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Abstract

Multicore processor systems are everywhere today, targeting markets from the high-end server space
to the embedded systems domain. Despite their prevalence, predicting the performance of workloads
on these systems is difficult due to a lack of visibility into the various runtime interactions for shared
resources. At the same time, existing support in processors for performance monitoring is primarily
limited to capturing single events and thus cannot provide the depth of information required to predict

dynamic workload interactions.

This thesis presents a configurable and scalable multicore system framework for enabling new avenues
for systems and architectural research. We have outlined and implemented a multicore platform
on a Field Programmable Gate Array (FPGA), which supports the Linux Operating System (OS) and
contains an integrated profiling unit, ABACUS (a hArdware Based Accelerator for Characterization of
User Software), through which runtime profiling of the system can be performed. Support for systems
of up to four cores has been demonstrated and the stability of the system verified through various
stress tests. A system uptime of over two weeks was obtained while the system was under heavy load,
and with the integration of our hardware profiler, we were able to gain insight into the operation of the

system through the collection of metrics not readily possible through existing systems and simulators.
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0 Introduction

Modern computing systems typically comprise multiple computing cores, and are thus also referred
to as multicore systems. From workstations, to “smart” phones, to “cloud” computing, multicore
solutions provide increased computing throughput through increased parallelism as opposed to oper-
ating frequency. Although numerous different computing models exist for multicore systems, one of

the most common is the Symmetric Multi-Processor (SMP) model.

Modern multicore systems are complex platforms with many shared resources including: caches,
buses, Floating Point Units (FPUs), and memory controllers. Hardware resources are often shared to
reduce the system’s area and power; however, sharing resources between processors results in the loss
of predictability of performance for different workloads. In some cases, application performance can
be degraded by as much as 150% in a shared workload environment [1]. In addition to application
runtime, other aspects of workload performance can also be negatively impacted including: latency,
power consumption and quality of service. With the increasing complexity in modern processor sys-
tems and future systems expanding into heterogeneous and asymmetric computing [2], performance
on these systems is likely to become even more variable. Without visibility into the interactions tak-
ing place at runtime in these systems, intelligent decisions on thread scheduling cannot be made for

dynamic workloads or fixed workloads on more complex systems.

1.1 Motivation

Research into thread scheduling in systems with resource contention is a difficult area at present
due to the scope of the problem. While visibility into low-level interactions in the system is needed,

experimental evaluation also requires that the system supports a full OS. This poses a challenge for
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two of the primary avenues for systems research, modern commercial multicore systems and system

simulators.

For example, it is possible through hardware counters on existing platforms [3, 4] to measure quanti-
ties such as number of cache misses and attribute these events to degraded performance. However,
understanding the underlying causes is more complex and needs greater visibility into the systems’
internals. Therefore, while commercial systems operate at high frequencies to provide results in a
reasonable time frame, their fixed hardware limits them. Not understanding the cause of the under-
lying behaviours limits the application of this research to generic architectures and the conclusions

reached may not be applicable to future systems, limiting its influence.

Conversely, software system simulators, such as simics [5], provide a flexible platform for systems
research with easy visibility into a system’s internals. However, their simulation runs orders of mag-
nitude slower than actual systems and thus, for performance reasons, software simulators tend to
focus on a single layer of the system hierarchy. For software simulators, greater oberservability and
accuracy comes at the cost of increasing runtimes. This in turn limits their usefulness for experiments

involving scheduling at the OS level.

1.2 Objective

The objective of this thesis is to first develop a configurable multicore system framework that sup-
ports a full OS for systems research such as optimizing runtime task scheduling for future multicore
systems. To support this type of research, the second objective of this thesis is to create a runtime
configurable module that is independent from the architecture, yet can be used to snoop runtime

behaviours without impacting the system’s operation.

The underlying framework requires a multicore system running a full OS, such as Linux, and the
integration of a hardware unit capable of profiling the system at runtime. To ensure that we have the

observability and configurability available in software simulators without the overwhelming perfor-
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mance penalty, the framework'’s targeted implementation platform is a FPGA. A FPGA based system
is well suited for this problem as it allows us to create fully hardware based systems while maintain-
ing full visibility into the workings of the system. In addition, while the design will operate at lower
frequencies than high performance computing architectures, it is not limiting, allowing OSs to boot
and user software to execute to completion. The hardware and software design will be structured
to facilitate design modifications, such as multiple levels of cache hierarchy and asymmetric core
configurations, so that future work can look at systems research in asymmetric and heterogeneous

computing models.

1.3 Contributions

In this thesis, we present the initial framework for a scalable and configurable multicore system for
systems and architectural research. The major contributions of this thesis can be divided into the

following items:

¢ A configurable and scalable multicore system framework with full OS support
e A scalable, independent, modular, hardware profiling unit that can be configured by the user

or the OS at runtime.

The MicroBlaze [6] single-core, soft-processor design from Xilinx has been chosen as the basis for this
work. It allows configuration of numerous parameters (e.g. inclusion of a FPU, etc.) and supports a
full Linux kernel from PetalLogix [7]. This thesis discusses the modifications made to the processor
and the system peripherals that are required to support SMP and scale to at least four processors.
The necessary modifications to the Linux kernel to support the changes in hardware as well as the
extra support needed for SMP are also discussed. Finally, we describe our hardware profiling unit,
hArdware Based Accelerator for Characterization of User Software (ABACUS) and its integration into
the system. We then evaluate the system framework by performing a series of tests to measure its

stability and certain performance aspects using ABACUS.
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1.4 Thesis Organization

The remainder of the thesis is structured as follows. Chapter 2 provides background on multicore
systems, the MicroBlaze processor and previous work in multicore systems on FPGAs and system
simulators. An overview of the desired framework for our heterogeneous multicore systems research
is provided in Chapter 3. Chapter 4 presents the MicroBlaze platform and the hardware changes
required to support SMP on Linux. The changes required to support the new hardware platform in the
Linux OS are detailed in Chapter 5. Chapter 6 describes the architecture and integration of our data
profiler into the new platform and Chapter 7 discusses the experiments run to validate our system.

Finally, Chapter 8 concludes the thesis and outlines future work.



e Background

This chapter focuses on the background, related works and concepts necessary to understand the
contributions of this thesis. First, previous work on soft-processor systems and multicore emulators
on FPGAs are presented, focusing on the MicroBlaze architecture. Next, we cover the hardware
requirements of a multicore system, followed by a brief discussion of the Linux kernel architecture,
focusing on its SMP support. Finally, the chapter concludes with a discussion on the previous work

in workload analysis.

2.1 Soft-processors and Processor Emulators on FPGAs

FPGAs have grown in capacity such that they can implement complex Systems-on-Chip. This has
opened the area for research into the acceleration of simulation for traditional architectures [8],
as well as research into soft-processor architectures [9]. Multicore processor architecture research
utilizing FPGAs includes: the Research Accelerator for Multiple Processors (RAMP) [10] project for
multiple lightweight processors on tens and hundreds of FPGAs [11]; and emulation platforms for

the design of commercial multicore processors [12, 131.

More recently, open-source, multithreaded, multicore-processor emulators for FPGA platforms [14,
15] enabled a new approach to research into workload behaviours and interactions on multicore archi-
tectures, offering several advantages. Specifically, by leveraging access to the Hardware Description
Language (HDL) implementation of the emulator, researchers obtain cycle-accurate visibility into the
microarchitecture behaviour, while still being able to run a full OS on the system much more quickly

than multicore software simulators.
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Researchers designing multicore systems for implementation on FPGAs have, like their commercial
counterparts, included dedicated hardware for profiling their systems [16]. On-chip, independent,
cycle-accurate software profiling units for soft processors have also been investigated for FPGA-based
SoCs [17] [18]. However, both these works are aimed at monitoring accesses to specific address
ranges for instruction execution or data accesses by single core CPUs and do not support the more
complex capabilities required for multicore processors. While the listed works all share a usage of
FPGAs for performing simulation or profiling, the approach taken with ABACUS is different in that
we focus on providing a generic framework for designing new profiling units, and providing run-time

reconfiguration along with a mechanism for communicating with the Operating System.

Currently, we are aware of four soft-processor systems that support Linux 2.6 or later to varying
extents. They are: the OpenSPARC [14], the LEON3 [15], the Nios Il [19] and the MicroBlaze [6].
The OpenSPARC based systems supports an Ubuntu based Linux distribution for a single core setup
and a dual-FPGA board dual-core setup. Unfortunately, the scalability of the OpenSPARC platform
is limited due to its memory hierarchy, which relies on a single MicroBlaze to process all memory
requests. In addition, scaling the system, even to multiple cores, is made complicated due to the
need for a multi FPGA-board setup. The LEON3 is another SPARC-based platform that supports a
dual-core setup, but the memory controller support for different boards is not well supported. The

LEONS3 is also a rather large processor design — only 2 processors can fit on a Virtex 5 110t FPGA.

Both FPGA companies, (Xilinx and Altera) have their own soft-processors. Recently, the NIOS Il
processor from Altera has gained support for Linux for a single-core setup, but its Linux support is
still in the early stages. Petalogix however, has supported Linux on the MicroBlaze since the 2.6.30
version of the Linux kernel, and currently supports the 2.6.37 version of the kernel through version
2.1 of PetaLinux [20]. While the MicroBlaze only supports a single processor system, it’s small size
allows for up to 8 cores to fit on a Virtex 5 110t FPGA and its simpler design should allow for easy
modification. While the MicroBlaze is a closed source processor, Xilinx has provided us with the

source for this work.
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2.2 MicroBlaze

As this work builds on top of the MicroBlaze processor we will briefly cover the architecture of this

processor relevant to this work.

The MicroBlaze is a simple in-order Reduced Instruction Set Computing (RISC) based processor that
is highly configurable in terms of the components included. This includes functionality such as

dedicated multiplier and divider, inclusion of a FPU caches and Memory Management Unit (MMU).

2.2.1 MicroBlaze and Linux

As part of the Petalogix Software Development Kit (SDK) [7], support is provided for some standard
Xilinx Intellectual Property (IP) cores. Only the MMU included version is supported by the 2.6 version

of the Linux kernel. Figure 2.1 illustrates an example of a Linux-capable MicroBlaze based system.

t

1 FPGA
MicroBlaze
e

! ! ! }

Interrupt Debug

Figure 2.1 A Block Diagram of a Linux Capable MicroBlaze System

Nvdg

Essential components include the MicroBlaze, Interrupt Controller, Timer Unit, UART peripheral and
Memory Controller. The Timer Unit is required as the MicroBlaze does not include an internal timer as
many architectures do. The UART is used for connecting to the Linux kernel’s serial console and the

interrupt controller provides an interface to allow the MicroBlaze to handle multiple interrupt sources.
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2.2.2 Memory Management

The MicroBlaze MMU is based on the PowerPC 405 [6] MMU and is fully software managed. On

Translation Look-aside Buffer (TLB) misses, software routines will add/remove entries in the TLB.

2.2.3 Conditional Load Store Instructions

As part of the MicroBlaze Instruction Set Architecture (ISA) two instructions: Load Word Exclusive

(LWX) and Store Word Exclusive (SWX) [6], are provided for performing atomic operations in memory.

The conditional instructions work by setting a reservation bit on the execution of a conditional store
instruction (LWX), and by checking this bit when a conditional store (SWX) is to be executed. If the
bit has been cleared (by an exception,interrupt or another SWX instruction), then the store will not

go through, otherwise the store will complete and the operation was guaranteed to be atomic.

In a single processor environment, the only case where the processor will lose the reservation before
the store goes through is in the case where an interrupt or exception occurs. This behaviour will fail
in a multicore system as reservations for a particular address must be unique among the processors
in the system. As such the reservation mechanism must be replaced to extend the MicroBlaze to

support SMP (see Chapter 4).

2.3 Multicore Computer Architecture

At its simplest, a shared-memory multicore system consists of multiple, identical processors con-
nected to a single shared memory. In order for this system to be practical for running an OS, addi-
tional features, such as providing memory coherency between the processors and an asynchronous

notification system, are required.
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2.3.1 Memory Coherency

A multicore system with strictly enforced memory consistency between processors (i.e. at no point
would one processors view of memory be different from any others) would be highly detrimental to
performance. Such a system would not allow any form of memory caching including the caching that
is inherent to the processor pipeline. As such, most multicore systems have a minimum time widow
in which a processor’s view of memory is inconsistent with the other processors in the system. This
can vary from just a few cycles in some systems to others where the time frame is indeterminate
in size. In a simple system, with write through caches [21] (i.e. all stores are passed through to
memory, e.g. SPARC T1 [22] L1 caches), then the synchronization time frame can be as low as a
few cycles. This is the simplest system as synchronization of memory happens automatically and the
time frame is usually quite small. In a system with writeback caches (eg. Intel/AMD processors [3, 4]
L1 caches), memory is not coherent until data is evicted from the local writeback caches. In these
systems, special cases must be implemented (usually through software-level support) when atomic

operations are issued in order to make sure coherency is forced at these points [3, 41].

Atomic Operations

In addition to keeping memory consistent, as part of the a processor’'s ISA, there are often a set of
instructions to perform atomic operations on memory. These operations will force coherency between
the processors in the system as the memory view must be consistent for an operation to be atomic.
These instructions allow for the implementation of synchronization primitives such as mutexes and
semaphores [23]. Different processors implement this functionality in different ways. In some ar-
chitectures, atomic compare and exchange instructions are implemented that will perform a store to
memory if the existing value at that memory location matches a given value [3, 24, 25]. Most pro-
cessors also have a pair of load store instructions used to implement conditional atomic instructions
where the success of the operation is not guaranteed, but if it does go through then the operation was

guaranteed to be atomic [3, 24, 25, 6].
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2.3.2 Asynchronous Communication

Current SMP systems also require a form of asynchronous communication between them to be capable
of supporting a modern OS such as Linux [26]. This mechanism takes the form of Inter-Processor
Interrupts (IPIs) and are the means by which a processor can send an asynchronous notification to
any other another processor in the system. With IPIs operations can easily be coordinated between
processors such as updating their local TLB entries. Minimally, only a single IPI is needed and the
ability to broadcast to all other processors in the system. Software could then be used to control
message passing between processors. In practice, however, having a few IPls and the ability to
send an interrupt to any subset of processor in the system will reduce the complexity of the software

support.

Virtual Memory

Modern, fully-featured OSs require support for virtual memory; this implies support for a MMU in
hardware. The MMU is a per processor hardware block that handles virtual to physical memory
mappings. Thus, in a multiprocessor system there must be hardware or software synchronization
between these units to ensure that all mappings for processes running in the system are kept up to

date.

2.4 The Linux Kernel

This section focuses on details of the Linux kernel [26] that relate to architecture support and SMP

support.

2.4.1 Architecture Support

Inside the Linux Kernel, low level architecture support is encapsulated in the /arch directory. All
architecture specific code exists in this area, except for a few portions of x86 dependent code that are

likely legacy code from Linux’s origins on x86 based processors. It is here that support for functionality

10



Chapter 2. Background

such as atomic instructions, timekeeping and the management of the memory hierarchy is handled

as well as any other functionality that is dependent on the processor architecture.

2.4.2 SMP Support

There are a few areas, within the architecture dependent code, that require custom support for a

multicore system. These include, but are not limited to:

e Spinlocks (mutexes), and other atomic operations
e [Pls

* Low level memory management

e Interrupts

e Timekeeping and timers

e Boot-up and bring-up of secondary processors.

All of the listed components have high-level interfaces in the kernel and it is through the architecture
level that support is built for this functionality. These issues and how they are addressed will be

discussed in detail in Chapter 5.

2.5 Standard Methods for Workload Performance Analysis

Traditionally, hardware counters, software profiling and software simulation have been used to charac-
terize the behaviour of workloads on multicore systems. On existing systems, hardware performance
counters [3, 4] can be used, both independently or through software profiling to collect data on work-
loads at runtime. Hardware counters can be utilized without having a noticeable impact on application
performance and have been actively employed in online scheduling algorithms [1, 27, 28]. While
they provide a wide range of events that can be captured, their fixed nature and focus on microar-
chitecture dependent events limits their adoption as a standard tool across platforms. In addition,

typically only a few registers are provided for storing hardware counter events. This leads to the use
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of sampling [29], decreasing the accuracy of the results and/or incurring a high runtime overhead.
Finally, hardware counters are designed to focus on single events, limiting the scope of information
they can provide. Specifically, they can detect symptoms of problems (i.e. what happened), but they

cannot aid the user in determining the cause (i.e why something happened).

Software profilers, such as: oprofile [301, gprof [31], Intel VTune [32], and Sun Studio Performance
Analyzer [33], can also take advantage of existing hardware counters, along with code instrumenta-
tion, to analyze workload behaviour. Other work has considered using hardware counters to associate
events with data structures [29]. However, as software profiling tends to have a significant impact

on software performance, it is not typically used for on-line runtime profiling.

Software simulators cover a wide range of tools, from system simulators such as Simics [5], to more
microarchitecturally focused simulators such as SimpleScalar [34], as well as including binary in-
strumentation tools such as Pin [35]. Due to their software implementation, they are not constrained
in the amount of data they can collect and can provide a wealth of information on various components
in a system. However, increasingly detailed simulation of the interactions in the system comes at the
cost of performance, making some simulators extremely slow. In contrast, in the context of providing
a research platform for investigating hardware profiling, ABACUS provides a more scalable approach

and can be used to provide the same information as a system simulator, but with a 20x speedup [36].

12



e An Multicore Framework for Systems Research

Multicore systems are growing in complexity, and for reasons motivated by performance, power and
energy consumption [2], future systems will be tending towards asymmetric and heterogeneous plat-
forms. Today, smart phones are already a form of heterogeneous computing system with multiple
Central Processing Units (CPUs) and Digital Signal Processing (DSP) cores [37]. However, in these
systems, workloads are scheduled statically based on their known behaviours. With a greater variety
of applications and constantly changing platforms, this approach will not continue to be viable due
to number of combinations that would need to be analyzed. Without statically defined workloads,
due to the variability in the system, certain quality of service guarantees, like user interface perfor-
mance might not be met. This highlights the need for a research platform that can investigate the
interactions taking place in these systems so that, the information can be used to fully utilize these

platforms.

Figure 3.1 provides an example of what this type of system could look like with multiple processor
cores, asymmetric cores and potentially custom hardware accelerators. The system could be config-
ured with a variety of different memory hierarchy configurations including multiple L2 caches that
could be shared between different subsets of processors and an optional L3 cache. Omitted from
the diagram for clarity are the connections between ABACUS and the system as well as all interrupt

signals.

The final goal would be to create a system, such as the one illustrated by Figure 3.1, however,
even existing systems pose many challenges to the OS for scheduling due to the complex nature of
the interactions that take place for shared resources at runtime. This situation will only worsen as

systems scale in size and move towards asymmetric and heterogeneous implementations. Without
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Figure 3.1 A high-level overview of our proposed research framework

providing visibility into the system level interactions to the OS, efficiently utilizing these systems
under generic workloads will become an impossible task. At present, without a platform that can
model these systems and provide visibility into the interactions taking place inside the system, there
are significant challenges in even identifying the metrics necessary to characterize the interactions

taking place within the system.

In this work, our objective is to create an extendable framework for performing systems and architec-
tural research that can be readily extended, in the future, to support asymmetric and heterogeneous
configurations. The platform will allow for investigations into performance metrics that can be used
by the OS or user-level software to make decisions that will optimize for a desired performance tar-
get. The two main components of this work are the multicore framework with Linux support and the

hardware profiler for collecting runtime data on the interactions taking place within the system.

To be useful for systems research the platform should support a modern OS. In this work, we target
the Linux operating system due to its support for the MicroBlaze processor and due to its popularity

for systems level research and its open source nature. By selecting Linux as the operating system,
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we benefit from the familiarity many systems researchers already have with the OS. The MicroBlaze,
as a small and highly configurable processor, is an excellent choice for this work as its configurability
will allow us to easily create asymmetric systems (e.g. varying cache sizes, inclusion of a FPU, etc).
Furthermore, its small size allows us to include several processors on a single FPGA. One example
of an asymmetric system that could be created using the MicroBlaze, would be one in which some
of the processors in the system have a dedicated FPU while others do not. In this configuration, the
processors without the FPUs would be forced to execute their floating point instructions in software

or be rescheduled on another processor.

Without support for monitoring the interactions taking place within the system, this new platform
would be of little interest for systems research. Our second contribution is the design and integra-
tion of a hardware profiling unit that we can use to collect different self determined metrics that
can be used to characterize the behaviour of workloads at runtime and then be used to influence
the behaviour/operation of the system. The full system, illustrated in Figure 3.2, consists of more
than one MicroBlaze processor, our hardware profiling infrastructure, (ABACUS), and the additional
hardware infrastructure necessary for multicore support. The remainder of this thesis will describe

the implementation of this platform.
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Figure 3.2 Test System Configuration




e Hardware Support for MicroBlaze Based Multi-

core System

In a single-processor system, there are several attributes that simplify the design of the system. There
is typically only one master on the system bus, only one core accessing memory, and only one source
to handle interrupts and communication with peripherals in the system. Simply stated, very little
sharing of any resource takes place in a single-core system compared to a multicore system. It is due
to the sharing of different resources, and the complexity that incurs, that additional hardware support
is needed in a multicore system. Some hardware support is required such as providing a mechanism
for identifying the physical processor index in the system and support for atomic operations. Other
components, such as support for distributing interrupts across the cores, while not needed for correct
operation, provide beneficial properties that are worth the extra complexity they introduce into the

system.

The remainder of this chapter will cover the modifications necessary to convert the current MicroBlaze
based Linux platform into a multicore capable system. This includes providing a means to access the
processor’s physical index in software, support for atomic instructions, additional support for handling
exceptions/interrupts within the processor and concludes with a discussion of the changes to interrupt

and timer support.

4.1 Processor ldentification

In the physical system, each CPU has fixed connections to the various peripherals in the system. For

some peripherals, like the Timer and Interrupt Controller (TIC), the CPU number is used to select
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the correct offset for the per processor registers. In order to be able to support an arbitrary cumber of
CPUs in software (for cases such as CPU hotplugging), each processor must have a way of determining
its hardware CPU ID. As part of the MicroBlaze architecture, there exists a user configurable, read-
only, Processor Version Register that can be configured on a per processor basis. We use this register

to contain the CPU ID, which matches the processors physical connection number to the system bus.

4.2 Atomic Instructions

As part of the existing MicroBlaze ISA [6], there exists a conditional load/store pair of instructions
(LWX/SWX) that can be paired together to create atomic operations. The pair of instructions work as
follows. Upon execution of the LWX instruction, a reservation bit, internal to the processor, is set.
When the accompanying SWX instruction reaches the execute stage, the instruction will be aborted
if the reservation bit has been cleared. The reservation bit is cleared under two conditions. The first,
is through the execution of any SWX instruction, (note the address of the SWX instruction need not
match the proceeding LWX instruction). The second case is if any interrupt or exception has occurred

within the processor after setting the reservation bit [6].

In a multicore system, this support is not sufficient to guarantee that an operation is atomic, as an
internal reservation bit will not guarantee that another processor is not modifying the same memory
location at the same time. What is required is that a reservation is unique for a given address in the
system, or even more simply, unique in the system. In our system, we have selected the approach
based on a single reservation bit. A per-address based reservation system can be implemented at a
later stage along with the integration of the cache hierarchy into the system. In order to handle the
arbitration of the reservation between processors an external module (the lock arbiter), as shown in
Figure 3.2, has been created for this purpose. The following figure, Figure 4.1, illustrates a successful
conditional load store sequence and highlights the involvement of the reservation bit. When LWX
instructions enter the execute stage, a request is sent to the lock arbiter. If the lock is free, and no

other requests are present, the lock is granted to the processor that requested it. In the case of a
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Figure 4.1 Conditional Load/Store Pair Path Through Processor Pipeline

tie, a rotating priority among the processors is chosen. The lock is reserved for this processor and
no other processors will be granted a lock until the owner processor releases the lock either by the

completion of an SWX instruction, or through an internal exception/interrupt.

As the decision to proceed with the store must be made before the memory stage (the one in which the
store actually occurs) to ensure consistency between the processors, the reservation must be held until
the memory stage completes. Prior to this point, we do not know the order in which the processors
will complete their memory operations as the order is dependent on the arbitration performed by the
Processor Local Bus (PLB). As such, a processor, releasing its lock, could be delayed in the memory
stage long enough for another processor to have a conditional store go through memory. Without

holding the reservation through the memory stage, operations are not guaranteed to be atomic.

Implementing only a single reservation bit is not the most efficient implementation. Per-address
reservation bits would allow each processor to have a conditional load/store operation in progress as
long as the addresses do not collide. This functionality, however, is better addressed in a memory

arbiter and is left for future work.
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4.3 Special Purpose General Purpose Register

The MicroBlaze architecture contains 32 registers as part of its main register file [6]. In addition to
the general purpose registers, there exist a few special purpose registers such as the Machine Status
Register (MSR) as well as some registers for manipulating the MMU. In the existing Linux implemen-
tation, there are certain per CPU variables, such as the stack pointer and current task pointer, which
are always resident in the register file and need to be saved on any context switch. As the MicroBlaze
architecture does not have any free registers with which to save these variables, even temporarily,
the Linux kernel implementation works around this by storing these variables into temporary memory
locations, using an immediate offset address mode. For the multicore case this implementation is
not workable as there is no way to change the immediate address on a per processor basis. The
solution then, similar to the approach taken by the PowerPC405 [24], is to add a few (currently four)
General Purpose Special Purpose Register (GPSPR) registers, and accompanying support to the ISA
of the processor to allow for temporarily storing these register values. Currently, two GPSPR registers
are needed for the exception handling support in our multicore framework. We have also included
two additional registers to facilitate possible extensions that may be required in the future. However,

these two additional registers can also be trivially removed if they are deemed unnecessary.

As part of the MicroBlaze ISA, there exists a Move From Special Purpose Register (MFS)/Move To
Special Purpose Register (MTS) pair of instructions for copying a Special Purpose Register into a
General Purpose Register and vice versa. We have added support to this instruction pair to address
a new set of registers called GPSPRs that can be used by software for any purpose as they have
no dedicated use. They are, however, considered privileged registers and can only be accessed in

privileged mode if the MMU is active.

Figure 4.2 shows how the new registers are integrated into the MicroBlaze ISA. The MFS/MTS instruc-
tions use the immediate mode instruction format. The two most significant bits of the immediate

operand are used to select between the MFS/MTS pair and instructions to manipulate the MSR. When
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the MFS/MTS instructions are selected the 20th bit is used to select the GPSPRs registers and then

bits 30 and 31 are used to select the desired index.

Source / Destination Registers Immediate Operand
r ,
[0 1 2 3 4 5[]6 7 8 9 10 1112 13 14 15[16 17]18]19]20] 21 22] 23] 24] 25] 26 [ 27[28]29]30 31]
Opcode mfs/mts Select  GPSPR Select GPSPRx

Figure 4.2 MFS/MTS Instruction Format

As these new registers are not general purpose registers, they will not be automatically generated
by the compiler and therefore, only used if hand coded in assembly. The compiler platform for the
MicroBlaze is GCC and binutils [31] for the assembler. Xilinx provides the source for modifications
to binutils and, through the assembler, we added support for these instructions. In assembly, these

registers are accessed through the following markup:

mrs rD GPSPRx
mts GPSPRx rS

with the letter 'x’ replaced by the index of the desired GPSPR, rD for destination register and rS for
source register. Unfortunately, Petalinux [7] includes a modified version of binutils and thus, these
changes to the assembler are not compatible with the kernel build tools. For this case, we have hand

coded the machine code directly into the assembly where needed.

4.4 Interrupt support

In a single-processor system, interrupt support is relatively simple. While there may be many sources
of interrupts, all interrupts will be served by the same processor. In a multicore system, there are
more factors to consider. First, additional support is required to allow processors to send interrupts
to each other to provide for asynchronous communication. Secondly, for performance reasons, it can

be beneficial to distribute interrupts across available processors in order to reduce interrupt service
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latency. In this case, support should be provided to enable interrupts on a per processor basis as
interrupts should not be distributed until the processor is online and there may be some situations

where we would like to restrict servicing of an interrupt to a single processor.

The existing MicroBlaze system uses a Xilinx provided interrupt controller (LogiCORE IP XPS Inter-
rupt Controller (v2.01a) [38]) to provide support for multiple edge/level sensitive interrupts as the
MicroBlaze only accepts a single interrupt request input. While this setup works well for a single-core
system, the lack of support for multiple interrupt outputs decreases the usefulness of this interrupt
controller for a multicore system. In addition, no mechanism is present to allow for the support of

Inter-Processor Interrupts (IPIs).

As with the existing interrupt controller implementation, we are restricting the additional functionality
to handle interrupts to the interrupt controller to reduce the complexity of the multicore supported

MicroBlaze processor. For our base platform, we satisfy the following list of requirements:

e Support for IPls
e Support external edge/level interrupts
e Per processor, per interrupt enables

e [nterrupt load balancing

4.5 Timer support

In the Linux kernel, support at the hardware level is required for its timekeeping. However, what this
support entails is highly variable, and varies greatly among platforms and processor models. Accu-
racy, counter width and functionality all vary across different platforms, and thus, kernel support for
timekeeping is very flexible. With the addition of support for dynamic ticks in the 2.6.21 kernel [39],
a standard interface was supplied for timekeeping support in the Linux kernel. Through dynamic
ticks, the need for a period timer interval was removed, thus allowing processor cores to stay in idle,

and thus low power modes, for longer periods of time. Support for this layer can be provided by a
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single monotonically increasing counter, (for time keeping purposes), and a decrementer capable of
triggering interrupts (for scheduling purposes). As the free-running counter is required to not roll
over, it would ideally be a 64-bit counter, as otherwise additional software support is required to
extend the counter to 64-bits in software. A single decrementer with interrupt support can be used
for scheduling purposes in a multicore system if events are broadcast to all processors. However, this
would prevent processors in idle from going to low power states for as long as they could otherwise

and an implementation with per processor decrementer support has lower overhead.

In the PetaLinux system, timer support comes from the Xilinx LogiCORE IP XPS Timer/Counter [40].
Through this peripheral, and its two 32-bit timers, support is provided for the dynamic tick infrastruc-
ture in the Linux kernel. One timer in the system is configured to be free running and is used by the
scheduler for timekeeping. The second timer is configured as a decrementer and works in periodic
(during boot-up) or one-shot mode (once dynamic ticks are enabled towards the end of the boot-up
process). When the decrementer underflows, an interrupt is triggered; in periodic mode, the timer

value is reloaded and will begin counting again when the interrupt is cleared.

While this setup works well for a single-processor system, it does not scale well to multiple cores.
First, the timer core is limited to two timers and secondly, those two timers share a single interrupt.
To support a configuration with per processor decrementers and a single shared free running counter,
the timer unit would either have to be replicated per core (only using a single timer) to provide a
decrementer interrupt per processor or would have to implement a sharing mechanism between pairs
of processors, which would reduce the efficiency of the system. Regardless of the implementation
choice, each timer peripheral would increase hardware resource consumption as each would have
the overhead of as slave connection to the bus and would consume an interrupt connection to the
interrupt controller even though each interrupt would be enabled on only a single processor. Finally,
as the free-running counter is not allowed to overflow in the Linux kernel, extra software must be

implemented to use the 32-bit hardware counter to increment a 64-bit software counter.
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As the existing timer support will not scale well for a multicore system, this provides the opportunity
to create hardware support specifically for the Linux kernel. As such, the timer support must meet

the following previously discussed criteria:

e 64 bit free-running counter

e Per processor 32 bit one-shot/periodic decrementer with per processor interrupt support

4.6 Timer and Interrupt Controller

To address the functionality required for both interrupts and timers in the system, we integrated the
two components into a single peripheral in the system to produce a Timer and Interrupt Controller
(TIC), which is roughly based on the implementations of the two Xilinx cores. This approach reduces
system complexity and allows for the easy integration of per processor timers into the interrupt infras-
tructure. In the immediate future, we are only considering systems of 2 to 8 cores, as larger numbers
of cores will likely initiate the consideration of a more distributed architecture due to issues such as

bus contention. The target feature list of the TIC is as follows:

e Support for 2-8 CPUs

e Configurable number of IPIs

¢ Global 64-bit free running counter

e Per processor 32-bit one-shot/periodic decrementer with per processor interrupt support
e Per processor enables for interrupts

e [nterrupt load balancing

e |ockless operation of interrupts

All but the last item have been previously covered in the Interrupt and Timer Support sections (4.4,
4.5). The last item, lockless operation, refers to software access of the peripheral. As each processor
will be accessing the peripheral to read their interrupts and set their decrementers, it is desirable

to have the the device operate in such a way that software locks are not needed to ensure correct
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operation.

4.6.1 Design Details

Figure 4.3 provides a high-level overview of the TIC. All internal registers are 32 bits in width. The

design supports one or more IPls, and per-CPU decrementers. The TIC interface is separated into
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Figure 4.3 High-level Timer and Interrupt Controller Diagram

two components, a set of global registers and a set of of per processor registers.

User Visible Global Registers

The following list of registers are contained within the Global Registers block in Figure 4.3:

e the 64-bit free-running counter

the IPI register (up to 32-bits)

the Set Interrupt Enable register (up to 32-bits)

the Clear Interrupt Enable register (up to 32-bits)

the Master Enable register (up to 32-bits)

The IPI register takes the IPI number in the upper bits, a mask of processors to send the interrupt to

in the lower bits and can be written to once per clock cycle. If a specific IPI is already pending for a
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given processor and that IPI is written to again, only a single interrupt will be issued. If multiple IPIs
of the same type need to be issued to a processor and they cannot be lost, then software must ensure
that a previous IPI has been acknowledged before issuing another. This approach is handled in the
generic IPl framework in the Linux kernel and is the approach taken in other interrupt controllers

such as the MPIC [41] used in older PowerPC platforms.

For enabling/disabling interrupts, a similar approach to the Xilinx interrupt core(LogiCORE IP XPS
Timer/Counter (v1.02a) [38]) is taken. There is one global Interrupt Enable Register (IER), however
this register is not directly readable/writable and is instead only operated on by the Set Interrupt
Enable (SIE) and Clear Interrupt Enable (CIE). These two registers allow for setting/clearing interrupt
enables to be performed without having to perform a read-modify-write operation. Each bit in the
IER represents a single interrupt with the highest priority interrupt being the IPIs, followed by the
timer interrupt, followed by all external interrupts. To set or clear a bit in the master interrupt enable
register, the appropriate bit must be set to one in the SIE/CIE register. Finally, the master enable

register is simply a single bit that enables interrupt output generation.

User Visible Per-Processor Registers

In addition to the global registers there is a set of per-processor registers contained within the CPU
1 to N Registers blocks in Figure 4.3 where N is the number of processors in the system. These

registers work in conjunction with the global registers to control the operation of the TIC:

e the 32-bit decrementer configuration register

the 32-bit decrementer load register

the Per Processor Set Interrupt Enable (SIE) register (up to 32-bits)

the Per Processor Clear Interrupt Enable (CIE) register (up to 32-bits)

the Per Processor Master Enable register (1-bit)

the Interrupt Vector Register (32-bits)
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Each processor has a 32-bit decrementer that can be configured for periodic or one-shot modes and
can be set to generate an interrupt on underflow. The starting value for the decrementer can be set
by writing the value to the load register. In the case of the one-shot mode, it is of critical importance
that no interrupts are lost. If an interrupt is lost, then a processor will never receive its wake-up
from idle and the processor will remain in idle state forever. As such, in one-shot mode, if a previous
timer interrupt is still being serviced by the processor, the new interrupt is queued until which time
the previous local timer interrupt has been served. Just like the global registers, each processor
has an IER and a pair of SIE/CIE registers to manipulate it. For an interrupt to be enabled on a
processor, the interrupt must be enabled both in the global IER as well as the local processor IER.
Through this mechanism interrupts can be enabled on a per processor basis. Finally, each processor
has an Interrupt Vector Register, which, contains the current interrupt number when the processor is

servicing an interrupt; otherwise, the Interrupt Vector Register contains all ones.

Interrupt Selection

On each cycle only a single interrupt is assigned to any given processor. Selection logic determines

the highest priority interrupt request that meets the following criteria:

e the global Master Interrupt Enable bit for the multicore system must be set and

¢ the interrupt must be enabled in the global IER.

Then for the interrupt to be serviceable on a given processor:

e the specific processor’s Interrupt Enable bit must be set,
¢ the interrupt must be enabled in that processor’s IER and

e the processor must not already be busy servicing an interrupt.

If this criteria has been met, and two or more processors are available to service this interrupt, a

round-robin arbitration scheme is used to select the processor.
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Free-running Counter

The free-running counter is 64-bits in width and counts up from zero after reset. As the system bus
and the MicroBlaze processor are 32-bit devices, two reads are required to read the 64-bit value. To
ensure that the upper 32 bits do not change while reading the counter the value is snapshotted on a
dummy write operation to the base address of the TIC. In addition, within the Linux kernel, software
access to the counter is protected by locks to ensure that the read operation is atomic; otherwise,
one processor could begin a read and be interrupted after reading only the first 32-bits. Therefore, a
non-atomic read of the 64-bit value could cause time to be perceived to flow backwards by the system

with unfortunate consequences.
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This chapter focuses on the changes made to the 2.6.37 version of the Linux kernel to add SMP
support to the MicroBlaze platform. In adding SMP support to a platform, there are some aspects
that are fairly standard such as the support for IPIs, and atomic primitives. Other details, such as the
infrastructure needed to support secondary processors, are not well documented. As such, we exam-
ined the implementations of other architectures to determine the necessary functionality required.
Adding SMP support to the MicroBlaze platform required an iterative process to discover all the de-
tails that are needed to support an SMP architecture in the Linux kernel. As this necessitated many
changes across the architecture support for the MicroBlaze, this chapter focuses on the key com-
ponents including: interrupt and timer support, exception handling, memory management support,

atomic primitives and the boot-up process.

5.1 Interrupt and Timer support

With the integration of interrupt and timer support into a single hardware block, software support for

these two components has also been merged together.

5.1.1 Interrupts

Modifying the software layer to support the new interrupt controller resulted in several cleanups to
the existing code base. As part of the generic interrupt infrastructure within the kernel, support is
provided for different types of interrupts including level/edge and per cpu interrupts. The different
handlers have different behaviours with respect to how the disable/enable and acknowledge of in-

terrupts are handled/supported in order to avoid spurious detection/generation of interrupts during
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servicing. However, the interrupt controller for the system, including both the original implemen-
tation and the new TIC implementation, hide these details from the processor by supplying only a
single level sensitive interrupt to the MicroBlaze. Therefore, all that is required is to call the handler
for the active interrupt and then acknowledge the interrupt in the interrupt controller. Implementing
interrupt support this way removes the overhead of some locks in the interrupt handling path, some

unnecessary enabling/disabling of interrupts, and cleans up the code base.

In the present software implementation, per-CPU interrupt reservations have not been implemented.
When an interrupt is enabled/disabled it is done so on all currently online processors. Per-CPU

enabling and disabling of interrupts will be added at future point when such support is required.

Inter-Processor Interrupts and Timer interrupts

During the SMP dependent portion of the boot-up phase, the IPl handlers are registered with the TIC
and IPIs enabled on the boot CPU. On this platform, there are three types of |Pls: reschedule, call
function single, and call function many. The reschedule serves as a “no-op,” as a scheduling call
is part of the return path of the interrupt. Call function single is used to call a function on a single
CPU and is simply a wrapper for the generic IP| Call function single. Call function many is used
to call the function on two or more CPUs and similarly is simply a wrapper for the kernel's generic
implementation. In a platform that supports sending IPls to any subset of processors, such as our
own platform, the overhead of sending the IPls can be reduced by using Call function many instead

of multiple sequential calls to Call function single.

The timer interrupt handler is also initialized by the boot CPU when the time infrastructure is initial-
ized. This interrupt is also marked as a per CPU interrupt and the handler uses the CPU id to access

the correct timer within the TIC.
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5.1.2 Timers

Two significant changes have been made to the timer base. First, the free running counter now has
64-bits instead of 32-bits. Secondly, additional support is required to convert the single decrementer

implementation into a per-CPU setup.

The free-running counter has been increased to 64-bits in order to avoid extending the value in soft-
ware. As mentioned in the previous chapter, this counter is required to be a monotonically increasing
counter that never overflows. Therefore, if only a 32-bit counter is available, the counter must be
extended to 64-bits in software. The original kernel included partial support for extending the 32-bit
counter to 64-bits in software, however, it only worked for certain system clock frequencies, which
was discovered during testing. Converting this counter to 64-bits removed this issue. During normal
system operation, the free-running counter can be read by multiple processors. To ensure that the
two 32-bit reads of the counter are performed atomically, reading the counter is protected by a mutex

and is accessed with local interrupts disabled.

Expanding the decrementers to a per CPU setup has been a relatively straightforward process. The
counter structure has been converted into a perCPU variable and on initialization of the secondary
processors, the configuration of the boot CPU’s counter is copied and then the per CPU interrupt is
enabled. The global interrupt handler for the decrementers uses the CPU id to index the correct data

structure for each CPU.

5.2 Exception Handling

Exception handling support, as well as context switching and traps for the MicroBlaze processor,
are implemented in assembly and contained within entry.S and hw_exception_handler.S.
As discussed in the previous chapter, the MicroBlaze design had no scratch registers as part of its
design and therefore, while servicing interrupts or exceptions, some registers had to be saved to fixed

locations in memory in order to free up registers. In an SMP setup, this is not a workable solution
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and thus, the GPSPRs have been added to the system. In every instance where the fixed memory

locations had been used, the register values are instead saved/restored from the GPSPRs.

For some hardware exceptions, up to 7 temporary registers are required and thus a single scratch
space was implemented in memory for this storage. To add SMP support, a per-cpu offset could be
added within this address space, however, a simpler modification is possible. As exception handling
is performed with the MMU disabled, it is possible to use the Block-RAM (BRAM) that is local to

each processor as temporary storage for these registers.

5.3 Memory Management

The MicroBlaze MMU is based off of the PowerPC 405 [24] design and is fully software managed.
This requires software to be responsible for adding and removing entries in the TLB. The MMU itself
has an 8-bit field for the Process ID (PID), which, limits its support to a maximum of 256 contexts
in hardware. Therefore, multiple processes in software may be mapped to the same hardware PID. If
any two software processes share a hardware PID, then any TLB entries that are present in the MMU
for one of the processes those entries must be invalidated in the MMU when the other is selected
to run. An SMP system complicates this a bit more as MMU contexts can now be shared between
processors. The new memory management support for the MicroBlaze is heavily based off of the
support provided for the PowerPC 4xx/8xx series processors [24], which provide SMP support for fully

software managed MMUs.

In an SMP system, we have to ensure that whenever multiple processors share a context, it only
gets released when all processors have marked it as inactive. We also have to ensure that when a
new software context is created that reuses a hardware context, the old entries are flushed from all
processors that have them in their MMUs. Unfortunately, the MicroBlaze does not have a mechanism
to flush entries based on the PID; so in this case, the entire MMU must be invalidated. The MicroBlaze

does, however, support flushing single pages; so when calls are made in the OS to flush a page, the
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whole MMU is not invalidated. In order to synchronize MMU state changes between the processors,
an Pl is used to notify all other processors who share a context whenever a PID or a single page must

be invalidated.

5.4 Atomic operations and Preemption

Inside the Linux kernel there are many operations that must be performed atomically. In a single-
processor system with kernel preemption disabled, the implementation of atomic operations is quite
simple. Disabling interrupts over the set of operations that are required to be performed atomically
is sufficient. However, this is not sufficient when kernel preemption is enabled as in some locations
interrupts cannot be disabled. Similarly, this is not sufficient in a multicore system as multiple cores
could be within the same critical section, or even in a single-core system with kernel preemption
enabled as kernel preemption forbids the disabling of interrupts under certain circumstances. There-
fore, in order to support atomic operations in an SMP system, the infrastructure for atomic operations

must be built around the conditional load/store instructions that are a part of the processors ISA.

Inside the Linux kernel, one of the basic primitives for performing mutual exclusion is the spinlock, a
type of lock that employs busy waiting while attempting to acquire the lock. In regards to adding SMP
support for atomic primitives, it is equivalent to supporting kernel-preemption on a Uni-Processor (UP)
system. In the existing Linux kernel, preemption is not supported for the MicroBlaze and no custom
implementation for spinlocks is provided. As such, the generic spinlock implementation is used,
which creates atomic operations by disabling interrupts on the processor around the operations that
need to be atomic. In addition, the original MicroBlaze Linux support did not use the LWX/SWX pair
of instructions anywhere other than in the user space support for mutexes (futex.h). Unfortunately,
their support of a compare/exchange operation was implemented incorrectly, as it would only perform

the memory swap if the existing memory value did not match.

Acquiring a spinlock can be performed by two different functions. In the first (trylock), only a single
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attempt is made to obtain the lock and the function returns whether it was successful or not. The
other function (spinlock) will always obtain the lock and spins until it can obtain the lock. Figure 5.1
shows the implementation of the trylock version of the spinlock. The blocking lock version is built
from the trylock and simply spins on the lock value until the value of the lock is zero, in which case
it calls the trylock version again, and repeats until it gains the lock. This implementation mirrors the
PowerPC implementation of spinlocks but includes differences in behaviour due to how the atomic
load store pairs are implemented in our system. If the blocking lock version is not built from the
trylock, it would be constantly performing a LWX/SWX pair of instructions and could potentially starve
a processor trying to release the lock from obtaining the reservation. This is also why stores must
always be paired with loads (address matching not required) to ensure that the reservation is released

in a timely manner.

static inline int arch_spin_trylock(arch_spinlock_t *lock)

{
unsigned long prev, tmp, dummy;
__asm__ __volatile__ (
"1: lwx %0, %2, r0;\n" /¥ load conditional address (&lock->lock) to (prev) */
" bnei %0, 2f;\n" /* not zero? clear reservation bit and abort */
® addi %1, r0, 1;\n" /¥ set lock to one */
" SWX %1, %2, r0;\n" /* attempt store */
" addic %1, r0, 0;\n" /* checking msr carry flag */
@ bnei %1, 1b;\n" /* lock available, but store failed. Try again */
" bri 3f;\n" /% done */
"2: swx %0, %3, r0;\n" /* clear reservation */
wg.n
"=gr" (prev), "=&r" (tmp) /* Outputs */
"t (&lock->lock), "r" (&dummy) /* Inputs */
“CC" . llmemory“
)8
/* prev should be zero if lock is available and tmp should be zero if store
succeeded */
return (prev == 0 && tmp == 0);
}

Figure 5.1 Spinlock arch_spin_trylock Implementation

In addition to spinlocks, the conditional load/store pair of instructions are used to build basic
atomic primitives such as add/subtract, test/set and compare/exchange functionality (atomic.h,

system.h). These primitives are used directly in some places in the kernel and also as building
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blocks for other mutex and semaphore implementations within the Linux kernel. The last significant
usage of the conditional load/store instructions is within bitops.h, which contains wrappers to cre-
ate the atomic bit operations that are used throughout the kernel when bit-masks need to be modified

atomically.

In the original MicroBlaze system, spinlocks and atomic operations used the generic implementations
with no architecture-specific code. In the generic implementations, all operations are made atomic by
saving and restoring the interrupt enable flag of the processor over the operation which is sufficient
as long as kernel preemption is not desired. The changes introduced here are applicable to the
unmodified MicroBlaze as well, and would enable that system to support Kernel preemption, which

helps to reduce latency in the system.

5.5 Boot Process and SMP Support

The boot process for Linux consists of a standard series of steps with many hooks into architec-
ture dependent code for the early initialization process. The entry point for the MicroBlaze is
in head.S, which first loads the initial kernel pages into the MMU. An initialization function,
early_machine_init that resides in setup.c, is then called to: initialize a few system vari-
ables, clear the . bss section (statically allocated variables), initialize locks, initialize the early printk
console, and finally, initialize the hardware exception vector table. The hardware exception table for
the MicroBlaze, which contains the jump vectors for all exception handling, is required to exist in
the processor’s local BRAM starting at physical address zero. Finally, the MMU initialization is han-
dled in a kernel call before the main entry point in the kernel, start_kernel, is called from
init\main.c. From this point onward, the boot-up process architecture-dependent code is called

through the standard Linux boot-up process.

The first hook back into the MicroBlaze architecture dependent code is for setup_arch, which

parses the device tree (that stores information on the full configuration of the system), and initializes
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the caches, if present. It is at this point that the secondary processors are marked as both present
and possible in the main CPU masks for the system. From this point, boot-up continues as normal
through to kernel _init, where the secondary processors are finally brought up at the end of
the boot process. First idle processes are created for each of the secondary CPUs present in the
system, then the boot CPU brings up the processors one at a time. The number of processors is
currently selected at compile time through the kernel config file, which supports an arbitrary number

of processors.

5.5.1 Secondary Processor Start-up

To boot-up a secondary processor, some mechanism is required to notify the processor to begin boot-
ing. For our system, the IPl mechanism has been selected to handle this. Using IPls has a direct
advantage over another possible approach, spinning on a memory location, as the secondary proces-
sors have no impact on the system until brought online. For a processor to be able to receive an
IPI, however, it must have the particular interrupt enabled in the interrupt controller; as such, the
secondary processors run a simple bootloader (located in their local BRAM) that enables a single IPI
and then spins waiting to receive an interrupt. When the interrupt is received, execution jumps to
the base address of the kernel where head. S is located. In head.S, the processor is identified as a
secondary processor by checking the processor ID register; if it is non-zero (i.e. secondary processor),
then some initialization steps, such as copying the kernel command line arguments, are skipped.
From here, the preliminary MMU initialization is handled; initialization of the exception table, the
stack, and the current task pointer are saved to the processor’s GPSPRs. Finally, execution jumps to

the custom start_secondary function in the kernel with the MMU running.

start_secondary

The number of operations performed to bring-up a secondary processor after the initialization per-
formed in head.S is small and is included in its entirety in Figure 5.2. First, the processor is added

to the kernel MMU context, and its CPU info and caches are initialized (if present). Next, the CPU is
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set online, the global mask of online CPUs is updated, and finally, IPls, the timer and interrupts are

enabled before calling into the idle function.

5.5.2 Secondary Processor Bring-up

Secondary processors are brought up by sending them an IPI. The boot CPU then waits for the sec-
ondary processor to set a flag (cpu_callin_map [cpul) to know that it is alive. If this flag is not
set within a given period of time, the secondary processor is assumed to have failed to start up and
execution continues. If the flag has been set, then the boot CPU waits for the secondary processor
to mark itself as online before proceeding. This flag is therefore used to prevent the system from

becoming deadlocked waiting for a processor that fails to come online.
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/* Activate a secondary processor. */

int __devinit start_secondary(void)

{
unsigned int cpu = smp_processor_id();
int i;

atomic_inc (&init_mm.mm_count) ;
current->active_mm = &init_mm;
cpumask_set_cpu(cpu, mm_cpumask (&init_mm));
local_flush_tlb_mm(&init_mm) ;

setup_cpuinfo(); // Reads Processor Version Registers
microblaze_cache_init(); //Initializes caches, if present

preempt_disable();
cpu_callin_map[cpul = 1;

ipi_call_lock();

/* hook into kernel arch-independent code to call any functions registered
to be called when a new CPU is brought online */

notify_cpu_starting(cpu);

set_cpu_online(cpu, true);

for_each_online_cpu(i) {
cpumask_set_cpu(cpu, cpu_core_mask(i));
cpumask_set_cpu(i, cpu_core_mask(cpu));

}

enable_ipis(cpu);

microblaze_setup_local_timer();

ipi_call_unlock();

local_irq_enable();

cpu_idle();
return O;

Figure 5.2 kernel Initialization Code for Secondary Processors
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In this chapter, we present our hardware profiling unit, a hArdware Based Accelerator for Characteri-
zation of User Software (ABACUS) [36], our second major contribution and the remaining component

of our proposed systems research framework.

6.1 Overview

In order for this platform to be useful for systems research, we need a mechanism to snoop and
collect data within the system during runtime and then provide that information to the OS. ABACUS,
our hardware block designed for this purpose, is a collection of profiling units that aggregates and

provides information, relevant for workload analysis, to the OS.
During the design phase of ABACUS, we set the following criteria for its implementation:

e Exist externally from the processor core.
e Be readily portable to different architectures.
® Provide a collection of microarchitecture independent metrics, and

e Easily facilitate the inclusion of new profiling units.

ABACUS is kept external from the processor core by placing it on the system bus and snooping internal
signals to create its metrics. By separating ABACUS from the processor core, the design is made more
readily portable and lessens the impact on the designers of the processor by removing it from the
complex demands of floor planning a processor. Unlike existing performance counters that focus on
architecture dependent metrics, one of the design goals of ABACUS is to provide microarchitecture

independent metrics; thus, the type of information it collects can be ported to a variety of systems.
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In order to make development of new units in ABACUS a straightforward process, ABACUS has been
designed as a loose connection of profiling units encapsulated in an infrastructure that provides

memory access to the collected data, configuration space and coordination of profiling operation.

6.1.1 Architectural Overview

ABACUS consists of three main layers, as shown in Figure 6.1, the External Interface, the Control
Logic and the Profiling Units. The External Interface is the wrapper that abstracts the majority of
the system dependent details and the layer that must be replaced on porting to a new architecture.
The next layer, the Control Logic contains the infrastructure to coordinate the conditions under which
profiling takes place and defines the interface to the system. The final layer, the Profiling Units, are

a collection of memory mapped units that form the core functionality of ABACUS.
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Figure 6.1 High-level ABACUS Overview
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6.2 Controller

The controller design within ABACUS is a simple state machine as illustrated in Figure 6.2. Some
transitions between states occur only by request of the user (solid lines), while others can be set to be
triggered automatically (dotted lines) under certain conditions. For example, ABACUS can be setup
to to initiate profiling on the execution of a particular instruction, such as a specific no-op, or start
once a specific address has been reached. Similarly, profiling can be halted manually, after a certain
number of cycles or instructions, or on a specific instruction or on reaching a specific address. In
addition, through the profile control block, operation can be limited to profile only certain address
ranges or traces of of instructions. Once profiling has been completed, ABACUS can be configured to
automatically initiate a Direct Memory Access (DMA) to memory of some specific range of addresses

within ABACUS. Finally, profiling can be restricted to just user space, kernel space or both.
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Figure 6.2 Controller State Machine: Solid lines indicate user initiated transitions, dotted line indi-
cate automatic transitions
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Within the controller, some basic information is also accounted for, such as the number of cycles
spent profiling, the number of instructions, the time spent in DMA (in cycles) and the number of

DMA transfers.
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6.3 Profiling Units

At the core of ABACUS is a collection of independent profiling units. Each unit is connected to
ABACUS by registering an address range for memory mapping the data it collects and, optionally, a
range for configuration options. Specific signals to create each unit’s metrics are passed on from the
External Interface and are synchronized with each other to ensure that events from different parts
of the system coincide. The first three units: the Code Profiling Unit, Instruction Mix Unit and the
Reuse Distance Unit have been previously introduced in [36] and, since they are not used in this
work, they are only briefly described. The Latency Unit is, however, new to this work and used in our

analysis of the system.

6.3.1 Code Profiling Unit

The code profiling unit is based on the idea of SnoopP [17] with some further extensions. The
module described SnoopP allowed for counting the number of cycles for which the Program Counter
(PC) is within a specific address range. Through this approach, non-intrusive and cycle accurate code
profiling can be preformed, not unlike software profilers such as gprof [31]. In the Code Profiling Unit,
this functionality has been expanded to include offering trace profiling as well. In trace profiling, cycle
counting begins when a certain address for the PC is reached and does not stop until an end address
is reached, which may be the same as the start address. This allows for the profiling of paths of code
that branch through many functions, allowing a function, and all the code it calls, to profiled with a

single counter. The two types of counters can be combined together in any number within this unit.

6.3.2 Instruction Mix Unit

The Instruction Mix Unit is a simple unit that takes the opcode from the instruction and divides
it into a number of configurable categories. This unit is one of the few units that is architecture
dependent and needs to be customized for a specific architecture. The proposed use behind this unit

would be in an asymmetric system where different processors had different performance profiles for
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certain classes of instructions, or even in systems where processors share a floating point unit. By
categorizing the instruction mix the thread can then be scheduled to reduce resource contention or

be matched to the most suitable processor in the system.

6.3.3 Reuse Distance Unit

The Reuse Distance Unit has been designed to provide a measure of the locality of memory accesses
by creating a reuse profile. The reuse profile has uses in understanding cache contention between
multiple threads [42], and although it depends upon the existence of an Least Recently Used (LRU)

stack, the reuse profile can be estimated in hardware with a low area overhead [43].

6.3.4 Latency Unit

The Latency Unit is an example of a profiling unit that implements functionality not typically available
in system simulators. With the Latency Unit, we can measure the variable latency of memory requests
and classify the latency into its constituent sources, including bus contention and DRAM latency. As
storing the unique latency for every event is not feasible, the latency is binned into a histogram
with a configurable number and width of bins for each constituent component. The latency unit has
potential usages in monitoring bus contention, interrupt service time, or any other operation in the

system that has variable latency.

Bus Latency Unit

For the investigations performed on the system presented in this work the latency unit has been
modified to support multiple sources of latency. As only one read operation can complete on the PLB
bus in a given cycle, with a pipelined design, we can amalgamate the events from each processor

into a single histogram.
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6.4 Integration into the MicroBlaze Platform

In our previous porting of ABACUS to the OpenSPARC [14] platform, we moved the external interface
of ABACUS over to the PLB, which is also used by the MicroBlaze based system. The other architec-
tural differences, such as the PC width are handled by existing generic parameters within ABACUS.
To demonstrate integration into the MicroBlaze platform, we specifically looked at the behaviour of

locks and bus contention using ABACUS.

6.5 Device Drivers

The final aspect of integrating a hardware profiler into the system is to include a mechanism that
the OS can use to communicate with the device. This interface is supplied through kernel device
drivers. As ABACUS occupies a given address range on the system bus, it can be memory mapped
by the OS, allowing registers to be read or written through pointer referencing/de-referencing. The
ABACUS device drivers allow access through ioct1l functions for reading/writing single registers as
well as via mmap to access the full address space of ABACUS. For DMA support, the drivers enable the
allocation of a page of kernel memory into which ABACUS can copy its collected data. No higher level
abstraction is provided at present as the details of ABACUS's interface are still evolving. However,in
the long term, a higher-level interface can be provided to make interaction with ABACUS through

software an easier process.
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This chapter focuses on testing our newly created platform, and demonstrating through these tests,
that it is able to support performing systems research. First, the system is put through two stress
tests to measure the stability of our hardware and software support for SMP. We then perform some
additional tests with ABACUS to examine the impact on bus/memory read latency when additional
cores are added to the system. This chapter concludes with an examination of the scalability of the

Timer and Interrupt Controller (TIC) and the changes made to the Linux code base.

7.1 Test Platform

Figure 7.1 illustrates our test system; it is the same as shown in Figure 3.2, but is included here for
completeness. A set hardware configuration, consisting of four cores, is used for all tests, independent
of how many processors are actually booted. This can be done without changing the behaviour of the
system as the TIC and PLB both use round-robin arbiters that have the same behaviour regardless of

the number of active cores. This simplifies testing as only one configuration has to be created.

Our test platform has been implemented on a Virtex 5 LX110t FPGA on an ML505 development
board. The system operates at 100MHz, with the exception of the memory controller, which operates
at 200MHz and interfaces with the DDR2 memory on the board. Communication between the host
workstation and the FPGA system is performed through the serial console, with the Linux kernel

configured to use this as its default console on boot up.
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Figure 7.1 Test System Configuration

Memory Access Behaviour

To provide additional context as to how memory operations are performed in this system, all memory
accesses performed are 32-bits in size. In the case of a write, as this system has a 64-bit DDR2
interface, a 32-bit write is transformed into a read-modify-write operation by the memory controller.
In addition, if a DRAM refresh takes place prior to a memory operation that particular read/write will
have additional latency. Finally, if multiple writes are issued without any interceding reads, then the

memory controller may buffer the writes.

7.1.1 MicroBlaze Configuration

Each MicroBlaze in the system has the same configuration, including a basic FPU. The instruction
side interface has a direct connection to the memory controller in order to lessen contention for the
main system bus; however, the data side is connected to the PLB. The data side connection to the bus
is required, as the memory controller does not support transaction ordering between different ports
and that would break memory coherency for our system. |n addition, each MicroBlaze has a local

8KB BRAM, which contains the bootloader code and stores the exception table for the processor.

45



Chapter 7. Platform Investigations

7.1.2 ABACUS Configuration

ABACUS has been configured with only the units required for the experiments presented in this

chapter, specifically the latency unit, which is configured to measure bus read latency.

Resource usage for ABACUS is highly dependent on the selected configuration (i.e. what profiling
units are included). The configuration used for the experiments presented in this chapter includes
only the Bus Latency Unit and the Misc Unit and requires 1333 Flip-Flops (FFs) and 1700 Look-up
Tables (LUTs) and has a maximum operating of 162MHz, which is well above the 100MHz system

frequency.

7.2 Stress Tests

In order to provide a measure of the stability/reliability of the system, we performed two basic tests.
In the first, we repeatedly boot the system to see how reliable the boot-up processes is. In the second
test, we stress the system by launching many compute intensive benchmarks and measure the system
uptime. As there are a greater number of possible interactions in a system with more processor cores,

both of these tests were performed on the four core system only.

7.2.1 Boot-up

For the boot-up test, a simple script was written to automate the programming of the FPGA. After
programming the FPGA, the script waits a predetermined length of time to allow the boot-up to
complete, then it attempts to login to the system. A successful boot-up is considered one in which
the login prompt is reached, login is successful, and the running of a simple command, (e.g. 1s), is
successful. This test procedure was repeated 103 times during which one failure occurred (number
99). The one boot-up that failed did so between displaying the PetaLinux banner and the login prompt

as shown in Figure 7.2 (To see an example complete boot log please see Appendix A).

From the message printed during the bootup process, the most likely scenario is that, CPU one did
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Welcome to

on PolyBlaze

PolyBlaze login: INFO: rcu_sched_state detected stall on CPU 1
(t=15000 jiffies)

INFO: rcu_sched_state detected stalls on CPUs/tasks: { 1}
(detected by 2, t=15002 jiffies)

Figure 7.2 Log Output of the Single Bootup Failure

not wake-up from the brief period in which the whole system goes to idle before the login prompt is
displayed. During the original system development process, a hardware bug in the TIC caused this
type of error to occur. However, since that particular bug has been fixed, this suggests the source of
the error may be in software, but without more details, it is not possible to know what caused this
failure. Despite this one failure, the system has been booted successfully over a hundred times and

since this one failure, no other faults have occurred.

7.2.2 Up-time

In order to gain a measure of the stability of the system, a compute intensive benchmark, (Dhrys-
tone [44]), was selected to place the system under heavy load. Due to the system architecture not
having data caches, this causes the behaviour to be closer to a memory intensive benchmark. More
instances of the benchmark than processors are created in order to increase the amount of context
switching taking place within the system. After approximately fourteen days, as shown in Figure 7.3,
the system was still responsive and all processors were still active. Included, in Figure 7.4, is the
output of proc/interrupts, which indicates the number of interrupts each processor has received

while the system has been running. The system up-time test, with the Dhrystone benchmark, provides
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a basic measure of the stability of the system. More intensive benchmarks, such as parallel workloads
with a significant portion of data sharing can be tested on the system in the future.

~ # cat /proc/uptime
1250621.86 1415635.52

Figure 7.3 Output of /proc/uptime after fourteen days of uptime
~ # cat /proc/uptime

1250621.86 1415635.52
~ # cat /proc/interrupts

CPUO CPU1 CPU2 CPU3
0: 24592 37500 32229 29820 per_cpu ipi reschedule
1: 535851 733253 742347 750536 per_cpu ipi call function
2: 133376 103843 76843 65000 per_cpu ipi call function single
4: 223766892 224338911 228982339 220920627 per_cpu timer
5: 775 614 580 504 per_cpu serial

Figure 7.4 Output of /proc/interrutps after fourteen days of uptime

7.3 Bus Read Latency

The next experiment provides insight into the performance of the system as we scale the number of
cores from a single core up to four cores. In this test, ABACUS is used to monitor the bus traffic in the
system and capture a cycle accurate histogram of all bus read latencies. The latency unit has been
configured with 512 bins to allow the recording of individual latencies from 1 to 512 cycles. Latencies
greater than 512 cycles are accumulated in the highest bin. In this particular system, without caches,
most periods of execution create a reasonable amount of bus traffic. The only requirement of this test
is that each core in the system is frequently accessing memory. This is particularly the case during

the boot-up of the system, which we have selected as the time window in which to collect our data.

The data collection window begins upon exiting reset and terminates at the display of the login
prompt. We also measured the boot time during these tests as a second point of reference. As a

512 cycle window is too large to plot on a single page, the results have been subdivided into two
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figures, Figure 7.5 and Figure 7.6. These two figures show the number of times a given latency
occurred during a bus read for the single, dual and quad core configurations. Figure 7.5, shows the
accesses to the UART (12 cycles) and TIC (8 cycles) peripherals, while Figure 7.6 shows primarily
memory accesses. Due to contention, some UART and TIC accesses will be captured in Figure 7.6,
however, as memory accesses are more than two orders of magnitude more frequent these UART and
TIC accesses due not impact the distribution we see for memory accesses. In Figure 7.6, bin 51

includes all latencies greater than or equal to 51 cycles.
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Figure 7.6 Memory Bus Read Latency
Single-core

The single-core system provides a baseline for the latency measurement as there is no bus contention
in the system as the processor is the only master on the bus. This allows us to measure the memory

access time and see how much variability there is with no bus contention. Sources of which include,
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DRAM refresh cycles and instruction side accesses to memory. Comparing results between two runs
illustrated that they varied by less than one tenth of a percent for the largest bin (21 cycles) for the

single-core test. Boot-time was measured to be approximately 49 seconds.

Dual-core

In the dual-core system, we can see the impact of bus contention for the memory controller. The
majority of reads still take only 21 cycles, but there is a significant portion of the memory accesses
that require 26 cycles and the distribution of memory access latencies has a longer tail, compared
to the single-core case. This impact can be seen in the boot-up time as well, which now takes

approximately 52 seconds.

Quad-core

It is not until the quad-core system that a significant impact is seen on read latencies. Here, the
bin with the largest count is at 26 cycles, suggesting that there is often one outstanding read in
progress when a processor attempts to read from memory. The tail of the latency distribution is
also much longer than that of the dual-core system and is extends past 512 cycles (although the
number of memory access requiring more than 512 cycles is around 100/135:61()6), or less than
one one hundred thousandth of a percent). It is also only once four cores are reached that we
start to see concurrent reads to the TIC having an impact on bus read latency, which can be seen
in Figure 7.5. For the TIC, the only case where multiple reads will be taking place is if multiple
interrupts occur simultaneously and are assigned to different processors within a few cycles, the most
frequent case being a broadcast IPI. For the quad-core system, a substantial increase in boot-time
was seen to approximately 91 seconds (an approximately 86% increase in boot-time). In addition
to the memory requests captured here, each core has a connection to the memory controller for its
instruction requests, which are also increasing the load on the memory controller, and thus the latency

as well.
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7.4 Design Scalability

As can be seen in the quad-core setup, there is often one outstanding read transaction on the bus
at any given time. As the system scales beyond four cores, this becomes increasingly the case until
the point is reached in which every processor has an outstanding bus read request in progress. A
side effect of this will be that memory accesses will become completely serialized in the system due
to the round-robin arbitration process in the PLB. In our current system, this is a serious issue as
the reservation design can fail if LWX/SWX sequences between processors become serialized. One
scenario can occur when a processor trying to release a lock fails to obtain a reservation because the
LWX for a processor trying to obtain the lock always occurs first. While in some cases, interrupts
can be expected to reintroduce randomness into the system, some locks are held under cases where
interrupts are disabled. No reservation contention issues were encountered in system with up to four
cores, however, systems with 5-8 cores would become unresponsive during boot-up. Investigations
showed that multiple processors became stuck within the spinlock functions. In one case, with
an 8 core system, halting one of the cores and then resuming it through the hardware debugger
allowed the system to reach the login prompt, however, while attempting to login, the system became
unresponsive again. In order to address this issue, an alternative behaviour is likely needed for the
reservation system, the design of which is already underway. To remove the potential for starvation,
every processor will have its reservation bit set on a LWX instruction. SWX stores would remain
conditional on the reservation bit being set but the decision to proceed would be made as the stores
are committed to memory and not within the processor. By structuring the implementation this way,
we know the ordering of memory operations and will know at this point if any other stores have
already been performed to this memory address since the reservation bit was set. If a store, from
any processor with a matching address, is processed before the paired SWX instruction arrives, the
reservation bit will be cleared and the store aborted. This alternative approach removes the need
to pair LWX/SWX instructions to release a lock, and thus, the starvation issue that can occur in our

existing implementation when the owner of the lock is unable to obtain the reservation bit.
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7.5 Hardware Resource Usage and Scalability

In this section, we examine the resource usage and operating frequency of the newly implemented
hardware blocks and their scalability as well as the resource usage impact of our changes to the
MicroBlaze processor. Note, all resource usage and operating frequency statistics are for an imple-

mentation on the Virtex 5 LX110t FPGA.

7.5.1 Timer and Interrupt Controller

The TIC was designed to scale to 8 cores and support up to 32 interrupts (including IPls, a timer
interrupt and external interrutps). The TIC is configurable across the number of IPIs supported,
the number of cores and the number of external interrupt sources. In our analysis, we have fixed
the number of IPls implemented to four (the number used by the kernel in our implementation).
The plot shown in Figure 7.7 provides the resource usage and operating frequency for the dual-
core configuration across a varied number of external interrupts, up to the maximum of 27. In this
configuration, the maximum operating frequency of the core is 142MHz, which is well above the
100MHz target of the system. The next two Figures 7.8 (a) and (b), illustrate how the TIC scales
as the number of cores is increased with a single external interrupt, and with the full 27 external

interrupts.

For the 8-core system, by the time the design reaches 8 external interrupts (13 total) the operating
frequency has dropped below 100MHz to 91MHz. The critical path in the design being the selection
and arbitration of interrupts which currently occurs in a single cycle. The design could be readily
modified to pipeline this process by splitting up the interrupt selection and arbitration phases without
otherwise impacting the behaviour or operation of the TIC. However, at present we do not have a system

with these requirements so this change will be future work.
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Figure 7.8 TIC Scalability Across an Increasing Number of CPUs

7.5.2 MicroBlaze

In updating the MicroBlaze to a scalable, multicore architecture, we modified its ISA to support an
additional set of registers, the General Purpose Special Purpose Registers (GPSPRs). Our implemen-
tation supports four of these resisters and each resister has a width of 32 bits. Compared against the

unmodified MicroBlaze, LUT usage has been increased by approximately 2% (86 LUTs) and for FFs,
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by approximately 7% (224 FFs). The increase in FFs is higher as each register bit requires a FF, but

the extra control logic ties into the existing infrastructure.

7.6 Kernel Stats

In this section, we report some statistics on the code changes made in adding SMP support to the
MicroBlaze platform. In total, 5 new files were added, 48 files modified, and the static code size
grew from 464.5KB to 525.2KB ( 13% increase). For a full diffstat of the code changes please see
Appendix B. The largest changes were focused on adding atomic primitive support, MMU changes
and support for the new combined TIC. The previous support for atomic operations in the MicroBlaze
architecture used only interrupt disabling to ensure the atomicity of operations. With atomic support
supplied through conditional load/store pairs, many operations need not have interrupts disabled,

therefore, our work would also enable kernel-preemption support in a single-core system.
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e Conclusions and Future Work

Today’s multicore systems provide many challenges to the OS, particularly in the area of efficiently
utilizing these systems. Due to the complex interactions that take place within the system, without
visibility into the internals of the system, we do not have the ability to understand performance ahead
of time and thus make effective scheduling decisions. Ideally, future systems will contain a hardware
block able to monitor system interactions at runtime, which the OS can then use to more effectively

utilize the resources of the platform.

8.1 Conclusions

In this work, we have presented a framework that enables new avenues for systems research. We
have outlined and implemented a multicore platform that supports the Linux OS and contains an
integrated profiling unit, ABACUS, through which non-invasive runtime profiling of the system can be

performed.

8.1.1 Multicore MicroBlaze Platform

We have taken a single-core MicroBlaze processor and extended the platform with multicore support.
Our support includes both modifications to the hardware and to the Linux kernel. Careful considera-
tion of design parameters ensures that the framework is scalable. In our initial implementation, we
have created a system that can scale from one to four processors and have demonstrated its reliability
and stability through our test cases. The four core system has been demonstrated to be stable over
a two week period under heavy load and during stress testing of the boot-up process, only a single

failure was encountered in over 100 attempts.
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8.1.2 Hardware Profiling

A configurable hardware profiling unit, ABACUS, has been created to provide visibility into the internal
workings of the system. We have demonstrated how ABACUS can be integrated into a multicore system
to provide unique insight on workload interactions. At present, the metrics we collect are meant to
demonstrate some basic functionality, however, our framework allows, and enables, investigations into
more complex metrics in the future. Furthermore, we have illustrated how using a processor emulator
provides a model that enables us to consider additional metrics that require greater visibility into the

system, such as latency profiles for memory accesses.

8.2 Future Work

As this work has created an extendable framework for performing systems and architectural research,
there are many avenues for future work. Currently, work is underway to scale the system up to at least
8 processors by addressing the scalability issues found in the conditional load/store implementation.
Separate work is also underway to provide the mechanisms required for a coherent memory hierarchy
consisting of multiple levels of caches. From this point, investigations can then turn to creating
systems with asymmetric processors, an example of which would be a system where not all cores
have a FPU. Another example could be as system where the processor cores have varying cache sizes
and replacement policies. Finally, future work could also include integrating custom accelerator cores

into the system to create a heterogeneous platform.
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o Example Boot Log

CPU 1 waiting for IPI
CPU 2 waiting for IPI
CPU 3 waiting for IPI
early_printk_console is enabled at 0x83e01000
Ramdisk addr 0x00000003, Compiled-in FDT at OxcOla4de8
MMU: Allocated 1088 bytes of context maps for 255 contexts
Linux version 2.6.37.4-00531-g2db5587-dirty (ematthew@sally)
(gcc version 4.1.2) #1530 SMP Fri Dec 9 13:16:45 PST 2011
setup_cpuinfo: initialising
setup_cpuinfo: Using full CPU PVR support
cache: wt_msr_noirq
setup_memory: max_mapnr: 0x10000
setup_memory: min_low_pfn: 0x50000
setup_memory: max_low_pfn: 0x60000
On node O totalpages: 65536
free_area_init_node: node 0, pgdat c020£100, node_mem_map c07de000
Normal zone: 512 pages used for memmap
Normal zone: O pages reserved
Normal zone: 65024 pages, LIFO batch:15
PERCPU: Embedded 7 pages/cpu ©@c09e1000 s6464 r8192 d14016 u32768
pcpu-alloc: s6464 r8192 d14016 u32768 alloc=8+%4096
pcpu-alloc: [0] O [0] 1 [0] 2 [0] 3

Built 1 zonelists in Zone order, mobility grouping on. Total pages:

Kernel command line: console=ttyS0,115200

PID hash table entries: 1024 (order: O, 4096 bytes)

Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 251448k/262144k available

Hierarchical RCU implementation.

NR_IRQS:32

xlnx,xps-intc-1.00.a #0 at 0xd0000000, num_irqg=6, edge=0x0
requesting IPIs

cpu: O enable_or_unmask: 0O

cpu: O enable_or_unmask: 1

cpu: O enable_or_unmask: 2

CPU: O, microblaze_timer_set_mode: shutdown

CPU: 0, microblaze_timer_set_mode: periodic

cpu: O enable_or_unmask: 4

Calibrating delay loop... 2.24 BogoMIPS (1lpj=4496)
pid_max: default: 32768 minimum: 301

Mount-cache hash table entries: 512

Waking CPU 1

setup_cpuinfo: initialising

setup_cpuinfo: Using full CPU PVR support

cache: wt_msr_noirq
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Processor 1 found.

CPU: 1, microblaze_timer_set_mode: shutdown

CPU: 1, microblaze_timer_set_mode: periodic

Waking CPU 2

setup_cpuinfo: initialising

setup_cpuinfo: Using full CPU PVR support

cache: wt_msr_noirq

Processor 2 found.

CPU: 2, microblaze_timer_set_mode: shutdown

CPU: 2, microblaze_timer_set_mode: periodic

Waking CPU 3

setup_cpuinfo: initialising

setup_cpuinfo: Using full CPU PVR support

cache: wt_msr_noirq

Processor 3 found.

CPU: 3, microblaze_timer_set_mode: shutdown

CPU: 3, microblaze_timer_set_mode: periodic

Brought up 4 CPUs

NET: Registered protocol family 16

bio: create slab <bio-0> at 0

Switching to clocksource microblaze_clocksource

CPU: 1, microblaze_timer_set_mode: oneshot

CPU: 2, microblaze_timer_set_mode: oneshot

CPU: 3, microblaze_timer_set_mode: oneshot

CPU: O, microblaze_timer_set_mode: oneshot

NET: Registered protocol family 1

Skipping unavailable RESET gpio -2 (reset)

GPIO pin is already allocated

JFFS2 version 2.2. (NAND) (SUMMARY) © 2001-2006 Red Hat, Inc.
msgmni has been set to 491

Block layer SCSI generic (bsg) driver version 0.4 loaded (major 254)
io scheduler noop registered

io scheduler deadline registered

io scheduler cfq registered (default)

Serial: 8250/16550 driver, 4 ports, IRQ sharing disabled
90000000.debug: ttyULO at MMIO 0x90000000 (irq = -1) is a uartlite
83e00000.serial: ttySO at MMIO 0x83e01003 (irq = 5) is a 16550A
console [ttySO] enabled

cpu: 1 enable_or_unmask: 5

Freeing unused kernel memory: 5836k freed

Mounting proc:

Mounting var:

Populating /var:

Running local start scripts.

Mounting sysfs:

mdev: initialising /dev

Mounting /etc/config:

Populating /etc/config:
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flatfsd: Nonexistent or bad flatfs (-48), creating new one...
flatfsd: Failed to write flatfs (-48): No such file or directory
flatfsd: Created 7 configuration files (226 bytes)

Mounting devpts:

Setting hostname:

Bringing up network interfaces:

ifconfig: socket: Address family not supported by protocol
ifconfig: socket: Address family not supported by protocol
ifconfig: socket: Address family not supported by protocol
route: socket: Address family not supported by protocol

Welcome to

I ___\ (N I )

I A N D I S,
/7 Nt __1 /7 1 PN T INN/
T /2 G I A O Y IR
\_I oo NN N Y4 1 1 U T I NP VA VAN
on PolyBlaze

PolyBlaze login: root

Password:

~ # 1s

bin etc init linuxrc proc sys usr
dev home lib mnt sbin tmp var
~ #
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0 Kernel Code Stats

$ diff -rwB microblaze_ori microblaze _new | diffstat

microblaze_new/Kconfig
microblaze_new/include/asm/atomic.h
microblaze_new/include/asm/bitops.h
microblaze_new/include/asm/cpuinfo.h
microblaze_new/include/asm/entry.h
microblaze_new/include/asm/futex.h
microblaze_new/include/asm/intc.h
microblaze_new/include/asm/irqflags.h
microblaze_new/include/asm/mmu.h

microblaze_new/include/asm/mmu_context_mm.h

microblaze_new/include/asm/percpu.h
microblaze_new/include/asm/pgalloc.h
microblaze_new/include/asm/pgtable.h
microblaze_new/include/asm/setup.h
microblaze_new/include/asm/smp.h
microblaze_new/include/asm/spinlock.h

microblaze_new/include/asm/spinlock_types.h

microblaze_new/include/asm/system.h
microblaze_new/include/asm/tlb.h
microblaze_new/include/asm/tlbflush.h
microblaze_new/include/asm/types.h
microblaze_new/kernel/Makefile
microblaze_new/kernel/asm-offsets.c
microblaze_new/kernel/cpu/cache.c

microblaze_new/kernel/cpu/cpuinfo-pvr-full.c
microblaze_new/kernel/cpu/cpuinfo-static.c

microblaze_new/kernel/cpu/cpuinfo.c
microblaze_new/kernel/cpu/mb.c
microblaze_new/kernel/cpu/pvr.c
microblaze_new/kernel/early_printk.c
microblaze_new/kernel/entry.S
microblaze_new/kernel/head.S

microblaze_new/kernel/hw_exception_handler.S

microblaze_new/kernel/intc_timer.c
microblaze_new/kernel/irq.c
microblaze_new/kernel/process.c
microblaze_new/kernel/setup.c
microblaze_new/kernel/signal.c
microblaze_new/kernel/smp.c
microblaze_new/kernel/vmlinux.lds.S
microblaze_new/mm/Makefile
microblaze_new/mm/consistent.c
microblaze_new/mm/init.c
microblaze_new/mm/mmu_context.c
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microblaze_new/mm/pgtable.c | 156 +++++++++++

microblaze_new/mm/tlb_nohash.c |only
microblaze_ori/kernel/intc.c |only
microblaze_ori/kernel/timer.c [only

48 files changed, 1738 insertions(+), 553 deletions(-)
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G Example Kernel Source

This appendix contains a representative (but not complete) selection of source files modified/added
in bringing SMP support to the MicroBlaze platform.

C.1 spinklock.h
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#ifdef __KERNEL__

/%

* Unlocked value: O

* Locked value: 1

*/

#include <linux/console.h>
#include <asm/irqflags.h>
#define arch_spin_is_locked(x) ((x)->1lock !'= 0)
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (O)

/%
static inline void arch_spin_lock(arch_spinlock_t *lock)
{

////eprintk("arch_spin_lock\n");

unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %1, r0;\n" // load conditional address in %1 to %0
" bnei %0, 1b;\n" // not zero? try again

" addi %0, r0, 1;\n" // increment lock by 1
swx %0, %1, r0;\n" // attempt store
" addic %0, r0, 0;\n" // checking msr carry flag

" bnei %0, 1b;\n" // store failed (MSR[C] set)? try again
"=gr" (tmp) // Outputs : temp variable for load
result
"r" (&lock->1lock) // Inputs : lock address
"cc", "memory"
)
}x/

static inline int arch_spin_trylock(arch_spinlock_t #*lock)
{

//eprintk("arch_spin_trylock\n");

unsigned long prev, tmp, dummy;
asm__ __volatile__ (
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"1: lwx %0, %2, r0;\n" /* load conditional address in %2 to %0
*/
" bnei %0, 2f;\n" /* not zero? clear reservation */
" addi %1, r0, 1;\n" /* increment lock by one if lwx was
sucessful*/
" SWX %1, %2, r0;\n" /* attempt store */
" addic %1, r0, 0;\n" /* checking msr carry flag */
" bnei %1, 1b;\n" /* store failed (MSR[C] set)? try again
*/
" bri 3f;\n" /* jump to check */
"2: swx %0, %3, r0;\n" /* attempt store */
|I3: n
"=gr" (prev), "=&r" (tmp) /* Outputs temp variable for load
result x/
"r" (&lock->lock), "r" (&dummy) /* Inputs lock

address */

IICCII s

)

/*tmp should be
store
suceeded */
return (prev ==

static inline void

{
while (1) {

"memory"

zero if lock is available and tmp should be zero if

0 && tmp == 0);

arch_spin_lock(arch_spinlock_t *lock)

if (likely(arch_spin_trylock(lock)))

break;
do { } while

3

(unlikely(arch_spin_is_locked(lock)));

#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)

/*static inline

void arch_spin_lock_flags(arch_spinlock_t *lock, unsigned long flags)

{

unsigned long flags_dis;

while (1) {

if (likely(arch_spin_trylock(lock)))

break;

local_save_flags(flags_dis);
local_irq_restore(flags);

do {

} while (unlikely(arch_spin_is_locked(lock)));
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local_irq_restore(flags_dis);

by
I*/
/* Ick, we have to lock on clearing too as we always have to pair LWX/
SWX
together, otherwise some other processor could have the lock on this
memory

location (not the spinlock itself just the mem location) and
therefore a write
would be cleared when the swx went through on the first processor and
the lock
would never be released as the write by the second processor was "
lost™
*/
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
////eprintk ("arch_spin_unlock\n");
unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %1, r0;\n" /* load conditional address in %1 to %0
*/
n nop;\nll

SWX r0, %1, rO;\n" /* attempt clear x*/
" addic %0, r0, 0;\n" /* checking msr carry flag */

" bnei %0, 1b;\n" /* store failed (MSR[C] set)? try again
*/
"=gr" (tmp) /* Outputs : temp variable for load
result x/
"r" (&lock->1lock) /* Inputs : lock address x/
"cc", "memory"
);
}
/%
* RWLOCKS
x/
#define WRITE_LOCK_VALUE -1
/%
static inline void arch_write_lock(arch_rwlock_t *rw)
{

//eprintk ("arch_write_lock\n");
unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %1, rOo;\n" // load conditional address in %1 to %O
" bneid %0, 1b;\n" // not zero? try again
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" addi %0, r0, -1;\n" // set tmp to -1
" SWX %0, %1, r0;\n" // attempt store
" addic %0, r0O, 0;\n" // checking msr carry flag

" bnei %0, 1b;\n" // store failed (MSR[C] set)? try again
"=gr" (tmp) // Outputs : temp variable for load
result
"r" (&rw->lock) // Inputs : lock address
"cc", "memory"
)
}x/

static inline int arch_write_trylock(arch_rwlock_t *rw)
{

//eprintk("arch_write_trylock\n");

unsigned long prev, tmp;

__asm__ __volatile__ (
"1: lwx %0, %2, r0O;\n" /* load conditional address in %1 to tmp
*/
" bnei %0, 2f;\n" /* not zero? clear conditional in case we
got it */

" addi %1, r0, -1;\n" /* set tmp to -1 x/
" SWX %1, %2, r0;\n" /* attempt store */
" addic %1, r0, 0;\n" /* checking msr carry flag */

" bnei %1, 1b;\n" /* store failed (MSR[C] set)? try again
*/
" bri 3f;\n" /* jump to check */
"2: swx %0, %3, r0;\n" /* attempt store */
||3: n
:"=gr" (prev), "=&r" (tmp) /* Outputs : temp variable for load
result x/
"r" (&rw->lock), "r" (&tmp) /* Inputs : lock address
*/
"cc", "memory"
)
/*prev value should be zero and MSR should be clear*/
return (prev == 0 && tmp == 0);
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
while (1) {
if (likely(arch_write_trylock(rw)))
break;
do { } while (unlikely(rw->lock != 0));
}
}
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/* Ick, we have to lock on clearing too as we always have to pair LWX/
SWX
together, otherwise some other processor could have the lock on this
memory
location (not the spinlock itself just the mem location) and
therefore a write
would be cleared when the swx went through on the first processor and
the lock
would never be released as the write by the second processor was "
lost"
*/
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
//eprintk("arch_write_unlock\n");
unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %1, r0;\n" /* load conditional address in %1 to %O
*/
n nop;\nll

" SWX r0, %1, r0;\n" /* attempt clear x*/
" addic %0, r0, 0;\n" /* checking msr carry flag */

" bnei %0, 1b;\n" /* store failed (MSR[C] set)? try again
*/
"=gr" (tmp) /* Outputs : temp variable for load
result */
"r" (&rw->1lock) /* Inputs : lock address x*/
"CC" s Ilmemoryll
)
}
/* write_can_lock - would write_trylock() succeed? */
#define arch_write_can_lock(x) ((x)->1lock == 0)
/%
* Read locks
*/
/ *
static inline void arch_read_lock(arch_rwlock_t *rw)
{

//eprintk("arch_read_lock\n");
unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %1, r0;\n" // load conditional address in %1 to %O
" bltid %0, 1b;\n" // < 0 (WRITE LOCK active) try again
" addi %0, %0, 1;\n" // increment lock by 1 if lwx was
sucessful
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" SWX %0, %1, r0;\n" // attempt store
" addic %0, r0O, 0;\n" // checking msr carry flag

" bnei %0, 1b;\n" // store failed (MSR[C] set)? try again
"=gr" (tmp) // Outputs : temp variable for load
result
"r" (&rw->1lock) // Inputs : lock address
"cc", "memory"
)
}x/

static inline void arch_read_unlock(arch_rwlock_t *rw)
{
//eprintk("arch_read_unlock\n");
unsigned long tmp;
asm__ __volatile__ (
"1: lwx %0, %1, r0O;\n" /* load conditional address in %1 to tmp
*/
" addi %0, %0, -1;\n" /* tmp = tmp - 1%/
" SWX %0, %1, r0O;\n" /* attempt store */
" addic %0, r0, 0;\n" /* checking msr carry flag */

" bnei %0, 1b;\n" /* store failed (MSR[C] set)? try again
*/
"=gr" (tmp) /* Outputs : temp variable for load
result */
"r" (&rw->1lock) /* Inputs : lock address x*/
"cc", "memory"

)
}

static inline int arch_read_trylock(arch_rwlock_t *rw)
{

//eprintk("arch_read_trylock\n");

unsigned long prev, tmp;

__asm__ __volatile__ (
"1: lwx %0, %2, r0;\n" /* load conditional address in %1 to %0
*/
" blti %0, 2f;\n" /* < 0 bail, release lock */

" addi %1, %0, 1;\n" /* increment lock by 1%/
" SWX %1, %2, r0O;\n" /* attempt store */
" addic %1, r0, 0;\n" /* checking msr carry flag */

" bnei %1, 1b;\n" /* store failed (MSR[C] set)? try again
*/

" bri 3f;\n" /* jump to check */

"2: sSwWX %0, %3, r0;\n" /* attempt store */

|I3:||
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)

"=gr" (prev), "=&r" (tmp) /* Outputs : temp variable for load
result x/

"t (&rw->lock), "r" (&tmp) /* Inputs : lock address
*/

"CC" s Ilmemoryll

return (prev >= 0 && tmp == 0);

}

static inline void arch_read_lock(arch_rwlock_t x*rw)

{

while (1) {
if (likely(arch_read_trylock(rw)))

break;

do { } while (unlikely(rw->lock < 0));

#define

#define
#define

#define
#define
#define

arch_read_can_lock (rw) ((rw)->1lock >= 0)

arch_read_lock_flags(lock, flags) arch_read_lock(lock)
arch_write_lock_flags(lock, flags) arch_write_lock(lock)

arch_spin_relax(lock) cpu_relax()
arch_read_relax(lock) cpu_relax()
arch_write_relax(lock) cpu_relax ()

#endif /* __KERNEL_ _ */
#endif /+ __ASM_SPINLOCK_H */
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C.2 atomic.h

#ifndef
#define

#include <linux/types.h>
#ifdef __KERNEL _

#define ATOMIC_INIT(i)
#include <linux/compiler.h>

#include <asm/system.h>

#define atomic_read(v)

static inline void atomic_set(atomic_t *v,

{
unsigned long tmp;
__asm__ __volatile__ (
"1: lwx %0, %1, r0;\n"
*/
" nop;\n"
" SWX %2, %1, r0o;\n"
" addic %0, r0, O;\n"
" bnei %0, 1b;\n"
*/
"=gr" (tmp)
" (&v->counter) ,
"cc", "memory"
);
}

static inline int atomic_add_return(int i,

{
int result;
unsigned long tmp;

__asm__ __volatile__ (
"1: lwx %0, %2, r0;\n"
*/
" add %0, %0, %3;\n"
" SWX %0, %2, r0;\n"
" addic %1, r0, 0;\n"
" bnei %1, 1b;\n"
*/
"=gr" (result), "=&r"

llrll

_ASM_MICROBLAZE_ATOMIC_H
_ASM_MICROBLAZE_ATOMIC_H

{ (1) 2

/%

/%
/ *
/ *
/%

(

/ *

/%
/%
/%
/ %

(tmp

(*(volatile int *)&(v)->counter)

int i)

load conditional address in %1 to %0

bubble */

attempt store */

checking msr carry flag */

store failed (MSR[C] set)? try again

i) /* Inputs counter address */

atomic_t *v)

load conditional address in %2 to %0
increment counter by ix*/

attempt store x/

checking msr carry flag */

store failed (MSR[C] set)? try again
) /* Outputs result value */
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3

" (&v->counter), "r"

cc" R

"memory"

)

return result;

(i) /* Inputs

counter address */

static inline void atomic_add(int i, atomic_t *v)

{

3

atomic_add_return(i,v);

static inline int atomic_sub_return(int i, atomic_t *v)

{

}

int result;
unsigned long tmp;

asm__ __volatile__ (
"1: lwx %0, %2, r0;\n"
*/
" rsub %0, %3, %0;\n"
" SWX %0, %2, r0;\n"
" addic %1, r0, 0;\n"
" bnei %1, 1b;\n"
*/

"=gr" (result), "=&r" (tmp)

"r (&v->counter), "r

llccll s Ilmemoryll

)

return result;

/%

/ *
/%
/%
/%

(i) /* Inputs

load conditional address in %2 to %0

decrement counter by ix/

attempt store x/

checking msr carry flag */

store failed (MSR[C] set)? try again

/* QOutputs : result value */
counter address */

static inline void atomic_sub(int i, atomic_t *v)

{

}

atomic_sub_return(i,v);

#define atomic_cmpxchg(v, o, n) (cmpxchg(&((v)->counter), (o), (n)))
#define atomic_xchg(v, new) (xchg(&((v)->counter), new))

/

* K X ¥ ¥

*

atomic_add_unless - add unless the number is a given value

@v: pointer of type atomic_t
@a: the amount to add to v...

Qu: ...unless v is equal to u.
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*
*
*

*/

Atomically adds @a to Qv, so long as it was not Qu.
Returns non-zero if @v was not Qu, and zero otherwise.

static inline int atomic_add_unless(atomic_t *v, int a, int u)

{

* ¥

*

*/

int result;
unsigned long tmp;

__asm__ __volatile__ (

"1: lwx %0, %2, r0O;\n" /*x load conditional address in %2 to %0
*/

" cmp %1, %0, %3;\n" /* compare loaded value with old valuex*/

" beqid %1, 2f;\n" /* equal to u, don't increment */

" add %1, %0, %4;\n" /* increment counter by ix*/

" SWX %1, %2, r0;\n" /* attempt store of new valuex*/

" addic %1, r0, O;\n" /* checking msr carry flag */

" bnei %1, 1b;\n" /* store failed (MSR[C] set)? try again
*/

" bri 3f;\n" /* jump to checkx*/

"2: sSwWX %0, %5, r0;\n" /* attempt store of new valuex*/

"3:"

:"=gr" (result), "=&r" (tmp) /* Outputs : result
value */

" (&v->counter), "r" (uw), "r" (a), "r" (&tmp) /* Inputs

counter address, old, new */
"CC", Hmemory"

)

return result != u;

Atomically test *v and decrement if it is greater than O.
The function returns the old value of *v minus 1, even if
the atomic variable, v, was not decremented.

static inline int atomic_dec_if_positive(atomic_t *v)

{

int result, tmp;

__asm__ __volatile__ (
"1: lwx %1, %2, r0;\n" /*x load conditional address in %2 to %1
*/
" blei %1, 2f;\n" /* if <= 0 write old valuex/
" addi %0, %1, -1;\n" /% decrement counter by ix*/
" SWX %0, %2, r0O;\n" /* attempt store of new valuex*/
" addic %1, r0, 0O;\n" /* checking msr carry flag */
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bnei %1, 1b;\n"
*/
bri 3f;\n"

/* jump to check */

"2: sWX %1, %3, r0;\n" /* attempt store of old valuex*/
||3: n

)

/* Outputs

"=gr" (result), "=&r" (tmp)

"t (&v->counter), "r" (&tmp)
address */

"cc", "memory"

return result;

#define

#define
#define

#define
#define
#define
#define
#define

#define

#define
#define
#define
#define

/* store failed (MSR[C] set)? try again

result value */
/* Inputs

atomic_inc_not_zero(v) atomic_add_unless((v), 1,

atomic_inc (v)
atomic_dec (v)

atomic_inc_and_test (v)
atomic_dec_and_test (v)
atomic_inc_return(v)
atomic_dec_return(v)

atomic_add (1, v)
atomic_sub (1, v)

(atomic_add_return(1l, v)
(atomic_sub_return(1l, v)
(atomic_add_return(1l, v))
(atomic_sub_return(l, v))

0)

atomic_sub_and_test (i, v) (atomic_sub_return(i, v)

= 0)
= 0)

0)

atomic_add_negative(i,v) (atomic_add_return(i, v) < 0)

smp_mb__before_atomic_dec ()
smp_mb__after_atomic_dec ()
smp_mb__before_atomic_inc ()
smp_mb__after_atomic_inc ()

#include <asm-generic/atomic64.h>
#include <asm-generic/atomic-long.h>

#endif /* __KERNEL__ */
#endif /* _ASM_MICROBLAZE ATOMIC_H */

smp_mb ()
smp_mb ()
smp_mb ()
smp_mb ()
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C.3 intc_timer.c

/*

* Copyright (C) 2011 Eric Matthews

* Copyright (C) 2007-2009 Michal Simek <monstr@monstr.eu>

* Copyright (C) 2007-2009 Petalogix

* Copyright (C) 2006 Atmark Techno, Inc.

*

* This file is subject to the terms and conditions of the GNU General
Public

* License. See the file "COPYING" in the main directory of this archive

* for more details.

*/

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/interrupt.h>
#include <linux/profile.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/cnt32_to_63.h>
#include <linux/io.h>
#include <linux/bug.h>
#include <linux/smp.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/irq.h>

#include <asm/smp.h>

#include <asm/cpuinfo.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/intc.h>

static unsigned int intc_baseaddr;
#define INTC_BASE intc_baseaddr

unsigned int nr_irq = O;
unsigned int freq_div_hz;

unsigned int timer_clock_freq;

/* No one else should require these constants, so define them locally
here. */
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/* Write Interfacex/

#define IPI_WADDR 0x00

#define SIE_WADDR 0x04

#define CIE_WADDR 0x08

#define MER_WADDR 0xO0C

#define GLB_TIMER_SNAPSHOT_WADDR 0x10

#define NUM_BASE_REGS 8

#define PER_CPU_CIE_WADDR 0x20
#define PER_CPU_SIE_WADDR 0x24
#define PER_CPU_MER_WADDR 0x28
#define PER_CPU_IAR_WADDR 0x2C
#define PER_CPU_TIMER_CFG_WADDR 0x30
#define PER_CPU_TIMER_LOAD WADDR 0x34

#define NUM_PER_CPU_REGS 8

/* Read Interface */

#define GLB_TIMER_RADDR_L 0xO0

#define GLB_TIMER _RADDR_H 0x4

#define PER_CPU_IVR_RADDR 0x8

#define PER_CPU_TIMER RADDR 0xC

#define PER_CPU_READ REGS 2

#define NUM_IPI 4

#define TIMER_IRQ NUM_IPI

#define PER_CPU_REG(cpu, reg) (INTC_BASE + reg + (cpuxNUM_PER_CPU_REGS
*4))

#define PER_CPU_READ_REG(cpu, reg) (INTC_BASE + reg + (cpux
PER_CPU_READ REGS*4))

static DEFINE_PER_CPU(struct clock_event_device, ltime_events);
static DEFINE_RAW_SPINLOCK(rw_lock);

static int timer_initialized;

void send_ipi(int ipi_number, const struct cpumask *cpu_mask)

{

//unsigned long cpu_id = smp_processor_id();
//eprintk ("CPU: %d sends IPI: %d to cpu mask: %x\n", cpu_id,
ipi_number, cpumask_bits(cpu_mask) [0]);
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unsigned int ipi_shift = 0x80000000;

out_be32 (INTC_BASE + IPI_WADDR, ((ipi_shift >> ipi_number)

cpumask_bits (cpu_mask) [0]));

void intc_enable_or_unmask (unsigned int irq)

{

unsigned long cpu = smp_processor_id();
unsigned long mask = 1 << irq;
int i;

printk("cpu: %d enable_or_unmask: %d\n", cpu, irq);

out_be32 (PER_CPU_REG(cpu,PER_CPU_IAR_WADDR), mask);
out_be32 (PER_CPU_REG (cpu,PER_CPU_SIE_WADDR), mask);

for_each_online_cpu(i) {

out_be32(PER_CPU_REG (i,PER_CPU_SIE WADDR), mask);

3

out_be32(INTC_BASE + SIE WADDR, mask);
}

void intc_disable_or_mask(unsigned int irq)

{
unsigned long mask = 1 << irgq;
unsigned long cpu = smp_processor_id();
printk("cpu: %d disable: %d\n", cpu, irq);

out_be32(INTC_BASE + CIE_WADDR, mask);
out_be32 (PER_CPU_REG(cpu,PER_CPU_CIE_WADDR), mask);

}
void end_interrupt (unsigned int irq)
{
unsigned long cpu = smp_processor_id () ;
unsigned long mask = 1 << irgq;
out_be32 (PER_CPU_REG (cpu,PER_CPU_IAR_WADDR), mask);
}

void enable_ipis(int cpu)
{

int i;

unsigned long mask;
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for(i=0; i < NUM_IPI; i++) {
mask = 1 << ij;
out_be32 (PER_CPU_REG (cpu, PER_CPU_IAR_WADDR), mask);
out_be32 (PER_CPU_REG (cpu,PER_CPU_SIE_WADDR), mask);
out_be32(INTC_BASE + SIE_WADDR, mask);

}
out_be32 (PER_CPU_REG (cpu,PER_CPU_MER_WADDR), 0x00000001) ;
}
void enable_timer_interrupt(int cpu)
{
unsigned long mask = 1 << TIMER_IRQ;
out_be32(PER_CPU_REG (cpu,PER_CPU_IAR_WADDR), mask);
out_be32(INTC_BASE + SIE_WADDR, mask);
out_be32(PER_CPU_REG(cpu,PER_CPU_SIE_WADDR), mask);
}

unsigned int get_irq(struct pt_regs *regs)

{
int irq;
unsigned long cpu = smp_processor_id();
irq = in_be32(PER_CPU_READ_REG(cpu, PER_CPU_IVR_RADDR));
pr_debug("get_irq: %d\n", irq);
return irq;
}

static inline void microblaze_decrementer_stop(void)

{
int cpu = smp_processor_id () ;
out_be32(PER_CPU_REG (cpu,PER_CPU_TIMER_CFG_WADDR), 0x0);
}
static inline void microblaze_decrementer_start_periodic(unsigned long
load_val)
{
int cpu = smp_processor_id();

if (!'load_val)
load_val = 1;
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out_be32(PER_CPU_REG(cpu,PER_CPU_TIMER_LOAD_WADDR), load_val); /*
loading value to timer reg */

/* Load timer & set auto reload & set down count & enable interrupt &
enablex/

out_be32 (PER_CPU_REG (cpu,PER_CPU_TIMER_CFG_WADDR), T_ENABLE | T_LOAD
| T_AUTO_RELOAD | T_GEN_INT);

}

static int microblaze_timer_set_next_event (unsigned long delta, struct
clock_event_device *dev)

{
int cpu = smp_processor_id();
if (!delta)
delta = 1;
pr_debug("%s: next event, delta %x\n", __func__, (u32)delta);
out_be32 (PER_CPU_REG (cpu,PER_CPU_TIMER_LOAD_WADDR), delta); /*
loading value to timer reg */
/* Load timer & set auto reload & set down count & enable interrupt &
enablex/
out_be32 (PER_CPU_REG (cpu,PER_CPU_TIMER_CFG_WADDR), T_ENABLE | T_LOAD
| T_GEN_INT);
return O;
3

static void microblaze_timer_set_mode (enum clock_event_mode mode, struct
clock_event_device *evt)
{

int cpu = smp_processor_id () ;

switch (mode) {
case CLOCK_EVT_MODE_PERIODIC:

printk (KERN_INFO "CPU: %d, %s: periodic\n", cpu, __func__);
microblaze_decrementer_start_periodic(freq_div_hz);
break;

case CLOCK_EVT_MODE_ONESHOT:
printk (KERN_INFO "CPU: %d, %s: oneshot\n", cpu, __func__);
break;

case CLOCK_EVT_MODE_UNUSED:
printk (KERN_INFO "%s: unused\n", __func__);
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break;
case CLOCK_EVT_MODE_SHUTDOWN :
printk (KERN_INFO "CPU: %d, %s: shutdown\n", cpu, __func__);
microblaze_decrementer_stop();
break;
case CLOCK_EVT_MODE_RESUME:
printk (KERN_INFO "Y%s: resume\n", __func__);
break;

static struct clock_event_device clockevent_microblaze_timer = {
.name = "microblaze_clockevent",
.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
.shift =38,
.rating = 300,
.set_next_event microblaze_timer_set_next_event,
.set_mode = microblaze_timer_set_mode,

};

void __devinit microblaze_setup_local_timer (void)
{

struct clock_event_device *evt = &__get_cpu_var (ltime_events);

memcpy (evt, &clockevent_microblaze_timer, sizeof (xevt));
evt->cpumask = cpumask_of (smp_processor_id());

clockevents_register_device (evt);
enable_timer_interrupt (smp_processor_id());

}

static irqreturn_t timer_interrupt(int irq, void *dev_id)
{

struct clock_event_device *evt = &__get_cpu_var (ltime_events);

#ifdef CONFIG_HEART_BEAT
heartbeat () ;

#endif
evt->event_handler (evt) ;
return IRQ_HANDLED;

static __init void microblaze_clockevent_init (void)
{

clockevent_microblaze_timer .mult = div_sc(timer_clock_freq,
NSEC_PER_SEC, clockevent_microblaze_timer.shift);
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clockevent_microblaze_timer.max_delta_ns = clockevent_delta2ns((u32)
~0, &clockevent_microblaze_timer);

clockevent_microblaze_timer.min_delta_ns
clockevent_microblaze_timer) ;

clockevent_delta2ns (1, &

microblaze_setup_local_timer ();

}

static DEFINE_SPINLOCK(timebase_lock);
static cycle_t microblaze_read(struct clocksource *cs)
{

u64 a, b;

cycle_t c;

unsigned long flags;

spin_lock_irqgsave (&timebase_lock, flags);
out_be32(INTC_BASE + GLB_TIMER SNAPSHOT_WADDR, 0x0);

a = in_be32(INTC_BASE + GLB_TIMER _RADDR_L);
b = in_be32(INTC_BASE + GLB_TIMER_RADDR_H);
¢ = (cycle_t)(a | (b << 32));

spin_unlock_irqrestore(&timebase_lock, flags);

//eprintk("t: %1llu\n", c);

return c;

}

static struct timecounter microblaze_tc = {
.cc = NULL,

};

static cycle_t microblaze_cc_read(const struct cyclecounter *cc)
{

return microblaze_read (NULL) ;

}

static struct cyclecounter microblaze_cc = {
.read = microblaze_cc_read,
.mask = CLOCKSOURCE_MASK (64),
.shift = 8,

}s

static struct irqaction timer_irqaction = {
.handler = timer_interrupt,

.flags = IRQF_DISABLED | IRQF_PERCPU | IRQF_TIMER,
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.name = "timer",

.dev_id = &ltime_events,
};
static struct clocksource clocksource_microblaze = {
.name = "microblaze_clocksource",
.rating = 300,
.read = microblaze_read,
.mask = CLOCKSOURCE_MASK (64),
.shift = 8,
.flags = CLOCK_SOURCE_IS_CONTINUQUS,
};
static struct irq_chip intc_dev = {
.name = "Timer and Interrupt Controller",
.unmask = intc_enable_or_unmask,
.mask = intc_disable_or_mask,
.eoil = end_interrupt,
};
int __init init_microblaze_timecounter (void)
{
microblaze_cc.mult = div_sc(timer_clock_freq, NSEC_PER_SEC,
microblaze_cc.shift);
//eprintk ("\n\nmult2: %d\n\n",microblaze_cc.mult);
timecounter_init (&microblaze_tc, &microblaze_cc, sched_clock());
return O;
}
static int __init microblaze_clocksource_init (void)
{
clocksource_microblaze.mult = clocksource_hz2mult(timer_clock_freq,
clocksource_microblaze.shift);
//eprintk ("\n\nmult: %d\n\n",clocksource_microblaze.mult);
if (clocksource_register (&clocksource_microblaze))
panic("failed to register clocksource");
/* register timecounter - for ftrace support */
init_microblaze_timecounter () ;
return O;
}

unsigned long long notrace sched_clock(void)
{

if (timer_initialized) {
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struct clocksource *cs = &clocksource_microblaze;

return clocksource_cyc2ns(cs->read (NULL), cs->mult, cs->shift);
}
return O;

}

/%
* We have to protect accesses before timer initialization
* and return O for sched_clock function below.
*/
void __init time_init(void)
{
#ifdef CONFIG_HEART_BEAT
setup_heartbeat () ;
#endif
microblaze_clocksource_init () ;
microblaze_clockevent_init () ;

setup_irq(TIMER_IRQ, &timer_irqaction);

timer_initialized = 1;
}
void __init init_IRQ(void)
{
u32 i, j, intr_type;
struct device_node *intc = NULL;
unsigned long cpu = smp_processor_id () ;
const void *prop;
const char * const intc_list[] = {
"xlnx,xps-intc-1.00.a",
NULL
3
for (j = 0; intc_list[j] != NULL; j++) {
intc = of_find_compatible_node (NULL, NULL, intc_list[jl);
if (intc)
break;
}

BUG_ON(!intc);

intc_baseaddr be32_to_cpup(of_get_property(intc,

"reg", NULL));
intc_baseaddr = (unsigned long) ioremap(intc_baseaddr, PAGE_SIZE);
nr_irq = be32_to_cpup(of_get_property(intc,

"x1lnx ,num-intr-inputs", NULL));

intr_type =
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be32_to_cpup(of_get_property(intc,
"x1lnx,kind-of-intr", NULL));
if (intr_type >= (1 << (nr_irq + 1)))
printk (KERN_INFO " ERROR: Mismatch in kind-of-intr param\n");

/* If there is clock-frequency property than use it */
prop = of_get_property(intc, "clock-frequency", NULL);
if (prop)
timer_clock_freq = be32_to_cpup (prop);
else
timer_clock_£freq

per_cpu(cpu_info,0) .cpu_clock_freq;
freq_div_hz = timer_clock_freq / HZ;

printk (KERN_INFO "%s #0 at 0xJ%08x, num_irq=%d, edge=0x%x\n",
intc_list[j], intc_baseaddr, nr_irq, intr_type);

/ *
* Disable all external interrupts until they are
* explicity requested.

*/

out_be32(intc_baseaddr + CIE_WADDR, OxFFFFFFFF);
out_be32 (PER_CPU_REG (cpu, PER_CPU_CIE_WADDR), OxFFFFFFFF);

/* Acknowledge any pending interrupts just in case. */
out_be32 (PER_CPU_REG (cpu,PER_CPU_IAR_WADDR), Oxffffffff);

/* Turn on the Master Enable. */
out_be32(intc_baseaddr + MER_WADDR, 0x00000001);
out_be32 (PER_CPU_REG (cpu, PER_CPU_MER_WADDR), 0x00000001) ;

for (i = 0; i < nr_irq; i++) {
set_irq_chip_and_handler_name (i, &intc_dev, handle_percpu_irq,
intc_dev.name) ;

irq_desc[i].status |= IRQ_PER_CPU;
eprintk("irq: %d of type: IRQ_PER_CPU , name: %s\n", i, intc_dev.
name) ;

}

printk (KERN_INFO "requesting IPIs\n");

for (i = 0; i < MICROBLAZE_NUM_IPIS; i++) {
smp_request_message_ipi(i, 1i);

}

enable_ipis(cpu);
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C.4 smp.c
/ %

*

deal

SMP support for MicroBlaze, borrowing a great

of code from the PowerPC implementation

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

#undef DEBUG

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<linux/kernel.h>
<linux/module.h>
<linux/sched.h>
<linux/smp.h>
<linux/interrupt.h>
<linux/delay.h>
<linux/init.h>
<linux/spinlock.h>
<linux/cache.h>
<linux/err.h>
<linux/sysdev.h>
<linux/cpu.h>
<linux/notifier.h>
<linux/topology.h>

<asm/ptrace.h>
<asm/atomic.h>
<asm/irq.h>
<asm/page.h>
<asm/pgtable.h>
<asm/prom.h>
<asm/smp.h>
<asm/cputable.h>
<asm/system.h>
<asm/intc.h>
<asm/pvr.h>
<asm/cpuinfo.h>
<asm/sections.h>
<asm/tlbflush.h>

struct thread_info *secondary_ti;

DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
EXPORT_PER_CPU_SYMBOL (cpu_core_map) ;
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volatile unsigned int cpu_callin_map [NR_CPUS];

static irqreturn_t call_function_action(int irq, void *data)

{
//eprintk ("CPU %d received call many\n",smp_processor_id());
generic_smp_call_function_interrupt();
return IRQ_HANDLED;

}

static irqreturn_t reschedule_action(int irq, void *data)
{
/* we just need the return path side effect of checking need_resched
x/
return IRQ_HANDLED;
X

static irqreturn_t call_function_single_action(int irq, void *data)
{

generic_smp_call_function_single_interrupt ();

return IRQ_HANDLED;

}

#define NUM_IPI 3

static irq_handler_t smp_ipi_action[] = {
[MICROBLAZE_MSG_RESCHEDULE] = reschedule_action,
[MICROBLAZE_MSG_CALL_FUNCTION] = call_function_action,
[MICROBLAZE_MSG_CALL_FUNCTION_SINGLE] = call_function_single_action,

};

const char *smp_ipi_namel[] = {
[MICROBLAZE_MSG_RESCHEDULE] = "ipi reschedule",
[MICROBLAZE_MSG_CALL_FUNCTION] = "ipi call function",
[MICROBLAZE_MSG_CALL_FUNCTION_SINGLE] = "ipi call function single",

};

int smp_request_message_ipi(int irq, int msg)
{

int err;

if (msg < 0 || msg >= MICROBLAZE_NUM_IPIS) A{
return -EINVAL;

}

err = request_irq(irq, smp_ipi_action[msg], IRQF_DISABLED|IRQF_PERCPU
, smp_ipi_name[msg]l, 0);
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WARN (err < O, "unable to request_irq %d for %s (rc %d)\n",irq,
smp_ipi_name [msg], err);

return err;

void smp_send_reschedule (int cpu)

{
//eprintk ("CPU %d reschedule on: %d\n",smp_processor_id(), cpu);
if (cpu_online (cpu))
send_ipi (MICROBLAZE_MSG_RESCHEDULE, cpumask_of (cpu));
}
void arch_send_call_function_single_ipi(int cpu)
{
//eprintk ("CPU %d call single on: %d\n",smp_processor_id(), cpu);
if (cpu_online (cpu))
send_ipi (MICROBLAZE_MSG_CALL_FUNCTION_SINGLE, cpumask_of (cpu));
}

void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
//eprintk ("CPU %d call many on: %x\n",smp_processor_id(),
cpumask_bits (mask) [0]);
send_ipi (MICROBLAZE_MSG_CALL_FUNCTION, mask);

static void stop_this_cpu(void *dummy)

{
/* Remove this CPU x*/
set_cpu_online(smp_processor_id(), false);
local_irq_disable();
while (1)
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, O0);
}

struct thread_info *current_set [NR_CPUS];

static void __devinit smp_store_cpu_info(int id)

{
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//per_cpu(cpu_pvr, id) = get_single_pvr (0, pvr0);

static void __init smp_create_idle(unsigned int cpu)

{

struct task_struct *p;

/* create a process for the processor */
p = fork_idle(cpu);
if (IS_ERR(p)) {

panic("failed fork for CPU %u: %1li", cpu, PTR_ERR(p));
printk (KERN_ALERT "failed to create cpu %d idle\n", cpu);

current_set [cpu]l] = task_thread_info(p);
task_thread_info(p)->cpu = cpu;

void __init smp_prepare_cpus(unsigned int max_cpus)

{

unsigned int cpu;

/*
* setup_cpu may need to be called on the boot cpu.
* spun any cpus up but lets be paranoid.
*/

BUG_ON(boot_cpuid != smp_processor_id());

/* Fixup boot cpu */
cpu_callin_map[boot_cpuid] = 1;

for_each_possible_cpu(cpu) {

We havent

zalloc_cpumask_var_node (&per_cpu(cpu_core_map, cpu),

GFP_KERNEL, cpu_to_node(cpu));
}

cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));

max_cpus = NR_CPUS;

for_each_possible_cpu(cpu) {
if (cpu != boot_cpuid) {
smp_create_idle (cpu);

}
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void __devinit smp_prepare_boot_cpu(void)

{
BUG_ON (smp_processor_id() != boot_cpuid);
current_set [boot_cpuid] = task_thread_info(current) ;
}
int __cpuinit __cpu_up(unsigned int cpu)
{
int c;
secondary_ti = current_set[cpul;

/* Make sure callin-map entry is O (can be leftover a CPU
* hotplug
*/

cpu_callin_map[cpul = 0;

/* The information for processor bringup must

* be written out to main store before we release
* the processor.

*/

smp_mb () ;

/* wake up cpus */

printk (KERN_ALERT "Waking CPU %d\n", cpu);

//printk (KERN_ALERT ": %d: current %x\n", cpu, current);

//printk (KERN_ALERT "mem_loc: %x\n",current_thread_info());

//printk (KERN_ALERT "mem_loc_sec_ti: %x\n",secondary_ti);

//printk (KERN_ALERT "mem_loc_sec_ti_task: %x\n",secondary_ti->task);

if (cpu < 4)
send_ipi (0, cpumask_of (cpu));
else

return -ENOENT;

if (system_state < SYSTEM_RUNNING)
for (c = 5000; c && !cpu_callin_map[cpul; c--)
udelay (100);

if (!cpu_callin_map[cpul) {
printk (KERN_ERR "Processor %u is stuck.\n", cpu);
return -ENQOENT;

}

while (!cpu_online (cpu))
cpu_relax();
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printk (KERN_ALERT "Processor %u found.\n", cpu);

return O;

}
asmlinkage void __devinit secondary_machine_init(void)
{
unsigned long *src, *dst;
unsigned int offset = O;
/* Do not copy reset vectors. offset = 0x2 means skip the first

* two instructions. dst is pointer to MB vectors which are placed
* in block ram. If you want to copy reset vector setup offset to 0x0
*/
#if !CONFIG_MANUAL_RESET_VECTOR
offset = 0x2;

#endif
dst = (unsigned long *) (offset * sizeof (u32));
for (src = __ivt_start + offset; src < __ivt_end; src++, dst++)
*dst = *src;
}

/* Activate a secondary processor. */

int __devinit start_secondary(void)

{
unsigned int cpu = smp_processor_id();
int i;

atomic_inc (&init_mm.mm_count) ;
current->active_mm = &init_mm;
cpumask_set_cpu(cpu, mm_cpumask (&init_mm));
local_flush_tlb_mm(&init_mm) ;

//eprintk (KERN_ALERT "cpu ID alivE: %d: current %x\n", cpu, current);

setup_cpuinfo ();
microblaze_cache_init ();

preempt_disable () ;
cpu_callin_map[cpu] = 1;

ipi_call_lock();
notify_cpu_starting (cpu);

set_cpu_online(cpu, true);

for_each_online_cpu(i) {
cpumask_set_cpu(cpu, cpu_core_mask(i));
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cpumask_set_cpu(i,

}

cpu_core_mask (cpu)) ;

enable_ipis (cpu);
microblaze_setup_local_timer ();
ipi_call_unlock();

local_irq_enable();

int setup_profiling_timer (unsigned int multiplier)

¢
©)
()

cpu_idle();
return O;
}
{
return O;
}
void
{
C.5 head.S
/%
Copyright
Copyright
Copyright
Copyright

R R RS R RN R B I S S R R R N I R

(©)

__init smp_cpus_done(unsigned int max_cpus)

2011 Eric Matthews
2007-2009 Michal Simek <monstr@monstr.eu>
2007-2009 Petalogix

2006 Atmark Techno, Inc.

MMU code derived from arch/ppc/kernel/head_4xx.S:
Copyright (c) 1995-1996 Gary Thomas <gdt@linuxppc.org>
Initial PowerPC version.
Copyright (c) 1996 Cort Dougan <cort@cs.nmt.edu>
Rewritten for PReP
Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>

Low-level exception handers,

Copyright
PowerPC
Copyright
PowerPC
Copyright
PowerPC
Copyright
PPC405 modifications
PowerPC 403GCX/405GP modifications.

Author:

MontaVista Software,
frank_rowand@mvista.com or source@mvista.com
debbie_chu@mvista.com

MMU support, and rewrite.
(c) 1997 Dan Malek <dmalek@jlc.net>

8xx modifications.

(c) 1998-1999 TiVo, Inc.

403GCX modifications.

(c) 1999 Grant Erickson <grant@lcse.umn.edu>
403GCX/405GP modifications.

2000 MontaVista Software Inc.

Inc.
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* This file is subject to the terms and conditions of the GNU General
Public

* License. See the file "COPYING" in the main directory of this archive

* for more details.

*/

#include <linux/init.h>

#include <linux/linkage.h>

#include <asm/thread_info.h>

#include <asm/page.h>

#include <linux/of_fdt.h> /* for OF_DT_HEADER x/

#ifdef CONFIG_MMU

#include <asm/setup.h> /* COMMAND_LINE_SIZE */
#include <asm/mmu.h>

#include <asm/processor.h>

#include <asm/asm-offsets.h>

#define SAVE_ENTRY_SP_R1 \
.word 0b10010100000000011100100000000000; nop;

#define RESTORE ENTRY_SP R1 \
.word 0b10010100001000001000100000000000; nop;

#define SAVE_ENTRY_SP_R11 \
.word 0b10010100000010111100100000000000; nop;

#define RESTORE_ENTRY_SP_R11 \
.word 0b10010101011000001000100000000000; nop;

#define SAVE_ENTRY_SP_R31 \
.word 0b10010100000111111100100000000000; nop;

#define RESTORE_ENTRY_SP_R31 \
.word 0b10010111111000001000100000000000; nop;

#define SAVE CURRENT_SAVE R1 \
.word 0b10010100000000011100100000000001; nop;

#define RESTORE_CURRENT_SAVE_R1 \
.word 0b10010100001000001000100000000001; nop;

#define SAVE_CURRENT_SAVE_R31 \
.word 0b10010100000111111100100000000001; nop;

#define RESTORE_CURRENT_SAVE_R31 \
.word 0b10010111111000001000100000000001; nop;
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#define SAVE_ENTRY_SP(reg) \
mts gspr0, reg;

#define RESTORE_ENTRY_SP(reg) \
mfs reg, gsproO;

#define SAVE_CURRENT_SAVE(reg) \
mts gsprl, reg;

#define RESTORE_CURRENT_SAVE(reg) \
mfs reg, gsprl;

.section .data

.global empty_zero_page
.align 12
empty_zero_page:

. space PAGE_SIZE
.global swapper_pg_dir
swapper_pg_dir:

. space PAGE_SIZE
#ifdef CONFIG_SMP
temp_boot_stack:

. space 1024
#endif /* CONFIG_SMP x/
#endif /* CONFIG_MMU =/

.section .rodata

.align 4

endian_check:
.word 1

__HEAD
ENTRY (_start)
#if CONFIG_KERNEL BASE_ADDR ==

brai TOPHYS(real_start)

.org 0x100

real _start:

#endif
mfs rl, rmsr
andi ri1, ri1, ~2
mts rmsr, ri

/%
* According to Xilinx, msrclr instruction behaves like 'mfs rX,rpc'
* if the msrclr instruction is not enabled. We use this to detect
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* if the opcode is available, by issuing msrclr and then testing the

result.
* r8 == - msr instructions are implemented
* r8 != 0 - msr instructions are not implemented
*/
msrclr r8, 0 /* clear nothing - just read msr for test */

cmpu r8, r8, rl /* rl must contain msr reg content */

/* skip FDT copy if secondary */
mfs ri1l, rpvr00

andi r11, ri11, OxFF

bnei 1rll, _setup_initial_mmu

/* r7 may point to an FDT, or there may be one linked in.
if it's in r7, we've got to save it away ASAP.
We ensure r7 points to a valid FDT, just in case the bootloader
is broken or non-existent */
beqi r7, no_fdt_arg /* NULL pointer? don't copy */
/* Does r7 point to a valid FDT? Load HEADER magic number */
/* Run time Big/Little endian platform */
/* Save 1 as word and load byte - 0 - BIG, 1 - LITTLE x/
lbui ri11, rO, TOPHYS(endian_check)
beqid r1l, big_endian /* DO NOT break delay stop dependency */
lw r11, r0, r7 /* Big endian load in delay slot */
lwr ri1, rO, r7 /* Little endian load */
big_endian:
rsubi ri1, ri1, OF_DT_HEADER /* Check FDT header */
beqi 1rl1ll, _prepare_copy_£fdt
or r7, r0, ro0 /* clear R7 when not valid DTB x*/
bnei 1ri1l, no_fdt_arg /* No - get out of here x/
_prepare_copy_fdt:
or r11, r0, r0 /* incremment x*/
ori r4d, rO, TOPHYS(_fdt_start)
ori r3, r0, (0x4000 - 4)
_copy_£fdt:
lw r12, r7, ril /*x r12 = r7 + ri11 */
sw r12, r4, ril /* addrl[rd4 + rii1] = ri12 x/
addik ri11, ri1l, 4 /* increment counting */
bgtid r3, _copy_fdt /* loop for all entries */
addik r3, r3, -4 /*x descrement loop */
no_fdt_arg:

#ifdef CONFIG_MMU

#ifndef CONFIG_CMDLINE_BOOL
/%
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* handling command line

* copy command line to __init_end. There is space for storing command
line.
*/
or r6, r0, ro0 /* incremment x*/
ori r4d, rO, __init_end /* load address of command line */
tophys (rd,r4) /* convert to phys address */

ori r3, rO, COMMAND_LINE_SIZE - 1 /* number of loops */
_copy_command_line:

1lbu r2, r5, r6 /* r2=rb5+r6 - r5 contain pointer to command line */
sb r2, r4, ré6 /* addr [r4+r6]= r2x*/

addik r6, r6, 1 /* increment counting */

bgtid r3, _copy_command_line /* loop for all entries */

addik r3, r3, -1 /* descrement loop */

addik r5, r4, 0 /* add new space for command line */

tovirt (r5,r5)
#endif /* CONFIG_CMDLINE_BOOL x*/

#ifdef NOT_COMPILE

/* save bram context */
or r6, r0, ro0 /* incremment x*/
ori rd, r0O, TOPHYS(_bram_load_start) /* save bram context */
ori r3, r0, (LMB_SIZE - 4)

_copy_bram:

lw r7, r0, r6 /* r7 = r0 + r6 *x/
sw r7, r4, r6 /* addr[rd + r6] = r7x*/
addik r6, r6, 4 /* increment counting */
bgtid r3, _copy_bram /* loop for all entries */
addik r3, r3, -4 /* descrement loop */

#endif

/* We have to turn on the MMU right away. */

_setup_initial_mmu:

/ *
* Set up the initial MMU state so we can do the first level of
* kernel initialization. This maps the first 16 MBytes of memory
1:1
* virtual to physical.
*/
nop
addik r3, rO0O, MICROBLAZE_TLB_SIZE -1 /* Invalidate all TLB entries
*/
_invalidate:
mts rtlbx, r3
mts rtlbhi, roO /* flush: ensure V is clear x/
bgtid r3, _invalidate /* loop for all entries */
addik r3, r3, -1
/* sync */
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/* Setup the kernel PID x/

mts rpid,r0 /* Load the kernel PID %/
nop

bri 4

/ *

* We should still be executing code at physical address area
RAM_BASEADDR at this point. However, kernel code is at

* a virtual address. So, set up a TLB mapping to cover this once
* translation is enabled.

*

*/
addik r3,r0, CONFIG_KERNEL_START /* Load the kernel virtual address
*/
tophys (r4,r3) /* Load the kernel physical address */

/* start to do TLB calculation x/

addik r12, rO, _end

rsub ri12, r3, ri2

addik r12, r12, CONFIG_KERNEL_PAD /* that's the pad */

or r9, r0, r0O /*x TLBO = 0 x/
or r10, r0, r0 /* TLB1 = 0 %/

addik ri11, r12, -0x1000000
bgei ri1l, GT16 /* size is greater than 16MB */
addik ri11, r12, -0x0800000
bgei rll, GT8 /* size is greater than 8MB x*/
addik ri11, r12, -0x0400000
bgei 1rl1l, GT4 /* size is greater than 4MB %/
/* size is less than 4MB */
addik ri11, r12, -0x0200000
bgei ri11l, GT2 /* size is greater than 2MB */
addik r9, r0, 0x0100000 /* TLBO must be 1MB */
addik ri11, r12, -0x0100000
bgei 1r1l, GT1 /* size is greater than 1MB %/
/* TLB1 is O which is setup above */
bri tlb_end
GT4: /* rll contains the rest - will be either 1 or 4 */
ori r9, r0, 0x400000 /* TLBO is 4MB */
bri TLB1
GT16: /* TLBO is 16MB x*/
addik r9, r0, 0x1000000 /* means TLBO is 16MB x*/
TLB1:
addik r2, ri1l, -0x0400000 /* must be used r2 because of substract if
failed x*/
bgei 1r2, GT20 /* size is greater than 16MB */
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/* size is >16MB and <20MB x*/
addik r11, ri11, -0x0100000
bgei ri1l, GT17 /* size is greater than 17MB */
/* kernel is >16MB and < 17MB */
GT1:
addik r10, r0, 0x0100000 /* means TLB1 is 1MB x*/
bri tlb_end
GT2: /* TLBO is O and TLB1 will be 4MB x/
GT17: /* TLB1 is 4MB - kernel size <20MB x*/
addik r10, r0, 0x0400000 /* means TLB1 is 4MB x*/
bri tlb_end
GT8: /* TLBO is still zero that's why I can use only TLB1 */
GT20: /* TLB1 is 16MB - kernel size >20MB x*/
addik ri10, r0, 0x1000000 /* means TLB1 is 16MB */
tlb_end:

* Configure and load two entries into TLB slots O and 1.
* In case we are pinning TLBs, these are reserved in by the

* other TLB functions. If not reserving, then it doesn't
* matter where they are loaded.
*/

andi r4,r4,0xfffffc00 /* Mask off the real page number */
ori rd,r4,(TLB_WR | TLB_EX) /* Set the write and execute bits x*/

beqi r9, jump_over /* TLBO can be zeroes that's why we not setup it

*/

/* look at the code below */
ori r30, r0O, 0x200
andi r29, r9, 0x100000
bneid r29, 1f

addik r30, r30, 0x80
andi 1r29, r9, 0x400000
bneid r29, 1f

addik r30, r30, 0x80
andi r29, r9, 0x1000000
bneid r29, 1f

addik r30, r30, 0x80

ori r11, r30, O
andi r3,r3,0xfffffc00 /*x Mask off the effective page number */
ori r3,r3,(TLB_VALID)

or r3, r3, ril1l

mts rtlbx,r0 /* TLB slow 0 */
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mts rtlblo,r4 /* Load the data portion of the entry */
mts rtlbhi,r3 /* Load the tag portion of the entry */

jump_over:

beqi r10, jump_over2 /* TLBO can be zeroes that's why we not setup
it */

/* look at the code below */
ori r30, r0O, 0x200

andi r29, ri0, 0x100000
bneid r29, 1f

addik r30, r30, 0x80

andi r29, r10, 0x400000
bneid r29, 1f

addik r30, r30, 0x80

andi 1r29, r10, 0x1000000
bneid r29, 1f

addik r30, r30, 0x80

ori r12, r30, O

addk r4, r4, r9 /* previous addr + TLBO size x*/
addk r3, r3, r9

andi r3,r3,0xfffffc00 /* Mask off the effective page number */
ori r3,r3,(TLB_VALID)
or r3, r3, ril2

ori r6,r0,1 /* TLB slot 1 x/

mts rtlbx,r6

mts rtlblo,r4 /* Load the data portion of the entry */
mts rtlbhi,r3 /* Load the tag portion of the entry */

jump_over2:
/*
* Load a TLB entry for LMB, since we need access to
* the exception vectors, using a 4k real==virtual mapping.

x/
ori r6,r0,3 /* TLB slot 3 */
mts rtlbx,r6

ori r4,r0,(TLB_WR | TLB_EX)
ori  r3,r0,(TLB_VALID | TLB_PAGESZ(PAGESZ_4K))

mts rtlblo,r4d /* Load the data portion of the entry x*/
mts rtlbhi,r3 /* Load the tag portion of the entry */
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/%

* We now have the lower 16 Meg of RAM mapped into TLB entries, and

the
* caches ready to work.
*/
turn_on_mmu:
ori r15,r0,start_here
/*
* Read PVR and mask off all but CPU id bits to use to
sequence
*/
#ifdef CONFIG_SMP
mfs r4, rpvr00
andi 1r4, r4, OxFF

beqi 1r4, finish

ori r15,r0,start_secondary_cpu
finish:
#endif /* CONFIG_SMP =/

ori r4,r0,MSR_KERNEL_VMS

mts rmsr ,r4

nop

rted ri15,0 /* enables MMU x*/
nop

start_here:
#endif /* CONFIG_MMU x*/

/* Initialize small data anchors x*/
la r13, rO, _KERNEL_SDA_BASE_
la r2, r0, _KERNEL_SDA2 BASE_

/* Initialize stack pointer */
la r1l, rO0, init_thread_union + THREAD_SIZE - 4
SAVE_ENTRY_SP_R1

/* Initialize r31 with current task address */

la r31, r0O, init_task

SAVE_CURRENT_SAVE_R31

/*

* Call platform dependent initialize function.
* Please see $(ARCH)/mach-$(SUBARCH)/setup.c for
* the function.
*/

la r11, r0O, machine_early_init

brald ri5, ri1

nop
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#ifndef CONFIG_MMU
la r15, rO, machine_halt
braid start_kernel
nop
#else
/%
* Initialize the MMU.
*/
bralid r15, mmu_init
nop

/* Go back to running unmapped so we can load up new values

* and change to using our exception vectors.

* On the MicroBlaze, all we invalidate the used TLB entries to clear
the old 16M byte TLB mappings.

*

*/
ori r15,r0,TOPHYS (kernel_load_context)
ori r4,r0,MSR_KERNEL

mts rmsr ,r4
nop

bri 4

rted 1r15,0
nop

/* Load up the kernel context */
kernel_load_context:
# Keep entry O and 1 valid. Entry 3 mapped to LMB can go away.

ori r5,r0,3

mts rtlbx,rb

nop

mts rtlbhi,r0

nop

addi r15, rO, machine_halt
ori r1l7, r0, start_kernel
ori r4, rO, MSR_KERNEL_VMS
mts rmsr, r4

nop

rted ri17, O /* enable MMU and jump to start_kernel x*/
nop

#endif /* CONFIG_MMU =/

#ifdef CONFIG_SMP

/* Entry point for secondary processors */
start_secondary_cpu:
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/* Initialize small data anchors x*/
la r13, r0, _KERNEL SDA BASE_
la r2, r0, _KERNEL SDA2 BASE_

/* Initialize stack pointer */
la rl1, rO, temp_boot_stack + 1024 - 4

/%

* Initialize the exception table.
*/

la r11, r0O, secondary_machine_init
brald ri15, rii1
nop

lwi rl, rO, secondary_ti

/* Initialize r31 with current task address */
1lwi CURRENT_TASK, rl1, TI_TASK
SAVE_CURRENT_SAVE_R31

/* Initialize stack pointer x/
addi r1, rl, THREAD SIZE-4
swi rO, rl1, O

// Initialize MMU
ori ri11, r0, 0x10000000
mts rzpr, ril

ori r15,r0,TOPHYS (kernel_load_context_secondary)
ori r4,r0,MSR_KERNEL

mts rmsr ,r4
nop

bri 4

rted 1ri15,0
nop

/* Load up the kernel context x/
kernel_load_context_secondary:
# Keep entry O and 1 valid. Entry 3 mapped to LMB can go away.

ori r5,r0,3

mts rtlbx,rb5

nop

mts rtlbhi,r0

nop

addi r15, rO, machine_halt
ori r1l7, r0, start_secondary

ori r4, r0O, MSR_KERNEL VMS
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mts rmsr, r4
nop

rted 1rl17, O
nop

/* enable MMU and jump to start_kernel =/

#endif /* CONFIG_SMP =x/
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