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A) SEMI-AUTOMATED GENE DISCOVERY BIOINFORMATICS PIPELINE

The automated portion of the pipeline1 starts with alignment of the FASTQ reads using the 

Bowtie22 aligner to the human reference genome version hg19 (restricted to reads with quality 

score 30 or higher), removal of duplicate reads by Picard, local re-alignment by Genome 

Analysis Toolkit (GATK)3, followed by variant calling using SAMtools4 on BAM files and 

annotation using SNPeff5. Semi-manual review of data quality is performed to confirm samples 

were consistent with expectations, including checking for correct sex and familial relationships; 

samples are also inspected for any evidence of cross-contamination (Fig. 1). The next automated 

step utilizes custom perl and python scripts to exclude variants attributable to sequencing errors 

(by comparing the frequency of called variants against our own database of more than 350 

exomes processed by the pipeline; variants seen more than 10 times are excluded) or variants 

that are reported as frequent in dbSNP (http://www.ncbi.nlm.nih.gov/snp)6 (MEF > 1%). 

Subsequently the prioritization/ranking of the variants is performed based on: (1) frequency in 

the NHLBI Exome Sequencing Project (ESP) Exome Variant Server [EVS;

(http://evs.gs.washington.edu/EVS), (2) frequency of variants arising at the genic level using the 

FLAGS1 approach, (3) predicted effect of the variants on protein function where nonsense, 

frameshift, missense, microdeletions, microduplications and splice-site variants are prioritized,

(4) phred-scaled Combined Annotation Dependent Depletion [CADD;

(http://cadd.gs.washington.edu)]7 and (5) match to clinician-supplied phenotype-related MeSH 

terms.

As family history does not appear to be informative for most patients in our study, we adopted an 

unbiased approach and consideredall possible Mendelian inheritance models. We used custom 

scripts to group the identified, filtered, annotated and ranked variants according to their predicted 

mode of inheritance to homozygous recessive, hemizygous, compound heterozygous and 

denovo. The low coverage WES data are flagged as part of our automated pipeline and manually 

curated. Variants of interest that are within low coverage regions are tested using Sanger re-

sequencing. Furthermore, although the mitochondrial genome is not specifically captured in the 

WES approach, a recent publication by Griffin et al., 20148 demonstrated that mitochondrial 

DNA sequences can be reliably obtained using three different WES capture kits (Agilent 

SureSelect targeted capture kit used in this study is one of them). In some cases, for whomwe did 

not identify a convincing candidate variant in the nuclear genome and who did not have mtDNA
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sequencing done by a certified laboratory, we inspected the mitochondrial genome from the 

WES data. However, we did not identify any significant mitochondrial genome variants in these 

patients. The bioinformatics pipeline itself is designed to be unbiased, meaning that it is not 

influenced by the clinical phenotype, predicted candidate genes, predicted inheritance, negative 

clinical tests etc. The pipeline is run for each patient similarly, searching for all “impactful” rare 

variants considering all possible inheritance models. However, the final step of our gene-

discovery approach is manual (Fig. 1) and performed in close collaboration between 

bioinformaticians and clinicians. The hallmark of this collaboration is the family form completed 

by the referring clinician that contains essential data on the patient phenotype along with a 

disease / pathway hypothesis. The manual bioinformatics steps include: (1) inspection of variants 

in each of the predicted modes of inheritance for quality using a genome browser, such as IGV 

[Integrative Genomics Viewer; (https://www.broadinstitute.org/igv/)]9,10, (2) further assessment 

of  deleteriousness of the variants using multiple tools, such as PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/)11, PROVEAN (http://provean.jcvi.org/index.php)12, 

MutationTaster (http://www.mutationtaster.org)13 and SIFT [Sorting Intolerant From Tolerant;  

(http://sift.jcvi.org/]14 (3) analysis of the clinical phenotypes and literature related to the 

candidate gene, (4) manual curation of the literature supporting the evidence for variant 

classification in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar) and/or Human Gene Mutation 

Database [HGMD; (http://www.hgmd.org)] and (5) manual inspection of the variant frequency 

in different ethnic sub-groups available at the Exome Aggregation Consortium [ExAC; 

http://exac.broadinstitute.org/). The final list of variants includes the colour-coded flagged 

candidate genes based on the assigned bioinformatician’s interpretation as highly relevant (red), 

relevant (yellow) and unknown based on currently available data (not flagged); the lists are sent 

to clinicians for evaluation, followed by a multi-disciplinary meeting for the final selection of 

variants to be confirmed by Sanger re-sequencing and experimental validation (Fig. 1). 

Validation of pathogenicity and causality of variants in novel genes (previously unreported in 

human disease) were pursued according to the guidelines by MacArthur et al 201415: 

identification of other families with the similar phenotype due to distinct variants segregating 

with a similar pattern of inheritance in the same gene, functional studies including rescue 

experiments in patient cells, well-established cell-lines and/or model organisms16. Variant 

classification into gene classes (novel, candidate and known) was done according to the report by 
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de Ligt et al 201217: ‘novel’ for genes not previously implicated in human disease with 2 or more 

individuals with striking phenotypic overlapin unrelated families with damaging variants in the 

same gene, ‘candidate’ in case of only 1 identified family. 
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B) CASE REPORTS   

Of note, for the two novel and 9 candidate human disease genes identified in our study, we take a 

stringent approach to validate the causal relationship of identified variants with the observed 

phenotype: identification of other families with similar phenotypes due to (other) variants in the 

same gene (currently we identified additional families for CA5A and NANS, while for others we 

continue to search for additional families), (in vitro) functional studies to demonstrate deleterious 

impact of the variant on protein function and pursuit of model organism studies. For novel 

phenotypes, we pursue one or more of these approaches. Case reports (below) and the 

experimental / biochemical data (Supplemental Materials, section C) are presented in the order of 

Table S3; these data are unpublished unless otherwise indicated. 

 

NOVEL AND CANDIDATE GENES FOR TREATABLE NEURO-METABOLIC DISEASES 

ACACB: Currently, validation of acetyl-coA carboxylase-beta deficiency (ACACB) deficiency as 

potentially novel IEM is underway. Preliminary results of in vitro studies indicate decreased 

enzymatic activity at 37ºC of the mutated (compound heterozygous variants) acetyl-coA 

carboxylase-beta when compared to wildtype, as well as decreased stability at 40ºC, in a 7 year-

old boy with compound heterozygous ACACB  (MIM 601557) variants presenting with speech 

delay and, since age 19 months recurrent fever-induced and biotin-responsive episodes of 

lethargy, lactic acidosis (pH 7.04; HCO3-6mmol/L) with metabolites suggestive of multiple 

carboxylase deficiency (Table 1). To explain the causal relation with the multiple-carboxylase 

deficiency phenotype, we postulate that since malonyl-CoA, generated by ACACB in 

mitochondria18, is a key regulator for fatty acid oxidation and energy homeostasis, the deficient 

ACACB activity alters the physiological conditions in mitochondria which in turn affects the 

function of multiple carboxylases. Additional experiments are ongoing. 

 

The case reports for the 3 other potentially treatable neurometabolic diseases (due to recessive 

CA5A19, GOT2and NANS20 variants) are presented in the main manuscript. 

 

OTHER NOVEL & CANDIDATE GENES 

RBSN: Another example is Rabenosyn-5 deficiency due to homozygous missense variant in 

RBSN (MIM 609511) in a 7-year old girl with intractable seizures, severe IDD, microcephaly, 
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dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid 

erythropoiesis21. Her biochemical findings included transient cobalamin deficiency, severe 

hypertriglyceridemia following initiation of a ketogenic diet, microalbuminuria and partial 

cathepsin D deficiency. Patient fibroblasts showed decreased transferrin accumulation, 

proliferation rate, cytoskeletal and lysosomal abnormalities, all of which are consistent with a 

functional defect of this highly conserved multi-domain protein implicated in receptor-mediated 

endocytosis. Secondary disruption of multiple cellular functions dependent on endocytosis, likely 

results in severe multi-organ disease. 

 

FAAH2: Another example is deficiency of fatty acid amide hydrolase 2 (FAAH2) due to 

hemizygous missense variant in FAAH2 (MIM 300654), in a male with autistic features with an 

onset before the age of 2 years who subsequently developed additional features including 

anxiety, pseudoseizures, ataxia, supranuclear gaze palsy, and isolated learning disabilities as an 

adult22. FAAH2 plays a role in endocannabinoid degradation, and in vitro mutant fibroblast 

studies showed decreased enzyme activity as well as alterations in endocannabinoid levels and 

lipid metabolism22. We propose this novel condition might well explain a subset of X-linked 

neuropsychiatric disease. 

 

SENP1: Furthermore, homozygous missense variants inSENP1 (MIM 612157), which encodes 

an important desumoylation protein, were identified in a 4.5-year old girl who was born to non-

consanguineous Iranian parents at gestational age 36weeks), presenting with microcephaly, 

intestinal atresia, seizure disorder, severe IDD, feeding difficulties with failure to thrive. MRI 

brain showed lissencephaly. At age 3 years, she developed severe bone marrow dysplasia and 

was diagnosed with acute myeloblastic leukemia. Chemotherapy was adapted according to the 

molecular diagnosis, with full recovery until this day. Western Blot showed decreased SENP1 

protein, and functional abnormalities of B-cell were confirmed; sumoylation analyses are 

ongoing23. 

 

SYTL2:Furthermore, compound heterozygous SYTL2 (MIM 612880, encoding SLP2a; 

synaptogamin like peptide 2a) variants were identified in a 38-year old female with learning 

disabilities, born to Caucasian non-consanguineous parents, who presented during adolescence 
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with splenomegaly and thrombocytopenia, and bone marrow findings of sea-blue histiocytesas 

well as histiocytes on splenic and liver pathology. The SYTL2 protein has an unspecified role 

that involves interactions with RAB27a (MIM 603868) to transport lysosome derived cytotoxic 

secretory vesicles, or melanosomes to the cell surface for exocytosis24–26. Autosomal recessive 

deficiency of RAB27a results in Griscelli syndrome type 2 (GS2; MIM 607624)27. GS2 is 

associated with an immunologic deficiency affecting cytotoxic T-cell and NK cell function, 

leading to susceptibility to the hemato phagocytic lymphohistiocytosis (HLH) syndrome. 

Functional tests of this patient’s NK cells and T-cells confirmed the predicted functional 

deficiencies observed in GS2 (see Table 2); the patient’s splenomegaly and thrombocytopenia 

are also characteristic of this condition. Given the favorable effects of HSCT in GS2 patients on 

the frequency of HLH syndrome relapses28, this invasive therapy could be considered in our 

patient once the SYTL2 deficiency was established as candidate diagnosis.  

 

RYR3: Compound heterozygous RYR3 (MIM180903) variants were identified in two siblings 

with moderate IDD, epilepsy, psychiatric disease, short stature, along with severe asthma and 

(intermittent) pulmonary hypertension. Ryanodine receptors, such as RYR3, are intracellular 

calcium ion release channels responsible for the release of Ca(2+) from intracellular stores 

following transduction of many different extracellular stimuli. Animal studies showed that lack 

of Ryr3-mediated Ca(2+) signaling results in abnormalities of certain neurons in the central 

nervous system29 and deletion of RYR3 impairs synaptic plasticity and learning in mice30. 

Furthermore it is highly expressed in smooth muscle tissues such as the lung31. Thus, deficiency 

of this protein could well explain the neuropsychiatric and pulmonary phenotype in these 

siblings; and similarly to reports of RYR2 (MIM 180902) dysfunction in the pathogenesis of 

epilepsy32,33 and recently identified de novo variants in epilepsy patients34 altered RYR3 gating 

could cause their seizures. Functional studies (depicted in Figure 1show that variant E4693 is 

hyper-responsive to the RyR-selective calcium mobilizing messenger cyclic adenosine 

diphosphate-ribose (cADPR).We hypothesize that E3119K, when combined with E4693K, could 

indirectly enhance channel function further, by altering the capacity (either positively or 

negatively) with binding partners that either positively or negatively influence the capacity for 

channel activation by cADPR and / or calcium35; further studies are underway. Drugs acting on 
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RyR channel complexes such as dantrolene and cADPR antagonists should be further explored 

in terms of usefulness for symptom management in our patients. 

 

MFNG: Compound heterozygous missense variants in MFNG (MIM 602577) were identified in 

a 8-year old boy was born to non-consanguineous parents, who presented at age 1 year with  

stunted growth / short stature, facial dysmorphisms, translucent skin with erythematous patches 

on his legs and arms, diarrhea / cyclic vomiting, verbal apraxia, and moderate IDD. Urine amino 

acids showed a pattern suggestive of Hartnup Disease (MIM 234500). Manic Fringe is one of 

three human Fringe proteins, that acts in the Golgi as a glycosyltransferase enzyme that modifies 

the ability of Notch to bind to the Notch receptor. The Notch signaling pathway is important for 

cell-cell communication, which involves gene regulation mechanisms that control multiple cell 

differentiation processes during embryonic and adult life; impairments in this pathway have been 

reported to result in neuronal, skeletal, exocrine, gastro-intestinal and epidermal abnormalities36, 

all present in our patient. In vitro studies confirmed reduced MFNG secretion of both mutants 

along with increased amount of mutant MFNG in cells, which lead to an enhanced MFNG 

activity, and indeed an alteration of Notch and Hey1 activity. Further functional studies are 

ongoing to further establish causality and understand pathophysiology. 

NPL: Compound heterozygous NPL (MIM 611412) variants were identified in 19-year old male, 

born to healthy non-consanguineous Filipino parents, who presented with progressive dilated 

cardiomyopathy, mild skeletal myopathy and sensorineural hearing loss. Biochemical 

investigations revealed free sialicaciduria (Figure 2a,b); known genetic causes of aciduria were 

ruled out.  His sister reportedly has mild muscle weakness, but has declined physical / cardiac 

exam; she was found to have sialicaciduria and the same NPLvariants as her brother. CLIA-

certified labs quantified the sialic acid (Neu5Ac) elevations; see the legend of Figure 2 for more 

detail. N-acetylneuraminate pyruvate lyase is a strong candidate given its function, i.e. to control 

the cellular concentration of sialic acid by catalyzing the conversion of sialic acid into 

acylmannosamines and pyruvate37. Sialic acid in fibroblasts is markedly increased, and in vitro 

enzymatic measurements in mutant fibroblasts as well as model organism studies are underway. 

Importantly, studying phenotypes of other families with recessive NPL variants should elucidate 

the clinical phenotype of NPL deficiency. Of note the known pathogenic homozygous variant 
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explains the hearing loss in the index case (Figure S1E); father has the same genotype but no 

objectified hearing loss, and this could be explained by variable penetrance38. 

 

EXPANDING THE PHENOTYPIC SPECTRUM IN RARE GENETIC DISORDERS  

Recently, we reported a male infant with a hemizygous missense variant in PIGA (MIM 

311770), a gene encoding for phosphatidylinositol glycan, class A protein, presenting with 

dysmorphism, developmental arrest, infantile spasms, a pattern of lesion distribution on brain 

MRI resembling that typical of Maple Urine Syrup Disease, elevated alkaline phosphatase, 

mixed hearing loss (a combination of conductive and sensorineural), liver dysfunction, 

mitochondrial complex I and V deficiency, and therapy-responsive dyslipidemia with confirmed 

lipoprotein lipase deficiency39. Our case helped to further delineate the heterogeneous phenotype 

of germline PIGA variants for which we proposed the term ‘PIGA deficiency’39 and to expanded 

the spectrum of this disorder39. 

Further illustrating phenotypic delineation, we recently reported on a boy with a 13bp 

hemizygous deletion in PLP1 (MIM 300401), a gene encoding for proteolipid protein 1, or 

lipophilin, a primary constituent of myelin in the central nervous system. The boy presented with 

global developmental delay, spasticity, nystagmus, ataxia, and most notably severe 

hypomyelination of early myelinating structures (HEMS) which is in contrast with MRI 

characteristics of Pelizaeus-Merzbacher (MIM 312080) disease, also caused by PLP1 

alterations40. Identification of the PLP1 deletion in our patient and review of other patients with 

the distinct HEMS phenotype extend the phenotypic spectrum of PLP1-related disorders and led 

to discovery that these patients have variants that alter PLP1/DM20 alternative splicing, 

impacting early myelination. 

Finally, in this study we contributed to the characterization of a novel autosomal recessive 

syndrome due to bi-allelic variants in SCN4A, which encodes the α-subunit of the skeletal muscle 

voltage-gated sodium channel (NaV1.4)41. This channel is essential for the generation and 

propagation of action potentials which initiate skeletal muscle contraction. Dominant gain of 

function mutations in SCN4A are a well-established cause of myotonia and periodic paralysis. In 

2 siblings born to non-consanguineous parents and another 9 individuals from 5 unrelated 

kindreds, all presenting with congenital myopathy with onset in utero, recessive SCN4A 

mutations were identified via WES. In a subset of patients, including the youngest sib in our 
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family, perinatal death occurred, while the remaining case (including our currently 8-year old 

index) suffered marked congenital hypotoniaand weakness, early-onset respiratory and 

swallowing difficulties, spinal deformities, but clear clinical improvement over time. Functional 

validation for the compound heterozygous SCN4A variants in our family included reverse 

transcriptase (RT)-PCR confirming a premature stop codon rendered by the spice site variant 

(Figure 3a),significant alteration in the biophysical properties (conductance, current density) of 

the encoded NaV1.4 caused by the missense variant (Figures3b and c). 

 

UNBIASED WES APPROACH ALLOWS DISCOVERY OF UNEXPECTED RESULTS  

The above patient presenting with severe hypomyelination of early myelinating structures 

(HEMS) (Table S3) illustrates how unbiased WES allows for discovery of the unexpected. Given 

the strong clinical suspicion, targeted Sanger sequencing of PLP1 gene in a CLIA-certified 

laboratory was performed but yielded negative results. Our WES analysis uncovered a 13bp 

deletion within the PLP1 gene, which was later acknowledged by the laboratory that had missed 

the variant initially prompting a change in their protocol. Thus in some cases, sensitivity 

achieved by proper WES analysis exceeds that of targeted Sanger sequencing. Another example 

is a female teenage patient presenting with dysmorphisms, short stature, dysautonomia, 

paroxysmal episodes, syncope, migraines and mild ID in whom a de novo heterozygous 

nonsense variant was identified in the KMT2A (MIM 159555) gene, lysine-specific 

methyltransferase 2A that methylates histone H3 and is known to cause Wiedemann-Steiner 

syndrome (MIM 605130). The patient did not manifest the hairy elbows phenotype, a hallmark 

of the syndrome, and the syndrome was not considered by the referring clinician. However, after 

the discovery and confirmation of the de novo variant in the KMT2A gene, the parents explained 

that the patient had shaved hair from her elbows. This example illustrates unexpected events that 

can misdirect a candidate gene approach even in hands of skilled clinicians. 
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C) EXPERIMENTAL DATA   

Novel Genes 

CA5A (MIM 114761): see biochemical data in van Karnebeek et al., 201419 

NANS (MIM 605202):Urinary N-acetyl mannosamine, as measured by quantitative NMR 

spectroscopy in our case (at age 3 years) was highest (295 umol/mmol creatinine); in 5 unrelated 

other patients (all adults at the time of study)harbouring bi-allelic NANS variants, the urinary 

concentration of ManNAc ranged from 41 to 98 umol/mmol creatinine (reference< 10)20. 

Candidate Genes 

ACACB (MIM 601557):  

Table 1. Urine organic acid profile in the patient with compound heterozygous ACACB 

variants during metabolic decompensation suggestive of multiple carboxylase deficiency 

Urine organic acids  

(µmol/mmolcreatine) 

Case  Reference 
range 

3-OH-valeric acid 1,395 1-52 

3-methylcrotonylglycine 36 <1 

Tiglylglycine 34 <3 

3-OH-propionic acid 30 2-28 

Propionylglycine 6 <1 

methylcitric acid 23 <13 

lactic acid 4,723 7-94 

2-me-3-OH-butyric acid 194 <30 

glutaric acid 1040 <9 

3-methyl-glutaconic acid 153 <13 



	
	

14	

RBSN (MIM 609511): see biochemical data in Stockler et al., 201421 

FAAH2 (MIM 300654): see biochemical data in Sirrs et al., 201522 

SYTL2 (MIM 612880) 

Table 2. Functional data on the SYTL2 (SLP2a) loss of function variants. The CD107a 

mobilization fails to detect a normal amount of surface CD107a on stimulated lymphocytes 

indicating a defect in lymphocyte degranulation. The NK cell functional assays are abnormally 

low indicating impaired lytic capabilities of NK cells. The soluble CD163a protein level is 

abnormally high indicating macrophage activation. 

Sample 

Stimulated 

CD107a 

mobilization 

(flow cytometry) 

(%) 

NK Cell Function 

Assay (Cr 

Release)% 

NK Cell Function 

Assay (Cr 

release) Lytic 

Units sCD163a (ng/ml) 

index 6 9 1.2 2551 

control 11-35 >20 >2.6 387-1785 
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RYR3 (MIM 180903) 

Figure 1. RyR3 single point mutation E4693 is hyper-responsive to the RyR-selective calcium mobilizing messenger cyclic adenosine 

diphosphate-ribose. 
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A)shows records of the F340/F380 ratio against time for 3 different HEK293 cells, which do not ordinarily express RyRs (1,2), during

intracellular dialysis of 100µM cyclic adenosine diphosphate-ribose (cADPR); WC indicates the time point for onset of intracellular

dialysis upon entering the whole-cell configuration using the patch-clamp technique. B)brightfield images (upper panels) and

fluorescence images (lower panels) of HEK293 cells transiently transfected with GFP-tagged (green) wild type RyR3 (WT RyR3,

lefthand panel), RyR3 mutant with single point mutation E3117 (middle panel) or RyR3 mutant with single point mutation E4693

(righthand panel). C) Bar chart shows the mean ± SEM for the peak change in Fura-2 fluorescence ratio induced during intracellular

dialysis of 100µM cADPR into wild type HEK293 cells and HEK293 cells expressing wild type RyR3 or mutant RyR3 incorporating

single point mutations E4693 and E3117, respectively, in the absence and in the presence of 100µM 8-bromo-cADPR, a cADPR

antagonist; data are means ± SEM for at least 3 cells, with significance determined by two-sample t test between indicated groups

(*<0.05, **<0.01, ***<0.001). D) upper panel shows a bright field image (BF) of a HEK293 cell transiently transfected with wild

type RyR3, and a series of pseudo-colour images of the Fura-2 fluorescence ratio (F340/F380) recorded in the same cell during

intracellular dialysis of 100µM cADPR. The lower panel shows the corresponding record (black) of the F340/F380 ratio against time,

together with two additional records (red and blue) obtained from different cells. E and F, as in D but for HEK293 cells transiently

transfected with mutant RyR3 incorporating single point mutations (E) E3117 and (F) E469342,43.
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NPL (MIM 611412) 

Figure 2. TLC urine oligosaccharides were abnormal for both index and affected sibling (a: TLC 

lanes 4 and 7 respectively) and revealed marked free sialicaciduria by resorcinol staining (b: 

lanes 4 and 7 respectively). 

a) 
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b) 

 

Further biochemical data: An abnormal concentration of Neu5Ac was determined by Q-TOF in 

urine and serum of the index case.  Quantification of Neu5Ac in urine was performed by LC-

MS/MS method on two different sample collections for the index:  Neu5Ac= 122 µmol/mmol Cr 

and Neu5Ac= 144 µmol/mmol Cr (normal range for age>20 years: 9.7 +-8 

umol/mmolCr)44Urine Neu5Ac was quantified for q sample collection in the affected sibling by 

an HPLC method (1470 nmol/mg Cr; normal range 155-352 nmol/mg Cr) and by the LC-MS/MS 

method (Neu5Ac 139 µmol/mmol Cr; normal range for age>20 years: 9.7 +-8 umol/mmolCr)44. 
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Known genes with novel phenotypes 

PIGA (MIM 311770): see biochemical data in Tarailo-Graovac et al., 201539 

 

MTO1 (MIM 614667):  

Table 3. Respiratory complex activities measured in muscle 

  

 

  

 

  

  
Affected 
sister Reference interval Index 

Reference 
interval 

Citrate Synthase (nmol/min/mg) 117 79-147 55 (L) 79-114 

Complex I (nmol/min/mg) 11.3 (L) 16.6-61.6 4.1(L) 17.9-56.7 

Complex I/Citrate Synthase 0.096 (L) 0.161-0.438 0.072(L) 0.134-0.469 

Complex II (nmol/min/mg) 35.8 18.6-47.0 19.2(L) 22.4-44.8 

Complex II/Citrate Synthase 0.305 0.194-0.388 0.349 0.168-0.387 

Complex IV nmol/min/mg) 2.16 (L) 2.30-5.47 0.76(L) 2.30-5.03 

Complex IV/Citrate Synthase 0.018 (L) 0.020-0.049 0.014(L) 0.017-0.036 

 

RMND1 (MIM 614917): see biochemical data in Janer et al., 201545 
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SCN4A(MIM 603967): Figure 3 

Figure S3-a 
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Figure 3a. The variant c.3145-2A>C in the SCN4A gene causes a splice site defect (p. 

Ala1049Val fs*50).A. Family pedigree showing two variants c.3205G>A, p.Asp1069Asn, 

(chr17: 62025363 C>T) and c.3145-2A>C (chr17: 62025425 T>G) investigated in this study. B, 

Reverse transcriptase (RT)-PCR analysis of SCN4A transcripts for variant c.3145-2A>C in RNA 

samples extracted from peripheral blood cells.  Arrows indicate the products of different size 

amplified from RNA samples; No RT:  as a negative control without the reverse transcriptase in 

RT reaction; beta-actin: a reference gene as a positive control for RT-PCR reaction. C, Sanger 

sequencing of RT-PCR products generated in (B). Upper panel: Sequence chromatograms, bars 

with arrow above the sequence chromatogram indicate exons 16/17 junction from 424bp band 

(WT); Bars with dotted lines indicate exon 16 at the junction with retained intron 16 from 971 bp 

band (Mutant). Lower panel: Depicted splicing events for wild type and mutation with intron 16 

retention, leading to creation of a premature stop codon (underlined), along with the sequences 

denoted by each colour.  
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Figure S3b. Ex-vivo experiments showing current traces, normalized conductance and 

current density for SCN4A (NaV1.4) WT and p.Asp1069Asn; g.62025363 C>T) channel 

variants in transfected Chinese hamster ovary (CHOk1) cells.  

 

Panel A shows representative current traces of WT and Panel B for p.Asp1069Asn. Panel C 

shows normalized conductance plotted against membrane potential for both channel variants. 

The inset in Panel C shows the pulse protocol used to measure current amplitude at different 

voltages. Panel D shows the current density plotted in the form of a bar graph. * indicates 

statistical significance (Student’s t-test, p<0.05). 
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Figure 3c. Normalized current and fast inactivation time constants plotted against 

membrane potential for the SCN4A (NaV1.4) WT and p.Asp1069Asn variants in 

transfected CHOk1 cells. 

 

Panel A shows the onset of fast inactivation performed at -50 mV as shown by the pulse protocol 

inset. Steady-state fast inactivation shown as normalized current plotted against membrane 

potential is shown in panel B. Panel C shows the fast inactivation time constants plotted against 

the membrane potential. These time constants are obtained from recovery, onset and IV 

protocols. Panel D shows a clearer view of the fast inactivation time constant curve shown in 

Panel C but within a limited voltage range (-30 mV to +20 mV). * indicates statistical 

significance (p<0.05). 
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QARS (MIM 603727) 

Figure 4. Aminoacylation activities of recombinant QARS variants. 

 

Legend:Enzyme activity was undetectable in the p.Arg463*. Activity of p.Gln515His variants was decreased to lower than 10% of 

WT QARS. A. Aminoacylation activity was tested at the enzyme concentration of 100 nM. B. Aminoacylation activity was tested at 

the enzyme concentration of 1000 nM. Methods for production and purification of Recombinant Human QARS Proteins and QARS 

aminoacylation assays performed as described in previous study by Zhang, X et al.  (2014)46. 
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PCK1 (MIM 614168):  

Table 4. PEPCK enzyme activity is shown for COS-1 cells transfected with empty vector, a 

vector containing either wildtype ormutant PCK1. Enzyme activity is shown ± standard error, 

with the number of replicates in parentheses. 

COS-1 Transfection experiment PEPCK activity (nmol/mg/min) 
COS-1 0.11 ± 0.01 (3) 
COS-1 + Empty vector 0.21 ± 0.03 (4) 
COS-1 + WildtypePCK1 15.57 ± 5.46 (4) 
COS-1 + mutantPCK1 (homozygous 12bp deletion) 0.23 ± 0.04 (4) 
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D) SUPPLEMENTARY DISCUSSION   

In 4 families, repeated semi-annual re-analysis of WES data failed to identify a genetic diagnosis 

;of note, mtDNA sequencing had been performed by a CLIA-certified laboratory in the probands 

of all 4 families without yielding variants of interest. Two of these 4 families were studied using 

proband-only WES, indicating a possibility that a pathogenic de novo variant was missed. 

Indeed, in one of these families by subsequently sequencing the parental exomes, we identified a 

novel de novopathogenic variant in MYLK (MIM 600922), deemedcausal of the phenotype. WGS 

analysis of the other family is underway. In 2 siblings presenting with a neurodegenerative 

phenotype and neurotransmitter abnormalities, whose seizures responded to Levocarbidopa and 

5OH-tryptophan, duo-WES analysis failed to identify a diagnosis, ultimately attributed to 

inadequate coverage. Subsequent duo-WGS analysis revealed a previously described 

homozygous pathogenic variant (c.10G>C [p.Gly4Arg]) in CSTB (MIM 601145) resulting in 

Unverricht-Lundborg syndrome (MIM 254800). In the remaining family without a diagnosis, the 

proband presented with neonatal hyperammonemia, hyperlactatemia, methylmalonicaciduria 

which resolved completely, showing normal development and metabolic profiles at age 2 years; 

a large 600 gene panel and our trio-WES analysis did not yield disease-causing variants.Possibly 

this child does not suffer from a rare monogenic disease but a resolved immaturity of enzymes; 

we did not pursue further sequencing. 

Preventive measures, such as metabolic diets, illustrate genomic diagnoses enable 

precision medicine. This is illustrated in our study by CA-VA deficiency19 and genetically 

confirmed cytosolic phosphoenolpyruvate carboxykinase deficiency.47,48 which comes 40 years 

after first the clinical reports in 197549, in a 3-year old boy who presented with acute liver failure 

during gastro-intestinal illness, along with mild hypoglycemia, hyperammonemia with elevated 

glutamine, lactic acidosis, and elevated tricyclic acid metabolites. Here, we extend the 

hypoglycemia-lactic acidosis phenotype with acute liver failure during gastro-intestinal illness, 

and persistent signs of mitochondrial and urea cycle dysfunction amenable to treatment with a 

carbohydrate-rich diet and emergency regimen. In vitro mutant enzymatic activity in transfected 

COS-1 cells was markedly reduced (Table 4). 
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F) SUPPLEMENTARY FIGURES 

Figure S1: Pedigrees and electropherograms of families with known pathogenic variants  
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Figure Legend: 

Unknown phenotypes are depicted in grey while unknown genotypes are depicted with question 

mark. The V37I variant in GJB2 depicted in figure (E) has variable penetrance38, providing an 

explanation for the father who is also homozygous for this variant but does not have an 

objectified hearing impairment.  
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G) SUPPLEMENTARY TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S1: Clinical Characteristics of the 50 Patients in 41 families (41 probands, 9 sibllings)	
Characteristics Number of Patients (%) 
Sex  

Male 29 (58%) 
Female 21 (42%) 

Age  
Child (< 19 yr) 44 (88%) 
Adult (≥ 19 yr) 6   (12%) 

Family structure (Patients from)  
Non-consanguineous families with a single affected child 30 (60%) 

Non-consanguineous families with 2 affected children 14 (28%) (7 families) 

Consanguineous families with a single affected child 2   (4%)    

Consanguineous families with 2 affected children 4   (8%) 

Number of siblings (affected siblings)  
0 (na) 10 (20%) 
1 (5) 21 (42%) 
2 (2) 13 (26%) 
3 (2) 5   (10%) 
4 (0) 1   (2%) 

Population by descent  
European Caucasian 31 (62%) 
East-Asian 3   (6%) 
West-Asian 10 (20%) 
South-Asian 4   (8%) 
Latino 2   (4%) 

Phenotype  
Intellectual developmental disorder 
(mild n=22; moderate n=17; severe-profound n=12) 

50(100%)  

Unexplained metabolic phenotype 49 (98%) 
Abnormal neuro-imaging 30 (60%) 
Abnormal Muscle Tone 23 (46%) 
Seizure 15 (30%) 
Abnormal Movement 13 (26%) 
Epilepsy 12 (24%) 
Psychiatric Symptoms 10 (20%) 
Dysmorphic Features 8 (16%) 
Cardiac Defect 8   (16%) 
Short Stature 6   (12%) 
Immune dysfunction 4   (8%) 

Clinical genetic and biochemical analysis  
CMA (chromosomal microarray analysis) 36 (72%) 
Targeted gene sequencing 34 (68%) 
mtDNA sequencing 19 (38%) 
Biochemical testing  50 (100%) 
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Table S2: Pathogenicity of variants according recent Standards and Guidelines of the American 

College of medical Genetics guidelines50.The majority of the variants were classified as pathogenic 

(n=24[41%]) or likely pathogenic (n=17[29%]) according to recently published ACMG Standards and 

Guidelines. 

[please be referred to: TableS2_ACMGClassificationsOfThe58Variants.xlsx] 

Gene Disease [MIM] Variant (hg19) 

PRSS1 Pancreatitis, hereditary [MIM 16788] g.142458451A>C (p.N29T)51

CBL Noonan syndrome-like disorder with or without 
juvenile myelomonocytic leukemia [MIM 613563] 

g.119148891T>C (p.Y371H)52

GALC Krabbe disease [MIM 245200] g.88452941T>C (p.T112A)53

GJB2 Deafness, autosomal recessive 1A [MIM 220290] g.20763612C>T (p.V37I)38,54,55

TMEM67 COACH syndrome [MIM 216360] g.94807731T>C (p.F590S)56,57

PACS1 Mental retardation, autosomal dominant 17 [MIM 
615009] 

g.65978677 C>T (p.R203W)58

KRAS Autoimmune lymphoproliferative syndrome type 
IV  [MIM 614470]; Non-small cell lung cancer 
[MIM 211980] 

g.25398282 C>A (p.G13C) 59

g.25398282 C>A (p.G13C)60

Table S3: Known pathogenic variants 
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Table S4:Gene categories and corresponding patient phenotypes 

Gene MIM Phenotype 

+ metabolic specific

Impact on clinical 
management 

ACMG variant(s) 
classification 
(genotype) 

Supporting Evidence Literature 
(PMID) 

A) Novel Genes

CA5A§ 615751 Neonatal hyperammonemia, 
hyperlactatemia, hypoglycemia; mild 
IDD;hyperammonemia, hyperlactatemia, 
hypoglycemia, PCC and 3MCC deficiency 
metabolites 

Emergency dietary 
regimen 
&carglumic acid; 
avoid acetazolamide 
(resolution 
hyperammonemia& 
improved metabolic 
control) 

Likely Pathogenic 

(Homozygous) 

2 other families (same phenotype, 
different alleles); reduced enzyme 
activity (thermo-labile, unstable) in 
mutant transfected COS7-cells 

24530203 

NANS§§ *605202 Profound IDD, infantile spasms
(hyppsarrythmia), developmental 
regression, coarse features, small basal 
ganglia with abnormal corpus callosum, 
hypomyelination, skeletal dysplasia; 
lysosomal storage disease phenotype 

Potential -
replacement CMP-
sialic acid 

Likely Pathogenic 
+ 

Likely Pathogenic 

(Compound 
Heterozygous) 

5 other families. Elevation precursors 
in urine, CSF, blood; reduced 
enzymatic activity in fibroblasts 

10749855 

B) Candidate Genes

ACACB§§ *601557 Recurrent fever-induced metabolic crises
(responsive to biotin), mild IDD; 
suggestive of multiple carboxylase 
deficiency (lactic acidosis, elevated PCC 
and 3MCC metabolites) 

Biotin, anti-pyretics 
(improved 
metabolic control, 
avoidance crises) 

Likely Pathogenic 
+ 

Benign 

(Compound 
Heterozygous) 

Single patient; reduced mutant enzyme 
activity (thermolabile) in patient cells 

24740690 

RBSN§ *609511 Severe IDD, coarse facial features,
intractable seizures, microcephaly, 
dysostosis, osteopenia, macrocytosis and 
megaloblastoiderythropoiesis; transient 
cobalamin deficiency, severe hyper-
triglyceridemia onketogenic diet, partial 
cathepsin D deficiency 

None Likely Pathogenic 

(Homozygous) 

Single patient. Decreased transferrin 
accumulation, proliferation rate, 
cytoskeletal / lysosomal abnormalities 
in fibroblasts consistent with defect in 
receptor mediated endocytosis. 

25233840 
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GOT2 *138150 Severe IDD, acquired microcephaly,
severe epilepsy, spasticity, sleep 
disturbances, abdominal spasms; low 
serum and CSF serine, lactic acidosis 

Oral pyridoxine & 
serine supplements 

(improved head 
growth, seizure 

control,psychomoto
r development) 

Uncertain 
Significance 

+ 
Uncertain 

Significance 

(Compound 
Heterozygous) 

Single patient. Mechanistic fit & 
treatment response; stable isotope 
studies of malate-aspartate in patient 
cells & mouse model studies underway 

16368075 

22309504 

FAAH2§ *300654 Learning disabilities, autism, anxiety,
pseudo-seizures, ataxia, supranuclear gaze 
palsy; abnormalities of serum 
acylcarnitine profile 

None Likely Pathogenic 

(Hemizygous) 

CNVs described in autism patients. 

Defect enzymatic activity in fibroblasts 
resulting in altered endocabbanoid 
profiles 

20655035 

25885783 

SENP1 *612157 Severe IDD, congenital microcephaly,
seizures, failure to thrive, intestinal atresia, 
acute myeloblastoid leukemia; 
lissencephaly 

Chemotherapy 
(malignancy 

resolved) 

Likely Pathogenic 

(Homozygous) 

Single patient. Remaining candidate; 
decreased protein on Western Blot, 
abnormal functional B-cell studies. 

2606032 

SYTL2§§ *612880 Learning disabilities, 
Hemophagiocyticlymphohistiocytosis, 
thormbocytopenia and splenomegaly 
(status post splenectomy), progressive liver 
dysfunction, skin hyperpigmentation; 
lysosomal storage disease phenotype (blue 
histiocytes in spleen) 

Candidate for stem 
cell transplant  

Uncertain 
significance 

+ 
Uncertain 

significance 

(Compound 
Heterozygous) 

Single patient. Confirmed immune 
deficiency affecting cytotoxic T-cell 
and NK-function defects as expected 
based on its  interactions with 
RAB27a; model organism studies 
underway 

15543135 

17182843 

18812475 

RYR3§§ *180903 Moderate IDD, epilepsy, short stature,
pulmonary hypertension, psychiatric 
disease; sterol disorder 

None Uncertain 
significance 

+  
Likely Pathogenic 

(Compound 
Heterozygous) 

Two siblings with same phenotype. 

Mechanistic fit; functional studies in 
cell-lines underway 

25126414 

MFNG *602577 Moderate IDD, epilepsy, apraxia, autism;
dysmorphisms with asymmetric facies, 
stunted growth / short stature, cyclic 
vomiting, chronic diarrhea, erythematous 
skin lesions, initial abnormal urine amino 
acids  

None Likely Pathogenic 
+  

Likely Pathogenic 

(Compound 
Heterozygous) 

Single patient 

Gain of function mutations; increase 
Notch and Hey1 activity 

10935626 
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Legend to Tables S4A & B: *MIM corresponds to a gene as there is no disease associated with it at the time of the study; § biochemical / 
experimental data providing evidence for a deleterious effect of variants on protein function are either published in the listed PMID or presented as 
§§previously unpublished data in Supplemental Materials D.

NPL§§ *611412 Sibling 1:cardiomyopathy, 
myopathy,sialicaciduria 

Sibling 2:not formally evaluated, mild 
myopathy ,sialicaciduria 

None Likely Pathogenic 
+  

Likely Pathogenic 

(Compound 
Heterozygous) 

Increased neuraminic acid in both 
siblings. 

Mechanistic fit; functional studies in 
fibroblasts underway. 

16147865 
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C) Known Genes with Novel Phenotypes

Gene MIM Known phenotype 

(PMID) 

Patient Phenotype 

+ metabolic specific

Novel features 

(PMID)# 

Impact on 
clinical 
management (& 
clinical status) 

ACMG variant(s) 
classification 
(genotype) 

CNKSR2 *300724 IDD, limited or absent speech,
seizures, hyperactivity, sleep 
disturbances 

(25223753) 

Moderate IDD, language loss, 
epilepsy, sleep disturbances, 
dysautonomia, fatigue & cognitive 
decline responsive to choline 
therapy; low acetyl choline levels 

Low acetylcholine 
levels responsive to 
therapy 

Continuation 
pyridostigmine& 
choline (improved 
dysautonomia) 

Uncertain significance 
(Hemizygous) 

SCN2A§§  613721 
607745 

IDD, benign epilepsies, epileptic 
encephalopathy, hypotonia, 
hypersomnolence, movement 
disorder 

(23935176) 

Severe IDD, autism, absent speech, 
acquired microcephaly, hypotonia, 
cortical & cerebellar atrophy, 
treatment-resistant seizures, 
abnormal neurotransmitter 
monoamine profiles (low CSF 
HVA, 5-HIAA, pterins) 

Abnormal 
neurotransmitter 
monoamine metabolites 

(26647175) 

Neurotransmitter 
supplements & 
refine AEDs 
(improved 
epilepsy control & 
communication) 

Pathogenic 

(Heterozygous) 

PIGA§ 300868 IDD, epileptic encephalopathy, 
dysmorphisms, neuro-imaging 
abnormalities, +/- multi-organ 
involvement, elevated alkaline 
phosphatase 

(25885527 ) 

†Profound IDD, Dysmorphisms, 
infantile spasms, contractures, brain 
intramyelin edema, mixed hearing 
loss,liver dysfunction; lipoprotein 
lipase deficiency / mitochondrial 
complex I and IV deficiency / 
elevated alkaline phosphatase 

Lipoprotein lipase 
deficiency, Maple 
Syrup Disease-like 
features on brain MRI 

(25885527 ) 

None Likely Pathogenic 

(Hemizygous) 

CBL 613563 Normal intellect or IDD, short 
stature, dysmorphisms, cardiac 
defect, predisposition to JMLL 

(20694012) 

Mild IDD, ADHD, dysmorphic 
features, splenomegaly, 
thrombocytopenia; storage disease 
phenotype 

Normal stature, 
splenomegaly, ADHD 

Screening for 
malignancy 
(minimization 
morbidity) 

Pathogenic 

(Heterozygous) 

ANO3 615034 AD form of focal dystonia and 
myoclonus (DYT24) 

(24442708) 

Moderate IDD, seizures, dystonia, 
hyperkinetic movements, 
microcephaly, sleep disturbances; 
neurotransmitter profile 
abnormalities (low CSF HVA; low 
neopterin)  

abnormal 
neurotransmitter 
monoamine metabolites 
& recessive inheritance 
with IDD 

Levo-
carbidopamine& 
BH4 (improved 
movement 
disorder, sleep, 
seizure control) 

Uncertain significance 
+ 
Uncertain significance 

(Compound 
Heterozygous) 
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DYRK1A 614104 IDD, speech delay, seizures, 
microcephaly, growth delay & 
feeding problems 

(25920557) 

Moderate IDD, intractable absence 
epilepsy, acquired microcephaly, 
failure to thrive; GLUT-DS like 
phenotype (hypoglycorrhagia, low 
CSF:serum glucose ratio) 

GLUT1-DS phenotype 
responsive to ketogenic 
diet 

None  Likely Pathogenic 

(Heterozygous) 

MTO1§§ 614702 Mitochondrial disease with IDD, 
myopathy, lactic acidosis,  
cardiac involvement 

(23929671) 

2 sibs with moderate IDD, 
Treatment resistant epileptic 
encephalopathy, myopathy, 
recurrent rhabdomyolysis; seizure 
improvement on ketogenic diet 
mitochondrial disease (respiratory 
chain complex I and IV deficiency) 

Rhabdomyolysis; 
adolescent onset cardiac 
involvement; seizures 
responsive to ketogenic 
diet 

Ketogenic diet, 
mitochondrial 
cocktail; cardiac 
screening 
(improved seizure 
control 
&rhabdomyolysis) 

Pathogenic 
+ 
Pathogenic 

(Compound 
Heterozygous) 

RMND1§ 614922 Mitochondrial disease with IDD, 
lactic acidosis, encephalo-
neuromyopathy 

(25604853) 

† Severe IDD, congenital lactic 
acidosis, myopathy, hearing loss, 
renal failure, gastro-intestinal 
dysmotility,  dysautonomia; 
congenital lactic acidosis, severe 
combined mitochondrial 
respiratory chain deficiency 

Renal failure, deafness, 
dysautonomia 

(25604853) 

None Pathogenic 
+ 
Pathogenic 

(Compound 
Heterozygous) 

AIMP1 260600 Perlizaeus-Merzbacher-like 
disease with IDD, no acquisition 
of skills, microcephaly, seizures, 
hypomyelinatingleukodystrophy, 
spasticity  

(24958424) 

† Profound IDD, intractable 
epilepsy, developmental arrest, 
microcephaly, primary 
neurodegenerative disorder with 
secondary demyelination 
leukodystrophy 

not Perlizaeus-
Merzbacher-like 

(24958424) 

None Pathogenic 

(Homozygous) 

H6PD 604931 Cortisone reductase deficiency 
with hypothalamic-pituitary-
adrenal (HPA) axis activation 
and adrenal hyperandrogenism 

(23132696) 

IDD secondary to myopathy, 
premature adrenarche, skin 
pigmentation abnormalities; 
transient glycogen storage on 
muscle biopsy 

Skin pigmentation 
abnormalities 

None Uncertain significance 
+ 
Uncertain significance 
(Compound 
Heterozygous) 



37	

MED12 309520 
300895 
305450 

Opitz-Kaveggia syndrome 

Lujan-Fryns syndrome 

Ohdo syndrome, X-linked 

(24123922) 

Moderate IDD, non-verbal, 
macrocephaly, dysmorphic features 
(prominent forehead, hypertelorism, 
broad thumbs), dysgenesis of corpus 
callosum, hypotonia, joint 
hypermobility elevated leucine, 
isoleucine, valine (normalized 
during 2ndyr of life) 

Phenotypic features 
overlappingFG 
syndrome, Lujan-Fryns 
syndrome, and Ohdo 
syndrome  

None Likely Pathogenic 

(Hemizygous) 

SMAD4 139210 IDD, dysmorphic facial features, 
microcephaly, square body 
shape, skeletal anomalies (broad 
ribs, iliac hypoplasia, 
brachydactyly, flattened 
vertebrae, thickened calvaria) 
Also congenital heart disease 
may occur. 

(26420300) 

Severe IDD, short stature, 
microcephaly, square body shape, 
facial dysmorphisms, cyclic 
vomiting, congenital kidney 
abnormalities, fluctuating 
hyperammonemia, hypoglycemia, 
ketosis (now resolved) 

Congenital kidney 
abnormalities, cyclic 
vomiting 

Screening for 
small bowel & 
pancreatic cancer 
(minimization 
morbidity) 

Pathogenic 

(Heterozygous) 

SCN4A§§ 170500 
613345 
614198 
608390 
168300 

Dominant 
paramyotoniacongenita, hyper- 
and hypo-kalemic periodic 
paralysis, and potassium 
aggravated myotonia 

(25839108) 

2 sibs with IDD, congenital 
hypotonia, myopathy, respiratory & 
feeding insufficiency, abnormal 
EMG in both (older sib later in life 
improved albeit with Marfanoid 
dysmorphic features, kyphosis, joint 
hypermobility; †younger sib passed 
away); mitochondrial respiratory 
complex I, II and IV deficiency 

Recessive congenital 
myopathy & fetal 
akinesia 

(26700687) 

None Pathogenic 
+ 
Pathogenic 

(Compound 
Heterozygous) 

NDST1 616116 IDD, delayed psychomotor 
development,   delayed or absent 
expressive speech, seizures, 
hypotonia 

 (25125150) 

Moderate IDD, seizures, cranial 
nerve dysfunction, respiratory 
problems during infancy, facial 
dysmorphisms, hypotonia; 
mitochondrial disease 

Cranial nerve 
dysfunction 

(Am J Med Genet 2016: 
in press)  

None Uncertain significance 
+ 
Uncertain significance 
(Compound 
Heterozygous) 
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PLP1 312080 
312920 

Pelizaeus-Merzbacher disease, 
hypomyelinativeleukodystrophy, 
IDDnystagmus, spastic 
quadriplegia, ataxia   

(25040584) 

Severe IDD, progressive spasticity, 
nystagmus, ataxia, Perlizaeus-
Merzbacher, severe 
hypomyelination of early 
myelinating structures (HEMS); 
leukodystrophy 

‘HEMS’ 

(26125040) 

None Pathogenic 
 

(Hemizygous) 
 

QARS§§ 615760 IDD, hypo- / delayed 
myelination, thin corpus 
callosum, enlarged cerebral 
ventricles, small cerebellar 
vermis, intractable seizures, 
hypotonia, microcephaly, 
progressive neurodegeneration,  

 (24656866) 

Profound IDD with developmental 
arrest, progressive microcephaly 
with diffuse supra-tentorial cerebral 
atrophy & severely deficient 
myelination, intractable seizures; 
serine deficiency 

 

Isolated supratentorial 
brain abnormalities 

(25432320) 

None Likely Pathogenic 
+  
Pathogenic 

(Compound 
Heterozygous) 

PCK1§§ 261680 Hypoglycemic episodes with 
lactic acidosis, secondary IDD 
and generalized seizures, liver 
steatosis, fatal liver failure; 
atrophy of the optic nerve 

(1092127) 

Mild IDD, transient acute liver 
failure during viral illness, with 
episodes of recurrent 
hyperammonemia, lactic acidosis, 
elevated tricyclic acid metabolites, 
stabilization on responsive to 
carbohydrate rich diet, fatty liver 
infiltration; recurrent metabolic 
decompensation  

transient acute liver 
failure disturbed urea 
cycle and mitochondrial 
function 

(Molec Genet Metab 
2016: tentatively 
accepted) 

Carbohydrate-rich 
diet (improved 
metabolic control 
& avoidance 
crises) 

Likely Pathogenic 
 
(Homozygous) 

KCNQ2§§ 613720 IDD, epileptic encephalopathy, 
hypotonia and dystonia 

(26271793) 

† Profound IDD, epileptic 
encephalopathy, hypotonia, 
dysautonomia, microcephaly; CSF 
GABA free 0.007 µmol/L 
(reference range: 0.017-0.067) 
CSF GABA total 4.300 µmol/L 
(reference range: 4.2-13.4) 
 low CSF GABA, mitochondrial 
complex I and II deficiency 
 

Low CSF GABA 

 

None - patient 
deceased before 
GABA increasing 
agents could be 
started) 

Pathogenic 
 

(Heterozygous) 

ATP2B3 302500 IDD, hypotonia, cerebellar 
ataxia, dysarthria, slow eye 
movements,  

(22912398) 

Mild IDD, autism, epilepsy, ataxia, 
improvement of neurologic 
symptoms on oral serine 
supplements; low CSF and plasma 
serine 

Serine deficiency 
responsive to 
supplementation 

Oral serine 
supplements 
(improved 
communication 
skills) 

Uncertain significance 
 
(Hemizygous) 



39	

Legend to Table S4C: *MIM corresponds to the gene;§ biochemical / experimental data providing evidence for a deleterious effect of variants on 
protein function are either published in the listed PMID or presented as §§previously unpublished data in Supplemental Materials D; †	deceased; # 
novel phenotype of this cases published (PMID) or in press.. 

EHMT1 610253 IDD, absent speech, 
microcephaly, dysmorphic facial 
features, +/- congenital heart 
defects  

(22670141) 

Severe IDD with regression, autism, 
hypotonia, dysmorphic facial 
features (incl. bilateral 
megalocornea); neurodegeneration 
with loss of skills 

Megalocornea None Pathogenic 

(Heterozygous) 

TMEM67 607361 IDD, abnormal eye movements, 
ataxia, cerebellar hypoplasia, 
hepatic fibrosis, coloboma, renal 
cysts 

(20232449) 

Mild IDD, adolescent-onset 
dementia,  vertical gaze palsy, 
ataxia, ADHD, cerebellar atrophy at 
age 8yrs (molar tooth sign at age 
22yrs, after diagnosis established), 
hepatosplenomegaly, progressive 
hepatic fibrosis & portal 
hypertension,; lysosomal storage 
disease phenotype 

Niemann-Pick C 
disease phenocopy with 
early-onset dementia 

None Pathogenic 
+ 
Pathogenic 

(Compound 
Heterozygous) 

PACS1 615009 IDD, characteristic facial 
dysmorphisms, seizures cardiac, 
cerebral, eye and kidney 
abnormalities 

(23159249) 

Severe IDD, microcephaly, facial 
dysmorphisms, myopia, bifid uvula 
and submucous cleft, progressive 
ataxia and cerebellar atrophy, 
dysplastic pulmonary and aortic 
valves, failure to thrive; 
neurodegeneration with 
progressive cerebellar atrophy       

Progressive cerebellar 
atrophy and ataxia 

(AJMG 2016: in press) 

None Pathogenic 

(Heterozygous) 
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D) Known Genes with Known Phenotypes 

Gene MIM Phenotypic features + metabolic specific Impact on clinical management 
& clinical status) 

ACMG variant(s) 
classification 

MECP2 312750 Severe IDD, epilepsy, autism, ataxia, developmental regression; cerebral folate deficiency Folinic acid / stop betaine 
(improved seizure control) 

Pathogenic 

(Heterozygous) 

MAT1A 250850 Rett syndrome (MECP2); high methionine n/a Uncertain 
significance 
+ 
Uncertain 
significance 
(Compound 
Heterozygous) 

KRAS 
(somatic) 

614470 Mild IDD, Rosai-Dorfmansyndrome,chronic adrenal suppression, restrictive lung disease, 
chronic pain and depression, peribronchopulmonary dysplasia; none 

Guided choice of 
mycophenoloatemofetil 

Pathogenic 

(Somatic) 

PRSS1 167800 Pancreatitis, hereditary (& RMND1 deficiency); congenital lactic acidosis, severe 
combined mitochondrial respiratory chain deficiency 

Avoid triggers pancreatitis 
(cessation pancreatitis episodes) 

Pathogenic 

(Heterozygous) 

KMT2A 605130 Mild IDD, Dysmorphisms, short stature, hairy elbows, dysautonomia, paroxysmal episodes, 
syncope, migraines, fusion of C2-C3 vertebrae, 11 pairs of ribs, 5th finger clinodactyly and 
camptodactyly; low copper &ceruloplasmin 

None Pathogenic 

(Heterozygous) 

GJB2 220290 Moderate stable sensorineural hearing loss; sialicaciduria None Pathogenic 

(Homozygous) 

OSMR 105250 Mild IDD, Severe early onset eczema (recessive),facial dysmorphism, and short stature (his 
growth is on the 15th); lysosomal storage phenotype 

None Uncertain 
significance 
(Homozygous) 
 

PUF60 615583 Mild IDD, Severe, early onset eczema (recessive),facial dysmorphism, and short stature (his 
growth is on the 15th);  lysosomal storage phenotype 

None Pathogenic 

(Heterozygous) 
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GALC 245200 IDD, Congenital hypotonia, myopathy, respiratory & feeding insufficiency, skin 
pigmentation abnormalities; glycogen storage on muscle biopsy 

Consider hematopoietic stem cell 
transplant (none yet) 

Pathogenic 

(Homozygous) 
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Genes Disease 
[MIM] 

Phenotype 
(Omics2TreatID patient phenotype) + metabolic specific 

RMND1 

PRSS1 

614922 

167800 

Congenital lactic acidosis, severe myopathy, hearing loss, renal failure, and 
dysautonomia; congenital lactic acidosis, severe combined mitochondrial 
respiratory chain deficiency 

Pancreatitis, hereditary 
H6PD 

GALC 

604931 

245200 

Skin pigmentation abnormalities; glycogen storage on muscle biopsy 

Congenital hypotonia, respiratory & feeding insufficiency 
NPL 

GJB2 

Novel 

220290 

Cardiomyopathy, sialicaciduria; may be benign 

Moderate stable sensorineural hearing loss 
MeCP2 

MAT1A 

312750 

250850 

ID, epilepsy, autism, ataxia, developmental regression, Cerebral Folate 
deficiency (Rett Syndrome) 

High methionine 
OSMR 

PUF60 

105250 

615583 

Severe, early onset eczema  (Amyloidosis, primary localized cutaneous, 
recessive) 

Facial dysmorphism, and short stature (Verheij syndrome) 

Table S5: Blended phenotypes resulting from two single gene defects 
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