aligns with trends in promoting agency, 

understood here as patient empowerment, particularly around the use of digital devices to measure, 
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monitor, and manage one’s own health care – particularly in cardiovascular disease. Enthusiastic 

commercial uptake of fitness wearables, for example, moved quickly past counting steps to 

incorporate heart rhythm monitoring, leveraging either patient-activated ECG electrodes (as in the 

Apple Watch and Garmin watch) or alternative approaches that leverage plethysmography to identify 

irregular heartbeats suggestive of atrial fibrillation.198 Testing of these distributed technologies has 

shown mixed results, with the yield of positive cases necessarily depending on the population at 

issue.199,200 Recalling the equity concerns above, the use of devices such as the Eko DUO may be more 

immediately popular notion among younger and healthier patients, in whom true positive diagnoses 

may be uncommon. Yet targeted and invited screening with AI-ECG may balance these concerns 

through enriching the population at risk by invitation, while preserving patient activation and 

engagement. While unproven in this context, it may be that patients who effectively self-diagnose their 

serious yet treatable conditions transfer that agency into therapeutic engagement201, which for both 

HF and AF remain essential and intractable problems.202,203 Both conditions require sustained attention 

to longitudinal medical therapy, particularly for HF patients in whom careful dose-escalation of multi-

drug regimens are critical for reducing morbidity and mortality. Among patients with atrial fibrillation, 

only approximately half of eligible patients take guideline-recommended anticoagulation medication 

for stroke prevention, despite decades of public health outreach.204 There is some appeal, then, to 

activating patients in the detection and treatment of conditions that might be variously and unhelpfully 

viewed by them as fait accompli, genetically determined, or simply random. 

 Realistic concerns about agency extend beyond the previous warnings about digital literacy, 

access to reliable internet, and language barriers to ask more fundamental questions about whether 

patients actually want to assume this central role in their own health care. A key parallel here is the 

advent of mandates for shared decision-making in cardiovascular disease, particularly in the United 

States where federal law now requires patients considering certain procedures for atrial fibrillation and 
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HF management to incorporate “evidence based shared decision-making tools” in their treatment 

choices.205,206 Several observers have identified problems with these mandates207, including 

observations that for life-threatening conditions, patients may prefer a stronger clinician role in making 

recommendations even for choices that necessarily incorporate patients’ values and preferences. 

Considering the AI-ECG context, patients may reasonably ask if other screening options might meet 

the same goal without shifting such a key role into patients’ hands (literally). Relatedly, much of this 

care pathway depends on phones/apps and the digital stethoscope functioning properly, thereby 

redistributing responsibility for trouble-shooting either to a device manufacturer, the app 

developer/manager, or simply the patient. For patients this risks potential feelings of guilt around 

“doing it wrong” or failing to do it at all. By contrast, if a patient is attending hospital for an 

echocardiogram to screen for cardiovascular disease, the responsibility for resolving faulty data capture 

sits firmly with the immediate NHS care provider.  

 Another potentially insidious consequence of distributed screening via AI-ECG focuses not 

on putting responsibility on patients, but on taking it away from clinicians. While subtle, shifting the 

cognitive work of integrating complex signs and symptoms into a syndromic diagnosis like HF, or 

even sleuthing more obscure manifestations of atrial fibrillation to make that diagnosis, may have 

unwelcome implications for clinicians’ diagnostic skills. Reducing opportunities for bedside physical 

exam diagnoses of HF, valvular disease, or atrial fibrillation may subtly diminish the “reinforcement 

learning” commonly understood to be a cornerstone of clinicians’ training and lifelong practice.208 I 

would emphasise that this is not just whimsical nostalgia for a more Oslerian time in medicine, but a 

genuine worry about reductionism through algorithmic diagnosis that binarises complex constellations 

of findings into simple yes/no diagnoses (AI-ECG, strictly speaking, only diagnoses reduced LVEF, 

which is not clinically equivalent to a diagnosis of HF). Though the likes of Topol advocate for AI as 
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the catalyst for diagnostic clinical excellence58, there is equal concern about an over-reliance on AI will 

progressively deskill and create redundancy in the medical workforce.209,210  

 Resolving these tensions may be possible through seeing the educational opportunity and 

wider clinical application of the hardware enabling AI-ECG. Careful metrics as described previously 

will allow concerns about agency to be considered empirically, at least within the categories of patient 

data collected. Moreover, in the high-income world, the stethoscope has increasingly become an 

ornamental marker of physician status, supplanted by more readily available investigations that provide 

a definitive answer to cardiorespiratory differential diagnoses. Considering a familiar physical form 

factor (stethoscope) that, beyond AI, can now also readily display clinically useful waveforms learned 

about at medical school but rarely visualised or applied at the point of care. Thus, use of AI-ECG may 

have the unanticipated benefit of restoring the status of the stethoscope examination as a valuable 

cornerstone of patient assessment. In a move from science fiction to reality, an AI-enabled technology 

such as the Eko DUO exemplifies how the modern “stethoscope” may become more like the 

Tricorder used in Star Trek, as explored by Topol when recently writing in The Lancet.211  

  

4.3.3 Data Rights 
 

 A central government, NHS-funded public screening programme making use of patients’ own 

smartphones necessarily raises important questions about data rights. Beyond the expected guardrails 

required by general data protection ruling (GDPR) and other UK-specific health data legislation, AI-

ECG introduces additional concerns. One is whether patient participants should be obligated, or 

enrolled via opt-in or opt-out mechanisms, to contribute their health data towards continuous 

refinement of the AI-ECG algorithms themselves. I note that while employed in this context by a 

public agency, the intellectual property for AI-ECG is held by Eko Health, the device manufacturer. 
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Thus while patients and communities may carry some expectation of potential personal or future 

benefit from algorithmic refinement, the more obvious rewards accrue to private entities for use 

elsewhere (but perhaps also the NHS). Ensuring that the NHS realises fair financial value from its 

data has recently been highlighted as a substantial policy failure.212 Exchange of NHS data outside of 

the explicit purpose of supporting direct clinical patient care requires public support. Research shows 

that views about data sharing are mixed and that substantially more research is needed to understand 

these attitudes across all subpopulations.213-215 People have conflicting views about how and under 

what circumstances data should be shared, and many are uncertain about the idea of commercial 

companies having any access to their health data.216 

A related question, particularly for patients who use their own smartphones, involves what 

other data can be folded into the programme either for programme performance analysis or 

algorithmic refinement. For example, HF diagnoses may be meaningfully influenced by patient 

physical activity information, which can be readily gleaned from smartphone statistics even without 

additional wellness apps.217 Incorporating actual wellness data from patients’ phones, including 

information on heart rate, sleep metrics, and other connected wearables could sharply improve the 

accuracy and yield of AI-ECG.  

Another potential opportunity, not lost on myself and my collaborators as overseers for the 

nascent AI-ECG programme, is the possibility that AI-ECG data linked to patients her records might 

support entirely new diagnostic discovery beyond the core cardiovascular conditions at issue. For 

example, the Mayo Clinic team responsible for AI-ECG have also evaluated the ability of ECG signals 

to detect SARS-CoV-2 infection.218 Other conditions may similarly have subtle manifestations in ECG 

waveforms, phonocardiography, or their combination – invisible to humans but not AI – that could 

plausibly emerge from widespread use. Beyond just opt-in or opt-out permissions – known to be 
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problematic for meaningful engagement for patient consent219 – what control ought patients to have 

around the use of their health data in this context? 

 Lastly, AI-ECG will need to consider data security carefully, including the possibility, however 

remote, of malicious intent or motivated intruders into the system. Health data is an asset for cyber 

criminals and can be monetized by trading on underground forums.220 Cyber threat modelling should 

be performed by the device manufacturer early in the design phase to identify possible threats and 

their mitigations.221 Documentation provided about embedded data security features adds valuable 

information to patients that may have concerns about the protection of their personal data, and can 

help in making informed decisions on using AI-ECG. Beyond privacy, threat modelling should also 

account for patient safety, such as from an intruder with access that allows manipulation of code or 

data. For example, it could be possible to manipulate results to deprive selected populations of 

appropriate referral for care. Sabotaging results or causing a denial-of-service situation by flooding the 

system with incorrect data might also cause damage to the reputation of the system in such a way that 

patients and clinicians become wary of using it. 

Cyber incident response preparedness planning is key in dealing with such events.222 This also 

mitigates incidents that cause system malfunctioning not necessarily through malicious intent. 

Misconfigurations, network outages, and software bugs are often the root cause of incidents that at 

first display the same characteristics as a cyber-attack. If the healthcare provider already has people 

and processes in place for responding to technical issues with the devices and apps, adding cyber 

incident response playbooks that describe escalation paths to crisis management adds additional 

safeguards. 

Software is never perfect; the apps as well as the devices will require regular updates to 

capitalise on new features and protect against new software vulnerabilities that may be exploited by 
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an attacker. Software security patches would typically either be pushed out to the devices or require 

user interaction to download and install these. Updates pushed out in the background without any 

notification to the user could prove problematic e.g. causing confusion when the app suddenly 

changed its features, or more importantly, changing the way the app processes patient data in such a 

significant way that it violates the initial user consent. On the other hand, if critical security updates 

need user interaction to install, this might cause a significant delay in time that leaves the device 

vulnerable to cyber-attacks. Put succinctly, anticipating these security and other data rights 

considerations beyond the relatively superficial means of user agreements remains an unmet challenge 

for AI-ECG. 
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4.4 Final recommendations 
 

This chapter outlined a novel clinical pathway to screen for cardiovascular disease using an at 

home, patient self-administered AI technology that can provide a screening capability beyond human 

expertise. I set this against a backdrop of, 1.) a diverse ecosystem of stakeholders impacted by and 

responsible for AI-ECG, spanning patients, NHS clinicians, NHS agencies, and responsible regulatory 

and health economic bodies; and 2.) a health policy landscape eager to progress “use of decision 

support and AI” as part of a wider push to decentralise (modernise) care.27 To underscore the outlined 

considerations of equity, agency, and data rights, I propose two principal recommendations, framed 

against but generalisable beyond the pathway example of AI-ECG.  

First, I advocate for a multi-agency approach that balances permissive regulation and 

deployment – to align with the speed of AI innovation – against ethical and statutory obligations to 

safeguard public health. Bodies such as NHS England, the MHRA, and NICE each have unique 

mandates and responsibilities, but with cross-cutting implications. The clinical and health economic 

case for urgent innovation for unmet needs, such as AI-ECG for HF, is obvious and compelling 

(Chapter 3). Agencies working sequentially delays translating such innovations into clinical 

practice223,224, missing opportunities to avert substantial cardiovascular morbidity and mortality. 

Instead, identification of a potentially transformative technology should trigger a multi-agency 

approach that works together and in parallel to support timely deployment within clinical pathways to 

positively impact patient care. This approach holds not only for initial deployment, but also as 

technology progresses. Here I could consider the challenge of AI algorithms continually iterating 

(improving); for a given version of AI-ECG, the MHRA grants regulatory approval, NICE endorses 

commissioning, and NHS England guides implementation. What happens when an inevitable 

improvement to AI-ECG’s algorithm is available? AI algorithms can continually iterate in parallel with 



 166 

new data, machine learning methodology, and computational power.225,226 Parodying the ship of 

Theseus – a thought experiment asking whether an object that has had all of its original components 

replaced remains the same object – at what point is the algorithm substantially different to the original, 

and what prospective validation, if any, is needed if the claims remain the same? Multi-agency working 

can bring together different but complementary expertise to reach a consensus on such questions and 

ideally avoids unfamiliarity with the lifecycle of AI disrupting delivery of care by reactively resetting 

when new (improved) versions arrive. Encouragingly, in a potential move towards multi-agency 

working, the NHS AI Lab (now part of NHS England) recently (2022) commissioned NICE to lead 

on a consultation for an updated digital health evidence standards framework that aims to aligns with 

regulators.227 

Second, both to account for the ethical considerations outlined in this chapter and to balance 

any faster implementation of promising AI technologies, I recommend a robust centralised approach 

to carefully deploy and thoroughly evaluate programmes such as AI-ECG. This chapter has covered 

some of the critical variables to measure that will be unique to using an AI technology for patient self-

administered screening at home. Forming a comprehensive list would again be amenable to a multi-

agency approach, where NHS England can draw on the playbook for already monitoring existing 

national screening programmes. An evaluation framework consisting of agreed metrics should be 

considered not only an intrinsic but a mandatory part of the design, deployment, and ongoing 

surveillance of AI-ECG. The inherent connectivity and instant data flow of such technology offers, 

unlike screening programmes to date, the opportunity for real-time monitoring and therefore prompt 

intervention, not only for clinical indications, but also for any disparities in uptake, execution, 

algorithm performance, or cyber security. Ultimately this will not only bolster the NHS’ position of as 

a world leader in standards for patient safety, but also as an exemplar system for realising effective AI-

driven healthcare interventions.  
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The NHS demonstrated during the most challenging periods of the Covid-19 pandemic that 

healthcare can use technology to move fast and fix (sic) things.228 Looking to the future for AI-ECG, 

seizing this momentum while also addressing the outlined ethical pitfalls may, in the short term, unlock 

both clinical and health economic benefits and blueprint best-practice that builds confidence for 

further applications. In the longer term, I see a convergence of commoditised AI algorithms for 

cardiovascular and wider disease, and continuous monitoring with increasingly sophisticated 

wearables, implanted devices, and internet-of-things –  all with sensors capable or recording digital 

biomarkers far beyond ECG and phonocardiography alone.229,230 In this future, home-based screening 

may become completely passive. While incrementing toward such a reality could unlock major public 

health benefits, doing so will depend on bold early use cases such as that described in this chapter to 

reveal unanticipated ethical challenges and allow these to be resolved. For now, the outlined policy 

recommendations can serve to underpin stewardship of such novel diagnostic pathways in a matter 

that preserves and promotes trust, patient engagement, and public health.  
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4.5 Chapter Conclusion 
 

Patient self-administered screening for cardiovascular disease at home using an AI-powered 

technology offers substantial potential public health benefits but also poses unique ethical challenges. 

I recommend a multi-agency approach to the lifecycle of implementation for such an AI-powered 

pathway, combined with a centrally overseen, mandatory prospective evaluation framework that 

monitors for equity, agency, and data rights. Assuming the responsibility to proactively address any 

observed neglect of these considerations instils trust – as the foundation for sustainable and impactful 

implementation of AI technologies for clinical application within patients’ own homes.  
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5 Summary of results 
 

This chapter draws together a summary of my results chapters and how each of the aims and hypotheses outlined 

at the beginning of my thesis have been addressed. This is followed by aa chapter outlining a synthesis of this work, future 

directions underpinned by it, and an overall summary of the wider significance and impact of this body of research.  
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5.1 Summary of findings by aim and hypotheses 
 

5.1.1 Chapter 2: Point-of-care screening for heart failure with reduced ejection fraction using artificial 

intelligence during AI-ECG stethoscope examination: prospective, observational, multicentre, 

external validation study 

 

In Chapter 2, I addressed the following aim and associated hypothesis: 

- Aim: To conduct a large-scale independent, prospective, external validation study of AI-ECG 

applied to single-lead ECG recorded by an ECG-enabled stethoscope by recruiting NHS 

patients attending for echocardiography – ground truth for comparing screening performance  

- Hypothesis: Detection of LVEF ≤40% using AI-ECG applied to single-lead ECG recorded 

by a smart stethoscope is reliable, accurate, operator-independent, unbiased; and feasibly for 

patient self-administration. 

 

The outlined aim was achieved through the successful recruitment of over 1,000 NHS patients 

attending echocardiography, all of whom agreed to have an ECG-enabled stethoscope examination 

performed across multiple recording positions. This generated a substantial dataset of single-lead 

ECGs for interrogation with AI-ECG, tuned to detect LVEF ≤40%. This study represents one of the 

first-ever large-scale, prospective, ethnically diverse, multi-site, multi-operator, independent 

(unfunded and uninfluenced by device or AI software manufacturers), external validations studies of 

any AI technology. This means my study took a methodological approach that addressed head-on 

some of the major limitations of translational AI research.231,232 Overall, as the most important starting 

point, my results show that the outlined workflow of recording a single-lead ECG with an ECG-
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enabled stethoscope is suitable for AI-ECG to perform impressively: up to AUC 0.91, sensitivity 92%, 

and specificity 80%. This level of accuracy needs to be contextualised to other, reassuring findings: 

AI-ECG exhibited no bias (by age, gender, or non-White ethnicity), and was operator independent. 

This last point frames the opportunity for patient self-administered examination, which would appear 

to be feasible.  

The findings from this study informed the interpretation of results in subsequent chapters. A 

health economic model for large-scale deployment of AI-ECG using the proposed approach of 

integration with a smart stethoscope examination is entirely dependent, first and foremost, on the test 

having sufficiently high accuracy. Similarly, embarking on devolving the administration of such a test 

into the hands of patients themselves requires sufficient confidence of performance, operator 

independence, and ease of use to justify such a clinical pathway. 

 

5.1.2 Chapter 3: Survival and Health Economic Outcomes in Heart Failure by Place of Index 

Diagnosis: A Propensity-Matched Analysis 

 

For Chapter 3, my aim and hypothesis were as follows: 

- Aim: To measure the contemporary clinical and health economic implications of HF by the 

route to diagnosis (through primary care or hospital admission) and estimate the potential cost 

savings of increasing rates of diagnosis through point-of-care AI-ECG. 

- Hypothesis: The mechanism for index diagnosis of HF remains dominated by hospital 

admission, with worse long-term clinical and health economic outcomes compared to patients 

first diagnosed in primary care to justify the cost of deploying point-of-care AI-ECG. 
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The above aim was addressed by interrogating a uniquely granular dataset (Discover-NOW) 

containing a comprehensive and contemporary record of linked primary and secondary care data as 

well as health economic cost data.  Through a propensity-score-matched analysis of the nearly 35,000 

patients diagnosed with HF in NWL between 2015-2020, I identified that index diagnosis of HF 

through community pathways conferred a short-term survival benefit and a substantial (£2,500) long-

term health economic benefit. This was in the wider context of the overall route to index HF diagnosis 

remaining dominated (70%) by hospital admission. Taking the geography of NWL as an example, I 

modelled the potential cost savings of a deployment of AI-ECG and Eko DUO, on the principal 

assumption that this would increase rates of HF detection in the community, patients who would 

otherwise remain undiagnosed until their symptoms precipitated a hospital admission. I found that 

shifting the ratio by 10% to achieve 40% community pathway diagnosis (60% remaining as hospital 

pathway) would unlock net cost savings of well over £1.5 million for NWL alone. Taking an even 

more conservative approach, breaking even from the initial cost outlay of the technology would 

require only a 2% upward lift in patients (roughly 116 extra patients in one year) diagnosed through 

community pathways.  

 

5.1.3 Chapter 4: Patient Self-administered Screening for Cardiovascular Disease Using Artificial 

Intelligence in the Home 

 

Lastly, in Chapter 4, I addressed the following aim and hypothesis: 

- Aim: To evaluate the ethical implication of extending AI-ECG technology to patient self-

administered screening and specifiy policy recommendations to blueprint best practice. 
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- Hypothesis: Patient self-administration of AI-ECG raises ethical challenges including 

considerations of equity, agency, data rights, and ultimately responsibility for safe, effective, 

and trustworthy implementation. 

 

Informed by findings form Chapter 2 and Chapter 3, this chapter applied a normative ethical 

analysis to address the outlined aim. Framed against a complex landscape of stakeholders including 

NHS, regulators, NICE, and – most importantly – patients, I interrogated questions around equity, 

agency, data rights, and responsibility for safe, effective, and trustworthy implementation of this 

powerful but novel diagnostic pathway. My analysis concluded with recommendations for safe, 

effective, and trustworthy implementation of any such pathway; that this needs to be anchored in 

effective multi-agency working – NHS, MHRA, NICE, patients, and beyond – and for any programme 

to be underpinned by a robust protocol for real-time evaluation across sustained high performance of 

the technology and equitable uptake across patient groups.  
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6 Synthesis 
 

“The central idea of early disease detection and treatment is essentially simple. However, the path to its successful 

achievement (on the one hand, bringing to treatment those with previously undetected disease, and, on the other, avoiding 

harm to those persons not in need of treatment) is far from simple –though sometimes it may appear deceptively easy.” 

From Wilson and Junger, 1968, 34 
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This PhD thesis marks a novel body of work addressing important research questions on the 

clinical, health economic, and ethical considerations of AI-ECG delivered through an ECG-enabled 

stethoscope examination. Much of this work has framed application of this DHT in the context of 

screening, opportunistic and/or invited, both at the individual patient level and through a more 

programmatic, population-based approach. Despite HF being by a common cause of early morbidity 

and mortality, currently no national screening programmes exist for this disease area.  

The UK National Screening Committee appraises the viability, effectiveness, and appropriateness 

of any proposed population screening programmes. To date, only five conditions are within the 

portfolio of NHS screening programmes for young people and adults: abdominal aortic aneurysm, 

bowel cancer, breast cancer, cervical cancer, and diabetic eye screening.233 Additionally, though not 

considered a screening programme per se, the NHS Health Check is a health check-up for adults in 

England aged 40 to 74.234 This is designed to detect early signs of stroke, renal disease, type 2 diabetes, 

dementia – and cardiovascular disease. At present this involves a 30-minute encounter, usually with a 

nurse or healthcare assistant, who asks questions about lifestyle and family history, measures height 

and weight, takes a blood pressure recording and draws a blood sample (for cholesterol levels). Adding 

a 12-lead ECG to this encounter for the purposes of overlaying screening for reduced LVEF using 

AI-ECG would likely be prohibitive due to demands on time, patient inconvenience (needing to dress 

down), expertise, and resource required to perform and interpret the result of this investigation. 

However, the approach investigated in this thesis, using a single-lead ECG acquired by an ECG-

enabled stethoscope with automated AI-ECG detection of reduced ejection fraction, taking only 15-

seconds, may pose an attractive addition to public health touchpoints such as the NHS Health Check. 

Here it would be remiss to not also acknowledge the obvious added value proposition of two further 

conditions screened for within the same technology: atrial fibrillation (using a form of AI-ECG) and 

valvular heart disease (using AI-phonocardiogram), both priority cardiovascular conditions in their 
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own right – and causes and consequences of HF. These two conditions could be detected in the same 

brief encounter using a tool such as the Eko DUO. 

Considering the UK National Screening Committee’s criteria for an effective screening 

programme, this PhD thesis has approached many of these, and overall highlights that an ECG-

enabled stethoscope with automated AI-ECG detection of reduced ejection fraction may have a case 

to make for programmatic deployment. In considering a synthesis for the work outlined in these pages, 

the screening criteria are useful reference for holistically assessing the evidence generated, and for 

highlighting remaining gaps that would still need to be addressed before applying the outlined 

technology to clinical pathways and populations.  

First, the Screening Committee requires the condition at hand to be an important public health 

problem as judged by its prevalence and/or severity. This criterion is certainly met by HF, which 

receives extensive mention in the NHS Long Term Plan and beyond given the substantial clinical and 

health economic burden it poses. A meta-analysis based on echocardiographic screening studies in the 

general population – thus also counting previously unrecognized cases – showed that the prevalence 

of ‘all type’ HF in high-income countries is around 11.8% in those aged 65 years and over.235 The 

criteria also require the epidemiology, incidence, prevalence and natural history of the condition to be 

well understood, including development from latent to declared disease. A substantial body of 

evidence exists for this in HF, but there are gaps. This PhD thesis contributes a contemporary analysis 

on the epidemiology of HF with novel findings instructive for health policy. These include highlighting 

the continuing, disproportionate trend for index diagnosis taking place through hospital admission 

(70%), and that this route to diagnosis confers an increased medium-term mortality risk. Before the 

viability of a screening programme is considered, there is also a requirement to for all the cost-effective 

preventive interventions to have been implemented as far as practicable. Here I would highlight the 

disappointing record of programmes targeted at but failing to improve detection of HF in the 
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community236, with interventions such as providing guidelines, education, and testing blood natriuretic 

peptide falling short.237,238 To that effect, there have been no recent, widely deployed, and cost-effective 

preventative interventions for HF. There have been some small-scale, proactive but highly targeted 

attempts to increase the rates of detection using primary care electronic health record searches. One 

such approach focused on specifically increasing the detection of patients with left ventricular systolic 

dysfunction (LVEF<35%). This study was sponsored by Medtronic,  incentivised by being a 

manufacturer of implantable cardiac devices (complex device therapy) indicated for improving 

symptoms and prognosis of patients with LVEF below 35%.167 The study took a collaborative 

approach between primary care, cardiologists, and data scientists. By screening the primary care 

records for patients with either 1.) coded symptoms of HF without a diagnosis, or 2.) historic code 

for HF, the authors defined a cohort for invitation for cardiology consultation. They found 27% of 

HF patients identified were eligible for complex device therapy, 45% required medicines optimisation, 

and 47% of patients audited required diagnosis codes adding to their GP record. These results may 

be compelling, but the complexity of this approach limits the readiness for national scaling. 

Furthermore, as exemplified by this study and highlighted in Chapter 3, until the fidelity and quality 

of clinical coding achieves some standardisation across the NHS, geographic disparities in how 

effectively patients are detected through this approach would likely manifest, and may surface some 

of the ethical tensions explored in Chapter 4 – through the inconsistent accuracy of clinical coding 

precipitating negative socioeconomic and ethnic biases.  

Second, the Screening Committee would only consider a national screening programme that 

applies a “simple, safe, precise and validated screening test”. My research has addressed some of these 

considerations. Though the underlying technology behind AI-ECG is highly complex, applying it 

through a single-lead ECG enabled stethoscope is relatively straightforward. Based on my study 

examining over 1,000 patients without concern, with 97.5% of those approached participating, 
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delivering the test this way is clearly both safe and acceptable. The Screening Committee requires that 

“the distribution of test values in the target population should be known and a suitable cut-off level 

defined and agreed”. How to weigh the precision of such an approach remains one of the fundamental 

challenges not reconciled by this thesis; where to set the threshold for AI-ECG, and how to balance 

sensitivity vs. specificity? This is a universal challenge for DHTs using an AI-based classifier. Taking 

one recording from position 2 (pulmonary) as an example, two different thresholds for the binarisaion 

of LVEF prediction into >40% or ≤40% achieve substantially different balance of performance. At a 

threshold of 0.43, sensitivity and specificity were 71.7% and 86.5%, respectively. At a threshold of 

0.34, the balance of sensitivity and specificity reverses to 84.8% and 69.5%, respectively. Ideally (and 

likely), AI-ECG will go through continued iteration as more training data, refinements in ML 

methodology, and computing power continue to steadily increment towards developing versions of 

AI-ECG with thresholds that achieve sensitivity and specificity closer to 100%. Until then, it could be 

argued that against a background of a very high prevalence of undiagnosed HFrEF (Chapter 3) and 

the availability of prognostically beneficial therapies, sensitivity should be prioritised over specificity 

to maximise the rates of early detection. Deployment of a such a high sensitivity tool in primary care 

could draw on the clinical and health economic impact of index diagnosis in this setting, as observed 

in Chapter 3, to weigh-up the downstream impact of lower specificity i.e. false positives and the burden 

of additional investigations e.g. blood tests and echocardiography triggered by these. I note here that 

my study described in Chapter 2 was not one of an unselected population; studying patients attending 

for echocardiography will, by definition, enrich for cardiovascular disease and HF specifically. 

However, encouraging parallel adherence to the existing NICE pathway may buttress against false 

positives by ensuring patients additionally receive natriuretic peptide testing when faced with a positive 

AI-ECG result, though the latest ESC guidelines recommend direct referral for echocardiography 

(bypassing natriuretic peptide testing) if clinical suspicion is sufficiently high; this is at odds with the 
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NICE pathway continuing to suggest natriuretic peptide testing first to inform a 2- or 6-week triage 

to echocardiography and specialist review. Here, the availability of new diagnostic technology for HF 

would require the NICE pathway to be updated, and in so doing would align with criteria from the 

Screening Committee: “There should be an agreed policy on the further diagnostic investigation of 

individuals with a positive test result and on the choices available to those individuals.”   

Third, there is a requirement that effective interventions exist for patients identified through 

screening at a pre-symptomatic phase, where interventions lead to better outcomes for the screened 

individual compared with usual care. Asymptomatic reduction in LVEF is present in 3–6% of the 

general population, where commencement of therapies can relieve future symptom burden and reduce 

long-term risk of mortality.239-241 The benefits of such early detection on family members and carers 

are highlighted as also meriting consideration. Evidence relating to wider benefits of screening, for 

example, those relating to family members being able to delay the need to assume caring 

responsibilities, should be considered. Beyond the scope of this thesis, caring for patients with HF 

poses a substantial physical and mental burden on informal carers (usually family members of close 

friends) – with wide reaching societal implications.242,243 

Fourth, unsurprisingly the Screening Committee requires any national screening approach to be 

underpinned by robust evidence from high-quality randomised controlled trials that observe a 

reduction in mortality or morbidity as their primary end points. The process of conducting such large-

scale RCTs offers opportunity to also address broader questions around the programme's clinical, 

social, and ethical acceptability to health professionals and the patient public. The expectation would 

be that the “benefit gained by individuals from the screening programme should outweigh any harms, 

for example from overdiagnosis, overtreatment, false positives, false reassurance, uncertain findings 

and complications.” The ethical analysis outlined in Chapter 4 offers a starting point for these 

discussions and critiques and goes further by also highlighting how implementation of AI-ECG – and 
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indeed, any self-administered, AI-driven screening – would surface challenges not yet faced by existing 

national screening programmes. These include the need to monitor a continually iterating (improving, 

hopefully) technology for new biases, addressing the digital divide, and cybersecurity concerns. One 

of the benefits of the Covid-19 pandemic may be that the substantial acceleration of the societal uptake 

of DHTs proves to be sustained. One such population-wide tool involves the continuing use of the 

NHS App as a form of vaccine passport.244 Whether this generation’s savvy for DHTs will be carried 

forward as they age remains an assumption, but if this proves to be the case then patient self-

examination may be increasingly tractable as the digital divide narrows. The aforementioned 

randomised controlled trials would also be expected to meet the criteria for informing if the 

opportunity-cost of a screening programme (including testing, diagnosis and treatment, 

administration, training and quality assurance) is economically balanced in relation to expenditure on 

medical care as a whole (value for money). Assessment against this criterion should have regard for 

evidence from cost-benefit, cost-effectiveness, and/or cost-consequence analyses. Chapter 3 has 

generated several useful variables for making this health economic case, however further data on 

downstream costs e.g. impact of false positive results are needed. These can be modelled but ultimately 

the most reliable evidence requires real world deployment through a medium such as a randomised 

controlled trial. It is increasingly established that the NHS always “runs hot”, at capacity, reducing 

consideration of programmes/interventions that require several years to manifest a health economic 

payoff. All patients with positive AI-ECG should ultimately have an echocardiogram. For illustrative 

purposes, considering a very simplistic approach to a number-needed-to-treat, based on NHS tariff 

cost of one echocardiogram (£59.00) and a PPV of 20%, the cost of imaging five patients with a 

positive AI-ECG test (one of whom will have HFrEF) would run to £295.00. This would seem 

palatable given patients diagnosed through primary care pathways may unlock at £2,500 saving 

(Chapter 3). However, given both the artificial scarcity of echocardiography services – the only finite 



 182 

resource being funding – and the financial short-termism of a system under pressure, justifying a 

business case for increased echocardiography services to cope with more referrals due to positive AI-

ECG may prove challenging due to the relatively lower tangibility of future savings. There is also some 

tension here between the demands of meeting a high evidence standards threshold and accumulating 

urgent public health need that could be addressed by novel technology that is inherently rapidly 

iterating. Rather than negotiate prices, NICE makes recommendations for system-wide funding, and 

therefore, deployment, principally on the basis of using tools such as quality adjusted life years. NICE’s 

remit now also extends to evaluating the value of DHT’s. However, there is some reservation about 

using incumbent tools for assessing the value of DHTs given these have principally been developed 

for pharmaceutical interventions. The value of DHTs does not only depend on clinical and economic 

aspects but also on technical features, perceived benefits for clinical staff, willingness to use by end-

users, and lastly, the healthcare system’s capacity to benefit from the innovation.245  

Finally, any new programmatic deployment of a screening tool would necessitate a robust plan 

for communication with patients and managing and monitoring the programme with an agreed set of 

quality assurance standards. This would also require adequate staffing and facilities for testing, 

diagnosis, treatment, and programme management prior to commencement. Unlike some of the 

existing national screening programmes, which variously require as their first step radiological 

investigations, specialist procedures, invasive procedures, and patient attendance at a facility, the first-

step approach with AI-ECG could be completely decentralised and as outlined in Chapter 4, take 

place in the patient’s own home at their own convenience. This is well aligned with policy shifts 

encouraging “place-based care”, aiming to “blur institutional boundaries across a location to provide 

integrated care for individuals, families and communities” and address the imperative to “meet patients 

where they are.”246 Further work would be needed to generate an evidence-based approach to 

informing patients; explaining the purpose of AI-ECG, and potential consequences of screening, to 
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assist them in making an informed choice. Notably, the Screening Committee suggests that early 

success ought to anticipate “public pressure for widening the eligibility criteria for reducing the 

screening interval, and for increasing the sensitivity of the testing process.” My PhD broaches the 

eligibility of those who should be considered for an AI-ECG test, spanning its opportunistic overlay 

onto different clinical pathways including every routine stethoscope examination to a more targeted 

screening approach on the basis of symptoms (e.g. breathlessness) or co-morbidities (Chapter 3 

demonstrated higher prevalence of multimorbidity e.g. coronary artery disease, hypertension, diabetes) 

(figure 6.1). Clearly whether it needs to be a clinician administering the test is also up for debate. The 

downstream protocol for a positive test will ultimately require gold-standard echocardiography, a 

relatively limited resource,.  

 

 

Figure 6.1 New clinical pathway opportunities using AI-ECG 

 

Given that HFrEF somewhat paradoxically has both the worst prognosis and plentiful evidence-

based therapies, a case for intelligent triage and prioritisation beyond natriuretic peptide testing could 

be made. Collectively, the work presented in this PhD thesis lays a foundation of evidence that can be 
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drawn on to ensure any decisions about these criteria are scientifically, economically, and ethically 

justifiable to the public. 
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7 Future work 
 

At the turn of the 21st century the paradigm for healthcare remained anchored to a late industrial 

age model where paternalistic physicians governed over patient care from large specialist centres.247 

The predicted casting off towards an information age, characterised by a patient-centric philosophy 

for healthcare delivery, was not being realised. While healthcare remained isolated from the digital and 

mobile technology revolution, other industries such as banking, travel, and retail redefined how 

citizens interacted with their offerings. Over twenty years on, healthcare’s progress remains slow. The 

reasons for this are myriad and complex and include the need for DHTs to cross a necessarily high 

threshold of evidence that goes beyond simply demonstrating that the technology performs a well-

circumscribed task with high accuracy. The body of work outlined in this PhD thesis contributes 

scrutiny of a DHT from multiple, complimentary research perspectives, serving as part of a blueprint 

for the holistic evaluation of DHTs that will help underpin their widespread uptake and impact. The 

work presented in these pages has initiated a substantial portfolio of further research that will continue 

to build the case for DHTs using AI. Built on a foundation of work presented in this thesis,  I outline 

below some of the future directions for this field of research.   

 

7.1 AI-ECG as a consumer technology 
 

For a century, the standard 12-lead ECG has been an essential diagnostic tool limited to clinician 

use. The ECG remains among the most accessible, cost-effective, and safe means to assess cardiac 

activity and function. Recent technological and computing advances have progressed this on two 

fronts: (1) the advent of wearable technologies has shifted the ECG into the consumer space, and (2) 
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AI interpretation software has expanded the utility ECG for the non-expert. For now, the detection 

of heart rhythm abnormality, specifically atrial fibrillation, remains the dominant use case.90,136,137,200  

 In Chapter 2,  I described my study that took the approach of recording single-lead ECGs from 

standard precordial positions as well as one hand-held position. The latter somewhat emulates the 

method and vector for single-lead ECG recordings using some of the most popular consumer devices 

e.g. Alivecor Kardia and Apple Watch, and I found this position, while still impressive, was most 

frequently unable to be attempted e.g. due to patient weakness, and had a lower rate of adequate signal 

quality compared with precordial positions. For ECG acquired by wearables or otherwise, the key 

determinant of any AI model’s performance is the quality of the input data. Automated ECG analysis 

relies on and assumes optimal signal acquisition. Models will also need to account for biosignal 

variation as novel means of ECG signal acquisition continue to increase in the consumer market. The 

single-lead version of AI-ECG referred to in this thesis was trained on all 12 individual ECGs 

constituting a full 12-lead ECG; and AI-ECG can attempt a prediction using any ECG signal of 

adequate quality. One approach will be to prospectively or retrospectively obtain the single-lead ECG 

waveforms recorded by devices other than the Eko DUO e.g. wearables, and evaluate AI-ECG in this 

context – with the need for synchronous echocardiography as ground truth. Notably, some of these 

technologies are well suited to repeated single-lead ECG recordings that may enable tracking changes 

in LVEF over time. 

 In the event of sustained, clinically meaningful performance, full transition of AI-ECG for HF 

to direct consumer access seems inevitable. Here, the potential opportunities for improvements in 

public health would need to be balanced against equally salient and concerns that uses of such 

consumer AI DHTs cause overutilisation of healthcare resources (through false positives)248 and risk 

deepening health inequities if not universally accessible.  
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7.2 Ensemble AI for detection of heart failure 
 

As might be expected, as shown in Chapter 2, the performance of AI-ECG can be augmented 

through use of multiple recordings. Performance would likely also be improved through a multimodal 

model processing additional variables such as age and sex. Considering the use of AI with an ECG-

enabled stethoscope to detect HF, the principal waveform instinctively associated with such hardware 

– the phonocardiography (PCG) or heart sounds – is currently not contributing to informing on the 

presence of HF. However, PCG has been shown to correlate with changes in LVEF.249,250 It is widely 

established that PCG is impacted by structural and mechanical features of the heart, and abnormalities 

in this manifest in or may be precipitants of HF e.g. valvular heart disease and flow murmurs. Much 

like AI-ECG for detection of HFrEF, it may be that the PCG waveform can serve as a digital 

biomarker, containing specific acoustic signatures beyond the capabilities of humans to detect. To 

capitalise on this additional richness of data, the architecture of neural networks could readily 

accommodate an ensemble algorithm; taking both ECG and PCG waveforms for combined analysis 

and likely unlocking an increment in predictive accuracy. This work is underway. 

 

7.3 Do ECG changes precede deterioration in LVEF? 
 

The original publication describing use of AI-ECG for detection of LVEF below 35% from 12-

lead ECGs found that patients with an LVEF above 35% on echocardiography but with a positive 

AI-ECG – ostensibly a false positive result –  were at 4 times the risk (hazard ratio, 4.1 [3.3-5.0]) of 

developing future ventricular dysfunction compared with those with a negative AI-ECG screen.92 This 

occurred during a median follow-up period of 3.4 years (IQR, 1.2–6.8). Given this background, I 

designed the protocol for the study outlined in Chapter 2 to encompass ethical approval from the 
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Health Research Authority to follow up similarly “false positive” patients longitudinally. Loss to follow 

up will be a substantial challenge here, however research tools such as the NWL-wide Discover-Now 

database could mitigate this by, without the need to make contact, highlighting which patients have 

since gone on to receive a new coded diagnosis of HF. Should future studies discover that AI-ECG 

has sufficient predictive capability for HF and/or other cardiovascular conditions, the intersection 

with wearable, consumer technology capable of recording ECGs may offer an opportunity for large-

scale application for disease prevention.  

 

7.4 Interrogation of AI-ECG features 
 

The technology powering AI-ECG has created a double-edged sword: the more complex the 

task we ask it to perform, the less we know how it can do it. Generally, as the field moves forward, 

we will need to work toward learning what and understanding why AI considers certain features more 

relevant than others. There are some methodological approaches that could hint at this. For example, 

saliency maps can highlighted the primacy of the regions in an ECG that are heavily weighted features 

in the model’s decision-making process.251 However, as model complexity increases, saliency maps 

become increasingly less … salient, and essentially revert to the black box model that mires trust in 

complex AI models. There is an argument that a lack of mechanistic understanding should not risk 

the abandonment of these potentially transformative technologies, but instead we should seize the 

opportunity and do so safely through systematically and thoroughly scrutinising for bias and shifts in 

performance, work which can build on the content outlined in all chapters.  
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7.5 AI-ECG for HFmrEF and HFpEF 
 

In HF with mildly reduced EF (HFmrEF), post-hoc and subgroup analyses suggest that drugs 

that are effective in HFrEF may also be effective in HFmrEF.252 Trials in HFmrEF and HFpEF have 

historically not been positive, but in 2020 and 2021 inhibitors of the sodium–glucose co-transporter 

2/1 and 2 were shown to be effective also in HFpEF.253,254 For now, HFrEF remains both the most 

common subgroup and the only one with abundant evidence for effective therapies. This will likely 

change, highlighting the need for tools such as AI-ECG to extend their offering to being able to 

accurately screen for the full spectrum of LVEF across HF subtypes. This may be achievable if AI-

ECG lives up to ML’s capacity for continual iteration and improvement as more data become 

available. Specifically, AI-ECG may transition from being a classification tool – giving an indication 

of LVEF being above or below a certain threshold – to using regression, thereby displaying a direct 

prediction of a patient’s percentage LVEF.  

 

7.6 Towards a Tricorder 
 

 Science fiction has long served as a canvas for exploring the possible futures of health and 

healthcare. Among the more well-known futuristic medical devices, Star Trek’s “tricorder” has set the 

ambition for the ultimate point of care diagnostic tool.211 A medical tricorder takes the appearance of 

a small, grey, hand-held device with a flip-out panel to allow for a larger screen. In the drama posed 

by an unwell patient, such a tricorder – powered by AI – would be used to externally “scan” the subject 

to infer a full picture of their physical health. 

Considering the DHT investigated by this thesis – a sophisticated convergence of hardware, 

software, connectivity, and AI – the prospect of a tricorder may already be exiting science fiction and 
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entering reality. The clinical examination remains an important quantifiable contributor to the 

diagnosis of HF and disease more generally255, where the stethoscope is a key tool for gathering data 

in the process of sleuthing towards a diagnosis. However, for many clinical professionals, the 

stethoscope has become nothing more than an ornamental marker of physician status, supplanted by 

ever more readily available, more objective investigations. For example, why listen to the heart when 

one can perform a point-of-care ultrasound with a probe that plugs into a smartphone?256 To an extent, 

widespread use of such technologies remains limited by cost and a requisite for substantial technical 

expertise. However, the cost of such technology continues to decline, becoming increasingly 

affordable, and indeed the requirement for technical expertise is being addressed by AI itself. My study 

has highlighted that some vectors and positions for recording single-lead ECG will maximise the 

performance of AI-ECG predictions. Here, AI-guided acquisition of the “optimum” recording could 

steer any user towards completing a high-quality screening test. This parallels efforts in 

echocardiography to automate the acquisition of optimum images for capturing key variables such as 

LVEF.257,258 

Overall, as an ever-increasing number of sensor technologies get smaller, cheaper, more 

accurate and powerful, and in parallel AI insights begin to surpass human capability, the modern 

stethoscope may indeed become a relic of late industrial age healthcare, replaced by an information 

age tricorder-like device that, again through AI, enables patients to apply the technology directly onto 

themselves. As I approached the end of my PhD, research colleagues have assumed responsibility to 

test the clinical pathway outlined in Chapter 4, posting an Eko DUO to patients for self-examination 

and application of AI-ECG to screen for triple cardiovascular disease (HFrEF, AF, and valve disease). 

This ongoing research may in future prove instructive in the delivery of a democratised and 

decentralised model of healthcare – the aspiration for this century. 
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7.7 Real-world, prospective application of AI-ECG 
 

The work presented in this PhD thesis has prompted substantial organic interest from both 

national health policy leadership as well as more locally from primary care colleagues focusing on 

cardiovascular population health. In collaboration with these stakeholders and underpinned by the 

work presented in these pages, one of the major, next steps for this research is to progress to a 

randomised controlled trial. Though the opportunities for future work in this field all carry scientific 

merit, prioritisation should be for the translational, prospective application of AI-ECG, in a way that 

test if such technology remains robust against the challenges of deployment in real-world health 

system settings. We are chasing the promised clinical, health economic, and patient-centric outcomes 

of this technology. 

Carrying the acronym TRICORDER (“Triple Point-of-Care Cardiovascular Disease Screening 

With Artificial Intelligence Enabled Stethoscope”), this project will set out to deliver a DHT research 

study that meets a number of important firsts. Taking the form of a pragmatic, real-world, cluster-

randomised controlled trial, TRICORDER will randomise deployment of Eko DUO and a suite of 

in-built AI tools (for detection of HFrEF, AF, and valve disease) across 250 primary care practices in 

the NHS (figure 7.1). The ambition will be to deploy across both NWL and North Wales, thereby 

encompassing geographies with unique sociodemographic, ethnic, and urban/rural diversity.   
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Figure 7.1 Study schematic for TRICORDER cluster randomised controlled trial. 
WP: work package; NWL: North West London; NIHR: National Institute for Health and Care Rersearch; 

BCUHB: Besti Betsi Cadwaladr University Health Board; GP: General Practitioner. 
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8 Thesis conclusion 
 

As an exemplar of an AI DHT, AI-ECG applied to single-lead ECG recorded by a smart 

stethoscope could address the public health priority to improve detection of HFrEF, and potentially 

extend to further common cardiovascular diseases. I have demonstrated that for HFrEF, this tool is 

reliable, accurate, quick, unbiased, and usable by patients themselves. Faced with the challenge of 

drastic underdiagnosis of HF in primary care, deployment of this tool would be underpinned by a 

compelling clinical and health economic argument. Intersecting with this, important ethical 

considerations have been outlined and framed against potential health policy approaches to balance 

public risk with public health. This thesis marks novel work that can directly serve patients and health 

systems; arriving in the wake of substantial momentum to transform healthcare, at the start of a decade 

where evidence generation can build the clinical and public trust needed to fully realise the potential 

of DHTs incorporating AI. 
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STEP 6: Repeat to complete 3x recordings

• Lift the DUO off your chest and place back in same position as step 4
• Repeat recording IN STEP 5
• Complete 3 recordings this way

To be done on Duo

Thank you! A member of the research team will be with you to help you 
with any of the steps along the way. 
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