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Abstract

Accurate forecasting of streamflow is of vital importance in semi-arid regions in order to meet

the needs of humans, such as agriculture, and for wildlife. It is also of considerable interest

for predicting streamflow for ungauged basins and for detecting change due to landuse or

climate variations. Daily streamflows in semi-arid and arid regions are characterized by

zero-inflation, seasonality, autoregression and extreme events such as floods and droughts.

Analyses at the level of daily data for intermittent streams are problematic because of the

preponderance of zero flows. Basic modelling approaches are often inappropriate when many

zero flow events are present; approaches need to be modified to allow greater flexibility in

incorporating zeros than is possible with traditional methods. This project discusses the

utility of spline compartment models for analysis of data from intermittent streams, whereby

the log-odds of the probability of a non-zero flow day, as well as the logarithm of non-zero

flow rate can be studied. These models permit handling of large numbers of zero-flow days;

the use of splines and other smoothers have the benefit that they permit a wide range of

distributional shapes to be fitted. The models are illustrated for ten streams in the Canadian

Prairie Provinces.
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Chapter 1

Introduction

Hydrologists have developed an impressive array of tools for the analysis of flow data. Flood

and drought frequency analyses are one focus when investigating flows; these estimate the

level of the T-year event based on a probability distribution model postulated for annual

extremes. While an analysis based on annual maxima/minima avoids the need to mod-

el seasonal variation and serial correlation, as is present in daily data, such an approach

requires long time series. As well, these tools are generally restricted to the analysis and

interpretation of continuous data, using a variety of continuous distributions, such as the

lognormal. Methods for the hydrological analysis of flow records that contain many days

with no flow, i.e. statistically are ‘zero-rich’, are relatively rare. In this case, simple mod-

ifications, such as adding a small amount to the zero values, are inappropriate; the data

are really of mixed types: discrete (the zeros) and continuous (positive flow) and models

should reflect these two compartments of the data. Importantly, since temporary streams

(intermittent, ephemeral, and episodic) are very sensitive to changes in landuse and climate

(Buttle et al.), robust, flexible, methods for estimating hydrological attributes and the de-

tection of change (climate, landuse, etc.) are required, and should be considered in the

specification of the models.

Cataldo et al. (2004) considered how simple regression equations could be used for

predicting flows or flow losses as a function of covariates such as antecedent conditions

and basin properties. Regression equations involve highly non-linear relationships between

rainfall and runoff, and there are generally few available data for deriving and testing these

relationships. This is particularly true for the Canadian Prairies where flow and precipitation

networks have developed independent of each other. Cataldo et al. (2004) noted that while

1



CHAPTER 1. INTRODUCTION 2

such models are straightforward to implement, they lack direct connections to the specific

physical processes governing transmission losses, making them difficult to apply at sites

other than the one(s) for which they were developed. In particular, while high streamflow

periods may be accurately predicted by such regression on convective rainfall events in the

summer, this would not be the case necessarily for the springtime, when flow is driven

by snowmelt. As well, Cataldo et al. (2004) and many others use log-transformed data,

and assume normality; this may well be suitable for many perennial streams, but not for

intermittent streams because of the large numbers of days with zero flow. When working

with log-transformed data containing many zeros, the common practice of adding a small

amount to the zeros before taking logarithms is inappropriate; developing a modeling a

modeling strategy that acknowledges the zeros is more useful and can also provide additional

information on when the zeros tend to occur, the seasonality of zeros, etc. Since rainfall

that may generate flow is stochastic, models that link precipitation and the resulting flow

response have often been used in simulations.

Lee (1975) used a Weibull-based approach to describe intermittent and ephemeral flow

events, focusing on attributes that are important to temporary streams: flow duration,

inter-event time, and total flow volume; however flow in ephemeral streams was synthesized

only at a monthly level (Lee, 1975). Similarly, Srikanthan and McMahon (1980) considered

several stochastic procedures for generating monthly flows in ephemeral streams. The major

problem they encountered was modelling of zero flows. Chebaane et al. (1995) presented

a series of models with the capability of handling the high percentage of zero flows in

intermittent streams, reproducing the percentage of zero flows in each month, the monthly

mean and variance, and the month-to-month correlation of the intermittent flows. However,

monthly models are overly smooth in comparison to the time step of the actual processes.

Aksoy and Bayazit (2000) instead explored generating synthetic daily flows for intermit-

tent streams. Their model considers: (1) days on which flow occurs; (2) days on which a

flow increment occurs, estimated using a three-state Markov Chain; (3) magnitude of the

increment, assuming a gamma distribution; and (4) the magnitude of the flow decrement

when flow is reduced, using an exponential equation. Averages from ten simulations of the

fitted model preserved the short-term characteristics of the data such as hydrograph shape

and peak, in addition to long-term attributes (mean, variance, covariance and zero flow

percentage). However, parameters were again estimated on a monthly basis and, even so,

there were a large number of model parameters to be estimated (over 100). Furthermore,
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low flow events were not well estimated and the models were developed for an area where

rainfall generates streamflow rather than an area that exhibits spring snowmelt.

One aspect regarding Prairie streams is that they are frequently excluded from studies,

particularly those that consider climate (e.g. Whitfield and Cannon, 2000) and land-use

impacts because these gauges are seasonally operated and subject to anthropogenic influ-

ence and/or regulation. Monk et al. (2011) suggest that streams from the Prairie region

constitute a major gap in their and other trend studies, as Prairie streams may represent

a distinct hydrologic regime. Similarly, the exclusion of these streams from many studies

hinders efforts to reasonably make predictions for ungauged basins.

The objective of the present study is to develop a flexible statistical conceptual approach

that could be built upon to support in depth modelling of flows in temporary streams with

an aim that this approach can be used in the future to validate process models. In much of

the Canadian Prairies there are two distinct processes that may generate streamflow; in the

spring, much of the flow may arise from the regional melting of snow, while in the summer,

convective rainstorms may produce flow in a localized area. Both of these processes have

the potential to be hydrologically important with respect to floods, and water availability.

Similarly, the absence of flow is of considerable interest.

The aim here is to (i) assess the evidence in the data for the main runoff generation

processes for modelling Prairie (intermittent) flow, (ii) develop a model which accommodates

the mixed nature of the data, especially the large numbers of daily zero flows, (iii) illustrate

the utility of smoothers as robust, flexible models, and, (iv) apply the methods for ten

case studies. A multistate model is used in an exploratory manner to study the ‘state’

of flow and the transition probabilities to an alternate state, for instance the probabilities

that a day with zero flow is followed by a day with or without flow, or, when flow exists,

that it increases or decreases. The main contribution of this project is that flow volume,

or discharge (m3/sec), is modelled through a two-compartment approach which accounts

for zero-flows in a logistic framework while modelling positive flows using a logarithmic

distribution model, with both of these compartments estimated and fitted separately for

snowmelt and summer convective periods. Though the work presented here is in the realm

of exploratory data analysis, it can be used as a foundation for more sophisticated modelling

as discussed in the final chapter of the project. Such models would provide quantitative

methods for both prediction of flows in ungauged basins and in detecting change due to

changes in landuse or climate.
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The project is organized as follows. We present the results of our exploratory analyses

in Chapter 2. Chapter 3 reviews the theory of Generalized Additive Models (GAMs) and

presents the GAMs to be considered in our stream flow analyses. In Chapter 4, we present

results from fitting our GAMs and compare the fits of the various models considered. We

summarize and discuss our future work in Chapter 5.



Chapter 2

Exploratory Data Analysis

2.1 Flow data

Using Environment Canada’s Data Explorer, it was determined that there are 85 seasonal

and continuously measured stations in Manitoba, Saskatchewan, and Alberta where the

reported daily flow includes zero flows. A number of these sites are members of the Canadian

Reference Hydrologic Basin Network (RHBN) that are considered suitable for studies of

climate and hydrology relationships (Brimley et al., 1999); however additional sites were also

considered. From this list, all stations with less than 20 years of record were removed. Many

of the remaining streams might contain relatively small regulation structures, the effects of

which are discussed by McGee et al. This list of 62 stations was further investigated;

stations which were considered regulated, stations where data quality was considered less

than good, and stations not within the Prairie ecosystem, were removed. This resulted in

24 unregulated stations, with 20 or more years of record and containing periods of observed

zero-flow. The data for these stations were extracted from the 2010 version of HYDAT

(Environment Canada, 2011). In the present work, the ten stations listed in Table 2.1

and displayed in Figure 2.1 were chosen to be a meaningful illustrative sample of these

types of Prairie streams. These data, and the models we develop, are for the period from

March to October as this is the period sampled for seasonal hydrometric stations. The

data are derived from a continuous recording of the hydrometric response termed stage; this

represents water level. A rating curve is used to convert the stage values to daily mean

flow. At gauging stations, the stream discharge is measured across the stream channel with

a flow meter. The relationship for stream stage vs. stream discharge is unique. A rating

5
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curve is a graphical representation which defines this relationship. If the stage of the river is

measured, then discharge is calculated by means of the rating curve. Through this process

the continuous record of water level can be converted to mean daily flow in m3/s.

Station Station Name Province Latitude Longitude Drainage Area
Number (km2)

05AF010 MANYBERRIES CREEK AB 49◦21′2′′ N 110◦43′3′′ W 338
AT BRODIN’S FARM

05AH001 BOXELDER CREEK NEAR SK 49◦57′42′′ N 109◦59′21′′ W 321
WALSH

05JF008 FAHLMAN CREEK NEAR SK 50◦22′10′′ N 104◦11′30′′ W 15
DAVIN

05JL002 INDIANHEAD CREEK SK 50◦38′42′′ N 103◦36′14′′ W 327
NEAR INDIAN HEAD

05NA003 LONG CREEK AT SK 49◦0′1′′ N 103◦21′8′′ W 3210
WESTERN CROSSING OF

INTERNATIONAL
BOUNDARY

05NF002 ANTLER RIVER NEAR MB 49◦3′26′′ N 101◦2′57′′ W 3220
MELITA

05NF008 GRAHAM CREEK NEAR MB 49◦15′45′′ N 100◦59′53′′ W 741
MELITA

05NG007 PLUM CREEK NEAR MB 49◦37′33′′ N 100◦18′12′′ W 5420
SOURIS

11AB075 LYONS CREEK AT SK 49◦0′17′′ N 109◦13′48′′ W 174
INTERNATIONAL

BOUNDARY

11AE009 LYONS CREEK AT AB 48◦58′10′′ N 106◦50′20′′ W 837
INTERNATIONAL

BOUNDARY

Table 2.1: Attributes of Water Survey of Canada hydrometric stations considered in this
study.
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Figure 2.1: The location of the ten hydrometric stations used in this study

2.2 Summary of Ten Illustrative Stations

The total number of observations at each of the ten stations, along with the fraction of

no flow days is presented in Table 2.2. Note that in Table 2.2, the sum of missing and

non-missing values calculated from the second and third column is 12784, namely, the total

number of days from year 1959 to 1993. Almost all the missing records are from January

to February and November to December as can be seen from columns 3 and 4 in Table 2.2.

The time period from March to October has been chosen for study since it represents the

timing of meaningful water flow activities for each year. We also examine the percentage of

non-flow days over the full year as well as for the March to April and May to October periods

which reflect the two distinct hydrological processes mentioned earlier (snow melt/summer

convection). Table 2.2 shows that stations 05AF010 and 11AE009 have far fewer non-flow

days than the rest of the stations, which have about 50% or more non-flow days. Except for

station 05AF010, the period May to October tends to have more non-flow days compared

with March to April. The minimum flow is 0 m3/s and the maximum varies from 4 m3/s to

152 m3/s over all the stations. Due to some extreme flood events, the distribution of flow

is right skewed as evidenced by the difference between the median and mean flow rates for

each station.
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Station Number of Number of Missing Number of Missing % % % Observed Observed Observed
Number Observations Values Values Observations Observations Observations Median Mean Max

Over (Jan-Feb) & being zero being zero being zero (m3/s) (m3/s) (m3/s)
Full Year (Nov-Dec) Full Year (March-April) (May-Oct)

05AF010 8701 4083 4077 5.7% 8.5% 4.1% 0.08 0.68 124

05AH001 9166 3618 3613 78.7% 55.5% 94.3% 0 0.10 14

05JF008 8649 4135 4128 71.8% 47.5% 86.8% 0 0.02 4

05JL002 8594 4190 4181 89.5% 75.8% 97.8% 0 0.16 35

05NA003 12784 0 0 61.6% 34.1% 60.7% 0 0.88 123

05NF002 10566 2219 2214 55.3% 34.0% 57.3% 0 0.84 118

05NF008 8612 4172 4164 70.9% 56.0% 80.1% 0 0.15 35

05NG007 11346 1438 1436 48.6% 33.5% 49.7% 0 0.78 152

11AB075 8653 4131 4123 88.7% 74.9% 97.1% 0 0.07 19

11AE009 10501 2283 2280 16.9% 7.9% 18.7% 0.05 0.65 98

Table 2.2: Summary statistics for intermittent flow at 10 stations used in this study; the
time period of observation is 1959-1993 inclusive.

Plots of the median daily flow, aggregated over years, for each of the ten streams, are

presented in Figure 2.2. The zero-heavy nature of intermittent flow is evident from Table

2.2 and Figure 2.2; as well, peak flow periods in the spring are also evident. There seem to

exist seasonal patterns for these ten stations.

2.3 Flow Duration Curve

Flow Duration Curves (FDCs) are hydrological curves that represent the relationship be-

tween the magnitude and frequency of daily flow for a particular basin, and provide an

estimate of the percentage of time the flow equaled or exceeded specific values over the peri-

od under study. In addition, the variability in flow is visually illustrated via an FDC curve.

From a statistical point of view, an FDC is the complement of the cumulative distribution

function (cdf) of daily flow, with Q as the daily flow and p as its corresponding exceedance

probability. The FDC plots Qp, the p-th quantile of daily flow versus exceedance probability

p, where p is given by p = 1 − P (Q ≤ Qp); P (A) refers to the probability of the event A.

The sharp decline on the left of the flow duration curves as evidenced in Figure 2.3 for the

ten selected streams reflects extreme events; while the zero inflation is observed in the right

tail.
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in this study.
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2.4 Flow Transition Matrix

Markov modelling of day-to-day transitions in the state of a stream permits an assessment

of how flow on one day affects flow on the next. In analogy with Aksoy and Bayazit (2000a),

flow is regarded as being in one of the following four states: increasing (+), decreasing (−),

(non-zero) constant (c), or zero (0). If Qt is the flow on the t-th day and Xt = Qt −Qt−1,

the increment over the flow for the previous day, flow is increasing if Xt > 0, decreasing

if Xt < 0, and constant if Xt = 0 (zero-flow, or constant non-zero). For each of the

ten streams, a transition probability matrix P , was estimated for transitions between the

four states. The estimate of Pij is calculated as the proportion of times a stream made a

transition from state i to j, whenever it was in state i. Each entry in the matrix labeled Pij ,

is the probability that flow will be in state j on day t, given that flow was in state i on day

t− 1, with i, j = +,−, c, or 0. The entries of the matrix represent the following transitions

P =


P00 P0+ P0− P0c

P+0 P++ P+− P+c

P−0 P−+ P−− P−c

Pc0 Pc+ Pc− Pcc

 (2.1)

Note the presence of structural zeros, values of Pij which are zero by definition: for P+0

(a transition to zero from + cannot be immediate but needs to be preceded by state −),

P0−, and P0c (by definition).

The main feature we have observed is that the diagonal entries tend to be much larger

than the off-diagonal entries, demonstrating that flows tend to be very similar from day to

day, particularly so for the zero-flow state. Table 2.3 provides the diagonal entries (repre-

senting the highest transition probabilities) of the estimated transition probability matrix

for each station, illustrating the consistency of this transitional pattern, while Table 2.4

provides the overall transition matrix for all the stations combined.

2.5 Case Study: Long Creek at Western Crossing of Inter-

national Boundary, Saskatchewan

In what follows, the salient features of intermittent flow that particularly challenge the

relevance of simple models are illustrated using the daily flows of the station Long Creek
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Station Zero An increase An increase A constant non-
Number followed by followed by an followed by a zero flow

zero(P00) increase(P++) decrease(P−−) followed by the
same (Pcc)

05AF010 0.92 0.51 0.71 0.57

05AH001 0.99 0.57 0.77 0.62

05JF008 0.97 0.36 0.49 0.78

05JL002 0.99 0.50 0.79 0.10

05NA003 0.99 0.56 0 .80 0.56

05NF002 0.99 0.60 0.79 0.65

05NF008 0.99 0.48 0.63 0.50

05NG007 0.98 0.61 0.75 0.58

11AB075 0.99 0.52 0.80 0.23

11AE009 0.95 0.52 0.71 0.45

Table 2.3: Selected daily transition probabilities, these are the main diagonals of P and in
each case represent the largest estimated transition probabilities amongst the elements of
P .

0 + - c
0 0.99 0.01 0 0
+ 0 0.54 0.35 0.11
- 0.03 0.13 0.73 0.11
c 0.04 0.16 0 .23 0.58

Table 2.4: Overall estimated average daily transition probability matrix for all ten hydro-
metric stations. For example, across all ten stations the proportion of zero flow to zero flow
transitions is 0.99.



CHAPTER 2. EXPLORATORY DATA ANALYSIS 13

at Western Crossing of International Boundary in Saskatchewan. This station is hereafter

referred to as Long Creek. There are no missing records for this station in the period

considered.

Figure 2.4 displays the time series plot for stream flow rate for Long Creek from 1959

to 1993.
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Figure 2.4: Time Series Plot of Flow Rate for Long Creek Station (05NA003).
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The maximum flow occurs in 1976, and is 123 m3/s. Figure 2.5 displays the percentage

of flow days, days on which the flow rate was non-zero, by day of year for Long Creek. The

seasonality of flow days can be directly observed; at the beginning and end of the year the

flow rate is zero, as expected, with the peak percentage of flow days around mid-April, and a

smaller peak evidenced around July. Figure 2.6 presents the annual percentage of flow days

by year; no clear trends are apparent. Some years stand out as having large percentages of

flow days, namely, 1965, 1978 and 1986.

Figures 2.7 and 2.8 plot the mean and median flow rates by day of year (Figure 2.7)

and year (Figure 2.8). Figure 2.7 reflects approximately the same timing of peaks as seen

in Figure 2.5. We also note that in 1976, because of a large flow episode, the mean flow

rate in substantially higher than other years. As well, in 1978 there were three large flood

events which occurred over very long durations, including one event which lasted over two

months; this accounts for the very large median value in that year.

For Long Creek the estimate of the Markov transition matrix modelling day-to-day

transitions (P ; see Equation 2.1) is

0 + - c
0 0.99 0.01 0 0
+ 0 0.56 0.38 0.06
- 0.02 0.11 0.80 0.07
c 0.05 0.14 0 .24 0.56 .
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Figure 2.5: Percentage of Flow Days by Day of Year for Long Creek Station (05NA003).
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Figure 2.6: Percentage of Flow Days by Year for Long Creek Station (05NA003).
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Figure 2.7: Mean/Median Flow Rate by Day of Year for Long Creek Station (05NA003)
Over 35 Years.
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Figure 2.8: Mean/Median Flow Rate by Year for Long Creek Station (05NA003) Over 35
Years.
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2.6 Summary of Exploratory Analysis

The statistical features associated with intermittent flow are illustrated through exploratory

analyses for the set of ten seasonally observed (March to October) Prairie streams. The

time series plots of flow by day (Figure 2.2) and the Flow Duration Curves (FDCs, Figure

2.3) exhibit (i) seasonality, (ii) extreme events (floods), (iii) zero-inflation (sequences of no

flow days), and these features need to be captured in our exploratory models. Our statis-

tical models incorporate possible day-to-day linkage in flow through the use of smoothers.

Smoothers allow for continuous changes in probabilities of flow and of mean flow rates;

they support similarity of values for these elements of the model within small time changes.

This is important in analyses involving daily data of stream flow. In the next chapter, we

will illustrate the use of smoothers by introducing generalized additive models as well as

penalized spline smoothing approaches and then later employ these methods for our study.



Chapter 3

Statistical Models

In this chapter, we review generalized additive models and penalized spline smoothing ap-

proaches. We start by introducing to generalized additive models, then describe the details

of spline smoothing. Furthermore, we illustrate the use of thin-plate splines, the choice of

basis functions to be used for this project.

3.1 Generalized Additive Models

Generalized Additive Models proposed by Hastie & Tibshirani (1990), are flexible regression

models that extend the Generalized Linear Model (GLM) by incorporating nonparametric

smooth functions into covariate effects. The general framework of a GAM for modeling the

mean of a response variable can be stated as follows:

g(µi) = X̃iβ + m(xi) (3.1)

where g(·) is termed the link function, µi = E(Yi), Yi is the response variable, which follows

some exponential family distribution with probability density function of the form:

fω(y) = exp[yω − b(ω)/a(φ) + c(y, φ)];

here b, a and c are known functions, φ is the ‘scale’ parameter and ω is known as the

‘canonical parameter’ of the distribution. A row of model matrix, X̃i, corresponds to strictly

parametric model components with regression effect β, while xi contributes to the nonpara-

metric term as described below. The term m(·) is a sum of smooth functions of covariates

19
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which has the following structure:

m(xi) = m1(x1i) +m2(x2i) +m3(x3i) + · · · (3.2)

Here the mj(·) are smooth functions of the covariates, xj , some of which may be multidi-

mensional, as for example, x3i as the representation above. If x3i = (x3i1, x3i2), m3(x3i)

would be a bivariate smoother.

GAMs permit the conditional mean of the response to be dependent on a sum of smooth

functions of covariates and yield a more flexible model specification than generalized linear

models (GLM). Well-designed GAMs can therefore provide the potential for better fits to

data than GLMs. The smooth functions are linear combinations of what is known as basis

functions.

For univariate smoothers, these smooth functions could be piecewise polynomial func-

tions such as cubic regression splines. A cubic regression spline is a curve constructed from

segments of cubic polynomials joined together so that the curve is continuous up to the

second derivative. The points at which they are joined are termed the knots of the spline.

Usually, the univariate smoothers take the form:

mj(xj) =
K∑
k=1

bjk(xj)θjk, (3.3)

where bjk(xj) is the basis function of the jth smoother (for the jth covariate). Note that

j = 1, 2, · · · , J and K equals the sum of the number of inner knots and the number of

degrees of freedom for GAMs. Here θjk are the corresponding coefficients for the basis

function bjk(xj).

Overfitting can be a problem if K is large. However, penalized spline smoothing tech-

niques have been introduced to overcome this problem. The idea is that GAMs can be

estimated by penalized likelihood maximization by introducing penalties for overly wiggly

estimates of the mj(·) terms, given that the size of the basis dimension is fixed and slightly

larger than it is believed could reasonably be necessary.

By letting mji = mj(xji) and ϑj = [θj1, θj2, · · · , θjK ]T , equation (3.2) can be rewritten

as follows:
m(xi) = m1i + m2i + m3i + · · ·+ mJi

= X1ϑ1 + X2ϑ2 + X3ϑ3 + · · ·+ XJϑJ

(3.4)

where

Xj,ik = bjk(xji).
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Note that xj could be either a scalar or a vector quantity.

We reparameterize by new parameters θj such that ϑj = Sθj to meet the centering

constraints:

1TXjϑj = 0,

by finding a matrix S with K − 1 orthogonal columns and

1TXjS = 0.

Now mji = XjSθj and we define Xj = XjS. Model (3.1) can be reformulated into the form

of a GLM:

g(µi) = Xθ (3.5)

where X = [X̃,X1,X2, · · · ,XJ] and θT = [βT ,θT1 ,θ
T
2 , · · · ,θTJ ]. Because of the connection

with GLMs, the likelihood, L(θ), becomes conceptually straightforward. The penalized

likelihood then takes the form:

lp(θ) = l(θ)− 1

2

∑
j

λjθ
TZjθ. (3.6)

The penalty term θTZjθ is derived from the integrated square of second derivatives of the

smooth functions mj(x): ∫
[m′′j (x)]2dx

and penalizes models that are too “wiggly”. The trade off between model fit and model

smoothness is controlled by the smoothing parameters λj . If λj = 0, the estimates obtained

by maximizing the likelihood would be un-penalized regression spline estimates. However,

if λj →∞, the resulting estimate of the smoother would be a straight line.

To estimate θ and λ, the penalized spline smoothing approach proceeds in the following

way. For a fixed λ, problem (3.6) can be solved by minimizing penalized iteratively re-

weighted least squares(P-IRLS), which is similar to the GLM iterative estimation procedure.

There are two common approaches for selecting the smoothing parameter λ: if the scale

parameter σ is known, the smoothing parameter can be determined by minimizing the Un-

Biased Risk Estimator(UBRE; Craven and Wahba, 1979), also called Mallows’ Cp (Mallows,

1973):

Vµ(λ) = ‖y −Ay‖2/n− σ2 + 2tr(A)σ2/n.
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Here A = X(XTWX + Z)−1XTW is the influence matrix of the GAM; W is a diagonal

weight matrix with W−1
ii = V (µi)g

′(µi) with V (µ) = b′′(θ)/ω; tr(A) is the trace of A, and

Z =
∑

j λjZj . If the scale parameter is unknown, Generalized Cross Validation (GCV;

Wood, 2006; Wood and Augustin, 2002) can be used to obtain an estimate which minimizes

the mean square prediction error, that is, the average squared error in predicting a new

observation y using the fitted model:

Vg =
nD(θ̂)

[n− tr(A)]2
.

Here, D(θ̂) = 2[lp(θ̂max) − lp(θ̂)]φ is the model deviance, θ̂max is the maximum likelihood

estimate (m.l.e) of the saturated model which estimates values for each y by the observed

value while θ̂ is the m.l.e of the model of interest. The trace tr(A) plays an important

role in determining the smoothing parameter and has been defined as the effective degrees

of freedom in measuring the flexibility of the fitted model. As the smoothing parameter

varies from zero to infinity, tr(A) ranges from the number of parameters less the number

of constraints to rank (
∑

j Zj) minus the number of constraints. The discussion above

considers GAMs broadly. Section 3.2 discusses a specific form which we apply to the stream

flow data.

3.2 Thin-Plate Splines

In this section, we focus on the thin-plate spline regression. Thin plate splines, introduced

by Duchon(1977), provide a general solution to the problem of estimating a smooth function

of multiple predictor variables.

Given n observations (yi,xi), consider the general problem of estimating the smooth

function f(x) using the following model:

yi = f(xi) + εi

where εi is a random error term and x is a vector of length d.

To estimate f , thin-plate spline smoothing finds the function ĝ which satisfies:

min
g
‖y − g‖+ λJmd(g), (3.7)
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where y = (y1, y2, . . . , yn)T and g = [g(x1), g(x1), . . . , g(x1)]T . As in Section 3.2, Jhd(g) is

introduced to penalize the ‘wiggliness’of g and is defined as follows:

Jmd =

∫
· · ·
∫
<d

∑
τ1+···+τd=h

m!

τ1! . . . τd!

(
∂hg

∂xτ11 . . . ∂xτdd

)2

dx1 . . . dxd (3.8)

The above minimization problem (3.7) can be optimized by the following solution given

2h > d:

ĝ(x) =
n∑
i=1

κiςhd(‖x− xi‖) +
H∑
j=1

αjψj(x), (3.9)

where κ and α are parameters to be estimated and in particular, κ has to satisfy the linear

constraints that STκ = 0. Here Sij = ψj(xi) and n is the number of knots. There exist

H =
(
h+d+1

d

)
polynomials ψi(·) whose degrees are less than h; these are linearly independent

polynomials spanning the space of polynomials in <d. We also have

ςhd(r) =


(−1)h+1+d/2

22h−1πd/2(h−1)!(h−d/2)!
r2h−d log(r) d even

Γ(d/2−h)

22hπd/2(h−1)!
r2h−d d odd

Let E be Eij = ςhd(‖xi − xj‖); the thin plate spline fitting problem becomes:

minimize ‖y −Eκ− Sα‖+ λκTEκ,

subject to STκ = 0,
(3.10)

with respect to κ and α.

3.3 Application to Our Study

Our hydrologic analysis is built to handle a zero-rich streamflow series. Our exploratory

model incorporates two compartments for seasonality and annual trend: one for zero flow

days, the second for flow rate, given flow is occurring. These two compartments resonate

with the dual nature of the data: mixed between discrete (zeros) and continuous (flows,

given presence of flow). As well, smoothers in the form of Generalized Additive Models

(GAMs) for each of these compartments are used to provide local (temporal) continuity in

the absence of flow as well as local continuity in flow rates, given presence. It may be that

there will be residual autocorrelation to consider, as discussed in the final section.
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Different models for snowmelt periods (March-April) and convective precipitation peri-

ods (May-October) were investigated as these are based on different hydrological processes.

The term snowmelt period here refers to the period where snowmelt is generally the domi-

nant process producing streamflow. Snowmelt periods will differ by year but March to April

was used as a fair approximation in this study; extensions to the model which estimate the

timing of snowmelt are discussed in the last section of the study.

Hence, our basic exploratory models for intermittent flow incorporate (i) two compart-

ments to model presence/absence of flow, and flow rates, given flow (ii) smoothers, for each

of these compartments, to build day-to-day and year-to-year connections, and because these

are flexible modelling forms, (iii) possibly separate models for snowmelt and convective pe-

riods. Three types of smoothers are considered for modelling the log-odds of the probability

of a non-zero flow day and the logarithm of (non-zero) flow rate; these three smoothers

reflect different degrees of complexity.

Model 1:

logit(P (Ztk = 1)) = S0(t, k) (3.11a)

log(Qtk) = f0(t, k) + εtk, when Qtk > 0 (3.11b)

where Qtk represent the flow on the t-th day in the k-th year, Ztk = 1 if the flow of the t-th

day in the k-th year is non-zero, Ztk = 0, otherwise, logit(.) refers to the log odds function,

S0(t, k) and f0(t, k) are two-dimensional spline smoothers in day and year, while εtk are

independent and normally distributed.

Model 2:

logit(P (Ztk = 1)) = S01(t) + S02(k) (3.12a)

log(Qtk) = f01(t) + f02(k) + εtk, when Qtk > 0 (3.12b)

where S01(t) and f01(t) are one-dimensional spline smoothers in day of year, S02(k) and

f02(k) are spline smoothers in year, while εtk are independent and normally distributed.

Model (2) uses an additive framework to incorporate annual effects and is more parsimonious

than Model (1).

Model 3:

logit(P (Ztk = 1)) = (β0 + β1t) sin(2πt/365) + (β3 + β4t) cos(2πt/365) + S0(k) (3.13a)

log(Qtk|Qtk > 0) = (β4+β5t) sin(2πt/365)+(β6+β7t) cos(2πt/365)+f0(k)+εtk, whenQtk > 0

(3.13b)
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where S0(k) and f0(k) are again one-dimensional spline smoothers in year, and εtk are

independent and normally distributed. This is a simple smoother that incorporates harmonic

terms which are commonly used to model seasonality. The coefficients of the harmonic terms

linearly change with time, which permits the seasonal effects to change with time.

The number of parameters required for estimation of the log-odds compartment and for

the logarithm compartment for each of Models 1, 2 and 3 is 30, 19 and 14, respectively. In the

subsequent discussion we focus on comparisons between Model 2 and Model 3. However,

remarks relating to Model 1 are also provided for comparison. Comparisons were made

using some typical model selection criteria for GAMs, namely the minimum Unbiased Risk

Estimator (UBRE; Craven and Wahba, 1979) score, the GCV score and the percent deviance

explained by the model.
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Modeling Results

4.1 Model Comparison

Our preliminary models based on smoothers fitted to Long Creek data yielded reasonable

fits. Based on the exploratory analyses, a preliminary model for flow should incorporate

annual trends and seasonality. If annual trends are weak, the seasonality compartment may

suffice. An additive model with these terms instead of the full interaction spline smoothers

in Model 1, with suitable model reductions as needed, may also be considered. Both Models

2 and 3 seem suitable in this context. Model 3 is proposed as an initial starting point

for future model development. Our justification of the choice of models is based on model

selection criteria, goodness of fit plots and adopting the principal of parsimony. These

models are discussed below.

The fitted models are illustrated through (a) a plot of the estimated probability of a

non-zero flow day, against day and year, (b) the mean log-flow, for a positive flow day. The

contour plots illustrate specific probability or mean values for the day, year combinations

and the timing for which these values are highest. Results for Long Creek (Figures 4.1 and

4.2) reveal a peak flow day around day 120 and seasonality in the probability of a non-zero

flow day since trends in these probabilities tend to be (generally) similar across years. There

are subtle trends across years - the contours are not perfectly aligned vertically. Figure 4.3

displays the smoother terms for the two compartments from Models 2 and 3. The log flow

compartment seems to peak around day 104 while the logit compartment peaks at about

day 107. Note that the shapes of the seasonality curves for both models compartments

(logit/log flow) are very similar. The annual trend of the logit compartment is slightly

26
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different from the annual trend of the log flow compartment. The logit compartment seems

to reach a maximum in 1976. However, for the log flow compartment, the annual trends

have peaks around 1968 and 1978.
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Figure 4.1: Contour plot of the estimated probability of non-zero flow by day and year for
Long Creek based on Model 1 (Equation 3.11a).

For the logit compartment, the UBRE scores for Models 1, 2 and 3 are 0.111, 0.084,

and 0.102, respectively. Since smaller values are preferred, Models 2 and 3 perform slightly

better. For the logarithmic compartment, the GCV scores for Models 1, 2 and 3 are 1.032,
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Figure 4.2: Contour plot of the logarithm of mean flow on non zero flow days by day and
year for Long Creek based on Model 1 (Equation 3.11b)



CHAPTER 4. MODELING RESULTS 29

100 150 200 250 300

−
2

0
1

2
Model 2(3.12a): Logit Seasonal Trend

Flow Day

S
01

(F
lo

w
 D

ay
)

1960 1970 1980 1990

−
2

0
1

2

Model 2(3.12a): Logit Annual Trend

Flow Year

S
02

(F
lo

w
 D

ay
)

100 150 200 250 300

−
1.

0
0.

0

Model 2(3.12b): Log Flow Seasonal Trend

Flow Day

f 0
1(

F
lo

w
 D

ay
)

1960 1970 1980 1990
−

1.
0

0.
0

Model 2(3.12b): Log Flow Annual Trend

Flow Year

f 0
2(

F
lo

w
 Y

ea
r)

1960 1970 1980 1990

−
1.

5
0.

0
1.

0

Model 3(3.13a): Logit Annual Trend

Flow Year

f 0
(F

lo
w

 Y
ea

r)

1960 1970 1980 1990

−
0.

6
0.

0
0.

4

Model 3(3.13b): Log Flow Annual Trend

Flow Year

f 0
(F

lo
w

 Y
ea

r)

Figure 4.3: Smoother terms for Model 2 and 3; The top two panels are the estimated
seasonal trend and annual trend of the logit compartment of Model 2; the two panels in
second row are the estimated seasonal trend and annual trend of the log flow compartment
of Model 2; the bottom two panels show the estimated annual trend of the logit and log
flow compartments of Model 3.
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1.068, and 1.087; once again this suggests a close fit between Models 2 and 3 with Model 1

performing slightly better. In addition, the percentage of deviance explained (larger values

preferred) for each of these Models is 20.4 (Model 1), 22.1 (Model 2) and 20.8 (Model 3),

yielding a slight preference for Model 2.

As interest centres on describing snowmelt and convective precipitation periods, further

goodness of fit assessments for each model were carried out subseasonally. Figure 4.4 com-

pares the fraction of observed flow days over 11-day windows with their expected values for

all models. The choice of 11 days for this comparison approximates the scale of climato-

logical processes reasonably well (see for example, Le Barbé and Lebel, 1997; Dissing and

Wendler, 1998; Sparks and Menzel 2002; and Romolo et al., 2006a, 2006b). On the basis of

the plots in Figure 4.4, subseasonal Models 2 and 3 are preferred as they have far fewer pa-

rameters than Model 1 and expected counts closely match observed counts for these models.

Total log-flows and their expected values over 11-day windows are provided in Figure4.5.

Here again subseasonal Models 2 and 3 provide reasonable fits.

A contour plot showing the fitted values for the estimated probabilities for non-zero flow

based on Model 3, for the full year is provided in Figure 4.6; corresponding plots relating

to separate models fitted to data reflecting (i) the snowmelt and (ii) the convective period

are provided in Figures 4.7 and 4.8 respectively. Corresponding plots based on Model 2 are

very similar. Generally, high probabilities of flow were observed around days 120 and 175

(April 29 and June 23, respectively), though this pattern was more consistent over years for

day 120. There are also some years for which higher probabilities of flow persist over the

full year, for example 1978 and 1986. The convective period was far more variable in terms

of probability of flow, than the period of snowmelt.

The same conclusions can be drawn for the remaining nine stations considered in this

study based upon the goodness of fit plots for Model 3 (Figures 4.9 and 4.10). We note that

Model 1 fits the data reasonably well. However, when considering subseasonal approaches,

as scientifically relevant in the hydrology, Models 2 and 3 seem very useful as they fit well

and require far fewer parameters.
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Figure 4.4: Observed and expected fraction of non-zero flow days over 11-day windows for
all models for full year and subseasonal analyses (Long Creek) for Model 1 (Equation 3.11a),
Model 2 (Equation 3.12a), and Model 3 (Equation 3.13a).
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Figure 4.5: Observed and expected log flow over 11-day windows based for all models for
full year and subseasonal analyses (Long Creek) for Model 1 (Equation 3.11b), Model 2
(Equation 3.12b), and Model 3 (Equation 3.13b).
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Figure 4.6: Contour plot for estimated probability of non-zero flow by day and year for Long
Creek based on the full year using Model 3 (Equation 3.13a).
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Figure 4.7: Contour plot for estimated probability of non-zero flow by day and year for Long
Creek based on March-April subseasonal approach using Model (Equation 3.13a).
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Figure 4.8: Contour plot for estimated probability of non-zero flow by day and year for Long
Creek based on the May-October subseasonal approach using Model 3 (Equation 3.13a).
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Figure 4.9: Observed and expected fraction of non-zero flow days over 11-day windows using
Model 3 (Equation 3.13a) for all ten hydrometric stations
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Figure 4.10: Observed and expected log of mean flow over 11-day windows based on Model
3 (Equation 3.13b) for all ten hydrometric stations.



Chapter 5

Discussion and Future Work

Interest in developing robust statistical models for seasonally observed temporary rivers

focuses on being able to assess how or if these models alter our current understanding of

the hydrological attributes. Indicators of low and zero flows is one such area as drought is

of considerable interest; however, it would is desired to consider other areas of hydrological

interest: return periods of floods; detecting and/or prediction change due to land-use or

climate variations and for predictions in ungauged basins. These include the time between

extreme events; duration of extreme events; total flow volume in an event; determining what

sorts of climate variations would/could introduce specific vulnerabilities in the system.

The statistical models developed herein allow for a trend in the mean of the response

and for seasonality in the response. Goodness-of-fit statistics revealed fair predictions.

This preliminary model is proposed as the basic framework to build future extensions. In

particular, an extension that incorporates autoregression in the residuals will be developed.

Furthermore, as two significant peaks were observed for the log-odds of non-zero flow data

and the logarithm of a non-zero flow rate at approximately the same time of the year, the

model for a non-zero flow day should be linked with the model for the logarithm of a non-

zero flow rate via a common random effect that is autoregressive in nature, to more tightly

connect these two parts of the model. These extensions should lead to gains in precision

in the analysis. With these extensions incorporated, simulations and other methods for

evaluating hypotheses relating to the underlying hydrological processes will be considered

in future work.

Another approach would be to use transitional models and incorporate smoothers into

the transition rate. Future work will also compare transitional and marginal models though
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we note that these models are conceptually different. The approach could also be extended to

handle the joint modelling of several streams. Cigizoglu et al. (2002) characterized the joint

distribution of flow events at two neighbouring river sites in arid and semi-arid regions using

a combination of point process models for flow episodes separated by periods of zero flow, the

first to model the clustering of these two compartments, and the second to model explicitly

the clustering of events in periods of flow episodes. Bivariate modelling was necessitated by

the fact that spate irrigation schemes, that is schemes that take advantage of sudden rushes

of water, often exploit the runoff from a number of adjacent river channel systems which is

then diverted into a single crop growing area. Wang and Robertson (2011) also used a joint

probability modelling approach for forecasting flows at multiple sites in temporary streams

by treating zero flow occurrences as censored data. Adapting these methodologies in the

context of our spline compartment model may be appropriate for forecasting intermittent

flow based on more than one site.

Statistical models for seasonally observed data that is zero-rich that are sufficiently

robust are necessary for analysis and interpretation of the type of data available for most

Prairie streams. Such models will greatly improve our ability to predict stream flow in

ungauged basins in the Canadian Prairies. Further, these models can also provide the

basis for detecting changes related to climate or landuse changes. The model development

presented here captures seasonality, extreme events, sequences of no flow days, and regular

seasonal patterns of spring snowmelt and summer convective rainfall. These models provide

the basis upon which more complex models that include autocorrelation and joint probability

modelling can be developed.
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[12] L. Le Barbé and T. Lebel. Rainfall climatology of the HAPEX-Sahel region during the
years 1950-1990. Journal of Hydrology, 188-189:43–47, 1997.

[13] S Lee. Stochastic generation of synthetic streamflow sequences in ephemeral streams. de
l’Association Internationale des Sciences Hydrologiques Symposium de Tokyo, 117:691–
701, 1975.

[14] C. L. Mallows. Some comments on Cp. Technometrics, 15:661–675, 1973.

[15] D. McGee, S. Boon, and H.J. van Meerveld. Impacts of rural water diversions on Prairie
streamflow. To be published in Canadian Water Resources Journal, 2012.

[16] W.A. Monk, D.L. Peters, R.A. Curry, and D.J. Baird. Quantifying trends in indica-
tor hydroecological variables for regime-based groups of Canadian rivers. Hydrological
Processes, 25:3086–3100, 2006.

[17] L. Romolo, T.D. Prowse, D. Blair, B.R. Bonsal, and L.W. Martz. The synoptic cli-
mate controls on hydrology in the upper reaches of thepeace river basin. Part I: snow
accumulation. Hydrological Processes, 20(19):4097–4111, 2006.

[18] L. Romolo, T.D. Prowse, D. Blair, B.R. Bonsal, and L.W. Martz. The synoptic cli-
mate controls on hydrology in the upper reaches of thepeace river basin. Part II: snow
ablation. Hydrological Processes, 20(19):4113–4129, 2006.

[19] T.H. Sparks and A. Menzel. Observed changes in seasons: an overview. International
Journal of Climatology, 22:1715–1725, 2002.

[20] R. Srikanthan and T.A. McMahon. Stochastic generation of monthly flows for ephemer-
al streams. Journal of Hydrology, 47:19–40, 1980.

[21] Q.J. Wang and D.E. Robertson. Multisite probabilistic forecasting of seasonal flows
for streams with zero value occurrences. Water Resources Research, 47:W02546,
doi:1029/2010WR009333., 2011.

[22] P.H. Whitfield and A. Cannon. Recent Variations in Climate and Hydrology in Canada.
Canadian Water Resources Journal, 25:19–65, 2000.

[23] S Wood. Generalized Additive Models: An Introduction with R. Boca Raton, FL:
Chapman-Hall, 2010.

[24] S Wood. mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs
by PQL. Available at http://cran.r-project.org/package=mgcv, 2010.

[25] S. N. Wood and N. H. Augustin. GAMs with integrated model selection using penalized
regression splines and applications to environmental modelling. Ecological Modelling,
157(2-3):157–177, 2007.




