# SUPPLEMENTARY APPENDIX

# **Table of Contents**

| A) Semi-automated gene discovery bioinformatics pipeline                              | 4  |
|---------------------------------------------------------------------------------------|----|
| B) Case reports                                                                       | 7  |
| Novel and candidate genes for treatable neuro-metabolic diseases                      | 7  |
| Other novel & candidate genes                                                         | 7  |
| Expanding the phenotypic spectrum in rare genetic disorders                           | 11 |
| Unbiased WES approach allows discovery of unexpected results                          | 12 |
| C) Experimental data                                                                  | 14 |
| D) Supplementary Discussion                                                           | 26 |
| E) Supplementary Acknowledgements                                                     | 27 |
| F) Supplementary Figures                                                              | 28 |
| Figure S1: Pedigrees and electropherograms of families with known pathogenic variants | 28 |
| G) Supplementary Tables                                                               | 30 |
| Table S1: Clinical Characteristics of the 50 Patients in 41 families                  | 30 |
| Table S2. Pathogenicity of variants according recent Standards and Guidelines of the  |    |
| American College of Medical Genetics Guidelines                                       | 31 |
| Table S3: Known pathogenic variants                                                   | 31 |
| Table S4: Gene categories and corresponding patient phenotypes                        | 32 |
| Table S5: Blended phenotypes resulting from two single gene defects                   | 42 |
| H) Supplementary References                                                           | 43 |

### Supplementary Appendix To:

### Exome Sequencing and the Management of Neuro-metabolic Disorders

Maja Tarailo-Graovac<sup>a-c</sup>, Casper Shyr<sup>a-c</sup>, Colin J. Ross<sup>b,c,e</sup>, Gabriella A. Horvath<sup>c,d,e</sup>, Ramona Salvarinova<sup>d,e</sup>, Xin C. Ye<sup>a-c</sup>, Lin-Hua Zhang<sup>a,e</sup>, Amit P. Bhavsar<sup>c,e</sup>, Jessica JY Lee<sup>a-<sup>c</sup></sup>, Britt I Drögemöller<sup>a,c,e</sup>, Mena Abdelsayed<sup>f</sup>, Majid Alfadhel<sup>g</sup>, Linlea L. Armstrong<sup>b,c</sup>, Matthias R. Baumgartner<sup>h</sup>, Patricie Burda<sup>h</sup>, Mary B. Connolly<sup>c,e,i</sup>, Jessie Cameron<sup>j</sup>, Michelle Demos<sup>c,e,i</sup>, Tammie Dewan<sup>e</sup>, Janis Dionne<sup>c,e,k</sup>, A. Mark Evans<sup>1</sup>, Jan. M. Friedman<sup>b,c</sup>, Ian Garber<sup>a,c</sup>, Suzanne Lewis<sup>b,c</sup>, Jiqiang Ling<sup>m</sup>, Rupasri Mandal<sup>n</sup>, Andre Mattman<sup>0</sup>, Margaret McKinnon<sup>b,c</sup>, Aspasia Michoulas<sup>e,i</sup>, Daniel Metzger<sup>c,e,p</sup>, Oluseye A. Ogunbayo<sup>1</sup>, Bojana Rakic<sup>q</sup>, Jacob Rozmus<sup>c,e,r</sup>, Peter Ruben<sup>f</sup>, Bryan Sayson<sup>d,g</sup>, Saikat Santra<sup>s</sup>, Kirk R. Schultz<sup>c,e,r</sup>, Kathryn Selby<sup>c,e,i</sup>, Paul Shekel<sup>1</sup>, Sandra Sirrs<sup>0</sup>, Cristina Skrypnyk<sup>t</sup>, Andrea Superti-Furga<sup>u</sup>, Stuart E. Turvey<sup>c,e,v</sup>, Margot I. Van Allen<sup>b,c</sup>, David Wishart<sup>n, w</sup>, Jiang Wu<sup>m</sup>, John Wu<sup>c,e,r</sup>, Dimitrios Zafeiriou<sup>x</sup>, Leo Kluijtmans<sup>y</sup>, Ron A. Wevers<sup>y</sup>, Patrice Eydoux<sup>c,q</sup>, Anna M. Lehman<sup>b,c</sup>, Hilary Vallance<sup>c,q</sup>, Sylvia Stockler-Ipsiroglu<sup>c,d,e</sup>, Graham Sinclair<sup>c,q</sup>, Wyeth W. Wasserman<sup>a-c</sup>, Clara D. van Karnebeek<sup>a,c,d,e,†</sup>

<sup>a</sup>Centre for Molecular Medicine and Therapeutics, Vancouver, Canada: <sup>b</sup>Department of Medical Genetics, University of British Columbia, Vancouver, Canada; <sup>c</sup>Child& Family Research Institute, University of British Columbia, Vancouver, Canada; <sup>d</sup>Division of Biochemical Diseases, BC Children's Hospital, Vancouver, Canada; <sup>e</sup>Department of Pediatrics, University of British Columbia, Vancouver, Canada; <sup>f</sup>Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada; <sup>g</sup>Division of Genetics, Department of Pediatrics, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia; <sup>h</sup>Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; 'Division of Pediatric Neurology, BC Children's Hospital, Vancouver, Canada; <sup>j</sup>Department of Pathology and Laboratory Medicine, Hospital for Sick Children, University of Toronto, Toronto, Canada; <sup>k</sup>Division of Pediatric Nephrology, BC Children's Hospital, Vancouver, Canada: <sup>1</sup>Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK; "Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, USA; <sup>n</sup>Department of Biological & Computing Sciences, University of Alberta, Edmonton, Canada; <sup>o</sup>Division of Endocrinology, University of British Columbia, Vancouver, Canada; <sup>p</sup>Division of Pediatric Endocrinology, BC Children's Hospital, Vancouver, Canada; <sup>q</sup>Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; <sup>1</sup>Division of Hematology, Oncology & Transplantation, Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, Canada; <sup>s</sup>Birmingham Children's Hospital, Birmingham, U.K; <sup>t</sup>AlJawahra Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Bahrain; "Department of Pediatrics, University of Lausanne, Lausanne, Switzerland; "Division of Immunology, BC Children's Hospital, Vancouver, Canada; "National Institute for Nanotechnology, Edmonton, Alberta, Canada; <sup>x</sup>Department of Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece

<sup>y</sup>Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, Netherlands;

<sup>†</sup>Correspondence to: Dr. van Karnebeek, Division of Biochemical Diseases, Rm K3-201, Department of Pediatrics, B.C. Children's Hospital, Centre for Molecular Medicine & Therapeutic, University of British Columbia4480 Oak Street. Vancouver B.C. V6H 3V4, Canada or at <u>cvankarnebeek@cw.bc.ca</u>.

### A) SEMI-AUTOMATED GENE DISCOVERY BIOINFORMATICS PIPELINE

The automated portion of the pipeline<sup>1</sup> starts with alignment of the FASTQ reads using the Bowtie $2^2$  aligner to the human reference genome version hg19 (restricted to reads with quality score 30 or higher), removal of duplicate reads by Picard, local re-alignment by Genome Analysis Toolkit (GATK)<sup>3</sup>, followed by variant calling using SAMtools<sup>4</sup> on BAM files and annotation using SNPeff<sup>5</sup>. Semi-manual review of data quality is performed to confirm samples were consistent with expectations, including checking for correct sex and familial relationships; samples are also inspected for any evidence of cross-contamination (Fig. 1). The next automated step utilizes custom perl and python scripts to exclude variants attributable to sequencing errors (by comparing the frequency of called variants against our own database of more than 350 exomes processed by the pipeline; variants seen more than 10 times are excluded) or variants that are reported as frequent in dbSNP (http://www.ncbi.nlm.nih.gov/snp)<sup>6</sup> (MEF > 1%). Subsequently the prioritization/ranking of the variants is performed based on: (1) frequency in NHLBI Sequencing Project (ESP) Exome Variant the Exome Server EVS; (http://evs.gs.washington.edu/EVS), (2) frequency of variants arising at the genic level using the  $FLAGS^{1}$  approach, (3) predicted effect of the variants on protein function where nonsense, frameshift, missense, microdeletions, microduplications and splice-site variants are prioritized, (4) phred-scaled Combined Annotation Dependent Depletion [CADD; (http://cadd.gs.washington.edu)]<sup>7</sup> and (5) match to clinician-supplied phenotype-related MeSH terms.

As family history does not appear to be informative for most patients in our study, we adopted an unbiased approach and consideredall possible Mendelian inheritance models. We used custom scripts to group the identified, filtered, annotated and ranked variants according to their predicted mode of inheritance to homozygous recessive, hemizygous, compound heterozygous and *denovo*. The low coverage WES data are flagged as part of our automated pipeline and manually curated. Variants of interest that are within low coverage regions are tested using Sanger resequencing. Furthermore, although the mitochondrial genome is not specifically captured in the WES approach, a recent publication by Griffin et al., 2014<sup>8</sup> demonstrated that mitochondrial DNA sequences can be reliably obtained using three different WES capture kits (Agilent SureSelect targeted capture kit used in this study is one of them). In some cases, for whomwe did not have mtDNA

sequencing done by a certified laboratory, we inspected the mitochondrial genome from the WES data. However, we did not identify any significant mitochondrial genome variants in these patients. The bioinformatics pipeline itself is designed to be unbiased, meaning that it is not influenced by the clinical phenotype, predicted candidate genes, predicted inheritance, negative clinical tests etc. The pipeline is run for each patient similarly, searching for all "impactful" rare variants considering all possible inheritance models. However, the final step of our genediscovery approach is manual (Fig. 1) and performed in close collaboration between bioinformaticians and clinicians. The hallmark of this collaboration is the family form completed by the referring clinician that contains essential data on the patient phenotype along with a disease / pathway hypothesis. The manual bioinformatics steps include: (1) inspection of variants in each of the predicted modes of inheritance for quality using a genome browser, such as IGV [Integrative Genomics Viewer; (https://www.broadinstitute.org/igv/)]<sup>9,10</sup>, (2) further assessment of deleteriousness of the variants using multiple tools, such as PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)<sup>11</sup>, PROVEAN (http://provean.jcvi.org/index.php)<sup>12</sup>, MutationTaster (http://www.mutationtaster.org)<sup>13</sup> and SIFT [Sorting Intolerant From Tolerant; (http://sift.jcvi.org/]<sup>14</sup> (3) analysis of the clinical phenotypes and literature related to the candidate gene, (4) manual curation of the literature supporting the evidence for variant classification in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar) and/or Human Gene Mutation Database [HGMD; (http://www.hgmd.org)] and (5) manual inspection of the variant frequency in different ethnic sub-groups available at the Exome Aggregation Consortium [ExAC; http://exac.broadinstitute.org/). The final list of variants includes the colour-coded flagged candidate genes based on the assigned bioinformatician's interpretation as highly relevant (red), relevant (yellow) and unknown based on currently available data (not flagged); the lists are sent to clinicians for evaluation, followed by a multi-disciplinary meeting for the final selection of variants to be confirmed by Sanger re-sequencing and experimental validation (Fig. 1). Validation of pathogenicity and causality of variants in novel genes (previously unreported in human disease) were pursued according to the guidelines by MacArthur et al 2014<sup>15</sup>: identification of other families with the similar phenotype due to distinct variants segregating with a similar pattern of inheritance in the same gene, functional studies including rescue experiments in patient cells, well-established cell-lines and/or model organisms<sup>16</sup>. Variant classification into gene classes (novel, candidate and known) was done according to the report by

de Ligt et al 2012<sup>17</sup>: 'novel' for genes not previously implicated in human disease with 2 or more individuals with striking phenotypic overlapin unrelated families with damaging variants in the same gene, 'candidate' in case of only 1 identified family.

### **B) CASE REPORTS**

Of note, for the two novel and 9 candidate human disease genes identified in our study, we take a stringent approach to validate the causal relationship of identified variants with the observed phenotype: identification of other families with similar phenotypes due to (other) variants in the same gene (currently we identified additional families for *CA5A* and *NANS*, while for others we continue to search for additional families), (*in vitro*) functional studies to demonstrate deleterious impact of the variant on protein function and pursuit of model organism studies. For novel phenotypes, we pursue one or more of these approaches. Case reports (below) and the experimental / biochemical data (Supplemental Materials, section C) are presented in the order of Table S3; these data are unpublished unless otherwise indicated.

#### Novel and Candidate Genes for Treatable Neuro-Metabolic Diseases

*ACACB*: Currently, validation of acetyl-coA carboxylase-beta deficiency (*ACACB*) deficiency as potentially novel IEM is underway. Preliminary results of *in vitro* studies indicate decreased enzymatic activity at 37°C of the mutated (compound heterozygous variants) acetyl-coA carboxylase-beta when compared to wildtype, as well as decreased stability at 40°C, in a 7 year-old boy with compound heterozygous *ACACB* (MIM 601557) variants presenting with speech delay and, since age 19 months recurrent fever-induced and biotin-responsive episodes of lethargy, lactic acidosis (pH 7.04; HCO<sup>3-</sup>6mmol/L) with metabolites suggestive of multiple carboxylase deficiency (Table 1). To explain the causal relation with the multiple-carboxylase deficiency phenotype, we postulate that since malonyl-CoA, generated by ACACB in mitochondria<sup>18</sup>, is a key regulator for fatty acid oxidation and energy homeostasis, the deficient ACACB activity alters the physiological conditions in mitochondria which in turn affects the function of multiple carboxylases. Additional experiments are ongoing.

The case reports for the 3 other potentially treatable neurometabolic diseases (due to recessive  $CA5A^{19}$ , *GOT2* and *NANS*<sup>20</sup> variants) are presented in the main manuscript.

### **OTHER NOVEL & CANDIDATE GENES**

**RBSN:** Another example is Rabenosyn-5 deficiency due to homozygous missense variant in RBSN (MIM 609511) in a 7-year old girl with intractable seizures, severe IDD, microcephaly,

dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis<sup>21</sup>. Her biochemical findings included transient cobalamin deficiency, severe hypertriglyceridemia following initiation of a ketogenic diet, microalbuminuria and partial cathepsin D deficiency. Patient fibroblasts showed decreased transferrin accumulation, proliferation rate, cytoskeletal and lysosomal abnormalities, all of which are consistent with a functional defect of this highly conserved multi-domain protein implicated in receptor-mediated endocytosis. Secondary disruption of multiple cellular functions dependent on endocytosis, likely results in severe multi-organ disease.

*FAAH2:* Another example is deficiency of fatty acid amide hydrolase 2 (FAAH2) due to hemizygous missense variant in *FAAH2* (MIM 300654), in a male with autistic features with an onset before the age of 2 years who subsequently developed additional features including anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities as an adult<sup>22</sup>. FAAH2 plays a role in endocannabinoid degradation, and *in vitro* mutant fibroblast studies showed decreased enzyme activity as well as alterations in endocannabinoid levels and lipid metabolism<sup>22</sup>. We propose this novel condition might well explain a subset of X-linked neuropsychiatric disease.

*SENP1*: Furthermore, homozygous missense variants in*SENP1* (MIM 612157), which encodes an important desumoylation protein, were identified in a 4.5-year old girl who was born to non-consanguineous Iranian parents at gestational age 36weeks), presenting with microcephaly, intestinal atresia, seizure disorder, severe IDD, feeding difficulties with failure to thrive. MRI brain showed lissencephaly. At age 3 years, she developed severe bone marrow dysplasia and was diagnosed with acute myeloblastic leukemia. Chemotherapy was adapted according to the molecular diagnosis, with full recovery until this day. Western Blot showed decreased SENP1 protein, and functional abnormalities of B-cell were confirmed; sumoylation analyses are ongoing<sup>23</sup>.

*SYTL2*: Furthermore, compound heterozygous *SYTL2* (MIM 612880, encoding SLP2a; synaptogamin like peptide 2a) variants were identified in a 38-year old female with learning disabilities, born to Caucasian non-consanguineous parents, who presented during adolescence

with splenomegaly and thrombocytopenia, and bone marrow findings of sea-blue histiocytesas well as histiocytes on splenic and liver pathology. The SYTL2 protein has an unspecified role that involves interactions with RAB27a (MIM 603868) to transport lysosome derived cytotoxic secretory vesicles, or melanosomes to the cell surface for exocytosis<sup>24–26</sup>. Autosomal recessive deficiency of RAB27a results in Griscelli syndrome type 2 (GS2; MIM 607624)<sup>27</sup>. GS2 is associated with an immunologic deficiency affecting cytotoxic T-cell and NK cell function, leading to susceptibility to the hemato phagocytic lymphohistiocytosis (HLH) syndrome. Functional tests of this patient's NK cells and T-cells confirmed the predicted functional deficiencies observed in GS2 (see Table 2); the patient's splenomegaly and thrombocytopenia are also characteristic of this condition. Given the favorable effects of HSCT in GS2 patients on the frequency of HLH syndrome relapses<sup>28</sup>, this invasive therapy could be considered in our patient once the SYTL2 deficiency was established as candidate diagnosis.

RYR3: Compound heterozygous RYR3 (MIM180903) variants were identified in two siblings with moderate IDD, epilepsy, psychiatric disease, short stature, along with severe asthma and (intermittent) pulmonary hypertension. Ryanodine receptors, such as RYR3, are intracellular calcium ion release channels responsible for the release of Ca(2+) from intracellular stores following transduction of many different extracellular stimuli. Animal studies showed that lack of Ryr3-mediated Ca(2+) signaling results in abnormalities of certain neurons in the central nervous system<sup>29</sup> and deletion of *RYR3* impairs synaptic plasticity and learning in mice<sup>30</sup>. Furthermore it is highly expressed in smooth muscle tissues such as the lung<sup>31</sup>. Thus, deficiency of this protein could well explain the neuropsychiatric and pulmonary phenotype in these siblings; and similarly to reports of RYR2 (MIM 180902) dysfunction in the pathogenesis of epilepsy<sup>32,33</sup> and recently identified *de novo* variants in epilepsy patients<sup>34</sup> altered RYR3 gating could cause their seizures. Functional studies (depicted in Figure 1show that variant E4693 is hyper-responsive to the RyR-selective calcium mobilizing messenger cyclic adenosine diphosphate-ribose (cADPR). We hypothesize that E3119K, when combined with E4693K, could indirectly enhance channel function further, by altering the capacity (either positively or negatively) with binding partners that either positively or negatively influence the capacity for channel activation by cADPR and / or calcium<sup>35</sup>; further studies are underway. Drugs acting on

RyR channel complexes such as dantrolene and cADPR antagonists should be further explored in terms of usefulness for symptom management in our patients.

*MFNG*: Compound heterozygous missense variants in *MFNG* (MIM 602577) were identified in a 8-year old boy was born to non-consanguineous parents, who presented at age 1 year with stunted growth / short stature, facial dysmorphisms, translucent skin with erythematous patches on his legs and arms, diarrhea / cyclic vomiting, verbal apraxia, and moderate IDD. Urine amino acids showed a pattern suggestive of Hartnup Disease (MIM 234500). Manic Fringe is one of three human Fringe proteins, that acts in the Golgi as a glycosyltransferase enzyme that modifies the ability of Notch to bind to the Notch receptor. The Notch signaling pathway is important for cell-cell communication, which involves gene regulation mechanisms that control multiple cell differentiation processes during embryonic and adult life; impairments in this pathway have been reported to result in neuronal, skeletal, exocrine, gastro-intestinal and epidermal abnormalities<sup>36</sup>, all present in our patient. *In vitro* studies confirmed reduced MFNG secretion of both mutants along with increased amount of mutant MFNG in cells, which lead to an enhanced MFNG activity, and indeed an alteration of Notch and Hey1 activity. Further functional studies are ongoing to further establish causality and understand pathophysiology.

*NPL:* Compound heterozygous *NPL* (MIM 611412) variants were identified in 19-year old male, born to healthy non-consanguineous Filipino parents, who presented with progressive dilated cardiomyopathy, mild skeletal myopathy and sensorineural hearing loss. Biochemical investigations revealed free sialicaciduria (Figure 2a,b); known genetic causes of aciduria were ruled out. His sister reportedly has mild muscle weakness, but has declined physical / cardiac exam; she was found to have sialicaciduria and the same *NPL*variants as her brother. CLIA-certified labs quantified the sialic acid (Neu5Ac) elevations; see the legend of Figure 2 for more detail. N-acetylneuraminate pyruvate lyase is a strong candidate given its function, i.e. to control the cellular concentration of sialic acid by catalyzing the conversion of sialic acid into acylmannosamines and pyruvate<sup>37</sup>. Sialic acid in fibroblasts is markedly increased, and *in vitro* enzymatic measurements in mutant fibroblasts as well as model organism studies are underway. Importantly, studying phenotypes of other families with recessive *NPL* variants should elucidate the clinical phenotype of NPL deficiency. Of note the known pathogenic homozygous variant

explains the hearing loss in the index case (Figure S1E); father has the same genotype but no objectified hearing loss, and this could be explained by variable penetrance<sup>38</sup>.

#### **EXPANDING THE PHENOTYPIC SPECTRUM IN RARE GENETIC DISORDERS**

Recently, we reported a male infant with a hemizygous missense variant in *PIGA* (MIM 311770), a gene encoding for phosphatidylinositol glycan, class A protein, presenting with dysmorphism, developmental arrest, infantile spasms, a pattern of lesion distribution on brain MRI resembling that typical of Maple Urine Syrup Disease, elevated alkaline phosphatase, mixed hearing loss (a combination of conductive and sensorineural), liver dysfunction, mitochondrial complex I and V deficiency, and therapy-responsive dyslipidemia with confirmed lipoprotein lipase deficiency<sup>39</sup>. Our case helped to further delineate the heterogeneous phenotype of germline *PIGA* variants for which we proposed the term 'PIGA deficiency'<sup>39</sup> and to expanded the spectrum of this disorder<sup>39</sup>.

Further illustrating phenotypic delineation, we recently reported on a boy with a 13bp hemizygous deletion in *PLP1* (MIM 300401), a gene encoding for proteolipid protein 1, or lipophilin, a primary constituent of myelin in the central nervous system. The boy presented with global developmental delay, spasticity, nystagmus, ataxia, and most notably severe hypomyelination of early myelinating structures (HEMS) which is in contrast with MRI characteristics of Pelizaeus-Merzbacher (MIM 312080) disease, also caused by *PLP1* alterations<sup>40</sup>. Identification of the *PLP1* deletion in our patient and review of other patients with the distinct HEMS phenotype extend the phenotypic spectrum of *PLP1*-related disorders and led to discovery that these patients have variants that alter *PLP1/DM20* alternative splicing, impacting early myelination.

Finally, in this study we contributed to the characterization of a novel autosomal recessive syndrome due to bi-allelic variants in *SCN4A*, which encodes the  $\alpha$ -subunit of the skeletal muscle voltage-gated sodium channel (Na<sub>V</sub>1.4)<sup>41</sup>. This channel is essential for the generation and propagation of action potentials which initiate skeletal muscle contraction. Dominant gain of function mutations in *SCN4A* are a well-established cause of myotonia and periodic paralysis. In 2 siblings born to non-consanguineous parents and another 9 individuals from 5 unrelated kindreds, all presenting with congenital myopathy with onset *in utero*, recessive *SCN4A* mutations were identified via WES. In a subset of patients, including the youngest sib in our

family, perinatal death occurred, while the remaining case (including our currently 8-year old index) suffered marked congenital hypotoniaand weakness, early-onset respiratory and swallowing difficulties, spinal deformities, but clear clinical improvement over time. Functional validation for the compound heterozygous *SCN4A* variants in our family included reverse transcriptase (RT)-PCR confirming a premature stop codon rendered by the spice site variant (Figure 3a), significant alteration in the biophysical properties (conductance, current density) of the encoded Na<sub>v</sub>1.4 caused by the missense variant (Figures3b and c).

### UNBIASED WES APPROACH ALLOWS DISCOVERY OF UNEXPECTED RESULTS

The above patient presenting with severe hypomyelination of early myelinating structures (HEMS) (Table S3) illustrates how *un*biased WES allows for discovery of the unexpected. Given the strong clinical suspicion, targeted Sanger sequencing of PLP1 gene in a CLIA-certified laboratory was performed but yielded negative results. Our WES analysis uncovered a 13bp deletion within the PLP1 gene, which was later acknowledged by the laboratory that had missed the variant initially prompting a change in their protocol. Thus in some cases, sensitivity achieved by proper WES analysis exceeds that of targeted Sanger sequencing. Another example is a female teenage patient presenting with dysmorphisms, short stature, dysautonomia, paroxysmal episodes, syncope, migraines and mild ID in whom a de novo heterozygous nonsense variant was identified in the KMT2A (MIM 159555) gene, lysine-specific methyltransferase 2A that methylates histone H3 and is known to cause Wiedemann-Steiner syndrome (MIM 605130). The patient did not manifest the hairy elbows phenotype, a hallmark of the syndrome, and the syndrome was not considered by the referring clinician. However, after the discovery and confirmation of the *de novo* variant in the *KMT2A* gene, the parents explained that the patient had shaved hair from her elbows. This example illustrates unexpected events that can misdirect a candidate gene approach even in hands of skilled clinicians.

### **C) EXPERIMENTAL DATA**

### Novel Genes

CA5A (MIM 114761): see biochemical data in van Karnebeek et al., 2014<sup>19</sup>

*NANS* (MIM 605202):Urinary N-acetyl mannosamine, as measured by quantitative NMR spectroscopy in our case (at age 3 years) was highest (295 umol/mmol creatinine); in 5 unrelated other patients (all adults at the time of study)harbouring bi-allelic *NANS* variants, the urinary concentration of ManNAc ranged from 41 to 98 umol/mmol creatinine (reference< 10)<sup>20</sup>.

## Candidate Genes

## *ACACB* (MIM 601557):

 Table 1. Urine organic acid profile in the patient with compound heterozygous ACACB

 variants during metabolic decompensation suggestive of multiple carboxylase deficiency

| Urine organic acids<br>(µmol/mmolcreatine) | Case  | Reference<br>range |
|--------------------------------------------|-------|--------------------|
| 3-OH-valeric acid                          | 1,395 | 1-52               |
| 3-methylcrotonylglycine                    | 36    | <1                 |
| Tiglylglycine                              | 34    | <3                 |
| 3-OH-propionic acid                        | 30    | 2-28               |
| Propionylglycine                           | 6     | <1                 |
| methylcitric acid                          | 23    | <13                |
| lactic acid                                | 4,723 | 7-94               |
| 2-me-3-OH-butyric acid                     | 194   | <30                |
| glutaric acid                              | 1040  | <9                 |
| 3-methyl-glutaconic acid                   | 153   | <13                |

**RBSN** (MIM 609511): see biochemical data in Stockler et al., 2014<sup>21</sup>

FAAH2 (MIM 300654): see biochemical data in Sirrs et al., 2015<sup>22</sup>

### SYTL2 (MIM 612880)

**Table 2. Functional data on the** *SYTL2 (SLP2a)* **loss of function variants.** The CD107a mobilization fails to detect a normal amount of surface CD107a on stimulated lymphocytes indicating a defect in lymphocyte degranulation. The NK cell functional assays are abnormally low indicating impaired lytic capabilities of NK cells. The soluble CD163a protein level is abnormally high indicating macrophage activation.

|         | Stimulated<br>CD107a<br>mobilization | NK Cell Function | NK Cell Function<br>Assay (Cr |                 |
|---------|--------------------------------------|------------------|-------------------------------|-----------------|
|         | (flow cytometry)                     | Assay (Cr        | release) Lytic                |                 |
| Sample  | (%)                                  | Release)%        | Units                         | sCD163a (ng/ml) |
| index   | 6                                    | 9                | 1.2                           | 2551            |
| control | 11-35                                | <u>≥</u> 20      | <u>≥</u> 2.6                  | 387-1785        |

### **RYR3** (MIM 180903)

**Figure 1.** RyR3 single point mutation E4693 is hyper-responsive to the RyR-selective calcium mobilizing messenger cyclic adenosine diphosphate-ribose.



**A)**shows records of the F340/F380 ratio against time for 3 different HEK293 cells, which do not ordinarily express RyRs (1,2), during intracellular dialysis of 100 $\mu$ M cyclic adenosine diphosphate-ribose (cADPR); WC indicates the time point for onset of intracellular dialysis upon entering the whole-cell configuration using the patch-clamp technique. **B**)brightfield images (*upper panels*) and fluorescence images (*lower panels*) of HEK293 cells transiently transfected with GFP-tagged (green) wild type RyR3 (WT RyR3, *lefthand panel*), RyR3 mutant with single point mutation E3117 (*middle panel*) or RyR3 mutant with single point mutation E4693 (*righthand panel*). C) Bar chart shows the mean  $\pm$  SEM for the peak change in Fura-2 fluorescence ratio induced during intracellular dialysis of 100 $\mu$ M cADPR into wild type HEK293 cells and HEK293 cells expressing wild type RyR3 or mutant RyR3 incorporating single point mutations E4693 and E3117, respectively, in the absence and in the presence of 100 $\mu$ M 8-bromo-cADPR, a cADPR antagonist; data are means  $\pm$  SEM for at least 3 cells, with significance determined by two-sample *t* test between indicated groups (\*<0.05, \*\*<0.01, \*\*\*<0.01). **D**) upper panel shows a bright field image (BF) of a HEK293 cell transiently transfected with wild type RyR3, and a series of pseudo-colour images of the Fura-2 fluorescence ratio (F340/F380) recorded in the same cell during intracellular dialysis of 100 $\mu$ M cADPR. The lower panel shows the corresponding record (black) of the F340/F380 ratio against time, together with two additional records (red and blue) obtained from different cells. E and F, as in D but for HEK293 cells transiently transfected with mutant RyR3 incorporating single point mutations (E) E3117 and (F) E4693<sup>42,43</sup>.

## *NPL* (MIM 611412)

Figure 2. TLC urine oligosaccharides were abnormal for both index and affected sibling (a: TLC lanes 4 and 7 respectively) and revealed marked free sialicaciduria by resorcinol staining (b: lanes 4 and 7 respectively).

a)



# orcinol staining

# resorcinol staining



Further biochemical data: An abnormal concentration of Neu5Ac was determined by Q-TOF in urine and serum of the index case. Quantification of Neu5Ac in urine was performed by LC-MS/MS method on two different sample collections for the index: Neu5Ac= 122  $\mu$ mol/mmol Cr and Neu5Ac= 144  $\mu$ mol/mmol Cr (normal range for age>20 years: 9.7 +-8  $\mu$ mol/mmolCr)<sup>44</sup>Urine Neu5Ac was quantified for q sample collection in the affected sibling by an HPLC method (1470 nmol/mg Cr; normal range 155-352 nmol/mg Cr) and by the LC-MS/MS method (Neu5Ac 139  $\mu$ mol/mmol Cr; normal range for age>20 years: 9.7 +-8  $\mu$ mol/mmolCr)<sup>44</sup>.

## Known genes with novel phenotypes

PIGA (MIM 311770): see biochemical data in Tarailo-Graovac et al., 2015<sup>39</sup>

## *MTO1* (MIM 614667):

| Table 3. Respirato | ry complex activities | measured in muscle |
|--------------------|-----------------------|--------------------|
|--------------------|-----------------------|--------------------|

|                                | Affected sister | Reference interval | Index    | Reference<br>interval |
|--------------------------------|-----------------|--------------------|----------|-----------------------|
| Citrate Synthase (nmol/min/mg) | 117             | 79-147             | 55 (L)   | 79-114                |
| Complex I (nmol/min/mg)        | 11.3 (L)        | 16.6-61.6          | 4.1(L)   | 17.9-56.7             |
| Complex I/Citrate Synthase     | 0.096 (L)       | 0.161-0.438        | 0.072(L) | 0.134-0.469           |
| Complex II (nmol/min/mg)       | 35.8            | 18.6-47.0          | 19.2(L)  | 22.4-44.8             |
| Complex II/Citrate Synthase    | 0.305           | 0.194-0.388        | 0.349    | 0.168-0.387           |
| Complex IV nmol/min/mg)        | 2.16 (L)        | 2.30-5.47          | 0.76(L)  | 2.30-5.03             |
| Complex IV/Citrate Synthase    | 0.018 (L)       | 0.020-0.049        | 0.014(L) | 0.017-0.036           |

**RMND1** (MIM 614917): see biochemical data in Janer et al., 2015<sup>45</sup>



### (C) Sequence analysis of RT-PCR products





**Figure 3a. The variant c.3145-2A>C in the** *SCN4A* **gene causes a splice site defect (p. Ala1049Val fs\*50).A.** Family pedigree showing two variants c.3205G>A, p.Asp1069Asn, (chr17: 62025363 C>T) and c.3145-2A>C (chr17: 62025425 T>G) investigated in this study. **B,** Reverse transcriptase (RT)-PCR analysis of SCN4A transcripts for variant c.3145-2A>C in RNA samples extracted from peripheral blood cells. Arrows indicate the products of different size amplified from RNA samples; No RT: as a negative control without the reverse transcriptase in RT reaction; beta-actin: a reference gene as a positive control for RT-PCR reaction. **C,** Sanger sequencing of RT-PCR products generated in (B). **Upper panel**: Sequence chromatograms, bars with arrow above the sequence chromatogram indicate exons 16/17 junction from 424bp band (WT); Bars with dotted lines indicate exon 16 at the junction with retained intron 16 from 971 bp band (Mutant). **Lower panel**: Depicted splicing events for wild type and mutation with intron 16 retention, leading to creation of a premature stop codon (underlined), along with the sequences denoted by each colour.

Figure S3b. Ex-vivo experiments showing current traces, normalized conductance and current density for SCN4A (Na<sub>V</sub>1.4) WT and p.Asp1069Asn; g.62025363 C>T) channel variants in transfected Chinese hamster ovary (CHOk1) cells.



Panel **A** shows representative current traces of WT and Panel **B** for p.Asp1069Asn. Panel C shows normalized conductance plotted against membrane potential for both channel variants. The inset in Panel **C** shows the pulse protocol used to measure current amplitude at different voltages. Panel **D** shows the current density plotted in the form of a bar graph. \* indicates statistical significance (Student's t-test, p<0.05).

Figure 3c. Normalized current and fast inactivation time constants plotted against membrane potential for the SCN4A (Na<sub>V</sub>1.4) WT and p.Asp1069Asn variants in transfected CHOk1 cells.



Panel **A** shows the onset of fast inactivation performed at -50 mV as shown by the pulse protocol inset. Steady-state fast inactivation shown as normalized current plotted against membrane potential is shown in panel **B**. Panel **C** shows the fast inactivation time constants plotted against the membrane potential. These time constants are obtained from recovery, onset and IV protocols. Panel **D** shows a clearer view of the fast inactivation time constant curve shown in Panel C but within a limited voltage range (-30 mV to +20 mV). \* indicates statistical significance (p<0.05).

### QARS (MIM 603727)

Figure 4. Aminoacylation activities of recombinant QARS variants.



<u>Legend:</u>Enzyme activity was undetectable in the p.Arg463\*. Activity of p.Gln515His variants was decreased to lower than 10% of WT QARS. A. Aminoacylation activity was tested at the enzyme concentration of 100 nM. B. Aminoacylation activity was tested at the enzyme concentration of Recombinant Human QARS Proteins and QARS aminoacylation assays performed as described in previous study by Zhang, X et al.  $(2014)^{46}$ .

## **PCK1** (MIM 614168):

**Table 4.** PEPCK enzyme activity is shown for COS-1 cells transfected with empty vector, a vector containing either wildtype ormutant PCK1. Enzyme activity is shown  $\pm$  standard error, with the number of replicates in parentheses.

| COS-1 Transfection experiment                         | PEPCK activity (nmol/mg/min) |
|-------------------------------------------------------|------------------------------|
| COS-1                                                 | $0.11 \pm 0.01$ (3)          |
| COS-1 + Empty vector                                  | $0.21 \pm 0.03$ (4)          |
| COS-1 + Wildtype <i>PCK1</i>                          | $15.57 \pm 5.46$ (4)         |
| COS-1 + mutant <i>PCK1</i> (homozygous 12bp deletion) | $0.23 \pm 0.04$ (4)          |

### **D)** SUPPLEMENTARY DISCUSSION

In 4 families, repeated semi-annual re-analysis of WES data failed to identify a genetic diagnosis ;of note, mtDNA sequencing had been performed by a CLIA-certified laboratory in the probands of all 4 families without yielding variants of interest. Two of these 4 families were studied using proband-only WES, indicating a possibility that a pathogenic *de novo* variant was missed. Indeed, in one of these families by subsequently sequencing the parental exomes, we identified a novel de novopathogenic variant in MYLK (MIM 600922), deemedcausal of the phenotype. WGS analysis of the other family is underway. In 2 siblings presenting with a neurodegenerative phenotype and neurotransmitter abnormalities, whose seizures responded to Levocarbidopa and 5OH-tryptophan, duo-WES analysis failed to identify a diagnosis, ultimately attributed to inadequate coverage. Subsequent duo-WGS analysis revealed a previously described homozygous pathogenic variant (c.10G>C [p.Gly4Arg]) in CSTB (MIM 601145) resulting in Unverricht-Lundborg syndrome (MIM 254800). In the remaining family without a diagnosis, the proband presented with neonatal hyperammonemia, hyperlactatemia, methylmalonicaciduria which resolved completely, showing normal development and metabolic profiles at age 2 years; a large 600 gene panel and our trio-WES analysis did not yield disease-causing variants. Possibly this child does not suffer from a rare monogenic disease but a resolved immaturity of enzymes; we did not pursue further sequencing.

Preventive measures, such as metabolic diets, illustrate genomic diagnoses enable precision medicine. This is illustrated in our study by CA-VA deficiency<sup>19</sup> and genetically confirmed cytosolic phosphoenolpyruvate carboxykinase deficiency.<sup>47,48</sup> which comes 40 years after first the clinical reports in 1975<sup>49</sup>, in a 3-year old boy who presented with acute liver failure during gastro-intestinal illness, along with mild hypoglycemia, hyperammonemia with elevated glutamine, lactic acidosis, and elevated tricyclic acid metabolites. Here, we extend the hypoglycemia-lactic acidosis phenotype with acute liver failure during gastro-intestinal illness, and persistent signs of mitochondrial and urea cycle dysfunction amenable to treatment with a carbohydrate-rich diet and emergency regimen. *In vitro* mutant enzymatic activity in transfected COS-1 cells was markedly reduced (Table 4).

### **E)** SUPPLEMENTARY ACKNOWLEDGEMENTS

We gratefully acknowledge the contributions of the following individuals: Dr. L. Bonafé and Dr. S. Unger, (University of Lausanne, Switzerland), Dr. U. Engelke and Dr. D. Lefeber (Radboud University Medical Centre, The Netherlands), Dr. M. Kaczocha, Dr. R. Haltiwänger and Ms. Shinako Kakuda (Stony Brook University, USA), Dr. G. Lavery (University of Birmingham, United Kingdom), Dr. A. Waheed and Dr. W. Sly (St. Louis University, USA), Dr. S. Corvera (University of Massachusetts Medical School, USA) for experimental studies; Mr. R. Houben (Health2Media) for graphics and digital applications; all team members of the Treatable Intellectual Disability Endeavour in British Columbia for contributions (www.tidebc.org), in particular Ms. S. Failanga, Ms. K. Withers, Ms. S. Schaumann, Ms. S. Lin, Ms. Sebastiano for nursing care and clinical coordination; Ms. B. Cheng, Ms. A. Giezen, Ms. K. Ueda for dietary management; Ms. B. Toh for metabolic sample handling; Ms. X. Han for Sanger sequencing; Dr. M. Thomas, Mr. T. Murphy, Ms A. Ghani for consenting and data management; Ms. M. Higginson for DNA extraction and sample handling; Dr. A. Matthews for bio-informatics support; Mr. D. Arenillas and Mr. M. Hatas for systems support, and Ms. D. Pak, Ms. H. Cheung, Ms. E. Lomba, Ms. R. Giesbrecht (all affiliated with BC Children's Hospital and/or Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute at the University of British Columbia) for research management support.

## F) SUPPLEMENTARY FIGURES

Figure S1: Pedigrees and electropherograms of families with known pathogenic variants



## Figure Legend:

Unknown phenotypes are depicted in grey while unknown genotypes are depicted with question mark. The V37I variant in *GJB2* depicted in figure (E) has variable penetrance<sup>38</sup>, providing an explanation for the father who is also homozygous for this variant but does not have an objectified hearing impairment.

# G) SUPPLEMENTARY TABLES

| Table S1: Clinical Characteristics of the 50 Patients in 41 families (41 probands, 9 sibllings) |                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| Characteristics                                                                                 | Number of Patients (%)      |  |  |  |  |
| Sex                                                                                             |                             |  |  |  |  |
| Male                                                                                            | 29 (58%)                    |  |  |  |  |
| Female                                                                                          | 21 (42%)                    |  |  |  |  |
| Age                                                                                             |                             |  |  |  |  |
| Child (< 19 yr)                                                                                 | 44 (88%)                    |  |  |  |  |
| Adult ( $\geq 19$ yr)                                                                           | 6 (12%)                     |  |  |  |  |
| Family structure (Patients from)                                                                |                             |  |  |  |  |
| Non-consanguineous families with a single affected child                                        | 30 (60%)                    |  |  |  |  |
| Non-consanguineous families with 2 affected children                                            | 14 (28%) (7 families)       |  |  |  |  |
| Consanguineous families with a single affected child                                            | 2 (4%)                      |  |  |  |  |
| Consanguineous families with 2 affected children                                                | 4 (8%)                      |  |  |  |  |
| Number of siblings (affected siblings)                                                          |                             |  |  |  |  |
| 0 (na)                                                                                          | 10 (20%)                    |  |  |  |  |
| 1 (5)                                                                                           | 21 (42%)                    |  |  |  |  |
| $\frac{1}{2}(2)$                                                                                | 13 (26%)                    |  |  |  |  |
| $\frac{1}{3(2)}$                                                                                | 5 (10%)                     |  |  |  |  |
| $\frac{4}{4}$                                                                                   | $\frac{1}{1}$ (2%)          |  |  |  |  |
| Population by descent                                                                           | 1 (270)                     |  |  |  |  |
| European Caucasian                                                                              | 31 (62%)                    |  |  |  |  |
| Fast-Asian                                                                                      | $\frac{31(62)}{3}$          |  |  |  |  |
| West-Asian                                                                                      | 10 (20%)                    |  |  |  |  |
| South-Asian                                                                                     | $\frac{10(200)}{4(8\%)}$    |  |  |  |  |
| Latino                                                                                          | $\frac{1}{2}$ (4%)          |  |  |  |  |
| Phenotype                                                                                       | 2 (1/0)                     |  |  |  |  |
| Intellectual developmental disorder                                                             | 50(100%)                    |  |  |  |  |
| (mild $n=22$ : moderate $n=17$ : severe-profound $n=12$ )                                       | 50(10070)                   |  |  |  |  |
| Unexplained metabolic phenotype                                                                 | 19 (98%)                    |  |  |  |  |
| Abnormal neuro imaging                                                                          | 30 (60%)                    |  |  |  |  |
| Abnormal Musele Tone                                                                            | $\frac{30(0070)}{23(46\%)}$ |  |  |  |  |
| Saizura                                                                                         | $\frac{23(4070)}{15(30\%)}$ |  |  |  |  |
| Abnormal Movement                                                                               | $\frac{13(36\%)}{13(26\%)}$ |  |  |  |  |
| Epilopsy                                                                                        | $\frac{13(2070)}{12(2494)}$ |  |  |  |  |
| Developing Company                                                                              | $\frac{12(2470)}{10(200/)}$ |  |  |  |  |
| Psychiatric Symptoms                                                                            | $\frac{10(20\%)}{9(160/)}$  |  |  |  |  |
| Dysmorphic Features                                                                             |                             |  |  |  |  |
|                                                                                                 | 8 (10%)                     |  |  |  |  |
| Short Stature                                                                                   | 6 (12%)                     |  |  |  |  |
| Immune dysfunction                                                                              | 4 (8%)                      |  |  |  |  |
| Clinical genetic and biochemical analysis                                                       |                             |  |  |  |  |
| CMA (chromosomal microarray analysis)                                                           | <u> </u>                    |  |  |  |  |
| l argeted gene sequencing                                                                       | 34 (68%)                    |  |  |  |  |
| mtDNA sequencing                                                                                | 19 (38%)                    |  |  |  |  |
| Biochemical testing                                                                             | 50 (100%)                   |  |  |  |  |

Table S2: Pathogenicity of variants according recent Standards and Guidelines of the American College of medical Genetics guidelines<sup>50</sup>. The majority of the variants were classified as pathogenic (n=24[41%]) or likely pathogenic (n=17[29%]) according to recently published ACMG Standards and Guidelines.

[please be referred to: TableS2\_ACMGClassificationsOfThe58Variants.xlsx]

| Table S3: Known pathogenic variants |                                                                                                             |                                                                                |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|
|                                     |                                                                                                             |                                                                                |  |  |  |  |
| Gene                                | Disease [MIM]                                                                                               | Variant (hg19)                                                                 |  |  |  |  |
| PRSS1                               | Pancreatitis, hereditary [MIM 16788]                                                                        | g.142458451A>C (p.N29T) <sup>51</sup>                                          |  |  |  |  |
| CBL                                 | Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia [MIM 613563]                 | g.119148891T>C (p.Y371H) <sup>52</sup>                                         |  |  |  |  |
| GALC                                | Krabbe disease [MIM 245200]                                                                                 | g.88452941T>C (p.T112A) <sup>53</sup>                                          |  |  |  |  |
| GJB2                                | Deafness, autosomal recessive 1A [MIM 220290]                                                               | g.20763612C>T (p.V37I) <sup>38,54,55</sup>                                     |  |  |  |  |
| TMEM67                              | COACH syndrome [MIM 216360]                                                                                 | g.94807731T>C (p.F590S) <sup>56,57</sup>                                       |  |  |  |  |
| PACSI                               | Mental retardation, autosomal dominant 17 [MIM 615009]                                                      | g.65978677 C>T (p.R203W) <sup>58</sup>                                         |  |  |  |  |
| KRAS                                | Autoimmune lymphoproliferative syndrome type<br>IV [MIM 614470]; Non-small cell lung cancer<br>[MIM 211980] | g.25398282 C>A (p.G13C) <sup>59</sup><br>g.25398282 C>A (p.G13C) <sup>60</sup> |  |  |  |  |
|                                     |                                                                                                             |                                                                                |  |  |  |  |

### 31

# Table S4:Gene categories and corresponding patient phenotypes

| Gene             | MIM     | Phenotype<br>+ metabolic specific                                                                                                                                                                                                                                                                                   | Impact on clinical<br>management                                                                                                            | ACMG variant(s)<br>classification<br>(genotype)                           | Supporting Evidence                                                                                                                                                                                | Literature<br>(PMID) |
|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| A) Novel Genes   |         |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                                           |                                                                                                                                                                                                    |                      |
| CA5A§            | 615751  | Neonatal hyperammonemia,<br>hyperlactatemia, hypoglycemia; mild<br>IDD; <i>hyperammonemia, hyperlactatemia,</i><br><i>hypoglycemia, PCC and 3MCC deficiency</i><br><i>metabolites</i>                                                                                                                               | Emergency dietary<br>regimen<br>&carglumic acid;<br>avoid acetazolamide<br>(resolution<br>hyperammonemia&<br>improved metabolic<br>control) | Likely Pathogenic<br>(Homozygous)                                         | 2 other families (same phenotype,<br>different alleles); reduced enzyme<br>activity (thermo-labile, unstable) in<br>mutant transfected COS7-cells                                                  | 24530203             |
| NANS§§           | *605202 | Profound IDD, infantile spasms<br>(hyppsarrythmia), developmental<br>regression, coarse features, small basal<br>ganglia with abnormal corpus callosum,<br>hypomyelination, skeletal dysplasia;<br><i>lysosomal storage disease phenotype</i>                                                                       | Potential -<br>replacement CMP-<br>sialic acid                                                                                              | Likely Pathogenic<br>+<br>Likely Pathogenic<br>(Compound<br>Heterozygous) | 5 other families. Elevation precursors<br>in urine, CSF, blood; reduced<br>enzymatic activity in fibroblasts                                                                                       | 10749855             |
| B) Candidate Gen | es      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |                                                                           |                                                                                                                                                                                                    |                      |
| ACACB§§          | *601557 | Recurrent fever-induced metabolic crises<br>(responsive to biotin), mild IDD;<br>suggestive of multiple carboxylase<br>deficiency (lactic acidosis, elevated PCC<br>and 3MCC metabolites)                                                                                                                           | Biotin, anti-pyretics<br>(improved<br>metabolic control,<br>avoidance crises)                                                               | Likely Pathogenic<br>+<br>Benign<br>(Compound<br>Heterozygous)            | Single patient; reduced mutant enzyme<br>activity (thermolabile) in patient cells                                                                                                                  | 24740690             |
| RBSN§            | *609511 | Severe IDD, coarse facial features,<br>intractable seizures, microcephaly,<br>dysostosis, osteopenia, macrocytosis and<br>megaloblastoiderythropoiesis; <i>transient</i><br><i>cobalamin deficiency</i> , <i>severe hyper-</i><br><i>triglyceridemia onketogenic diet, partial</i><br><i>cathepsin D deficiency</i> | None                                                                                                                                        | Likely Pathogenic<br>(Homozygous)                                         | Single patient. Decreased transferrin<br>accumulation, proliferation rate,<br>cytoskeletal / lysosomal abnormalities<br>in fibroblasts consistent with defect in<br>receptor mediated endocytosis. | 25233840             |

| GOT2    | *138150 | Severe IDD, acquired microcephaly,<br>severe epilepsy, spasticity, sleep<br>disturbances, abdominal spasms; <i>low</i><br><i>serum and CSF serine, lactic acidosis</i>                                                                                                          | Oral pyridoxine &<br>serine supplements<br>(improved head<br>growth, seizure<br>control,psychomoto<br>r development) | Uncertain<br>Significance<br>+<br>Uncertain<br>Significance<br>(Compound<br>Heterozygous) | Single patient. Mechanistic fit &<br>treatment response; stable isotope<br>studies of malate-aspartate in patient<br>cells & mouse model studies underway                                        | 16368075<br>22309504             |
|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| FAAH2§  | *300654 | Learning disabilities, autism, anxiety,<br>pseudo-seizures, ataxia, supranuclear gaze<br>palsy; <i>abnormalities of serum</i><br><i>acylcarnitine profile</i>                                                                                                                   | None                                                                                                                 | Likely Pathogenic<br>(Hemizygous)                                                         | CNVs described in autism patients.<br>Defect enzymatic activity in fibroblasts<br>resulting in altered endocabbanoid<br>profiles                                                                 | 20655035<br>25885783             |
| SENP1   | *612157 | Severe IDD, congenital microcephaly,<br>seizures, failure to thrive, intestinal atresia,<br>acute myeloblastoid leukemia;<br><i>lissencephaly</i>                                                                                                                               | Chemotherapy<br>(malignancy<br>resolved)                                                                             | Likely Pathogenic<br>(Homozygous)                                                         | Single patient. Remaining candidate;<br>decreased protein on Western Blot,<br>abnormal functional B-cell studies.                                                                                | 2606032                          |
| SYTL2§§ | *612880 | Learning disabilities,<br>Hemophagiocyticlymphohistiocytosis,<br>thormbocytopenia and splenomegaly<br>(status post splenectomy), progressive liver<br>dysfunction, skin hyperpigmentation;<br><i>lysosomal storage disease phenotype (blue</i><br><i>histiocytes in spleen)</i> | Candidate for stem<br>cell transplant                                                                                | Uncertain<br>significance<br>+<br>Uncertain<br>significance<br>(Compound<br>Heterozygous) | Single patient. Confirmed immune<br>deficiency affecting cytotoxic T-cell<br>and NK-function defects as expected<br>based on its interactions with<br>RAB27a; model organism studies<br>underway | 15543135<br>17182843<br>18812475 |
| RYR3§§  | *180903 | Moderate IDD, epilepsy, short stature,<br>pulmonary hypertension, psychiatric<br>disease; <i>sterol disorder</i>                                                                                                                                                                | None                                                                                                                 | Uncertain<br>significance<br>+<br>Likely Pathogenic<br>(Compound<br>Heterozygous)         | Two siblings with same phenotype.<br>Mechanistic fit; functional studies in<br>cell-lines underway                                                                                               | 25126414                         |
| MFNG    | *602577 | Moderate IDD, epilepsy, apraxia, autism;<br>dysmorphisms with asymmetric facies,<br>stunted growth / short stature, cyclic<br>vomiting, chronic diarrhea, erythematous<br>skin lesions, <i>initial abnormal urine amino</i><br><i>acids</i>                                     | None                                                                                                                 | Likely Pathogenic<br>+<br>Likely Pathogenic<br>(Compound<br>Heterozygous)                 | Single patient<br>Gain of function mutations; increase<br>Notch and Hey1 activity                                                                                                                | 10935626                         |

| NPL§§ | *611412 | Sibling                | 1:cardiomyopathy,  | None | Likely Pathogenic | Increased neuraminic acid in both      | 16147865 |
|-------|---------|------------------------|--------------------|------|-------------------|----------------------------------------|----------|
|       |         | myopathy,sialicacidur  | ia                 |      | +                 | siblings.                              |          |
|       |         |                        |                    |      | Likely Pathogenic |                                        |          |
|       |         | Sibling 2:not formal   | ly evaluated, mild |      |                   | Mechanistic fit; functional studies in |          |
|       |         | myopathy ,sialicacidui | ria                |      | (Compound         | fibroblasts underway.                  |          |
|       |         |                        |                    |      | Heterozygous)     | -                                      |          |
|       |         |                        |                    |      |                   |                                        |          |

**Legend to Tables S4A & B**: \*MIM corresponds to a gene as there is no disease associated with it at the time of the study; § biochemical / experimental data providing evidence for a deleterious effect of variants on protein function are either published in the listed PMID or presented as §§ previously unpublished data in Supplemental Materials D.

| C) Known Genes | s with Novel     | Phenotypes                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |                                                                                                      |                                                                                                       |                                                                                     |
|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Gene           | MIM              | Known phenotype<br>(PMID)                                                                                                                                      | Patient Phenotype + metabolic specific                                                                                                                                                                                                                                              | Novel features<br>(PMID)#                                                                            | Impact on<br>clinical<br>management (&<br>clinical status)                                            | ACMG variant(s)<br>classification<br>(genotype)                                     |
| CNKSR2         | *300724          | IDD, limited or absent speech,<br>seizures, hyperactivity, sleep<br>disturbances<br>(25223753)                                                                 | Moderate IDD, language loss,<br>epilepsy, sleep disturbances,<br>dysautonomia, fatigue & cognitive<br>decline responsive to choline<br>therapy; <i>low acetyl choline levels</i>                                                                                                    | Low acetylcholine<br>levels responsive to<br>therapy                                                 | Continuation<br>pyridostigmine&<br>choline (improved<br>dysautonomia)                                 | Uncertain significance<br>(Hemizygous)                                              |
| SCN2A§§        | 613721<br>607745 | IDD, benign epilepsies, epileptic<br>encephalopathy, hypotonia,<br>hypersomnolence, movement<br>disorder<br>(23935176)                                         | Severe IDD, autism, absent speech,<br>acquired microcephaly, hypotonia,<br>cortical & cerebellar atrophy,<br>treatment-resistant seizures,<br><i>abnormal neurotransmitter</i><br><i>monoamine profiles (low CSF</i><br><i>HVA</i> , 5-HIAA, pterins)                               | Abnormal<br>neurotransmitter<br>monoamine metabolites<br>(26647175)                                  | Neurotransmitter<br>supplements &<br>refine AEDs<br>(improved<br>epilepsy control &<br>communication) | Pathogenic<br>(Heterozygous)                                                        |
| PIGA§          | 300868           | IDD, epileptic encephalopathy,<br>dysmorphisms, neuro-imaging<br>abnormalities, +/- multi-organ<br>involvement, elevated alkaline<br>phosphatase<br>(25885527) | †Profound IDD, Dysmorphisms,<br>infantile spasms, contractures, brain<br>intramyelin edema, mixed hearing<br>loss,liver dysfunction; <i>lipoprotein</i><br><i>lipase deficiency / mitochondrial</i><br><i>complex I and IV deficiency /</i><br><i>elevated alkaline phosphatase</i> | Lipoprotein lipase<br>deficiency, Maple<br>Syrup Disease-like<br>features on brain MRI<br>(25885527) | None                                                                                                  | Likely Pathogenic<br>(Hemizygous)                                                   |
| CBL            | 613563           | Normal intellect or IDD, short<br>stature, dysmorphisms, cardiac<br>defect, predisposition to JMLL<br>(20694012)                                               | Mild IDD, ADHD, dysmorphic<br>features, splenomegaly,<br>thrombocytopenia; <i>storage disease</i><br><i>phenotype</i>                                                                                                                                                               | Normal stature,<br>splenomegaly, ADHD                                                                | Screening for<br>malignancy<br>(minimization<br>morbidity)                                            | Pathogenic<br>(Heterozygous)                                                        |
| ANO3           | 615034           | AD form of focal dystonia and<br>myoclonus (DYT24)<br>(24442708)                                                                                               | Moderate IDD, seizures, dystonia,<br>hyperkinetic movements,<br>microcephaly, sleep disturbances;<br><i>neurotransmitter profile</i><br><i>abnormalities (low CSF HVA; low</i><br><i>neopterin)</i>                                                                                 | abnormal<br>neurotransmitter<br>monoamine metabolites<br>& recessive inheritance<br>with IDD         | Levo-<br>carbidopamine&<br>BH4 (improved<br>movement<br>disorder, sleep,<br>seizure control)          | Uncertain significance<br>+<br>Uncertain significance<br>(Compound<br>Heterozygous) |

| DYRKIA | 614104 | IDD, speech delay, seizures,<br>microcephaly, growth delay &<br>feeding problems<br>(25920557)                                                                     | Moderate IDD, intractable absence<br>epilepsy, acquired microcephaly,<br>failure to thrive; <i>GLUT-DS like</i><br><i>phenotype (hypoglycorrhagia, low</i><br><i>CSF:serum glucose ratio)</i>                                                           | GLUT1-DS phenotype<br>responsive to ketogenic<br>diet                                                   | None                                                                                                                   | Likely Pathogenic<br>(Heterozygous)                                                 |
|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| MTO1§§ | 614702 | Mitochondrial disease with IDD,<br>myopathy, lactic acidosis,<br>cardiac involvement<br>(23929671)                                                                 | 2 sibs with moderate IDD,<br>Treatment resistant epileptic<br>encephalopathy, myopathy,<br>recurrent rhabdomyolysis; seizure<br>improvement on ketogenic diet<br><i>mitochondrial disease (respiratory</i><br><i>chain complex I and IV deficiency)</i> | Rhabdomyolysis;<br>adolescent onset cardiac<br>involvement; seizures<br>responsive to ketogenic<br>diet | Ketogenic diet,<br>mitochondrial<br>cocktail; cardiac<br>screening<br>(improved seizure<br>control<br>&rhabdomyolysis) | Pathogenic<br>+<br>Pathogenic<br>(Compound<br>Heterozygous)                         |
| RMND1§ | 614922 | Mitochondrial disease with IDD,<br>lactic acidosis, encephalo-<br>neuromyopathy<br>(25604853)                                                                      | † Severe IDD, congenital lactic<br>acidosis, myopathy, hearing loss,<br>renal failure, gastro-intestinal<br>dysmotility, dysautonomia;<br>congenital lactic acidosis, severe<br>combined mitochondrial<br>respiratory chain deficiency                  | Renal failure, deafness,<br>dysautonomia<br>(25604853)                                                  | None                                                                                                                   | Pathogenic<br>+<br>Pathogenic<br>(Compound<br>Heterozygous)                         |
| AIMP1  | 260600 | Perlizaeus-Merzbacher-like<br>disease with IDD, no acquisition<br>of skills, microcephaly, seizures,<br>hypomyelinatingleukodystrophy,<br>spasticity<br>(24958424) | † Profound IDD, intractable<br>epilepsy, developmental arrest,<br>microcephaly, primary<br>neurodegenerative disorder with<br>secondary demyelination<br><i>leukodystrophy</i>                                                                          | not Perlizaeus-<br>Merzbacher-like<br>(24958424)                                                        | None                                                                                                                   | Pathogenic<br>(Homozygous)                                                          |
| H6PD   | 604931 | Cortisone reductase deficiency<br>with hypothalamic-pituitary-<br>adrenal (HPA) axis activation<br>and adrenal hyperandrogenism<br>(23132696)                      | IDD secondary to myopathy,<br>premature adrenarche, skin<br>pigmentation abnormalities;<br>transient glycogen storage on<br>muscle biopsy                                                                                                               | Skin pigmentation<br>abnormalities                                                                      | None                                                                                                                   | Uncertain significance<br>+<br>Uncertain significance<br>(Compound<br>Heterozygous) |

| MED12   | 309520<br>300895<br>305450                     | Opitz-Kaveggia syndrome<br>Lujan-Fryns syndrome<br>Ohdo syndrome, X-linked<br>(24123922)                                                                                                                                                                | Moderate IDD, non-verbal,<br>macrocephaly, dysmorphic features<br>(prominent forehead, hypertelorism,<br>broad thumbs), dysgenesis of corpus<br>callosum, hypotonia, joint<br>hypermobility <i>elevated leucine</i> ,<br><i>isoleucine</i> , <i>valine</i> ( <i>normalized</i><br><i>during</i> 2 <sup>nd</sup> yr of life)                       | Phenotypic features<br>overlappingFG<br>syndrome, Lujan-Fryns<br>syndrome, and Ohdo<br>syndrome | None                                                                               | Likely Pathogenic<br>(Hemizygous)                                                   |
|---------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| SMAD4   | 139210                                         | IDD, dysmorphic facial features,<br>microcephaly, square body<br>shape, skeletal anomalies (broad<br>ribs, iliac hypoplasia,<br>brachydactyly, flattened<br>vertebrae, thickened calvaria)<br>Also congenital heart disease<br>may occur.<br>(26420300) | Severe IDD, short stature,<br>microcephaly, square body shape,<br>facial dysmorphisms, cyclic<br>vomiting, congenital kidney<br>abnormalities, <i>fluctuating</i><br><i>hyperammonemia, hypoglycemia,</i><br><i>ketosis (now resolved)</i>                                                                                                        | Congenital kidney<br>abnormalities, cyclic<br>vomiting                                          | Screening for<br>small bowel &<br>pancreatic cancer<br>(minimization<br>morbidity) | Pathogenic<br>(Heterozygous)                                                        |
| SCN4A§§ | 170500<br>613345<br>614198<br>608390<br>168300 | Dominant<br>paramyotoniacongenita, hyper-<br>and hypo-kalemic periodic<br>paralysis, and potassium<br>aggravated myotonia<br>(25839108)                                                                                                                 | 2 sibs with IDD, congenital<br>hypotonia, myopathy, respiratory &<br>feeding insufficiency, abnormal<br>EMG in both (older sib later in life<br>improved albeit with Marfanoid<br>dysmorphic features, kyphosis, joint<br>hypermobility; †younger sib passed<br>away); <i>mitochondrial respiratory</i><br><i>complex I, II and IV deficiency</i> | Recessive congenital<br>myopathy & fetal<br>akinesia<br>(26700687)                              | None                                                                               | Pathogenic<br>+<br>Pathogenic<br>(Compound<br>Heterozygous)                         |
| NDSTI   | 616116                                         | IDD, delayed psychomotor<br>development, delayed or absent<br>expressive speech, seizures,<br>hypotonia<br>(25125150)                                                                                                                                   | Moderate IDD, seizures, cranial<br>nerve dysfunction, respiratory<br>problems during infancy, facial<br>dysmorphisms, hypotonia;<br><i>mitochondrial disease</i>                                                                                                                                                                                  | Cranial nerve<br>dysfunction<br>( <i>Am J Med Genet 2016</i> :<br>in press)                     | None                                                                               | Uncertain significance<br>+<br>Uncertain significance<br>(Compound<br>Heterozygous) |

| PLP1    | 312080<br>312920 | Pelizaeus-Merzbacher disease,<br>hypomyelinativeleukodystrophy,<br>IDDnystagmus, spastic<br>quadriplegia, ataxia<br>(25040584)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Severe IDD, progressive spasticity,<br>nystagmus, ataxia, Perlizaeus-<br>Merzbacher, severe<br>hypomyelination of early<br>myelinating structures (HEMS);<br><i>leukodystrophy</i>                                                                                                                                       | 'HEMS'<br>(26125040)                                                                                                                                   | None                                                                                | Pathogenic<br>(Hemizygous)             |
|---------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|
| QARS§§  | 615760           | 5760       IDD, hypo- / delayed       Profound IDD with developmental       Isolated supratentorial       None         myelination, thin corpus       arrest, progressive microcephaly       brain abnormalities       stain abnormalities         callosum, enlarged cerebral       with diffuse supratentorial cerebral       total cerebral       stain abnormalities         ventricles, small cerebellar       atrophy & severely deficient       (25432320)         vermis, intractable seizures,       myelination, intractable seizures;       serine deficiency         progressive neurodegeneration,       (24656866)       (24656866) |                                                                                                                                                                                                                                                                                                                          | None                                                                                                                                                   | Likely Pathogenic<br>+<br>Pathogenic<br>(Compound<br>Heterozygous)                  |                                        |
| PCK1§§  | 261680           | Hypoglycemic episodes with<br>lactic acidosis, secondary IDD<br>and generalized seizures, liver<br>steatosis, fatal liver failure;<br>atrophy of the optic nerve<br>(1092127)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mild IDD, transient acute liver<br>failure during viral illness, with<br>episodes of recurrent<br>hyperammonemia, lactic acidosis,<br>elevated tricyclic acid metabolites,<br>stabilization on responsive to<br>carbohydrate rich diet, fatty liver<br>infiltration; <i>recurrent metabolic</i><br><i>decompensation</i> | transient acute liver<br>failure disturbed urea<br>cycle and mitochondrial<br>function<br>( <i>Molec Genet Metab</i><br>2016: tentatively<br>accepted) | Carbohydrate-rich<br>diet (improved<br>metabolic control<br>& avoidance<br>crises)  | Likely Pathogenic<br>(Homozygous)      |
| KCNQ2§§ | 613720           | IDD, epileptic encephalopathy,<br>hypotonia and dystonia<br>(26271793)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>† Profound IDD, epileptic<br/>encephalopathy, hypotonia,<br/>dysautonomia, microcephaly; CSF<br/>GABA free 0.007 μmol/L<br/>(reference range: 0.017-0.067)<br/>CSF GABA total 4.300 μmol/L<br/>(reference range: 4.2-13.4)<br/><i>low CSF GABA</i>, mitochondrial<br/>complex I and II deficiency</li> </ul>    | Low CSF GABA                                                                                                                                           | None - patient<br>deceased before<br>GABA increasing<br>agents could be<br>started) | Pathogenic<br>(Heterozygous)           |
| ATP2B3  | 302500           | IDD, hypotonia, cerebellar<br>ataxia, dysarthria, slow eye<br>movements,<br>(22912398)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mild IDD, autism, epilepsy, ataxia,<br>improvement of neurologic<br>symptoms on oral serine<br>supplements; <i>low CSF and plasma</i><br><i>serine</i>                                                                                                                                                                   | Serine deficiency<br>responsive to<br>supplementation                                                                                                  | Oral serine<br>supplements<br>(improved<br>communication<br>skills)                 | Uncertain significance<br>(Hemizygous) |

| EHMT1  | 610253 | IDD, absent speech,<br>microcephaly, dysmorphic facial<br>features, +/- congenital heart<br>defects<br>(22670141)          | Severe IDD with regression, autism,<br>hypotonia, dysmorphic facial<br>features (incl. bilateral<br>megalocornea); <i>neurodegeneration</i><br><i>with loss of skills</i>                                                                                                                                               | Megalocornea                                                                   | None | Pathogenic<br>(Heterozygous)                                |
|--------|--------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|-------------------------------------------------------------|
| TMEM67 | 607361 | IDD, abnormal eye movements,<br>ataxia, cerebellar hypoplasia,<br>hepatic fibrosis, coloboma, renal<br>cysts<br>(20232449) | Mild IDD, adolescent-onset<br>dementia, vertical gaze palsy,<br>ataxia, ADHD, cerebellar atrophy at<br>age 8yrs (molar tooth sign at age<br>22yrs, after diagnosis established),<br>hepatosplenomegaly, progressive<br>hepatic fibrosis & portal<br>hypertension;; <i>lysosomal storage</i><br><i>disease phenotype</i> | Niemann-Pick C<br>disease phenocopy with<br>early-onset dementia               | None | Pathogenic<br>+<br>Pathogenic<br>(Compound<br>Heterozygous) |
| PACSI  | 615009 | IDD, characteristic facial<br>dysmorphisms, seizures cardiac,<br>cerebral, eye and kidney<br>abnormalities<br>(23159249)   | Severe IDD, microcephaly, facial<br>dysmorphisms, myopia, bifid uvula<br>and submucous cleft, progressive<br>ataxia and cerebellar atrophy,<br>dysplastic pulmonary and aortic<br>valves, failure to thrive;<br><i>neurodegeneration with</i><br><i>progressive cerebellar atrophy</i>                                  | Progressive cerebellar<br>atrophy and ataxia<br>( <i>AJMG 2016</i> : in press) | None | Pathogenic<br>(Heterozygous)                                |

**Legend to Table S4C**: \*MIM corresponds to the gene;§ biochemical / experimental data providing evidence for a deleterious effect of variants on protein function are either published in the listed PMID or presented as §§previously unpublished data in Supplemental Materials D; + deceased; # novel phenotype of this cases published (PMID) or in press.

| D) Known C        | Genes with | Known Phenotypes                                                                                                                                                                                                                                      |                                                                  |                                                                                           |
|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Gene              | MIM        | Phenotypic features + metabolic specific                                                                                                                                                                                                              | Impact on clinical management<br>& clinical status)              | ACMG variant(s) classification                                                            |
| MECP2             | 312750     | Severe IDD, epilepsy, autism, ataxia, developmental regression; cerebral folate deficiency                                                                                                                                                            | Folinic acid / stop betaine<br>(improved seizure control)        | Pathogenic<br>(Heterozygous)                                                              |
| MATIA             | 250850     | Rett syndrome ( <i>MECP2</i> ); high methionine                                                                                                                                                                                                       | n/a                                                              | Uncertain<br>significance<br>+<br>Uncertain<br>significance<br>(Compound<br>Heterozygous) |
| KRAS<br>(somatic) | 614470     | Mild IDD, Rosai-Dorfmansyndrome, chronic adrenal suppression, restrictive lung disease, chronic pain and depression, peribronchopulmonary dysplasia; <i>none</i>                                                                                      | Guided choice of<br>mycophenoloatemofetil                        | Pathogenic<br>(Somatic)                                                                   |
| PRSS1             | 167800     | Pancreatitis, hereditary (& RMND1 deficiency); congenital lactic acidosis, severe combined mitochondrial respiratory chain deficiency                                                                                                                 | Avoid triggers pancreatitis<br>(cessation pancreatitis episodes) | Pathogenic<br>(Heterozygous)                                                              |
| KMT2A             | 605130     | Mild IDD, Dysmorphisms, short stature, hairy elbows, dysautonomia, paroxysmal episodes, syncope, migraines, fusion of C2-C3 vertebrae, 11 pairs of ribs, 5 <sup>th</sup> finger clinodactyly and camptodactyly; <i>low copper &amp; ceruloplasmin</i> | None                                                             | Pathogenic<br>(Heterozygous)                                                              |
| GJB2              | 220290     | Moderate stable sensorineural hearing loss; sialicaciduria                                                                                                                                                                                            | None                                                             | Pathogenic<br>(Homozygous)                                                                |
| OSMR              | 105250     | Mild IDD, Severe early onset eczema (recessive),facial dysmorphism, and short stature (his growth is on the 15 <sup>th</sup> ); <i>lysosomal storage phenotype</i>                                                                                    | None                                                             | Uncertain<br>significance<br>(Homozygous)                                                 |
| PUF60             | 615583     | Mild IDD, Severe, early onset eczema (recessive),facial dysmorphism, and short stature (his growth is on the 15 <sup>th</sup> ); <i>lysosomal storage phenotype</i>                                                                                   | None                                                             | Pathogenic<br>(Heterozygous)                                                              |

| GALC | 245200 | IDD, Congenital hypotonia, myopathy, respiratory & feeding insufficiency, skin | Consider hematopoietic stem cell | Pathogenic   |
|------|--------|--------------------------------------------------------------------------------|----------------------------------|--------------|
|      |        | pigmentation abnormalities; glycogen storage on muscle biopsy                  | transplant (none yet)            | (Homozygous) |
|      |        |                                                                                |                                  |              |

| Table S5 | Table S5: Blended phenotypes resulting from two single gene defects |                                                                                                         |  |  |  |
|----------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Genes    | Disease                                                             | Phenotype                                                                                               |  |  |  |
|          | [MIM]                                                               | (Omics2TreatID patient phenotype) + metabolic specific                                                  |  |  |  |
| RMND1    | 614922                                                              | Congenital lactic acidosis, severe myopathy, hearing loss, renal failure, and                           |  |  |  |
|          |                                                                     | dysautonomia; congenital lactic acidosis, severe combined mitochondrial<br>respiratory chain deficiency |  |  |  |
| PRSS1    | 167800                                                              | Pancreatitis, hereditary                                                                                |  |  |  |
| H6PD     | 604931                                                              | Skin pigmentation abnormalities; glycogen storage on muscle biopsy                                      |  |  |  |
|          |                                                                     |                                                                                                         |  |  |  |
| GALC     | 245200                                                              | Congenital hypotonia, respiratory & feeding insufficiency                                               |  |  |  |
| NPL      | Novel                                                               | Cardiomyopathy, sialicaciduria; may be benign                                                           |  |  |  |
| GJB2     | 220290                                                              | Moderate stable sensorineural hearing loss                                                              |  |  |  |
| MeCP2    | 312750                                                              | ID, epilepsy, autism, ataxia, developmental regression, Cerebral Folate                                 |  |  |  |
|          |                                                                     | <i>deficiency</i> (Rett Syndrome)                                                                       |  |  |  |
| MATIA    | 250850                                                              | High methionine                                                                                         |  |  |  |
| OSMR     | 105250                                                              | Severe, early onset eczema (Amyloidosis, primary localized cutaneous,                                   |  |  |  |
|          |                                                                     | recessive)                                                                                              |  |  |  |
| PUF60    | 615583                                                              | Facial dysmorphism, and short stature (Verheij syndrome)                                                |  |  |  |

### **H)** SUPPLEMENTARY REFERENCES

- 1. Shyr C, Tarailo-Graovac M, Gottlieb M, Lee J, van Karnebeek C, Wasserman WW. FLAGS, frequently mutated genes in public exomes. BMC Med Genomics 2014;7(1):64.
- 2. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4):357–9.
- 3. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20(9):1297–303.
- 4. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl 2009;25(16):2078–9.
- 5. Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6(2):80–92.
- 6. Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001;29(1):308–11.
- 7. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46(3):310–5.
- 8. Griffin HR, Pyle A, Blakely EL, et al. Accurate mitochondrial DNA sequencing using off-target reads provides a single test to identify pathogenic point mutations. Genet Med Off J Am Coll Med Genet 2014;16(12):962–71.
- 9. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011;29(1):24–6.
- 10. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14(2):178–92.
- 11. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet Editor Board Jonathan Haines Al 2013;Chapter 7:Unit7.20.
- 12. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinforma Oxf Engl 2015;31(16):2745–7.
- 13. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deepsequencing age. Nat Methods 2014;11(4):361–2.
- 14. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009;4(7):1073–81.
- 15. MacArthur DG, Balasubramanian S, Frankish A, et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 2012;335(6070):823–8.

- 16. Hieter P, Boycott KM. Understanding rare disease pathogenesis: a grand challenge for model organisms. Genetics 2014;198(2):443–5.
- 17. de Ligt J, Willemsen MH, van Bon BWM, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 2012;367(20):1921–9.
- 18. Hwang I-W, Makishima Y, Kato T, Park S, Terzic A, Park EY. Human acetyl-CoA carboxylase 2 expressed in silkworm Bombyx mori exhibits posttranslational biotinylation and phosphorylation. Appl Microbiol Biotechnol 2014;98(19):8201–9.
- 19. van Karnebeek CD, Sly WS, Ross CJ, et al. Mitochondrial carbonic anhydrase VA deficiency resulting from CA5A alterations presents with hyperammonemia in early childhood. Am J Hum Genet 2014;94(3):453–61.
- 20. van Karnebeek C, Bonafé L, Wen X, et al. NANS-mediated synthesis of sialic acid is required for brain and skeletal development. Nat Genet 2016; doi 10.1038/ng.3578
- 21. Stockler S, Corvera S, Lambright D, et al. Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet J Rare Dis 2014;9(1):141.
- 22. Sirrs S, van Karnebeek CD, Peng X, et al. Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis 2015;10(1):38.
- 23. Yamaguchi T, Sharma P, Athanasiou M, Kumar A, Yamada S, Kuehn MR. Mutation of SENP1/SuPr-2 reveals an essential role for desumoylation in mouse development. Mol Cell Biol 2005;25(12):5171–82.
- 24. Kuroda TS, Fukuda M, Ariga H, Mikoshiba K. The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain. J Biol Chem 2002;277(11):9212–8.
- 25. Kuroda TS, Fukuda M. Rab27A-binding protein Slp2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol 2004;6(12):1195–203.
- 26. Ménasché G, Ménager MM, Lefebvre JM, et al. A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion. Blood 2008;112(13):5052–62.
- 27. Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000;25(2):173–6.
- 28. Rossi A, Borroni RG, Carrozzo AM, et al. Griscelli syndrome type 2: long-term follow-up after unrelated donor bone marrow transplantation. Dermatol Basel Switz 2009;218(4):376–9.
- 29. Takeshima H, Ikemoto T, Nishi M, et al. Generation and characterization of mutant mice lacking ryanodine receptor type 3. J Biol Chem 1996;271(33):19649–52.

- 30. Balschun D. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J 1999;18(19):5264–73.
- 31. Mattei MG, Giannini G, Moscatelli F, Sorrentino V. Chromosomal localization of murine ryanodine receptor genes RYR1, RYR2, and RYR3 by in situ hybridization. Genomics 1994;22(1):202–4.
- 32. Lehnart SE, Mongillo M, Bellinger A, et al. Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 2008;118(6):2230–45.
- 33. Nagrani T, Siyamwala M, Vahid G, Bekheit S. Ryanodine Calcium Channel: A Novel Channelopathy for Seizures. The Neurologist 2011;17(2):91–4.
- 34. De Novo Mutations in Synaptic Transmission Genes Including DNM1 Cause Epileptic Encephalopathies. Am J Hum Genet 2014;95(4):360–70.
- 35. Mackrill JJ. Ryanodine receptor calcium channels and their partners as drug targets. Biochem Pharmacol 2010;79(11):1535–43.
- 36. Yamamoto S, Schulze KL, Bellen HJ. Introduction to Notch signaling. Methods Mol Biol Clifton NJ 2014;1187:1–14.
- 37. Wu M, Gu S, Xu J, et al. A novel splice variant of human gene NPL, mainly expressed in human liver, kidney and peripheral blood leukocyte. DNA Seq J DNA Seq Mapp 2005;16(2):137–42.
- 38. Pollak A, Skórka A, Mueller-Malesińska M, et al. M34T and V37I mutations in GJB2 associated hearing impairment: evidence for pathogenicity and reduced penetrance. Am J Med Genet A 2007;143A(21):2534–43.
- Tarailo-Graovac M, Sinclair G, Stockler-Ipsiroglu S, et al. The genotypic and phenotypic spectrum of PIGA deficiency. Orphanet J Rare Dis [Internet] 2015 [cited 2015 Mar 25];10(1). Available from: http://www.ojrd.com/content/10/1/23
- 40. Kevelam SH, Taube JR, van Spaendonk RML, et al. Altered PLP1 splicing causes hypomyelination of early myelinating structures. Ann Clin Transl Neurol 2015;2(6):648–61.
- 41. Zaharieva IT, Thor MG, Oates EC, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or "classical" congenital myopathy. Brain J Neurol 2015;
- 42. Ogunbayo OA, Zhu Y, Rossi D, et al. Cyclic adenosine diphosphate ribose activates ryanodine receptors, whereas NAADP activates two-pore domain channels. J Biol Chem 2011;286(11):9136–40.
- 43. Rossi D, Simeoni I, Micheli M, et al. RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J Cell Sci 2002;115(Pt 12):2497–504.
- 44. van der Ham M, Prinsen BHCMT, Huijmans JGM, et al. Quantification of free and total sialic acid excretion by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2007;848(2):251–7.

- 45. Janer A, van Karnebeek CD, Sasarman F, et al. RMND1 deficiency associated with neonatal lactic acidosis, infantile onset renal failure, deafness, and multiorgan involvement. Eur J Hum Genet EJHG 2015;
- 46. Zhang X, Ling J, Barcia G, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet 2014;94(4):547–58.
- 47. Furukawa F, Tseng Y-C, Liu S-T, et al. Induction of Phosphoenolpyruvate Carboxykinase (PEPCK) during Acute Acidosis and Its Role in Acid Secretion by V-ATPase-Expressing Ionocytes. Int J Biol Sci 2015;11(6):712–25.
- 48. Adams DR, Yuan H, Holyoak T, et al. Three rare diseases in one Sib pair: RAI1, PCK1, GRIN2B mutations associated with Smith-Magenis Syndrome, cytosolic PEPCK deficiency and NMDA receptor glutamate insensitivity. Mol Genet Metab 2014;113(3):161–70.
- 49. S0vik O, Vidnes J, Falkmer S. Persistent neonatal hypoglycaemia. A clinical and histopathological study of three cases treated with diazoxide and subtotal pancreatectomy. Acta Pathol Microbiol Scand [A] 1975;83(1):155–66.
- 50. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med Off J Am Coll Med Genet 2015;17(5):405–23.
- 51. Pfützer R, Myers E, Applebaum-Shapiro S, et al. Novel cationic trypsinogen (PRSS1) N29T and R122C mutations cause autosomal dominant hereditary pancreatitis. Gut 2002;50(2):271–2.
- 52. Pérez B, Mechinaud F, Galambrun C, et al. Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 2010;47(10):686–91.
- 53. Bean LJH, Tinker SW, da Silva C, Hegde MR. Free the data: one laboratory's approach to knowledgebased genomic variant classification and preparation for EMR integration of genomic data. Hum Mutat 2013;34(9):1183–8.
- 54. Snoeckx RL, Huygen PLM, Feldmann D, et al. GJB2 mutations and degree of hearing loss: a multicenter study. Am J Hum Genet 2005;77(6):945–57.
- 55. Huculak C, Bruyere H, Nelson TN, Kozak FK, Langlois S. V37I connexin 26 allele in patients with sensorineural hearing loss: evidence of its pathogenicity. Am J Med Genet A 2006;140(22):2394–400.
- 56. Gentile M, Di Carlo A, Susca F, et al. COACH syndrome: report of two brothers with congenital hepatic fibrosis, cerebellar vermis hypoplasia, oligophrenia, ataxia, and mental retardation. Am J Med Genet 1996;64(3):514–20.
- 57. Brancati F, Iannicelli M, Travaglini L, et al. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Hum Mutat 2009;30(2):E432–42.

- 58. Schuurs-Hoeijmakers JHM, Oh EC, Vissers LELM, et al. Recurrent de novo mutations in PACS1 cause defective cranial-neural-crest migration and define a recognizable intellectual-disability syndrome. Am J Hum Genet 2012;91(6):1122–7.
- 59. Niemela JE, Lu L, Fleisher TA, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood 2011;117(10):2883–6.
- 60. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005;2(1):e17.